Science.gov

Sample records for abrasion resistance adhesion

  1. Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.

    2010-07-01

    Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.

  2. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  3. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  4. Abrasion resistant composition

    SciTech Connect

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  5. Abrasion resistance of linings in filament wound composite pipe

    SciTech Connect

    Hall, S.C.

    1999-07-01

    Fiberglass filament wound composite pipe has numerous industrial applications including transportation of petroleum and natural gas. Its corrosion resistance is well known but it can be susceptible to abrasion and erosion when it is used to transport slurries or dry gas containing sand particles. However, composite pipe can be manufactured integrally with abrasion resistant linings which protect the pipe from abrasion and erosion and increase its life. Laboratory investigations were performed to determine the effect of abrasive flows through polyurea-lined and unlined glass-reinforced epoxy (GRE) pipe, ultra-high molecular weight (UHMW) polyethylene (PE) pipe, and unlined steel pipe. Results are provided for the abrasion resistance, chemical resistance, adhesion strength, elongation, tensile strength, impact resistance and hardness of selected linings. The abrasion resistance of polyurea-lined composite pipe proved to be almost as resistant to abrasion and erosion as unlined steel pipe without the electrochemical corrosion associated with steel pipe.

  6. Transparent, abrasion resistant coating compositions

    SciTech Connect

    Ashlock, L.T.; Mukamal, H.; White, W.H.

    1985-02-19

    There is disclosed transparent, abrasion resistant coating compositions comprising a colloidal dispersion of a water insoluble dispersant in a water-alcohol solution of the partial condensate of silanol wherein the dispersant comprises metals, alloys and salts thereof.

  7. Abrasion-resistant antireflective coating for polycarbonate

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1978-01-01

    Following plasma-polymerization technique, treatment in oxygen glow discharge further enhances abrasion resistance and transmission. Improvement in abrasion resistance was shown by measuring percentage of haze resulting from abrasion. Coating samples were analyzed for abrasion using standard fresh rubber eraser. Other tests included spectra measurements and elemental analysis with spectrometers and spectrophotometers.

  8. Abrasion resistance of medical glove materials.

    PubMed

    Walsh, Donna L; Schwerin, Matthew R; Kisielewski, Richard W; Kotz, Richard M; Chaput, Maria P; Varney, George W; To, Theresa M

    2004-01-15

    Due to the increasing demand for nonlatex medical gloves in the health-care community, there is a need to assess the durability of alternative glove materials. This study examines durability characteristics of various glove materials by abrasion resistance testing. Natural rubber latex (latex), polyvinyl chloride (vinyl), acrylonitrile butadiene (nitrile), polychloroprene (neoprene), and a styrene-ethylene/butylene-styrene block copolymer (SEBS) were tested. All test specimens, with the exception of the vinyl, were obtained from surgical gloves. Unaged out-of-the-box specimens as well as those subjected to various degrees of artificial aging were included in the study. After the abrasion sequence, the barrier integrity of the material was assessed through the use of a static leak test. Other traditional tests performed on these materials were viral penetration to validate the abrasion data and tear testing for comparative purposes. The results indicate that specific glove-material performance is dependent upon the particular test under consideration. Most notably, abrasion, even in controlled nonsevere conditions, may compromise to varying degrees the barrier integrity of latex, vinyl, SEBS, nitrile, and neoprene glove materials. However, as evidenced by the results of testing three brands of neoprene gloves, the abrasion resistance of any one glove material may be significantly affected by variations in production processes. PMID:14689500

  9. A novel approach to abrasion resistance

    SciTech Connect

    Steele, W.A.; Mohr, P.B.; Leider, H.R.; Hirschfeld, T.B.

    1988-03-01

    The high abrasion and impact loads characteristic of many technologies require frequent maintenance or special materials. Conventional approaches to protection have used either extremely hard coatings or complaint elastomeric coatings. The former are typically ceramic or ceramic-like surfaces produced by direct deposition or by in situ formation by oxidation, carburization or nitriding. Ceramic coatings are very good against abrasion, but are vulnerable to impact damage. Elastomeric coatings have excellent impact resistance and are capable of withstanding deformation; however, they are limited in thermal range and chemical resistance. It is possible to combine the desirable properties of both types by using ''hair,'' a structure in which an extremely hard material can be simultaneously elastic and compliant by virture of a very high L/D ratio. We have demonstrated the good performance of carbon fiber ''hair'' in resisting damage from impacting particles and have identified a probable failure mechanism. 7 refs., 6 figs., 1 tab.

  10. Abrasion resistant track shoe grouser

    SciTech Connect

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  11. Plasma-polymerized coating for polycarbonate: Single-layer, abrasion resistant, and antireflection

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore

    1991-01-01

    Plasma-polymerized vinyl trimethoxy silane films were deposited on transparent polycarbonate substrates. The adherent, clear films protected the substrates from abrasion and also served as antireflection coatings. Post-treatment of the vinyl trimethoxy silane films in an oxygen glow discharge further improved their abrasion resistance. The coatings were characterized by elemental analysis of the bulk, ESCA analysis of the surface, transmission, thickness, abrasion resistance, haze, and adhesion. This patented process is currently used by the world's largest manufacturers of non-prescription sunglasses to protect the plastic glasses from scratching and thereby to increase their useful lifetime.

  12. Abrasion-Resistant Technology and its Prospect for CFB Boilers

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y. J.; Wang, L. J.; Liu, S. H.; Dou, Q. R.

    In recent years, CFB boilers (CFBB) have been widely used in the commercial power plants due to its environmental benefits, high combustion efficiency, wide coal flexibility, and some other advantages. At the same time, the abrasion problem, the greatest weakness of this kind of boiler, has been gradually exposed in its application process. The abrasion, particularly on key parts such as the heating surface of water-cooled wall, furnace corners, separator entrance, seriously restricts the long-period operation ability of the CFBB. This article discusses current development status for various abrasion resistant refractory materials used in a CFBB. Some comments are provided for developing new high-performance abrasion resistant refractory materials and rapid-repaired materials according to the abrasion principle and the abrasion on different parts, as well as the economical and environmental requirements for the material. The abrasion solution and operation period of CFBB can be better improved given realization.

  13. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  14. Basic research needs and opportunities at the solid-solid interface - Adhesion, abrasion and polymer coatings

    NASA Astrophysics Data System (ADS)

    Fowkes, F. M.; Butler, B. L.; Schissel, P.; Butler, G. B.; Hartman, J. S.; Hoffman, R. W.; Inal, O. T.; Miller, W. G.; Tompkins, H. G.; Delollis, N. J.

    1982-04-01

    Solid-solid interfaces in solar technologies such as photovoltaics, mirrored surfaces, and absorbers in flate plate collectors are examined theoretically along with degradation and protective measures. The energetics of adhesion are modeled in terms of intermolecular forces such as covalent and electrostatic bonds. Finite element analyses are noted to be useful for calculating the stress fields in layered solar cells, although inclusion of plastic flow and relaxation processes is not yet possible. The effects of physical degradation of protective coatings and front surfaces of reflectors are outlined, and research in abrasion-erosion resistance, particulate deposition resistance, and detergents for washing solar surfaces is indicated. Finally, polymeric coatings are discussed for solar cells and for wind turbine blades for providing environmental protection.

  15. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    SciTech Connect

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  16. Erosion, cavitation, and abrasion resistance of choke trim materials

    SciTech Connect

    Seger, F.O.; Maroofian, I.

    1984-05-01

    An experimental investigation was performed to determine the relative erosion, abrasion and cavitation resistance characteristics of selected materials. Testing was conducted under controlled laboratory conditions to simulate service conditions encountered in production and injection chokes. The testing effort is ongoing. The data accumulated allow informed material selection of conventional and novel trim for all chokes, valves, flow metering orifices, fixed beans and other devices used during drilling, completion and production of offshore and onshore oil and gas wells. Sintered silicon carbide, and tungsten carbide with minimum binder content were the most erosion and abrasion resistant of the materials tested. Cobalt base alloys bar and nickelchrome alloy 625 bar proved to be most cavitation resistant.

  17. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  18. Adhesive interfaces of enamel and dentin prepared by air-abrasion at different distances

    NASA Astrophysics Data System (ADS)

    Chinelatti, Michelle Alexandra; do Amaral, Thais Helena Andreolli; Borsatto, Maria Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-03-01

    The purpose of this study was to analyse, by scanning electron microscopy (SEM), the morphology of enamel and dentin/adhesive interfaces in cavities prepared by air-abrasion at different working distances. Thirty sound third human molars were selected and, on both their buccal and lingual surfaces, class V cavities were prepared by air-abrasion, at 2-, 4-, 6-, 8- and 10-mm working distances, or high-speed bur (control group). After preparation, all cavities were etched with 35% phosphoric acid gel and restored with Single Bond/Filtek Z-250. Buccal and lingual surfaces were separated and restorations sectioned in a buccolingual direction, providing two sections of each cavity, which were analysed by scanning electron microscopy. It was observed that the distances of 6 and 8 mm promoted more homogeneous dentin/adhesive interfaces, with tags formation, and more uniform for enamel, which were similar to the control group. It may be concluded that the air-abrasion working distance can influence the morphology of enamel and dentin/adhesive interfaces, and the intermediate distances provided better adhesive interfaces.

  19. Effect of consolidation on adhesive and abrasive wear of ultra high molecular weight polyethylene.

    PubMed

    Gul, Rizwan M; McGarry, Frederick J; Bragdon, Charles R; Muratoglu, Orhun K; Harris, William H

    2003-08-01

    Total hip replacement (THR) is widely performed to recover hip joint functions lost by trauma or disease and to relieve pain. The major cause of failure in THR is the wear of the ultra high molecular weight polyethylene (UHMWPE) component. The dominant wear mechanism in THR occurs through adhesion and abrasion. While poor consolidation of UHMWPE is known to increase the incidence of a different damage mode, delamination, which is the dominant wear mechanism in tibial inserts but uncommon in THR, the effect of consolidation on adhesive and abrasive wear of UHMWPE is not clear. In this study UHMWPE resin was subjected to hot isostatic pressing under a pressure of 138MPa at different temperatures (210 degrees C, 250 degrees C, and 300 degrees C) to achieve varying degrees of consolidation. The extent of consolidation was determined by optical microscopy using thin sections, and by scanning electron microscopy using cryofractured and solvent etched specimens. Wear behavior of the samples with varying degree of consolidation was determined using a bi-directional pin-on-disc machine simulating conditions in a hip joint. Increasing the processing temperature decreased the incidence of fusion defects and particle boundaries reflecting the powder flakes of the virgin resin, improving the consolidation. However, the bi-directional pin-on-disc wear rate did not change with the processing temperature, indicating that adhesive and abrasive wear is independent of the extent of consolidation in the range of parameters studied here. PMID:12763446

  20. Heat sealable, flame and abrasion resistant coated fabric

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R. (Inventor)

    1983-01-01

    Flame retardant, abrasion resistant elastomeric compositions are disclosed which are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Heat sealable coated fabrics employing such elastomeric compositions as coating film are produced by dissolving the elastomeric composition to form a solution, casting the solution onto a release paper and drying it to form an elastomeric film. The film is then bonded to a woven, knitted, or felted fabric.

  1. Abrasion resistant coating and method of making the same

    SciTech Connect

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  2. Abrasion Resistant Coating and Method of making the same

    SciTech Connect

    Sordelet, Daniel J.; Besser, Matthew F.

    1999-06-25

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al-Cu-Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  3. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates

    SciTech Connect

    Wen, J.; Jordens, K.; Wilkes, G.L.

    1996-12-31

    Novel abrasion resistant coatings have been successfully prepared by the sol-gel method. These materials are spin coated onto bisphenol-A polycarbonate, diallyl diglycol carbonate resin (CR-39) sheet, aluminum, and steel substrates and are thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that these hybrid organic/inorganic networks partially afford excellent abrasion resistance to the polycarbonate substrates investigated. In addition to having excellent abrasion resistance comparable to current commercial coatings, some newly developed systems are also UV resistant. Similar coating formulations applied to metals can greatly improve the abrasion resistance despite the fact that the coatings are lower in density than their substrates.

  4. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  5. Abrasion-erosion resistance of concrete made with two aggregates, Stonewall Jackson Dam, West Virginia

    NASA Astrophysics Data System (ADS)

    Holland, T. C.

    1983-09-01

    The resistance to abrasion-erosion of two concretes made with different coarse aggregates was evaluated. The aggregates used were selected as being representative of those that may be selected for use during construction of Stonewall Jackson Dam. The two coarse aggregates were limestones from different sources. All other concrete ingredients were identical for the two mixtures. Both concretes showed very high abrasion-erosion losses when tested using the Corps of Engineers standard test method. A recommendation was made that coarse aggregates with better wear-resistant properties be selected for use in areas of the structure that may be subjected to abrasion-erosion.

  6. Abrasion resistance of biaxially oriented polypropylene films coated with nanocomposite hard coatings

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhu, Yaofeng; Fu, Yaqin

    2013-11-01

    KMnO4-treated, functionalized, biaxially oriented polypropylene (BOPP) films coated with nano-silica hybrid material were synthesized. The abrasion resistance of the films was examined using a reciprocating fabric abrasion tester. Functional groups were confirmed by Fourier-transform infrared spectroscopy. Contact angle measurements were performed on the BOPP film surface to quantify the effectiveness of the functionalization. Results indicate that the abrasion resistance and roughness of the composite film were significantly affected by the modification of the BOPP film. Water surface contact angle of the modified BOPP films decreased from 90.1° to 71.4°,when KMnO4 concentration increased from 0 M to 0.25 M. Wettability of the BOPP films clearly improved after KMnO4 treatment. Abrasion resistance of the functionalized films coated with hybrid materials improved by 27.4% compared with that of the original film.

  7. Plasma polymerized coating for polycarbonate: single layer, abrasion resistant, and antireflection.

    PubMed

    Wydeven, T

    1977-03-01

    Plasma polymerized vinyltrimethoxy silane films were deposited on transparent polycarbonate substrates. The adherent, clear films protected the substrates from abrasion and also served as antireflection coatings. Posttreatment of the vinyltrimethoxy silane films in an oxygen glow discharge further improved the abrasion resistance. ESCA (electron spectroscopy for chemical analysis) and ir transmission spectra of some films were recorded, and an elemental analysis of the films was obtained.

  8. Plasma polymerized coating for polycarbonate - Single layer, abrasion resistant, and antireflection

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1977-01-01

    Plasma polymerized vinyltrimethoxy silane films were deposited on transparent polycarbonate substrates. The adherent, clear films protected the substrates from abrasion and also served as antireflection coatings. Posttreatment of the vinyltrimethoxy silane films in an oxygen glow discharge further improved the abrasion resistance. ESCA (electron spectroscopy for chemical analysis) and IR transmission spectra of some films were recorded, and an elemental analysis of the films was obtained.

  9. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    NASA Astrophysics Data System (ADS)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  10. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  11. Quantitative evaluation of the cutting quality and abrasive resistance of scalers.

    PubMed

    Kaya, H; Fujimura, T; Kimura, S

    1995-01-01

    An automatic scaling apparatus that simulated the scaling process of hand instrumentation was developed to quantitatively analyze the cutting quality and abrasive resistance of scalers. We first tested 4 synthetic resins as the abraded material. Of the 4 synthetic resins tested, polycarbonate resin proved most similar to dentin. The effects of lateral scaling forces (700, 500, and 300 dyne) and scaler angles (70 degrees to 95 degrees) on the cutting quality and abrasive resistance of scalers were evaluated quantitatively by the amount of the abraded material worn away in 1,000 strokes. Comparison of the 3 scaling forces showed a greater amount of abrasion at higher force than that at lower force. This suggests that the decrease in the amount due to abrasion could be compensated by increasing the lateral scaling force. Regarding the scaler angle, results indicated that the amount of material removed increased with an increase of the scaler angle up to 70 degrees, but then rapidly decreased at an angle of 90 degrees or more. The most effective scaling angle was 87 degrees, and this was not affected by scaling force. These results suggest that a greater amount of removal could be obtained at a scaling angle of 87 degrees and a scaling force of 700 dyne. The present findings suggested the automatic scaling apparatus could be a useful tool for quantitatively evaluating the cutting quality and abrasive resistance of scalers.

  12. Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm pupa in a rat cecal abrasion model.

    PubMed

    Zhu, Lin; Zhang, Yu-Qing

    2016-04-01

    N,O-Carboxymethyl chitosan (NOCC) can prevent postsurgical adhesion formation. Here, we described the preparation of a novel silkworm pupa NOCC and its effects on the prevention of postoperative adhesion in a rat cecal abrasion model. The degree of deacetylation (DDA) of silkworm pupa chitosan was only 49.87 ± 0.86%; regardless, it was used as the raw material to construct the novel silkworm pupa NOCC, which had a weaker crystallinity than the NOCC standard. Sixty male Sprague-Dawley rats were divided into three groups and treated as follows: 0.9% normal saline solution as a negative control, medical anti-adhesion gel as a positive control and the silkworm pupa NOCC anti-adhesion solution. Two and three weeks after surgery, the animals were killed and the adhesion formation was scored. The silkworm pupa NOCC solution significantly decreased the levels of WBC, TNF-α, IL-1β, IL-2, IL-6 and IL-8 but had no effect on IL-4. Additionally, a lower level of TGF-β1 expression was found in the silkworm pupa NOCC group, and significantly less collagen (P<0.01) and fewer inflammatory cells and fibroblasts were detected in the animals of this group. These results suggested that the novel NOCC from silkworm pupa using the method described here have potential applications in the prevention of postoperative intestinal adhesion. PMID:26838865

  13. Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm pupa in a rat cecal abrasion model.

