Science.gov

Sample records for aboveground plant respiration

  1. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  2. Coupling aboveground and belowground activities using short term fluctuations in 13C composition of soil respiration

    NASA Astrophysics Data System (ADS)

    Epron, D.; Parent, F.; Grossiord, C.; Plain, C.; Longdoz, B.; Granier, A.

    2011-12-01

    There is a growing amount of evidence that belowground processes in forest ecosystems are tightly coupled to aboveground activities. Soil CO2 efflux, the largest flux of CO2 to the atmosphere, is dominated by root respiration and by respiration of microorganisms that find the carbohydrates required to fulfil their energetic costs in the rhizosphere. A close coupling between aboveground photosynthetic activity and soil CO2 efflux is therefore expected. The isotopic signature of photosynthates varies with time because photosynthetic carbon isotope discrimination is dynamically controlled by environmental factors. This temporal variation of δ13C of photosynthate is thought to be transferred along the tree-soil continuum and it will be retrieved in soil CO2 efflux after a time lag that reflects the velocity of carbon transport from canopy to belowground. However, isotopic signature of soil CO2 efflux is not solely affected by photosynthetic carbon discrimination, bur also by post photosynthetic fractionation, and especially by fractionation processes affecting CO2 during the transport from soil layers to surface. Tunable diode laser spectrometry is a useful tool to quantify short-term variation in δ13C of soil CO2 efflux and of CO2 in the soil atmosphere. We set up hydrophobic tubes to measure the vertical profile of soil CO2 concentration and its δ13C composition in a temperate beech forest, and we monitored simultaneously δ13C of trunk and soil CO2 efflux, δ13C of phloem exudate and δ13C of leaf sugars. We evidenced that temporal changes in δ13C of soil CO2 and soil CO2 efflux reflected changes in environmental conditions that affect photosynthetic discrimination and that soil CO2 was 4.4% enriched compared to soil CO2 efflux according to diffusion fractionation. However, this close coupling can be disrupted when advective transport of CO2 took place. We also reported evidences that temporal variations in the isotopic composition of soil CO2 efflux reflect

  3. Maintenance and growth respiration of the aboveground parts of young field-grown hinoki cypress (Chamaecyparis obtusa).

    PubMed

    Yokota, T; Hagihara, A

    1995-06-01

    Aboveground respiration of five 8-year-old trees of field-grown hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) was nondestructively measured at monthly intervals over 1 year with an enclosed standing tree method. The relationship between monthly specific respiration rate and monthly mean relative growth rate at the individual tree level was described by a linear equation. During the dormant season, respiration was used mainly for maintenance purposes, whereas during the growing season, more than 40% of the respiration was used for growth purposes, i.e., 60 to 70% in May. We conclude that annual maintenance and growth respiration of a tree are directly proportional to the aboveground phytomass and its annual increment, respectively. The maintenance coefficient was estimated to be 0.504 +/- 0.039 (SE) kg kg(-1) year(-1), indicating that the amount respired for maintaining already existing phytomass was equivalent to about half of the existing phytomass. The growth coefficient was estimated to be 0.772 +/- 0.043 (SE) kg kg(-1), indicating that the amount respired for constructing new phytomass was equivalent to about three-fourths of the annual phytomass increment. The annual stand maintenance and growth respiration were, respectively, 8.8 Mg ha(-1) year(-1) for an aboveground biomass of 17.4 Mg ha(-1) and 5.0 Mg ha(-1) year(-1) for an annual stand aboveground biomass increment of 6.5 Mg ha(-1) year(-1). About two-thirds of the total respiration was used to maintain already existing biomass, and about one-third was used to construct new biomass.

  4. Belowground herbivory by insects: influence on plants and aboveground herbivores.

    PubMed

    Blossey, Bernd; Hunt-Joshi, Tamaru R

    2003-01-01

    Investigations of plant-herbivore interactions continue to be popular; however, a bias neglecting root feeders may limit our ability to understand how herbivores shape plant life histories. Root feeders can cause dramatic plant population declines, often associated with secondary stress factors such as drought or grazing. These severe impacts resulted in substantial interest in root feeders as agricultural pests and increasingly as biological weed control agents, particularly in North America. Despite logistical difficulties, establishment rates in biocontrol programs are equal or exceed those of aboveground herbivores (67.2% for aboveground herbivores, 77.5% for belowground herbivores) and root feeders are more likely to contribute to control (53.7% versus 33.6%). Models predicting root feeders would be negatively affected by competitively superior aboveground herbivores may be limited to early successional habitats or generalist root feeders attacking annual plants. In later successional habitats, root feeders become more abundant and appear to be the more potent force in driving plant performance and plant community composition. Aboveground herbivores, even at high population levels, were unable to prevent buildup of root herbivore populations and the resulting population collapse of their host plants. Significant information gaps exist about the impact of root feeders on plant physiology and secondary chemistry and their importance in natural areas, particularly in the tropics.

  5. Changes in the relationship between tree size and aboveground respiration in field-grown hinoki cypress (Chamaecyparis obtusa) trees over three years.

    PubMed

    Yokota, Taketo; Hagihara, Akio

    1998-01-01

    Respiration measurements of aerial parts of 18-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) trees were made under field conditions over three years to study changing relationships with tree age between respiration and phytomass, phytomass increment, and leaf mass. The relationship between annual respiration (r(a)) and phytomass (w(T)) was approximated by a proportional function (r(a) = aw(T)), where the proportional constant (a) decreased year by year. The effect of time on the relationship between annual respiration and phytomass of each sample tree was fitted by a power function. Respiration of the tree suppressed by the canopy decreased year by year, but respiration of the other trees increased slightly with age. The relationship between annual respiration and leaf mass was also approximated by a generalized power function. Excluding the suppressed tree, the relationship between annual respiration (r(a)) and the annual increment of aboveground phytomass (Deltaw(T)) was described by a proportional function (r(a) = 2.27Deltaw(T)), where the proportional constant, 2.27, was independent of sample tree and year, indicating that about 2.3 times of the annual aboveground phytomass increment equivalent was respired annually. For any tree, the time constant relationships between annual respiration and leaf mass and phytomass increment for different-sized trees were similar to the corresponding time continuum relationships. In contrast, the time continuum relationship between annual respiration and phytomass differed from the time constant relationship, indicating that respiration of less active woody tissue contributed significantly to aboveground respiration. Based on the relationship between tree size and annual respiration, annual aboveground stand respiration was estimated to be 25.0, 26.9, and 25.8 Mg(dm) ha(-1) year(-1) for the three consecutive years, respectively, and the corresponding aboveground stand biomass was 60.0, 69.0, and 76.8 Mg

  6. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    PubMed

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems.

  7. Aboveground autotrophic respiration in a Spanish black pine forest: Comparison of scaling methods to improve component partitioning.

    PubMed

    Martínez-García, E; Dadi, T; Rubio, E; García-Morote, F A; Andrés-Abellán, M; López-Serrano, F R

    2017-02-15

    Total wood CO2 efflux (Rw) varies vertically within individual trees, and leaves experience large variations in foliar respiration (Rf) rates over their life spans and during daily periods. Therefore, accurate sampling approaches are required to improve aboveground autotrophic respiration (RAa) estimations in stand-scale carbon cycling studies. We scaled-up Rw (comprising stem and branch CO2 efflux; ES and EB, respectively) and Rf from biometric and flux-chamber measurements taken between 2011 and 2013 in a Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forest at an unburnt (UB) site and a low burn-severity (LS) site. We measured seasonal ES at breast height (1.30m) on 9 trees at each site, which was also vertically examined on 5 of those trees. We also measured seasonal Rf in current- and previous-year needles on 3 trees at each site, and quantified Rf variations in darkness and light. Finally, we compared complex and simple scale-up methods which did or did not account for the vertical variation in Rw and the effects of leaf ageing and light inhibition on Rf, respectively. The simple methods underestimated the annual stand-level stem, branch, and total wood respiration ≈35%, 55%, and 41%, respectively, and overestimated annual stand-level whole-canopy foliage respiration ≈43% at both sites. Both methods provided similar annual stand-level RAa estimates, although the complex methods improved estimations of the relative contribution of RAa components. Thus, based on the complex methods the mean annual RAa at the stand-level was 4.53±0.25 and 4.45±0.12MgCha(-1)year(-1) at the UB and LS sites, respectively. Our data also confirmed that the low-severity fire did not alter the RAa rates. Collectively, this study reveals that complex approaches, applicable in other forest ecosystems, enhance the accuracy of partitioning RAa sources by reducing the error in scaling-up in chamber-based measurements.

  8. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance.

    PubMed

    Wang, Minggang; Biere, Arjen; Van der Putten, Wim H; Bezemer, T Martijn

    2014-05-01

    Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua and the belowground herbivore Agriotes lineatus influences plant defense and the performance of both insects. Belowground herbivory caused a reduction in the food consumption by the aboveground herbivore independent of whether it was initiated before, at the same time, or after that of the aboveground herbivore. By contrast, aboveground herbivory did not significantly affect belowground herbivore performance, but significantly reduced the performance of later arriving aboveground conspecifics. Interestingly, belowground herbivores negated negative effects of aboveground herbivores on consumption efficiency of their later arriving conspecifics, but only if the belowground herbivores were introduced simultaneously with the early arriving aboveground herbivores. Aboveground-belowground interactions could only partly be explained by induced changes in an important class of defense compounds, iridoid glycosides (IGs). Belowground herbivory caused a reduction in IGs in roots without affecting shoot levels, while aboveground herbivory increased IG levels in roots in the short term (4 days) but only in the shoots in the longer term (17 days). We conclude that the sequence of aboveground and belowground herbivory is important in interactions between aboveground and belowground herbivores and that knowledge on the timing of exposure is essential to predict outcomes of aboveground-belowground interactions.

  9. Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect.

    PubMed

    Borgström, Pernilla; Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo

    2016-01-01

    Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of

  10. Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect

    PubMed Central

    Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo

    2016-01-01

    Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of

  11. The response of tundra plant biomass, above-ground production, nitrogen, and CO{sub 2} flux to experimental warming

    SciTech Connect

    Hobbie, S.E.; Chapin, F.S. III

    1998-07-01

    The authors manipulated air temperature in tussock tundra near Toolik Lake, Alaska, and determined the consequences for total plant biomass, aboveground net primary production (ANPP), ecosystem nitrogen (N) pools and N uptake, and ecosystem CO{sub 2} flux. After 3.5 growing seasons, in situ plastic greenhouses that raised air temperature during the growing season had little effect on total biomass, N content, or growing-season N uptake of the major plant and soil pools. Similarly, vascular ANPP and net ecosystem CO{sub 2} exchange did not change with warming, although net primary production of mosses decreased with warming. Such general lack of response supports the hypothesis that productivity in tundra is constrained by the indirect effects of cold temperatures rather than by cold growing-season temperatures per se. Despite no effect on net ecosystem CO{sub 2} flux, air warming stimulated early-season gross photosynthesis (GP) and ecosystem respiration (ER) throughout the growing season. This increased carbon turnover was probably associated with species-level responses to increased air temperature. Warming increased the aboveground biomass of the overstory shrub, dwarf birch (Betula nana), and caused a significant net redistribution of N from the understory evergreen shrub, Vaccinium vitis-idaea, to B. nana, despite no effects on soil temperature, total plant N, or N availability.

  12. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition.

    PubMed

    Veen, G F Ciska; Geuverink, Elzemiek; Olff, Han

    2012-02-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground-belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant-soil-vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground-belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground-belowground interactions for small-scale plant community composition.

  13. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  14. Putative linkages between below- and aboveground mutualisms during alien plant invasions

    PubMed Central

    Rodríguez-Echeverría, Susana; Traveset, Anna

    2015-01-01

    Evidence of the fundamental role of below–aboveground links in controlling ecosystem processes is mostly based on studies done with soil herbivores or mutualists and aboveground herbivores. Much less is known about the links between belowground and aboveground mutualisms, which have been studied separately for decades. It has not been until recently that these mutualisms—mycorrhizas and legume–rhizobia on one hand, and pollinators and seed dispersers on the other hand—have been found to influence each other, with potential ecological and evolutionary consequences. Here we review the mechanisms that may link these two-level mutualisms, mostly reported for native plant species, and make predictions about their relevance during alien plant invasions. We propose that alien plants establishing effective mutualisms with belowground microbes might improve their reproductive success through positive interactions between those mutualists and pollinators and seed dispersers. On the other hand, changes in the abundance and diversity of soil mutualists induced by invasion can also interfere with below–aboveground links for native plant species. We conclude that further research on this topic is needed in the field of invasion ecology as it can provide interesting clues on synergistic interactions and invasional meltdowns during alien plant invasions. PMID:26034049

  15. Assessment of airborne heavy metal pollution by aboveground plant parts.

    PubMed

    Rossini Oliva, S; Mingorance, M D

    2006-10-01

    Italian stone pine (Pinus pinea L.) and oleander (Nerium oleander L.) leaves, bark and wood samples were collected at different sites around an industrial area (Huelva, SW Spain) and compared with samples of the same species from a background site. Samples were analysed with respect to the following pollutants: Al, Ba, Cr, Cu, Fe and Pb by ICP-AES. The suitability of different plant parts as biomonitors of pollution was investigated. In pine samples from the polluted sites the ratio of concentrations between bark and wood was high for Al, Ba, Cu and Fe, whereas no differences were found in samples from the unpolluted area. No differences were detected in oleander for the same ratio. In the oleander species, the ratio between leaves and wood concentration allowed to distinguish between control and polluted sites. The ratio of the concentration between leaves and wood was elevated for Al, Ba and Fe in pine samples from the polluted sites. The ratio of the concentration in bark or leaves to their concentration in wood might be useful to detect inorganic atmospheric pollutants.

  16. Management trade-off between aboveground carbon storage and understory plant species richness in temperate forests.

    PubMed

    Burton, Julia I; Ares, Adrian; Olson, Deanna H; Puettmann, Klaus J

    2013-09-01

    Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity. Forest thinning reduces C storage in the overstory and recruitment of detrital C. These C stores can affect environmental conditions and resource availability in the understory, driving patterns in the distribution of early and late-seral species. We examined the effects of replicated (N = 7) thinning experiments on aboveground C and understory vascular plant species richness, and we contrasted relationships between aboveground C and early- vs. late-seral species richness. Finally, we used structural equation modeling (SEM) to examine relationships among early- and late-seral species richness and live and detrital aboveground C stores. Six years following thinning, aboveground C was greater in the high-density treatment and untreated control than in moderate- (MD) and variable-density (VD) treatments as a result of reductions in live overstory C. In contrast, all thinning treatments increased species richness relative to controls. Between the growing seasons of years 6 and 11 following treatments, the live overstory C increment tended to increase with residual density, while richness decreased in MD and VD treatments. The richness of early-seral species was negatively related to aboveground C in MD and VD, while late-seral species richness was positively (albeit weakly) related to aboveground C. Structural equation modeling analysis revealed strong negative effects of live overstory C on early-seral species richness balanced against weaker positive effects on late-seral species richness, as well as positive effects of detrital C stocks. A trade-off between carbon and plant species richness thus emerges as a net result of

  17. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.

    PubMed

    Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.

  18. Aboveground and belowground plant traits as drivers of microbial abundance and activity.

    NASA Astrophysics Data System (ADS)

    Baxendale, Catherine; Lavorel, Sandra; Grigulis, Karl; Legay, Nicolas; Krainer, Ute; Bahn, Michael; Kastl, Eva; Pommier, Thomas; Bardgett, Richard

    2013-04-01

    Although there is growing awareness of the roles that plant-soil interactions play in regulating ecosystem processes, our understanding of the role that specific aboveground and belowground plant traits play in defining them is limited. In this study, we aimed to develop a conceptual model linking plant functional trait impacts on soil microbial functional diversity and their coupled effects on ecosystem processes. This was done by replicating three mesocosm studies, based on model sub-alpine grasslands, across three sites in different parts of Europe as part of the pan-European project, VITAL. We manipulated community plant traits by planting communities of varying abundance and dominance of 4 common grassland species. After 1.5 years, we then measured aboveground traits (specific leaf area, leaf dry matter content, leaf nitrogen and carbon content and leaf C:N ratio), belowground traits (specific root length, average diameter, root dry matter content, root nitrogen and carbon content and root C:N ratio) microbial community abundance (using phospholipid fatty acid (PLFA) analysis and gene abundance of nitrifier and denitrifier communities), and microbial activity (via potential nitrification and denitrification rates). We present links between manipulated community traits, microbial properties and ecosystem processes, supporting the role of plant traits in driving microbial properties.

  19. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    USGS Publications Warehouse

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  20. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests

    USGS Publications Warehouse

    McGinnis, T.W.; Shook, C.D.; Keeley, J.E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  1. Roots under attack: contrasting plant responses to below- and aboveground insect herbivory.

    PubMed

    Johnson, Scott N; Erb, Matthias; Hartley, Susan E

    2016-04-01

    The distinctive ecology of root herbivores, the complexity and diversity of root-microbe interactions, and the physical nature of the soil matrix mean that plant responses to root herbivory extrapolate poorly from our understanding of responses to aboveground herbivores. For example, root attack induces different changes in phytohormones to those in damaged leaves, including a lower but more potent burst of jasmonates in several plant species. Root secondary metabolite responses also differ markedly, although patterns between roots and shoots are harder to discern. Root defences must therefore be investigated in their own ecophysiological and evolutionary context, specifically one which incorporates root microbial symbionts and antagonists, if we are to better understand the battle between plants and their hidden herbivores.

  2. Interplay between Senecio jacobaea and plant, soil, and aboveground insect community composition.

    PubMed

    Bezemer, T Martijn; Harvey, Jeffrey A; Kowalchuk, George A; Korpershoek, Hanna; van der Putten, Wim H

    2006-08-01

    To elucidate the factors that affect the performance of plants in their natural environment, it is essential to study interactions with other neighboring plants, as well as with above- and belowground higher trophic organisms. We used a long-term field experiment to study how local plant community diversity influenced colonization by the biennial composite Senecio jacobaea in its native range in The Netherlands in Europe. We tested the effect of sowing later-succession plant species (0, 4, or 15 species) on plant succession and S. jacobaea performance. Over a period of eight years, the percent cover of S. jacobaea was relatively low in communities sown with 15 or 4 later-succession plant species compared to plots that were not sown, but that were colonized naturally. However, after four years of high abundance, the density of S. jacobaea in unsown plots started to decline, and the size of the individual plants was smaller than in the plots sown with 15 or 4 plant species. In the unsown plots, densities of aboveground leaf-mining, flower-feeding, and stem-boring insects on S. jacobaea plants were lower than on plants in sown plots, and there was a strong positive relationship between plant size and levels of herbivory. In a greenhouse experiment, we grew S. jacobaea in sterilized soil inoculated with soil from the different sowing treatments of the field experiment. Biomass production was lower when S. jacobaea test plants were grown in soil from the unsown plots than in soil from the sown plots (4 or 15 species). Molecular analysis of the fungal and bacterial communities revealed that the composition of fungal communities in unsown plots differed significantly from those in sown plots, suggesting that soil fungi could have been involved in the relative growth reduction of S. jacobaea in the greenhouse bioassay. Our results show that, in its native habitat, the abundance of S. jacobaea depends on the initial composition of the plant community and that, on a scale of

  3. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    PubMed Central

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Tiedje, James M.

    2016-01-01

    ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. PMID:27677789

  4. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming.

    PubMed

    Xue, Kai; Yuan, Mengting M; Xie, Jianping; Li, Dejun; Qin, Yujia; Hale, Lauren E; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2016-09-27

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  5. 40K/137Cs discrimination ratios to the aboveground organs of tropical plants.

    PubMed

    Sanches, N; Anjos, R M; Mosquera, B

    2008-07-01

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of (137)Cs and (40)K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisíaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of (137)Cs and (40)K in their growing parts. However, a significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The (40)K/(137)Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  6. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    PubMed

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  7. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Koptur, S.; Snyder, J.R.

    2004-01-01

    Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant (p < 0.05), but the form and variables comprising the best model varied among species. We applied the best-fit regression models to structural information from the shrub stratum in 18 plots on Big Pine Key, the most extensive pine forest in the Keys. Estimates based on species-specific equations indicated clearly that total aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available. ?? 2004 Elsevier B.V. All rights reserved.

  8. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.

    PubMed

    Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson

    2007-12-01

    In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.

  9. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NASA Astrophysics Data System (ADS)

    Reidinger, Stefan; Eschen, René; Gange, Alan C.; Finch, Paul; Bezemer, T. Martijn

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF colonization levels of individual ragwort ( Senecio jacobaea) plants growing in grassland plots that were originally sown with 15 or 4 plant species, or were unsown. We measured the concentrations of carbon, nitrogen and pyrrolizidine alkaloids (PAs), and assessed the presence of aboveground insect herbivores on the sampled plants. Total AMF colonization and colonization by arbuscules was lower in plots sown with 15 species than in plots sown with 4 species and unsown plots. AMF colonization was positively related to the cover of oxeye daisy ( Leucanthemum vulgare) and a positive relationship between colonization by arbuscules and the occurrence of a specialist seed-feeding fly ( Pegohylemyia seneciella) was found. The occurrence of stem-boring, leaf-mining and sap-sucking insects was not affected by AMF colonization. Total PA concentrations were negatively related to colonization levels by vesicles, but did not differ among the sowing treatments. No single factor explained the observed differences in AMF colonization among the sowing treatments or insect herbivore occurrence on S. jacobaea. However, correlations across the treatments suggest that some of the variation was due to the abundance of one plant species, which is known to stimulate AMF colonization of neighbouring plants, while AMF colonization was related to the occurrence of a specialist insect herbivore. Our results thus illustrate that in natural systems, the ecosystem impact of AMF through their influence on the occurrence of specialist insects can be recognised, but they also highlight the confounding effect of neighbouring plant species identity. Hence, our results emphasise the importance of field

  10. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the

  11. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species

    PubMed Central

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L.

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes. PMID:27010947

  12. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  13. Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina

    NASA Astrophysics Data System (ADS)

    Pucheta, Eduardo; Cabido, Marcelo; Díaz, Sandra; Funes, Guillermo

    1998-04-01

    Changes in plant community composition, diversity, aboveground biomass, and aboveground net primary production (ANPP) of different plant growth-forms were assessed in sites protected from livestock grazing for 2, 4, and 15 years, and in a heavily-grazed site. Species richness was maximum at the grazed site and decreased significantly after 4 years of protection. Diversity decreased significantly only after 15 years of protection. No alien or weedy species were found at grazed or protected sites. Grazing exclusion produced a shift from grazing-tolerant or grazing-avoiding species with a graminoid or prostrate growth-form to taller species with a tall tussock growth-form. Grazing produced a 33% decrease in standing biomass but little change in ANPP when compared to the site protected from grazing for 2 years, but important changes in both biomass and ANPP respect to the sites protected for 4 and 15 years. Consumption was near 35% of ANPP.

  14. Enhancing Students' Understanding of Photosynthesis and Respiration in Plant through Conceptual Change Approach

    ERIC Educational Resources Information Center

    Yenilmez, Ayse; Tekkaya, Ceren

    2006-01-01

    This study investigated the effectiveness of combining conceptual change text and discussion web strategies on students' understanding of photosynthesis and respiration in plants. Students' conceptual understanding of photosynthesis and respiration in plants was measured using the two-tier diagnostic test developed by Haslam and Treagust (1987,…

  15. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the "positive feedback" mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  16. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the ``positive feedback'' mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  17. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  18. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  19. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem.

    PubMed

    Blue, Jarrod D; Souza, Lara; Classen, Aimée T; Schweitzer, Jennifer A; Sanders, Nathan J

    2011-11-01

    Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.

  20. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    PubMed

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-05

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  1. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    PubMed

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  2. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands

    PubMed Central

    Ceulemans, Tobias; Hulsmans, Eva; Berwaers, Sigi; Van Acker, Kasper; Honnay, Olivier

    2017-01-01

    Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species’ recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary. PMID:28333985

  3. Carbon dynamics in aboveground biomass of co-dominant plant species in a temperate grassland ecosystem: same or different?

    PubMed

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A; Schnyder, Hans

    2016-04-01

    Understanding the role of individual organisms in whole-ecosystem carbon (C) fluxes is probably the biggest current challenge in C cycle research. Thus, it is unknown whether different plant community members share the same or different residence times in metabolic (τmetab ) and nonmetabolic (i.e. structural) (τnonmetab ) C pools of aboveground biomass and the fraction of fixed C allocated to aboveground nonmetabolic biomass (Anonmetab ). We assessed τmetab , τnonmetab and Anonmetab of co-dominant species from different functional groups (two bunchgrasses, a stoloniferous legume and a rosette dicot) in a temperate grassland community. Continuous, 14-16-d-long (13) C-labeling experiments were performed in September 2006, May 2007 and September 2007. A two-pool compartmental system, with a well-mixed metabolic and a nonmixed nonmetabolic pool, was the simplest biologically meaningful model that fitted the (13) C tracer kinetics in the whole-shoot biomass of all species. In all experimental periods, the species had similar τmetab (5-8 d), whereas τnonmetab ranged from 20 to 58 d (except for one outlier) and Anonmetab from 7 to 45%. Variations in τnonmetab and Anonmetab were not systematically associated with species or experimental periods, but exhibited relationships with leaf life span, particularly in the grasses. Similar pool kinetics of species suggested similar kinetics at the community level.

  4. Carbon dynamics in aboveground biomass of co-dominant plant species: related rather to leaf life span than to species

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A.; Schnyder, Hans

    2016-04-01

    This study investigates the role of individual organisms in whole ecosystem carbon (C) fluxes. It is currently unknown if different plant community members share the same or different kinetics of C pools in aboveground biomass, thereby adding (or not) variability to the first steps in ecosystem C cycling. We assessed the residence times in metabolic and non-metabolic (or structural) C pools and the allocation pattern of assimilated C in aboveground plant parts of four co-existing, co-dominant species from different functional groups in a temperate grassland community. For this purpose continuous, 14-16 day long 13CO2/12CO2-labeling experiments were performed in Sept. 2006, May 2007 and Sept. 2007, and the tracer kinetics were analysed with compartmental modeling. In all experimental periods, the species shared vastly similar residence times in metabolic C (5-8 d). In contrast, the residence times in non-metabolic C ranged from 20 to 58 d (except one outlier) and the fraction of fixed C allocated to the non-metabolic pool from 7 to 45%. These variations in non-metabolic C kinetics were not systematically associated with species or experimental periods, but exhibited close relationships with (independent estimates of) leaf life span, particularly in the grasses. This adds new meaning to leaf life span as a functional trait in the leaf and plant economics spectrum and its implication for C cycle studies in grassland and also forest systems. As the four co-dominant species accounted for ~80% of total community shoot biomass, we should also expect that the observed similarities in pool kinetics and allocation will scale up to similar relationships at the community level.

  5. Convergence in the temperature response of leaf respiration across biomes and plant functional types

    PubMed Central

    Heskel, Mary A.; O’Sullivan, Odhran S.; Reich, Peter B.; Tjoelker, Mark G.; Weerasinghe, Lasantha K.; Penillard, Aurore; Egerton, John J. G.; Creek, Danielle; Bloomfield, Keith J.; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R.; Martinez-de la Torre, Alberto; Griffin, Kevin L.; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H.; Atkin, Owen K.

    2016-01-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849

  6. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    PubMed

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  7. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts.

    PubMed

    Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R; Wilch, Margaret H; Riddle, Jakob M; Furr, Susan H; Steen, Cole; U'Ren, Jana M; Sandberg, Dustin C; Arnold, A Elizabeth

    2015-07-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.

  8. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    PubMed Central

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  9. Plant feedbacks on soil respiration in a poplar plantation under elevated CO2 and nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Lukac, Martin; Godbold, Douglas L.; Marinari, Sara; de Angelis, Paolo

    2010-05-01

    FACE experiments offered a unique occasion to investigate plant-soil relationship in terrestrial ecosystems. Changes in plant productivity and carbon (C) allocation under elevated CO2 have the potential to alter soil processes mediated by microorganisms. Also, fertilization can strongly affect plant-soil relationships through both direct and indirect effects. A fast growing poplar plantation was treated for six consecutive years with elevated CO2 at two nitrogen (N) levels. In the frame of plant responses to these environmental factors, our intent is to investigate plant-soil relationships and their impact on soil CO2 emissions. In particular, feedbacks of root productivity on soil respiration and heterotrophic community have been assessed in the last two years of the field experiment. In the POP-EUROFACE fast growing poplar plantation, the enhancement of atmospheric CO2 concentration induced an increase of fine root biomass and productivity, and consequently rhizodeposition. Concurrently, N addition reduced total root biomass but did not affect productivity. Soil respiration was deeply impacted by elevated CO2, with increases up to 95%, independent of N availability. The increase involved both auto and rhizomicrobial components of soil respiration. Indeed, the root-rhizosphere continuum stimulated the rhizomicrobial respiration, with the prompt loss of part of the extra C fixed through photosynthesis in elevated CO2. In fact, whereas the basal soil respiration was significantly dependent on fine root standing biomass, total soil respiration and the rhizomicrobial component during the growing season were significantly dependent on fine root productivity. This mechanism was also evident in the year following the end of CO2 enrichment, when no "residual" effects of elevated CO2 on soil respiration were observed, in unfertilized soil. The relationship between root productivity and heterotrophic respiration was mediated by the pattern of labile C availability in soil

  10. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants.

    PubMed

    Reich, Peter B; Tjoelker, Mark G; Pregitzer, Kurt S; Wright, Ian J; Oleksyn, Jacek; Machado, Jose-Luis

    2008-08-01

    Using a database of 2510 measurements from 287 species, we assessed whether general relationships exist between mass-based dark respiration rate and nitrogen concentration for stems and roots, and if they do, whether they are similar to those for leaves. The results demonstrate strong respiration-nitrogen scaling relationships for all observations and for data averaged by species; for roots, stems and leaves examined separately; and for life-forms (woody, herbaceous plants) and phylogenetic groups (angiosperms, gymnosperms) considered separately. No consistent differences in the slopes of these log-log scaling relations were observed among organs or among plant groups, but respiration rates at any common nitrogen concentration were consistently lower on average in leaves than in stems or roots, indicating that organ-specific relationships should be used in models that simulate respiration based on tissue nitrogen concentrations. The results demonstrate both common and divergent aspects of tissue-level respiration-nitrogen scaling for leaves, stems and roots across higher land plants, which are important in their own right and for their utility in modelling carbon fluxes at local to global scales.

  11. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    PubMed Central

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  12. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    PubMed

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  13. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth.

    PubMed

    Meier, Courtney L; Bowman, William D

    2008-11-01

    Phenolics can reduce soil nutrient availability, either indirectly by stimulating microbial nitrogen (N) immobilization or directly by enhancing physical protection within soil. Phenolic-rich plants may therefore negatively affect neighboring plant growth by restricting the N supply. We used a slow-growing, phenolic-rich alpine forb, Acomastylis rossii, to test the hypothesis that phenolic-rich carbon (C) fractions stimulate microbial population growth and reduce plant growth. We generated low-molecular-weight (LMW) fractions, tannin fractions, and total soluble C fractions from A. rossii and measured their effects on soil respiration and growth of Deschampsia caespitosa, a fast-growing, co-dominant grass. Fraction effects fell into two distinct categories: (1) fractions did not increase soil respiration and killed D. caespitosa plants, or (2) fractions stimulated soil respiration and reduced plant growth and plant N concentration while simultaneously inhibiting root growth. The LMW phenolic-rich fractions increased soil respiration and reduced plant growth more than tannins. These results suggest that phenolic compounds can inhibit root growth directly as well as indirectly affect growth by reducing pools of plant available N by stimulating soil microbes. Both mechanisms illustrate how below-ground phenolic effects may influence the growth of neighboring plants. We also examined patterns of foliar phenolic concentrations among populations of A. rossii across a natural productivity gradient (productivity was used as a proxy for competition intensity). Concentrations of some LMW phenolics increased significantly in more productive sites where A. rossii is a competitive equal with the faster growing D. caespitosa. Taken together, our results contribute important information to the growing body of evidence indicating that the quality of C moving from plants to soils can have significant effects on neighboring plant performance, potentially associated with phytoxic

  14. The role of alternative cyanide-insensitive respiration in plants. Final report

    SciTech Connect

    Raskin, Ilya

    1997-09-29

    This DOE funded research concentrated on the investigation of the role of respiration and oxidative stress in plant biology. Initially the authors concentrated on the possible role of cyanide-insensitive respiration in counteracting the deleterious effects of chilling stress. Although plants are considered to be poikilotherms, there are a few examples of thermogenesis, in which the tissue temperature increases well above ambient. They suggested that differences between thermogenic and non-thermogenic plants may be quantitative rather than qualitative, and that heat from increased respiration may have a local protective effect on the mitochondria, slowing or reducing the effects of chilling. They proposed that this is accomplished by a large increase in respiration, predominantly via the alternative pathway. They measured the increases in respiration, particularly via the alternative pathway, in response to chilling. They have also quantified the associated increases in heat evolution in response to chilling in a number of plant species using a microcalorimeter. For example, after 8 h exposure to 8 C, heat evolution in chilling-sensitive species increased 47--98%, compared to 7--22% for the chilling-resistant species. No increase in heat evolution was observed in the extremely chilling-sensitive ornamental Episcka cupreata (Hook). Increases in heat evolution were observed when plants were chilled in constant light or in the dark, but not when plants were chilled at high humidity. Heat evolution by mitochondria isolated from potato tuber slices were also measured. These values, together with measurements of the heat capacity of isolated mitochondria and counting of the mitochondria by flow cytometry, allow calculation of theoretical maximal rates of heating and the heat produced per mitochondrion. The obtained data was consistent with the protective role of respiratory heat production in cold-stressed plants.

  15. Nitrogen deposition alters plant-fungal relationships: linking belowground dynamics to aboveground vegetation change.

    PubMed

    Dean, Sarah L; Farrer, Emily C; Taylor, D Lee; Porras-Alfaro, Andrea; Suding, Katharine N; Sinsabaugh, Robert L

    2014-03-01

    Nitrogen (N) deposition rates are increasing globally due to anthropogenic activities. Plant community responses to N are often attributed to altered competitive interactions between plants, but may also be a result of microbial responses to N, particularly root-associated fungi (RAF), which are known to affect plant fitness. In response to N, Deschampsia cespitosa, a codominant plant in the alpine tundra at Niwot Ridge (CO), increases in abundance, while Geum rossii, its principal competitor, declines. Importantly, G. rossii declines with N even in the absence of its competitor. We examined whether contrasting host responses to N are associated with altered plant-fungal symbioses, and whether the effects of N are distinct from effects of altered plant competition on RAF, using 454 pyrosequencing. Host RAF communities were distinct (only 9.4% of OTUs overlapped). N increased RAF diversity in G. rossii, but decreased it in D. cespitosa. D. cespitosa RAF communities were more responsive to N than G. rossii RAF communities, perhaps indicating a flexible microbial community aids host adaptation to nutrient enrichment. Effects of removing D. cespitosa were distinct from effects of N on G. rossii RAF, and D. cespitosa presence reversed RAF diversity response to N. The most dominant G. rossii RAF order, Helotiales, was the most affected by N, declining from 83% to 60% of sequences, perhaps indicating a loss of mutualists under N enrichment. These results highlight the potential importance of belowground microbial dynamics in plant responses to N deposition.

  16. Secondary School Students' Misconceptions about Photosynthesis and Plant Respiration: Preliminary Results

    ERIC Educational Resources Information Center

    Svandova, Katerina

    2014-01-01

    The study investigated the common misconceptions of lower secondary school students regarding the concepts of photosynthesis and plant respiration. These are abstract concepts which are difficult to comprehend for adults let alone for lower secondary school students. Research of the students misconceptions are conducted worldwide. The researches…

  17. An Analysis of Students' Misconceptions Concerning Photosynthesis and Respiration in Plants.

    ERIC Educational Resources Information Center

    Capa, Yesim; Yildirim, Ali; Ozden, M. Yasar

    The aims of this study were to diagnose students' misconceptions concerning photosynthesis and respiration in plants, and to investigate reasons behind these misconceptions. The subjects were 45 ninth grade high school students and 11 high school teachers. Data were collected by interview technique. All of the interviews were audiotaped and…

  18. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  19. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide

    PubMed Central

    Leakey, Andrew D. B.; Xu, Fangxiu; Gillespie, Kelly M.; McGrath, Justin M.; Ainsworth, Elizabeth A.; Ort, Donald R.