    PubMed

    Zhu, Lin; Zhang, Yu-Qing

    2016-04-01

    N,O-Carboxymethyl chitosan (NOCC) can prevent postsurgical adhesion formation. Here, we described the preparation of a novel silkworm pupa NOCC and its effects on the prevention of postoperative adhesion in a rat cecal abrasion model. The degree of deacetylation (DDA) of silkworm pupa chitosan was only 49.87 ± 0.86%; regardless, it was used as the raw material to construct the novel silkworm pupa NOCC, which had a weaker crystallinity than the NOCC standard. Sixty male Sprague-Dawley rats were divided into three groups and treated as follows: 0.9% normal saline solution as a negative control, medical anti-adhesion gel as a positive control and the silkworm pupa NOCC anti-adhesion solution. Two and three weeks after surgery, the animals were killed and the adhesion formation was scored. The silkworm pupa NOCC solution significantly decreased the levels of WBC, TNF-α, IL-1β, IL-2, IL-6 and IL-8 but had no effect on IL-4. Additionally, a lower level of TGF-β1 expression was found in the silkworm pupa NOCC group, and significantly less collagen (P<0.01) and fewer inflammatory cells and fibroblasts were detected in the animals of this group. These results suggested that the novel NOCC from silkworm pupa using the method described here have potential applications in the prevention of postoperative intestinal adhesion.

  14. Microstructural influence on abrasive wear resistance of high-strength, high-toughness medium-carbon steels

    SciTech Connect

    Kwok, C.K.; Thomas, G.

    1982-09-01

    A systematic study of abrasive wear resistance of Fe/Cr/Mn experimental steels has been carried out in two-body pin-on-disc abrasion tests. Silicon carbide, alumina, and quartz were used as abrasives. The relationships between microstructures, mechanical properties, and abrasive wear resistance for these experimental steels were studied. In addition, several commercial alloys were tested to provide a basis for comparison. Results show that dislocated lath martensite with continuous interlath film of retained austenite appears to be a desirable microstructure for good wear resistance. Grain refinement by double heat treatment was found to improve the toughness in the experimental steels but have little effect on the abrasive wear resistance. In general, superior tensile properties and wear resistance, without sacrifice in toughness, can be achieved by a lath martensitic microstructure. 8 figures.

  15. Considerations on the European Standard EN 14157 Test Methods: Abrasion Resistance of Natural Stones Used for Flooring in Buildings

    NASA Astrophysics Data System (ADS)

    Karaca, Z.; Günes Yılmaz, N.; Goktan, R. M.

    2012-01-01

    In Europe, the Wide Wheel abrasion (WWA) test and the Böhme abrasion (BA) test are among the most widely used standard test methods for determining abrasion resistance of natural stones, the former being the reference test method in EN 14157 Standard. However, it is stated in the Annex-A (Informative) of EN 14157 Standard that very limited data are available to provide correlations between these two test methods. To be able to fill this gap, in this study, 25 different natural stones belonging to sedimentary, metamorphic and igneous groups were tested for their abrasion resistance as well as physico-mechanical properties. Also, for a better interpretation of abrasion resistance characteristics of the tested stone materials, relationships between abrasion resistance and physico-mechanical properties were statistically examined. A statistically significant linear correlation ( R 2 = 0.85; P value = 0.000) was established between the WWA test and the BA test, which could be used in practice for converting the measured abrasion resistance values from one testing method to another. It was also found that the correlation between these two test methods improved significantly ( R 2 = 0.93; P value = 0.001) when relatively high-porosity stone materials (porosity ≥1%) were separately evaluated. Both methods of abrasion resistance employed in the present study showed statistically significant linear correlations with uniaxial compressive strength and Brazilian tensile strength, the former proving to be a more influencing parameter on resistance to abrasion. Also, from the point view of representing actual abrasion mechanism of stone materials in practice, the necessity of simulating multi-directional foot traffic in abrasion testing methods was discussed. In this respect, the reference test method in the EN 14157 Standard was criticized for not fully meeting this requirement. It was also pointed out that the reference method could have some drawbacks when applied to coarse

  16. Adhesion and wear resistance of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1986-01-01

    Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the wear of the various materials as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact with themselves, both oxide and nonoxide ceramics, diamond, polymers, and inorganic coating compounds, h as diamondlike carbon.

  17. A study of the abrasive resistance of metal alloys with applications in dental prosthetic fixators.

    PubMed

    Gil, F J; Fernández, E; Manero, J M; Planell, J A; Sabrià, J; Cortada, M; Giner, L

    1995-01-01

    Wear is one of the main surface failure mechanisms in materials and it will play a leading role in substitutive dental biomaterials. The aim of the present study is to compare the abrasive wear of different metallic materials used in dental applications. The results show that the abrasive wear of alloys based on precious metals such as Pt, Pd, Au and Ag is higher than for Ti and Ti based alloys. The alloy with the highest wear resistance is the Co-Cr which exhibits as well the highest hardness and Young's modulus. Since the method corresponds to a well-established abrasive wear standard, the behaviour of the different materials can be easily compared.

  18. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  19. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    NASA Astrophysics Data System (ADS)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  20. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  1. Protective, Abrasion-Resistant Coatings With Tailorable Properties

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Because of their light weight and impact resistance, transparent plastic structures are becoming increasingly desirable for use not only on aircraft but also in terrestrial applications such as automotive windshields and ophthalmic lenses. However, plastics are typically soft and scratch readily, reducing their transparency with use. At the NASA Lewis Research Center, reactively deposited aluminum oxide coatings as thin as 12,000 angstroms have been demonstrated to provide improved resistance to most scratches encountered during normal use. The properties of the coating can be adjusted to tailor the surface to meet other needs, such as water shedding. These adjustments can be made during the deposition process so that multiple manufacturing steps are eliminated.

  2. Heat sealable, flame and abrasion resistant coated fabric. [clothing and containers for space exploration

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R. (Inventor)

    1981-01-01

    Flame retardant, abrasion resistant elastomeric compositions are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Coated fabrics employing such elastomeric compositions as coating film are flexible, lightweight, and air impermeable and can be made using heat or dielectric sealing procedures.

  3. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  4. Inorganic-organic hybrid materials and abrasion resistant coatings based on a sol-gel approach

    SciTech Connect

    Betrabet, C.S.

    1993-01-01

    Attempts to synthesize hybrid materials from polytetramethylene oxide (PTMO) end-functionalized with triethoxy silyl groups and, tetraethylorthosilicate (TEOS) under basic conditions met with only partial success. The films obtained had low mechanical stability. In contrast, films with good mechanical stability were obtained when the TEOS was replaced with tritanium tetraisopropoxide (TIOPR). The microstructure of the TIOPR/PTMO hybrid synthesized under near neutral conditions was generally similar to the acid catalyzed PTMO/TIOPR hybrids. In another closely related study, the effect of subjecting acid catalyzed hybrid materials to aqueous and basic solutions was examined. Two chemically different systems were chosen which were namely the PTMO-TEOS system and the PTMO-TIOPR system. In addition to the difference in the reactivity between the TEOS and TIOPR, another point of differentiation was the relative solubility of the silicon oxide in basic aqueous solutions in contrast to the relative insolubility of the titanium oxide species in all but the very concentrated basic solutions. An application of the hybrid materials in the area of abrasion resistant coatings was also studied. The effects of the various organic structures on abrasion resistance, the extent of reaction and the mechanism of abrasion was examined. Various low molecular weight organics were functionalized triethoxy silyl groups and coated on polycarbonate and cured. They were then subjected to a Taber abrader test. The results showed that all the functionalized organics showed better abrasion resistance than the polycarbonate if sufficiently cured. NMR data showed that the reaction of the functionalized coatings was limited by vitrification and the extent of reaction was influenced by the basicity of the organic backbone. SEM observations of the abraded surfaces showed that the polycarbonate was abraded by a mechanism different from the functionalized coatings.

  5. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  6. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    NASA Astrophysics Data System (ADS)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  7. [Relationship between hardness, abrasion and bending strength of UV-polymerizable adhesives].

    PubMed

    Reinhardt, K J; Vahl, J

    1978-04-01

    These experiments were undertaken to explore the influence of hardening on bending and bending strength of photopolymerisable adhesives. It was shown that light sources at present in use only influence the bending strength to a small degree but enable 40% variation in bending. The use of more intensive light sources not yet in commercial use led to further improvements. PMID:274282

  8. Modeling of Abrasion Resistance Performance of Persian Handmade Wool Carpets Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Gupta, Shravan Kumar; Goswami, Kamal Kanti

    2015-10-01

    This paper presents the application of Artificial Neural Network (ANN) modeling for the prediction of abrasion resistance of Persian handmade wool carpets. Four carpet constructional parameters, namely knot density, pile height, number of ply in pile yarn and pile yarn twist have been used as input parameters for ANN model. The prediction performance was judged in terms of statistical parameters like correlation coefficient ( R) and Mean Absolute Percentage Error ( MAPE). Though the training performance of ANN was very good, the generalization ability was not up to the mark. This implies that large number of training data should be used for the adequate training of ANN models.

  9. Preparation and characterization of poly(vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance.

    PubMed

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-06-15

    Membranes with more resilience to abrasive wear are highly desired in water treatment, especially for seawater desalination. Nanocomposite poly(vinylidene fluoride) (PVDF)/nanoclay membranes were prepared by phase inversion and then tested for abrasion resistance. Their material properties were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), tensile testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Nanoclay Cloisite(®) 15A was utilised as the inorganic nanoparticle incorporated into PVDF. FTIR results showed a shifting of the PVDF crystalline phase from α to β thus indicating that the nanoclay altered the PVDF host material's structure and mechanical properties in terms of stiffness and toughness. Water permeation test showed that nanoclay at low concentration tended to reduce water flux. All nanocomposite membranes, with between 1 wt% and 5 wt% initial nanoclay loading, were more abrasion resistant than the control PVDF membrane. However, the 1 wt% exhibited superior resistance, lasting two times longer than the reference PVDF membrane under the same abrasive condition. The 1 wt% nanoclay membrane appeared less abraded by SEM observation, while also having the greatest tensile strength improvement (from 4.5 MPa to 4.9 MPa). This membrane also had the smallest agglomerated nanoclay particle size and highest toughness compared to the higher nanoclay content membranes. Nanoclays are therefore useful for improving abrasion resistance of PVDF membranes, but optimal loadings are essential to avoid losing essential mechanical properties. PMID:24698723

  10. Preparation and characterization of poly(vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance.

    PubMed

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-06-15

    Membranes with more resilience to abrasive wear are highly desired in water treatment, especially for seawater desalination. Nanocomposite poly(vinylidene fluoride) (PVDF)/nanoclay membranes were prepared by phase inversion and then tested for abrasion resistance. Their material properties were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), tensile testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Nanoclay Cloisite(®) 15A was utilised as the inorganic nanoparticle incorporated into PVDF. FTIR results showed a shifting of the PVDF crystalline phase from α to β thus indicating that the nanoclay altered the PVDF host material's structure and mechanical properties in terms of stiffness and toughness. Water permeation test showed that nanoclay at low concentration tended to reduce water flux. All nanocomposite membranes, with between 1 wt% and 5 wt% initial nanoclay loading, were more abrasion resistant than the control PVDF membrane. However, the 1 wt% exhibited superior resistance, lasting two times longer than the reference PVDF membrane under the same abrasive condition. The 1 wt% nanoclay membrane appeared less abraded by SEM observation, while also having the greatest tensile strength improvement (from 4.5 MPa to 4.9 MPa). This membrane also had the smallest agglomerated nanoclay particle size and highest toughness compared to the higher nanoclay content membranes. Nanoclays are therefore useful for improving abrasion resistance of PVDF membranes, but optimal loadings are essential to avoid losing essential mechanical properties.

  11. High-rate deposition of abrasion resistant coatings using a dual-source expanding thermal plasma reactor

    NASA Astrophysics Data System (ADS)

    Schaepkens, M.; Selezneva, S.; Moeleker, P.; Iacovangelo, C. D.

    2003-07-01

    A unique high-rate plasma deposition process has been developed to generate abrasion resistant coatings on polymeric substrates. The process relies on the integration of a plurality of individual expanding thermal plasma sources into a multisource setup. In this work, we will discuss the effects of various hardware and process parameters on the performance of a dual-source system that has been used to apply abrasion resistant coatings to polycarbonate substrates. It will be shown that a properly engineered dual-source system can generate transparent organosilicon-based coatings that provide uniform glasslike abrasion resistance across a 30 cm width on substrates that are laterally translated past the dual-source array.

  12. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo.

  13. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  14. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  15. Adhesion of Resist Micropatterns during Drying after Water Rinse

    NASA Astrophysics Data System (ADS)

    Kawai, Akira

    1995-08-01

    The variation of residual strain in photoresist thin films can be detected by a strain gauge with high sensitivity. The adhesion of resist micropattern during drying after water rinse is studied in terms of the residual strain variation. The residual strain of a resist film varies markedly as water is evaporated from the resist surface. In order to improve the resist adhesion, it is important to decrease the residual strain during the drying process.

  16. ABRASION WEAR RESISTANCE OF DIFFERENT ARTIFICIAL TEETH OPPOSED TO METAL AND COMPOSITE ANTAGONISTS

    PubMed Central

    Mello, Pâmela Carbone; Coppedê, Abílio Ricciardi; Macedo, Ana Paula; de Mattos, Maria da Gloria Chiarello; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2009-01-01

    One of the most important properties of artificial teeth is the abrasion wear resistance, which is determinant in the maintenance of the rehabilitation's occlusal pattern. Objectives: This in vitro study aims to evaluate the abrasion wear resistance of 7 brands of artificial teeth opposed to two types of antagonists. Material and methods: Seven groups were prepared with 12 specimens each (BIOLUX – BL, TRILUX – TR, BLUE DENT – BD, BIOCLER – BC, POSTARIS – PO, ORTHOSIT – OR, GNATHOSTAR – GN), opposed to metallic (M – nickel-chromium alloy), and to composite antagonists (C – Solidex indirect composite). A mechanical loading device was used (240 cycles/min, 4 Hz speed, 10 mm antagonist course). Initial and final contours of each specimen were registered with aid of a profile projector (20x magnification). The linear difference between the two profiles was measured and the registered values were subjected to ANOVA and Tukey's test. Results: Regarding the antagonists, only OR (M = 10.45 ± 1.42 μm and C = 2.77 ± 0.69 μm) and BC (M = 6.70 ± 1.37 μm and C = 4.48 ± 0.80 μm) presented statistically significant differences (p < 0.05). Best results were obtained with PO (C = 2.33 ± 0.91 μm and M = 1.78 ± 0.42 μm), followed by BL (C = 3.70 ± 1.32 μm and M = 3.70 ± 0.61 μm), statistically similar for both antagonists (p>0.05). Greater result variance was obtained with OR, which presented the worse results opposed to Ni-Cr (10.45 ± 1.42 μm), and results similar to the best ones against composite (2.77 ± 0.69 μm). Conclusions: Within the limitations of this study, it may be concluded that the antagonist material is a factor of major importance to be considered in the choice of the artificial teeth to be used in the prosthesis. PMID:19936525

  17. Two-silane chemical vapor deposition treatment of polymer (nylon) and oxide surfaces that yields hydrophobic (and superhydrophobic), abrasion-resistant thin films

    SciTech Connect

    Saini, Gaurav; Sautter, Ken; Hild, Frank E.; Pauley, Jerry; Linford, Matthew R.

    2008-09-15

    This article describes a two-silane, chemical vapor deposition (CVD) approach to creating hydrophobic (or even superhydrophobic), abrasion-resistant coatings on silicon oxide and polymer (nylon) substrates. This multistep approach employs only reagents delivered in the gas phase, as follows: (i) plasma cleaning/oxidation of the substrate, (ii) CVD of 3-isocyanatopropyltriethoxysilane, which is used as an adhesion promoter for the substrate, (iii) hydrolysis with water vapor, and (iv) CVD of (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (the 'R{sub f}-Cl silane'). Surfaces are characterized by wetting, spectroscopic ellipsometry, x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). This work has the following unique features. First, the authors explore an all gas phase deposition of a new silane coating that is scientifically interesting and technologically useful. Second, the authors show that the presence of an adhesion promoter in the process leads to thinner films that are more robust in abrasion testing. Third, results obtained using plasma/deposition equipment that is relatively inexpensive and/or available in most laboratories are compared to those obtained with a much more sophisticated, commercially available plasma/CVD system (the YES-1224P). The entire deposition process can be completed in only {approx}1 h using the industrial equipment (the 1224P). It is of significance that the polymer surfaces modified using the 1224P are superhydrophobic. Fourth, the thickness of the R{sub f}-Cl silane layer deposited by CVD correlates well with the thickness of the underlying spin coated nylon surface, suggesting that the nylon film acts as a reservoir of water for the hydrolysis and condensation of the R{sub f}-Cl silane.