    2009-01-01

    Photosynthetic and respiratory exchanges of CO2 by plants with the atmosphere are significantly larger than anthropogenic CO2 emissions, and these fluxes will change as growing conditions are altered by climate change. Understanding feedbacks in CO2 exchange is important to predicting future atmospheric [CO2] and climate change. At the tissue and plant scale, respiration is a key determinant of growth and yield. Although the stimulation of C3 photosynthesis by growth at elevated [CO2] can be predicted with confidence, the nature of changes in respiration is less certain. This is largely because the mechanism of the respiratory response is insufficiently understood. Molecular, biochemical and physiological changes in the carbon metabolism of soybean in a free-air CO2 enrichment experiment were investigated over 2 growing seasons. Growth of soybean at elevated [CO2] (550 μmol·mol−1) under field conditions stimulated the rate of nighttime respiration by 37%. Greater respiratory capacity was driven by greater abundance of transcripts encoding enzymes throughout the respiratory pathway, which would be needed for the greater number of mitochondria that have been observed in the leaves of plants grown at elevated [CO2]. Greater respiratory quotient and leaf carbohydrate content at elevated [CO2] indicate that stimulated respiration was supported by the additional carbohydrate available from enhanced photosynthesis at elevated [CO2]. If this response is consistent across many species, the future stimulation of net primary productivity could be reduced significantly. Greater foliar respiration at elevated [CO2] will reduce plant carbon balance, but could facilitate greater yields through enhanced photoassimilate export to sink tissues. PMID:19204289

  20. Soil respiration responses to variation in temperature and moisture availability under woody plants and grasses

    NASA Astrophysics Data System (ADS)

    Pravalprukskul, P.; Pavao-Zuckerman, M.; Barron-Gafford, G. A.

    2011-12-01

    Woody plant encroachment into grasslands, such as in the southwestern US, is thought to have altered regional carbon fluxes due to the differences in structure and function between grasses and woody plants. It is unknown how climate change predictions for such areas, particularly warmer temperatures and fewer but larger precipitation events, might further acerbate our ability to estimate flux dynamics. Soil respiration, a key flux affecting ecosystem carbon balance, has been increasingly studied, but the exact effects of temperature and precipitation changes on flux rates have not been fully determined, particularly their interactive effects. The goal of this study was to compare soil respiration responses to different temperatures in soils under native southwestern mesquites and grasses undergoing a precipitation pulse, whilst removing other confounding factors, such as soil history, through the controlled environments within Biosphere 2. Mesquites and grasses were transplanted into ground basalt within two environments maintained at a 4°C temperature difference, the projected temperature increase from climate change. Post-transplant soil samples were incubated between 10 and 40°C to determine the temperature sensitivities of soils from each microhabitat within a month of this transplant. A single-peak, best-fit model for grass soils suggested a weak temperature sensitivity, while mesquite soils showed little to no sensitivity. Additionally, all plants underwent a drought treatment prior to the precipitation event, and soil respiration rates were tracked over several days using the collar technique. This portion of the study allowed for an estimation of the sensitivity of soil respiration to precipitation pulses under a variety of antecedent moisture conditions. Initial results illustrate that soils under mesquites tend to respire significantly more than soil under grasses or in bare soils over the course of a precipitation event. Together, these results suggest

  1. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  2. Cyanide-resistant respiration in photosynthetic organs of freshwater aquatic plants.

    PubMed

    Azcón-Bieto, J; Murillo, J; Peñuelas, J

    1987-07-01

    THE RATE AND SENSITIVITY TO INHIBITORS (KCN AND SALICYLHYDROXAMIC ACID[SHAM]) OF RESPIRATORY OXYGEN UPTAKE HAS BEEN INVESTIGATED IN PHOTOSYNTHETIC ORGANS OF SEVERAL FRESHWATER AQUATIC PLANT SPECIES: six angiosperms, two bryophytes, and an alga. The oxygen uptake rates on a dry weight basis of angiosperm leaves were generally higher than those of the corresponding stems. Leaves also had a higher chlorophyll content than stems. Respiration of leaves and stems of aquatic angiosperms was generally cyanide-resistant, the percentage of resistance being higher than 50% with very few exceptions. The cyanide resistance of respiration of whole shoots of two aquatic bryophytes and an alga was lower and ranged between 25 and 50%. These results suggested that the photosynthetic tissues of aquatic plants have a considerable alternative pathway capacity. The angiosperm leaves generally showed the largest alternative path capacity. In all cases, the respiration rate of the aquatic plants studied was inhibited by SHAM alone by about 13 to 31%. These results were used for calculating the actual activities of the cytochrome and alternative pathways. These activities were generally higher in the leaves of angiosperms. The basal oxygen uptake rate of Myriophyllum spicatum leaves was not stimulated by sucrose, malate or glycine in the absence of the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP), but was greatly increased by CCCP, either in the presence or in the absence of substrates. These results suggest that respiration was limited by the adenylate system, and not by substrate availability. The increase in the respiratory rate by CCCP was due to a large increase in the activities of both the cytochrome and alternative pathways. The respiration rate of M. spicatum leaves in the presence of substrates was little inhibited by SHAM alone, but the SHAM-resistant rate (that is, the cytochrome path) was greatly stimulated by the further addition of CCCP. Similarly, the cyanide

  3. Cyanide-resistant respiration in photosynthetic organs of freshwater aquatic plants. [Myriophyllum spicatum

    SciTech Connect

    Azcon-Bieto, J.; Murillo, J.; Penuelas, J.

    1987-07-01

    The rate and sensitivity to inhibitors (KCN and salicylhydroxamic acid(SHAM)) of respiratory oxygen uptake has been investigated in photosynthetic organs of several freshwater aquatic plant species. The oxygen uptake rates on a dry weigh basis of angiosperm leaves were generally higher than those of the corresponding stems. Leaves also had a higher chlorophyll content than stems. Respiration of leaves and stems of aquatic angiosperms was generally cyanide-resistant. The cyanide resistance of respiration of whole shoots of two aquatic bryophytes and an alga was lower. These results suggested that the photosynthetic tissues of aquatic plants have a considerable alternative pathway capacity. The angiosperm leaves generally showed the largest alternative path capacity. In all cases, the respiration rate of the aquatic plants studied was inhibited by SHAM alone by about 13 to 31%. These results were used for calculating the actual activities of the cytochrome and alternative pathways. These activities were generally higher in the leaves of angiosperms. The basal oxygen uptake rate of Myriophyllum spicatum leaves was greatly increased by CCCP, either in the presence or in the absence of substrates. These results suggest that respiration was limited by the adenylate system, and not by substrate availability. The increase in the respiratory rate by CCCP was due to a large increase in the activities of both the cytochrome and alternative pathways. The respiration rate of M. spicatum leaves in the presence of substrates was little inhibited by SHAM alone, but the SHAM-resistant rate (that is, the cytochrome path) was greatly stimulated by the further addition of CCCP. Similarly, the cyanide-resistant rate of O/sub 2/ uptake was also increased by the uncoupler.

  4. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types.

    PubMed

    Slot, Martijn; Kitajima, Kaoru

    2015-03-01

    Respiration is instrumental for survival and growth of plants, but increasing costs of maintenance processes with warming have the potential to change the balance between photosynthetic carbon uptake and respiratory carbon release from leaves. Climate warming may cause substantial increases of leaf respiratory carbon fluxes, which would further impact the carbon balance of terrestrial vegetation. However, downregulation of respiratory physiology via thermal acclimation may mitigate this impact. We have conducted a meta-analysis with data collected from 43 independent studies to assess quantitatively the thermal acclimation capacity of leaf dark respiration to warming of terrestrial plant species from across the globe. In total, 282 temperature contrasts were included in the meta-analysis, representing 103 species of forbs, graminoids, shrubs, trees and lianas native to arctic, boreal, temperate and tropical ecosystems. Acclimation to warming was found to decrease respiration at a set temperature in the majority of the observations, regardless of the biome of origin and growth form, but respiration was not completely homeostatic across temperatures in the majority of cases. Leaves that developed at a new temperature had a greater capacity for acclimation than those transferred to a new temperature. We conclude that leaf respiration of most terrestrial plants can acclimate to gradual warming, potentially reducing the magnitude of the positive feedback between climate and the carbon cycle in a warming world. More empirical data are, however, needed to improve our understanding of interspecific variation in thermal acclimation capacity, and to better predict patterns in respiratory carbon fluxes both within and across biomes in the face of ongoing global warming.

  5. Decreasing precipitation variability does not elicit major aboveground biomass or plant diversity responses in a mesic rangeland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an emergent need to understand how altered precipitation regimes will affect aboveground biomass, stability of this biomass, and diversity in grassland ecosystems. We used replicated 9X10 m rainout shelters to experimentally remove inherent intra- and inter-annual variability of precipitati...

  6. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice.

  7. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.

    PubMed

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J; Ströher, Elke; Smith, Steven M; Gardeström, Per; Millar, A Harvey

    2010-11-01

    Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms

  8. Acclimation of Plant Populations to Shade: Photosynthesis, Respiration, and Carbon Use Efficiency

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2005-01-01

    Cloudy days cause an abrupt reduction in daily photosynthetic photon flux (PPF), but we have a poor understanding of how plants acclimate to this change. We used a unique lo-chamber, steady-state, gas-exchange system to continuously measure daily photosynthesis and night respiration of populations of a starch accumulator [tomato (Lycopersicone scukntum Mill. cv. Micro-Tina)] and a sucrose accumulator [lettuce (Latuca sativa L ev. Grand Rapids)] over 42 days. AI1 measurements were done at elevated CO2, (1200micr-/mol) avoid any CO2 limitations and included both shoots and roots. We integrated photosynthesis and respiration measurements separately to determine daily net carbon gain and carbon use efficiency (CUE) as the ratio of daily net C gain to total day-time C fixed over the 42-day period. After 16 to 20 days of growth in constant PPF, plants in some chambers were subjected to an abrupt PPF reduction to simulate shade or a series of cloudy days. The immediate effect and the long term acclimation rate w'ere assessed from canopy quantum yield and carbon use efficiency. The effect of shade on carbon use efficiency and acclimation was much slower than predicted by widely used growth models. It took 12 days for tomato populations to recover their original CUE and lettuce CUE never completely acclimated. Tomatoes, the starch accumulator, acclimated to low light more rapidly than lettuce, the sucrose accumulator. Plant growth models should be modified to include the photosynthesis/respiration imbalance and resulting inefficiency of carbon gain associated with changing PIT conditions on cloudy days.

  9. Regulation of respiration and fermentation to control the plant internal oxygen concentration.

    PubMed

    Zabalza, Ana; van Dongen, Joost T; Froehlich, Anja; Oliver, Sandra N; Faix, Benjamin; Gupta, Kapuganti Jagadis; Schmälzlin, Elmar; Igal, Maria; Orcaray, Luis; Royuela, Mercedes; Geigenberger, Peter

    2009-02-01

    Plant internal oxygen concentrations can drop well below ambient even when the plant grows under optimal conditions. Using pea (Pisum sativum) roots, we show how amenable respiration adapts to hypoxia to save oxygen when the oxygen availability decreases. The data cannot simply be explained by oxygen being limiting as substrate but indicate the existence of a regulatory mechanism, because the oxygen concentration at which the adaptive response is initiated is independent of the actual respiratory rate. Two phases can be discerned during the adaptive reaction: an initial linear decline of respiration is followed by a nonlinear inhibition in which the respiratory rate decreased progressively faster upon decreasing oxygen availability. In contrast to the cytochrome c pathway, the inhibition of the alternative oxidase pathway shows only the linear component of the adaptive response. Feeding pyruvate to the roots led to an increase of the oxygen consumption rate, which ultimately led to anoxia. The importance of balancing the in vivo pyruvate availability in the tissue was further investigated. Using various alcohol dehydrogenase knockout lines of Arabidopsis (Arabidopsis thaliana), it was shown that even under aerobic conditions, alcohol fermentation plays an important role in the control of the level of pyruvate in the tissue. Interestingly, alcohol fermentation appeared to be primarily induced by a drop in the energy status of the tissue rather than by a low oxygen concentration, indicating that sensing the energy status is an important component of optimizing plant metabolism to changes in the oxygen availability.

  10. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    NASA Astrophysics Data System (ADS)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-08-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon (C) balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil - such as soil microbes, plant roots and their mycorrhizal symbionts - each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge. Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future climate, many plant communities may shift towards dominance by fast growing plants which

  11. Response of aboveground carbon balance to long-term, experimental enhancements in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    USGS Publications Warehouse

    McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew; Bosworth, Andrew

    2017-01-01

    Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.

  12. Response of aboveground carbon balance to long-term, experimental enhancements in precipitation seasonality is contingent on plant community type in cold-desert rangelands.

    PubMed

    McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew J; Bosworth, Andrew

    2017-03-01

    Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.

  13. Diagnosing Secondary Students' Misconceptions of Photosynthesis and Respiration in Plants Using a Two-Tier Multiple Choice Instrument.

    ERIC Educational Resources Information Center

    Haslam, Filocha; Treagust, David F.

    1987-01-01

    Describes a multiple-choice instrument that reliably and validly diagnoses secondary students' understanding of photosynthesis and respiration in plants. Highlights the consistency of students' misconceptions across secondary levels and indicates a high percentage of students have misconceptions regarding plant physiology. (CW)

  14. Can plant phloem properties affect the link between ecosystem assimilation and respiration?

    NASA Astrophysics Data System (ADS)

    Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2012-04-01

    Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model

  15. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    USGS Publications Warehouse

    Striegl, R.G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  16. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  17. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    PubMed

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  18. Mixed-power scaling of whole-plant respiration from seedlings to giant trees

    PubMed Central

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G.; Masyagina, Oxana V.; Hagihara, Akio; Hoque, A.T.M. Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A.; Abaimov, Anatoly P.; Awaya, Yoshio; Araki, Masatake G.; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-01

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457–461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth. PMID:20080600

  19. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation.

  20. Residence time of carbon substrate for autotrophic respiration of a grassland ecosystem correlates with the carbohydrate status of its vegetation

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Lehmeier, Christoph A.; Schleip, Inga; Schnyder, Hans

    2016-04-01

    Ecosystem respiration is composed of two component fluxes: (1) autotrophic respiration, which comprises respiratory activity of plants and plant-associated microbes that feed on products of recent photosynthetic activity and (2) heterotrophic respiration of microbes that decompose organic matter. The mechanistic link between the availability of carbon (C) substrate for ecosystem respiration and its respiratory activity is not well understood, particularly in grasslands. Here, we explore, how the kinetic features of the supply system feeding autotrophic ecosystem respiration in a temperate humid pasture are related to the content of water-soluble carbohydrates and remobilizable protein (as potential respiratory substrates) in vegetation biomass. During each September 2006, May 2007 and September 2007, we continuously labeled 0.8 m2 pasture plots with 13CO2/12CO2 and observed ecosystem respiration and its tracer content every night during the 14-16 day long labeling periods. We analyzed the tracer kinetics with a pool model, which allowed us to precisely partition ecosystem respiration into its autotrophic and heterotrophic flux components. At the end of a labeling campaign, we harvested aboveground and belowground plant biomass and analyzed its non-structural C contents. Approximately half of ecosystem respiration did not release any significant amount of tracer during the labeling period and was hence characterized as heterotrophic. The other half of ecosystem respiration was autotrophic, with a mean residence time of C in the respiratory substrate pool between 2 and 6 d. Both the rate of autotrophic respiration and the turnover of its substrate supply pool were correlated with plant carbohydrate content, but not with plant protein content. These findings are in agreement with studies in controlled environments that revealed water-soluble carbohydrates as the main substrate and proteins as a marginal substrate for plant respiration under favorable growth conditions

  1. Aboveground Epichloë coenophiala-Grass Associations Do Not Affect Belowground Fungal Symbionts or Associated Plant, Soil Parameters.

    PubMed

    Slaughter, Lindsey C; McCulley, Rebecca L

    2016-10-01

    Cool season grasses host multiple fungal symbionts, such as aboveground Epichloë endophytes and belowground arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs). Asexual Epichloë endophytes can influence root colonization by AMF, but the type of interaction-whether antagonistic or beneficial-varies. In Schedonorus arundinaceus (tall fescue), Epichloë coenophiala can negatively affect AMF, which may impact soil properties and ecosystem function. Within field plots of S. arundinaceus that were either E. coenophiala-free (E-), infected with the common, mammal-toxic E. coenophiala strain (CTE+), or infected with one of two novel, non-toxic strains (AR542 NTE+ and AR584 NTE+), we hypothesized that (1) CTE+ would decrease AMF and DSE colonization rates and reduce soil extraradical AMF hyphae compared to E- or NTE+, and (2) this would lead to E- and NTE+ plots having greater water stable soil aggregates and C than CTE+. E. coenophiala presence and strain did not significantly alter AMF or DSE colonization, nor did it affect extraradical AMF hypha length, soil aggregates, or aggregate-associated C and N. Soil extraradical AMF hypha length negatively correlated with root AMF colonization. Our results contrast with previous demonstrations that E. coenophiala symbiosis inhibits belowground AMF communities. In our mesic, relatively nutrient-rich grassland, E. coenophiala symbiosis did not antagonize belowground symbionts, regardless of strain. Manipulating E. coenophiala strains within S. arundinaceus may not significantly alter AMF communities and nutrient cycling, yet we must further explore these relationships under different soils and environmental conditions given that symbiont interactions can be important in determining ecosystem response to global change.

  2. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    NASA Astrophysics Data System (ADS)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  3. Influence of the Wax Lake Delta sediment diversion on aboveground plant productivity and carbon storage in deltaic island and mainland coastal marshes

    NASA Astrophysics Data System (ADS)

    DeLaune, R. D.; Sasser, C. E.; Evers-Hebert, E.; White, J. R.; Roberts, H. H.

    2016-08-01

    Coastal Louisiana is experiencing a significant loss of coastal wetland area due to increasing sea level rise, subsidence, sediment starvation and marsh collapse. The construction of large scale Mississippi River sediment diversions is currently being planned in an effort to help combat coastal wetlands losses at a rate of >50 km-2 y-1. The Wax Lake Delta (WLD) is currently being used as a model for evaluating potential land gain from large scale diversions of Mississippi River water and sediment. In this study, we determine the impact of the WLD diversion on plant production at newly formed islands within the delta and adjacent, mainland freshwater marshes. Plant aboveground productivity, sediment nutrient status and short term accretion were measured at three locations on a transect at each of three fresh water marsh sites along Hog Bayou and at six newly formed emerging island sites in the delta. Spring flooding has resulted in a greater increase in plant production and consequently, greater carbon sequestration potential in adjacent mainland marshes compared to the newly formed island sites, which contain less total carbon (C), nitrogen (N), and phosphorus (P) in the sediment. While sediment diversions are predicted to create land, as seen in island formation in the WLD, the greatest benefit of river sediment diversions from a carbon credit perspective might be to the adjacent freshwater mainland marshes for several reasons. Both greater plant production and sediment C accumulation are two important factors for marsh stability, while perhaps even more critical, is the prevention of the loss of stored sediment C in the marsh profile. This stored C would be lost without the introduction of freshwater, nutrients and sediment through river sediment diversion efforts.

  4. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities.

  5. Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3.

    PubMed

    Garbeva, P; Postma, J; van Veen, J A; van Elsas, J D

    2006-02-01

    The extent of soil microbial diversity is seen to be critical to the maintenance of soil health and quality. Different agricultural practices are able to affect soil microbial diversity and thus the level of suppressiveness of plant diseases. In a 4-year field experiment, we investigated the microbial diversity of soil under different agricultural regimes. We studied permanent grassland, grassland turned into arable land, long-term arable land and arable land turned into grassland. The diversity of microbial communities was described by using cultivation-based and cultivation-independent methods. Both types of methods revealed differences in the diversities of soil microbial communities between different treatments. The treatments with higher above-ground biodiversity generally maintained higher levels of microbial diversity. Moreover, a positive correlation between suppression of Rhizoctonia solani AG3 and microbial diversity was observed. Permanent (species-rich) grassland and grassland turned into maize stimulated higher microbial diversities and higher levels of suppressiveness of R. solani AG3 compared with the long-term arable land. Effects of agricultural practices on Bacillus and Pseudomonas communities were also observed and clear correlations between the levels of suppressiveness and the diversities of these bacterial groups were found. This study highlighted the importance of agricultural management regime for soil microbial community structure and diversity as well as the level of soil suppressiveness.

  6. Species differences in whole plant carbon balance following winter dormancy in Alaskan tundra plants

    SciTech Connect

    Bret-Harte, M.S.; Chapin, F.S. III

    1995-09-01

    We froze ramets of seven vascular plant species and a mixed community of mosses common to upland tussock tundra for several months, then measured whole-plant photosynthesis and respiration in a growth chamber under simulated spring conditions, to examine whole plant carbon metabolism following winter dormancy. In addition, respiration and photosynthesis of aboveground stems and leaves were measured in the field in a spatial gradient away from a melting snowbank, at comparable developmental stages. Species differences in early respiration were not pronounced, but large differences were seen once development of leaves began. Root development in deciduous shrubs delayed their attainment of a positive whole plant carbon balance compared to that seen in aboveground stems and leaves alone, and partially compensated for differences in photosynthetic rates between shrubs and other species. Temporal patterns of carbon metabolism during spring growth may affect competitive balance in tussock tundra and vegetation response to global change.

  7. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Vogrincic, Maja; Cuderman, Petra; Kreft, Ivan; Stibilj, Vekoslava

    2009-11-01

    Common buckwheat (Fagopyrum esculentum Moench) was foliarly sprayed with a water solution containing 10 mg Se(VI) L(-1) at the beginning of flowering. The total Se content in plant parts in the untreated group was low, whereas in the Se-sprayed group it was approximately 50- to 500-fold higher, depending on the plant part (708-4231 ng Se g(-1) DM(-1) (DM: dry matter)). We observed a similar distribution of Se in plant parts in both control and treated groups, with the highest difference in Se content being in ripe seeds. Water-soluble Se compounds were extracted by enzymatic hydrolysis with protease XIV, resulting in above 63% of soluble Se from seeds, approximately 14% from stems, leaves and inflorescences and less than 1% from husks. Se-species were determined in enzymatic extracts using HPLC-UV-HG-AFS (HPLC-hydride generation-atomic fluorescence spectrometry with UV treatment). The main Se species found in seeds was SeMet ( approximately 60% according to total Se content), while in stems, leaves and inflorescences the only form of soluble Se present was Se(VI) (up to 10% of total Se). In husks no Se-species were detected. We observed an instability of Se(IV) in seed extracts as a possible consequence of binding to the matrix components. Therefore, special care concerning sample extraction and the storage time of the extracts should be taken.

  8. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants.

    PubMed

    Lehmann, Marco M; Rinne, Katja T; Blessing, Carola; Siegwolf, Rolf T W; Buchmann, Nina; Werner, Roland A

    2015-09-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C R with an in-tube incubation technique and δ (13) C RS with compound-specific isotope analysis during a daily cycle. The highest δ (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C R (up to 5.2‰) and compared to δ (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C R and δ (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C RS of malate as the most important carbon source influencing δ (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle.

  9. Carbon isotopic fractionation does not occur during dark respiration in C{sub 3} and C{sub 4} plants

    SciTech Connect

    Lin, Guanghui; Ehleringer, J.R.

    1997-05-01

    The magnitude of possible carbon isotopic fractionation during dark respiration was investigated with isolated mesophyll cells from mature leaves of common bean (Phaseolus vulgaris L.), a C{sub 3} plant, and corn (Zea mays L.), a C, plant. Mesophyll protoplasts were extracted from greenhouse-grown leaves and incubated in culture solutions containing different carbohydrate substrates (fructose, glucose, and sucrose) with known {delta}{sup 13}C values. The CO{sub 2} produced by protoplasts after incubation in the dark was collected, purified, and analyzed for its carbon isotope ratio. From observations of the isotope ratios of the substrate and respired CO{sub 2}, we calculated the carbon isotope discrimination associated with metabolism of each of these substrates. In eight of the 10 treatment combinations, the carbon isotope ratio discrimination was not significantly different from 0. In the remaining two treatment combinations, the carbon isotope ratio discrimination was 11{per_thousand}. From these results, we conclude that there is no significant carbon isotopic discrimination during mitochondrial dark respiration when fructase, glucose. or sucrose are used as respiratory substrates. 20 refs., 2 figs., 2 tabs.

  10. Microtopographic variation in soil respiration and its controlling factors vary with plant phenophases in a desert-shrub ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zha, T. S.; Jia, X.; Gong, J. N.; Wu, B.; Bourque, C. P. A.; Zhang, Y.; Qin, S. G.; Chen, G. P.; Peltola, H.

    2015-10-01

    Soil respiration (Rs) and its biophysical controls were measured over a fixed sand dune in a desert-shrub ecosystem in northwest China in 2012 to explore the mechanisms controlling the spatial heterogeneity in Rs and to understand the plant effects on the spatial variation in Rs in different phenophases. The measurements were carried out on four slope orientations (i.e., windward, leeward, north- and south-facing) and three height positions on each slope (i.e., lower, upper, and top) across the phenophases of the dominant shrub species (Artemisia ordosica). Coefficient of variation (i.e., standard deviation/mean) of Rs across the 11 microsites over our measurement period was 23.5 %. Soil respiration was highest on the leeward slope, and lowest on the windward slope. Over the measurement period, plant-related factors, rather than microhydrometeorological factors, affected the microtopographic variation in Rs. During the flower-bearing phase, root biomass affected Rs most, explaining 72 % of the total variation. During the leaf coloration-defoliation phase, soil nitrogen content affected Rs the most, explaining 56 % of the total variation. Our findings highlight that spatial pattern in Rs was dependent on plant distribution over a desert sand dune, and plant-related factors largely regulated topographic variation in Rs, and such regulations varied with plant phenology.

  11. Regulation of respiration in plants: a role for alternative metabolic pathways.

    PubMed

    van Dongen, Joost T; Gupta, Kapuganti J; Ramírez-Aguilar, Santiago J; Araújo, Wagner L; Nunes-Nesi, Adriano; Fernie, Alisdair R

    2011-08-15

    Respiratory metabolism includes the reactions of glycolysis, the tricarboxylic acid cycle and the mitochondrial electron transport chain, but is also directly linked with many other metabolic pathways such as protein and lipid biosynthesis and photosynthesis via photorespiration. Furthermore, any change in respiratory activity can impact the redox status of the cell and the production of reactive oxygen species. In this review, it is discussed how respiration is regulated and what alternative pathways are known that increase the metabolic flexibility of this vital metabolic process. By looking at the adaptive responses of respiration to hypoxia or changes in the oxygen availability of a cell, the integration of regulatory responses of various pathways is illustrated.

  12. Increasing CO[sub 2] concentration inhibits cytochrome c oxidase (cytox) in vitro, cytochrome pathway (cytpath) activity in plant mitochondria and dark respiration in plant tissue

    SciTech Connect

    Gonzalez-Meler, M.A.; Drake, B.G.; Jacob, J. ); Ribas-Carbo, M.; Siedow, J.N. ); Aranda, X.; Azcon-Bieto, J.; Palet, A. )

    1994-06-01

    Dark respiration is inhibited in many plant be exposure to elevated atmospheric CO[sub 2] concentration. The addition of 0.2mM free CO[sub 2] in the reaction medium decreased citpath activity in Pisum sativum and Glycine max mitochondria at pH 7.2, possibly by inhibiting cytox. Under similar conditions, activity of purified cytox from beef heart was also inhibited. Cytox activity extracted from plants grown in elevated CO[sub 2] for 7 years was lower than in those grown in normal ambient. The relationship among these effects and the rate of respiration as well as the role of the alternative pathway in each case will be discussed.

  13. [Spatial Heterogeneity of Soil Respiration in a Planted Larch Forest in Shanxi Plateau].

    PubMed

    Yan, Jun-xia; Li, Hong-jian; Li, Jun-jian; Wu, Jiang-xing

    2015-05-01

    Based on the data from a planted larch forest in Panquangou Natural Reserve of Shanxi Province, at three sampling scales (4, 2, and 1 m, respectively), soil respiration (Rs) and its affecting factors including soil temperature at 5 cm (T5), 10 cm (T10), and 15 cm (T15) depths, soil water content (Ws), litter mass (Lw), litter moisture (Lm), soil total carbon (C), and soil total nitrogen ( N) were determined. The spatial heterogeneities of Rs and the environmental factors were further analyzed and their intrinsic correlations were established. The results of traditional statistics showed that the spatial variations of Rs and the all measured factors were in the middle range; Rs were highly significantly positively correlated with T10, T15, and N (P < 0.01); significantly positively correlated with Lm (P < 0.05); highly significantly negatively correlated with C/N ratio (P < 0.01); and not significantly correlated with T5, Ws, Lw and C (P > 0.05). Multiple stepwise regression analysis indicated that the four factors of Lm, T10, N, and Ws together accounted for 36% of Rs heterogeneity. The results of geo-statistical analysis demonstrated that Rs was in a medium spatial autocorrelation; random and structural factors accounted for 39.5% and 60.5% of Rs heterogeneity, respectively. And the factors such as climate, landform, and soil played a leading role. The results also illustrated that the ranges for soil factors were different and the range for both Rs and T10 was 25 meters. The fractal dimension of the soil index was in the following order: Lw and C/N ratio (1.95) > N (1.91) > C (1.89) > Rs (1.78) > Lm (1.77 ) > Ws (1.69) > T10 (1.42). The spatial distribution of Rs was in consistent agreement with those of T10, Lm, C, and N; but different with those of Ws and C/N ratio. With a fixed cofidence level and certain estimated accuracy, the required sampling number of each item differed, corresponding to its spatial variation degree.

  14. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon.

    PubMed

    Metcalfe, D B; Meir, P; Aragão, L E O C; Lobo-do-Vale, R; Galbraith, D; Fisher, R A; Chaves, M M; Maroco, J P; da Costa, A C L; de Almeida, S S; Braga, A P; Gonçalves, P H L; de Athaydes, J; da Costa, M; Portela, T T B; de Oliveira, A A R; Malhi, Y; Williams, M

    2010-08-01

    *The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. *Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. *Total ecosystem respiration (R(eco)) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R(auto))), were elevated on the TFE plot relative to the control. The increase in PCE and R(eco) was mainly caused by a rise in R(auto) from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha(-1) yr(-1) lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). *Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage.

  15. Effects of aging herbicide mixtures on soil respiration and plant survival in soils from a pesticide-contaminated site

    SciTech Connect

    Kruger, E.L.; Anhalt, J.C.; Anderson, T.A.

    1996-10-01

    Three herbicides, atrazine, metolachlor, and pendimethalin, were applied individually and in all possible combinations to soil taken from a pesticide-contaminated site in Iowa. The rate of application for each chemical was 50 {mu}g/g, representative of contamination problems at mixing and loading areas of agrochemical dealer sites. Treated soils were incubated at 24{degrees}C in the dark for 0, 21, and 63 d, and soil moisture tension was maintained at -33 kPa. Soil respiration was measured daily by using an infrared gas analyzer for 10 d at the end of each incubation period. Subsamples of treated soils were used in plant germination and survival studies. Concentrations of each herbicide were determined by gas chromatography at day 0, 21, and 63. Soil respiration was elevated for the first 6 d immediately following treatment, and then declined to very low levels. At the end of day 21 and 63, soil respiration remained at very low levels. The half-lives for atrazine, metolachlor, and pendimethalin individually in soil or in combination with one and/or the other herbicide will be reported. The results of germination and survival studies with kochia, giant foxtail, birdsfoot trefoil, crown vetch, and soybean will also be reported.

  16. [Analysis of difference between ecosystem respirations of Leymus chinensis steppe and Stipa baicalensis steppe].

    PubMed

    Luo, Guang-Qiang; Geng, Yuan-Bo

    2010-11-01

    Static opaque chamber-chromatographic technique was applied to measure the ecosystem respirations of Leymus chinensis steppe and Stipa baicalensis steppe. The affecting factors of ecosystem respiration were analyzed. The difference between ecosystem respirations of the two grasslands was compared and the reasons resulting in the difference were analyzed. Ecosystem respiration of Leymus chinensis steppe [averaged (12.03 +/- 2.10) mg x (m2 x min)(-1)] was significantly smaller than that of Stipa baicalensis steppe [averaged (20.09 +/- 4.41) mg x (m2 x min)(-1)], while aboveground biomass of Leymus chinensis steppe was significantly larger than that of Stipa baicalensis steppe (p < 0.001). CO2 fluxes of Leymus chinensis steppe and Stipa baicalensis steppe were significantly correlated with air temperature in chamber, soil temperature at 5 cm and 15 cm depth. The results of partial correlation analysis showed that there were no significantly correlation between CO2 flux and Eh, pH, biomass of litter when soil temperature was unchanged, while it shows some correlation with biomass of living plant. The apparent liner relationship between CO2 flux and Eh, pH may be caused by the change of soil temperature. The CO2 fluxes of the two grasslands can be well explained by exponential models based on temperatures. Soil temperature can explain more variations of ecosystem respirations (R2 0.568-0.639) than air temperature in chamber (R2 0.323-0.426). Soil temperature was the most important affecting factor of ecosystem respiration and it may had concealed the effect of aboveground biomass on CO2 flux. The contribution of soil respiration to ecosystem respiration was large in this region and its higher soil organic matter content led to higher CO2 flux of Stipa baicalensis steppe.

  17. ABOVEGROUND NITROGEN USE EFFICIENCY AND ...

    EPA Pesticide Factsheets

    Long-term nitrogen (N) fertilization studies suggest shifting dominance from Spartina alterniflora to Distichlis spicata, although the underlying mechanism is unclear. A limitation on our ability to predict changes is a poor understanding of resource use under ambient conditions. The present project compares growth rates and N use dynamics between two emerging salt marsh dominants, S. alterniflora and D. spicata. We hypothesize that under ambient Narragansett Bay nutrient conditions, S. alterniflora is a more efficient user of N than D. spicata. Spartina alterniflora and D. spicata cores were collected from the field and raised in a greenhouse. Heights of all stems were measured weekly to determine growth rates. To understand N movement, a pulse of 15N was added and three cores were sacrificed each subsequent week. Live aboveground biomass was separated into stems and leaves, with leaves categorized based on their position from the top of the stem. Samples were analyzed by isotope ratio mass spectrometry to trace N accumulation in different pools over time. One week after the 15N pulse, most of the aboveground 15N was bound in the stems and the youngest leaves. Efficient nutrient transfer in photosynthetic material likely provides a stronger competitive advantage for taller plants, which are able to compete better for light. Growth rates of S. alterniflora proved to be more variable over time than that of D. spicata. A better understanding of N dynamics under am

  18. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase.

    PubMed

    Clarkson, A B; Bienen, E J; Pollakis, G; Grady, R W

    1989-10-25

    CoQ links the sn-glycerol-3-phosphate dehydrogenase and oxidase components of the cyanide-insensitive, non-cytochrome-mediated respiratory system of bloodstream African trypanosomes. In this and other characteristics, their respiratory system is similar to the alternative oxidase of plants. The parasites contain 206 ng of CoQ9 mg protein-1 which co-sediments with respiratory activity. The redox state of this CoQ responds in a manner consistent with respiratory function: 60% being in the reduced form when substrate is available and the oxidase is blocked; 13% being in the reduced form when the oxidase is functioning and there is no substrate. The addition of CoQ to aceton-extracted cells stimulates salicylhydroxamic acid-sensitive respiration by 56%. After inhibition of respiration by digitonin-mediated dispersal of the electron transport components, liposomes restore 40% of respiratory activity while liposomes containing CoQ restore 66% of this activity. A less hydrophobic analogue, reduced decyl CoQ, serves as a direct substrate for the trypanosome oxidase supporting full salicylhydroxamic acid-sensitive respiration. After digitonin disruption of electron transport, the nonreduced form of this synthetic substrate can reestablish the chain by accepting electrons from dispersed sn-glycerol-3-phosphate dehydrogenase and transferring them to the dispersed oxidase. Similarities between the alternative oxidase of plants and the oxidase of the trypanosome respiratory system include: mitochondrial location, lack of oxidative phosphorylation, linkage of a dehydrogenase and an oxidase by CoQ, lack of sensitivity to a range of mitochondrial inhibitors, and sensitivity to a spectrum of inhibitors which selectively block transfer of electrons from reduced CoQ to the terminal oxidase but do not block electron transfer to the cytochrome bc1 complex of the mammalian cytochrome chain.

  19. Elicitors aboveground: an alternative for control of a belowground pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation ...

  20. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  1. Drought and Root Herbivory Interact to Alter the Response of Above-Ground Parasitoids to Aphid Infested Plants and Associated Plant Volatile Signals

    PubMed Central

    Tariq, Muhammad; Wright, Denis J.; Bruce, Toby J. A.; Staley, Joanna T.

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may

  2. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    PubMed

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be

  3. Middle to late Miocene Plant Respiration Rates from the Southern Altiplano Indicate Increasing Aridity during Surface Uplift

    NASA Astrophysics Data System (ADS)

    Smith, J. J.; Garzione, C. N.; Auerbach, D. J.; Macfadden, B.; Croft, D.

    2011-12-01

    The interactions between climate and tectonics have likely played an important role in shaping the central Andes, where extreme climate gradients exist today (e.g., Masek et al., 1994; Horton et al., 1999; Montgomery et al., 2001). However, the feedback between these processes is still not fully understood (e.g., Molnar and England, 1990), and some have argued that climate change has resulted in a false signal of elevation change in the region (Ehlers and Poulsen, 2009; Poulsen et. al., 2010). This study attempts to resolve this debate by examining the history of aridification of the southern Altiplano by using plant respiration rates as a proxy for aridity, and comparing this to the studies of surface uplift. Assuming all other factors are constant, plant respiration rates should decrease with increasing aridity (Cerling and Quade, 1993), and therefore this calculation provides an estimate of the relative amount of precipitation. Changes in the aridity of discrete portions of the Andean plateau help determine the local climate response to Andean surface uplift and allow us to tease out the effects of surface uplift versus global climate change on this region. Paleoelevation studies have indicated rapid surface uplift of ~1.6 km in the southern Altiplano from ~16 to 13 Ma (Smith et al., 2009) followed by ~2.5 km in the north between 10 and 6 Ma (Garzione et al., 2006; 2008; Ghosh et al., 2006). These different surface uplift histories should have coincided with distinct climate change events in the northern and southern Altiplano due to the development of a rain shadow associated with the rising Eastern Cordillera and Altiplano basin (currently between ~3.6 km and 4 km). This study calculates plant respiration rates in paleosols dating from ~16 to 8 Ma (i.e., the period of inferred surface uplift) in the southern Altiplano/Eastern Cordillera using the soil carbon isotope model of Quade et al. (2007), which is based on the relationship between the carbon isotopic

  4. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    PubMed Central

    Araújo, Wagner L.; Nunes-Nesi, Adriano; Williams, Thomas C. R.

    2012-01-01

    The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics, and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review, we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g., photosynthesis, photorespiration, and nitrogen metabolism). We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications. PMID:22973288

  5. δ 13C of ecosystem-respired CO2 along a gradient of C3 woody-plant encroachment into C4 grassland

    NASA Astrophysics Data System (ADS)

    Sun, W.; Scott, R. L.; Resco, V.; Cable, J. M.; Huxman, T. E.; Williams, D. G.

    2006-12-01

    Woody plant encroachment into grassland has the potential to affect net primary production, in part by changing the sensitivities of photosynthesis and respiration to precipitation. Encroachment of mesquite (Prosopis) into floodplain sacaton (Sporobolus) grassland along the San Pedro River in southeastern Arizona has altered the magnitude and seasonal pattern of net ecosystem carbon exchange and ecosystem respiration. We hypothesized that because mesquite accesses ground water in these floodplain environments, its advancement and dominance in former grassland reduces the sensitivities of photosynthesis and autotrophic respiration to inputs of growing season precipitation. The observed elevated rates of ecosystem respiration following rainfall inputs are likely to result from microbial decomposition of labile organic matter derived from the highly productive mesquite trees. We used the Keeling plot method to monitor carbon-13 composition of nocturnal ecosystem-respired CO2 (δ 13CR) during the growing seasons of 2005 and 2006 at three sites spanning a gradient of mesquite invasion: C4 sacaton grassland, mixed mesquite/grass shrubland and C3 mesquite woodland. δ 13CR in the C4 grassland increased from -18.8‰ during the dry premonsoon period to -16.7‰ after the onset of summer rains, whereas δ 13CR in the mixed shrub/grass and woodland ecosystems declined from -20.9‰ to - 24‰ and from -20.8‰ to -24.7‰, respectively, following the onset of summer rains. The δ 13CR of respired CO2 was collected separately from soil, roots, leaves and surface litter to evaluate the contribution of each of these components to ecosystem respiration. Partitioning of ecosystem respiration using these isotope end-members and responses to short-term (days) changes in shallow (0-5cm) soil moisture content suggest that in former grassland now occupied by mesquite woodland, rainfall inputs primarily stimulate microbial decomposition and have little effect on autotrophic respiration

  6. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China.

    PubMed

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m(-2) h(-1) in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m(-2) h(-1) in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.

  7. The rapid inhibition of root respiration after exposure of bean ( Phaseolus vulgaris L.) plants to ozone

    NASA Astrophysics Data System (ADS)

    Hofstra, G.; Ali, A.; Wukasch, R. T.; Fletcher, R. A.

    The metabolic activity of the roots was very sensitive to the changes induced in the leaves by O 3. Respiratory activity began to decrease well before visible injury appeared on the leaves, and the per cent reduction of respiration was much greater than the per cent leaf injury. The triphenyl tetrazolium chloride (TTC) staining technique revealed changes in root tips very quickly, was generally more sensitive to changes in respiratory activity and was a convenient technique for handling large numbers of samples. Reducing foliar injury from O 3 with low levels of SO 2 reduced the effects on the roots indicating the effect of O 3 is on processes in the leaf.

  8. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out.

  9. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants

    PubMed Central

    Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng

    2015-01-01

    It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017

  10. Light-enhanced dark respiration in leaves, isolated cells and protoplasts of various types of C4 plants.

    PubMed

    Parys, Eugeniusz; Jastrzebski, Hubert

    2006-04-01

    The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but

  11. Investigations on the mechanism of oxygen-dependent plant processes: ethylene biosynthesis and cyanide-resistant respiration

    SciTech Connect

    Stegink, S.J.

    1985-01-01

    Two oxygen-dependent plant processes were investigated. A cell-free preparation from pea (Pisum sativum L., cv. Alaska) was used to study ethylene biosynthesis from 1-aminocyclopropane-1-carboxylic acid. Mitochondrial cyanide-resistant respiration was investigated in studies with /sup 14/C-butyl gallate and other respiratory effectors. Ethylene biosynthesis was not due to a specific enzyme, or oxygen radicals. Rather, hydrogen peroxide, generated at low levels, coupled with endogenous manganese produced ethylene. /sup 14/C-butyl gallate bound specifically to mitochondria from cyanide-sensitive and -resistant higher plants and Neurospora crassa mitochondria. The amount of gallate bound was similar for all higher plant mitochondria. Rat liver mitochondria bound very little /sup 14/C-butyl gallate. Plant mitochondria in which cyanide-resistance was induced bound as much /sup 14/C-butyl gallate as before induction. However mitochondria from recently harvested white potato tubers did not bind the gallate. The observations suggest that an engaging factor couples with a gallate binding site in the mitochondrial membrane. With skunk cabbage spadix mitochondria the I/sub 5//sup 0/ for antimycin A inhibition of oxygen uptake was decreased by salicylhydroxamic acid pretreatment; this was also true for reverse order additions. No shift was observed with mung bean hypocotyl or Jerusalem artichoke tuber mitochondria.

  12. The role of mild uncoupling and non-coupled respiration in the regulation of hydrogen peroxide generation by plant mitochondria.

    PubMed

    Casolo, V; Braidot, E; Chiandussi, E; Macrì, F; Vianello, A

    2000-05-26

    The roles of mild uncoupling caused by free fatty acids (mediated by plant uncoupling mitochondrial protein (PUMP) and ATP/ADP carrier (AAC)) and non-coupled respiration (alternative oxidase (AO)) on H(2)O(2) formation by plant mitochondria were examined. Both laurate and oleate prevent H(2)O(2) formation dependent on the oxidation of succinate. Conversely, these free fatty acids (FFA) only slightly affect that dependent on malate plus glutamate oxidation. Carboxyatractylate (CAtr), an inhibitor of AAC, completely inhibits oleate- or laurate-stimulated oxygen consumption linked to succinate oxidation, while GDP, an inhibitor of PUMP, caused only a 30% inhibition. In agreement, CAtr completely restores the oleate-inhibited H(2)O(2) formation, while GDP induces only a 30% restoration. Both oleate and laurate cause a mild uncoupling of the electrical potential (generated by succinate), which is then followed by a complete collapse with a sigmoidal kinetic. FFA also inhibit the succinate-dependent reverse electron transfer. Diamide, an inhibitor of AO, favors the malate plus glutamate-dependent H(2)O(2) formation, while pyruvate (a stimulator of AO) inhibits it. These results show that the succinate-dependent H(2)O(2) formation occurs at the level of Complex I by a reverse electron transport. This generation appears to be prevented by mild uncoupling mediated by FFA. The anionic form of FFA appears to be shuttled by AAC rather than PUMP. The malate plus glutamate-dependent H(2)O(2) formation is, conversely, mainly prevented by non-coupled respiration (AO).

  13. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species.

    PubMed

    Lehmann, M M; Wegener, F; Werner, R A; Werner, C

    2016-09-01

    Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 .

  14. Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates.

    PubMed

    Machado, José-Luis; Reich, Peter B

    2006-07-01

    In shaded environments, minimizing dark respiration during growth could be an important aspect of maintaining a positive whole-plant net carbon balance. Changes with plant size in both biomass distribution to different tissue types and mass-specific respiration rates (R(d)) of those tissues would have an impact on whole-plant respiration. In this paper, we evaluated size-related variation in R(d), biomass distribution, and nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations of leaves, stems and roots of three cold-temperate tree species (Abies balsamea (L.) Mill, Acer rubrum L. and Pinus strobus L.) in a forest understory. We sampled individuals varying in age (6 to 24 years old) and in size (from 2 to 500 g dry mass), and growing across a range of irradiances (from 1 to 13% of full sun) in northern Minnesota, USA. Within each species, we found small changes in R(d), N and TNC when comparing plants growing across this range of light availability. Consistent with our hypotheses, as plants grew larger, whole-plant N and TNC concentrations in all species declined as a result of a combination of changes in tissue N and shifts in biomass distribution patterns. However, contrary to our hypotheses, whole-plant and tissue R(d) increased with plant size in the three species.

  15. Δ(14)CO2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    PubMed

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ((14)C) has been widely used for quantification of fossil fuel CO2 (CO2ff) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the (14)C signature of fossil fuels and other sources. In past studies, the (14)C content of CO2 derived from plants has been equated with the (14)C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO2 we determine Δ(14)Cres values, and from the bulk organic matter we determine Δ(14)Cbom values. A significant difference between Δ(14)Cres and Δ(14)Cbom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ(14)Cres values are in agreement with mean atmospheric Δ(14)CO2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ(14)C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO2ff, an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ(14)C in plants to quantify atmospheric CO2ff.

  16. Relationships among Measures of Learning Orientation, Reasoning Ability, and Conceptual Understanding of Photosynthesis and Respiration in Plants for Grade 8 Males and Females

    ERIC Educational Resources Information Center

    Tekkaya, Ceren; Yenilmez, Ayse

    2006-01-01

    This study investigated the contributions of students' reasoning ability and meaningful learning orientation to their understanding of the photosynthesis and respiration in plants concepts. Data were gathered through the use of the Test of Logical Thinking (Tobin & Capie, 1981), the Learning Approach Questionnaire (Cavallo, 1996), and the Two-Tier…

  17. Exposure of barley plants to low Pi leads to rapid changes in root respiration that correlate with specific alterations in amino acid substrates.

    PubMed

    Alexova, Ralitza; Nelson, Clark J; Jacoby, Richard P; Millar, A Harvey

    2015-04-01

    The majority of inorganic phosphate (Pi ) stress studies in plants have focused on the response after growth has been retarded. Evidence from transcript analysis, however, shows that a Pi -stress specific response is initiated within minutes of transfer to low Pi and in crop plants precedes the expression of Pi transporters and depletion of vacuolar Pi reserves by days. In order to investigate the physiological and metabolic events during early exposure to low Pi in grain crops, we monitored the response of whole barley plants during the first hours following Pi withdrawal. Lowering the concentration of Pi led to rapid changes in root respiration and leaf gas exchange throughout the early phase of the light course. Combining amino and organic acid analysis with (15) N labelling we show a root-specific effect on nitrogen metabolism linked to specific substrates of respiration as soon as 1 h following Pi withdrawal; this explains the respiratory responses observed and was confirmed by stimulation of respiration by exogenous addition of these respiratory substrates to roots. The rapid adjustment of substrates for respiration in roots during short-term Pi -stress is highlighted and this could help guide roots towards Pi -rich soil patches without compromising biomass accumulation of the plant.

  18. Depression of belowground respiration rates at simulated high moose population densities in boreal forests.

    PubMed

    Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell

    2009-10-01

    Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.

  19. Aboveground and belowground competition between willow Salix caprea its understory

    NASA Astrophysics Data System (ADS)

    Mudrák, Ondřej; Hermová, Markéta; Frouz, Jan

    2016-04-01

    The effects of aboveground and belowground competition with the willow S. caprea on its understory plant community were studied in unreclaimed post-mining sites. Belowground competition was evaluated by comparing (i) frames inserted into the soil that excluded woody roots (frame treatment), (ii) frames that initially excluded woody root growth but then allowed regrowth of the roots (open-frame treatment), and (iii) undisturbed soil (no-frame treatment). These treatments were combined with S. caprea thinning to assess the effect of aboveground competition. Three years after the start of the experiment, aboveground competition from S. caprea (as modified by thinning of the S. caprea canopy) had not affected understory biomass or species number but had affected species composition. In contrast, belowground competition significantly affected both the aboveground and belowground biomass of the understory. The aboveground biomass of the understory was greater in the frame treatment (which excluded woody roots) than in the other two treatments. The belowground biomass of the understory was greater in the frame than in the open-frame treatment. Unlike aboveground competition (light availability), belowground competition did not affect understory species composition. Our results suggest that S. caprea is an important component during plant succession on post-mining sites because it considerably modifies its understory plant community. Belowground competition is a major reason for the low cover and biomass of the herbaceous understory in S. caprea stands on post-mining sites.

  20. Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana.

    PubMed

    Fanello, Diego Darío; Bartoli, Carlos Guillermo; Guiamet, Juan José

    2017-05-01

    This work studied modifications experienced by root mitochondria during whole plant senescence or under light deprivation, using Arabidopsis thaliana plants with YFP tagged to mitochondria. During post-bolting development, root respiratory activity started to decline after aboveground organs (i.e., rosette leaves) had senesced. This suggests that carbohydrate starvation may induce root senescence. Similarly, darkening the whole plant induced a decrease in respiration of roots. This was partially due to a decrease in the number of total mitochondria (YFP-labelled mitochondria) and most probably to a decrease in the quantity of mitochondria with a developed inner membrane potential (ΔΨm, i.e., Mitotracker red- labelled mitochondria). Also, the lower amount of mitochondria with ΔΨm compared to YFP-labelled mitochondria at 10d of whole darkened plant, suggests the presence of mitochondria in a "standby state". The experiments also suggest that small mitochondria made the main contribution to the respiratory activity that was lost during root senescence. Sugar supplementation partially restored the respiration of mitochondria after 10d of whole plant dark treatment. These results suggest that root senescence is triggered by carbohydrate starvation, with loss of ΔΨm mitochondria and changes in mitochondrial size distribution.

  1. Forecasting annual aboveground net primary production in the intermountain west

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...

  2. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil.

    PubMed

    Karasawa, T; Hodge, A; Fitter, A H

    2012-04-01

    Although plant phosphate uptake is reduced by low soil temperature, arbuscular mycorrhizal (AM) fungi are responsible for P uptake in many plants. We investigated growth and carbon allocation of the AM fungus Glomus mosseae and a host plant (Plantago lanceolata) under reduced soil temperature. Plants were grown in compartmented microcosm units to determine the impact on both fungus and roots of a constant 2.7 °C reduction in soil temperature for 16 d. C allocation was measured using two (13)CO(2) pulse labels. Although root growth was reduced by cooling, AM colonization, growth and respiration of the extraradical mycelium (ERM) and allocation of assimilated (13)C to the ERM were all unaffected; the frequency of arbuscules increased. In contrast, root respiration and (13)C content and plant P and Zn content were all reduced by cooling. Cooling had less effect on N and K, and none on Ca and Mg content. The AM fungus G. mosseae was more able to sustain activity in cooled soil than were the roots of P. lanceolata, and so enhanced plant P content under a realistic degree of soil cooling that reduced plant growth. AM fungi may therefore be an effective means to promote plant nutrition under low soil temperatures.

  3. Microbial respiration and root respiration follow divergent seasonal and diel temporal patterns in a temperate forest

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.; Tang, J.

    2010-12-01

    Soil respiration is often related to empirical measurements of soil temperature and water content, as if it were a single process that responds uniformly to these environmental drivers. However, we know that root and microbial processes both contribute to CO2 production within the soil, and the roots are connected to aboveground plant tissues, which may, in turn, be responding to other environmental cues. Trenched plots provide a method to separate these two processes, where only microbial respiration (Rm) occurs in the trenched plots that have had roots excluded, total soil respiration (Rt) occurs in untrenched reference plots, and root respiration (Rr) is inferred by the difference between the two treatments. Like all methods, this one has potential artifacts that may render the quantification of Rr uncertain, but the method is likely to demonstrate the phenology of Rr and its impact on diel and seasonal temporal patterns of Rt. We deployed three automated soil respiration chambers in both control and trenched plots at the Harvard Forest in central Massachusetts. Soil CO2 efflux was measured every half hour for each chamber from day-of-year 112 to 304, 2009 (with some data gaps in the intervening period due to equipment failure). For the combined measurement period, mean daily soil respiration and mean daily flux amplitude were significantly higher in the reference plots compared to the trenched plots. The peak flux also occurred about 2 hours later in the evening in the reference plots compared to the trenched plots. Breaking this period down into four seasonal windows (spring, early summer, late summer, and autumn), the mean daily flux was significantly higher in the reference plot for all seasons, the higher daily amplitude was significant only during the early summer, and the delay in peak emissions was significant during early and late summer. While roots were contributing to soil respiration in all measurement periods, their largest effect on daily mean

  4. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    PubMed Central

    Yim, Bunlong; Winkelmann, Traud; Ding, Guo-Chun; Smalla, Kornelia

    2015-01-01

    Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments. PMID:26635733

  5. Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil

    NASA Astrophysics Data System (ADS)

    Yevdokimov, I. V.; Larionova, A. A.; Schmitt, M.; Lopes de Gerenyu, V. O.; Bahn, M.

    2010-12-01

    The contributions of root and microbial respiration to the total emission of CO2 from the surface of gray forest and soddy-podzolic soils were compared under laboratory and field conditions for the purpose of optimizing the field version of the substrate-induced respiration method. The magnification coefficients of respiration upon the addition of saccharose ( k mic) were first determined under conditions maximally similar to the natural conditions. For this purpose, soil cleared from roots was put into nylon nets with a mesh size of 40 μm to prevent the penetration of roots into the nets. The nets with soil were left in the field for 7-10 days for the compaction of soil and the stabilization of microbial activity under natural conditions. Then, the values of k mic were determined in the root-free soil under field conditions or in the laboratory at the same temperature and water content. The contribution of root respiration as determined by the laboratory version of the substrate-induced respiration method (7-36%) was lower compared to two field versions of the method (27-60%). Root respiration varied in the range of 24-60% of the total CO2 emission from the soil surface in meadow ecosystems and in the range of 7-56% in forest ecosystems depending on the method and soil type.

  6. Micro-topographic variation in soil respiration and its controlling factors vary with plant phenophases in a desert-shrub ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zha, T. S.; Jia, X.; Gong, J. N.; Wu, B.; Bourque, C. P. A.; Zhang, Y. Q.; Qin, S. G.; Chen, G. P.; Peltola, H.

    2015-06-01

    Soil respiration (Rs) and its biophysical controls were measured over a fixed sand dune in a desert-shrub ecosystem in northwest China in 2012 to explore the mechanisms controlling the spatial heterogeneity in Rs and to understand the plant effects on the spatial variation in Rs in different phenophases. The measurements were carried out on four slope orientations (i.e., windward, leeward, north- and south-face) and three height positions on each slope (i.e., lower, upper, and top) across the phenophases of the dominant shrub species (Artemisia ordosica). Coefficient of variation (i.e., standard deviation/mean) of Rs across the 11 microsites over our measurement period was 23.5 %. Soil respiration was highest on the leeward slope, but lowest on the windward slope. Over the measurement period, plant-related factors, rather than micro-hydrometeorological factors, affected the topographic variation in Rs. During the flowering-bearing phase, root biomass affected Rs most, explaining 72 % of the total variation. During the leaf coloration-defoliation phase, soil nitrogen content affected Rs the most, explaining 56 % of the total variation. Our findings highlight that spatial pattern in Rs was dependent on plant distribution over a desert sand dune, and plant-related factors largely regulated topographic variation in Rs, and such regulations varied with plant phenology.

  7. Consequences of cool-season drought induced plant mortality to Chihuahuan Desert grassland ecosystem and soil respiration dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change is predicted to increase the severity and frequency of cool-season drought across the arid Southwest US. We quantified net ecosystem carbon dioxide exchange (NEE), ecosystem respiration (Reco), and gross ecosystem photosynthesis (GEP) in response to interannual seasonal precip...

  8. Experimental Air Warming of a Stylosanthes capitata, Vogel Dominated Tropical Pasture Affects Soil Respiration and Nitrogen Dynamics

    PubMed Central

    Gonzalez-Meler, Miquel A.; Silva, Lais B. C.; Dias-De-Oliveira, Eduardo; Flower, Charles E.; Martinez, Carlos A.

    2017-01-01

    Warming due to global climate change is predicted to reach 2°C in tropical latitudes. There is an alarming paucity of information regarding the effects of air temperature on tropical agroecosystems, including foraging pastures. Here, we investigated the effects of a 2°C increase in air temperature over ambient for 30 days on an established tropical pasture (Ribeirão Preto, São Paulo, Brazil) dominated by the legume Stylosanthes capitata Vogel, using a T-FACE (temperature free-air controlled enhancement) system. We tested the effects of air warming on soil properties [carbon (C), nitrogen (N), and their stable isotopic levels (δ13C and δ15N), as well as soil respiration and soil enzymatic activity] and aboveground characteristics (foliar C, N, δ13C, δ15N, leaf area index, and aboveground biomass) under field conditions. Results show that experimental air warming moderately increased soil respiration rates compared to ambient temperature. Soil respiration was positively correlated with soil temperature and moisture during mid-day (when soil respiration was at its highest) but not at dusk. Foliar δ13C were not different between control and elevated temperature treatments, indicating that plants grown in warmed plots did not show the obvious signs of water stress often seen in warming experiments. The 15N isotopic composition of leaves from plants grown at elevated temperature was lower than in ambient plants, suggesting perhaps a higher proportion of N-fixation contributing to tissue N in warmed plants when compared to ambient ones. Soil microbial enzymatic activity decreased in response to the air warming treatment, suggesting a slower decomposition of organic matter under elevated air temperature conditions. Decreased soil enzyme capacity and increases in soil respiration and plant biomass in plots exposed to high temperature suggest that increased root activity may have caused the increase seen in soil respiration in this tropical pasture. This response

  9. Potentiating Effect of Pure Oxygen on the Enhancement of Respiration by Ethylene in Plant Storage Organs: A Comparative Study 1

    PubMed Central

    Theologis, Athanasios; Laties, George G.

    1982-01-01

    A number of fruits and bulky storage organs were studied with respect to the effect of pure O2 on the extent and time-course of the respiratory rise induced by ethylene. In one group, of which potato (Solanum tuberosum var. Russet) and carrot (Daucus carota) are examples, the response to ethylene in O2 is much greater than in air. In a second group, of which avocado (Persea americana Mill. var. Hass) and banana (Musa cavendishii Lambert var. Valery) are examples, air and O2 are equally effective. When O2-responsive organs are peeled, air and O2 synergize the ethylene response to the same extent in parsnip (Pastinaca sativa), whereas O2 is more stimulatory than air in carrots. In the latter instance, carrot flesh is considered to contribute significantly to diffusion resistance. The release of CO2, an ethylene antagonist, is recognized as another element in the response to peeling. The potentiating effect of O2 is considered to be primarily on ethylene action in the development of the respiratory rise rather than on the respiration process per se. On the assumption that diffusion controls O2 movement into bulky organs and the peel represents the major diffusion barrier, simple calculations indicate that the O2 concentration in untreated organs in air readily sustains respiration. Furthermore, in ethylene-treated organs in pure O2, the internal O2 concentration is more than enough to maintain the high respiration rates. Skin conductivity to O2 is the fundamental parameter differentiating O2-responsive from O2-nonresponsive fruits and bulky storage organs. The large preceding the earliest response to ethylene, as well as the magnitude of the ethylene-induced respiratory rise, is also controlled by permeability characteristics of the peel. PMID:16662339

  10. Thermal acclimation of shoot respiration in an Arctic woody plant species subjected to 22 years of warming and altered nutrient supply.

    PubMed

    Heskel, Mary A; Greaves, Heather E; Turnbull, Matthew H; O'Sullivan, Odhran S; Shaver, Gaius R; Griffin, Kevin L; Atkin, Owen K

    2014-08-01

    Despite concern about the status of carbon (C) in the Arctic tundra, there is currently little information on how plant respiration varies in response to environmental change in this region. We quantified the impact of long-term nitrogen (N) and phosphorus (P) treatments and greenhouse warming on the short-term temperature (T) response and sensitivity of leaf respiration (R), the high-T threshold of R, and associated traits in shoots of the Arctic shrub Betula nana in experimental plots at Toolik Lake, Alaska. Respiration only acclimated to greenhouse warming in plots provided with both N and P (resulting in a ~30% reduction in carbon efflux in shoots measured at 10 and 20 °C), suggesting a nutrient dependence of metabolic adjustment. Neither greenhouse nor N+P treatments impacted on the respiratory sensitivity to T (Q10 ); overall, Q10 values decreased with increasing measuring T, from ~3.0 at 5 °C to ~1.5 at 35 °C. New high-resolution measurements of R across a range of measuring Ts (25-70 °C) yielded insights into the T at which maximal rates of R occurred (Tmax ). Although growth temperature did not affect Tmax , N+P fertilization increased Tmax values ~5 °C, from 53 to 58 °C. N+P fertilized shoots exhibited greater rates of R than nonfertilized shoots, with this effect diminishing under greenhouse warming. Collectively, our results highlight the nutrient dependence of thermal acclimation of leaf R in B. nana, suggesting that the metabolic efficiency allowed via thermal acclimation may be impaired at current levels of soil nutrient availability. This finding has important implications for predicting carbon fluxes in Arctic ecosystems, particularly if soil N and P become more abundant in the future as the tundra warms.

  11. Experimental Warming and Precipitation Effects on Plant Community Composition, Productivity, Nutrient Availability, and Soil Respiration in Pacific Northwest Prairies along a Natural Climate Gradient

    NASA Astrophysics Data System (ADS)

    Bridgham, S. D.; Pfeifer-Meister, L.; Tomaszewski, T.; Reynolds, L.; Goklany, M.; Wilson, H.; Johnson, B. R.

    2011-12-01

    Climate change effects on soil respiration and carbon stores in grasslands globally may have significant implications for future atmospheric carbon dioxide concentrations. Climate change may also may negatively impact native plant species and favor exotic species. We are experimentally increasing temperature by 3 degrees C and increasing precipitation by 25% above ambient in three upland prairie sites along a natural climate gradient from southwestern Oregon to central-western Washington to determine how future climate change will affect (i) plant community composition and the relative success of native versus introduced plant species and (ii) above- and belowground carbon and nutrient dynamics. Sixty plots (20 at each site) were restored by mowing, raking, and herbicide application followed by the sowing of the same 34 native grass and forb species in each plot. Differences in total cover, net primary productivity, and community composition were much greater among sites than among treatments within sites in both 2010--the establishment year, and 2011-the first full year of treatment. Strong successional dynamics occurred over the two years as competition intensified, but these were dependent on a site-treatment interaction, with lower native plant survival in heated plots because of competitive exclusion by exotic, invasive plants. A strong treatment - season interaction in canopy cover (as determined by canopy reflectance) also occurred, with heating causing greater cover during the wet season and lower cover during the dry season. This effect was strongest in the southernmost site which experiences earlier and more intense drought conditions. There were also strong site, treatment, and season interactions on nutrient availability as determined by cation-anion exchange resins. Heating increased nutrient availability in all but the northernmost site during the growing season, and that site also had much lower nutrient availability, but overall availability and

  12. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    PubMed

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  13. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores

    PubMed Central

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-01-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  14. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.

    PubMed

    Kumar, Pavan; Ortiz, Erandi Vargas; Garrido, Etzel; Poveda, Katja; Jander, Georg

    2016-09-01

    Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato). Conversely, S. exigua leaf damage had no noticeable effect on belowground T. solanivora performance. Tuber infestation by T. solanivora induced systemic plant defenses and elevated resistance to aboveground herbivores. Lipoxygenase 3 (Lox3), which contributes to the synthesis of plant defense signaling molecules, had higher transcript abundance in T. solanivora-infested leaves and tubers than in equivalent control samples. Foliar expression of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and 3-hydroxy-3-methylglutaryl CoA reductase I (HMGR1) genes, which are involved in chlorogenic acid and steroidal glycoalkaloid biosynthesis, respectively, also increased in response to tuber herbivory. Leaf metabolite profiling demonstrated the accumulation of unknown metabolites as well as the known potato defense compounds chlorogenic acid, α-solanine, and α-chaconine. When added to insect diet at concentrations similar to those found in potato leaves, chlorogenic acid, α-solanine, and α-chaconine all reduced S. exigua larval growth. Thus, despite the fact that tubers are a metabolic sink tissue, T. solanivora feeding elicits a systemic signal that induces aboveground resistance against S. exigua and S. frugiperda by increasing foliar abundance of defensive metabolites.

  15. Extended Bioventing Testing Results at the Aboveground Jet Fuel Storage Tank #20, Randolph AFB LPST # 104626

    DTIC Science & Technology

    2007-11-02

    Parsons Engineering Science, Inc. (Parsons ES) is pleased to submit the results of the extended bioventing testing at the aboveground jet fuel...performed by Parsons ES from 3 to 8 May 1996 to assess the extent of remediation completed during approximately three years of air injection bioventing . The...purpose of this letter is to summarize site and bioventing activities to date, present the results of the most recent respiration and soil gas

  16. Effect of Ethylene and Oxygen on the Development of Cyanide-resistant Respiration in Whole Plant Mitochondria.

    PubMed

    Rychter, A; Janes, H W; Frenkel, C

    1979-01-01

    Mitochondria from whole potatoes (Solanum tuberosum) ordinarily fail to oxidize respiratory substrates and to consume molecular O(2) in the presence of cyanide. Mitochondrial preparations obtained from tubers previously held for 24 hours in ethylene (10 microliters per liter) in air are only partially inhibited by cyanide. Application of ethylene in 100% O(2) led to an additional increase in the resistance of the mitochondrial respiration to cyanide. The resistance to cyanide was accompanied by a decrease in the respiratory control but no change in oxidative phosphorylation as shown by the measurement of ATP synthesis.The development of resistance to cyanide following the application of ethylene appears to require whole tubers and may represent an inductive process.

  17. Root-fed salicylic acid in grape involves the response caused by aboveground high temperature.

    PubMed

    Liu, Hong-Tao; Liu, Yue-Ping; Huang, Wei-Dong

    2008-06-01

    In order to investigate the transportation and distribution of salicylic acid (SA) from root to aboveground tissues in response to high temperature, the roots of grape plant were fed with (14)C-SA before high temperature treatment. Radioactivity results showed that progressive increase in SA transportation from root to aboveground as compared with the control varied exactly with the heat treatment time. Radioactivity results of leaves at different stem heights indicated that the increase in SA amount at the top and middle leaves during the early period was most significant in comparison with the bottom leaves. The up-transportation of SA from root to aboveground tissues was dependent on xylem rather than phloem. Auto-radiographs of whole grape plants strongly approved the conclusions drawn above. Root-derived SA was believed to be a fundamental source in response to aboveground high temperature.

  18. Responses of belowground communities to large aboveground herbivores: meta-analysis reveals biome-dependent patterns and critical research gaps.

    PubMed

    Andriuzzi, Walter S; Wall, Diana H

    2017-02-28

    The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root-feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked. This article is protected by copyright. All rights reserved.

  19. [Effects of shading on the aboveground biomass and stiochiometry characteristics of Medicago sativa].

    PubMed

    Ma, Zhi-Liang; Yang, Wan-Qin; Wu, Fu-Zhong; Gao, Shun

    2014-11-01

    In order to provide scientific basis for inter-planting alfalfa in abandoned farmland, a shading experiment was conducted to simulate the effects of different light intensities on the aboveground biomass, the contents of carbon, nitrogen, phosphorus and potassium, and the stoichiometric characteristics of alfalfa under the plantation. The results showed that the aboveground biomass of alfalfa correlated significantly with the light intensity, and shading treatment reduced the aboveground biomass of alfalfa significantly. The aboveground alfalfa tissues under the 62% shading treatment had the highest contents of carbon, nitrogen and phosphorus, which was 373.73, 34.38 and 5.47 g · kg(-1), respectively, and significantly higher than those of the control. However, shading treatments had no significant effect on the potassium content of aboveground part. The C/N ratio in aboveground tissues under the 72% shading treatment was significantly higher than that of the control, but no significant differences among other treatments were found. The ratios of N/P and C/P in aboveground tissues showed a tendency that decreased firstly and then increased with the increase of light intensity.

  20. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  1. Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and during Leaf Senescence and Fruit Maturation[W][OA

    PubMed Central

    Araújo, Wagner L.; Tohge, Takayuki; Osorio, Sonia; Lohse, Marc; Balbo, Ilse; Krahnert, Ina; Sienkiewicz-Porzucek, Agata; Usadel, Björn; Nunes-Nesi, Adriano; Fernie, Alisdair R.

    2012-01-01

    Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon–nitrogen interactions. PMID:22751214

  2. Integrating est.of ecosystem respiration from eddy covariance towers with automated measures of soil respiration: Exam. the dvlpt. and influence of hysteresis in soil respiratory fluxes along a woody plant gradient 2026

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiognomic shift in ecosystem structure from a grassland to a woodland may alter the sensitivity of CO2 exchange to variations in growing-season temperatures and precipitation inputs. One large component of ecosystem flux is the efflux of CO2 from the soil (soil respiration, Rsoil), which is ...

  3. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L. L.; Sayer, E. J.

    2013-11-01

    Global change has been shown to alter the amount of above-ground litter inputs to soil greatly, which could cause substantial cascading effects on below-ground biogeochemical cycling. Despite extensive study, there is uncertainty about how changes in above-ground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a meta-analysis on 70 litter-manipulation experiments in order to assess how changes in above-ground litter inputs alter soil physicochemical properties, carbon dynamics and nutrient cycles. Our results demonstrated that litter removal decreased soil respiration by 34%, microbial biomass carbon in the mineral soil by 39% and total carbon in the mineral soil by 10%, whereas litter addition increased them by 31, 26 and 10%, respectively. This suggests that greater litter inputs increase the soil carbon sink despite higher rates of carbon release and transformation. Total nitrogen and extractable inorganic nitrogen in the mineral soil decreased by 17 and 30%, respectively, under litter removal, but were not altered by litter addition. Overall, litter manipulation had a significant impact upon soil temperature and moisture, but not soil pH; litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Compared to other ecosystems, tropical and subtropical forests were more sensitive to variation in litter inputs, as altered litter inputs affected the turnover and accumulation of soil carbon and nutrients more substantially over a shorter time period. Our study demonstrates that although the magnitude of responses differed greatly among ecosystems, the direction of the responses was very similar across different ecosystems. Interactions between plant productivity and below-ground biogeochemical cycling need to be taken into account to predict ecosystem responses to environmental change.

  4. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    PubMed

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.

  5. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  6. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  7. Respirator Fact Sheet

    MedlinePlus

    ... it last? That depends on how much filtering capacity the respirator has and the amount of hazard ... and it will vary by each respirator model's capacities. That's why your emergency plan must include some ...

  8. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    PubMed

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  9. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management

    PubMed Central

    Hou, Xiangyang; Schellenberg, Michael P.

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μmol.m−2.s−1) than under grazing (1.65μmol.m−2.s−1) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China. PMID:26808376

  10. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  11. Effects of non-native earthworms on on below- and aboveground processes in the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; McCormick, M. K.; Xia, L.; Pitz, S.; O'Neill, J.; Bernard, M.; Chang, C.; Whigham, D. F.

    2011-12-01

    less abundant in the earthworm removal plots. There was a significant positive earthworm effect on the rate and thermal sensitivity of soil respiration. Soil respiration was consistently higher in plots with tulip poplar litter than those with beech litter, indicating a strong influence of plant residue quality. However, the differences were smaller in the second year than in the first one indicating an adaptation of the soil system. Oak and beech seedlings were smaller in high density earthworm plots, while the reverse was true for maple and tulip poplar seedlings. Non-native earthworms affect below- and aboveground processes, however, these effects depend on forest type and land use history. The earthworm effects also appear to be dynamic, as witnessed by a recent invasion of an Asian earthworm species in one of our forest stands.

  12. Soil Respiration - A Geochemist's Perspective

    NASA Astrophysics Data System (ADS)

    Van Cappellen, P.

    2015-12-01

    Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.

  13. Reference electrodes for aboveground storage tanks

    SciTech Connect

    Ansuini, F.J.; Dimond, J.R.

    1995-12-31

    This paper discusses several factors affecting the reference potential established by copper/copper sulfate and silver/silver chloride reference electrodes. Guidelines for using references in aboveground storage tank applications are presented and some causes of misleading readings are discussed.

  14. Aboveground storage tanks -- Better safe than sorry

    SciTech Connect

    Rizzo, J.A.

    1995-12-31

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: safety; product losses; cost comparison of UST vs AGSTs; space availability/accessibility; precipitation handling; aesthetics and security; and existing and pending regulations.

  15. Seasonal and interannual variations of carbon and oxygen isotopes of respired CO2 in a tallgrass prairie: Measurements and modeling results from 3 years with contrasting water availability

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Riley, William; Owensby, Clenton; Ham, Jay; Schauer, Andrew; Ehleringer, James R.