  18. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.

    PubMed

    Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei

    2015-03-01

    Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure.

  19. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    NASA Astrophysics Data System (ADS)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  20. Adhesive for vacuum environments resists shock and vibration

    NASA Technical Reports Server (NTRS)

    1965-01-01

    A mixture of a polyamide, an epoxy resin, and fine silica or glass microballoons provides an adhesive which is flexible, resistant to shock and vibration, and has improved heat-transfer characteristics.

  1. The development of an in vitro test method for predicting the abrasion resistance of textile and metal components of endovascular stent grafts.

    PubMed

    Yao, Tong; Choules, Brian D; Rust, Jon P; King, Martin W

    2014-04-01

    Implantable endovascular stent grafts have become a frequent option for the treatment of abdominal and thoracic aneurysms. Given that such devices are permanent implants, the question of long-term biostability needs to be addressed. This article describes the development of an in vitro stent graft abrasion test method between the graft fabric and metal stent of an endovascular device. Three endpoints were established to determine the abrasion resistance between the fabric and stent surfaces after a predetermined number of abrasion cycles. During initial testing, two types of graft fabric materials, multifilament woven polyester fabric and monofilament woven polyester fabric, and two types of stent materials, laser cut nitinol stents and regular nitinol stent wire, were evaluated under dry and wet conditions. The results have shown that this test method is viable for testing the relative abrasion resistance of the components of endovascular stent grafts. The abrasion resistance of both fabrics was lower in a wet environment compared to being tested dry. Additionally, the multifilament polyester fabric had better abrasion resistance than the monofilament polyester fabric. The laser cut nitinol stent was more aggressive in creating holes and breaking yarns, while the regular nitinol stent wire caused a greater loss in fabric strength.

  2. The development of an in vitro test method for predicting the abrasion resistance of textile and metal components of endovascular stent grafts.

    PubMed

    Yao, Tong; Choules, Brian D; Rust, Jon P; King, Martin W

    2014-04-01

    Implantable endovascular stent grafts have become a frequent option for the treatment of abdominal and thoracic aneurysms. Given that such devices are permanent implants, the question of long-term biostability needs to be addressed. This article describes the development of an in vitro stent graft abrasion test method between the graft fabric and metal stent of an endovascular device. Three endpoints were established to determine the abrasion resistance between the fabric and stent surfaces after a predetermined number of abrasion cycles. During initial testing, two types of graft fabric materials, multifilament woven polyester fabric and monofilament woven polyester fabric, and two types of stent materials, laser cut nitinol stents and regular nitinol stent wire, were evaluated under dry and wet conditions. The results have shown that this test method is viable for testing the relative abrasion resistance of the components of endovascular stent grafts. The abrasion resistance of both fabrics was lower in a wet environment compared to being tested dry. Additionally, the multifilament polyester fabric had better abrasion resistance than the monofilament polyester fabric. The laser cut nitinol stent was more aggressive in creating holes and breaking yarns, while the regular nitinol stent wire caused a greater loss in fabric strength. PMID:24115449

  3. Surface roughness and bond strength between Y-TZP and self-adhesive resin cement after air particle abrasion protocols.

    PubMed

    Sousa, Rafael Santiago de; Campos, Fernanda; Sarmento, Hugo Ramalho; Alves, Maria Luiza Lima; Dal Piva, Amanda Maria de Oliveira; Gondim, Laísa Daniel; Souza, Rodrigo Othávio Assunção

    2016-01-01

    The aim of this study was to evaluate the influence of different air particle abrasion (APA) protocols-with variations in particle types, duration of application, and the distance between the device tip and the ceramic-on the surface roughness (SR) of zirconia-based ceramic (yttria-stabilized tetragonal zirconia polycrystal [Y-TZP]) and the shear bond strength (SBS) between Y-TZP and resin cement. In total, 135 sintered Y-TZP blocks were polished and divided into 9 groups according to 3 factors: particle (alumina vs alumina coated with silica), duration (5 vs 10 seconds), and distance (contact vs 10 mm away). All 3 factors significantly influenced the SR values between the experimental groups and the control group. For SBS, only the particle type was a statistically significant factor. Results showed that air particle abrasion with silica-coated alumina resulted in higher SBS, even though the SR values associated with those groups were not the highest. PMID:27599282

  4. Preparation and Properties of Novel Dentin Adhesives with Esterase Resistance

    PubMed Central

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Kostoryz, Elisabet L.; Wang, Yong; Kieweg, Sarah L.; Spencer, Paulette

    2012-01-01

    A new methacrylate monomer, trimethylolpropane mono allyl ether dimethacrylate (TMPEDMA), was synthesized and evaluated. This branched methacrylate was designed to increase esterase-resistance when incorporated into conventional HEMA (2-hydroxyethyl methacrylate)/BisGMA (2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane) dental adhesives. The new adhesives, HEMA/BisGMA/TMPEDMA in a 45/30/25 (w/w) ratio were formulated with H2O at 0 (A0T) and 8 wt % water (A8T) and compared with control adhesives (HEMA/BisGMA, 45/55 (w/w), at 0 (A0) and 8 wt % (A8) water). Camphoroquinone (CQ), 2-(dimethylamino) ethyl methacrylate and diphenyliodonium hexafluorophosphate were used as photoinitiators. The new adhesives showed a degree of conversion comparable with the control and improved modulus and glass transition temperature (Tg). Exposure of photopolymerized discs to porcine liver esterase for up to eight days showed that the net cumulative methacrylic acid (MAA) release in adhesives formulated with the new monomer and 8% water (A8T: 182 μg/mL) was dramatically (P < 0.05) decreased in comparison to the control (A8: 361.6 μg/mL). The results demonstrate that adhesives made with the new monomer and cured in water to simulate wet bonding are more resistant to esterase than conventional HEMA/BisGMA adhesive. PMID:22919119

  5. Polyester and epoxy resins: Abrasion resistance. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations concerning techniques and materials for enhanced wear and abrasion resistance of polyester and epoxy resins. Topics include test procedures and results, compounds and additives, forming processes, reinforcement effects, and applications. Electrical insulation, linings and coatings for numerous substrates, solar control film glazing material, hoses, material to rebuild worn metal parts, pipes, boats, industrial floor coverings, and ladder rungs are among the applications discussed. Trade name materials and manufacturers are included. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  6. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    SciTech Connect

    Gray, Matthew

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  7. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  8. Resistance of nanofill and nanohybrid resin composites to toothbrush abrasion with calcium carbonate slurry.

    PubMed

    Suzuki, Toshimitsu; Kyoizumi, Hideaki; Finger, Werner J; Kanehira, Masafumi; Endo, Tatsuo; Utterodt, Andreas; Hisamitsu, Hisashi; Komatsu, Masashi

    2009-11-01

    The aim of this study was to investigate the wear of four nanofilled resin composites using simulated toothbrushing for 50,000 cycles with calcium carbonate slurry. The depth of abrasion and roughness (Ra) were measured after each 10,000 brushing cycle. The surface texture of the worn samples was examined by SEM.The wear depths of the nanofill Filtek Supreme XT (FIL), the nanohybrides Grandio (GRA), Tetric EvoCeram (TET), and Venus Diamond (VED) increased linearly with numbers of brushing cycles or approximately 80, 12, 600, and 60 mum, respectively after 50,000 strokes. Surface roughness showed virtually no change between 10,000 and 50,000 brushing cycles; the ranking order was TET < FIL < GRA < VED. FIL showed rather uniform abrasion with nanoclusters protruding from the surface. TET was very smoothly abraded without signs of debonding of the prepolymerized particles, whereas GRA and VED showed pronounced wear of the matrix polymer surrounding larger glass filler particles. PMID:20019422

  9. Application of tung oil to improve adhesion strength and water resistance of cottonseed meal and protein adhesives on maple veneer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed meal-based products show promise in serving as environment-friendly wood adhesives. However, their practical utilization is currently limited due to low durability and water resistant properties. In this research, we tested the improvement of adhesion strength and water resistance of cott...

  10. Degradation in the fatigue resistance of dentin by bur and abrasive air-jet preparations.

    PubMed

    Majd, H; Viray, J; Porter, J A; Romberg, E; Arola, D

    2012-09-01

    The objective of this investigation was to distinguish whether the instruments commonly used for cutting dentin cause degradation in strength or fatigue behavior. Beams of coronal dentin were obtained from unrestored 3(rd) molars and subjected to either quasi-static or cyclic flexural loading to failure. The surfaces of selected beams were treated with a conventional straight-sided bur or with an abrasive air jet laden with glass particles. Under monotonic loading, there was no difference in the strength or Weibull parameters obtained for the control or treated beams. However, the fatigue strength of dentin receiving bur and air-jet treatments was significantly lower (p ≤ 0.0001) than that of the control. The bur treatment resulted in the largest overall degree of degradation, with nearly 40% reduction in the endurance limit and even more substantial decrease in the fatigue life. The methods currently used for cavity preparations substantially degrade the durability of dentin.

  11. The Effect of Silane on the Microstructure, Corrosion, and Abrasion Resistances of the Anodic Films on Ti Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jinwei; Chen, Jiali

    2016-04-01

    Anodic oxide films on Ti-6Al-4V alloy are prepared using sodium hydroxide as the base electrolyte containing aminopropyl trimethoxysilane (APS) as an additive. Some APS undergo hydrolysis, adsorption, and chemical reaction with the TiO x to form Ti-O-Si bond as confirmed by ATR-FTIR and XPS spectra, and in turn their surface appearance and roughness are greatly changed with the addition of APS as observed by their SEM images. These amino anodic films possess much higher corrosive resistances since the formation of Ti-O-Si complex enhances the compactness of the anodic films and the existence of aminopropyl groups inside the pores provides additional blocking effects. Besides, their improvement in anti-abrasive capability is attributed to the toughening effect of the chemically bonded silanes and the lubrication functions from both the chemically bonded and physically absorbed silanes between the touched interfaces.

  12. Photoresist-free patterning by mechanical abrasion of water-soluble lift-off resists and bare substrates: toward green fabrication of transparent electrodes.

    PubMed

    Printz, Adam D; Chan, Esther; Liong, Celine; Martinez, René S; Lipomi, Darren J

    2013-01-01

    This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1) and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.

  13. Photoresist-Free Patterning by Mechanical Abrasion of Water-Soluble Lift-Off Resists and Bare Substrates: Toward Green Fabrication of Transparent Electrodes

    PubMed Central

    Printz, Adam D.; Chan, Esther; Liong, Celine; Martinez, René S.; Lipomi, Darren J.

    2013-01-01

    This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process—“abrasion lithography”—takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq–1 and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices. PMID:24358321

  14. Silane effects on the surface morphology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites

    NASA Astrophysics Data System (ADS)

    Hsiang, Hsing-I.; Chang, Yu-Lun; Chen, Chi-Yu; Yen, Fu-Su

    2011-02-01

    Transparent ultraviolet curable nano-composite coatings consisting of nano-sized SiO2 and acrylate resin have been developed to improve the abrasion resistance of organic polymers. The nano-sized SiO2 particles were surface-modified using various amounts of 3-methacryloxypropyltrimethoxysilane. The 3-methacryloxypropyltrimethoxysilane concentration effects on the surface morphology and abrasion resistance of the transparent SiO2/ultraviolet-curable resin nano-composites were investigated using scanning electron microscopy, atomic force microscopy, and ultraviolet-visible spectrophotometer. The results showed that as the 3-methacryloxypropyltrimethoxysilane/SiO2 weight ratio increased from 0.2 to 0.6, the dispersion, compatibility and cross-linking density between the 3-methacryloxypropyltrimethoxysilane-modified SiO2 particles and acrylate resin were improved, leading to an increase in abrasion resistance. However, as the 3-methacryloxypropyltrimethoxysilane/SiO2 weight ratio was increased to 1.5, the additional 3-methacryloxypropyltrimethoxysilane may exceed that needed to fill the pores with the probability of SiO2 nano-particles existing on the coating surface was lower than that for samples with a 3-methacryloxypropyltrimethoxysilane/SiO2 weight ratio of 0.6. This produced a decrease in abrasion resistance.

  15. Abrasion resistant low friction and ultra-hard magnetron sputtered AlMgB14 coatings

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.

    2016-04-01

    Hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric AlMgB14 ceramic target. X-ray amorphous AlMgB14 films are very smooth. Their roughness does not exceed the roughness of Si wafer and Corning glass used as the substrates. Dispersion of refractive index and extinction coefficient were determined within 300 to 2500 nm range for the film deposited onto Corning glass. Stoichiometric in-depth compositionally homogeneous 2 μm thick films on the Si(100) wafer possess the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth. Friction coefficient was found to be 0.06. The coating scratch adhesion strength of 14 N was obtained as the first chipping of the coating whereas its spallation failure happened at 21 N. These critical loads and the work of adhesion, estimated as high as 18.4 J m-2, surpass characteristics of diamond like carbon films deposited onto tungsten carbide-cobalt (WC-Co) substrates.

  16. WC-Co and Cr3C2-NiCr Coatings in Low- and High-Stress Abrasive Conditions

    NASA Astrophysics Data System (ADS)

    Kašparová, Michaela; Zahálka, František; Houdková, Šárka

    2011-03-01

    The article deals with the evaluation of abrasive wear resistance and adhesive strength of thermally sprayed coatings. The main attention was paid to differences between low- and high-stress abrasive conditions of the measuring. Conclusions include the evaluation of specific properties of the WC-Co and the Cr3C2-NiCr High Velocity Oxygen Fuel coatings and the evaluation of the changes in the behavior of the abrasive media. Mainly, the relationship between the low- and high-stress abrasion conditions and the wear mechanism in the tested materials was described. For the wear test, the abrasive media of Al2O3 and SiO2 sands were chosen. During wear tests, the volume loss of the tested materials and the surface roughness of the wear tracks were measured. The wear tracks on the tested materials and abrasive sands' morphologies were observed using Scanning Electron Microscopy. It was found that high-stress abrasive conditions change the coatings' behavior very significantly, particularly that of the Cr3C2-NiCr coating. Adhesive-cohesive properties of the coatings and relationships among individual structure particles were evaluated using tensile testing. It was found that the weak bond strength among the individual splats, structure particles, and phases plays a role in the poor wear resistance of the coatings.

  17. A Study on the Abrasive Resistance of Ni Based Laser Coatings with WC Hard Phase

    NASA Astrophysics Data System (ADS)

    Iždinská, Zita; Brusilová, Alena; Iždinský, Karol

    2011-12-01

    Wear properties of composite laser cladding on the basis of Ni with a 50% presence of WC particles on the dependence of laser beam power output and speed of cladding were investigated in this paper. Properties are compared with reference Ni based laser claddings without WC particles. Laser beam power output of 4.3 and 3.7 kW and cladding speed of 3, 5 and 7 mm/s were used for the preparation of test pieces. All types of prepared claddings were compact without visible internal defects. With increased cladding speed, the hardness of Ni matrix decreased. Wear resistance of Ni based laser claddings with WC particles were dependent on the speed of laser cladding. The presence of WC particles increased the wear resistance of Ni based laser claddings 5 fold.

  18. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  19. Adhesion

    MedlinePlus

    ... as the shoulder Eyes Inside the abdomen or pelvis Adhesions can become larger or tighter over time. ... Other causes of adhesions in the abdomen or pelvis include: Appendicitis , most often when the appendix breaks ...

  20. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  1. Brushing abrasion of luting cements under neutral and acidic conditions.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    2000-01-01

    Four resin based materials (Compolute Aplicap, ESPE; Variolink Ultra, Vivadent; C&B Metabond, Parkell and Panavia 21, Kuraray), two carboxylate cements (Poly-F Plus, Dentsply DeTrey and Durelon Maxicap, ESPE), two glass-ionomer cements (Fuji I, GC and Ketac-Cem Aplicap, ESPE), one resin-modified glass ionomer cement (Vitremer, 3M) one polyacid-modified resin composite (Dyract Cem, Dentsply DeTrey) and one zinc phosphate cement (Harvard, Richter & Hoffmann) were investigated according to their brushing resistance after storage in neutral and acidic buffer solutions. For this purpose 24 cylindrical acrylic molds were each filled with the materials. After hardening, the samples were stored for seven days in 100% relative humidity and at 37 degrees C. Subsequently, they were ground flat and polished. Then each specimen was covered with an adhesive tape leaving a 4 mm wide window on the cement surface. Twelve samples of each material were stored for 24 hours in a buffer solution with a pH of 6.8. The remaining 12 samples were placed in a buffer with a pH of 3.0. All specimens were then subjected to a three media brushing abrasion (2,000 strokes) in an automatic brushing machine. Storage and brushing were performed three times. After 6,000 brushing strokes per specimen, the tape was removed. Brushing abrasion was measured with a computerized laser profilometer and statistically analyzed with ANOVA and Tukey's Standardized Range Test (p < or = 0.05). The highest brushing abrasion was found for the two carboxylate cements. The lowest brushing abrasion was found for one resin based material, Compolute Aplicap. With the exception of three resin-based materials, a lower pH led to a higher brushing abrasion.