    2006-04-01

    We made weekly measurements of carbon (δ13C) and oxygen (δ18O) isotopes of atmospheric CO2 in a C3/C4 tallgrass prairie during the growing season for 3 years with contrasting soil moisture conditions. Air samples above and within canopies were collected using 100-ml flasks at night to characterize isotopic composition of ecosystem respiration. We used a two-source mixing line (Keeling plot) approach to estimate isotope ratios of ecosystem respired CO2 for both carbon (δ13CR) and oxygen (δ18OR). Measured net ecosystem CO2 exchange (NEE) showed the largest net carbon uptake in 2004, followed by 2003 and 2002. This interannual difference in NEE strongly depends on the amount and distribution of precipitation received by this tallgrass prairie. Precipitation also affects the timing of the seasonal transition from C3 dominance in spring to C4 dominance in summer. Variations of δ13CR showed that C4 plants dominated ecosystem respiration in 2003 and 2004, except in early spring when C3 plants were more active. In contrast, contributions of C3 plants were relatively higher for an extended period in the summer of 2002, when a severe drought occurred. Typically, C3 forbs extract water and nutrients from soil layers below that of the C4 grasses and remain photosynthetically active in periods when C4 grasses have water stress that limits photosynthesis. Drought-reduced C4 grass photosynthesis was lower than temperature-limited C3 forb growth during this period. We used an integrated isotope land surface model (ISOLSM) to simulate (and compare to measurements) net CO2 fluxes, δ18O values of leaf and soil water, and δ18O values of aboveground and soil respiration. The Keeling plot analysis becomes less reliable for estimating δ18OR values when the surface soil is dry. We suspect this is due to low CO2 production in the soil when water is limiting, in which case the invasion (abiotic) effect is more significant. ISOLSM reasonably captured seasonal variations of measured

  16. Different soil respiration responses to litter manipulation in three subtropical successional forests.

    PubMed

    Han, Tianfeng; Huang, Wenjuan; Liu, Juxiu; Zhou, Guoyi; Xiao, Yin

    2015-12-11

    Aboveground litter inputs have been greatly altered by human disturbances and climate change, which have important effects on soil respiration. However, the knowledge of how soil respiration responds to altered litter inputs is limited in tropical and subtropical forests. We conducted an aboveground litterfall manipulation experiment in three successional forests in the subtropics to examine the soil respiration responses to different litter inputs from January 2010 to July 2012. The soil respiration decreased by 35% in the litter exclusion treatments and increased by 77% in the doubled litter additions across all three forests. The reduction in soil respiration induced by the litter exclusion was greatest in the early successional forest, which may be related to a decrease in the soil moisture and shifts in the microbial community. The increase in soil respiration produced by the doubled litter addition was largest in the mature forest, which was most probably due to its relatively high quantity and quality of litterfall. Our results suggest that the effect of reduced litter inputs on the soil respiration lessened with forest succession but that the doubled litter inputs resulted in a stronger priming effect in the mature forest than in the other two forests.

  17. Different soil respiration responses to litter manipulation in three subtropical successional forests

    NASA Astrophysics Data System (ADS)

    Han, Tianfeng; Huang, Wenjuan; Liu, Juxiu; Zhou, Guoyi; Xiao, Yin

    2015-12-01

    Aboveground litter inputs have been greatly altered by human disturbances and climate change, which have important effects on soil respiration. However, the knowledge of how soil respiration responds to altered litter inputs is limited in tropical and subtropical forests. We conducted an aboveground litterfall manipulation experiment in three successional forests in the subtropics to examine the soil respiration responses to different litter inputs from January 2010 to July 2012. The soil respiration decreased by 35% in the litter exclusion treatments and increased by 77% in the doubled litter additions across all three forests. The reduction in soil respiration induced by the litter exclusion was greatest in the early successional forest, which may be related to a decrease in the soil moisture and shifts in the microbial community. The increase in soil respiration produced by the doubled litter addition was largest in the mature forest, which was most probably due to its relatively high quantity and quality of litterfall. Our results suggest that the effect of reduced litter inputs on the soil respiration lessened with forest succession but that the doubled litter inputs resulted in a stronger priming effect in the mature forest than in the other two forests.

  18. Different soil respiration responses to litter manipulation in three subtropical successional forests

    PubMed Central

    Han, Tianfeng; Huang, Wenjuan; Liu, Juxiu; Zhou, Guoyi; Xiao, Yin

    2015-01-01

    Aboveground litter inputs have been greatly altered by human disturbances and climate change, which have important effects on soil respiration. However, the knowledge of how soil respiration responds to altered litter inputs is limited in tropical and subtropical forests. We conducted an aboveground litterfall manipulation experiment in three successional forests in the subtropics to examine the soil respiration responses to different litter inputs from January 2010 to July 2012. The soil respiration decreased by 35% in the litter exclusion treatments and increased by 77% in the doubled litter additions across all three forests. The reduction in soil respiration induced by the litter exclusion was greatest in the early successional forest, which may be related to a decrease in the soil moisture and shifts in the microbial community. The increase in soil respiration produced by the doubled litter addition was largest in the mature forest, which was most probably due to its relatively high quantity and quality of litterfall. Our results suggest that the effect of reduced litter inputs on the soil respiration lessened with forest succession but that the doubled litter inputs resulted in a stronger priming effect in the mature forest than in the other two forests. PMID:26656136

  19. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    PubMed

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  20. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    PubMed

    DiTommaso, Antonio; Morris, Scott H; Parker, John D; Cone, Caitlin L; Agrawal, Anurag A

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008) and tree density (2005-2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit from an

  1. Deer Browsing Delays Succession by Altering Aboveground Vegetation and Belowground Seed Banks

    PubMed Central

    DiTommaso, Antonio; Morris, Scott H.; Parker, John D.; Cone, Caitlin L.; Agrawal, Anurag A.

    2014-01-01

    Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus) populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15×15 m fenced enclosures and paired open plots in recently fallowed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005–2010), we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005–2008) and tree density (2005–2012). The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity), reduced seed bank abundance, relatively more short-lived species (annuals and biennials), and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually recruit

  2. Cathodic protection design for aboveground storage tanks

    SciTech Connect

    Koszewski, L.; Quincy, G.L.

    1995-12-31

    The application of cathodic protection for aboveground storage tank (AST) bottoms has been accomplished in a variety of approaches, with varying degrees of success. Recent State regulations, requiring corrosion protection for new tanks and secondary containment for double bottom tanks, have prompted new application techniques to be developed for AST cathodic protection. Improved design applications are now available to todays` tank owners and operators to provide effective long term cathodic protection.

  3. Cathodic protection maintenance for aboveground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    Cathodic protection systems are utilized to mitigate corrosion on the external bottom surfaces of aboveground storage tanks (ASTs). Cathodic protection systems should be part of a preventative maintenance program to minimize in-service failures. A good maintenance program will permit determination of continuous adequate cathodic protection of ASTs, through sustained operation and also provide the opportunity to detect cathodic protection system malfunctions, through periodic observations and testing.

  4. Speech and respiration.

    PubMed

    Conrad, B; Schönle, P

    1979-04-12

    This investigation deals with the temporal aspects of air volume changes during speech. Speech respiration differs fundamentally from resting respiration. In resting respiration the duration and velocity of inspiration (air flow or lung volume change) are in a range similar to that of expiration. In speech respiration the duration of inspiration decreases and its velocity increases; conversely, the duration of expiration increases and the volume of air flow decreases dramatically. The following questions arise: are these two respiration types different entities, or do they represent the end points of a continuum from resting to speech respiration? How does articulation without the generation of speech sound affect breathing? Does (verbalized?) thinking without articulation or speech modify the breathing pattern? The main test battery included four tasks (spontaneous speech, reading, serial speech, arithmetic) performed under three conditions (speaking aloud, articulating subvocally, quiet performance by tryping to exclusively 'think' the tasks). Respiratory movements were measured with a chest pneumograph and evaluated in comparison with a phonogram and the identified spoken text. For quiet performance the resulting respiratory time ratio (relation of duration of inspiration versus expiration) showed a gradual shift in the direction of speech respiration--the least for reading, the most for arithmetic. This change was even more apparent for the subvocal tasks. It is concluded that (a) there is a gradual automatic change from resting to speech respiration and (b) the degree of internal verbalization (activation of motor speech areas) defines the degree of activation of the speech respiratory pattern.

  5. Voluntary use of respirators.

    PubMed

    Feiner, Lynn

    2009-11-01

    Allowing voluntary use of respirators can provide workers with an added level of comfort and relief from nuisance levels of particulates, gases, or vapors. But misuse can result in illness or injury to the worker. Understanding and following OSHA's guidelines on voluntary use of respirators is one of the many ways you help provide a safe workplace and ensure your employees stay healthy.

  6. Measuring tree root respiration using (13)C natural abundance: rooting medium matters.

    PubMed

    Cheng, Weixin; Fu, Shenglei; Susfalk, Richard B; Mitchell, Robert J

    2005-07-01

    Tree root respiration utilizes a major portion of the primary production in forests and is an important process in the global carbon cycle. Because of the lack of ecologically relevant methods, tree root respiration in situ is much less studied compared with above-ground processes such as photosynthesis and leaf respiration. This study introduces a new (13)C natural tracer method for measuring tree root respiration in situ. The method partitions tree root respiration from soil respiration in buried root chambers. Rooting media substantially influenced root respiration rates. Measured in three media, the fine root respiration rates of longleaf pine were 0.78, 0.27 and 0.18 mg CO(2) carbon mg(-1) root nitrogen d(-1) at 25 degrees C in the native soil, tallgrass prairie soil, and sand-vermiculite mixture, respectively. Compared with the root excision method, the root respiration rate of longleaf pine measured by the field chamber method was 18% higher when using the native soil as rooting medium, was similar in the prairie soil, but was 42% lower if in the sand-vermiculite medium. This natural tracer method allows the use of an appropriate rooting medium and is capable of measuring root respiration nondestructively in natural forest conditions.

  7. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming.

    PubMed

    Ryan, Edmund M; Ogle, Kiona; Zelikova, Tamara J; LeCain, Dan R; Williams, David G; Morgan, Jack A; Pendall, Elise

    2015-02-25

    Terrestrial plant and soil respiration, or ecosystem respiration (Reco ), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007-2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied a semi-mechanistic temperature-response model to simultaneously evaluate the response of Reco to three treatment factors (elevated CO2 , warming, and soil water manipulation) and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)] and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The model fits the observed Reco well (R(2 ) = 0.77). We applied the model to estimate annual (March-October) Reco , which was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When aggregated from 2007 to 2012, total six-year Reco was stimulated by elevated CO2 singly (24%) or in combination with warming (28%). Warming had little effect on annual Reco under ambient CO2 , but stimulated it under elevated CO2 (32% across all years) when precipitation was high (e.g., 44% in 2009, a 'wet' year). Treatment-level differences in Reco can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensitivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD) on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a future climate of elevated CO2 and warming.

  8. Respiration hastens maturation and lowers yield in rice.

    PubMed

    Sitaramam, V; Bhate, R; Kamalraj, P; Pachapurkar, S

    2008-07-01

    Role of respiration in plant growth remains an enigma. Growth of meristematic cells, which are not photosynthetic, is entirely driven by endogenous respiration. Does respiration determine growth and size or does it merely burn off the carbon depleting the biomass? We show here that respiration of the germinating rice seed, which is contributed largely by the meristematic cells of the embryo, quantitatively correlates with the dynamics of much of plant growth, starting with the time for germination to the time for flowering and yield. Seed respiration appears to define the quantitative phenotype that contributes to yield via growth dynamics that could be discerned even in commercial varieties, which are biased towards higher yield, despite considerable susceptibility of the dynamics to environmental perturbations. Intrinsic variation, irreducible despite stringent growth conditions, required independent validation of relevant physiological variables both by critical sampling design and by constructing dendrograms for the interrelationships between variables that yield high consensus. More importantly, seed respiration, by mediating the generation clock time via variable time for maturation as seen in rice, directly offers the plausible basis for the phenotypic variation, a major ecological stratagem in a variable environment with uncertain water availability. Faster respiring rice plants appear to complete growth dynamics sooner, mature faster, resulting in a smaller plant with lower yield. Counter to the common allometric views, respiration appears to determine size in the rice plant, and offers a valid physiological means, within the limits of intrinsic variation, to help parental selection in breeding.

  9. Partitioning Soil Respiration Between Autotrophic and Heterotrophic Components in a Mature Boreal Black Spruce Stand

    NASA Astrophysics Data System (ADS)

    Gaumont-Guay, D.; Black, T. A.; Barr, A. G.; Jassal, R. S.; Morgenstern, K.; Nesic, Z.

    2005-12-01

    the seasonal variation in soil temperature, it was found to be strongly correlated with tree photosynthesis. Analysis showed a lagged response with a maximum correlation for 15-25 days Tree photosynthesis also exerted a strong control on autotrophic respiration at the diurnal time scale with a lagged response of approximately 12 hours. These results suggest that the characterization of the soil temperature and water regimes is not sufficient to describe accurately the seasonal and diurnal variations in soil respiration and its components. Models need to incorporate the controls of aboveground photosynthetic production, photosynthate allocation and phloem transport on soil respiration.

  10. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.

    2015-08-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  11. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wild fire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.

    2015-06-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.

  12. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore.

    PubMed

    Milano, N J; Barber, N A; Adler, L S

    2015-04-01

    Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants. We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots. We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.

  13. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient

    PubMed Central

    Kumordzi, Bright B.; Gundale, Michael J.; Nilsson, Marie-Charlotte; Wardle, David A.

    2016-01-01

    Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems. PMID:27270445

  14. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  15. Aboveground pipeline response to random ground motion

    SciTech Connect

    Banerji, P.; Ghosh, A.

    1995-12-31

    Response of two types of aboveground pipelines--rigid, segmented pipelines, and flexible, continuous pipelines--to random ground motion are studied in this paper. The emphasis is on studying the effect of pipeline system parameters on its response. It is seen that pipe parameters, except for the pipe span, affect system response negligibly. Pier height and flexibility, and foundation-soil flexibility, however, affect response significantly. Furthermore, for practical situations, pipe and pier responses are decoupled, and the pier, therefore, behaves essentially as a point structure that is not affected by spatial variation of ground motion.

  16. Soil Respiration and Student Inquiry: A Perfect Match

    ERIC Educational Resources Information Center

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  17. Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands.

    PubMed

    Isbell, Forest I; Wilsey, Brian J

    2011-03-01

    Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.

  18. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota

    PubMed Central

    Kong, Hyun G.; Kim, Byung K.; Song, Geun C.; Lee, Soohyun; Ryu, Choong-Min

    2016-01-01

    Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. Infestation from phloem-sucking insects such as whitefly and aphid on plant leaves was previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1–V3 region) by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation, and the fluorescent Pseudomonas spp. recruited to the rhizosphere were confirmed to exhibit insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly infested plant rhizosphere. Our results indicate that whitefly infestation leads to the recruitment of specific groups of rhizosphere bacteria by the plant, which confer beneficial traits to the host plant. This

  19. Respiration and Reproductive Effort in Xanthium canadense

    PubMed Central

    KINUGASA, TOSHIHIKO; HIKOSAKA, KOUKI; HIROSE, TADAKI

    2005-01-01

    • Background and Aims The proportion of resources devoted to reproduction in the plant is called the reproductive effort (RE), which is most commonly expressed as the proportion of reproductive biomass to total plant biomass production (REW). Reproductive yield is the outcome of photosynthates allocated to reproductive structures minus subsequent respiratory consumption for construction and maintenance of reproductive structures. Thus, REW can differ from RE in terms of photosynthates allocated to reproductive structures (REP). • Methods Dry mass growth and respiration of vegetative and reproductive organs were measured in Xanthium canadense and the amount of photosynthates and its partitioning to dry mass growth and respiratory consumption were determined. Differences between REW and REP were analysed in terms of growth and maintenance respiration. • Key Results The fraction of allocated photosynthates that was consumed by respiration was smaller in the reproductive organ than in the vegetative organs. Consequently, REP was smaller than REW. The smaller respiratory consumption in the reproductive organ resulted from its shorter period of existence and a seasonal decline in temperature, as well as a slower rate of maintenance respiration, although the fraction of photosynthates consumed by growth respiration was larger than in the vegetative organs. • Conclusions Reproductive effort in terms of photosynthates (REP) was smaller than that in terms of biomass (REW). This difference resulted from respiratory consumption for maintenance, which was far smaller in the reproductive organ than in vegetative organs. PMID:15837721

  20. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    SciTech Connect

    Hoylman, Anne M.

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  1. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaching of dissolved organic matter (DOM) from fresh and pyrolyzed aboveground plant inputs to the soil is a major pathway by which decomposing aboveground plant material contributes to soil organic matter formation. Understanding how aboveground plant input chemical traits control the partiti...

  2. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    DOE PAGES

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; ...

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our resultsmore » showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.« less

  3. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli

    PubMed Central

    Pierre, S. P.; Dugravot, S.; Hervé, M. R.; Hassan, H. M.; van Dam, N. M.; Cortesero, A. M.

    2013-01-01

    Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i) infestation by the root-herbivore Delia radicum, (ii) root application of jasmonic acid (JA) or (iii) root application of salicylic acid (SA). The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialization were surveyed for 5 weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialization and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae, and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate (GLS) profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialization level. PMID:23970888

  4. Diel patterns of autotrophic and heterotrophic respiration among phenological stages

    SciTech Connect

    Savage, Kathleen; Davidson, Eric; Tang, Jianwu

    2013-01-01

    Improved understanding of the links between aboveground production and allocation of photosynthate to belowground processes and the temporal variation in those links is needed to interpret observations of belowground carbon cycling processes. Here, we show that combining a trenching manipulation with high-frequency soil respiration measurements in a temperate hardwood forest permitted identification of the temporally variable influence of roots on diel and seasonal patterns of soil respiration. The presence of roots in an untrenched plot caused larger daily amplitude and a 2–3 h delay in peak soil CO2 efflux relative to a root-free trenched plot. These effects cannot be explained by differences in soil temperature, and they were significant only when a canopy was present during the growing season. This experiment demonstrated that canopy processes affect soil CO2 efflux rates and patterns at hourly and seasonal time scales, and it provides evidence that root and microbial processes respond differently to environmental factors.

  5. Deciphering The Speed of Link: Experimental Evidence of a Rapid Increase in Soil Respiration Following the Onset of Photosynthesis

    NASA Astrophysics Data System (ADS)

    Kayler, Z. E.; Keitel, C.; Jansen, K.; Gessler, A.

    2011-12-01

    The degree of coupling between aboveground assimilation and transport with below-ground metabolism is an indicator of ecosystem nutrient cycling and energy turnover in the rhizosphere as well as having a large impact on their long-term storage capacity in the soil. Understanding how and when assimilates arrive below-ground for mineralization is necessary to predict how nutrient and energy cycles might be altered by current and future changes in climate, species distribution and land use. Currently, there are two proposed mechanisms that describe the link between assimilation and below-ground respiration via the phloem: 1) the transport of assimilates basipetally according to the Münch theory, and 2) pressure-concentration waves. The transport of assimilates through the phloem by mechanism 1 is often quantified through isotopic labeling studies. Thus, the time between isotopic labeling in the canopy and when the labeled carbon is respired from the rhizoshpere characterizes the degree of coupling between aboveground and below-ground metabolism. The timing between the uptake and below-ground respiration of the labeled carbon is termed the "speed of link". Based on statistical approaches, recent studies have reported a speed of link on the order of one day or less in mature forests, which is too fast for phloem transport by molecular diffusion or classical sink-source dynamics. These studies often cite mechanism 2 to support their conclusions despite the lack of experimental evidence. In this presentation, we report results from experiments designed to observe the mechanisms behind the speed of link of Douglas-fir saplings. We kept the plants for several days (0,1 and 6 days) in the dark to create a large carbon source-sink gradient with the intention of inducing a strong pressure-concentration wave. Following the no light treatment, in a controlled growth chamber, we introduced labelled CO2 prior to exposing the plant to light. Upon exposing the plants to light, the

  6. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    USGS Publications Warehouse

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  7. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio.

  8. Improved allometric models to estimate the aboveground biomass of tropical trees.

    PubMed

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

  9. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  10. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  11. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  12. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  13. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  14. Aboveground storage tank double bottom cathodic protection

    SciTech Connect

    Surkein, M.B.

    1995-12-31

    Cathodic protection is typically used to achieve corrosion control between bottoms of aboveground storage tanks with double bottoms. To determine the proper design of such systems, an investigation was conducted on the performance of two different cathodic protection system designs utilizing zinc ribbon anodes. A full scale field test on a 35 meter (115 feet) diameter tank was conducted to determine cathodic protection system performance. The test included periodic measurement of tank bottom steel potentials including on, instant off and polarization decay, anode current output and tank product level measurements.Results showed that zinc ribbon anode spacing in a chord fashion of 1.2 meter (4 feet) or less can be effective to achieve cathodic protection according to industry accepted standards. Utilizing the design information gained by the study, a standard sacrificial anode and impressed current anode cathodic protection system has been developed.

  15. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Changchun; Liu, Deyan; Song, Yanyu; Yang, Guisheng; Wan, Zhongmei; Li, Yingchen; Xu, Xiaofeng

    2011-03-01

    Anthropogenic activities have increased phosphorus (P) inputs to wetland ecosystems. However, little is known about the effect of P enrichment on soil respiration in these ecosystems. To understand the effect of P enrichment on soil respiration, we conducted a field experiment in Calamagrostis angustifolia-dominated freshwater marshes, the Sanjiang Plain, Northeast China. We investigated soil respiration in the first growing season after P addition at four rates (0, 1.2, 4.8 and 9.6 g P m-2 year-1). In addition, we also examined aboveground biomass, soil labile C fractions (dissolved organic C, DOC; microbial biomass C, MBC; easily oxidizable C, EOC) and enzyme activities (invertase, urease and acid phosphatase activities) following one year of P addition. P addition decreased soil respiration during the growing season. Dissolved organic C in soil pore water increased after P addition at both 5 and 15 cm depths. Moreover, increased P input generally inhibited soil MBC and enzyme activities, and had no effects on aboveground biomass and soil EOC. Our results suggest that, in the short-term, soil respiration declines under P enrichment in C. angustifolia-dominated freshwater marshes of Northeast China, and its extent varies with P addition levels.

  16. Ethylene production and its effect on storage respiration rate in wounded and unwounded sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is produced by all seed plants and stimulates respiration in most plant tissues and organs. To understand how this plant hormone may affect postharvest sugarbeet root respiration, a series of experiments were conducted to determine (1) the rate of ethylene production in wounded and unwound...

  17. [Endogenous respiration process analysis of heterotrophic biomass and autotrophic biomass based on respiration map ].

    PubMed

    Li, Zhi-hua; Bai, Xu-li; Zhang, Qin; Liu, Yi; He, Chun-bo

    2014-09-01

    The endogenous process is an important metabolic part of the activated sludge, and the understanding of this process is still unclear. Characteristics of endogenous respiration for heterotrophic bacteria and autotrophic nitrifiers were analyzed using respirogram. Results showed that both heterotrophic and autotrophic bacteria entered the stage of endogenous respiration at almost the same time, but heterotrophic bacteria first entered the stage of dormancy i. e. , they were easier to recover a higher proportion of biomass during the dormancy stage, indicating that heterotrophic bacteria exhibited strong environmental adaptability. Autotrophic bacteria were, however, quite different. This finding confirmed that autotrophic bacteria were more vulnerable from the viewpoint of endogenous respiration. In addition, the study also found that the increase of endogenous respiration rate ratio reflected the decreased sludge activity. And the proportion of endogenous respiration was an important parameter to characterize the activity of activated sludge, which can be used as a quantitative index for the health status of activated sludge. The findings further deepened the understanding of endogenous respiration process and provided a theoretical basis for the operation and management of wastewater treatment plants.

  18. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree productivity and soil organic matter in high fertility forests

    NASA Astrophysics Data System (ADS)

    Cotrufo, M.; Alberti, G.; Vicca, S.; Inglima, I.; Belelli-Marchesini, L.; Genesio, L.; Miglietta, F.; Marjanovic, H.; Martinez, C.; Matteucci, G.; Peressotti, A.; Petrella, L.; Rodeghiero, M.

    2013-12-01

    The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems and is a process by which plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) to sustain their gross and net primary production (GPP and NPP). Root inputs also contribute to soil organic matter (SOM) formation. In this study, we quantified the annual net root derived C input to soil (Net-Croot) across six high fertile forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes and eddy covariance data, we quantified net belowground C sequestration. This and GPP were inversely related to soil C:N, but not to climate or age. Because, at these high fertile sites, biomass growth did not change with soil C:N ratio, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forest sites and for high fertile sites across a set of other 23 sites selected at global scale. We suggest that, at high fertile sites, the interaction between plant demand for nutrients, soil stoichiometry and microbial activity sustain higher ecosystem C-sink allocation to above ground tree biomass with increasing soil C:N ratio and that this clear and strong relationship can be used for modelling forest C sink partitioning between plant biomass and soil. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when the low soil C:N promotes microbial C use efficiency and new SOM formation.

  19. [Contribution of wheat rhizosphere respiration to soil respiration under elevated atmospheric CO2 and nitrogen application].

    PubMed

    Kou, Tai-ji; Xu, Xiao-feng; Zhu, Jian-guo; Xie, Zu-bin; Guo, Da-yong; Miao, Yan-fang

    2011-10-01

    With the support of free-air carbon dioxide enrichment (FACE) system and by using isotope 13C technique, and through planting wheat (Triticum aestivum L., C3 crop) on a soil having been planted with maize (Zea mays L., C4 crop) for many years, this paper studied the effects of elevated atmospheric CO2 and nitrogen application on the delta 13C value of soil emitted CO2 and the wheat rhizosphere respiration. With the growth of wheat, the delta 13C value of soil emitted CO2 had a gradual decrease. Elevated atmospheric CO2 concentration (200 micromol mol(-1)) decreased the delta 13C value of emitted CO2 at booting and heading stages significantly when the nitrogen application rate was 250 kg hm(-2) (HN), and at jointing and booting stages significantly when the nitrogen application rate was 150 kg hm(-2) (LN). Nevertheless, the elevated atmospheric CO2 promoted the proportions of wheat rhizosphere respiration to soil respiration at booting and heading stages significantly. From jointing stage to maturing stage, the proportions of wheat rhizosphere respiration to soil respiration were 24%-48% (HN) and 21%-48% (LN) under elevated atmospheric CO2, and 20%-36% (HN) and 19%-32% (LN) under ambient atmospheric CO2. Under both elevated and ambient atmospheric CO2 concentrations, the delta 13C value of emitted CO2 and the rhizosphere respiration had different responses to the increased nitrogen application rate, and there was a significant interactive effect of atmospheric CO2 concentration and nitrogen application rate on the wheat rhizosphere respiration at jointing stage.

  20. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    SciTech Connect

    Hoylman, A.M.

    1993-01-01

    Plant uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) from soil was investigated to explore plant-microbial interactions in response to a chemical stress in the root zone. Plant uptake of individual PAHs was examined under laboratory conditions which maximized root exposure. White sweetclover, Melilotus alba, was grown in soils dosed with [sup 14]C-naphthalene, -phenanthrene, -pyrene, and -fluoranthene. The highest [sup 14]C concentrations were associated with roots, with decreasing concentrations observed in stems and leaves; however, the greatest percentage of recoverable [sup 14]C remained in the soil ([ge]86%) for all four PAHs. No evidence of bioaccumulation of the individual PAHs was found in M. alba over a 5-day exposure period. Root uptake and translocation of PAHs from soil to aboveground plant tissues proved to be a limited mechanism for PAH transport into terrestrial food chains. However, root surface sorption of PAHs may be important for plants in soils containing elevated concentrations of PAHs. Consequently, the root-soil interface may be important for plant-microbial interactions in response to a chemical stress. [sup 14]CO[sub 2] pulse-labeling studies provide evidence of a shift in [sup 14]C-allocation from aboveground tissue to the root zone when plants were exposed simultaneously to phenanthrene in soil. In addition, soil respiration and heterotrophic plate counts of rhizosphere microorganisms increased in plants exposed to phenanthrene as compared to controls. This study demonstrates the importance of the root-soil interface for plants growing in PAH contaminated soil and provides supportive evidence for a plant-microbial defense response to chemical toxicants in the root zone. Lipophilic toxicants in soils may reach high concentrations in the root zone, but rhizosphere microbial communities under the influence of the plant may reduce the amount of the compound that is actually taken up by the root.

  1. Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant Amphiploid (wheat × Lophopyrum elongatum).

    PubMed

    Jacoby, Richard P; Millar, A Harvey; Taylor, Nicolas L

    2013-11-01

    The effect of salinity on mitochondrial properties was investigated by comparing the reference wheat variety Chinese Spring (CS) to a salt-tolerant amphiploid (AMP). The octoploid AMP genotype was previously generated by combining hexaploid bread wheat (CS) with the diploid wild wheatgrass adapted to salt marshes, Lophopyrum elongatum. Here we used a combination of physiological, biochemical, and proteomic analyses to explore the mitochondrial and respiratory response to salinity in these two genotypes. The AMP showed greater growth tolerance to salinity treatments and altered respiration rate in both roots and shoots. A proteomic workflow of 2D-DIGE and MALDI TOF/TOF mass spectrometry was used to compare the protein composition of isolated mitochondrial samples from roots and shoots of both genotypes, following control or salt treatment. A large set of mitochondrial proteins were identified as responsive to salinity in both genotypes, notably enzymes involved in detoxification of reactive oxygen species. Genotypic differences in mitochondrial composition were also identified, with AMP exhibiting a higher abundance of manganese superoxide dismutase, serine hydroxymethyltransferase, aconitase, malate dehydrogenase, and β-cyanoalanine synthase compared to CS. We present peptide fragmentation spectra derived from some of these AMP-specific protein spots, which could serve as biomarkers to track superior protein variants.

  2. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation.

    PubMed

    Mundra, Sunil; Halvorsen, Rune; Kauserud, Håvard; Müller, Eike; Vik, Unni; Eidesen, Pernille B

    2015-03-01

    Soil conditions and microclimate are important determinants of the fine-scale distribution of plant species in the Arctic, creating locally heterogeneous vegetation. We hypothesize that root-associated fungal (RAF) communities respond to the same fine-scale environmental gradients as the aboveground vegetation, creating a coherent pattern between aboveground vegetation and RAF. We explored how RAF communities of the ectomycorrhizal (ECM) plant Bistorta vivipara and aboveground vegetation structure of arctic plants were affected by biotic and abiotic variables at 0.3-3.0-m scales. RAF communities were determined using pyrosequencing. Composition and spatial structure of RAF and aboveground vegetation in relation to collected biotic and abiotic variables were analysed by ordination and semi-variance analyses. The vegetation was spatially structured along soil C and N gradients, whereas RAF lacked significant spatial structure. A weak relationship between RAF community composition and the cover of two ECM plants, B. vivipara and S. polaris, was found, and RAF richness increased with host root length and root weight. Results suggest that the fine-scale spatial structure of RAF communities of B. vivipara and the aboveground vegetation are driven by different factors. At fine spatial scales, neighbouring ECM plants may affect RAF community composition, whereas soil nutrients gradients structure the vegetation.

  3. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests

    PubMed Central

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-01-01

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121

  4. NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVEGROUND PORTION IS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION WITH GRADUATED MEASURING POLE. ABOVE-GROUND PORTION IS ON THE LEFT. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  5. OBLIQUE VIEW WITH ABOVEGROUND PORTION IN THE FOREGROUND. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW WITH ABOVE-GROUND PORTION IN THE FOREGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  6. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    EPA Pesticide Factsheets

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  7. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    PubMed

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  8. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  9. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    SciTech Connect

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; Huang, Wenjuan; Zhou, Guoyi

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our results showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.

  10. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    PubMed

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  11. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  12. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  13. Divergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland

    PubMed Central

    Zhu, Cheng; Ma, Yiping; Wu, Honghui; Sun, Tao; La Pierre, Kimberly J.; Sun, Zewei; Yu, Qiang

    2016-01-01

    Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4 mol N m−2 yr−1 vs 1.6 mol N m−2 yr−1) over a two-year period in a semiarid Leymus chinensis grassland in Inner Mongolia, China. Our results show that low-level N addition increased soil respiration, plant belowground biomass and soil microbial biomass carbon (MBC), while high-level N additions decreased them. Soil respiration was positively correlated with plant belowground biomass, MBC, soil temperature and soil moisture. Together plant belowground biomass and MBC explained 99.4% of variation in mean soil respiration, with plant belowground biomass explaining 63.4% of the variation and soil MBC explaining the remaining 36%. Finally, the temperature sensitivity of soil respiration was not influenced by N additions. Overall, our results suggest that low levels of N deposition may stimulate soil respiration, but large increases in N availability may decrease soil respiration, and that these responses are driven by the dissimilar responses of both plant belowground biomass and soil MBC. PMID:27629241

  14. Foliar and ecosystem respiration in an old-growth tropical rain forest.

    PubMed

    Cavaleri, Molly A; Oberbauer, Steven F; Ryan, Michael G

    2008-04-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects of structural, functional and environmental variables on foliar respiration; (2) extrapolated foliar respiration to the ecosystem; and (3) estimated ecosystem respiration. Foliar respiration temperature response was constant within plant functional group, and foliar morphology drove much of the within-canopy variability in respiration and foliar nutrients. Foliar respiration per unit ground area was 3.5 +/- 0.2 micromol CO2 m(-2) s(-1), and ecosystem respiration was 9.4 +/- 0.5 micromol CO2 m(-2) s(-1)[soil = 41%; foliage = 37%; woody = 14%; coarse woody debris (CWD) = 7%]. When modelled with El Niño Southern Oscillation (ENSO) year temperatures, foliar respiration was 9% greater than when modelled with temperatures from a normal year, which is in the range of carbon sink versus source behaviour for this forest. Our ecosystem respiration estimate from component fluxes was 33% greater than night-time net ecosystem exchange for the same forest, suggesting that studies reporting a large carbon sink for tropical rain forests based solely on eddy flux measurements may be in error.

  15. Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Aboveground and Belowground Community

    PubMed Central

    Meyer, Katrin M.; Vos, Matthijs; Mooij, Wolf M.; Hol, W. H. Gera; Termorshuizen, Aad J.; van der Putten, Wim H.

    2012-01-01

    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions. PMID:23145055

  16. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  17. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  18. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    PubMed

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.

  19. Y-12 Respirator Flow Cycle Time Reduction Project

    SciTech Connect

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  20. Can we relate respiration rates of bark and wood with tissue nitrogen concentrations and branch-level CO2 fluxes across woody species?

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; Wright, I.; Cernusak, L. A.

    2013-12-01

    Respiration from above-ground woody tissue is generally responsible for 5-15% of ecosystem respiration (~ 30% of total above-ground respiration). The CO2 respired by branches comes from both the sapwood and the living layers within the bark, but because there is considerable movement of respired CO2 within woody tissues (e.g. in the transpiration stream), and because the bark can present a considerable barrier to CO2 diffusion, it can be difficult to interpret measured CO2 efflux from intact branches in relation to the respiration rates of the component tissues, and to relative mass allocation to each. In this study we investigated these issues in 15 evergreen tree and shrub species native to the Sydney area in eastern Australia. We measured CO2 efflux and light-dependent refixation of respired CO2 in photosynthetic bark from the exterior surfaces of branches (0.5-1.5 cm in diameter), and measured the tissue-specific respiration rates of the bark and wood from those same branches. We also measured the nitrogen content and tissue density of the wood and bark to determine: 1) Among species, what is the relationship between %N and tissue respiration? 2) How is photosynthetic refixation of CO2 related to respiration and %N in the bark and underlying wood? and 3) What is the relationship between branch CO2 efflux and the respiration rates of the underlying wood and bark that make up the branch? Across the 15 species %N was a better predictor of respiration in wood than in bark. CO2 efflux measured from the exterior of the stem in the dark was positively correlated with photosynthetic refixation and explained ~40% of the variation in rates of refixation. Refixation rates were not strongly related to bark or wood %N. Differences among species in CO2 efflux rates were not well explained by differences in bark or wood %N and there was a stronger relationship between bark respiration and CO2 efflux than between wood respiration and CO2 efflux. These results suggest that the

  1. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  2. Respiration in a changing environment.

    PubMed

    Perry, Steven F; Spinelli Oliveira, Elisabeth

    2010-08-31

    Multidisciplinary respiratory research highlighted in the present symposium uses existing and new models from all Kingdoms in both basic and applied research and bears upon molecular signaling processes that have been present from the beginning of life and have been maintained as an integral part of it. Many of these old mechanisms are still recognizable as ROS and oxygen-dependent pathways that probably were in place even before photosynthesis evolved. These processes are not only recognizable through relatively small molecules such as nucleotides and their derivatives. Also some DNA sequences such as the hypoxia response elements and pas gene family are ancient and have been co-opted in various functions. The products of pas genes, in addition to their function in regulating nuclear response to hypoxia as part of the hypoxia-inducible factor HIF, play key roles in development, phototransduction, and control of circadian rhythmicity. Also RuBisCO, an enzyme best known for incorporating CO(2) into organic substrates in plants also has an ancient oxygenase function, which plays a key role in regulating peroxide balance in cells. As life forms became more complex and aerobic metabolism became dominant in multicellular organisms, the signaling processes also took on new levels of complexity but many ancient elements remained. The way in which they are integrated into remodeling processes involved in tradeoffs between respiration and nutrition or in control of aging in complex organisms is an exciting field for future research.