  2. Improved secondary caries resistance via augmented pressure displacement of antibacterial adhesive

    PubMed Central

    Zhou, Wei; Niu, Li-na; Huang, Li; Fang, Ming; Chang, Gang; Shen, Li-juan; Tay, Franklin R.; Chen, Ji-hua

    2016-01-01

    The present in vitro study evaluated the secondary caries resistance potential of acid-etched human coronal dentin bonded using augmented pressure adhesive displacement in conjunction with an experimental antibacterial adhesive. One hundred and twenty class I cavities were restored with a commercial non-antibacterial etch-and-rinse adhesive (N) or an experimental antibacterial adhesive (A) which was displaced by gentle air-blow (G) or augmented pressure air-blow (H). After bonding and restoration with resin composite, the resulted 4 groups (N-G, N-H, A-G and A-H) were exposed to Streptococcus mutans biofilm for 4, 8, 15, 20 or 25 days. The development of secondary caries in the bonding interface was then examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Data acquired from 15, 20 and 25 days of artificial caries induction were analyzed with three-way ANOVA at α = 0.05. The depth of the artificial carious lesions was significantly affected by “adhesive type” (Single Bond 2 vs experimental antibacterial adhesive p = 0.003), “intensity of adhesive displacement” (gentle vs augmented-pressure adhesive displacement; p < 0.001), as well as “artificial caries induction time” (p < 0.001). The combined use of augmented pressure adhesive displacement and experimental antibacterial adhesive reduces the progression of secondary caries. PMID:26928742

  3. Hybrid inorganic-organic materials: Novel poly(propylene oxide)-based ceramers, abrasion-resistant sol-gel coatings for metals, and epoxy-clay nanocomposites, with an additional chapter on: Metallocene-catalyzed linear polyethylene

    NASA Astrophysics Data System (ADS)

    Jordens, Kurt

    1999-12-01

    The sol-gel process has been employed to generate hybrid inorganic-organic network materials. Unique ceramers were prepared based on an alkoxysilane functionalized soft organic oligomer, poly(propylene oxide (PPO), and tetramethoxysilane (TMOS). Despite the formation of covalent bonds between the inorganic and organic constituents, the resulting network materials were phase separated, composed of a silicate rich phase embedded in a matrix of the organic oligomer chains. The behavior of such materials was similar to elastomers containing a reinforcing filler. The study focused on the influence of initial oligomer molecular weight, functionality, and tetramethoxysilane, water, and acid catalyst content on the final structure, mechanical and thermal properties. The sol-gel approach has also been exploited to generate thin, transparent, abrasion resistant coatings for metal substrates. These systems were based on alkoxysilane functionalized diethylenetriamine (DETA) with TMOS, which generated hybrid networks with very high crosslink densities. These materials were applied with great success as abrasion resistant coatings to aluminum, copper, brass, and stainless steel. In another study, intercalated polymer-clay nanocomposites were prepared based on various epoxy networks montmorillonite clay. This work explored the influence of incorporated clay on the adhesive properties of the epoxies. The lap shear strength decreased with increasing day content This was due to a reduction in the toughness of the epoxy. Also, the delaminated (or exfoliated) nanocomposite structure could not be generated. Instead, all nanocomposite systems possessed an intercalated structure. The final project involved the characterization of a series of metallocene catalyzed linear polyethylenes, produced at Phillips Petroleum. Polyolefins synthesized with such new catalyst systems are becoming widely available. The influence of molecular weight and thermal treatment on the mechanical, rheological

  4. Adhesive properties and antibiotic resistance of Klebsiella, Enterobacter, and Serratia clinical isolates involved in nosocomial infections.

    PubMed Central

    Livrelli, V; De Champs, C; Di Martino, P; Darfeuille-Michaud, A; Forestier, C; Joly, B

    1996-01-01

    Intestinal colonization by Klebsiella, Enterobacter, and Serratia (KES) strains is a crucial step in the development of nosocomial infections. We studied the adhesive properties, antibiotic resistance, and involvement in colonization or infection of 103 KES clinical isolates: 30 Klebsiella pneumoniae (29%), 16 Klebsiella oxytoca (15%), 30 Enterobacter aerogenes (29%), 14 Enterobacter cloacae (14%), and 13 Serratia sp. (13%) isolates. Half of them were resistant to several antimicrobial agents, including aminoglycosides and beta-lactam antibiotics. A total of 27 of 30 K. pneumoniae isolates (90%) adhered to the human cell line Intestine-407 (Int-407), while none of the K. oxytoca or E. aerogenes isolates and only 2 of the E. cloacae isolates adhered. Three adhesive patterns were observed for K. pneumoniae: an aggregative adhesion in 57% of the isolates, a diffuse adhesion in only one isolate, and a new pattern, localized adhesion, in 30% of the isolates. While most of the sensitive strains adhered with the aggregative phenotype, the localized pattern was associated with resistant K. pneumoniae isolates producing the CAZ-5 beta-lactamase. Furthermore, 45% of such localized-adhesion isolates were involved in severe infections. The distributions of type 1 and type 3 fimbriae, enteroaggregative E. coli, and cf29, pap, and afa/Dr adhesin-encoding genes were determined by using specific DNA probes. No relationship was found between the adhesive pattern and the production of specific fimbriae, suggesting that several unrecognized adhesive factors are involved. Our study indicates that special adhesive properties associated with resistance to antimicrobial agents could account for the pathogenicity of certain nosocomial strains. PMID:8818891

  5. Adhesions

    MedlinePlus

    ... surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They might connect the loops of the intestines to each other, to nearby ... can occur anywhere in the body. But they often form after surgery on the ...

  6. The abrasion and impact-abrasion behavior of austempered ductile irons

    SciTech Connect

    Hawk, Jeffrey A.; Dogan, Omer N.; Lerner, Y.S.

    1998-01-01

    Austempering of ductile irons has led to a new class of irons, Austempered Ductile Irons (ADIs), with improved mechanical strength and fracture toughness lacking in gray cast irons. Laboratory wear tests have been used to evaluate the abrasive and impact-abrasive wear behavior of a suite of ADIs. The use of high-stress, two-body abrasion, low-stress, three-body abrasion, and impact-abrasion tests provides a clear picture of the abrasive wear behavior of the ADIs and the mechanisms of material removal. When combined with hardness measurements, fracture toughness and a knowledge of the microstructure of the ADIs, the overall performance can be assessed relative to more wear resistant materials such as martensitic steels and high-chromium white cast irons

  7. Biofilm-forming Staphylococcus epidermidis expressing vancomycin resistance early after adhesion to a metal surface.

    PubMed

    Sakimura, Toshiyuki; Kajiyama, Shiro; Adachi, Shinji; Chiba, Ko; Yonekura, Akihiko; Tomita, Masato; Koseki, Hironobu; Miyamoto, Takashi; Tsurumoto, Toshiyuki; Osaki, Makoto

    2015-01-01

    We investigated biofilm formation and time of vancomycin (VCM) resistance expression after adhesion to a metal surface in Staphylococcus epidermidis. Biofilm-forming Staphylococcus epidermidis with a VCM MIC of 1 μg/mL was used. The bacteria were made to adhere to a stainless steel washer and treated with VCM at different times and concentrations. VCM was administered 0, 2, 4, and 8 hours after adhesion. The amount of biofilm formed was evaluated based on the biofilm coverage rates (BCRs) before and after VCM administration, bacterial viability in biofilm was visually observed using the fluorescence staining method, and the viable bacterial count in biofilm was measured. The VCM concentration required to decrease BCR significantly compared with that of VCM-untreated bacteria was 4 μg/mL, even in the 0 hr group. In the 4 and 8 hr groups, VCM could not inhibit biofilm growth even at 1,024 μg/mL. In the 8 hr group, viable bacteria remained in biofilm at a count of 10(4) CFU even at a high VCM concentration (1,024 μg/mL). It was suggested that biofilm-forming Staphylococcus epidermidis expresses resistance to VCM early after adhesion to a metal surface. Resistance increased over time after adhesion as the biofilm formed, and strong resistance was expressed 4-8 hours after adhesion.

  8. Expression of Adhesion Molecules in Synovia of Patients with Treatment-Resistant Lyme Arthritis

    PubMed Central

    Akin, Evren; Aversa, John; Steere, Allen C.

    2001-01-01

    The expression of adhesion molecules in synovium in patients with Lyme arthritis is surely critical in the control of Borrelia burgdorferi infection but may also have pathologic consequences. For example, molecular mimicry between a dominant T-cell epitope of B. burgdorferi outer surface protein A and an adhesion molecule, human lymphocyte function-associated antigen 1 (LFA-1), has been implicated in the pathogenesis of treatment-resistant Lyme arthritis. Using immunohistochemical methods, we examined synovial samples for expression of adhesion molecules in 29 patients with treatment-resistant Lyme arthritis and in 15 patients with rheumatoid arthritis or chronic inflammatory monoarthritis. In Lyme arthritis synovia, endothelial cells showed intense expression of P-selectin and vascular adhesion protein-1 (VAP-1). Expression of LFA-1 was also intense on infiltrating cells, particularly in lymphoid aggregates, and intercellular adhesion molecule-1 (ICAM-1) was markedly expressed on synovial lining and endothelial and infiltrating cells. Moderate expression of vascular cell adhesion molecule-1 (VCAM-1) was seen on synovial lining and endothelial cells, and mild expression of its ligand, very late antigen-4, was apparent in perivascular lymphoid infiltrates. Except for lesser expression of VCAM-1 in Lyme synovia, the levels of expression of these adhesion molecules were similar in the three patient groups. We conclude that certain adhesion molecules, including ICAM-1 and LFA-1, are expressed intensely in the synovia of patients with Lyme arthritis. Upregulation of LFA-1 on lymphocytes in this lesion may be critical in the pathogenesis of treatment-resistant Lyme arthritis. PMID:11179355

  9. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones.

    PubMed

    Kirihara, Masaru; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2013-01-01

    This study aimed to investigate the effect of fluoride concentration in adhesives on morphology of acid-base resistant zone (ABRZ). Seven experimental adhesives with different concentrations of NaF (0 wt%; F0 to 100 wt%: F100) were prepared based on the formulation of a commercially available adhesive (Clearfil Protect Bond, F100). The resin-dentin interface of the bonded specimen was subjected to demineralizing solution and NaOCl, sectioned, polished and argon-ion etched for SEM observation. Fluoride release from each adhesive was measured using an ion-selective electrode. Fluoride ion release from the adhesive linearly increased with higher NaF concentration. The ABRZ area increased significantly with higher NaF concentration except for F0, F10, and F20 (p<0.05). F100 showed the largest ABRZ, where a slope of acid-resistant dentin was clearly observed at the bottom of the ABRZ. The concentration of NaF in the two-step self-etching adhesive resin influenced the amount of dentin structure remaining after acid-challenge.

  10. Morphological categorization of acid-base resistant zones with self-etching primer adhesive systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Sadr, Alireza; Tagami, Junji

    2012-01-01

    This study investigated the influence of the composition of self-etching primer adhesive systems on the morphology of acid-base resistant zones (ABRZs). One-step self-etching primer systems (Clearfil Tri-S Bond, G-Bond, and One-Up Bond F Plus) and two-step self-etching primer systems (Clearfil SE Bond, Clearfil Protect Bond, UniFil Bond, and Mac Bond II) were used in this study. Each adhesive was applied on prepared dentin disk surfaces, and a resin composite was placed between two dentin disks. All resin-bonded specimens were subjected to acid-base challenge. Observation under a scanning electron microscope (SEM) revealed the creation of an ABRZ adjacent to the hybrid layer for all the self-etch primer adhesive systems, even when non-fluoride releasing adhesives were used. The presence of fluoride in two-step self-etching adhesive significantly increased the thickness of ABRZ created. Results suggested that an ABRZ was created with the use of self-etching primer adhesive systems, but its morphology differed between one-and two-step self-etching primer adhesive systems and was influenced by fluoride release activity.

  11. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  12. A comprehensive and conservative approach for the restoration of abrasion and erosion. Part I: concepts and clinical rationale for early intervention using adhesive techniques.

    PubMed

    Dietschi, Didier; Argente, Ana

    2011-01-01

    Tooth wear represents a frequent pathology with multifactorial origins. Behavioral changes, unbalanced diet, various medical conditions and medications inducing acid regurgitation or influencing saliva composition and flow rate, trigger tooth erosion. Awake and sleep bruxism, which are widespread nowadays with functional disorders, induce attrition. It has become increasingly important to diagnose early signs of tooth wear so that proper preventive, and if needed, restorative measures are taken. Such disorders have biological, functional, and also esthetic consequences. Following a comprehensive clinical evaluation, treatment objectives, such as a proper occlusal and anatomical scheme as well as a pleasing smile line, are usually set on models with an anterior teeth full-mouth waxup, depending on the severity of tissue loss. Based on the new vertical dimension of occlusion (VDO), combinations of direct and indirect restorations can then help to reestablish anatomy and function. The use of adhesive techniques and resin composites has demonstrated its potential, in particular for the treatment of moderate tooth wear. Part I of this article reviews recent knowledge and clinical concepts dealing with the various forms of early restorative interventions and their potential to restrict ongoing tissue destruction.

  13. [Dependence of the dentinal abrasion of human teeth on their microhardness].

    PubMed

    Remizov, S M; Pruzhanskiĭ, L Iu

    1989-01-01

    The dentin resistance against abrasion was studied as related to its microhardness. Sections of 15 intact teeth were investigated (central upper incisors). Water suspensions (40% weight-to weight) of dicalcium phosphate (DCP, FRG; and DKF-1 and DKF-2, USSR) were used as abrasives. Dentin microhardness was measured with a PMT-3 device, and abrasion assessed with profilographic technique. Dentin abrasion was related to its microhardness and to the kind of abrasive used. Dentin abrasion increased as its microhardness decreased. DCF showed minimal abrasive effect, DKF-2 had maximal effect with DKF-1 keeping the intermediate position.

  14. Contact Resistance and Metallurgical Connections Between Silver Coated Polymer Particles in Isotropic Conductive Adhesives

    NASA Astrophysics Data System (ADS)

    Pettersen, Sigurd R.; Kristiansen, Helge; Nagao, Shijo; Helland, Susanne; Njagi, John; Suganuma, Katsuaki; Zhang, Zhiliang; He, Jianying

    2016-07-01

    Recently, there has been an increasing interest in silver thin film coated polymer spheres as conductive fillers in isotropic conductive adhesives (ICAs). Such ICAs yield resistivities similar to conventional silver flake based ICAs while requiring only a fraction of the silver content. In this work, effects of the nanostructure of silver thin films on inter-particle contact resistance were investigated. The electrical resistivity of ICAs with similar particle content was shown to decrease with increasing coating thickness. Scanning electron micrographs of ion milled cross-sections revealed that the silver coatings formed continuous metallurgical connections at the contacts between the filler particles after adhesive curing at 150°C. The electrical resistivity decreased for all samples after environmental treatment for 3 weeks at 85°C/85% relative humidity. It was concluded that after the metallurgical connections formed, the bulk resistance of these ICAs were no longer dominated by the contact resistance, but by the geometry and nanostructure of the silver coatings. A figure of merit (FoM) was defined based on the ratio between bulk silver resistivity and the ICA resistivity, and this showed that although the resistivity was lowest in the ICAs containing the most silver, the volume of silver was more effectively used in the ICAs with intermediate silver contents. This was attributed to a size effect due to smaller grains in the thickest coating.

  15. Low stress abrasive wear behavior of a hardfaced steel

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Prasad, B. K.; Jha, A. K.; Modi, O. P.; Das, S.; Yegneswaran, A. H.

    1998-04-01

    A plain carbon steel was overlayed with a wear-resistant hardfacing alloy by manual arc welding. Low stress abrasive wear tests were conducted with an ASTM rubber wheel abrasion tester using crushed silica and as the abrasive medium. The wear rate decreased with sliding distance, and there was an overall improvement in the abrasive wear resistance as a result of overlaying. The wear behavior of the samples has been discussed in terms of microstructural features while the examination of wear surface and subsurface regions provides insight into the wear mechanisms.

  16. Digital oedema, adhesion formation and resistance to digital motion after primary flexor tendon repair.

    PubMed

    Cao, Y; Chen, C H; Wu, Y F; Xu, X F; Xie, R G; Tang, J B

    2008-12-01

    The development of digital oedema, adhesion formation, and resistance to digital motion at days 0, 3, 5, 7, 9 and 14 after primary flexor tendon repairs using 102 long toes of 51 Leghorn chickens was studied. Oedema presented as tissue swelling from days 3 to 7, which peaked at day 3. After day 7, oedema was manifest as hardening of subcutaneous tissue. The degree of digital swelling correlated with the resistance to tendon motion between days 3 and 7. At day 9, granulation tissues were observed around the tendon and loose adhesions were observed at day 14. Resistance to digital motion increased significantly from day 0 to day 3, but did not increase between days 3 and 9. The early postoperative changes appear to have three stages: initial (days 0-3, increasing resistance with development of oedema), delayed (days 4-7, higher resistance with continuing oedema) and late (after day 7-9, hardening of subcutaneous tissue with development of adhesions). PMID:18936126

  17. Phosphoproteomic profiling identifies focal adhesion kinase as a mediator of docetaxel resistance in castrate-resistant prostate cancer.