  3. Boreal and temperate trees show strong acclimation of respiration to warming.

    PubMed

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  4. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    NASA Astrophysics Data System (ADS)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  5. Respiration in the open ocean.

    PubMed

    del Giorgio, Paul A; Duarte, Carlos M

    2002-11-28

    A key question when trying to understand the global carbon cycle is whether the oceans are net sources or sinks of carbon. This will depend on the production of organic matter relative to the decomposition due to biological respiration. Estimates of respiration are available for the top layers, the mesopelagic layer, and the abyssal waters and sediments of various ocean regions. Although the total open ocean respiration is uncertain, it is probably substantially greater than most current estimates of particulate organic matter production. Nevertheless, whether the biota act as a net source or sink of carbon remains an open question.

  6. Automated Aboveground Carbon Estimation of Forests with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Gordon, Piper

    Canada's forests are believed to contain 86 gigatons of carbon, stored above and below ground. These forests are large in area, making them difficult to monitor using conventional means. Understanding the carbon cycle and the role of forests as carbon sinks is crucial in the investigation and mitigation of climate change to address national obligations. One economical solution for monitoring the carbon content of Canada's forests is the development of an automated computer system which uses multisource remotely sensed data to estimate the aboveground carbon of trees. The process involves data fusion of remotely sensed hyperspectral data for tree species information and lidar (light detection and ranging) and radar (radio detection and ranging) for tree height. The size and dimensionality of the data necessitate the efficient use of computing resources for analysis. The outcome is a useful carbon measuring system. The three research questions are: (1) How do we map with remote sensing aboveground carbon in the forests? (2) How do we determine the accuracies of these aboveground carbon maps? (3) How can an automated system be designed for creating aboveground carbon maps?

  7. WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE (BUILDING 3568), SPARES INERT STORAGE BUILDING (BUILDING 3570), MISSILE ASSEMBLY SHOP (BUILDING 3578) AND SEGREGATED MAGAZINE STORAGE BUILDING (BUILDING 3572). VIEW TO NORTHWEST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  8. Inventory of Tank Farm equipment stored or abandoned aboveground

    SciTech Connect

    Hines, S.C.; Lakes, M.E.

    1994-10-12

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment.

  9. Ozone-induced increase in bean leaf maintenance respiration

    SciTech Connect

    Amthor, J.S.

    1987-01-01

    Rates of respiration by unifoliate leaves of pinto bean (Phaseolus vulgaris) plants, exposed to low levels of ozone, were partitioned into growth and maintenance components using a popular model of plant respiration. The mode can be written as R/W = G/sub R/(dW/dt)/W + m, where R/W is the leaf specific respiration rate, (dW/dt)/W is the leaf specific growth rate, G/sub R/ is the growth coefficient, and m is the maintenance coefficient. In controlled environment growth chamber experiments, plants were treated with one of two levels of ozone: 90 parts per billion (p.p.b., i.e., nl liter/sup -1/), for 6 h d/sup -1/ (+ ozone), or less than 15 p.p.b. (-ozone). The growth coefficient was not affected by ozone. The maintenance coefficient, however, was 10-15% larger in leaves of plants from the + ozone treatment, compared to the-ozone treatment. This difference in the maintenance coefficient was statistically significant. Open-top field chamber experiments were also conducted. As in the growth chamber experiments, ozone dose did not affect the growth coefficient, but increases in ozone resulted in significant increases in the maintenance coefficient. The results of these experiments suggest that one reason ozone inhibits plant growth and productivity is that maintenance respiration increases, probably in order to repair injury.

  10. Exploring the possibility of estimating the aboveground biomass of Vallisneria spiralis L. using Landsat TM image in Dahuchi, Jiangxi Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Guofeng; de Leeuw, Jan; Skidmore, Andrew K.; Prins, Herbert H. T.; Liu, Yaolin

    2005-10-01

    The provision of food to breeding and migrating waterfowl is one of the major functions of submerged aquatic vegetation in shallow lakes. Vallisneria spiralis L. is a submerged aquatic plant species widely distributed within Jiangxi Poyang Lake National Nature Reserve, China. More than 95% of the world population of the endangered Siberian crane as well as significant numbers of Bewick's swan and swan goose over winter in this area, while foraging on the tubers of Vallisneria. The objective of this paper was to explore the possibility of estimating the aboveground biomass of Vallisneria in Dahuchi Lake using Landsat TM image. The relations between aboveground biomass and the bands of a Landsat TM image and their derived variables were investigated using uni- and multivariate linear and non-linear regression models. The results revealed significant but very weak relations between aboveground biomass and the remotely sensed variables. Hence Landsat TM imagery offered little potential to predict aboveground biomass of Vallisneria in this particular region. Possible reasons which could have caused these results were discussed, including: 1) the possible influence of suspended matter in the water; 2) the less accurate field sampling; 3) the limitations of spatial and spectral resolutions of Landsat TM image; 4) the methods used are not appropriate; 5) the homogeneously spatial distribution of aboveground biomass. We propose considering two alternative methods to improve the estimation of aboveground biomass of Vallisneria. First of all, results might be improved while combining alternative data sources (hyperspectral or high spatial resolution images) with innovative methods and more accurate sampling data; Secondly we propose assessing aboveground biomass while using productivity simulation models of submerged aquatic vegetation integrated with geographic information system (GIS) and remote sensing.

  11. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  12. THE GROWTH AND RESPIRATION OF THE AVENA COLEOPTILE

    PubMed Central

    Bonner, James

    1936-01-01

    1. Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism. 2. Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration. 3. Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration. HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth. 4. From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell elongation. PMID:19872979

  13. THE GROWTH AND RESPIRATION OF THE AVENA COLEOPTILE.

    PubMed

    Bonner, J

    1936-09-20

    1. Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism. 2. Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration. 3. Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration. HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth. 4. From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell elongation.

  14. [Aboveground architecture and biomass distribution of Quercus variabilis].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  15. [Effect of grazing on the temperature sensitivity of soil respiration in Hulunber meadow steppe].

    PubMed

    Wang, Xu; Yan, Rui-Rui; Deng, Yu; Yan, Yu-Chun; Xin, Xiao-Ping

    2014-05-01

    Grazing is one of the major human activities which lead to disturbance on grassland ecosystem. Quantifying the effect of grazing on the temperature sensitivity of soil respiration ( Q10 ) is essential for accurate assessment of carbon budget in grassland ecosystem. This study was conducted on the grazing gradients experiment platform in Hulunber meadow steppe. Soil respiration was measured by a dynamic closed chamber method (equipped with Li 6400-09, Lincoln, NE, USA) during the growing season in 2011. The results showed that soil respiration had significant seasonal variation and the maximum occurred in July, which was mainly dominated by temperature. The order of average soil respiration during the period from May to September in different treatments was G1 > GO > G2 > G3 > G4 > G5. Comparing with non-grazing treatment, Q10 under heavy grazing conditions (0. 92 Au hm-2) was reduced by about 10% , and was increased a little under light grazing conditions (0. 23 Au hm-2). There was a significant negative correlation between Q15 and grazing intensities (r = 0. 944, P <0. 05) . Grazing could decrease the temperature sensitivity of soil respiration to different degrees. The Q10 under different grazing gradients had positive linear regression relationships with aboveground biomass, belowground biomass, soil organic carbon and soil moisture. They could explain 71.0%-85.2% variations of Q10. It was suggested that the variation of Q10 was mainly determined by the change of biotic and environmental factors due to grazing.

  16. Variability of aboveground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Liu, L.; Sayer, E. J.

    2013-03-01

    Global change has been shown to greatly alter the amount of aboveground litter inputs to soil, which could cause substantial cascading effects on belowground biogeochemical cyling. Although having been studied extensively, there is uncertainty about how changes in aboveground litter inputs affect soil carbon and nutrient turnover and transformation. Here, we conducted a comprehensive compilation of 68 studies on litter addition or removal experiments, and used meta-analysis to assess the responses of soil physicochemical properties and carbon and nutrient cycling under changed aboveground litter inputs. Our results suggested that litter addition or removal could significantly alter soil temperature and moisture, but not soil pH. Litter inputs were more crucial in buffering soil temperature and moisture fluctuations in grassland than in forest. Soil respiration, soil microbial biomass carbon and total carbon in the mineral soil increased with increasing litter inputs, suggesting that soil acted as a~net carbon sink although carbon loss and transformation increased with increasing litter inputs. Total nitrogen and the C : N ratio in the mineral soil increased with increased litter inputs. However, there was no correlation between litter inputs and extractable inorganic nitrogen in the mineral soil. Compared to other ecosystems, tropical and subtropical forests are more sensitive to variation in litter inputs. Increased or decreased litter inputs altered the turnover and accumulation of soil carbon and nutrient in tropical and subtropical forests more substantially over a shorter time period compared to other ecosystems. Overall, our study suggested that, although the magnitude of responses differed greatly among ecosystems, increased litter inputs generally accelerated the decomposition and accumulation of carbon and nutrients in soil, and decreased litter inputs reduced them.

  17. Simulation results of aboveground woody biomass and leaf litterfall for African tropical forest with a global terrestrial model

    NASA Astrophysics Data System (ADS)

    De Weirdt, Marjolein; Maignan, Fabienne; Peylin, Philippe; Poulter, Benjamin; Moreau, Inès; Ciais, Philippe; Defourny, Pierre; Steppe, Kathy; Verbeeck, Hans

    2014-05-01

    The response of tropical forest vegetation to global climate change could be central to predictions of future levels of atmospheric carbon dioxide. Tropical forests are believed to annually process approximately six times as much carbon via photosynthesis and respiration as humans emit from fossil fuel use. Of all tropical forests worldwide, the role of African tropical forest is not very well known and both the quantity as well as the dynamics of tropical forest carbon stocks and fluxes are very poorly quantified components of the global carbon cycle. Furthermore, African tropical forest spatial carbon stocks patterns as measured in the field are not as well represented by the global biogeochemical models as they are for temperate forests. In this study, a first simulation for the African tropical forest with the process based global terrestrial ecosystem model ORCHIDEE was done. In this work, ORCHIDEE included deep soils, seasonal leaf litterfall and phosphorus availability mechanisms for tropical evergreen forests included. The ORCHIDEE model run outputs are evaluated against reported field inventories, investigating seasonal variations in leaf litterfall and spatial variation in aboveground woody biomass. A comparison between modeled and measured leaf litterfall was made at a semi-deciduous Equatorial rainforest site in the Republic of Congo at the Biosphere reserve Dimonika south of Gabon. Also, simulated woody aboveground biomass was compared against site-level field inventories and satellite-based estimates based on a combination of MODIS imagery with field inventory data from Uganda, DRC and Cameroon. First comparison results seem promising and show that the radiation driven leaf litterfall model results correspond well with the field inventories and that the mean of the modelled aboveground woody biomass matches the available field inventory observations but there is still a need for more ground data to evaluate the model outcome over a large region like

  18. Underground roots monitor aboveground environment by sensing stem-piped light

    PubMed Central

    Lee, Hyo-Jun; Ha, Jun-Ho; Park, Chung-Mo

    2016-01-01

    ABSTRACT Light is a critical environmental cue for plant growth and development. Plants actively monitor surrounding environments by sensing changes in light wavelength and intensity. Therefore, plants have evolved a series of photoreceptors to perceive a broad wavelength range of light. Phytochrome photoreceptors sense red and far-red light, which serves as a major photomorphogenic signal in shoot growth and morphogenesis. Notably, plants also express phytochromes in the roots, obscuring whether and how they perceive light in the soil. We have recently demonstrated that plants directly channel light to the roots through plant body to activate root phytochrome B (phyB). Stem light facilitates the nuclear import of phyB in the roots, and the photoactivated phyB triggers the accumulation of the photomorphogenic regulator ELONGATED HYPOCOTYL 5 in modulating root growth and gravitropism. Optical experiments revealed that red to far-red light is efficiently transduced through plant body. Our findings provide physical and molecular evidence, supporting that photoreceptors expressed in the underground roots directly sense light. We propose that the roots are not a passive organ but a central organ that actively monitors changes in the aboveground environment by perceiving light information from the shoots. PMID:28042383

  19. 78 FR 18601 - Respirator Certification Fees; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES Centers for Disease Control and Prevention Respirator Certification Fees; Public Meeting... stakeholders to present information the impact of an increase on respirator fees on individual respirator... in respirator certification and approval fees on individual respirator manufacturers, the...

  20. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.

    PubMed

    Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V

    2015-12-01

    Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities.

  1. Plants and Photosynthesis: Level III, Unit 3, Lesson 1; The Human Digestive System: Lesson 2; Functions of the Blood: Lesson 3; Human Circulation and Respiration: Lesson 4; Reproduction of a Single Cell: Lesson 5; Reproduction by Male and Female Cells: Lesson 6; The Human Reproductive System: Lesson 7; Genetics and Heredity: Lesson 8; The Nervous System: Lesson 9; The Glandular System: Lesson 10. Advanced General Education Program. A High School Self-Study Program.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…

  2. Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2015-01-01

    In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. PMID:26601279

  3. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    PubMed

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  4. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  5. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  6. Critical Zone Ecohydrology as a Link Between Below- and Above-Ground Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Kumar, P.

    2013-12-01

    The Critical Zone is the near-surface layer that is created by life processes from microbial scale to ecosystems, which in turn supports nearly all the terrestrial living systems. It extends from the top of the canopy to the bedrock. The biotic-abiotic links between the below- and above-ground processes determine the functional role of the critical zone. To predict and assess the impact of climate and other anthropogenic changes on the Critical Zone processes, a model that considers this zone as a continuum and captures the interactions between roots, soil moisture, nutrient uptake, and photosynthesis is developed. We attempt to address a variety of questions: How does elevated CO2 affect photosynthesis and plant water uptake? What role does hydraulic redistribution play in the below- and above-ground interactions? How do these scale when we consider interaction between multiple vegetation species, for example, between tall and understory vegetation? Results from a number of study sites will be presented and their implications will be discussed.

  7. Forest Soil Respiration: Identifying Sources and Controls

    NASA Astrophysics Data System (ADS)

    Högberg, P.

    2008-12-01

    Most of the respiration in forests comes from the soil. This flux is composed of two components, autotrophic and heterotrophic respiration. In a strict sense the former should be plant belowground respiration only, but the term is used here to denote respiration by roots, their mycorrhizal fungal symbionts and other closely associated organisms dependent on recent photosynthate. Heterotrophs are organisms using organic matter, chiefly above- and belowground litters, as substrate (i.e. substrates of in general much higher ecosystem age). Because of the complexity of the plant-soil system, the component fluxes are difficult to study. I will discuss results of different approaches to partition soil respiratory components and to study their controls. The focus will be on northern boreal forests. In these generally strongly nitrogen-limited forests, the autotrophic respiration equals or exceeds the heterotrophic component. The large autotrophic component reflects high plant allocation of C to roots and mycorrhizal fungi in response to the low N supply. A physiological manipulation, girdling, which stops the flow of photosynthates to roots, showed that autotrophic respiration could account for as much as 70% in N-limited forests, but only 40% in fertilized forests. Also using girdling, we could show that a shift to lower summertime temperature leads to a decrease in heterotrophic but not in autotrophic activity, suggesting substrate (photosynthate) limitation of the latter. Physiological manipulations like girdling and trenching cannot be used to reveal the finer details of soil C dynamics. Natural abundance stable isotope (13C) and 14C approaches also have their limitations if a high resolution in terms of time, space and organism is required. A very high resolution can, of course, be obtained in studies of laboratory micro- or mesocosms, but the possibility to extend the interpretation of their results to the field may be questioned. In the CANIFLEX (CArbon NItrogen

  8. Assessing plant residue decomposition in soil using DRIFT spectroscopy

    NASA Astrophysics Data System (ADS)

    Ouellette, Lance; Van Eerd, Laura; Voroney, Paul

    2016-04-01

    Assessment of the decomposition of plant residues typically involves the use of tracer techniques combined with measurements of soil respiration. This laboratory study evaluated use of Diffuse Reflectance Fourier Transform (DRIFT) spectroscopy for its potential to assess plant residue decomposition in soil. A sandy loam soil (Orthic Humic Gleysol) obtained from a field research plot was passed through a 4.75 mm sieve moist (~70% of field capacity) to remove larger crop residues. The experimental design consisted of a randomized complete block with four replicates of ten above-ground cover crop residue-corn stover combinations, where sampling time was blocked. Two incubations were set up for 1) Drift analysis: field moist soil (250 g ODW) was placed in 500 mL glass jars, and 2) CO2 evolution: 100 g (ODW) was placed in 2 L jars. Soils were amended with the plant residues (oven-dried at 60°C and ground to <2 mm) at rates equivalent to field mean above-ground biomass yields, then moistened to 60% water holding capacity and incubated in the dark at 22±3°C. Measurements for DRIFT and CO2-C evolved were taken after 0.5, 2, 4, 7, 10, 15, 22, 29, 36, 43, 50 64 and 72 d. DRIFT spectral data (100co-added scans per sample) were recorded with a Varian Cary 660 FT-IR Spectrometer equipped with an EasiDiff Diffuse Reflectance accessory operated at a resolution of 4 cm-1 over the mid-infrared spectrum from 4000 to 400 cm-1. DRIFT spectra of amended soils indicated peak areas of aliphatics at 2930 cm-1, of aromatics at 1620, and 1530 cm-1 and of polysaccharides at 1106 and 1036 cm-1. Evolved CO2 was measured by the alkali trap method (1 M NaOH); the amount of plant residue-C remaining in soil was calculated from the difference in the quantity of plant residue C added and the additional CO2-C evolved from the amended soil. First-order model parameters of the change in polysaccharide peak area over the incubation were related to those generated from the plant residue C decay

  9. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Olsoy, Peter J.; Glenn, Nancy F.; Clark, Patrick E.; Derryberry, DeWayne R.

    2014-02-01

    Sagebrush (Artemisia tridentata), a dominant shrub species in the sagebrush-steppe ecosystem of the western US, is declining from its historical distribution due to feedbacks between climate and land use change, fire, and invasive species. Quantifying aboveground biomass of sagebrush is important for assessing carbon storage and monitoring the presence and distribution of this rapidly changing dryland ecosystem. Models of shrub canopy volume, derived from terrestrial laser scanning (TLS) point clouds, were used to accurately estimate aboveground sagebrush biomass. Ninety-one sagebrush plants were scanned and sampled across three study sites in the Great Basin, USA. Half of the plants were scanned and destructively sampled in the spring (n = 46), while the other half were scanned again in the fall before destructive sampling (n = 45). The latter set of sagebrush plants was scanned during both spring and fall to further test the ability of the TLS to quantify seasonal changes in green biomass. Sagebrush biomass was estimated using both a voxel and a 3-D convex hull approach applied to TLS point cloud data. The 3-D convex hull model estimated total and green biomass more accurately (R2 = 0.92 and R2 = 0.83, respectively) than the voxel-based method (R2 = 0.86 and R2 = 0.73, respectively). Seasonal differences in TLS-predicted green biomass were detected at two of the sites (p < 0.001 and p = 0.029), elucidating the amount of ephemeral leaf loss in the face of summer drought. The methods presented herein are directly transferable to other dryland shrubs, and implementation of the convex hull model with similar sagebrush species is straightforward.

  10. Estimating above-ground biomasss using lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Lim, Kevin S.; Treitz, Paul; Morrison, Ian; Baldwin, Ken

    2003-03-01

    Previous forest research using time-of-flight lidar suggests that there exists some quantile of the distribution of laser canopy heights that could provide an estimate of various forest biophysical properties. The results presented here not only support this theory, but also extend it by suggesting that a quantile of the distribution of all laser heights could provide estimates of aboveground biomass for forests with similar stand structure. Tolerant northern hardwood forests, composed predominantly of mature sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton), were surveyed using an ALTM 1225 (Optech Inc.) in August 2000. Field data for 49 circular plots, each 400 m2 in area, were collected in July 2000. Using site-specific allometric equations, total aboveground biomass and biomass components (i.e., stem wood, stem bark, live branches, and foliage) were derived for each plot. Three laser height metrics were derived from the lidar data: (i) maximum laser height; (ii) mean laser height; and (iii) mean laser height calculated from lidar returns filtered based on a threshold applied to the intensity return data LhIR). LhIR was identified as the best predictor of total aboveground biomass (R2 = 0.85) and biomass components (R2 between 0.84 to 0.85) when all plot types were considered.

  11. Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere.

    PubMed

    Li, Xin; Zhang, Guanqun; Sun, Bo; Zhang, Shuai; Zhang, Yiqing; Liao, Yangwenke; Zhou, Yanhong; Xia, Xiaojian; Shi, Kai; Yu, Jingquan

    2013-12-05

    It is widely accepted that leaf dark respiration is a determining factor for the growth and maintenance of plant tissues and the carbon cycle. However, the underlying effect and mechanism of elevated CO2 concentrations ([CO2]) on dark respiration remain unclear. In this study, tomato plants grown at elevated [CO2] showed consistently higher leaf dark respiratory rate, as compared with ambient control plants. The increased respiratory capacity was driven by a greater abundance of proteins, carbohydrates, and transcripts involved in pathways of glycolysis carbohydrate metabolism, the tricarboxylic acid cycle, and mitochondrial electron transport energy metabolism. This study provides substantial evidence in support of the concept that leaf dark respiration is increased by elevated [CO2] in tomato plants and suggests that the increased availability of carbohydrates and the increased energy status are involved in the increased rate of dark respiration in response to elevated [CO2].

  12. Electrical stimulation to restore respiration.

    PubMed

    Creasey, G; Elefteriades, J; DiMarco, A; Talonen, P; Bijak, M; Girsch, W; Kantor, C

    1996-04-01

    Electrical stimulation has been used for over 25 years to restore breathing to patients with high quadriplegia causing respiratory paralysis and patients with central alveolar hypoventilation. Three groups have developed electrical pacing systems for long-term support of respiration in humans. These systems consist of electrodes implanted on the phrenic nerves, connected by leads to a stimulator implanted under the skin, and powered and controlled from a battery-powered transmitter outside the body. The systems differ principally in the electrode design and stimulation waveform. Approximately 1,000 people worldwide have received one of the three phrenic pacing devices, most with strongly positive results: reduced risk of tracheal problems and chronic infection, the ability to speak and smell more normally, reduced risk of accidental interruption of respiration, greater independence, and reduced costs and time for ventilatory care. For patients with partial lesions of the phrenic nerves, intercostal muscle stimulation may supplement respiration.

  13. Effects of respirators on worker efficiency. Final report

    SciTech Connect

    Cardarelli, R.; Woldstad, J.; Slobodien, M.J.; Madison, J.M.

    1995-06-01

    The purpose of this study was to quantify the effect of full face piece air purifying respirator use on worker efficiency. With and without a respirator, twenty nuclear power plant workers performed a typical mechanical work task and 2 dexterity tests in an environmental chamber maintained at a temperature of 35{degrees}C (95{degrees}F) and a relative humidity of 65%. The subjects were trained for one day and tested on the following day. On test day, each subject performed each standardized task twice in full cotton protective clothing, once with a respirator and once without. The order in which subjects performed the task with and without a respirator was staggered. The standardized tasks consisted of a stud torquing procedure and two separate trials of a pegboard dexterity test (before and after the torquing procedure). All subject testing wa videotaped and the videotapes were time coded for evaluation by an independent reviewer who determined the times for task completion. The 95% confidence intervals for the mean percentage increase in time to complete the various tasks for trials using th respirator were: 1st Dexterity Test (Lower Limit -1.16%, Mean 3.05%, Upper Limit 7.27%); Stud Torquing (Lower Limit -0.99%, Mean 2.11%, Upper Limit 5.21%); 2nd Dexterity Test (Lower Limit -2.06%, Mean 1.62%, Upper Limit 5.30%). These small increases in completion times attributable to respirator use were not statistically significant. It was concluded that respirator use had no significant effect on the efficiency with which workers conducted the tasks in this study.

  14. Impact of Land Use on Soil Respiration in Southwestern Victoria

    NASA Astrophysics Data System (ADS)

    Teodosio, B.; Daly, E.; Pauwels, V. R. N.

    2015-12-01

    Land use management is one of the key contributors to the global environmental change. Considerable changes in landscapes have been experienced in Southwestern Victoria, Australia in the past two decades. Eucalyptus globulus (blue gum) plantations have expanded, resulting in possible changes in the water and carbon balances of catchments. The shift from pastures to plantations could have a significant impact on the local carbon balance with possible effects on atmospheric CO2 concentration and vegetation productivity. We present preliminary measurements from a field study comparing soil respiration in a plantation and a pasture. Adjacent catchments in Southwestern Victoria, near Gatum, were used as study areas; the prominent difference between the two catchments is the land use, with one catchment being used as a pasture for livestock grazing and the other catchment being mainly planted with blue gums. The variability of soil respiration in the pasture is governed by differences in soil moisture and substrate content due to local features of the topography and livestock grazing. Soil respiration measurements in the plantation were taken on mounds, access tracks, and open spaces. Most observations on mounds had higher soil respiration possibly due to root and mycorrhizal respiration. The measurements in open spaces had comparable values with mound measurements; this might be due to a less limited radiation. The soil respiration between trees had lower values, possibly because of radiation limitation due to the canopy cover. These preliminary measurements allow us to compare soil respiration variability across catchments with different land uses. This is important to estimate CO2 fluxes from soil to the atmosphere in large areas and will be valuable in estimating gross primary production from measurements of net ecosystem exchange.

  15. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    DOE R&D Accomplishments Database

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  16. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    PubMed

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  17. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  18. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    PubMed

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.

  19. Clinorotation impacts root apex respiration and the ultrostructure of mitochondria.

    PubMed

    Brykov, Vasyl; Kordyum, Elizabeth

    2015-04-01

    Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation. However, there are very limited data on the influence of altered gravity on the functional status of plant mitochondria. In the given paper, we presented the results of our investigations of root respiration, the mitochondrion ultrastructure, and AOX expression of pea 1-, 3- and 5-day old seedlings grown under slow horizontal clinorotation by using an inhibitor analysis, electron microscopy, and quantitative real-time RT-PCR. It was in the first time shown that enhancement of the respiration rate in root apices of pea etiolated seedlings at the 5th day of clinorotation does not connected with increasing of both alternative oxidize capacity and AOX expression. We assumed this phenomenon is provided by more intensive oxidation of respiratory substrates. At the structural level, mitochondria in cells of the distal elongation zone were the most sensitive to clinorotation that confirms the special physiological status of this zone. The performed investigation revealed an enough resistance of plant mitochondria to the influence of altered gravity that, on our opinion, is one of components providing plant adaptation to microgravity in space flight.

  20. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions

    PubMed Central

    Schädler, Martin

    2010-01-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  1. Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions.

    PubMed

    Eisenhauer, Nico; Schädler, Martin

    2011-02-01

    The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1-3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on

  2. Winter Soil Respiration from Different Vegetation Patches in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Han, Guangxuan; Yu, Junbao; Li, Huabing; Yang, Liqiong; Wang, Guangmei; Mao, Peili; Gao, Yongjun

    2012-07-01

    Vegetation type and density exhibited a considerable patchy distribution at very local scales in the Yellow River Delta, due to the spatial variation of soil salinity and water scarcity. We proposed that soil respiration is affected by the spatial variations in vegetation type and soil chemical properties and tested this hypothesis in three different vegetation patches ( Phragmites australis, Suaeda heteroptera and bare soil) in winter (from November 2010 to April 2011). At diurnal scale, soil respiration all displayed single-peak curves and asymmetric patterns in the three vegetation patches; At seasonal scale, soil respiration all declined steadily until February, and then increased to a peak in next April. But, the magnitude of soil respiration showed significant differences among the three sites. Mean soil respiration rates in winter were 0.60, 0.45 and 0.17 μmol CO2 m-2 s-1 for the Phragmites australis, Suaeda heteroptera and bare soil, respectively. The combined effect of soil temperature and soil moisture accounted for 58-68 % of the seasonal variation of winter soil respiration. The mean soil respiration revealed positive and linear correlations with total N, total N and SOC storages at 0-20 cm depth, and plant biomass among the three sites. We conclude that the patchy distribution of plant biomass and soil chemical properties (total C, total N and SOC) may affect decomposition rate of soil organic matter in winter, thereby leading to spatial variations in soil respiration.

  3. Corrosion fundamentals and corrosion effects on aboveground storage tanks

    SciTech Connect

    Fitzgerald, J.H. III

    1995-12-31

    Corrosion is an electrochemical process that involves ion migration and electron flow. The electrochemical process is explained and the four elements of the basic cell are described--anode, cathode, electrolyte and return circuit. The corrosion mechanisms affecting underground structures can be divided into two main categories--naturally occurring corrosion and stray current corrosion. Several examples of each are shown. These mechanisms of corrosion are applicable to aboveground storage tanks. Various types of exterior and interior corrosion of ASTs are explained in the light of electrochemical theory.

  4. Effects of assimilate supply on root and microbial components of soil respiration in a mountain grassland.

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Siegwolf, R.; Ekblad, A.; Pfahringer, N.; Bahn, M.

    2012-04-01

    Soil respiration is the main source of carbon emitted from terrestrial ecosystems. Soil CO2 originates from multiple processes, comprising respiration by plant roots, mycorrhizae and microbes in the rhizosphere, as well as respiration due to soil organic matter (SOM) decomposition. Thus, components of soil respiration have different controls and show varying responses to changing environmental conditions and to the supply of fresh assimilates from photosynthesis. For grasslands there is still little information available as to what extent root and microbial respiration respond to reduced or enhanced assimilate supply. The aim of this study was to assess effects of assimilate supply on root and microbial components of soil respiration in a temperate mountain grassland. Root and microbial components were separated and quantified by applying the Substrate Induced Respiration method (SIR) in situ using a δ13C labelled sucrose solution, and analysing δ13C of the subsequently respired CO2. Assimilate supply was modified by clipping and shading treatments, which strongly reduced photosynthetic C supply, and by applying a sucrose solution 8 days after clipping and shading. We tested the hypotheses that (1) due to a reduction of assimilate supply, soil respiration would be lower in the clipped and shaded than in the control treatment, that (2) the microbial contribution to soil respiration would be lower in the assimilate-limited than in the control treatments, and that (3) priming effects following the addition of sucrose would be stronger in shaded and mowed treatments than in control plots. Our results showed that clipping and shading reduced soil respiration significantly. Whilst the microbial contribution to soil respiration was 61% in control plots, it amounted to only 50-48% in clipped and shaded plots, respectively. Sucrose application did not affect root respiration in any of the plots, but generally stimulated microbial respiration. The measured priming effect

  5. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-30

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Aboveground Storage Tanks” and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: · CAS 03-01-03, Aboveground Storage Tank · CAS 03-01-04, Tank · CAS 15-01-05, Aboveground Storage Tank · CAS 29-01-01, Hydrocarbon Stain

  6. Soil Drying Effects on the Carbon Isotope Composition of Soil Respiration

    NASA Astrophysics Data System (ADS)

    Phillips, C. L.; Nickerson, N.; Risk, D.; Kayler, Z. E.; Rugh, W.; Mix, A. C.; Bond, B. J.

    2008-12-01

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opportunity to distinguish fast- responding plant C from slower-responding soil C pools, which under steady-state conditions may be too similar isotopically to partition. Monitoring the isotopic composition of soil respiration over a period of changing moisture conditions is potentially a useful approach for characterizing plant contributions to soil respiration. But this partitioning hinges on the assumption that any change in the isotopic signature of soil respiration is solely due to recent photosynthetic discrimination, and that post-photosynthetic processes, such as microbial respiration, do not discriminate as moisture decreases. The purpose of the present study is to test the assumption that δ13CO2 from microbial respiration remains static as soil dries. We conducted a series of greenhouse experiments employing different techniques to isolate microbial respiration from root respiration. The first involves removing roots from soil, and showed that when roots are present, respiration from dry soil is enriched in 13C relative to moist soil, but when roots are absent, respiration is isotopically similar from moist and dry soils. This indicates that rhizospheric respiration changes isotopically with moisture whereas soil microbial respiration does not. In contrast, a second experiment in which soil columns without plants were monitored as they dried, showed respiration from very dry soil to be enriched by 8‰ relative to moist soil. However, simulations with an isotopologue-based soil gas diffusion model demonstrate that at least a portion of the apparent enrichment is due to non-steady state gas transport processes. Careful sampling methodologies which prevent or account for non

  7. Mitochondrial ultrastructure and tissue respiration of pea leaves under clinorotation

    NASA Astrophysics Data System (ADS)

    Brykov, Vasyl

    2016-07-01

    Respiration is essential for growth, maintenance, and carbon balance of all plant cells. Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation (production). Mitochondria are not only the energetic organelles in a cell but they play an essential regulatory role in many basic cellular processes. As plants adapt to real and simulated microgravity, it is very important to understand the state of mitochondria in these conditions. Disturbance of respiratory metabolism can significantly affect the productivity of plants in long-term space flights. We have established earlier that the rate of respiration in root apices of pea etiolated seedlings rose after 7 days of clinorotation. These data indicate the oxygen increased requirement by root apices under clinorotation, that confirms the necessity of sufficient substrate aeration in space greenhouses to provide normal respiratory metabolism and supply of energy for root growth. In etiolated seedlings, substrate supply of mitochondria occurs at the expense of the mobilization of cotyledon nutrients. A goal of our work was to study the ultrastructure and respiration of mitochondria in pea leaves after 12 days of clinorotation during (2 rpm/min). Plants grew at a light level of 180 μµmol m ^{-2} s ^{-1} PAR and a photoperiod of 16 h light/4 h dark. It was showed an essential increase in the mitochondrion area on 53% in palisade parenchyma cells at the sections. Such phenomenon can not be described as swelling of mitochondria, since enlarged mitochondria contained a more quantity of crista 1.76 times. In addition, the cristae total area per organelle also increased in comparison with that in control. An increase in a size of mitochondria in the experimental conditions is supposed to occur by a partial alteration of the chondriom. Thus, a size of 49% mitochondria in control was 0.1 - 0.3 μµm ^{2}, whereas only 26

  8. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  9. [Research advances in forest soil respiration].

    PubMed

    Luan, Junwei; Xiang, Chenghua; Luo, Zongshi; Gong, Yuanbo

    2006-12-01

    Among the methods of measuring forest soil respiration, infrared CO2 analysis is the optimal one so far. Comparing with empirical model, the process-based model in simulating the production and transportation of soil CO2 has the advantage of considering the biological and physical processes of soil respiration. Generally, soil respiration is positively correlated with soil temperature and moisture, but there are still many uncertainties about the relationships between soil respiration and forest management activities such as firing, cutting, and fertilization. The relationships of soil respiration with vegetation type and soil microbial biomass, as well as the spatial heterogeneity of soil respiration, are the hotspots in recent researches. Some issues and future development in forest soil respiration research were discussed in this paper.

  10. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  11. Seasonal availability of edible underground and aboveground carbohydrate resources to human foragers on the Cape south coast, South Africa

    PubMed Central

    Cowling, Richard M.; Potts, Alastair J.; Marean, Curtis W.

    2016-01-01

    The coastal environments of South Africa’s Cape Floristic Region (CFR) provide some of the earliest and most abundant evidence for the emergence of cognitively modern humans. In particular, the south coast of the CFR provided a uniquely diverse resource base for hunter-gatherers, which included marine shellfish, game, and carbohydrate-bearing plants, especially those with Underground Storage Organs (USOs). It has been hypothesized that these resources underpinned the continuity of human occupation in the region since the Middle Pleistocene. Very little research has been conducted on the foraging potential of carbohydrate resources in the CFR. This study focuses on the seasonal availability of plants with edible carbohydrates at six-weekly intervals over a two-year period in four vegetation types on South Africa’s Cape south coast. Different plant species were considered available to foragers if the edible carbohydrate was directly (i.e. above-ground edible portions) or indirectly (above-ground indications to below-ground edible portions) visible to an expert botanist familiar with this landscape. A total of 52 edible plant species were recorded across all vegetation types. Of these, 33 species were geophytes with edible USOs and 21 species had aboveground edible carbohydrates. Limestone Fynbos had the richest flora, followed by Strandveld, Renosterveld and lastly, Sand Fynbos. The availability of plant species differed across vegetation types and between survey years. The number of available USO species was highest for a six-month period from winter to early summer (Jul–Dec) across all vegetation types. Months of lowest species’ availability were in mid-summer to early autumn (Jan–Apr); the early winter (May–Jun) values were variable, being highest in Limestone Fynbos. However, even during the late summer carbohydrate “crunch,” 25 carbohydrate bearing species were visible across the four vegetation types. To establish a robust resource landscape

  12. Seasonal availability of edible underground and aboveground carbohydrate resources to human foragers on the Cape south coast, South Africa.