    PubMed

    Lee, Brian Y; Hochgräfe, Falko; Lin, Hui-Ming; Castillo, Lesley; Wu, Jianmin; Raftery, Mark J; Martin Shreeve, S; Horvath, Lisa G; Daly, Roger J

    2014-01-01

    Docetaxel remains the standard-of-care for men diagnosed with metastatic castrate-resistant prostate cancer (CRPC). However, only approximately 50% of patients benefit from treatment and all develop docetaxel-resistant disease. Here, we characterize global perturbations in tyrosine kinase signaling associated with docetaxel resistance and thereby develop a potential therapeutic strategy to reverse this phenotype. Using quantitative mass spectrometry-based phosphoproteomics, we identified that metastatic docetaxel-resistant prostate cancer cell lines (DU145-Rx and PC3-Rx) exhibit increased phosphorylation of focal adhesion kinase (FAK) on Y397 and Y576, in comparison with parental controls (DU145 and PC3, respectively). Bioinformatic analyses identified perturbations in pathways regulating focal adhesions and the actin cytoskeleton and in protein-protein interaction networks related to these pathways in docetaxel-resistant cells. Treatment with the FAK tyrosine kinase inhibitor (TKI) PF-00562271 reduced FAK phosphorylation in the resistant cells, but did not affect cell viability or Akt phosphorylation. Docetaxel administration reduced FAK and Akt phosphorylation, whereas cotreatment with PF-00562271 and docetaxel resulted in an additive attenuation of FAK and Akt phosphorylation and overcame the chemoresistant phenotype. The enhanced efficacy of cotreatment was due to increased autophagic cell death, rather than apoptosis. These data strongly support that enhanced FAK activation mediates chemoresistance in CRPC, and identify a potential clinical niche for FAK TKIs, where coadministration with docetaxel may be used in patients with CRPC to overcome chemoresistance. PMID:24194567

  18. Fabrication of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Yih; Yu, Tsung-Han; Hu, Yuh-Chung

    2007-06-01

    A manufacturing process of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology is reported here. The thickness of JSR THB-151N resist coated on an aluminum alloy substrate for micro lithography can reach up to 110 µm. During the lithography, different geometrical photomasks were used to create specific design patterns of the resist mold on the substrate. Micro roots, made by electrolytic machining on the substrate with guidance of the resist mold, can improve the adhesion of micro nickel abrasive pellets electroplated on the substrate. During the composite electroforming, the desired hardness of the nickel matrix inside the micro diamond abrasive pellets can be obtained by the addition of leveling and stress reducing agents. At moderate blade agitation and ultrasonic oscillation, higher concentration and more uniform dispersion of diamond powders deposited in the nickel matrix can be achieved. With these optimal experiment conditions of this fabrication process, the production of micro nickel/diamond abrasive pellet array lapping tools is demonstrated.

  19. Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance

    PubMed Central

    Sakamoto, Shinichi; McCann, Richard O.; Dhir, Rajiv; Kyprianou, Natasha

    2010-01-01

    Talin1 is a focal adhesion complex protein that regulates integrin interactions with the extracellular matrix (ECM). This study investigated the significance of talin1 in prostate cancer progression to metastasis in vitro and in vivo. Talin1 overexpression enhanced prostate cancer cell adhesion, migration and invasion by activating survival signals and conferring resistance to anoikis. ShRNA-mediated talin1 loss led to a significant suppression of prostate cancer cell migration and transendothelial invasion in vitro and a significant inhibition of prostate cancer metastasis in vivo. Talin1 regulated cell survival signals via phosphorylation of focal adhesion complex proteins such as focal adhesion kinase (FAK) and Src, and downstream activation of AKT. Targeting AKT activation led to a significant reduction of talin1-mediated prostate cancer cell invasion. Furthermore, talin1 immunoreactivity directly correlated with prostate tumor progression to metastasis in the TRAMP mouse model. Talin1 profiling in human prostate specimens revealed a significantly higher expression of cytoplasmic talin1 in metastatic tissue compared to primary prostate tumors (P<0.0001). These findings suggest: (a) a therapeutic significance of disrupting talin1 signaling/focal adhesion interactions in targeting metastatic prostate cancer and (b) a potential value for talin1 as a marker of tumor progression to metastasis. PMID:20160039

  20. Smart earthquake-resistant materials: using time-released adhesives for damping, stiffening, and deflection control

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    1996-04-01

    Preventing buildings and bridges from damage from severe dynamic loading events is a primary goal of civil infrastructure. Present designs attempt to control structural response by making the structures more massive, by increasing lateral stiffness through bracing, and by damping technology such as mass damping and base-isolation. These attempts affect portions of the governing equation: for an idealized building frame or bridge, the free vibrational behavior is described by Mu + cu + ku equals -mug(t) where m equals mass, c equals damping coefficient, k equals lateral stiffness, u equals deflection, and ug(t) equals ground acceleration. The use of adhesive released internally in a material based way of addressing the problem. The time release of low modulus adhesive chemicals would assist the damping characteristics of the structure, use of a stiffer adhesive would allow the damaged structure to regain some lateral stiffness (k) and adjustment of the set times of the adhesives would act to control the deflection. These can be thought of as potential new method of controlling vibration of behavior in case of a dynamic loading event. In past experiments, self-healing concrete matrices were shown to increase post-yield deflection and load carrying capability by the release and setting of adhesives. The results were promising in resisting damage of dynamic loads applied to frames. This indicates that self-healing concrete would be extremely valuable in civil engineering structures that were subjected to failure-inducing loads such as earthquakes.

  1. Adhesive carrier particles for rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization.

    PubMed

    Li, Yuan; You, Changfu; Song, Chenxing

    2010-06-15

    A rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization was prepared by rapidly hydrating adhesive carrier particles and lime. The circulation ash from a circulating fluidized bed boiler and chain boiler ash, both of which have rough surfaces with large specific surface areas and specific pore volumes, can improve the adhesion, abrasion resistance, and desulfurization characteristics of rapidly hydrated sorbent when used as the adhesive carrier particles. The adhesion ability of sorbent made from circulation ash is 67.4% higher than that of the existing rapidly hydrated sorbent made from fly ash, the abrasion ratio is 76.2% lower, and desulfurization ability is 14.1% higher. For sorbent made from chain boiler ash, the adhesion ability is increased by 74.7%, the desulfurization ability is increased by 30.3%, and abrasion ratio is decreased by 52.4%. The abrasion ratios of the sorbent made from circulation ash having various average diameters were all about 9%, and their desulfurization abilities were similar (approximately 150 mg/g). PMID:20481549

  2. Amino Acid-Based Zwitterionic Polymer Surfaces Highly Resist Long-Term Bacterial Adhesion.

    PubMed

    Liu, Qingsheng; Li, Wenchen; Wang, Hua; Newby, Bi-Min Zhang; Cheng, Fang; Liu, Lingyun

    2016-08-01

    The surfaces or coatings that can effectively suppress bacterial adhesion in the long term are of critical importance for biomedical applications. Herein, a group of amino acid-based zwitterionic polymers (pAAZ) were investigated for their long-term resistance to bacterial adhesion. The polymers were derived from natural amino acids including serine, ornithine, lysine, aspartic acid, and glutamic acid. The pAAZ brushes were grafted on gold via the surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Results show that the pAAZ coatings highly suppressed adsorption from the undiluted human serum and plasma. Long-term bacterial adhesion on these surfaces was investigated, using two kinds of representative bacteria [Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa] as the model species. Results demonstrate that the pAAZ surfaces were highly resistant to bacterial adhesion after culturing for 1, 5, 9, or even 14 days, representing at least 95% reduction at all time points compared to the control unmodified surfaces. The bacterial accumulation on the pAAZ surfaces after 9 or 14 days was even lower than on the surfaces grafted with poly[poly(ethyl glycol) methyl ether methacrylate] (pPEGMA), one of the most common antifouling materials known to date. The pAAZ brushes also exhibited excellent structural stability in phosphate-buffered saline after incubation for 4 weeks. The bacterial resistance and stability of pAAZ polymers suggest they have good potential to be used for those applications where long-term suppression to bacterial attachment is desired. PMID:27397718

  3. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  4. Cell resistant zwitterionic polyelectrolyte coating promotes bacterial attachment: an adhesion contradiction.

    PubMed

    Martinez, Jessica S; Kelly, Kristopher D; Ghoussoub, Yara E; Delgado, Jose D; Keller Iii, Thomas C S; Schlenoff, Joseph B

    2016-04-01

    Polymers of various architectures with zwitterionic functionality have recently been shown to effectively suppress nonspecific fouling of surfaces by proteins and prokaryotic (bacteria) or eukaryotic (mammalian) cells as well as other microorganisms and environmental contaminants. In this work, zwitterionic copolymers were used to make thin coatings on substrates with the layer-by-layer method. Polyelectrolyte multilayers, PEMUs, were built with [poly(allylamine hydrochloride)], PAH, and copolymers of acrylic acid and either the AEDAPS zwitterionic group 3-[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate (PAA-co-AEDAPS), or benzophenone (PAABp). Benzophenone allowed the PEMU to be toughened by photocrosslinking post-deposition. The attachment of two mammalian cell lines, rat aortic smooth muscle (A7r5) and mouse fibroblasts (3T3), and the biofilm-forming Gram-negative bacteria Escherichia coli was studied on PEMUs terminated with PAA-co-AEDAPS. Consistent with earlier studies, it is shown that PAH/PAA-co-AEDAPS PEMUs resist the adhesion of mammalian cells, but, contrary to our initial hypothesis, are bacterial adhesive and significantly so after maximizing the surface presentation of PAA-co-AEDAPS. This unexpected contrast in the adhesive behavior of prokaryotic and eukaryotic cells is explained by differences in adhesion mechanisms as well as different responses to the topology and morphology of the multilayer surface. PMID:26872345

  5. The hardness, adhesion, and wear resistance of coatings developed for cobalt-base alloys

    SciTech Connect

    Cockeram, B.V.; Wilson, W.L.

    2000-05-01

    One potential approach for reducing the level of nuclear plant radiation exposure that results from activated cobalt wear debris is the use of a wear resistant coating. However, large differences in stiffness between a coating/substrate can result in high interfacial stresses that produce coating de-adhesion when a coated substrate is subjected to high stress wear contact. Scratch adhesion and indentation tests have been used to identify four promising coating processes [1,2]: (1) the use of a thin Cr-nitride coating with a hard and less-stiff interlayer, (2) the use of a thick, multilayered Cr-nitride coating with graded layers, (3) use of the duplex approach, or nitriding to harden the material subsurface followed by application of a multilayered Cr-nitride coating, and (4) application of nitriding alone. The processing, characterization, and adhesion of these coating systems are discussed. The wear resistance and performance has been evaluated using laboratory pin-on-disc, 4-ball, and high stress rolling contact tests. Based on the results of these tests, the best coating candidate from the high-stress rolling contact wear test was the thin duplex coating, which consists of ion nitriding followed deposition of a thin Cr-nitride coating, while the thin Cr-nitride coating exhibited the best results in the 4-ball wear test.

  6. Water-based adhesives with tailored hydrophobic association: dilution resistance and improved setting behavior.

    PubMed

    Dundua, Alexander; Landfester, Katharina; Taden, Andreas

    2014-11-01

    Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates.

  7. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    PubMed

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined. PMID:25481855

  8. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    PubMed

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined.

  9. Alterations in ovarian cancer cell adhesion drive taxol resistance by increasing microtubule dynamics in a FAK-dependent manner.

    PubMed

    McGrail, Daniel J; Khambhati, Niti N; Qi, Mark X; Patel, Krishan S; Ravikumar, Nithin; Brandenburg, Chandler P; Dawson, Michelle R

    2015-04-17

    Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis.

  10. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  11. Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces – A Novel Method of Enhancing Flow-Resistant Cell Adhesion

    PubMed Central

    Tran, Phat L.; Gamboa, Jessica R.; McCracken, Katherine E.; Riley, Mark R.

    2014-01-01

    Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear. PMID:23225491

  12. Screening in nanowires and nanocontacts: field emission, adhesion force, and contact resistance

    SciTech Connect

    Zhang, Xiaoguang; Pantelides, Sokrates T.

    2009-01-01

    The explanations of several nanoscale phenomena such as the field enhancement factor in field emission, the large decay length of the adhesion force between a metallic tip and a surface, and the contact resistance in a nanowire break junction have been elusive. Here we develop an analytical theory of Thomas-Fermi screening in nanoscale structures. We demonstrate that nanoscale dimensions give rise to an effective screening length that depends on geometry and physical boundary conditions. The above phenomena are shown to be manifestations of the effective screening length.

  13. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials

    NASA Astrophysics Data System (ADS)

    Hansma, P. K.; Turner, P. J.; Ruoff, R. S.

    2007-01-01

    From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials.

  14. Evidence of a Role for CD44 and Cell Adhesion in Mediating Resistance to Lenalidomide in Multiple Myeloma: Therapeutic Implications

    PubMed Central

    Bjorklund, Chad C.; Baladandayuthapani, Veerabhadran; Lin, Heather Y.; Jones, Richard J.; Kuiatse, Isere; Wang, Hua; Yang, Jing; Shah, Jatin J.; Thomas, Sheeba K.; Wang, Michael; Weber, Donna M.; Orlowski, Robert Z.

    2013-01-01

    Resistance of myeloma to lenalidomide is an emerging clinical problem, and though it has been associated in part with activation of Wnt/β-catenin signaling, the mediators of this phenotype remained undefined. Lenalidomide-resistant models were found to overexpress the hyaluronan (HA)-binding protein CD44, a downstream Wnt/β-catenin transcriptional target. Consistent with a role of CD44 in cell adhesion-mediated drug-resistance (CAM-DR), lenalidomide-resistant myeloma cells were more adhesive to bone marrow stroma and HA-coated plates. Blockade of CD44 with monoclonal antibodies, free HA, or CD44 knockdown reduced adhesion and sensitized to lenalidomide. Wnt/β-catenin suppression by FH535 enhanced the activity of lenalidomide, as did interleukin-6 neutralization with siltuximab. Notably, all-trans-retinoic acid (ATRA) down-regulated total β-catenin, cell-surface and total CD44, reduced adhesion of lenalidomide-resistant myeloma cells, and enhanced the activity of lenalidomide in a lenalidomide-resistant in vivo murine xenograft model. Finally, ATRA sensitized primary myeloma samples from patients that had relapsed and/or refractory disease after lenalidomide therapy to this immunomodulatory agent ex vivo. Taken together, our findings support the hypotheses that CD44 and CAM-DR contribute to lenalidomide-resistance in multiple myeloma, that CD44 should be evaluated as a putative biomarker of sensitivity to lenalidomide, and that ATRA or other approaches that target CD44 may overcome clinical lenalidomide resistance. PMID:23760401

  15. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  16. Ni/Cu/Ag plated contacts: A study of resistivity and contact adhesion for crystalline-Si solar cells

    NASA Astrophysics Data System (ADS)

    ur Rehman, Atteq; Lee, Sang Hee; Bhopal, Muhammad Fahad; Lee, Soo Hong

    2016-07-01

    Ni/Cu/Ag plated contacts were examined as an alternate to Ag screen printed contacts for silicon (Si) solar cell metallization. To realize a reliable contact for industrial applications, the contact resistance and its adhesion to Si substrates were evaluated. Si surface roughness by picosecond (ps) laser ablation of silicon-nitride (SiNx) antireflection coating (ARC) was done in order to prepare the patterns. The sintering process after Ni/Cu/Ag full metallization in the form of the post-annealing process was applied to investigate the contact resistivity and adhesion. A very low contact resistivity of approximately 0.5 mΩcm2 has been achieved with measurements made by the transfer length method (TLM). Thin finger lines of about 26 μm wide and a line resistance of 0.51 Ω/cm have been realized by plating technology. Improved contact adhesion by combining the ps-laser-ablation and post-annealing process has been achieved. We have shown the peel-off strengths >1 N/mm with a higher average adhesion of 1.9 N/mm. Our pull-tab adhesion tests demonstrate excellent strength well above the wafer breakage force. [Figure not available: see fulltext.

  17. Wind abrasion on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1991-01-01

    Aeolian activity was predicted for Mars from earth based observations of changing surface patterns that were interpreted as dust storms. Mariner 9 images showed conclusive evidence for aeolian processes in the form of active dust storms and various aeolian landforms including dunes and yardangs. Windspeeds to initiate particle movement are an order of magnitude higher on Mars than on Earth because of the low atmospheric density on Mars. In order to determine rates of abrasion by wind blown particles, knowledge of three factors is required: (1) particle parameters such as numbers and velocities of windblown grains as functions of windspeeds at various heights above the surface; (2) the susceptibility to abrasion of various rocks and minerals; and (3) wind frequencies and speeds. For estimates appropriate to Mars, data for the first two parameters can be determined through lab and wind tunnel tests; data for the last two factors are available directly from the Viking Lander meteorology experiments for the two landing sites.