    PubMed

    De Vynck, Jan C; Cowling, Richard M; Potts, Alastair J; Marean, Curtis W

    2016-01-01

    The coastal environments of South Africa's Cape Floristic Region (CFR) provide some of the earliest and most abundant evidence for the emergence of cognitively modern humans. In particular, the south coast of the CFR provided a uniquely diverse resource base for hunter-gatherers, which included marine shellfish, game, and carbohydrate-bearing plants, especially those with Underground Storage Organs (USOs). It has been hypothesized that these resources underpinned the continuity of human occupation in the region since the Middle Pleistocene. Very little research has been conducted on the foraging potential of carbohydrate resources in the CFR. This study focuses on the seasonal availability of plants with edible carbohydrates at six-weekly intervals over a two-year period in four vegetation types on South Africa's Cape south coast. Different plant species were considered available to foragers if the edible carbohydrate was directly (i.e. above-ground edible portions) or indirectly (above-ground indications to below-ground edible portions) visible to an expert botanist familiar with this landscape. A total of 52 edible plant species were recorded across all vegetation types. Of these, 33 species were geophytes with edible USOs and 21 species had aboveground edible carbohydrates. Limestone Fynbos had the richest flora, followed by Strandveld, Renosterveld and lastly, Sand Fynbos. The availability of plant species differed across vegetation types and between survey years. The number of available USO species was highest for a six-month period from winter to early summer (Jul-Dec) across all vegetation types. Months of lowest species' availability were in mid-summer to early autumn (Jan-Apr); the early winter (May-Jun) values were variable, being highest in Limestone Fynbos. However, even during the late summer carbohydrate "crunch," 25 carbohydrate bearing species were visible across the four vegetation types. To establish a robust resource landscape will require

  13. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2...

  14. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  15. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  16. Stoichiometry in aboveground and fine roots of Seriphidium korovinii in desert grassland in response to artificial nitrogen addition.

    PubMed

    Li, Lei; Gao, Xiaopeng; Gui, Dongwei; Liu, Bo; Zhang, Bo; Li, Xiangyi

    2017-03-31

    Nitrogen (N) input by atmospheric deposition and human activity enhances the availability of N in various ecosystems, which may further affect N and phosphorus (P) cycling and use by plants. However, the internal use of N, P, and N:P stoichiometry by plants in response to N supply, particularly for grass species in a desert steppe ecosystem, remains unclear. In this work, a field experiment was conducted at an infertile area in a desert steppe to investigate the effects of N fertilizer addition rates on the stoichiometry of N and P in a dominant grass species, Seriphidium korovinii. Results showed that for both aboveground and fine roots of S. korovinii, N inputs exponentially increased the N concentration and N:P ratios while P concentrations decreased. Meanwhile, the relationships between N and P concentrations for both aboveground and fine roots were significantly negative. Furthermore, while the N concentrations in the plants were relatively low, P concentrations were higher than the global means, resulting in a relatively low N:P ratio. These results suggest that the stoichiometric characteristics of N were different from that of P for this desert plant species. Results also show that the intraspecific variations in the main element traits (N, P, and N:P ratios) were consistent at the whole-plant level. Our results also suggest that N should be part of any short-term fertilization plan that is part of a management strategy designed to restore degraded desert grassland. These findings highlight that nutrient addition by atmospheric N deposition and human activity can have significant effects on the internal use of N and P by plants. Therefore, establishing a nutrient-conservation strategy for desert grasslands is important.

  17. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial

  18. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  19. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation.

    PubMed

    Li, Hui; Xu, Zhuwen; Yang, Shan; Li, Xiaobin; Top, Eva M; Wang, Ruzhen; Zhang, Yuge; Cai, Jiangping; Yao, Fei; Han, Xingguo; Jiang, Yong

    2016-05-01

    It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.

  20. Effects of manipulated above- and belowground organic matter input on soil respiration in a Chinese pine plantation.

    PubMed

    Fan, Juan; Wang, Jinsong; Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus V

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.

  1. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    PubMed Central

    Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus v.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest. PMID:25970791

  2. Testing cathodic protection systems on aboveground storage tanks

    SciTech Connect

    Garrity, K.C.

    1995-12-31

    The evaluation of cathodic protection systems on aboveground storage tanks presents a unique challenge. Paramount with selection of system type is the method of verification that corrosion control has indeed been achieved. Past experience indicates that standard monitoring procedures intended to determine satisfaction of the industry recognized criteria may not be adequate in analyzing the degree of protection being afforded a storage tank resting on the ground. The standard method of determining the effectiveness of cathodic protection on any structure is the structure-to-electrolyte potential measurement. These measurements are performed utilizing a high impedance voltmeter and a stable, reproducible reference electrode contacting the electrolyte. The paper describes several case histories to illustrate methods.

  3. Evaluating lidar point densities for effective estimation of aboveground biomass

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  4. Leaf respiration (GlobResp) - global trait database supports Earth System Models

    DOE PAGES

    Wullschleger, Stan D.; Warren, Jeffrey; Thornton, Peter E.

    2015-03-20

    Here we detail how Atkin and his colleagues compiled a global database (GlobResp) that details rates of leaf dark respiration and associated traits from sites that span Arctic tundra to tropical forests. This compilation builds upon earlier research (Reich et al., 1998; Wright et al., 2006) and was supplemented by recent field campaigns and unpublished data.In keeping with other trait databases, GlobResp provides insights on how physiological traits, especially rates of dark respiration, vary as a function of environment and how that variation can be used to inform terrestrial biosphere models and land surface components of Earth System Models. Althoughmore » an important component of plant and ecosystem carbon (C) budgets (Wythers et al., 2013), respiration has only limited representation in models. Seen through the eyes of a plant scientist, Atkin et al. (2015) give readers a unique perspective on the climatic controls on respiration, thermal acclimation and evolutionary adaptation of dark respiration, and insights into the covariation of respiration with other leaf traits. We find there is ample evidence that once large databases are compiled, like GlobResp, they can reveal new knowledge of plant function and provide a valuable resource for hypothesis testing and model development.« less

  5. Leaf respiration (GlobResp) - global trait database supports Earth System Models

    SciTech Connect

    Wullschleger, Stan D.; Warren, Jeffrey; Thornton, Peter E.

    2015-03-20

    Here we detail how Atkin and his colleagues compiled a global database (GlobResp) that details rates of leaf dark respiration and associated traits from sites that span Arctic tundra to tropical forests. This compilation builds upon earlier research (Reich et al., 1998; Wright et al., 2006) and was supplemented by recent field campaigns and unpublished data.In keeping with other trait databases, GlobResp provides insights on how physiological traits, especially rates of dark respiration, vary as a function of environment and how that variation can be used to inform terrestrial biosphere models and land surface components of Earth System Models. Although an important component of plant and ecosystem carbon (C) budgets (Wythers et al., 2013), respiration has only limited representation in models. Seen through the eyes of a plant scientist, Atkin et al. (2015) give readers a unique perspective on the climatic controls on respiration, thermal acclimation and evolutionary adaptation of dark respiration, and insights into the covariation of respiration with other leaf traits. We find there is ample evidence that once large databases are compiled, like GlobResp, they can reveal new knowledge of plant function and provide a valuable resource for hypothesis testing and model development.

  6. Effects of interannual climate variation on aboveground phytomass in alpine vegetation

    SciTech Connect

    Walker, M.D.; Webber, P.J.; Arnold, E.H. ); Ebert-May, D. )

    1994-03-01

    Relationships between peak annual vascular aboveground phytomass and annual climate variation in alpine plant communities located on Niwot Ridge, Colorado, were analyzed using path analysis. The five community types, fellfield, dry meadow, moist meadow, wet meadow, and snowbed, represent a snow depth-soil moisture gradient and broadly represent the most common vegetation types on east-facing slopes of the Front Range alpine zone. using nine successive years of data, this is the first longer term analysis of alpine phytomass and climate and one of the longest nonagricultural production records available. Live phytomass ranged from 97 g/m[sup 2] (snowbed) to 237 g/m[sup 2] (fellfield). Among-community differences in phytomass were greater than differences among years, but there was a significant phytomass variation among years. Path analysis indicated that climate accounted for 15-40% of the variation in phytomass. The dry communities, fellfield (exposed rocky summit areas dominated by cushion and mat plants) and dry meadow, were most sensitive to previous year precipitation, the moist and wet meadow communities were most sensitive to current growing season soil moisture, and the snowbed community was most sensitive to date of snow release. Because of the relatively high amount of variation attributable to variables related to precipitation, changes in precipitation regimes that may occur in alpine ecosystems will likely result in changes in phytomass that are detectable with clip-harvest methods. 62 refs., 2 figs., 6 tabs.

  7. The temperature sensitivity of guard cell respiration CO- segregates with stomatal conductances in a F2 population of pima cotton

    SciTech Connect

    Lu, Zhenmin; Quinones, M.A.; Zeiger, E. )

    1993-05-01

    Stomatal conductances in lines of Pima cotton selected for higher yields and heat resistance increase as a function of selection. Lines with contrasting rates of stomatal conductances also have contrasting rates of guard cell respiration and proton pumping. In this work, we studied stomatal conductances and guard cell respiration rates in a F2 population of a cross between S-6, a heat-resistant, high yielding line, and B368, a heat sensitive primitive cotton. F2 plants were grown in a greenhouse (temperature=30[degrees]C at noon) and a growth chamber (12 h light, 40[degrees]C/12 h dark 28[degrees]C). conductances were 3-fold higher at 40[degrees]C than at 25[degrees]C in greenhouse-grown plants and 4-fold higher in growth chamber-grown plants. The range of stomatal conductances in segregating F2 plants increased sharply with temperature, indicating that the genetic differences between the parental populations are better expressed at high temperature. Respiration rates of guard cells measured in mechanically isolated, enzymatically cleaned epidermis, co-segregated with stomatal conductances. Plants with high stomatal conductances had high rates of guard cell respiration. The slope of guard cell respiration as a function of temperature increased linearly with stomatal conductances. The co-segregation of rates of guard cell respiration and stomatal conductances indicates that both properties are under genetic control, and that guard cell respiration is a component of the sensory transduction of the stomatal response to temperature.

  8. Validation of Respirator Filter Efficacy

    DTIC Science & Technology

    2007-11-02

    A 1980’ s unpublished ECBC report presented calculations of the required degree of filtration needed to protect a respirator wearer from a given...tested against three bioaerosols ranging in size from 0.69 – 0.88 µm aerodynamic diameter (Mycobacterium abscessus , staphylococcus epidermidis , and 10...and penetration beginning with 99.97% @ 0.3 µm for 10 cm/ s face velocity, a fiber diameter of 0.9 µm, a 0.07 solidity, a 0.3 mm media thickness, and

  9. A Pan-arctic Survey about the Meaning of Winter Respiration in Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Selbmann, A. K.; Natali, S.

    2015-12-01

    The arctic is warming at twice the rate of the rest of the planet, with the greatest warming occurring during the winter months. Despite the cold temperatures during the winter, microbial activity continues and leads to a release of soil carbon during a criticial period when plant uptake has ceased. Due to the warming climate, huge pools of carbon stored in permafrost soils are expected to be released to the atmosphere. To identify the annual carbon balance of arctic ecosystems and potential impacts caused by a rise in temperatures, understanding the magnitude of winter respiration is essential. In order to refine current and future estimates of carbon loss from permafrost ecosystems, we conducted a pan-arctic synthesis of winter respiration from northern high latitude regions. We examined differences in cumulative winter respiration among permafrost zones, biomes, ecosystem types, and effects of measurement method on winter respiration estimates. We also examined effect of air temperature and precipitation (Worldclim database) on rates of winter respiration. The database contained 169 measurement points from 46 study sites located throughout the permafrost zones. We found that 21.6 % of annual respiration is happening during non-growing season, which can shift ecosystems from annual sinks during the growing season to net sources of carbon on an annual basis. Across studies, the average carbon loss during the winter was 66 g CO2-C. There was a strong relationship between mean annual air temperature and winter respiration, and lower respiration in continuous compared to discontinuous permafrost zones and northern areas without permafrost. The present results clarify the contribution of winter respiration to annual carbon balance and show the sensitivity of carbon release to rising temperatures in northern high latitudes. These results suggest that permafrost degradation and increased temperature will lead to a higher release of carbon from the Arctic in wintertime

  10. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.

  11. Plant adaptation or acclimation to rising CO2 ? Insight from first multigenerational RNA-Seq transcriptome.

    PubMed

    Watson-Lazowski, Alexander; Lin, Yunan; Miglietta, Franco; Edwards, Richard J; Chapman, Mark A; Taylor, Gail

    2016-11-01

    Atmospheric carbon dioxide (CO2 ) directly determines the rate of plant photosynthesis and indirectly effects plant productivity and fitness and may therefore act as a selective pressure driving evolution, but evidence to support this contention is sparse. Using Plantago lanceolata L. seed collected from a naturally high CO2 spring and adjacent ambient CO2 control site, we investigated multigenerational response to future, elevated atmospheric CO2 . Plants were grown in either ambient or elevated CO2 (700 μmol mol(-1) ), enabling for the first time, characterization of the functional and population genomics of plant acclimation and adaptation to elevated CO2 . This revealed that spring and control plants differed significantly in phenotypic plasticity for traits underpinning fitness including above-ground biomass, leaf size, epidermal cell size and number and stomatal density and index. Gene expression responses to elevated CO2 (acclimation) were modest [33-131 genes differentially expressed (DE)], whilst those between control and spring plants (adaptation) were considerably larger (689-853 DE genes). In contrast, population genomic analysis showed that genetic differentiation between spring and control plants was close to zero, with no fixed differences, suggesting that plants are adapted to their native CO2 environment at the level of gene expression. An unusual phenotype of increased stomatal index in spring but not control plants in elevated CO2 correlated with altered expression of stomatal patterning genes between spring and control plants for three loci (YODA, CDKB1;1 and SCRM2) and between ambient and elevated CO2 for four loci (ER, YODA, MYB88 and BCA1). We propose that the two positive regulators of stomatal number (SCRM2) and CDKB1;1 when upregulated act as key controllers of stomatal adaptation to elevated CO2 . Combined with significant transcriptome reprogramming of photosynthetic and dark respiration and enhanced growth in spring plants, we have

  12. Respirators: Supervisors Self-Study #43442

    SciTech Connect

    Chochoms, Michael

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  13. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny.

    PubMed

    Ghashghaie, Jaleh; Badeck, Franz W; Girardin, Cyril; Huignard, Christophe; Aydinlis, Zackarie; Fonteny, Charlotte; Priault, Pierrick; Fresneau, Chantal; Lamothe-Sibold, Marlène; Streb, Peter; Terwilliger, Valery J

    2016-04-01

    The issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes. As such data on C4 plants are scarce and contradictory, we investigated apparent respiratory fractionations of carbon and their possible causes in different organs of maize plants during early ontogeny. As in the C3 plants, leaf-respired CO2 was (13)C enriched whereas root-respired CO2 was (13)C depleted relative to their putative sources. In contrast to the findings for C3 plants, however, not only root- but also leaf-respired CO2 became more (13)C depleted during ontogeny. Leaf-respired CO2 was highly (13)C enriched just after light-dark transition but the enrichment rapidly decreased over time in darkness. We conclude that (i) although carbon isotopic fractionations in C4 maize and leguminous C3 crop roots are similar, increasing phosphoenolpyruvate-carboxylase activity during maize ontogeny could have produced the contrast between the progressive (13)C depletion of maize leaf-respired CO2 and (13)C enrichment of C3 leaf-respired CO2 over time, and (ii) in both maize and C3 leaves, highly (13)C enriched leaf-respired CO2 at light-to-dark transition and its rapid decrease during darkness, together with the observed decrease in leaf malate content, may be the result of a transient effect of light-enhanced dark respiration.

  14. An evaluation of respirator maintenance requirements.

    PubMed

    Brosseau, L M; Traubel, K

    1997-03-01

    A telephone survey was developed as part of a pilot study to evaluate the inspection, cleaning, maintenance, and storage aspects of respirator protection programs (RPP). Regulations and consensus standards such as those published by the Occupational Safety and Health Administration in the Code of Federal Regulations (CFR) or the American National Standards Institute (ANSI) require or recommend that RPP contain elements that ensure that the respirators provide proper protection. A great deal of research has been done to evaluate the effectiveness of new respirators; however, little research has been conducted to evaluate how respirators behave over time in real industrial settings Respirator inspection, cleaning, maintenance, and storage are significant factors in determining how well a respirator continues to perform. The telephone survey was developed by reviewing the requirements and recommendations of CFR 1910.134 and ANSI Z88.2-1980. Approximately 30 companies were selected based on their use of negative air-purifying respirators. Most of the companies represented the hardgoods manufacturing or service industries. Although the majority of companies were meeting requirements, responses indicated that the following improvements in RPP were necessary: (1) inspection of all respirator parts should be carried out before and after each use, (2) replacement parts should be made readily available on site, (3) regular cleaning should be performed, and (4) more hands-on practice with respirators and their maintenance should be incorporated into training sessions.

  15. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed.

  16. Global Patterns in Leaf Respiration and its Temperature Response

    NASA Astrophysics Data System (ADS)

    Heskel, M.; Atkin, O. K.; O'Sullivan, O. S.; Reich, P. B.; Tjoelker, M. G.; Weerasinghe, L. K.; Penillard, A.; Egerton, J. J. G.; Creek, D.; Bloomfield, K. J.; Xiang, J.; Sinca, F.; Stangl, Z.; Martinez-de la Torre, A.; Griffin, K. L.; Huntingford, C.; Hurry, V.; Meir, P.; Turnbull, M.

    2015-12-01

    Leaf respiration (R) represents a massive flux of carbon to the atmosphere. Currently, neither physiological models nor terrestrial biosphere models are able to disentangle sources of variation in leaf R among different plant species and contrasting environments. Similarly, such models do not adequately describe the short-term temperature (T) response of R, which can lead to inaccurate representation of leaf R in simulation models of regional and global terrestrial carbon cyling. Even minor differences in the underlying basal rate of leaf R and/or shape of the T-response curve can significantly impact estimates of carbon released and stored in ecosystems. Given this, we recently assembled and analyzed two new global databases (arctic-to-tropics) of leaf R and its short-term T-dependence. The results highlight variation in basal leaf R among species and across global gradients in T and aridity, with leaf R at a standard T (e.g. 25°C) being greatest in plants growing in the cold, dry Arctic and lowest in the warm, moist tropics. Arctic plants also exhibit higher rates of leaf R at a given photosynthetic capacity or leaf N concentration than their tropical counterparts. The results also point to convergence in the short-term temperature response of respiration across biomes and plant functional types. The applicability and significance of the short-term T-response of R for simulation models of plant and ecosystem carbon fluxes will be discussed.

  17. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    PubMed

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.

  18. Large-scale forest girdling shows that current photosynthesis drives soil respiration.

    PubMed

    Högberg, P; Nordgren, A; Buchmann, N; Taylor, A F; Ekblad, A; Högberg, M N; Nyberg, G; Ottosson-Löfvenius, M; Read, D J

    2001-06-14

    The respiratory activities of plant roots, of their mycorrhizal fungi and of the free-living microbial heterotrophs (decomposers) in soils are significant components of the global carbon balance, but their relative contributions remain uncertain. To separate mycorrhizal root respiration from heterotrophic respiration in aboreal pine forest, we conducted a large-scale tree-girdling experiment, comprising 9 plots each containing about 120 trees. Tree-girdling involves stripping the stem bark to the depth of the current xylem at breast height terminating the supply of current photosynthates to roots and their mycorrhizal fungi without physically disturbing the delicate root-microbe-soil system. Here we report that girdling reduced soil respiration within 1-2 months by about 54% relative to respiration on ungirdled control plots, and that decreases of up to 37% were detected within 5 days. These values clearly show that the flux of current assimilates to roots is a key driver of soil respiration; they are conservative estimates of root respiration, however, because girdling increased the use of starch reserves in the roots. Our results indicate that models of soil respiration should incorporate measures of photosynthesis and of seasonal patterns of photosynthate allocation to roots.

  19. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe.

    PubMed

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-28

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m(-2) across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.

  20. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    USGS Publications Warehouse

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  1. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    PubMed Central

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  2. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    PubMed

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  3. Pinus sylvestris switches respiration substrates under shading but not during drought.

    PubMed

    Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Gleixner, Gerd; Popp, Jürgen; Trumbore, Susan; Hartmann, Henrik

    2015-08-01

    Reduced carbon (C) assimilation during prolonged drought forces trees to rely on stored C to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major C storage pool and apparently the main respiratory substrate in plants, strongly declines with decreasing plant hydration. Yet no empirical evidence has been produced to what degree other C storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to C limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ(13) C of respired CO2 and concentrations of the major storage compounds, that is, carbohydrates, lipids and amino acids. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees, the fraction of carbohydrates used in respiration did not decline but respiration rates were strongly reduced. The lower consumption and potentially allocation from other organs may have caused initial carbohydrate content to remain constant during the experiment. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate shift cannot provide an efficient means to counterbalance C limitation under natural drought.

  4. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize

    PubMed Central

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants. PMID:26630288

  5. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize.

    PubMed

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.

  6. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  7. Respirators: APR Issuer Self Study 33461

    SciTech Connect

    Chochoms, Michael

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  8. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  9. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  10. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  11. Assessing soil respiration by means of near-infrared diode laser spectroscopy.

    PubMed

    Gianfrani, L; Rocco, A; Battipaglia, G; Castrillo, A; Gagliardi, G; Peressotti, A; Cotrufo, M F

    2004-09-01

    High-resolution diode laser spectroscopy in the near-infrared region is applied to the accurate measurement of soil respiration. In particular, the use of a diode-laser-based spectrometer has allowed the implementation, for the first time, of a static accumulation method capable of measuring soil respiration from continuous measurements of CO(2) concentrations, with minor perturbation on soil respiration as well as on CO(2) transport and emission. The system has been tested in a laboratory experiment by detection of CO(2) production from sandy matrices, inoculated with active soil microbes and supplied with different amounts of decomposable plant material. Respiration rates of all samples were then retrieved using a diffusion model. The results of the laboratory tests are in agreement with those expected on the basis of sample composition. Examples of operation with real soil samples are also reported. We discuss the possible field application of the system, in conjunction with closed static soil chambers.

  12. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  13. Improving respiration measurements with gas exchange analyzers.

    PubMed

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO2 differential (ΔCO2) increased two-fold with no change in apparent Rd, when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO2. Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers.

  14. Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial C4 grass.

    PubMed

    Hamerlynck, Erik P; Scott, Russell L; Susan Moran, M; Schwander, Andrea M; Connor, Erin; Huxman, Travis E

    2011-01-01

    It is not clear if tree canopies in savanna ecosystems exert positive or negative effects on soil moisture, and how these might affect understory plant carbon balance. To address this, we quantified rooting-zone volumetric soil moisture (θ(25 cm)), plant size, leaf-level and whole-plant gas exchange of the bunchgrass, bush muhly (Muhlenbergia porteri), growing under and between mesquite (Prosopis velutina) in a southwestern US savanna. Across two contrasting monsoon seasons, bare soil θ(25 cm) was 1.0-2.5% lower in understory than in the intercanopy, and was consistently higher than in soils under grasses, where θ(25 cm) was similar between locations. Understory plants had smaller canopy areas and volumes with larger basal diameters than intercanopy plants. During an above-average monsoon, intercanopy and understory plants had similar seasonal light-saturated leaf-level photosynthesis (A(net-sat)), stomatal conductance (g(s-sat)), and whole-plant aboveground respiration (R(auto)), but with higher whole-plant photosynthesis (GEP(plant)) and transpiration (T(plant)) in intercanopy plants. During a below-average monsoon, intercanopy plants had higher diurnally integrated GEP(plant), R(auto), and T(plant). These findings showed little evidence of strong, direct positive canopy effects to soil moisture and attendant plant performance. Rather, it seems understory conditions foster competitive dominance by drought-tolerant species, and that positive and negative canopy effects on soil moisture and community and ecosystem processes depends on a suite of interacting biotic and abiotic factors.

  15. Forest Ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

    USGS Publications Warehouse

    Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.

    2015-01-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  16. Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.

    PubMed

    Misson, Laurent; Gershenson, Alexander; Tang, Jianwu; McKay, Megan; Cheng, Weixin; Goldstein, Allen

    2006-07-01

    Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowground root dynamics. Initiation of fine root growth coincided with tree stem thickening and shoot elongation, preceding new needle growth. In the spring, root, shoot and stem growth occurred simultaneously with the increase in canopy photosynthesis. Compared with the other tree components, initial growth rate of fine roots was the highest and their growing period was the shortest. Both above and belowground components completed 90% of their growth by the end of July and the growing season lasted approximately 80 days. The period for optimal growth is short at the study site because of low soil temperatures during winter and low soil water content during summer. High photosynthetic rates were observed following unusual late-summer rains, but tree growth did not resume. The autotrophic contribution to soil respiration was 49% over the whole season, with daily contributions ranging between 18 and 87%. Increases in soil and ecosystem respiration were observed during spring growth; however, the largest variation in soil respiration occurred during summer rain events when no growth was observed. Both the magnitude and persistence of the soil respiration pulses were positively correlated with the amount of rain. These pulses accounted for 16.5% of soil respiration between Days 130 and 329.

  17. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate

    NASA Astrophysics Data System (ADS)

    Ryan, Michael G.; Lavigne, Michael B.; Gower, Stith T.

    1997-12-01

    Autotrophic respiration (Ra) in forest ecosystems can be >50% of the carbon fixed in photosynthesis and may regulate productivity and carbon storage in forest ecosystems, because Ra increases with temperature. We estimated annual Ra from chamber measurements in aspen, black spruce, and jack pine forests in Canada for 1994. Mean foliage respiration at 10°C for expanded leaves was 0.21-0.95 μmol m-2 (leaf surface) s-1 for all species and differed little from May to September. Wood respiration at 15°C (0.2-1 μmol m-2 (stem surface) s-1 for all species) was strongly seasonal, with high rates in midsummer that coincided with wood growth. Fine root respiration at 10°C was 2.5-7.7 μmol kg-1 s-1 for all species and declined throughout the growing season for the conifers. Annual costs of Ra for foliage, wood, and roots (overstory and understory) were 490, 610, and 450 g C m-2 (ground) yr-1 for aspen, black spruce, and jack pine (old) in northern Manitoba and 600, 480, and 310 g C m-2 yr-1 for aspen, black spruce, and jack pine (old) in central Saskatchewan. Carbon use efficiency (CUE), the ratio of net production to production plus Ra, averaged 0.44, 0.34, and 0.39 for aspen, black spruce, and jack pine (old) for all tissues and 0.61, 0.36, and 0.44 for aboveground tissues. Differences in CUE between the northern and the southern sites were small for all species, and CUE did not vary with stand biomass. Species differences in CUE suggest that models assuming a constant CUE across species may poorly estimate production and carbon balance for any given site.

  18. Airport, air base benefit from switch to aboveground tanks

    SciTech Connect

    1995-10-01

    The Environmental Protection Agency requires that by the end of 1998 all underground fuel tanks must comply with requirements established for tanks installed after Dec. 22, 1988. To comply with federal and state regulations, authorities at Mansfield (Mass.) Municipal Airport decided during a recent reconstruction effort to replace several 46-year-old underground fuel tanks with an 8,000-gallon, aboveground tank. After researching several types of tanks and weighing recommendations from the airport`s fueling company, officials chose to install a lightweight, double-walled tank from Aero-Power Unitized Fueler Inc., Smithtown, NY. The Fireguard{trademark} tank has a concrete-insulated lining between its two walls that can absorb aviation fuel in case of a pool fire. An outer steel wall provides secondary containment, protecting the insulating material, and resists cracking and spalling. Dobbins Air Reserve Base in Georgia recently installed two 2,000-gallon Fireguard tanks to contain diesel and unleaded fuel for a new military-vehicle refueling station.

  19. Legislative and regulatory update of aboveground storage tank requirements

    SciTech Connect

    Howard, J.L. Jr.

    1995-12-31

    Today, a patchwork of federal and state requirements regulate the three general categories of aboveground storage tanks: petroleum tanks (which comprise about 90% of all ASTs in use), hazardous substances tanks, and hazardous waste tanks. Various federal regulatory programs address ASTs, including the Clean Water Act, the Clean Air Act, and the Resource Conservation and Recovery Act (RCRA). At the state or local level, regulations and building codes have incorporated industry guidelines for designing, building, and testing tanks for fire prevention and safety purposes. With respect to environmental protection requirements, only the hazardous waste tanks are subject to a comprehensive federal regulatory program, under RCRA, and the states have adopted these federal regulations or promulgated their own. Some states have enacted comprehensive tank programs governing petroleum, and a few have addressed hazardous substances. The prospects for comprehensive legislation or regulation for petroleum ASTs in 1995, however, are dim. Federal legislation has been introduced, the Environmental Protection Agency (EPA) is studying ASTs, and most states are waiting for Congress and EPA to act. The paper briefly summarizes the applicable federal and state regulations and then discusses federal legislative and regulatory developments.

  20. Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration.

    PubMed

    Barron-Gafford, Greg A; Cable, Jessica M; Bentley, Lisa Patrick; Scott, Russell L; Huxman, Travis E; Jenerette, G Darrel; Ogle, Kiona

    2014-04-01

    Understanding how exogenous and endogenous factors and above-ground-below-ground linkages modulate carbon dynamics is difficult because of the influences of antecedent conditions. For example, there are variable lags between above-ground assimilation and below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned. Nonetheless, developing models linking above- and below-ground processes is crucial for estimating current and future carbon dynamics. We collected data on leaf-level photosynthesis (Asat ) and soil respiration (Rsoil ) in different microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated timescales over which endogenous and exogenous factors control Rsoil by analyzing data in the context of a semimechanistic temperature-response model of Rsoil that incorporated effects of antecedent exogenous (soil water) and endogenous (Asat ) conditions. For both microhabitats, antecedent soil water and Asat significantly affected Rsoil , but Rsoil under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1 and 3 d before the Rsoil measurement were most important in determining current-day Rsoil under bunchgrasses and shrubs, respectively, indicating a significant lag effect. Endogenous and exogenous controls are critical drivers of Rsoil , but the relative importance and the timescale over which each factor affects Rsoil depends on above-ground vegetation and ecosystem structure characteristics.

  1. Dryland Wheat Domestication Changed the Development of Aboveground Architecture for a Well-Structured Canopy

    PubMed Central

    Li, Pu-Fang; Cheng, Zheng-Guo; Ma, Bao-Luo; Palta, Jairo A.; Kong, Hai-Yan; Mo, Fei; Wang, Jian-Yong; Zhu, Ying; Lv, Guang-Chao; Batool, Asfa; Bai, Xue; Li, Feng-Min; Xiong, You-Cai

    2014-01-01

    We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate. PMID:25181037

  2. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    PubMed

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  3. Remote sensing of aboveground biomass and annual net aerial primary productivity in tidal wetlands

    SciTech Connect

    Hardisky, M.A.

    1983-01-01

    A technique was investigated for estimating biomass and net aerial primary productivity (NAPP) in Delaware tidal marshes from spectral data, describing marsh vegetation canopies. Spectral radiance data were collected with hand-held radiometers from the ground and from low altitude aircraft. Spectral wavebands corresponding to Landsat 4 thematic mapper bands 3, 4 and 5 and multispectral scanner bands 5 and 7 were employed. Spectral data, expressed as index values, were substituted into simple regression models to nondestructively compute total aboveground biomass. Dead biomass, salt crystals on plant leaves and soil background reflectance, all attenuated the spectral radiance index values. A large spectral contribution from any one of these canopy components caused an underestimate of live biomass. Biomass and annual NAPP of a S. alterniflora dominated salt marsh was estimated by traditional harvesting techniques and from ground-gathered spectral radiance data. The live and dead standing crop biomass estimates computed from spectral data were usually not significantly different from harvest biomass estimates. Spectral estimates of NAPP were usually within 10% of NAPP estimates calculated from harvest data. August live standing crop biomass estimates computed from ground-gathered spectral data for a tidal brackish marsh were generally within 10% of harvest estimates. Live biomass estimates computed from spectral data gathered from a low altitude aircraft were equally similar to harvest biomass estimates. The remote sensing technique holds much promise for rapid and accurate estimates of biomass and NAPP in tidal marshes.

  4. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands

    PubMed Central

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-01-01

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity–ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands. PMID:27666532

  5. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Nossov, Dana R.; Peterson, Birgit E.; Waldrop, Mark P.; McFarland, Jack W.; Rover, Jennifer R.; Hollingsworth, Teresa N.

    2012-01-01

    Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion.

  6. Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data

    SciTech Connect

    Harrell, P.A.; Haney, E.M.; Christensen, N.L. Jr.; Kasischke, E.S.; Bourgeau-Chavez, L.L.

    1997-02-01

    Estimation of forest biomass on a global basis is a key issue in studies of ecology and biogeochemical cycling. Forests are a terrestrial sink of atmospheric carbon dioxide and play a central role in regulating the exchange of this important greenhouse gas between the atmosphere and the biosphere. A study was performed to evaluate various techniques for estimating aboveground, woody plant biomass in pine stands found in the southeastern United States, using C- and L- band multiple polarization radar imagery collected by the Shuttle Imaging Radar-C (SIR-C) system. The biomass levels present in the test stands ranged between 0.0 and 44.5 kg m{sup {minus}2}. Two SIR-C data sets were used one collected in April, 1994, when the soil conditions were very wet and the canopy was slightly wet from dew and a second collected in October, 1994, when the soils and canopy were dry. During the October mission, pine needles were completely flushed and the foliar biomass was twice as great in the forest stands as in April. Four methods were evaluated to estimate total biomass: one including a straight multiple linear correlation between total biomass and the various SIR-C channels, another including a ratio of the L-band HV/C-band HV channels; and two others requiring multiple steps, where linear regression equations for different stand components were used as the basis for estimating total biomass.

  7. Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China

    PubMed Central

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun

    2013-01-01

    Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408

  8. Continuous soil respiration at the Prairie Heating and Elevated CO2 site using forced diffusion chambers

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Brennan, A. L.; Risk, D. A.; Carrillo, Y.

    2012-12-01

    Temporal variations in soil respiration are regulated by changes in soil temperature, moisture and plant phenological activity. These drivers are expected to vary with climate changes including elevated atmospheric CO2 and warming, but it is unknown whether the relationships between the drivers and soil CO2 efflux change with climate change. We studied diurnal to seasonal patterns of soil respiration and its drivers in mixed C3/C4 grassland at the Prairie Heating and CO2 Enrichment (PHACE) site near Cheyenne, WY, where Free-Air CO2 Enrichment is applied at 600 ppm during daytime in the growing season, and temperature is elevated by 1.5/3 deg C day/night all year. We deployed pairs of forced diffusion (FD) chambers in plots with intact and plant-free grassland, exposed to elevated CO2, warming, and ambient climate (six treatments total). Fluxes from intact grassland plots reflected contributions from root and microbial respiration (referred to as soil respiration), while those from plant-free plots reflected only microbial respiration. Non-dispersive infrared CO2 sensors (Vaisala GMT222, Helsinki, Finland) were installed inside the chambers, which had rims inserted 2-cm into the soil. Three sensors were installed in chambers that were not in contact with the soil surface, which recorded atmospheric CO2 concentrations. Soil respiration rates were calculated as the concentration difference between the soil and air chambers times the forced diffusivity factor, which was set by the semi-permeable membrane and calibrated for individual chambers. The objectives of this research were to evaluate the feasibility of this method for determination of continuous fluxes in semi-arid grassland by comparison with established methods, and to compare temporal dynamics and response functions of soil respiration to environmental drivers across the six treatments. We found that fluxes from the forced diffusion chambers compared well with those from an established, closed, dynamic

  9. Aboveground and belowground responses to nutrient additions and herbivore exclusion in Arctic tundra ecosystems in northern Alaska

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Gough, L.; Simpson, R.; Johnson, D. R.

    2011-12-01

    The Arctic has experienced significant increased regional warming over the past 30 years. Warming generally increases tundra soil nutrient availability by creating a more favorable environment for plant growth, decomposition and nutrient mineralization. Aboveground there has been a "greening" of the Arctic with increased net primary productivity (NPP), and an increase in woody vegetation. Concurrent with the changes aboveground has been an increase in root growth at lower depths and a loss of soil organic C (40 -100 g C m-2 yr-1). Given that arctic soils contain 14% of the global soil C pool, understanding the mechanisms behind shifts of this magnitude that are changing arctic soils from a net sink to a net source of atmospheric C is critical. We took an integrated multi-trophic level approach to examine how altering soil nutrients and mammalian herbivore activity affects vegetation, soil fauna, and microbial communities as well as soil physical characteristics in moist acidic (MAT) and dry heath (DH) tundra. Our work was conducted at the Arctic LTER site in northern Alaska. We sampled the nutrient (controls and annual N+P additions) and herbivore (controls and exclosures) manipulations established in 1996 after 10 years of treatment. Models that incorporated the biomass estimates from the field were used to characterize the trophic structure of the belowground food web and to estimate carbon flux among soil organisms and C-mineralization rates. Both MAT and DH exhibited significant increases in NPP and root growth and changes in vegetation structure with transitions from a mixed community to deciduous shrubs in MAT and from lichens to grasses and shrubs in DH, with nutrient additions and herbivore exclosures. Belowground responses to the treatments were dependent on ecosystem type, but exposed alterations in trophic structure that included changes in microbial biomass, the establishment of microbivorous enchytreaids, increases in root-feeding nematodes, and

  10. Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin

    NASA Astrophysics Data System (ADS)

    Kearsley, Elizabeth; Hufkens, Koen; Steppe, Kathy; Beeckman, Hans; Boeckx, Pascal; Verbeeck, Hans

    2014-05-01

    Accurate estimates of the amount of carbon stored in tropical forests represent crucial baseline data for recent climate change mitigation policies. Such data are needed to quantify possible emissions due to deforestation and forest degradation, and to evaluate the potential of these forests to act as carbon sinks. Currently, only rough estimates of the carbon stocks for Central African tropical forests are available due to a lack of field data, and little is known about the response of these stocks to climate change. We present the first field-based carbon stock data for the Central Congo Basin in Yangambi, Democratic Republic of Congo. We found an average aboveground carbon stock of 162 ± 20 Mg C ha-1 for intact old-growth forest, which is significantly lower than stocks recorded in the outer regions of the Congo Basin. The best available tree height-diameter relationships derived for Central Africa do not render accurate canopy height estimates for our study area. Aboveground carbon stocks would be overestimated by 24% if these inaccurate relationships were used. The studied forests have a lower stature compared with forests in the outer regions of the basin, which confirms remotely sensed patterns. We identified a significant difference in height-diameter relations across the Congo Basin as a driver for spatial differences in carbon stocks. The study of a more detailed interaction of the environment and the available tree species pool as drivers for differences in carbon storage could have large implications. The effect of the species pool on carbon storage can be large since species differ in their ability to sequester carbon, and the collective functional characteristics of plant communities could be a major driver of carbon accumulation. Numerous species-specific tree height-diameter relations are established for two sites around Kisangani, central Congo Basin, with differing stand height-diameter relationships. The species-specific relations for the two

  11. The effect of gender and respirator brand on the association of respirator fit with facial dimensions.

    PubMed

    Oestenstad, R Kent; Elliott, Leshan J; Beasley, T Mark

    2007-12-01

    This study examined the association of facial dimensions with respirator fit considering the effect of gender and respirator brand. Forty-one subjects (20 white females and 21 white males) participated in the study. Each subject was measured for 12 facial dimensions using anthropometric sliding and spreading calipers and a steel measuring tape. Three quantitative fit tests were conducted with the same subject wearing one size of three different brands of half-mask respirators resulting in a total of nine fit tests. Linear mixed model analysis was used to model respirator fit as a function of gender and respirator brand while controlling for facial dimensions. Results indicated that the gender by respirator brand interaction was not statistically significant (p = 0.794), and there was no significant difference in respirator fit between males and females (p = 0.356). There was a significant difference in respirator fit among respirator brands (p < 0.001). Because correlations between facial dimensions and respirator fit differed across gender and respirator brand, six separate linear mixed models were fit to assess which facial dimensions most strongly relate to respirator fit using a "one variable at a step" backward elimination procedure. None of the 12 facial dimensions were significantly associated with respirator fit in all six models. However, bigonial breadth and menton-nasion length were significantly associated with respirator fit in five of the six models, and biectoorbitale breadth, bizygomatic breadth, and lip width were significantly associated with respirator fit in four of the six models. Although this study resulted in significant findings related to the correlation of respirator fit with menton-nasion length and lip width (the dimensions currently used to define the half-mask respirator test panel), other facial dimensions were also shown to be significantly associated with respirator fit. Based on these findings and findings from previous studies

  12. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  13. Atmospheric CO2 mole fraction affects stand-scale carbon use efficiency of sunflower by stimulating respiration in light.

    PubMed

    Gong, Xiao Ying; Schäufele, Rudi; Lehmeier, Christoph Andreas; Tcherkez, Guillaume; Schnyder, Hans

    2017-03-01

    Plant carbon-use-efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO2 . Sunflower stands were grown at low (200 μmol mol(-1) ) or high CO2 (1000 μmol mol(-1) ) in controlled environment mesocosms. CUE of stands was measured by dynamic stand-scale (13) C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO2 (compared with low CO2 ) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand-scale respiratory metabolism at high CO2 . Two main processes contributed to the reduction of CUE at high CO2 : a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions.

  14. Spatial Variation of Soil Respiration in a Cropland under Winter Wheat and Summer Maize Rotation in the North China Plain

    PubMed Central

    Huang, Ni; Wang, Li; Hu, Yongsen; Tian, Haifeng; Niu, Zheng

    2016-01-01

    Spatial variation of soil respiration (Rs) in cropland ecosystems must be assessed to evaluate the global terrestrial carbon budget. This study aims to explore the spatial characteristics and controlling factors of Rs in a cropland under winter wheat and summer maize rotation in the North China Plain. We collected Rs data from 23 sample plots in the cropland. At the late jointing stage, the daily mean Rs of summer maize (4.74 μmol CO2 m-2 s-1) was significantly higher than that of winter wheat (3.77μmol CO2 m-2 s-1). However, the spatial variation of Rs in summer maize (coefficient of variation, CV = 12.2%) was lower than that in winter wheat (CV = 18.5%). A similar trend in CV was also observed for environmental factors but not for biotic factors, such as leaf area index, aboveground biomass, and canopy chlorophyll content. Pearson’s correlation analyses based on the sampling data revealed that the spatial variation of Rs was poorly explained by the spatial variations of biotic factors, environmental factors, or soil properties alone for winter wheat and summer maize. The similarly non-significant relationship was observed between Rs and the enhanced vegetation index (EVI), which was used as surrogate for plant photosynthesis. EVI was better correlated with field-measured leaf area index than the normalized difference vegetation index and red edge chlorophyll index. All the data from the 23 sample plots were categorized into three clusters based on the cluster analysis of soil carbon/nitrogen and soil organic carbon content. An apparent improvement was observed in the relationship between Rs and EVI in each cluster for both winter wheat and summer maize. The spatial variation of Rs in the cropland under winter wheat and summer maize rotation could be attributed to the differences in spatial variations of soil properties and biotic factors. The results indicate that applying cluster analysis to minimize differences in soil properties among different clusters

  15. Seasonal Allocation and Respiration of New Assimilates in Perennial Grasses and Shrubs

    NASA Astrophysics Data System (ADS)

    Carbone, M. S.; Czimczik, C. I.; Xu, X.; Trumbore, S. E.

    2006-12-01

    Carbon (C) enters terrestrial ecosystems through photosynthesis, and returns to the atmosphere by numerous pathways (above- and belowground, auto- and heterotrophic), collectively called ecosystem respiration. Incomplete understanding of how new photosynthetic products partition among these pathways, particularly belowground, is a major source of uncertainty with modeling ecosystem respiration in space and time. The allocation of newly assimilated C initially constrains the quantity and timing of C available for respiration by different plant components and microbial communities. Yet, very few studies have been able to quantify these plant allocation patterns with field observations and non-destructive in situ methodologies. In this study, we use a 13C and 14C pulse-labeling field method to quantify both the seasonal C allocation patterns and the speed of C cycling in two plant communities, perennial grasses and shrubs, in the Owens Valley, CA. We will present new data on the timing and quantity of current photosynthetic products contributing to the different above- and belowground sources of respiration, as well as the respiration fluxes themselves, from this desert ecosystem.

  16. Effect of phosphogypsum on respiration and methane emissions in sediment.

    PubMed

    DeLaune, R D; Porthouse, J D; Patrick, W H

    2006-05-01

    The impact of adding phosphogypsum (PG) to freshwater wetland areas, and potential effect on methane production and respiration in sediment was studied in the laboratory. Two organic matter levels (native and enriched with 0.5% by weight ground dry plant material) were studied using five sediment treatments each: (1) no PG added, (2) 4% PG by dry weight (homogenized), (3) 20% PG by dry weight (homogenized), (4) 2000 kg ha(-1) (surface applied), and (5) 5000 kg ha (surface applied), and the experiment was run in triplicate. There was a net flux of methane into sediment for all treatments that were maintained at the native organic matter level, indicating net methane oxidation. In the organic-enriched cores, both of the homogenized treatments exhibited no methane emissions, while the surface applied treatments retained the potential for high emissions. Soil respiration was depressed in all treatments when compared to controls, especially in the organic-enriched cores. The results conclude that it may be possible to add PG to non-vegetated areas with few observable effects on sediment respiration, but organic matter content and method of application are critical concerns.

  17. Changes in vascular plant functional types drive carbon cycling in peatlands

    NASA Astrophysics Data System (ADS)

    Zeh, Lilli; Bragazza, Luca; Erhagen, Björn; Limpens, Juul; Kalbitz, Karsten

    2016-04-01

    Northern peatlands store a large organic carbon (C) pool that is highly exposed to future environmental changes with consequent risk of releasing enormous amounts of C. Biotic changes in plant community structure and species abundance might have an even stronger impact on soil organic C dynamics in peatlands than the direct effects of abiotic changes. Therefore, a sound understanding of the impact of vegetation dynamics on C cycling will help to better predict the response of peatlands to environmental changes. Here, we aimed to assess the role of plant functional types (PFTs) in affecting peat decomposition in relation to climate warming. To this aim, we selected two peatlands at different altitude (i.e. 1300 and 1700 m asl) on the south-eastern Alps of Italy. The two sites represent a contrast in temperature, overall vascular plant biomass and relative ericoids abundance, with the highest biomass and ericoids occurrence at the low latitude. Within the sites we selected 20 plots of similar microtopographical position and general vegetation type (hummocks). All plots contained both graminoids and ericoids and had a 100% cover of Sphagnum mosses. The plots were subjected to four treatments (control, and three clipping treatments) in which we selectively removed aboveground biomass of ericoids, graminoids or both to explore the contribution of the different PFTs for soil respiration (n=5) and peat chemistry. Peat chemical composition was determined by the analysis of C and N and their stable isotopes in association with pyrolysis GC/MS. Soil respiration was measured after clipping with a Licor system. Preliminary findings suggest that peat decomposition pathway and rate depend on plant species composition and particularly on differences in root activity between PFTs. Finally, this study underlines the importance of biotic drivers to predict the effects of future environmental changes on peatland C cycling.

  18. Clinical pulmonary function and industrial respirator wear

    SciTech Connect

    Raven, P.B.; Moss, R.F.; Page, K.; Garmon, R.; Skaggs, B.

    1981-12-01

    This investigation was the initial step in determining a clinical pulmonary test which could be used to evaluate workers as to their suitability to industrial respirator wear. Sixty subjects, 12 superior, 37 normal, and 11 moderately impaired with respect to lung function tests were evaluated with a battery of clinical pulmonary tests while wearing an industrial respirator. The respirator was a full-face mask (MSA-Ultravue) demand breathing type equipped with an inspiratory resistance of 85mm H/sub 2/O at 85 L/min air flow and an expiratory resistance of 25mm H/sub 2/O at 85 L/min air flow. Comparisons of these tests were made between the three groups of subjects both with and without a respirator. It appears that those lung tests which measure the flow characteristics of the lung especially those that are effort dependant are more susceptible to change as a result of respirator wear. Hence, the respirator affects the person with superior lung function to a greater degree than the moderately impaired person. It was suggested that the clinical test of 15 second maximum voluntary ventilations (MVV./sub 25/) may be the test of choice for determining worker capability in wearing an industrial respirator.

  19. Acclimation of photosynthesis and dark respiration of a submersed angiosperm beneath ice in a temperate lake

    SciTech Connect

    Spencer, W.E. ); Wetzel, R.G. )

    1993-03-01

    Ceratophyllum demersum L. remained physiologically active beneath ice of a southeastern Michigan lake. The effect of seasonally low photosynthetic photon flux density (PPFD) and cold but nonfreezing temperature on whole-plant physiology was studied. Net photosynthesis was measured at six temperatures and 12 PPFDs. Net photosynthesis, soluble protein concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein concentration, and Rubisco activity of winter plants were 32, 31, 33, and 70% lower, respectively, than those of plants collected in the summer. Optimum temperatures for net photosynthesis of winter and summer plants were 5 and 30[degrees]C, respectively. Dark respiration of winter plants was up to 313% greater than that of summer plants. Reduced Rubisco activity and increased dark respiration interacted to reduce net photosynthesis. Interaction of reduced net photosynthesis and increased dark respiration increased CO[sub 2] and light compensation points and the light saturation point of winter plants. Growth of C. demersum was limited by the ambient phosphorus concentration of lake water during summer. Apical stem segments of winter-collected plants had 54 and 35% more phosphorus and nitrogen, respectively, than summer-collected plants. Physiologically active perennation beneath ice enabled C. demersum to accumulate phosphorus during the winter when it was most abundant. Partial uncoupling of phosphorus acquisition from utilization may reduce phosphorus limitation upon growth during the summer when phosphorus concentration is seasonally the lowest. 24 refs., 6 figs., 4 tabs.

  20. Fruit removal increases root-zone respiration in cucumber

    PubMed Central

    Kläring, H.-P.; Hauschild, I.; Heißner, A.

    2014-01-01

    Background and Aims Many attempts have been made to avoid the commonly observed fluctuations in fruit initiation and fruit growth in crop plants, particularly in cucumber (Cucumis sativus). Weak sinks of the fruit have been assumed to result in low sink/source ratios for carbohydrates, which may inhibit photosynthesis. This study focuses on the effects of low sink–source ratios on photosynthesis and respiration, and in particular root-zone respiration. Methods Mature fruit-bearing cucumber plants were grown in an aerated nutrient solution. The root containers were designed as open chambers to allow measurement of CO2 gas exchange in the root zone. A similar arrangement in a gas-exchange cuvette enabled simultaneous measurements of CO2 exchange in the shoot and root zones. Key Results Reducing the sinks for carbohydrates by removing all fruit from the plants always resulted in a doubling of CO2 exchange in the root zone within a few hours. However, respiration of the shoot remained unaffected and photosynthesis was only marginally reduced, if at all. Conclusions The results suggest that the increased level of CO2 gas exchange in the root zone after removing the carbon sinks in the shoot is due primarily to the exudation of organic compounds by the roots and their decomposition by micro-organisms. This hypothesis must be tested in further experiments, but if proved correct it would make sense to include carbon leakage by root exudation in cucumber production models. In contrast, inhibition of photosynthesis was measurable only at zero fruit load, a situation that does not occur in cucumber production systems, and models that estimate production can therefore ignore (end-product) inhibition of photosynthesis. PMID:25301817

  1. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  2. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  3. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-04-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. The last part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  4. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence

    PubMed Central

    Das Gupta, Sanatan; Mackenzie, M. Derek

    2016-01-01

    Fire in boreal ecosystems is known to affect CO2 efflux from forest soils, which is commonly termed soil respiration (Rs). However, there is limited information on how fire and recovery from this disturbance affects spatial variation in Rs. The main objective of this study was to quantify the spatial variability of Rs over the growing season in a boreal aspen (Populus tremuloides Michx.) fire chronosequence. The chronosequence included three stands in northern Alberta; a post fire stand (1 year old, PF), a stand at canopy closure (9 years old, CC), and a mature stand (72 years old, MA). Soil respiration, temperature and moisture were measured monthly from May to August using an intensive spatial sampling protocol (n = 42, minimum lag = 2 m). Key aboveground and belowground properties were measured one time at each sampling point. No spatial structure was detected in Rs of the PF stand during the peak growing season (June and July), whereas Rs was auto-correlated at a scale of < 6 m in the CC and MA stands. The PF stand had the lowest mean Rs (4.60 μmol C m-2 s-1) followed by the CC (5.41 μmol C m-2 s-1), and the MA (7.32 μmol C m-2 s-1) stand. Forest floor depth was the only aboveground factor that influenced the spatial pattern of Rs in all three stands and was strongest in the PF stand. Enzyme activity and fine root biomass, on the other hand, were the significant belowground factors driving the spatial pattern of Rs in the CC and MA stands. Persistent joint aboveground and belowground control on Rs in the CC and MA stands indicates a tight spatial coupling, which was not observed in the PF stand. Overall, the current study suggests that fire in the boreal aspen ecosystem alters the spatial structure of Rs and that fine scale heterogeneity develops quickly as stands reach the canopy closure phase (<10 years). PMID:27832089

  5. Impact of drought on C forms and fluxes in the soil - plant continuum

    NASA Astrophysics Data System (ADS)

    Rumpel, Cornelia; Sanaullah, Muhammad; Chabbi, Abad

    2016-04-01

    Global change is likely to increase the drought periods, which may have significant consequences for the turnover of SOM, in particular through their effect on plants. The aim of the study was to assess different compartments of the soil - plant continuum for their response to drought stress by combining field and laboratory experiments. We focused on three common grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) found to constitute grasslands of the temperate climate. We investigated drought impact on (1) plant biochemistry and potential mineralization of this material in soil, (2) decomposition of aboveground plant leaf litter of different quality, (3) plant-mediated soil C fluxes including (4) soil microbial biomass and their enzyme activities in the rhizosphere. Plant elemental and biochemical composition showed contrasting changes depending on the species in response to drought stress. The changes in elemental and biochemical composition of leaf litter, ultimately influenced its mineralization in soil. Drought stress highly modified the decomposition dynamics of litter from the three grassland species as a function of litter quality. Moreover, drought stress resulted in significant decrease in both shoot and root biomass in monocultures, while root biomass did not change when they were grown in mixture. Under drought stress, we observed higher belowground allocation of photosynthates and the drought had reduced root-derived respiration. This resulted in significant changes of soil enzyme activities. Our results suggested that plant species and community composition strongly influenced the drought effects in the rhizosphere. Thus, plant community composition and in particular the introduction of legumes might be used as a tool to attenuate drought stress not only because of different water use efficiency by plants, but also by their indirect effects on soil microbial activities affecting C and N cycles.

  6. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults. PMID:17258487

  7. Light respiration by subtropical seaweeds.

    PubMed

    Carvalho, Matheus C; Eyre, Bradley D

    2017-03-20

    Here we report the first-ever measurements of light CO2 respiration rate (CRR) by seaweeds. We measured the influence of temperature (15 to 25°C) and light (irradiance from 60 to 670 μmol · m(-2) · s(-1) ) on the light CCR of two subtropical seaweed species, and measured the CRR of seven different seaweed species under the same light (150 μmol · m(-2) · s(-1) ) and temperature (25°C). There was little effect of irradiance on light CRR, but there was an effect of temperature. Across the seven species light CRR was similar to OCR (oxygen consumption rate in the dark), with the exception of a single species. The outlier species was a coralline alga, and the higher light CRR was probably driven by calcification. CRR could be estimated from OCR, as well as carbon photosynthetic rates from oxygen photosynthetic rates, which suggests that previous studies have probably provided good estimations of gross photosynthesis for seaweeds. This article is protected by copyright. All rights reserved.

  8. Respiration during sleep in kyphoscoliosis.

    PubMed Central

    Sawicka, E H; Branthwaite, M A

    1987-01-01

    Eleven subjects with non-paralytic and 10 with paralytic kyphoscoliosis and nine normal control subjects were studied during sleep. The Cobb angle of those with kyphoscoliosis varied from 60 degrees to 140 degrees (median 100 degrees) and the vital capacity varied from 17% to 56% (median 28%) of the value predicted on the basis of span. Recordings made during sleep included expired carbon dioxide tension at the nose, gas flow at the mouth, arterial oxygen saturation, chest wall movement, and the electroencephalogram, electro-oculogram, and electrocardiogram. In three subjects transcutaneous carbon dioxide tension was measured simultaneously. Patients with kyphoscoliosis hypoventilated during sleep, particularly in rapid eye movement sleep, resulting in a rise in end tidal and transcutaneous carbon dioxide tension, and a reduction in oxygen saturation to a degree not observed in normal subjects. Reduced chest wall movement was the major cause of these episodes, which were more frequent and occupied a greater proportion of sleep time in those with kyphoscoliosis than in normal subjects. Serious cardiac arrhythmias were rarely associated. It is concluded that disturbances of respiration during sleep occur in patients with kyphoscoliosis and that these may be important in the pathogenesis of cardiorespiratory failure. PMID:3424256

  9. Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment.

    PubMed

    Freschet, Grégoire T; Ostlund, Lars; Kichenin, Emilie; Wardle, David A

    2014-04-01

    Human activities that involve land-use change often cause major transformations to community and ecosystem properties both aboveground and belowground, and when land use is abandoned, these modifications can persist for extended periods. However, the mechanisms responsible for rapid recovery vs. long-term maintenance of ecosystem changes following abandonment remain poorly understood. Here, we examined the long-term ecological effects of two remote former settlements, regularly visited for -300 years by reindeer-herding Sami and abandoned -100 years ago, within an old-growth boreal forest that is considered one of the most pristine regions in northern Scandinavia. These human legacies were assessed through measurements of abiotic and biotic soil properties and vegetation characteristics at the settlement sites and at varying distances from them. Low-intensity land use by Sami is characterized by the transfer of organic matter towards the settlements by humans and reindeer herds, compaction of soil through trampling, disappearance of understory vegetation, and selective cutting of pine trees for fuel and construction. As a consequence, we found a shift towards early successional plant species and a threefold increase in soil microbial activity and nutrient availability close to the settlements relative to away from them. These changes in soil fertility and vegetation contributed to 83% greater total vegetation productivity, 35% greater plant biomass, and 23% and 16% greater concentrations of foliar N and P nearer the settlements, leading to a greater quantity and quality of litter inputs. Because decomposer activity was also 40% greater towards the settlements, soil organic matter cycling and nutrient availability were further increased, leading to likely positive feedbacks between the aboveground and belowground components resulting from historic land use. Although not all of the activities typical of Sami have left visible residual traces on the ecosystem after

  10. Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient.

    PubMed

    Reynolds, Lorien L; Johnson, Bart R; Pfeifer-Meister, Laurel; Bridgham, Scott D

    2015-01-01

    Soil respiration is expected to increase with rising global temperatures but the degree of response may depend on soil moisture and other local factors. Experimental climate change studies from single sites cannot discern whether an observed response is site-dependent or generalizable. To deconvolve site-specific vs. regional climatic controls, we examined soil respiration for 18 months along a 520 km climate gradient in three Pacific Northwest, USA prairies that represents increasingly severe Mediterranean conditions from north to south. At each site we implemented a fully factorial combination of 2.5-3 °C warming and 20% added precipitation intensity. The response of soil respiration to warming was driven primarily by the latitudinal climate gradient and not site-specific factors. Warming increased respiration at all sites during months when soil moisture was not limiting. However, these gains were offset by reductions in respiration during seasonal transitions and summer drought due to lengthened periods of soil moisture limitation. The degree of this offset varied along the north-south climate gradient such that in 2011 warming increased cumulative annual soil respiration 28.6% in the northern site, 13.5% in the central site, and not at all in the southern site. Precipitation also stimulated soil respiration more frequently in the south, consistent with an increased duration of moisture limitation. The best predictors of soil respiration in nonlinear models were the Normalized Difference Vegetation Index (NDVI), antecedent soil moisture, and temperature but these models provided biased results at high and low soil respiration. NDVI was an effective integrator of climate and site differences in plant productivity in terms of their combined effects on soil respiration. Our results suggest that soil moisture limitation can offset the effect of warming on soil respiration, and that greater growing-season moisture limitation would constrain cumulative annual

  11. Combined effects of nitrogen addition and organic matter manipulation on soil respiration in a Chinese pine forest.

    PubMed

    Wang, Jinsong; Wu, L; Zhang, Chunyu; Zhao, Xiuhai; Bu, Wensheng; Gadow, Klaus V

    2016-11-01

    The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m(-2) year(-1)), low-N (N1: 5 g N m(-2) year(-1)), medium-N (N2: 10 g N m(-2) year(-1)), and high-N (N3: 15 g N m(-2) year(-1)), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3-5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the "priming" effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.

  12. Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia

    PubMed Central

    Sharkhuu, Anarmaa; Plante, Alain F.; Enkhmandal, Orsoo; Gonneau, Cédric; Casper, Brenda B.; Boldgiv, Bazartseren; Petraitis, Peter S.

    2017-01-01

    Globally, soil respiration is one of the largest fluxes of carbon to the atmosphere and is known to be sensitive to climate change, representing a potential positive feedback. We conducted a number of field experiments to study independent and combined impacts of topography, watering, grazing and climate manipulations on bare soil and vegetated soil (i.e., ecosystem) respiration in northern Mongolia, an area known to be highly vulnerable to climate change and overgrazing. Our results indicated that soil moisture is the most important driving factor for carbon fluxes in this semi-arid ecosystem, based on smaller carbon fluxes under drier conditions. Warmer conditions did not result in increased respiration. Although the system has local topographical gradients in terms of nutrient, moisture availability and plant species, soil respiration responses to OTC treatments were similar on the upper and lower slopes, implying that local heterogeneity may not be important for scaling up the results. In contrast, ecosystem respiration responses to OTCs differed between the upper and the lower slopes, implying that the response of vegetation to climate change may override microbial responses. Our results also showed that light grazing may actually enhance soil respiration while decreasing ecosystem respiration, and grazing impact may not depend on climate change. Overall, our results indicate that soil and ecosystem respiration in this semi-arid steppe are more sensitive to precipitation fluctuation and grazing pressure than to temperature change. PMID:28239190

  13. Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia.

    PubMed

    Sharkhuu, Anarmaa; Plante, Alain F; Enkhmandal, Orsoo; Gonneau, Cédric; Casper, Brenda B; Boldgiv, Bazartseren; Petraitis, Peter S

    2016-05-01

    Globally, soil respiration is one of the largest fluxes of carbon to the atmosphere and is known to be sensitive to climate change, representing a potential positive feedback. We conducted a number of field experiments to study independent and combined impacts of topography, watering, grazing and climate manipulations on bare soil and vegetated soil (i.e., ecosystem) respiration in northern Mongolia, an area known to be highly vulnerable to climate change and overgrazing. Our results indicated that soil moisture is the most important driving factor for carbon fluxes in this semi-arid ecosystem, based on smaller carbon fluxes under drier conditions. Warmer conditions did not result in increased respiration. Although the system has local topographical gradients in terms of nutrient, moisture availability and plant species, soil respiration responses to OTC treatments were similar on the upper and lower slopes, implying that local heterogeneity may not be important for scaling up the results. In contrast, ecosystem respiration responses to OTCs differed between the upper and the lower slopes, implying that the response of vegetation to climate change may override microbial responses. Our results also showed that light grazing may actually enhance soil respiration while decreasing ecosystem respiration, and grazing impact may not depend on climate change. Overall, our results indicate that soil and ecosystem respiration in this semi-arid steppe are more sensitive to precipitation fluctuation and grazing pressure than to temperature change.

  14. Carbon balance of a subarctic meadow under 3 r{ C warming - unravelling respiration}

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Hanna; Bárcena, Téresa G.; Moni, Christophe; Szychowski, Marcin; Rajewicz, Paulina; Höglind, Mats; Rasse, Daniel P.

    2016-04-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, as the warming is expected to be disproportionate as compared to world averages. Northern areas contain large terrestrial carbon (C) stocks further increasing the interest in the C cycle's fate in changing climate. In 2013, we started an ecosystem warming experiment at a meadow in Eastern Finnmark, NE Norway. The meadow was on a clay soil and its vegetation was common meadow grasses and clover. Typical local agronomy was applied. The study site featured ten 4m-wide hexagonal plots, five control and five actively warmed plots in randomized complete block design. Each of the warmed plots was continuously maintained 3 ° C above its associated control plot with infrared heaters controlled by canopy thermal sensors. In 2014-2015, we measured net ecosystem exchange (NEE) and respiration twice per week during growth seasons from preinstalled collars of each site with dynamic, temperature-controlled chambers combined to an infrared analyzer. Despite warming-induced differences in yield, species composition and root biomass, neither the NEE nor the respiration responded to the warming, all sites remaining equal sinks for C. Following this observation, we carried out an additional experiment in 2015 where we aimed at partitioning the total CO2 flux to microbial and plant respiration as well as at recording the growth season variation of those parameters in situ. Here, we used an approach based on natural abundances of 13C. The δ13C signature of both autotrophic plant respiration and heterotrophic microbial respiration were obtained in targeted incubations (Snell et al. 2014). Then, the δ13C -signature of the total soil respiration was determined in the field by Keeling approach with dynamic dark chambers combined to CRDS. Proportions of autotrophic and heterotrophic components in total soil respiration were then derived based on 13C mixing model. Incubations were repeated at early, mid and

  15. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  16. Soil Respiration Responses to Variation in Temperature Treatment and Vegetation Type

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pavao-zuckerman, M.

    2013-12-01

    Complex linkages exist between terrestrial vegetation, soil moisture, soil organic matter (SOM), local climate, and soil microorganisms. Thus, large-scale changes in vegetation, such as the woody plant encroachment observed in many historically semiarid and arid grasslands worldwide, could potentially alter the flux of carbon from soil reserves to the atmosphere. Mathematical models that attempt to project the long-term impact of vegetative shifts on soil fluxes largely rely on assumptions such as first-order donor control rather than incorporate the biological aspects of soil respiration such as microbial activity. To examine the impact of vegetation type on soil physicochemical properties and soil microbial respiration and provide experimental data to refine existing predictive models, we compared soil (ground basalt from northern Arizona) in mesocosms established with no vegetation, velvet mesquites (Prosopis velutina; woody shrub), or sideoats gramas (Bouteloua curtipendula; grass) for 2 years, The temperature sensitivity of soil respiration was examined by incubating soil (0-10 and 10-30 cm depth fractions) from each vegetation treatment at 10, 20, 30, and 40 °C for 24 hours. Vegetated soils contained more SOM (~0.1% for mesquite and grass mesocosms) than non-vegetated soils (~0.02%). Respiration rates were generally highest from grass-established soils, intermediate from mesquite-established soils, and lowest from non-vegetated soils. Respiration rates of samples incubated without the addition of substrate peaked at approximately 30 °C, whereas respiration rates of samples incubated with dextrose were highest at 40 °C. Further, the respiration assays suggest that while respiration rates are overall higher in grass-established soils, mesquite-established soils are more temperature sensitive which may have significant implications in the context of global warming and current fire management practices.

  17. Organohalide respiration: microbes breathing chlorinated molecules

    PubMed Central

    Leys, David; Adrian, Lorenz; Smidt, Hauke

    2013-01-01

    Bacterial respiration has taken advantage of almost every redox couple present in the environment. The reduction of organohalide compounds to release the reduced halide ion drives energy production in organohalide respiring bacteria. This process is centred around the reductive dehalogenases, an iron–sulfur and corrinoid containing family of enzymes. These enzymes, transcriptional regulators and the bacteria themselves have potential to contribute to future bioremediation solutions that address the pollution of the environment by halogenated organic compounds. PMID:23479746

  18. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature.

    PubMed

    Dieleman, Wouter I J; Vicca, Sara; Dijkstra, Feike A; Hagedorn, Frank; Hovenden, Mark J; Larsen, Klaus S; Morgan, Jack A; Volder, Astrid; Beier, Claus; Dukes, Jeffrey S; King, John; Leuzinger, Sebastian; Linder, Sune; Luo, Yiqi; Oren, Ram; De Angelis, Paolo; Tingey, David; Hoosbeek, Marcel R; Janssens, Ivan A

    2012-09-01

    In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only treatment, possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less-than-additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long-term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our

  19. The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland

    NASA Astrophysics Data System (ADS)

    Hoover, David L.; Knapp, Alan K.; Smith, Melinda D.

    2016-04-01

    The predicted increase in the frequency and intensity of climate extremes is expected to impact terrestrial carbon fluxes to the atmosphere, potentially changing ecosystems from carbon sinks to sources, with positive feedbacks to climate change. As the second largest terrestrial carbon flux, soil CO2 efflux or soil respiration (Rs) is strongly influenced by soil temperature and moisture. Thus, climate extremes such as heat waves and extreme drought should have substantial impacts on Rs. We investigated the effects of such climate extremes on growing season Rs in a mesic grassland by experimentally imposing 2 years of extreme drought combined with midsummer heat waves. After this 2 year period, we continued to measure Rs during a recovery year. Two consecutive drought years reduced Rs by about 25% each growing season; however, when normal rainfall returned during the recovery year, formerly droughted plots had higher rates of Rs than control plots (up to +17%). The heat wave treatments had no effect on Rs, alone or when combined with drought, and during the growing season, soil moisture was the primary driver of Rs with little evidence for Rs temperature sensitivity. When compared to aboveground net primary production, growing season Rs was much less sensitive to drought but was more responsive postdrought. These results are consistent with the hypothesis that ecosystems become sources of CO2 during drought because carbon inputs (production) are decreased relatively more than outputs (respiration). Moreover, stimulation of Rs postdrought may lengthen the time required for net carbon exchange to return to predrought levels.

  20. Plant species richness belowground: higher richness and new patterns revealed by next-generation sequencing.

    PubMed

    Hiiesalu, Inga; Opik, Maarja; Metsis, Madis; Lilje, Liisa; Davison, John; Vasar, Martti; Moora, Mari; Zobel, Martin; Wilson, Scott D; Pärtel, Meelis

    2012-04-01

    Variation in plant species richness has been described using only aboveground vegetation. The species richness of roots and rhizomes has never been compared with aboveground richness in natural plant communities. We made direct comparisons of grassland plant richness in identical volumes (0.1 × 0.1 × 0.1 m) above and below the soil surface, using conventional species identification to measure aboveground richness and 454 sequencing of the chloroplast trnL(UAA) intron to measure belowground richness. We described above- and belowground richness at multiple spatial scales (from a neighbourhood scale of centimetres to a community scale of hundreds of metres), and related variation in richness to soil fertility. Tests using reference material indicated that 454 sequencing captured patterns of species composition and abundance with acceptable accuracy. At neighbourhood scales, belowground richness was up to two times greater than aboveground richness. The relationship between above- and belowground richness was significantly different from linear: beyond a certain level of belowground richness, aboveground richness did not increase further. Belowground richness also exceeded that of aboveground at the community scale, indicating that some species are temporarily dormant and absent aboveground. Similar to other grassland studies, aboveground richness declined with increasing soil fertility; in contrast, the number of species found only belowground increased significantly with fertility. These results indicate that conventional aboveground studies of plant richness may overlook many coexisting species, and that belowground richness becomes relatively more important in conditions where aboveground richness decreases. Measuring plant belowground richness can considerably alter perceptions of biodiversity and its responses to natural and anthropogenic factors.

  1. Telephone communications with several commercial respirators.

    PubMed

    Johnson, A T; Scott, W H; Coyne, K M; Koh, F C; Rebar, J E

    2001-01-01

    Previous work showed that telephone communications while wearing military respirators degraded both word comprehension and recognition speed. In addition, electronic amplification of the speech diaphragm signal had shown no advantage to the extra hardware. This experiment was performed to test effects of different configurations of commercially available respirators on telephone communications accuracy and speed. Twelve pairs of subjects were separated into different rooms and communicated by telephone. Modified rhyme-test words were presented by computer to the speaker, who transmitted the word by telephone to the listener. During the first replication, subjects were given no instruction about telephone communications procedure. During the second replication subjects followed a communications protocol that instructed them when to move the telephone handset from their ears to their mouths. Results showed that the protocol uniformly improved communications accuracy without incurring any extra time penalty. Word comprehension was still twice as fast without a respirator as with a respirator. Accuracy with the protocol nearly equaled the no respirator control value for most respirators tested.

  2. Mitochondrial respiration without ubiquinone biosynthesis

    PubMed Central

    Wang, Ying; Hekimi, Siegfried

    2013-01-01

    Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ. PMID:23847050

  3. Positive feedback of elevated CO2 on soil respiration in late autumn and winter

    NASA Astrophysics Data System (ADS)

    Keidel, L.; Kammann, C.; Grünhage, L.; Moser, G.; Müller, C.

    2014-06-01

    Soil respiration of terrestrial ecosystems, a major component in the global carbon cycle is affected by elevated atmospheric CO2 concentrations. However, seasonal differences of feedback effects of elevated CO2 have rarely been studied. At the Giessen Free-Air CO2 Enrichment (GiFACE) site, the effects of +20% above ambient CO2 concentration (corresponds to conditions reached 2035-2045) have been investigated since 1998 in a temperate grassland ecosystem. We defined five distinct annual periods, with respect to management practices and phenological cycles. For a period of three years (2008-2010), weekly measurements of soil respiration were carried out with a survey chamber on vegetation-free subplots. The results revealed a pronounced and repeated increase of soil respiration during late autumn and winter dormancy. Increased CO2 losses during the autumn period (September-October) were 15.7% higher and during the winter period (November-March) were 17.4% higher compared to respiration from control plots. However, during spring time and summer, which are characterized by strong above- and below-ground plant growth, no significant change in soil respiration was observed at the FACE site under elevated CO2. This suggests (i) that soil respiration measurements, carried out only during the vegetative growth period under elevated CO2 may underestimate the true soil-respiratory CO2 loss (i.e. overestimate the C sequestered) and (ii) that additional C assimilated by plants during the growing period and transferred below-ground will quickly be lost via enhanced heterotrophic respiration outside the main vegetation period.