  18. A dual-curable transfer layer for adhesion enhancement of a multilayer UV-curable nanoimprint resist system

    NASA Astrophysics Data System (ADS)

    Xia, Dingfu; Ye, Liang; Guo, Xu; Cui, Yushuang; Zhang, Jizong; Yuan, Changsheng; Ge, Haixiong; Wu, Wei; Chen, Yanfeng

    2012-07-01

    We invented a dual-curable transfer layer to enhance adhesion of the UV-curable nanoimprint resist to the substrate. Based on this transfer layer, we developed bilayer resist and trilayer resist UV-curable nanoimprint lithography processes, which were used for etching and lift-off processes, respectively. The dual-curable transfer layer combined at least two different types of reactive functions based on different polymerization mechanisms. It formed strong chemical bonds with both the underneath material and the nanoimprint resist layer in two curing steps. It helped improve the adhesion of the low surface energy resist film to the substrate substantially, and, more importantly, made high-resolution patterning much more reliable. Moreover, low aspect ratio imprinted patterns were amplified into high aspect ratio patterns through the transfer layer via a selective etching process.

  19. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion.

    PubMed

    Gao, Bin; Feng, Yakai; Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir; Guo, Jintang

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices.

  20. Abrasive tip treatment for use on compressor blades

    NASA Technical Reports Server (NTRS)

    Pedersen, H. C.

    1984-01-01

    A co-spray process was used which simultaneously but separately introduces abrasive grits and metal matrix powder into the plasma stream and entraps the abrasive grits within a molten matrix to form an abrasive coating as the matrix material solidifies on test specimen surfaces. Spray trials were conducted to optimize spray parameter settings for the various matrix/grit combinations before actual spraying of the test specimens. Rub, erosion, and bond adhesion tests were conducted on the coated specimens in the as-sprayed condition as well as on coated specimens that were aged for 100 hours at a temperature of 866K (1100 F). Microscopic examinations were performed to determine the coating abrasive-particle content, the size and shape of the adhesive particles in the coating, and the extent of compositional or morphological changes resulting from the aging process. A nickel chromium/aluminum composite with No. 150 size (0.002 to 0.005 inch) silicon carbide grits was selected as the best matrix/abrasive combination of the candidates surveyed for coating compressor blade tips.

  1. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  2. Abrasive Wear Study of NiCrFeSiB Flame Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2013-10-01

    In the present study, abrasive wear behavior of NiCrFeSiB alloy coating on carbon steel was investigated. The NiCrFeSiB coating powder was deposited by flame spraying process. The microstructure, porosity and hardness of the coatings were evaluated. Elemental mapping was carried out in order to study the distribution of various elements in the coating. The abrasive wear behavior of these coatings was investigated under three normal loads (5, 10 and 15 N) and two abrasive grit sizes (120 and 320 grit). The abrasive wear rate was found to increase with the increase of load and abrasive size. The abrasive wear resistance of coating was found to be 2-3 times as compared to the substrate. Analysis of the scanning electron microscope images revealed cutting and plowing as the material removal mechanisms in these coatings under abrasive wear conditions used in this investigation.

  3. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase.

    PubMed

    Victor, Victor M; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio

    2016-01-01

    Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR.

  4. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase

    PubMed Central

    Victor, Victor M.; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio

    2016-01-01

    Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR. PMID:27007571

  5. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  6. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study.

    PubMed

    Tan, Melissa H X; Hill, Robert G; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38-80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  7. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study

    PubMed Central

    Tan, Melissa H. X.; Hill, Robert G.; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38–80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  8. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    PubMed

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  9. Porcine E. coli: Virulence-Associated Genes, Resistance Genes and Adhesion and Probiotic Activity Tested by a New Screening Method

    PubMed Central

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K.; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H.; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars. PMID:23658605

  10. Effect of Substrates on the Resistivity and Adhesion of Copper Nanoparticle Ink

    NASA Astrophysics Data System (ADS)

    Poddar, Pritam

    Printed electronics processes have the potential to make electronics manufacturing more flexible by providing a wider choice of materials and easier processing steps. In traditional electronics manufacturing techniques, corrosive etching steps limit the choice of materials and also require advanced infrastructure for process implementation. High speed low cost printing processes (e.g. inkjet) can be used, and the printed tracks can then be cured to conductive circuits that meet the needs of electronic devices like radio frequency identification (RFID) tags, sensors, etc. In this work, intense flashes of broad spectrum light from Xenon lamps are used to cure inkjet printed metal nanoparticle inks. This technique is known as photonic curing. Paper, polyethylene terephthalate (PET), and polyimide have been used as substrates with the aim of determining how different substrates affect the behavior of the ink and the photonic curing parameters. A statistical approach was employed for the experiments, and significant control variables determining curing of the ink were identified. Experiments were also conducted to obtain prints conforming to dimensional tolerances. Using the results from the experiments, standard curing parameters for low resistance and good adhesion of the ink were obtained. The results have been statistically validated and used to study the interaction between the control variables and individual effects of each control variable on the response variable.

  11. Adhesive bonding and the use of corrosion resistant primers. [for metal surface preparation

    NASA Technical Reports Server (NTRS)

    Hockridge, R. R.; Thibault, H. G.

    1972-01-01

    The use of an anti-corrosive primer has been shown to be essential to assure survival of a bonded structure in a hostile environment, particularly if a stress is to be applied to the adhesively bonded joint during the environmental exposure. For example, the Lockheed L-1011 TriStar assembly, after exhaustive evaluation tests specifies use of chromate filled inhibitive polysulfide sealants, and use of corrosion inhibiting adhesive primers prior to structural bonding with film adhesive.

  12. Abrasives in snuff?

    PubMed

    Dahl, B L; Stølen, S O; Oilo, G

    1989-08-01

    The purpose of this study was to determine and calculate the inorganic contents of four brands of snuff. Visual inspection of wet snuff showed fairly large, yellow crystal-like particles. Scanning electron microscopy and X-ray dispersive (EDX) analyses were used to study both wet snuff and ashes of snuff, whereas light emission spectrography was used to determine elements in the ashes. The crystal-like particles did not dissolve in distilled water or in ethanol heated to 60 degrees C. EDX analyses showed that most elements remained in the particles after washing. The total weight percentage of inorganic material in snuff was calculated after burning dried snuff until constant weight was obtained. The ashes of snuff did not contain any crystal-like particles but consisted of a small-grained amorphous mass. The following elements were detected: Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, Pb, Si, Sr, Ti, Va, and Zr. Other elements such as rare earths were not searched for. The weight percentage of inorganic elements ranged between 12.35 +/- 0.69 and 20.95 +/- 0.81. Provided snuff is used in the same manner as chewing tobacco, and some people admit to doing so, there is a risk that its relatively high contents of inorganic material and heavily soluble salts may be conducive to excessive abrasion of teeth and restorations. PMID:2782061

  13. Abrasive wear and surface roughness of contemporary dental composite resin.

    PubMed

    Han, Jian-min; Zhang, Hongyu; Choe, Hyo-Sun; Lin, Hong; Zheng, Gang; Hong, Guang

    2014-01-01

    The purpose of this study was to evaluate the abrasive wear and surface roughness of 20 currently available commercial dental composite resins, including nanofilled, supra-nanofilled, nanohybrid and microhybrid composite resins. The volume loss, maximum vertical loss, surface roughness (R(a)) and surface morphology [Scanning electron microscopy (SEM)] were determined after wear. The inorganic filler content was determined by thermogravimetric analysis. The result showed that the volume loss and vertical loss varied among the materials. The coefficients of determination (R(2)) of wear volume loss and filler content (wt%) was 0.283. SEM micrographs revealed nanofilled composites displayed a relatively uniform wear surfaces with nanoclusters protrusion, while the performance of nanohybrid composites varied. The abrasive wear resistance of contemporary dental composite resins is material-dependent and cannot be deduced from its category, filler loading and composite matrix; The abrasive wear resistance of some flowable composites is comparable to the universal/posterior composite resins.

  14. IGF-1 Receptor and Adhesion Signaling: An Important Axis in Determining Cancer Cell Phenotype and Therapy Resistance

    PubMed Central

    Cox, Orla T.; O’Shea, Sandra; Tresse, Emilie; Bustamante-Garrido, Milan; Kiran-Deevi, Ravi; O’Connor, Rosemary

    2015-01-01

    IGF-1R expression and activation levels generally cannot be correlated in cancer cells, suggesting that cellular proteins may modulate IGF-1R activity. Strong candidates for such modulation are found in cell-matrix and cell–cell adhesion signaling complexes. Activated IGF-1R is present at focal adhesions, where it can stabilize β1 integrin and participate in signaling complexes that promote invasiveness associated with epithelial mesenchymal transition (EMT) and resistance to therapy. Whether IGF-1R contributes to EMT or to non-invasive tumor growth may be strongly influenced by the degree of extracellular matrix engagement and the presence or absence of key proteins in IGF-1R-cell adhesion complexes. One such protein is PDLIM2, which promotes both cell polarization and EMT by regulating the stability of transcription factors including NFκB, STATs, and beta catenin. PDLIM2 exhibits tumor suppressor activity, but is also highly expressed in certain invasive cancers. It is likely that distinct adhesion complex proteins modulate IGF-1R signaling during cancer progression or adaptive responses to therapy. Thus, identifying the key modulators will be important for developing effective therapeutic strategies and predictive biomarkers. PMID:26191041

  15. Dentin bonding performance using Weibull statistics and evaluation of acid-base resistant zone formation of recently introduced adhesives.

    PubMed

    Guan, Rui; Takagaki, Tomohiro; Matsui, Naoko; Sato, Takaaki; Burrow, Michael F; Palamara, Joseph; Nikaido, Toru; Tagami, Junji

    2016-07-30

    Dentin bonding durability of recently introduced dental adhesives: Clearfil SE Bond 2 (SE2), Optibond XTR (XTR), and Scotchbond Universal (SBU) was investigated using Weibull analysis as well as analysis of the micromorphological features of the acid-base resistant zone (ABRZ) created for the adhesives. The bonding procedures of SBU were divided into three subgroups: self-etch (SBS), phosphoric acid (PA) etching on moist (SBM) or dry dentin (SBD). All groups were thermocycled for 0, 5,000 and 10,000 cycles followed by microtensile bond strength testing. Acid-base challenge was undertaken before SEM and TEM observations of the adhesive interface. The etch-and-rinse method with SBU (SBM and SBD) created inferior interfaces on the dentin surface which resulted in reduced bond durability. ABRZ formation was detected with the self-etch adhesive systems; SE2, XTR and SBS. In the PA etching protocols of SBM and SBD, a thick hybrid layer but no ABRZ was detected, which might affect dentin bond durability. PMID:27335136

  16. Conduit Coating Abrasion Testing

    NASA Technical Reports Server (NTRS)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  17. Properties of pili from Escherichia coli SS142 that mediate mannose-resistant adhesion to mammalian cells.

    PubMed Central

    Mett, H; Kloetzlen, L; Vosbeck, K

    1983-01-01

    We isolated pili from Escherichia coli SS142. These pili had a diameter of 6 nm and an average length of 400 nm. They were composed of subunits with a molecular weight of 18,000. Their amino acid composition was determined; methionine and proline were not detected. The isolated pili retained mannose-resistant hemagglutinating activity. Proteolytic digestion and glutaraldehyde fixation led to partial or complete loss of the hemagglutinating activity of the pili without causing any detectable damage to their supramolecular structure, which was only disintegrated by treatment with hot sodium dodecyl sulfate. The hemagglutinating activity of E. coli SS142 was inhibited by the glycoproteins fetuin and Tamm-Horsfall protein, as well as by the glycolipids phytyl lactoside, dansyl-sphingosine lactoside, and digalactosyl diglyceride. Isolated pili inhibited the adhesion of the homologous strain E. coli SS142 to Intestine 407 cell monolayers, but did not inhibit the adhesion of E. coli strain B-413, B-506, or 2699. This indicates that E. coli SS142 binds to a receptor different from those recognized by the other strains and that mannose-resistant adhesion to tissue culture cells can be classified into different subtypes. Images PMID:6130060

  18. In vitro characterization of multivalent adhesion molecule 7-based inhibition of multidrug-resistant bacteria isolated from wounded military personnel.

    PubMed

    Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim

    2012-07-01

    Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens.

  19. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  20. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-09-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  1. Attenuation of adhesion, quorum sensing and biofilm mediated virulence of carbapenem resistant Escherichia coli by selected natural plant products.

    PubMed

    Thakur, Pallavi; Chawla, Raman; Tanwar, Ankit; Chakotiya, Ankita Singh; Narula, Alka; Goel, Rajeev; Arora, Rajesh; Sharma, Rakesh Kumar

    2016-03-01

    The multi-drug resistance offered by Carbapenem Resistant Escherichia coli (Family: Enterobacteriaceae; Class: Gammaproteobacteria) against third line antibiotics can be attributed towards its ability to develop biofilm. Such process involves adhesion and quorum-sensing induced colonization leading to biomass development. The present study explored the anti-adhesion, anti-quorum sensing and anti-biofilm potential of 05 pre-standardized potent herbals. Berberis aristata (PTRC-2111-A) exhibited maximum potential in all these activities i.e. 91.3% ± 0.05% (Anti-adhesion), 96.06% ± 0.05% (Anti-Quorum sensing) and 51.3% ± 0.07% (Anti-Biofilm formation) respectively. Camellia sinensis (PTRC-31911-A) showed both anti-adhesion (84.1% ± 0.03%) and anti-quorum sensing (90.0%) potential while Holarrhena antidysenterica (PTRC-8111-A) showed only anti-quorum sensing potential as compared to standards/antibiotics. These findings were in line with the molecular docking analysis of phytoligands against Lux S and Pilin receptors. Furthermore, the pairwise correlation analysis of the tested activities with qualitative, quantitative and bioactivity functional descriptors revealed that an increased content of alkaloid, moderate content of flavonoids and decreased content of tannins supported all the three activities. In addition, nitric oxide and superoxide scavenging activity were found to be correlated with anti-quorum sensing activity. The findings indicated clearly that B. aristata (Family: Berberidaceae) and C. sinensis (Family: Theaceae) were potent herbal leads with significant therapeutic potential which further needs to be explored at pre-clinical level in the future.

  2. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphomas

    SciTech Connect

    Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun; Li, Chunsun; Guo, Yan; Liu, Yushan; Chen, Yali; Lu, Xiaoyun; Wang, Yuchan; He, Song

    2015-07-15

    Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as an independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.

  3. Improving the fatigue resistance of adhesive joints in laminated wood structures

    NASA Technical Reports Server (NTRS)

    Laufenberg, Theodore L.; River, Bryan H.; Murmanis, Lidija L.; Christiansen, Alfred W.

    1988-01-01

    The premature fatigue failure of a laminated wood/epoxy test beam containing a cross section finger joint was the subject of a multi-disciplinary investigation. The primary objectives were to identify the failure mechanisms which occurred during the finger joint test and to provide avenues for general improvements in the design and fabrication of adhesive joints in laminated wood structures.

  4. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  5. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  6. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  7. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  8. Blister Test for Measurements of Adhesion and Adhesion Degradation of Organic Polymers on AA2024-T3

    NASA Astrophysics Data System (ADS)

    Rincon Troconis, Brendy Carolina

    A key parameter for the performance of corrosion protective coatings applied to metals is adhesion. Surface preparation prior to coating application is known to be critical, but there is a lack of understanding of what controls adhesion. Numerous techniques have been developed in the last decades to measure the adhesion strength of coatings to metals. Nonetheless, they are generally non-quantitative, non-reproducible, performed in dry conditions, or overestimate adhesion. In this study, a quantitative and reproducible technique, the Blister Test (BT), is used. The BT offers the ability to study the effects of a range of parameters, including the presence or absence of a wetting liquid, and simulates the stress situation in the coating/substrate interface. The effects of roughness and surface topography were studied by the BT and Optical Profilometry, using AA2024-T3 substrates coated with polyvinyl butyral (PVB). Random abrasion generated a surface with lower average roughness than aligned abrasion due to the continual cross abrasion of the grooves. The BT could discern the effects of different mechanical treatments. An adhesion strength indicator was defined and found to be a useful parameter. The effectiveness of standard adhesion techniques such as ASTM D4541 (Pull-off Test) and ASTM D3359 (Tape Test) was compared to the BT. Also, different attempts to measure adhesion and adhesion degradation of organic polymers to AA2024-T3 were tested. The pull-off test does not produce adhesive failure across the entire interface, while the tape test is a very qualitative technique and does not discern between the effects of different coating systems on the adhesion performance. The BT produces adhesive failure of the primer studied, is very reproducible, and is able to rank different coating systems. Therefore, it was found to be superior to the others. The approaches tested for adhesion degradation were not aggressive enough to have a measurable effect. The effects of

  9. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  10. Platelet response to corneal abrasion is necessary for acute inflammation and efficient re-epithelialization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Adhesion molecules play a critical role in leukocyte emigration to wound sites, but differences are evident in different vascular beds. This study investigates the contributions of P-selectin to neutrophil emigration into the cornea following central epithelial abrasion. Methods: Re-epithel...

  11. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  12. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion

    NASA Astrophysics Data System (ADS)

    Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2014-06-01

    Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.

  13. ADVANCED ABRASION RESISTANT MATERIALS FOR MINING

    SciTech Connect

    Ludtka, G.M.