  4. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications

    PubMed Central

    Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to

  5. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  6. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  7. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  8. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  9. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  10. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  11. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  12. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it...

  13. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  14. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  15. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  16. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  17. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  18. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    PubMed

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism.

  19. Seasonal variation of leaf respiration and the alternative pathway in field-grown Populus × canadensis.

    PubMed

    Searle, Stephanie Y; Turnbull, Matthew H

    2011-04-01

    The temperature response of plant respiration varies between species and can acclimate to changing temperatures. Mitochondrial respiration in plants has two terminal oxidases: the cytochrome c oxidase (COX) and the cyanide-resistant alternative oxidase (AOX). In Populus × canadensis var. italica, a deciduous tree species, we investigated the temperature response of leaf respiration via the alternative and cytochrome pathways, as well as seasonal changes in these pathways, using the oxygen isotope fractionation technique. The electron partitioning through the alternative pathway (τ(a) ) increased from 0 to 30-40% with measurement temperatures from 6 to 30°C at all times measured throughout the growing season. τ(a) at the growth temperature (the average temperature during 3 days prior to sampling) increased from 12 to 29% from spring until late summer and decreased thereafter. Total respiration declined throughout the growing season by 50%, concomitantly with decreases in both AOX (64%) and COX (32%) protein abundances. Our results provide new insight into the natural variability of AOX protein abundances and alternative respiration electron partitioning over immediate and seasonal timescales.

  20. Soil moisture effects on the carbon isotopic composition of soil respiration

    EPA Science Inventory

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  1. The Effect of Group Works and Demonstrative Experiments Based on Conceptual Change Approach: Photosynthesis and Respiration

    ERIC Educational Resources Information Center

    Cibik, Ayse Sert; Diken, Emine Hatun; Darcin, Emine Selcen

    2008-01-01

    The purpose of this study is to investigate the effect of the use of group works and demonstration experiments based on conceptual change approach in the elimination of misconception about the subject of photosynthesis and respiration in plants in pre-service science teachers. This study was conducted with 78 pre-service science teachers including…

  2. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    PubMed Central

    Albertsen, Mads

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes. PMID:28254969

  3. Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots.

    PubMed

    Danner, Holger; Brown, Phil; Cator, Eric A; Harren, Frans J M; van Dam, Nicole M; Cristescu, Simona M

    2015-07-01

    Studies on aboveground (AG) plant organs have shown that volatile organic compound (VOC) emissions differ between simultaneous attack by herbivores and single herbivore attack. There is growing evidence that interactive effects of simultaneous herbivory also occur across the root-shoot interface. In our study, Brassica rapa roots were infested with root fly larvae (Delia radicum) and the shoots infested with Pieris brassicae, either singly or simultaneously, to study these root-shoot interactions. As an analytical platform, we used Proton Transfer Reaction Mass Spectrometry (PTR-MS) to investigate VOCs over a 3 day time period. Our set-up allowed us to monitor root and shoot emissions concurrently on the same plant. Focus was placed on the sulfur-containing compounds; methanethiol, dimethylsulfide (DMS), and dimethyldisulfide (DMDS), because these compounds previously have been shown to be biologically active in the interactions of Brassica plants, herbivores, parasitoids, and predators, yet have received relatively little attention. The shoots of plants simultaneously infested with AG and belowground (BG) herbivores emitted higher levels of sulfur-containing compounds than plants with a single herbivore species present. In contrast, the emission of sulfur VOCs from the plant roots increased as a consequence of root herbivory, independent of the presence of an AG herbivore. The onset of root emissions was more rapid after damage than the onset of shoot emissions. The shoots of double infested plants also emitted higher levels of methanol. Thus, interactive effects of root and shoot herbivores exhibit more strongly in the VOC emissions from the shoots than from the roots, implying the involvement of specific signaling interactions.

  4. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  5. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  6. Wood CO(2) efflux and foliar respiration for Eucalyptus in Hawaii and Brazil.

    PubMed

    Ryan, Michael G; Cavaleri, Molly A; Almeida, Auro C; Penchel, Ricardo; Senock, Randy S; Luiz Stape, José

    2009-10-01

    We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined approximately 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 micromol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by approximately 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 micromol C mol N(-1) s(-1) at 20 degrees C).

  7. Comparison of soil respiration in typical conventional and new alternative cereal cropping systems on the North China plain.

    PubMed

    Gao, Bing; Ju, Xiaotang; Su, Fang; Gao, Fengbin; Cao, Qingsen; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2013-01-01

    We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year--Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize--W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha(-1) for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region.

  8. Effect of air pollutants on the photosynthetic and dark respiration rates of Phaseolus vulgaris

    SciTech Connect

    Borgman, L.M.

    1982-01-01

    The effects of continuous fumigations with pollutant gases on net and gross photosynthesis, dark respiration, respiration/gross photosynthesis ratios, root/shoot ratios, and chloroplast ultrastructure were examined. Plants of Phaseolus vulgaris L. Blue Lakes, were grown in paired plexi-glass chambers. Photosynthetic and respiration rates of 12-19 day-old plants were measured by infrared gas analysis. The plants were dried and root/shoot ratios calculated. A significant increase (28.9%) in gross photosynthesis of plants exposed to 10 ppm. CO was evident compared to the controls. Although net photosynthesis was not significantly affected by 0.035-0.04 ppm NO/sub 2/, gross photosynthesis, dark respiration, and R/G were significantly greater than in controls. Concentrations of 0.04-0.005 SO/sub 2/ resulted in significantly greater respiration and R/G ratios. This procedure resulted in significantly reduced net and gross photosynthetic rates. Ozone exposures of 10-20 ppm for eight hours a day, five days a week, resulted in progressively lower net and gross photosynthetic rates as the week progressed and R/G ratios were significantly higher. Ozone exposures of 6-8 ppm reduced net and gross photosynthetic rates significantly. Average root/shoot ratios of all exposed plants were significantly greater (14.8%) than those grown in pollutant-free air. The concentrations employed were comparable to the federal air pollution standards. It was concluded that these low levels of pollutant gases are capable of altering physiological activities which may result in reduced yield.

  9. Aboveground predation by an American badger (Taxidea taxus) on black-tailed prairie dogs (Cynomys ludovicianus)

    USGS Publications Warehouse

    Eads, D.A.; Biggins, D.E.

    2008-01-01

    During research on black-tailed prairie dogs (Cynomys ludovicianus), we repeatedly observed a female American badger (Taxidea taxus) hunting prairie dogs on a colony in southern Phillips County, Montana. During 1-14 June 2006, we observed 7 aboveground attacks (2 successful) and 3 successful excavations of prairie dogs. The locations and circumstances of aboveground attacks suggested that the badger improved her probability of capturing prairie dogs by planning the aboveground attacks based on perceptions of speeds, angles, distances, and predicted escape responses of prey. Our observations add to previous reports on the complex and varied predatory methods and cognitive capacities of badgers. These observations also underscore the individuality of predators and support the concept that predators are active participants in predator-prey interactions.

  10. Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance.

    PubMed

    Means, Mary M; Ahn, Changwoo; Noe, Gregory B

    2017-02-01

    The resilience of constructed wetland ecosystems to severe disturbance, such as a mass herbivory eat-out or soil disturbance, remains poorly understood. In this study, we use a controlled mesocosm experiment to examine how original planting diversity affects the ability of constructed freshwater wetlands to recover structurally and functionally after a disturbance (i.e., aboveground harvesting and soil coring). We assessed if the planting richness of macrophyte species influences recovery of constructed wetlands one year after a disturbance. Mesocosms were planted in richness groups with various combinations of either 1, 2, 3, or 4 species (RG 1-4) to create a gradient of richness. Structural wetland traits measured include morphological regrowth of macrophytes, soil bulk density, soil moisture, soil %C, and soil %N. Functional wetland traits measured include above ground biomass production, soil potential denitrification, and soil potential microbial respiration. Total mesocosm cover increased along the gradient of plant richness (43.5% in RG 1 to 84.5% in RG 4) in the growing season after the disturbance, although not all planted individuals recovered. This was largely attributed to the dominance of the obligate annual species. The morphology of each species was affected negatively by the disturbance, producing shorter, and fewer stems than in the years prior to the disturbance, suggesting that the communities had not fully recovered one year after the disturbance. Soil characteristics were almost uniform across the planting richness gradient, but for a few exceptions (%C, C:N, and non-growing season soil moisture were higher slightly in RG 2). Denitrification potential (DEA) increased with increasing planting richness and was influenced by the abundance and quality of soil C. Increased open space in unplanted mesocosms and mesocosms with lower species richness increased labile C, leading to higher C mineralization rates.

  11. Modelling autotrophic and heterotrophic components of soil respiration in wheat fields

    NASA Astrophysics Data System (ADS)

    Delogu, E.; LeDantec, V.; Buysse, P.; Mordelet, P.; Aubinet, M.

    2012-04-01

    Partitioning soil respiration into its heterotrophic and autotrophic components is a current key challenge to improve understanding of soil processes in croplands. For this purpose, we coupled a daily-time step soil organic carbon model derived from the CENTURY (Parton et al, 1987) calculating carbon turnover and carbon dioxide production in the soil with root sub-model from the plant process-based model CASTANEA (Dufrêne et al, 2005). In the Century model, soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition constant. Carbon flows between these pools are controlled by carbon inputs (crop residue), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To simulate autotrophic component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence. Growth respiration is calculated assuming that daily growth respiration depends on both growth rate and construction cost of the considered organ. To investigate model performances, simulations of soil CO2 efflux were compared with 3 datasets recorded in three different fields under different soil and climate conditions. Soil respiration measurements were performed on three winter wheat crops on Lamasquère (2007) and Auradé (2008), South-West France and in Lonzée (2007), Belgium. The French sites data come from manual measurement chambers, PP systems. The Belgium site is equipped with an automatic (half-hour resolution time) measurement system. The model was run on the three climatic years of data on bare soil and a first

  12. A novel approach for identifying the true temperature sensitivity from soil respiration measurements

    SciTech Connect

    Gu, Lianhong; Hanson, Paul J; Liu, Qing; Post, Wilfred M

    2008-01-01

    We propose a novel approach, called the localized ratio fitting (LRF), to estimating the true temperature sensitivity from soil respiration measurements, a task crucial to modeling terrestrial carbon cycle and climate but so far hindered by the inadequate conventional regression approach. LRF takes advantage of the different timescales of the pool dynamics Cinduced and environmental variation Cinduced changes in soil CO2 efflux. It first transforms the expression for soil respiration into a form suppressing the influence of soil carbon pool dynamics and then uses the transformed expression to infer the parameters of environmental sensitivities. LRF works best for high-frequency soil respiration measurements and thus is particularly suitable for analyzing time series produced by automated soil chambers and from soil incubation experiments. We evaluated the validity of LRF with both simulated (with a multipool soil organic carbon model driven by realistic plant litter input scenarios) and measured (with automated soil chambers) time series of soil respiration. LRF accurately retrieved the true temperature sensitivity from the simulated heterotrophic soil respiration while the conventional approach failed to do so. The simulation also revealed that LRF performed better than the conventional approach when a direct photosynthetic signal existed in the time series of soil respiration although even LRF could not completely eliminate the interference of photosynthetic contribution for estimating the true temperature sensitivity. Importantly, the simulation on the photosynthetic influence reproduced a typical seasonal pattern of apparent temperature sensitivity reported in the literature: higher sensitivity in winter (dormant season) and lower sensitivity in summer (growing season). Such pattern has been interpreted as an indication of temperature acclimation of soil respiration by previous studies. Our simulation now indicated that that interpretation may be incorrect. The

  13. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall

  14. Soil respiration partition and its components in the total agro-ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  15. Field-Scale Partitioning of Ecosystem Respiration Components Suggests Carbon Stabilization in a Bioenergy Grass Ecosystem

    NASA Astrophysics Data System (ADS)

    Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2014-12-01

    Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.

  16. The Effects of Long Term Nitrogen Fertilization on Soil Respiration in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Allen, J.; Denning, S.; Baron, J.

    2015-12-01

    Anthropogenic activities contribute to increased levels of nitrogen deposition and elevated CO2 concentrations in terrestrial ecosystems. The role that soils play in biogeochemical cycles is an important area of uncertainty in ecosystem ecology. One of the main reasons for this uncertainty is that we have limited understanding of belowground microbial activity and how this activity is linked to soil processes. In particular, elevated CO2 may influence soil nitrogen processes that regulate nitrogen availability to plants. Warming and nitrogen fertilization may both contribute to loss of stored carbon from mountain ecosystems, because they contribute to microbial decomposition of organic matter. To study the effects of long-term nitrogen fertilization on soil respiration, we analyzed results from a 25-year field experiment in Rocky Mountain National Park. Field treatments are in old growth Engelmann spruce forests. Soil respiration responses to the effects of nitrogen fertilization on soil carbon cycling, via respiration, were investigated during the 2013 growing season. Soil moisture, temperature, and respiration rates were measured in six 30 x 30 m plots, of the six plots three are fertilized with 25 kg N ha-1 yr-1 as ammonium nitrate (NH4NO3) pellets and three receives ambient atmospheric nitrogen deposition (1-6 kg N/ha/yr) in Rocky Mountain National Park. We found that respirations rates in the fertilized plots were not significantly higher than respiration rates in the unfertilized plots. We speculate that acclimation to long-term fertilization and relatively high levels of nitrogen deposition in the control plots both contribute to the insensitivity of soil respiration to fertilization at this site.

  17. Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2

    SciTech Connect

    Gu, Lianhong; Van Gorsel, Eva; Leuning, Ray; Delpierre, Nicolas; Black, Andy; Chen, Baozhang; Munger, J. William; Wofsy, Steve; Aubinet, M.

    2009-11-01

    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397 403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime

  18. Plants Study Guide.

    ERIC Educational Resources Information Center

    Brynildson, Inga

    This study quide is intended to provide students with information about the types and functions of plants, along with some individual learning activities. The guide contains sections about: (1) the contributions of plants to life on earth and the benefits they afford to humanity; (2) the processes of photosynthesis and respiration; (3) the flow of…

  19. Influence of Light Intensity at Different Temperatures on Rate of Respiration of Douglas-Fir Seedlings

    PubMed Central

    Brix, Holger

    1968-01-01

    The rate of photorespiration of Douglas-fir seedlings was measured under different light intensities by: (1) extrapolating the curve for CO2 uptake in relation to atmospheric CO2 content to zero CO2 content, and (2) measuring CO2 evolution of the plants into a CO2-free airstream. Different results, obtained from these techniques, were believed to be caused by a severe restriction of the photosynthetic activity when the latter was used. With the first method, CO2 evolution was lower than the dark respiration rate at low light intensity. For all temperatures studied (6°, 20°, 28°) a further increase in light intensity raised the CO2 evolution above dark respiration before it leveled off. The rate of CO2 evolution was stimulated by increase in temperature at all light intensities. With the CO2-free air method, CO2 evolution in the light was less than dark respiration at all light intensities. PMID:16656775

  20. Respiration rate in maize roots is related to concentration of reduced nitrogen and proliferation of lateral roots

    NASA Technical Reports Server (NTRS)

    Granato, T. C.; Raper, C. D. Jr; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    The relationship between specific rate of respiration (respiration rate per unit root dry weight) and concentration of reduced nitrogen was examined for maize (Zea mays L.) roots. Plants with 2 primary nodal root axes were grown for 8 days in a split-root hydroponic system in which NO3- was supplied to both axes at 1.0 mol m-3, to one axis at 1.0 mol m-3 and the other axis at 0.0 mol m-3, or to both axes at 0.0 mol m-3. Respiration rates and root characteristics were measured at 2-day intervals. Specific rate of respiration was positively correlated in a nonlinear relationship with concentration of reduced nitrogen. The lowest specific rates of respiration occurred when neither axis received exogenous NO3- and the concentration of reduced nitrogen in the axes was less than 9 mg g-1. The greatest rates occurred in axes that were actively absorbing NO3- and contained more than 35 mg g-1 of reduced nitrogen. At 23 mg g-1 of reduced nitrogen, below which initiation of lateral branches was decreased by 30-50%, specific rate of respiration was 17% greater for roots actively absorbing NO3- than for roots not absorbing NO3-. Increases in specific rate of respiration associated with concentrations of reduced nitrogen greater than 23 mg g-1 were concluded to be attributable primarily to proliferation of lateral branches.

  1. The response of soil carbon cycling in managed loblolly pine forests to fertilization and the planting of families with differing growth rates

    NASA Astrophysics Data System (ADS)

    Vogel, J. G.; Schuur, E. A.; Gill, C.; Bracho, R.; Jokela, E.

    2010-12-01

    Forest management practices in the southern United States have made the pine forests of the region some of the most productive in the world. This remarkable productivity makes the region attractive for offsetting anthropogenic emissions of CO2 through increased biomass capture, or through the biomass-to-fuel approach. In other agricultural systems, however, increased plant productivity from management has often corresponded to a decrease in soil carbon. Over half of a forest ecosystem’s carbon is found in the soil; therefore a decrease in soil carbon could counteract a considerable amount of the reduction in atmospheric CO2 that results from enhanced tree growth. We have examined two forestry practices, fertilization with nitrogen and phosphorus and the genetic control of planted seedlings, in terms of how these practices affect key controls on soil carbon cycling. Root biomass dynamics, soil CO2 efflux, and microbial respiration were contrasted for a “fast” and a “slow” growing family of loblolly pine receiving two different levels of fertilization at two sites in north central Florida. Our overarching hypothesis was that greater aboveground growth would correspond to increased inputs of carbon to the soil as root biomass, and a greater efflux of CO2 from roots and soil microbes. At both sites, the faster growing families supported significantly (p<0.05) more fine root biomass (<1 mm diameter) under low fertilization than did the slow growing families. However under higher levels of fertilization, the fast and the slow growing families had similar levels of fine root biomass and soil CO2 efflux. Results from this study suggest that greater aboveground growth due to genetic selection only related to greater inputs of carbon to the soil when fertilization levels were low. Radiocarbon measurements of microbial respiration indicated no differences in soil organic matter turnover among families or fertilization treatments. These results suggest that the

  2. BOREAS TE-2 Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. BOREAS TE-2 Continuous Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. BOREAS TE-2 Foliage Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Hall, Forrest G. (Editor); Lavigne, Michael; Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of foliar respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Carbon dioxide fixation and respiration relationships observed during closure experiments in Biosphere 2

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William; Allen, John P.

    Biosphere 2 enclosed several ecosystems - ones analogous to rainforest, tropical savannah, thornscrub, desert, marsh and coral reef - and a diverse agro-ecology, with dozens of food crops, in virtual material isolation from Earth's environment. This permits a detailed examination of fixation and respiration from the continuous record of carbon dioxide concentration from sensors inside the facility. Unlike the Earth, all the ecosystems were active during sunlight hours, while phyto and soil respiration dominated nighttime hours. This resulted in fluctuations of as much as 600-700 ppm CO2 daily during days of high sunlight input. We examine the relationships between daytime fixation as driven by photosynthesis to nighttime respiration and also fixation and respiration as related to carbon dioxide concentration. Since carbon dioxide concentrations varied from near Earth ambient levels to over 3000 ppm (during low-light winter months), the response of the plant communities and impact on phytorespiration and soil respiration may be of relevance to the global climate change research community. An investigation of these dynamics will also allow the testing of models predicting the response of community metabolism to variations in sunlight and degree of previous net carbon fixation.

  7. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    PubMed

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  8. Comparative Assessment of the Effect of Synthetic and Natural Fungicides on Soil Respiration

    PubMed Central

    Stefani, Angelo; Felício, Joanna D’Arc; de Andréa, Mara M.

    2012-01-01

    As toxic pesticide residues may persist in agricultural soils and cause environmental pollution, research on natural fungicides to replace the synthetic compounds is currently increasing. The effect of the synthetic fungicide chlorothalonil and a natural potential fungicide on the soil microbial activity was evaluated here by the substrate-induced respiration by addition of glucose (SIR), as bioindicator in two soils (Eutrophic Humic Gley—GHE and Typic Eutroferric Chernosol—AVEC). The induced soil respiration parameter was followed during 28 days after soil treatment either with chlorathalonil (11 μg·g−1), or the methanolic fraction from Polymnia sonchifolia extraction (300 μg·g−1), and 14C-glucose (4.0 mg and 5.18 Bq of 14C-glucose g−1). The 14C-CO2 produced by the microbial respiration was trapped in NaOH (0.1 M) which was changed each two hours during the first 10 h, and 1, 3, 5, 7, 14 and 28 days after the treatments. The methanolic fraction of the plant extract inhibited (2.2%) and stimulated (1.8%) the respiration of GHE and AVEC, respectively, but the synthetic chlorothalonil caused 16.4% and 2.6% inhibition of the respiration, respectively of the GHE and AVEC soils. As the effects of the natural product were statistically small, this bioindicator indicates that the methanolic fraction of the Polymnia sonchifolia extract, which has fungicide properties, has no environmental effects. PMID:22737005

  9. Effects of forest age on soil autotrophic and heterotrophic respiration differ between evergreen and deciduous forests.

    PubMed

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Yang, Yuanhe; Zeng, Hui

    2013-01-01

    We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ~15, ~25, and ~35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ~15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ~35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required.

  10. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.

  11. Plant intentionality and the phenomenological framework of plant intelligence

    PubMed Central

    Marder, Michael

    2012-01-01

    This article aims to bridge phenomenology and the study of plant intelligence with the view to enriching both disciplines. Besides considering the world from the perspective of sessile organisms, it would be necessary, in keeping with the phenomenological framework, to rethink (1) the meaning of being-sessile and being-in-a-place; (2) the concepts of sentience and attention; (3) how aboveground and underground environments appear to plants; (4) the significance of modular development for our understanding of intelligence; and (5) the concept of communication within and between plants and plant tissues. What emerges from these discussions is the image of a mind embodied in plant life. PMID:22951403

  12. Effects of Long-Term Trampling on the Above-Ground Forest Vegetation and Soil Seed Bank at the Base of Limestone Cliffs

    NASA Astrophysics Data System (ADS)

    Rusterholz, Hans-Peter; Verhoustraeten, Christine; Baur, Bruno

    2011-11-01

    Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.

  13. Effects of long-term trampling on the above-ground forest vegetation and soil seed bank at the base of limestone cliffs.

    PubMed

    Rusterholz, Hans-Peter; Verhoustraeten, Christine; Baur, Bruno

    2011-11-01

    Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.

  14. Soil texture drives responses of soil respiration to precipitation pulses in the sonoran desert: Implications for climate change

    USGS Publications Warehouse

    Cable, J.M.; Ogle, K.; Williams, D.G.; Weltzin, J.F.; Huxman, T. E.

    2008-01-01

    Climate change predictions for the desert southwestern U.S. are for shifts in precipitation patterns. The impacts of climate change may be significant, because desert soil processes are strongly controlled by precipitation inputs ('pulses') via their effect on soil water availability. This study examined the response of soil respiration-an important biological process that affects soil carbon (C) storage-to variation in pulses representative of climate change scenarios for the Sonoran Desert. Because deserts are mosaics of different plant cover types and soil textures-which create patchiness in soil respiration-we examined how these landscape characteristics interact to affect the response of soil respiration to pulses. Pulses were applied to experimental plots of bare and vegetated soil on contrasting soil textures typical of Sonoran Desert grasslands. The data were analyzed within a Bayesian framework to: (1) determine pulse size and antecedent moisture (soil moisture prior to the pulse) effects on soil respiration, (2) quantify soil texture (coarse vs. fine) and cover type (bare vs. vegetated) effects on the response of soil respiration and its components (plant vs. microbial) to pulses, and (3) explore the relationship between long-term variation in pulse regimes and seasonal soil respiration. Regarding objective (1), larger pulses resulted in higher respiration rates, particularly from vegetated fine-textured soil, and dry antecedent conditions amplified respiration responses to pulses (wet antecedent conditions dampened the pulse response). Regarding (2), autotrophic (plant) activity was a significant source (???60%) of respiration and was more sensitive to pulses on coarse- versus fine-textured soils. The sensitivity of heterotrophic (microbial) respiration to pulses was highly dependent on antecedent soil water. Regarding (3), seasonal soil respiration was predicted to increase with both growing season precipitation and mean pulse size (but only for pulses

  15. Allometric constraints on, and trade-offs in, belowground carbon allocation and their control of soil respiration across global forest ecosystems.

    PubMed

    Chen, Guangshui; Yang, Yusheng; Robinson, David

    2014-05-01

    To fully understand how soil respiration is partitioned among its component fluxes and responds to climate, it is essential to relate it to belowground carbon allocation, the ultimate carbon source for soil respiration. This remains one of the largest gaps in knowledge of terrestrial carbon cycling. Here, we synthesize data on gross and net primary production and their components, and soil respiration and its components, from a global forest database, to determine mechanisms governing belowground carbon allocation and their relationship with soil respiration partitioning and soil respiration responses to climatic factors across global forest ecosystems. Our results revealed that there are three independent mechanisms controlling belowground carbon allocation and which influence soil respiration and its partitioning: an allometric constraint; a fine-root production vs. root respiration trade-off; and an above- vs. belowground trade-off in plant carbon. Global patterns in soil respiration and its partitioning are constrained primarily by the allometric allocation, which explains some of the previously ambiguous results reported in the literature. Responses of soil respiration and its components to mean annual temperature, precipitation, and nitrogen deposition can be mediated by changes in belowground carbon allocation. Soil respiration responds to mean annual temperature overwhelmingly through an increasing belowground carbon input as a result of extending total day length of growing season, but not by temperature-driven acceleration of soil carbon decomposition, which argues against the possibility of a strong positive feedback between global warming and soil carbon loss. Different nitrogen loads can trigger distinct belowground carbon allocation mechanisms, which are responsible for different responses of soil respiration to nitrogen addition that have been observed. These results provide new insights into belowground carbon allocation, partitioning of soil

  16. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  17. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  18. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  19. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  20. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  1. Respiration patterns of resting wasps (Vespula sp.).

    PubMed

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-04-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9-42.4°C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst-burst type at low ambient temperatures (Ta<5°C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31°C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7°C to 74 mHz at 39.7°C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g(-1)cycle(-1). A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements.

  2. 78 FR 18535 - Respirator Certification Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES 42 CFR Part 84 RIN 0920-AA42 Respirator Certification Fees AGENCY: Centers for Disease... and Human Services (HHS) proposes to revise the fee structure currently used by the National Institute... number). SUPPLEMENTARY INFORMATION: This proposed rule is designed to establish fees for the...

  3. Development of conformal respirator monitoring technology

    SciTech Connect

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  4. Electrophrenic respiration in patients with high quadriplegia.

    PubMed

    Sharkey, P C; Halter, J A; Nakajima, K

    1989-04-01

    After determining that 15 patients with high spinal cord injuries who were permanently apneic had viable phrenic nerves, electrophrenic respiration units were implanted. Thirteen of the patients (86%) achieved full-time respiration and two more achieved half-time respiration. Despite the loss of 8 patients to unrelated problems, 7 now use electrophrenic respiration continuously, one having done so for 16 years. The patient selection criteria, neurophysiological evaluation method, surgical procedure, postoperative care, and methods for diagnosis of system failures are presented. A comparison of the cervical and thoracic procedures is made. The cervical approach is preferred. Complications consisted primarily of equipment failures. For the external components there were several cases of antenna connection and battery connection failures. The implanted receivers failed in 6 cases with an average lifetime of 48 months, ranging from 24 to 108 months. In one case fibrosis around the electrode resulted in failure to stimulate the phrenic nerve effectively. In another case, infection required removal of the system which was reimplanted later and has continued to provide successful ventilation.

  5. Effects of cadmium on heart mitochondrial respiration

    SciTech Connect

    Kisling, G.M.; Kopp, S.J.; Paulson, D.J.; Tow, J.P.

    1986-03-01

    The purpose of this study was to determine the direct effect of cadmium on isolated heart mitochondrial respiration. Mitochondria were rapidly prepared by polytroning hearts from male Sprague-Dawley rats in a 0.25 M Sucrose, 4 mM Tris, 1 mM EGTA, 0.2% BSA buffer (pH 7.4), followed by a two-part differential centrifugation. Mitochondria were resuspended in this same Tris-sucrose-BSA buffer minus EGTA and mitochondrial respiration was assayed using a Clark oxygen electrode system at a concentration of 0.5 mg total mitochondrial protein/ml assay buffer. At 5 x 10/sup -6/ M cadmium, mitochondrial state 3 respiration (pyruvate plus malate) was reduced to a level 74.8% of the control value. A 50% reduction in state 3 respiratory rate was achieved at a cadmium concentration of 8.75 x 10/sup -6/ M. The respiratory control ratio did not change significantly but at higher cadmium concentrations (< greater than or equal to 1.25 x 10/sup -5/ M) the ADP/O ratio was increased. None of the cadmium concentrations tested, from 10/sup -8/ to 10/sup -4/ M, demonstrated an uncoupling response. These data suggest that cadmium acts strictly as an inhibitor of heart mitochondrial oxidative phosphorylation. These results contrast those of earlier work involving liver mitochondria in which cadmium was reported to uncouple mitochondrial respiration.

  6. Estimating Canopy Dark Respiration for Crop Models

    NASA Technical Reports Server (NTRS)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  7. A study on estimation of aboveground wet biomass based on the microwave vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation biomass is an important parameter in the carbon cycle study. In this paper, a new technique to estimate aboveground vegetation wet biomass based on the Microwave Vegetation Indices (MVIs), which are computed through the observed brightness temperature of AMSR-E/Aqua under two adjacent fre...

  8. Impact of predatory carabids on below- and aboveground pests and yield in strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of adult carabid beetles on below- and above-ground pests and fruit yield was examined in a two-year strawberry field study. Plots (2 m x 2 m) enclosed with barriers were used to augment or exclude adult carabids, and compared to open control plots. Pterostichus melanarius was the predo...

  9. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of many dryland vegetation species are expected to shift based on predictions of future increases in global temperatures. Quantifying aboveground biomass in dryland systems is important for assessing global carbon storage and monitoring the presence and distribution of these rapidl...

  10. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  11. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  12. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].

    PubMed

    Tang, Yi; Jiang, De-ming; Chen, Zhuo; Toshio, Oshida

    2011-08-01

    Elm sparse woodland steppe plays an important role in vegetation restoration and landscape protection in Horqin Sandy Land. In this paper, a two-factor and two-level field experiment was conducted to explore the effects of aboveground and belowground competition between grass and tree on the growth of elm seedlings in the Sandy Land. Five aspects were considered, i.e., seedling biomass, belowground biomass/aboveground biomass, stem height, ratio of root to stem, and leaf number. For the one-year-old elm seedlings, their biomass showed a trend of no competition > aboveground competition > full competition > belowground competition, belowground biomass / aboveground biomass showed a trend of belowground competition > full competition > no competition > aboveground competition, stem height showed a trend of aboveground competition > no competition > full competition > belowground competition, root/stem ratio showed a trend of belowground competition > full competition > no competition > aboveground competition, and leaf number showed a trend of aboveground competition > no competition > belowground competition > full competition. Belowground competition had significant effects on the growth of one-year-old elm seedlings, while aboveground competition did not have. Neither belowground competition nor aboveground competition had significant effects on the growth of two-year-old elm seedlings. It was suggested that in Horqin Sandy Land, grass affected the growth of elm seedlings mainly via below-ground competition, but the belowground competition didn' t affect the resource allocation of elm seedlings. With the age increase of elm seedlings, the effects of grass competition on the growth of elm seedlings became weaker.

  13. Mitochondrial alternative oxidase maintains respiration and preserves photosynthetic capacity during moderate drought in Nicotiana tabacum.

    PubMed

    Dahal, Keshav; Wang, Jia; Martyn, Greg D; Rahimy, Farkhunda; Vanlerberghe, Greg C

    2014-11-01

    The mitochondrial electron transport chain includes an alternative oxidase (AOX) that is hypothesized to aid photosynthetic metabolism, perhaps by acting as an additional electron sink for photogenerated reductant or by dampening the generation of reactive oxygen species. Gas exchange, chlorophyll fluorescence, photosystem I (PSI) absorbance, and biochemical and protein analyses were used to compare respiration and photosynthesis of Nicotiana tabacum 'Petit Havana SR1' wild-type plants with that of transgenic AOX knockdown (RNA interference) and overexpression lines, under both well-watered and moderate drought-stressed conditions. During drought, AOX knockdown lines displayed a lower rate of respiration in the light than the wild type, as confirmed by two independent methods. Furthermore, CO2 and light response curves indicated a nonstomatal limitation of photosynthesis in the knockdowns during drought, relative to the wild type. Also relative to the wild type, the knockdowns under drought maintained PSI and PSII in a more reduced redox state, showed greater regulated nonphotochemical energy quenching by PSII, and displayed a higher relative rate of cyclic electron transport around PSI. The origin of these differences may lie in the chloroplast ATP synthase amount, which declined dramatically in the knockdowns in response to drought. None of these effects were seen in plants overexpressing AOX. The results show that AOX is necessary to maintain mitochondrial respiration during moderate drought. In its absence, respiration rate slows and the lack of this electron sink feeds back on the photosynthetic apparatus, resulting in a loss of chloroplast ATP synthase that then limits photosynthetic capacity.

  14. Net photosynthesis and respiration of sago pondweed (Potamogeton pectinatus) exposed to herbicides

    USGS Publications Warehouse

    Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Hughes, Jane S.; Biddinger, Gregory R.; Mones, Eugene

    1995-01-01

    We determined net photosynthesis and respiration rates for sago pondweed (potamogeton pectinatus) exposed to various concentrations of 11 herbicides widely used in Maryland during the past decade. Net photosynthesis and respiration were determined by measuring changes in the. oxygen content of solutions containing dilutions of technical grade herbicides. At 20-22? C and 58 umol/m2/sec of photosynthetically active radiation (PAR), oxygen production of undosed plants averaged 0.72-2.03 mg/g fresh wt/h. Respiration rates of undosed plants averaged 0.46-0.60 mg O2/g fresh wt/h. Nominal herbicide concentrations (ng/L) that reduced net photosynthesis by 5O percent (IC5O) were: metribuzin, 8; atrazine, 29; cyanazine, 32; linuron, 70; simazine, 164; and paraquat, 240. IC5O values for 2,4-D, acifluorfen, glyphosate and metolachlor exceeded the maximum test concentration of 10,000 ng/L. The IC5O value for alachlor was estimated to be between 1,000 and 10,000 ng/L. None of the herbicides tested had a significant effect on dark respiration.

  15. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    USGS Publications Warehouse

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  16. Identifying dominant sources of respirable suspended particulates in Guangzhou, China

    SciTech Connect

    Song, Y.; Dai, W.; Wang, X.S.; Cui, M.M.; Su, H.; Xie, S.D.; Zhang, Y.H.

    2008-09-15

    Respirable suspended particulates (RSP, i.e., particles with an aerodynamic diameter of 10 {mu} m or less) were measured in 2004 and 2005 at seven sites in the rapidly developing Guangzhou area of China. The average RSP concentration was 126 {mu} g m{sup -3}, a high level that could be very harmful to human health. The chemical species composition of the RSP, including organic and elemental carbon, water-soluble ions, and elemental compositions, was also analyzed. The organics and sulfate may be the major components of RSP mass concentrations. Positive matrix factorization (PMF) was used to identify the sources of RSP as secondary sulfates (32%), secondary nitrates (6%), biomass burning (15%), coal fly ash/cement (18%), sea salt (3%), crustal dust (5%), vehicle exhaust (6%), and coal-fired power plants (3%). Reducing coal combustion and controlling vehicle emissions would alleviate RSP pollution, as most of the precursors were components of coal burning emissions and vehicular exhaust.

  17. Comparative damage to alveolar macrophages after phagocytosis of respirable particles

    SciTech Connect

    Hill, J.O.; Gray, R.H.; DeNee, P.B.; Newton, G.J.

    1982-02-01

    Backscatter electron and secondary electron imaging were used in a scanning electron microscope study of the in vitro toxic effects of particles ingested by alveolar macrophages. Relatively nontoxic aluminosilicate fly ash particles from the Mount St. Helens eruption and from a coal-fired power plant as well as toxic quartz particles from the Westphalia (Germany) mine deposits were readily taken up by macrophages. The presence of fly ash particles inside the cells was not associated with any changes in surface morphology. The presence of intracellular quartz particles, on the other hand, was correlated with damage to the cell membrane as determined by alterations in surface morphology, uptake of trypan blue, and release of the cytoplasmic enzyme, lactate dehydrogenase. The use of backscatter electron imaging is useful in scanning electron microscope studies which attempt to establish cause and effect relationships between exposure to respirable particles and the morphological and cytotoxic response.

  18. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  19. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  20. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  1. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  2. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  3. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  4. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable...

  5. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  6. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  7. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  8. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  9. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators: description. 84.190... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical...

  10. Aboveground and belowground effects of single-tree removals in New Zealand rain forest.

    PubMed

    Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M

    2008-05-01

    There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set