    2004-04-08

    The high-density infrared (HDI) transient-liquid coating (TLC) process was successfully developed and demonstrated excellent, enhanced (5 times higher than the current material and process) wear performance for the selected functionally graded material (FGM) coatings under laboratory simulated, in-service conditions. The mating steel component exhibited a wear rate improvement of approximately one and a half (1.5) times. After 8000 cycles of wear testing, the full-scale component testing demonstrated that the coating integrity was still excellent. Little or no spalling was observed to occur.

  14. Advance Abrasion Resistant Materials for Mining

    SciTech Connect

    Mackiewicz-Ludtka, G.

    2004-06-01

    The high-density infrared (HDI) transient-liquid coating (TLC) process was successfully developed and demonstrated excellent, enhanced (5 times higher than the current material and process) wear performance for the selected functionally graded material (FGM) coatings under laboratory simulated, in-service conditions. The mating steel component exhibited a wear rate improvement of approximately one and a half (1.5) times. After 8000 cycles of. wear testing, the full-scale component testing demonstrated that the coating integrity was still excellent. Little or no spalling was observed to occur.

  15. Abrasion resistant silicon nitride based articles

    SciTech Connect

    Sarin, V.K.; Buijan, S.T.; Penty, R.A.

    1984-02-28

    A composite article and cutting tool are prepared by densification to form a body consisting essentially of particles of hard refractory material uniformly distributed in a matrix consisting essentially of a first phase and a second phase, said first phase consisting essentially of crystalline silicon nitride and said second phase being an intergranular refractory phase comprising silicon nitride and a suitable densification aid selected from the group consisting of yttrium oxide, zirconium oxide, hafnium oxide and the lanthanade rare earth oxides and mixture thereof.

  16. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells.

    PubMed

    Hiscox, Stephen; Barnfather, Peter; Hayes, Edd; Bramble, Pamela; Christensen, James; Nicholson, Robert I; Barrett-Lee, Peter

    2011-02-01

    Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell-matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC(50) for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0-1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment.

  17. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells.

    PubMed

    Hiscox, Stephen; Barnfather, Peter; Hayes, Edd; Bramble, Pamela; Christensen, James; Nicholson, Robert I; Barrett-Lee, Peter

    2011-02-01

    Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell-matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC(50) for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0-1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment. PMID:20354780

  18. Development of a two-body wet abrasion test method with attention to the effects of reused abradant

    SciTech Connect

    Blau, Peter Julian; Dehoff, Ryan R

    2012-01-01

    Abrasive wear is among the most common and costliest causes for material wastage, and it occurs in many forms. A simple method has been developed to quantify the response of metals and alloys to two-body wet abrasion. A metallographic polishing machine was modified to create a disk-on-flat sliding test rig. Adhesive-backed SiC grinding papers were used under fixed load and speed to rank the abrasive wear of seven alloy steels, some of which are candidates for drill cones for geothermal drilling. Standardized two-body abrasion tests, like those described in ASTM G132, feed unused abrasive into the contact; however, the current work investigated whether useful rankings could still be obtained with a simpler testing configuration in which specimens repeatedly slide on the same wear path under water-lubricated conditions. Tests using abrasive grit sizes of 120 and 180 resulted in the same relative ranking of the alloys although the coarser grit produced more total wear. Wear decreased when the same abrasive disk was re-used for up to five runs, but the relative rankings of the steels remained the same. This procedure was presented to ASTM Committee G2 on Wear and Erosion as a potential standard test for wet two-body abrasive wear.

  19. Hydro-abrasive erosion: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Winkler, K.

    2014-03-01

    The number of hydro power plants with hydro-abrasive erosion is increasing worldwide. An overall approach is needed to minimize the impact of this phenomenon. Already at the start of the planning phase an evaluation should be done to quantify the erosion and the impact on the operation. For this, the influencing parameters and their impact on the erosion have to be known. The necessary information for the evaluation comprises among others the future design, the particle parameters of the water, which will pass the turbine, and the power plant owner's framework for the future operation like availability or maximum allowable efficiency loss, before an overhaul needs to be done. Based on this evaluation of the erosion, an optimised solution can then be found, by analysing all measures in relation to investments, energy production and maintenance costs as decision parameters. Often a more erosion-resistant design, instead of choosing the turbine design with the highest efficiency, will lead to higher revenue. The paper will discuss the influencing parameters on hydro-abrasive erosion and the problems to acquire this information. There are different optimisation possibilities, which will be shown in different case studies. One key aspect to reduce the erosion and prolong the operation time of the components is to coat all relevant parts. But it is very important that this decision is taken early in the design stage, as the design has to be adapted to the requirements of the coating process. The quality of coatings and their impact on the operation will be discussed in detail in the paper as due to the non-availability of standards many questions arise in projects.

  20. Adhesion, biofilm and genotypic characteristics of antimicrobial resistant Escherichia coli isolates

    PubMed Central

    Cergole-Novella, Maria C.; Pignatari, Antonio C.C.; Guth, Beatriz E.C.

    2015-01-01

    Aggregative adherence to human epithelial cells, most to renal proximal tubular (HK-2) cells, and biofilm formation was identified among antimicrobial resistant Escherichia coli strains mainly isolated from bacteremia. The importance of these virulence properties contributing to host colonization and infection associated with multiresistant E. coli should not be neglected. PMID:26221104

  1. Abrasive drill for resilient materials

    NASA Technical Reports Server (NTRS)

    Koch, A. J.

    1981-01-01

    Resilient materials normally present problem in obtaining accurate and uniform hole size and position. Tool is fabricated from stiff metal rod such as tungsten or carbon steel that has diameter slightly smaller than required hole. Piercing/centering point is ground on one end of rod. Rod is then plasma-sprayed (flame-sprayed) with suitable hard abrasive coating. High-speed, slow-feed operation of tool is necessary for accurate holes, and this can be done with drill press, hard drill, or similar machines.

  2. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    De La Roche, J.; González, J. M.; Restrepo-Parra, E.; Sequeda, F.; Alleh, V.; Scharf, T. W.

    2014-11-01

    Titanium-doped tungsten bisulfide thin films (WS2-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS2 was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS2. Using the scratch test, the coatings' adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  3. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  4. Focal Adhesion-Chromatin Linkage Controls Tumor Cell Resistance to Radio- and Chemotherapy

    PubMed Central

    Storch, Katja; Cordes, Nils

    2012-01-01

    Cancer resistance to therapy presents an ongoing and unsolved obstacle, which has clear impact on patient's survival. In order to address this problem, novel in vitro models have been established and are currently developed that enable data generation in a more physiological context. For example, extracellular-matrix- (ECM-) based scaffolds lead to the identification of integrins and integrin-associated signaling molecules as key promoters of cancer cell resistance to radio- and chemotherapy as well as modern molecular agents. In this paper, we discuss the dynamic nature of the interplay between ECM, integrins, cytoskeleton, nuclear matrix, and chromatin organization and how this affects the response of tumor cells to various kinds of cytotoxic anticancer agents. PMID:22778951

  5. Platelet adhesive resistance of polyurethane surface grafted with zwitterions of sulfobetaine.

    PubMed

    Jiang, Yuan; Qingfeng, Hou; Baolei, Liu; Jian, Shen; Sicong, Lin

    2004-07-01

    A possible approach to improve the blood compatibility of poly(etherurethane)s (PU) involves the covalent attachment of key molecular on its surface. Recently, polymer tailed with zwitterions was found having good blood compatibility. The purpose of present study was to design and synthesis a novel nonthrombogenic biomaterial by modifying the surface of poly(etherurethane) with zwitterions of sulfobetaine via HDI spacer. The films of polyurethane were grafted with sulfobetaine by a three-step procedure. In the first step, the film surfaces were treated with hexamethylene diisocyanate (HDI) in toluene at 50 degrees C in the presence of di-n-butyl tin dilaurate(DBTDL) as a catalyst. The extent of the reaction was measured by ATR-IR spectra; a maximum number of free NCO group was obtained after a reaction time of 2.5 h. In the second step, the primary amine group of N,N-diethylethylenediamine (DEA) or N,N-dimethylethylenediamine (DMA) was allowed to react in toluene with isocyanate groups bound on surface. In the third step, two kinds of sulfobetaines were formed in the surface through the ring-opening reaction between tertiary amine of DMA or DEA and 1,3- propanesultone (PS). The reaction process was monitored with ATR-IR spectra and XPS spectra. The wettability of films was investigated by water contact angle measurement. A platelet adhesion experiment was conducted as a preliminary test to confirm the improved blood compatibility of PU. The number of platelets adhering to PU decreased greatly compared to original after 1 h and 3 h of contact with human plate-rich plasma. PMID:15261019

  6. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  7. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  8. Ceramic-bonded abrasive grinding tools

    SciTech Connect

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  9. A physically-based abrasive wear model for composite materials

    SciTech Connect

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  10. Cleaning power and abrasivity of European toothpastes.

    PubMed

    Wülknitz, P

    1997-11-01

    For 41 toothpastes available to European consumers in 1995, the cleaning efficacy was evaluated in comparison with abrasivity on dentin (RDA value). For cleaning power assessment, a modified pellicle cleaning ratio (PCR) measurement method was developed. The method is characterized by a five-day tea-staining procedure on bovine front teeth slabs on a rotating wheel, standardized brushing of the slabs in a V8 cross-brushing machine, and brightness measurement by a chromametric technique. All tested products were in accordance with the new DIN/ISO standard 11,609 for toothpastes in terms of dentin abrasivity. Not a single product exceeded an RDA value of 200. The majority of toothpastes (80%) had an RDA value below 100. Only three products surpassed the reference in cleaning power. Most products (73%) had a cleaning power (PCR value) between 20 and 80. The correlation between cleaning power and dentin abrasion was low (r = 0.66), which can be explained with the different influence on dentin and stains by factors like abrasive type, particle surface and size, as well as the chemical influence of other toothpaste ingredients. Some major trends could be shown on the basis of abrasive types. The ratio PCR to RDA was rather good in most silica-based toothpastes. A lower ratio was found in some products containing calcium carbonate or aluminum trihydrate as the only abrasive. The addition of other abrasives, such as polishing alumina, showed improved cleaning power. Some active ingredients, especially sequenstrants such as sodium tripolyphosphate or AHBP, also improve the PCR/RDA ratio by stain-dissolving action without being abrasive. The data for some special anti-stain products did not differ significantly from standard products. Compared with data measured in 1988, a general trend toward reduced abrasivity without loss of cleaning efficacy could be noticed on the European toothpaste market. This may be mostly due to the increased use of high-performance abrasives such

  11. The cell-adhesion and signaling molecule PECAM-1 is a molecular mediator of resistance to genotoxic chemotherapy.

    PubMed

    Bergom, Carmen; Goel, Reema; Paddock, Cathy; Gao, Cunji; Newman, Debra K; Matsuyama, Shigemi; Newman, Peter J

    2006-12-01

    Defects in the regulation of apoptotic pathways have been implicated in the emergence of cancers resistant to chemotherapy-induced cell death. Identification of novel signaling molecules that influence cell survival has the potential to facilitate the development of new cancer therapies. The cell adhesion and signaling molecule, PECAM-1, is expressed in many hematopoietic and endothelial cell malignancies, and has previously been shown to suppress mitochondrial-dependent, Bax-mediated apoptosis. The ability of PECAM-1 to influence tumor cell survival following exposure to chemotherapeutic agents, however, is not known. Here we show that, when overexpressed in HEK293 and REN mesothelioma cells, PECAM-1 confers resistance to apoptosis induced by the DNA-damaging chemotherapeutic agent, etoposide. Surprisingly, PECAM-1-mediated cytoprotection was found to be largely independent of its ability to form a signaling complex with the protein-tyrosine phosphatase SHP-2, as virtually no tyrosine phosphorylation of, or SHP-2 association with, PECAM-1 could be detected after etoposide treatment. Furthermore, PECAM-1 retained its ability to protect against chemotherapy-induced apoptosis in cells with SHP-2 levels significantly reduced using SHP-2-specific siRNA, and in cells in which Erk1/2--a downstream effector of SHP-2--had been inhibited. Finally, to determine whether endogenous PECAM-1 confers resistance to chemotherapy-induced apoptosis in lymphoid malignancies and endothelial cells, we used a lentiviral vector to stably express PECAM-1-specific siRNA in the Jurkat leukemia cell line and human umbilical vein endothelial cells (HUVECs). siRNA-expressing Jurkat cells with a 70% reduction of PECAM-1 expression were significantly more sensitive to chemotherapy-induced apoptosis. HUVECs with PECAM-1 expression reduced 75% were also markedly more sensitive to chemotherapy-induced cell death. Taken together, these data demonstrate that endogenous PECAM-1 expression on lymphoid

  12. Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1995-01-01

    For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.

  13. Haemophilus influenzae P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance.

    PubMed

    Su, Yu-Ching; Mukherjee, Oindrilla; Singh, Birendra; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Hood, Derek; Riesbeck, Kristian

    2016-01-15

    Interaction with the extracellular matrix (ECM) is one of the successful colonization strategies employed by nontypeable Haemophilus influenzae (NTHi). Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM proteins. Purified recombinant P4 displayed a high binding affinity for laminin (Kd = 9.26 nM) and fibronectin (Kd = 10.19 nM), but slightly less to vitronectin (Kd = 16.51 nM). A P4-deficient NTHi mutant showed a significantly decreased binding to these ECM components. Vitronectin acquisition conferred serum resistance to both P4-expressing NTHi and Escherichia coli transformants. P4-mediated bacterial adherence to pharynx, type II alveolar, and bronchial epithelial cells was mainly attributed to fibronectin. Importantly, a significantly reduced bacterial infection was observed in the middle ear of the Junbo mouse model when NTHi was devoid of P4. In conclusion, our data provide new insight into the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory tract infection.

  14. Hybrid layer thickness and morphology: Influence of cavity preparation with air abrasion.

    PubMed

    Barceleiro, Marcos Oliveira; de Mello, Jose Benedicto; Porto, Celso Luis de Angelis; Dias, Katia Regina Hostilio Cervantes; de Miranda, Mauro Sayao

    2011-01-01

    Dentinal surfaces prepared with air abrasion have considerably different characteristics from those prepared with conventional instruments. Different hybrid layer morphology and thickness occur, which can result in differences in the quality of restorations placed on dentinal surfaces prepared with a diamond bur compared to surfaces prepared using air abrasion. The objective of this study was to compare the hybrid layer thickness and morphology formed utilizing Scotchbond Multi-Purpose Plus (SBMP) on dentin prepared with a diamond bur in a high-speed handpiece and on dentin prepared using air abrasion. Flat dentin surfaces obtained from five human teeth were prepared using each method, then treated with the dentin adhesive system according to manufacturer's instructions. After a layer of composite was applied, specimens were sectioned, flattened, polished, and prepared for scanning electron microscopy. Ten different measurements of hybrid layer thickness were obtained along the bonded surface in each specimen. SBMP produced a 3.43 ± 0.75 µm hybrid layer in dentin prepared with diamond bur. This hybrid layer was regular and found consistently. In the air abrasion group, SBMP produced a 4.94 ± 1.28 µm hybrid layer, which was regular and found consistently. Statistical ANOVA (P = 0.05) indicated that there was a statistically significant difference between the groups. These data indicate that the air abrasion, within the parameters used in this study, provides a thick hybrid layer formation.

  15. Hybrid layer thickness and morphology: Influence of cavity preparation with air abrasion.

    PubMed

    Barceleiro, Marcos Oliveira; de Mello, Jose Benedicto; Porto, Celso Luis de Angelis; Dias, Katia Regina Hostilio Cervantes; de Miranda, Mauro Sayao

    2011-01-01

    Dentinal surfaces prepared with air abrasion have considerably different characteristics from those prepared with conventional instruments. Different hybrid layer morphology and thickness occur, which can result in differences in the quality of restorations placed on dentinal surfaces prepared with a diamond bur compared to surfaces prepared using air abrasion. The objective of this study was to compare the hybrid layer thickness and morphology formed utilizing Scotchbond Multi-Purpose Plus (SBMP) on dentin prepared with a diamond bur in a high-speed handpiece and on dentin prepared using air abrasion. Flat dentin surfaces obtained from five human teeth were prepared using each method, then treated with the dentin adhesive system according to manufacturer's instructions. After a layer of composite was applied, specimens were sectioned, flattened, polished, and prepared for scanning electron microscopy. Ten different measurements of hybrid layer thickness were obtained along the bonded surface in each specimen. SBMP produced a 3.43 ± 0.75 µm hybrid layer in dentin prepared with diamond bur. This hybrid layer was regular and found consistently. In the air abrasion group, SBMP produced a 4.94 ± 1.28 µm hybrid layer, which was regular and found consistently. Statistical ANOVA (P = 0.05) indicated that there was a statistically significant difference between the groups. These data indicate that the air abrasion, within the parameters used in this study, provides a thick hybrid layer formation. PMID:22313931

  16. Mechanics of the pad-abrasive-wafer contact in chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Bozkaya, Dincer

    2009-12-01

    In chemical mechanical polishing (CMP), a rigid wafer is forced on a rough, elastomeric polishing pad, while a slurry containing abrasive particles flows through the interface. The applied pressure on the wafer is carried partially by the 2-body pad-wafer contact (direct contact) and partially by the 3-body contact of pad, wafer and abrasive particles ( particle contact). The fraction of the applied pressure carried by particle contacts is an important factor affecting the material removal rate (MRR) as the majority of the material is removed by the abrasive particles trapped between the pad asperities and the wafer. In this thesis, the contact of a rough, deformable pad and a smooth, rigid wafer in the presence of rigid abrasive particles at the contact interface is investigated by using contact mechanics and finite element (FE) modeling. The interactions between the pad, the wafer and the abrasive particles are modeled at different scales of contact, starting from particle level interactions, and gradually expanding the contact scale to the multi-asperity contact of pad and wafer. The effect of surface forces consisting of van der Waals and electrical double layer forces acting between the wafer and the abrasive particles are also investigated in this work. The wear rate due to each abrasive particle is calculated based on the wafer-abrasive particle contact force, and by considering adhesive and abrasive wear mechanisms. A passivated layer on the wafer surface with a hardness and thickness determined by the chemical effects is modeled, in order to characterize the effect of chemical reactions between slurry and wafer on the MRR. The model provides accurate predictions for the MRR as a function of pad related parameters; pad elastic modulus, pad porosity and pad topography, particle related parameters; particle size and concentration, and slurry related parameters; slurry pH, thickness and hardness of the passivated surface layer of wafer. A good qualitative

  17. Dry adhesives with sensing features

    NASA Astrophysics Data System (ADS)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  18. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  19. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  20. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  1. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  2. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  3. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  4. Evaluation of dentin bonding performance and acid-base resistance of the interface of two-step self-etching adhesive systems.

    PubMed

    IIda, Yasuhiro; Nikaido, Toru; Kitayama, Shuzo; Takagaki, Tomohiro; Inoue, Go; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2009-07-01

    The purpose of this study was to evaluate dentin bond strengths and to observe the adhesive-dentin interface after acid-base challenge using fluoride-free and fluoride-releasing self-etching adhesive systems; Clearfil SE Bond (SE), FL-Bond (FL) and FL-Bond II(FL II). Fifteen dentin surfaces from human molars were ground and bonded with one of three adhesive systems. The microtensile bond strength (muTBS) test was performed at a crosshead speed of 1 mm/min. The interface of the bonded specimens after acid-base challenge were also examined by a SEM. The muTBS of SE were significantly higher than those of FL and FL II (p<0.05), however, there were no significant differences between FL and FL II (p>0.05). An acid-base resistant zone (ABRZ) was observed in all the groups, however, formation of the ABRZ was material dependent. Fluoride-release from the adhesive is a key factor to create thick ABRZ.

  5. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  6. Electrostatic-Force-Assisted Dispensing Printing to Construct High-Aspect-Ratio of 0.79 Electrodes on a Textured Surface with Improved Adhesion and Contact Resistivity

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Youn; Yoo, Sung-Soo; Song, Hee-Eun; Tak, Hyowon; Byun, Doyoung

    2015-11-01

    As a novel route to construct fine and abnormally high-aspect-ratio electrodes with excellent adhesion and reduced contact resistivity on a textured surface, an electrostatic-force-assisted dispensing printing technique is reported and compared with conventional dispensing and electrohydrodynamic jet printing techniques. The electrostatic force applied between a silver paste and the textured surface of a crystalline silicon solar cell wafer significantly improves the physical adhesion of the electrodes, whereas those fabricated using a conventional dispensing printing technique peel off with a silver paste containing 2 wt% of a fluorosurfactant. Moreover, the contact resistivity and dimensionless deviation of total resistance are significantly reduced from 2.19 ± 1.53 mΩ·cm2 to 0.98 ± 0.92 mΩ·cm2 and from 0.10 to 0.03, respectively. By utilizing electrodes with an abnormally high-aspect-ratio of 0.79 (the measured thickness and width are 30.4 μm and 38.3 μm, respectively), the cell efficiency is 17.2% on a polycrystalline silicon solar cell with an emitter sheet resistance of 60 Ω/sq. This cell efficiency is considerably higher than previously reported values obtained using a conventional electrohydrodynamic jet printing technique, by +0.48-3.5%p.

  7. Electrostatic-Force-Assisted Dispensing Printing to Construct High-Aspect-Ratio of 0.79 Electrodes on a Textured Surface with Improved Adhesion and Contact Resistivity

    PubMed Central

    Shin, Dong-Youn; Yoo, Sung-Soo; Song, Hee-eun; Tak, Hyowon; Byun, Doyoung

    2015-01-01

    As a novel route to construct fine and abnormally high-aspect-ratio electrodes with excellent adhesion and reduced contact resistivity on a textured surface, an electrostatic-force-assisted dispensing printing technique is reported and compared with conventional dispensing and electrohydrodynamic jet printing techniques. The electrostatic force applied between a silver paste and the textured surface of a crystalline silicon solar cell wafer significantly improves the physical adhesion of the electrodes, whereas those fabricated using a conventional dispensing printing technique peel off with a silver paste containing 2 wt% of a fluorosurfactant. Moreover, the contact resistivity and dimensionless deviation of total resistance are significantly reduced from 2.19 ± 1.53 mΩ·cm2 to 0.98 ± 0.92 mΩ·cm2 and from 0.10 to 0.03, respectively. By utilizing electrodes with an abnormally high-aspect-ratio of 0.79 (the measured thickness and width are 30.4 μm and 38.3 μm, respectively), the cell efficiency is 17.2% on a polycrystalline silicon solar cell with an emitter sheet resistance of 60 Ω/sq. This cell efficiency is considerably higher than previously reported values obtained using a conventional electrohydrodynamic jet printing technique, by +0.48–3.5%p. PMID:26576857

  8. Air abrasion: an old technology reborn.

    PubMed

    Berry, E A; Eakle, W S; Summitt, J B

    1999-08-01

    Recently, air abrasion has experienced a rebirth in restorative dentistry. Originally developed in the late 1940s, the principle of air abrasion is the imparting of kinetic energy to tiny aluminum oxide particles that are projected by a stream of compressed air or gas and expelled from a small nozzle. The force generated by the relatively hard particles striking a relatively hard surface is sufficient to cut into that surface. In the last decade, more than a dozen models of air abrasion units have been introduced into the marketplace and more are on the way. Manufacturers have developed air abrasion instruments that offer a broad range of features, from small table-top units to self-contained systems with compressors, vacuums, and curing lights. The costs range dramatically--from $1,000 to $20,000 or more--depending on the complexity of the features and attachments. Manufacturers make a variety of claims to support the value of this technology to the practicing dentist. A term often used to describe one of the benefits of air abrasion is microdentistry. The claim is that smaller, less invasive tooth preparations may be accomplished using air abrasion than with a traditional bur and air turbine. This may be true in some instances, but it would certainly depend on the operator's experience and ability to visually discern fine detail. Other claims about air abrasion are that it can be used to cut into tooth structure without local anesthesia and that it should be used on all stained grooves or fissures to determine if incipient carious lesions are present. Despite the limited number of clinical studies, the popularity of air abrasion continues to grow. To gain additional insight about these claims and to see what might be on the horizon for this technology, I spoke with three highly respected educators who are recognized for their expertise in air abrasion. What they said should give the reader a better understanding of how air abrasion might augment restorative

  9. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  10. Sliding and Abrasive Wear Behavior of WC-CoCr Coatings with Different Carbide Sizes

    NASA Astrophysics Data System (ADS)

    Thakur, Lalit; Arora, Navneet

    2013-02-01

    This study examines the sliding and abrasive wear behaviors of high-velocity oxy-fuel (HVOF)-sprayed WC-CoCr coatings with different WC grain sizes. The HVOF coating deposition was assisted by in-flight particle temperature and velocity measurement system. The powder feedstocks and their corresponding coatings were characterized by means of XRD and Field Emission Scanning Electron Microscope analysis. Hardness, porosity, and indentation fracture toughness of these coatings were calculated and compared with each other. Sliding wear resistance of these coatings was calculated using pin-on-disk tribometer (ASTM G99-90). The two-body abrasion was quantified by sliding the samples over silicon carbide (SiC) abrasive paper bonded to a rotating flat disk of auto-polisher. The mechanism of materials' removal in both the sliding and abrasive wears was studied and discussed on microstructural investigations. It was observed that fine grain WC-CoCr cermet coating exhibits higher sliding and abrasive wear resistances as compared with conventional cermet coating.

  11. An in-vitro investigation of the effects of variable operating parameters on alumina air-abrasion cutting characteristics.

    PubMed

    Paolinelis, George; Banerjee, Avijit; Watson, Timothy F

    2009-01-01

    Air-abrasion is a tooth preparation technology developed in the 1940s that is currently gaining popularity due to its compatibility with adhesive restorations. Variables, including propellant pressure, powder flow rate, nozzle angle and distance to the tooth surface abrasion time, can affect the cutting rate of the air-abrasion unit. A static setup and a more clinically realistic dynamic experimental setup have been used to assess the effect of these parameters of the cutting rate on an enamel analogue. By keeping each parameter fixed, its effect on the cutting rate was examined. The results showed that increasing the propellant pressure (20-100 PSI) caused an almost linear increase in the cutting rate in both setups. Increasing the powder flow rate (0.5 - 3 g/minute) concurrently increased the powder flow and caused an increase in the cutting rate but with a plateau differing for the different propellant pressures. The nozzle angles producing the highest cutting rates were 60 degrees and 75 degrees for static and dynamic cutting, respectively, with smaller and larger angles producing lower rates. Increasing abrasion time in static cutting and the nozzle advancement rate in dynamic cutting both caused an increase in the cutting rate. These findings are relevant for both clinicians, who might wish to alter the cutting rate of their instrument, and researchers, who should always control the numerous parameters in studies involving air-abrasion in order to control the variables, which can influence the end effect of air-abrasion.

  12. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains.

    PubMed

    Liu, Wenshu; Ren, Pengfei; He, Suxu; Xu, Li; Yang, Yaling; Gu, Zemao; Zhou, Zhigang

    2013-07-01

    This study compares the effects of two Lactobacillus strains, highly adhesive Lactobacillus brevis JCM 1170 (HALB) and less-adhesive Lactobacillus acidophilus JCM 1132 (LALB), on the survival and growth, adhesive gut bacterial communities, immunity, and protection against pathogenic bacterial infection in juvenile hybrid tilapia. During a 5-week feeding trial the fish were fed a diet containing 0 to 10(9) cells/g feed of the two Lactobacillus strains. Samples of intestine, kidney, and spleen were taken at the start and at 10, 20, and 35 days for analysis of stress tolerance and cytokine gene mRNA levels and to assess the diversity of adhesive gut bacterial communities. A 14-day immersion challenge with Aeromonas hydrophila NJ-1 was also performed following the feeding trial. The results showed no significant differences in survival rate, weight gain, or feed conversion in the different dietary treatments. The adhesive gut bacterial communities were strikingly altered in the fish fed either the HALB or the LALB, but the response was more rapid and substantial with the adhesive strain. The two strains induced similar changes in the patterns (upregulation or downregulation) of intestinal, splenic or kidney cytokine expression, but they differed in the degree of response for these genes. Changes in intestinal HSP70 expression levels coincided with changes in the similarity coefficient of the adhesive gut bacterial communities between the probiotic treatments. The highest dose of the HALB appeared to protect against the toxic effects of immersion in A. hydrophila (P < 0.05). In conclusion, the degree to which Lactobacillus strains adhere to the gut may be a favorable criterion in selecting probiotic strain for aquaculture.

  13. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications.

    PubMed

    Sampaio, M; Buciumeanu, M; Henriques, B; Silva, F S; Souza, J C M; Gomes, J R

    2016-07-01

    In the oral cavity, abrasive wear is predictable at exposed tooth or restorative surfaces, during mastication and tooth brushing. Also, wear can occur at contacting surfaces between the Ti-based prosthetic structures and implants in presence of abrasive compounds from food or toothpaste. Thus, the aim of this work was to compare the abrasive wear resistance of PEEK and Ti6Al4V on three-body abrasion related to different hydrated silica content and loads. Surfaces of Ti6Al4V or PEEK cylinders (8mm diameter and 4mm height) were wet ground on SiC papers and then polished with 1µm diamond paste. After that, surfaces were ultrasonically cleaned in propyl alcohol for 15min and then in distilled water for 10min. Micro-scale abrasion tests were performed at 60rpm and on different normal loads (0.4, 0.8 or 1.2N) after 600 ball revolutions using suspensions with different weight contents of hydrated silica. After abrasive tests, wear scars on flat samples were measured to quantify the wear volume and characterized by scanning electron microscope (SEM) to identify the dominant wear mechanisms. Results showed a higher volume loss rate on PEEK than that recorded on Ti6Al4V,, when subjected to three-body abrasion tests involving hydrated silica suspensions. An increase in volume loss was noted on both tested materials when the abrasive content or load was increased. PEEK was characterized by less wear resistance than that on Ti6Al4V after micro-scale abrasion wear in contact with hydrated silica particles, as commonly found in toothpastes. PMID:26849309

  14. MGr1-Ag/37LRP induces cell adhesion-mediated drug resistance through FAK/PI3K and MAPK pathway in gastric cancer

    PubMed Central

    Sun, Li; Liu, Lili; Liu, Xiangqiang; Wang, Yafang; Li, Mengbin; Yao, Liping; Yang, Jianjun; Ji, Genlin; Guo, Changcun; Pan, Yanglin; Liang, Shuhui; Wang, Biaoluo; Ding, Jie; Zhang, Hongwei; Shi, Yongquan

    2014-01-01

    It is well known that tumor microenvironment plays a vital role in drug resistance and cell adhesion-mediated drug resistance (CAM-DR), a form of de novo drug resistance. In our previous study, we reported that MGr1-Ag/37LRP ligation-induced adhesion participated in protecting gastric cancer cells from a number of apoptotic stimuli caused by chemotherapeutic drugs. Further study suggested that MGr1-Ag could prompt CAM-DR through interaction with laminin. However, the MGr1-Ag-initiated intracellular signal transduction pathway is still unknown. In this study, our experimental results showed that gastric cancer MDR cell lines mediated CAM-DR through upregulation of Bcl-2 by MGr1-Ag interaction with laminin. Further study found that, as a receptor of ECM components, MGr1-Ag/37LRP may activate the downstream signal pathway PI3K/AKT and MAPK/ERK through interaction with phosphorylated FAK. Moreover, the sensitivity to chemotherapeutic drugs could be significantly enhanced by inhibiting MGr1-Ag/37LRP expression through mAbs, siRNA, and antisense oligonucleotide. According to these results, we concluded that the FAK/PI3K and MAPK signal pathway plays an important role in MGr1-Ag-mediated CAM-DR in gastric cancer. MGr1-Ag/37LRP might be a potential effective reversal target to MDR in gastric cancer. PMID:24703465

  15. PAGMan - propelled abrasive grit to manage weeds in soybean and corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New tools for controlling weeds would be useful for soybean and corn production in organic systems or in systems in which weeds developed resistance to multiple herbicides. Here we report on two developments: (i) the safety to soybean seedlings of using air-propelled abrasive grit (PAG) for managing...

  16. Abrasive wear behavior of heat-treated ABC-silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  17. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  18. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3

    PubMed Central

    Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-01-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618

  19. Universal scaling relations for pebble abrasion

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2012-12-01

    The process of abrasion of gravel in bed load transport results from particle-to-particle collisions, where the energy involved is sufficient to cause chipping and spallation but not fragmentation of parent grains. The removed rock material is not infinitesimal; daughter products as large as coarse sand can be produced. Although previous work has shown that lithology, grain shape, and energy of collision are contributing factors that control abrasion rates of river-bed material, little is known regarding the relationship between these factors and diminution rates. Here we explicitly isolate and investigate how these three factors influence rates of abrasion and the size distribution of daughter products, with laboratory experiments. The apparatus is a double pendulum (Newton's cradle) that produces well-controlled binary collisions. A high-speed camera precisely measures collision energy, while mass of parent rocks. and the size and shape distributions of daughter products, are measured periodically. We examined abrasion of initially square-cut 'rocks' as they underwent successive collisions in the binary collision apparatus. We have examined mass loss rate for varied lithologies, and observe a similar power-law relationship between impact energy and mass abraded. When normalized by sensible material properties, mass loss curves for all materials collapse onto a single curve, suggesting that the underlying mechanics of abrasion for different materials are the same. The relationship does not display the linear trend expected from pure energetics, and we suggest that this is a shape effect as protruding - and hence easily eroded - corners are worn away. Analysis of daughter-product particle size distributions for different lithology fragments - including natural rocks and also bricks - show the same functional form. Surprisingly, it is the power-law relation expected for brittle materials undergoing fragmentation. This suggests that brittle fracture theory also

  20. Adhesion, friction and micromechanical properties of ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1988-01-01

    The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.

  1. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    NASA Astrophysics Data System (ADS)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  2. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing... that contains an abrasive material, such as silica pumice, intended to remove debris from the...

  3. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing... that contains an abrasive material, such as silica pumice, intended to remove debris from the...

  4. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing... that contains an abrasive material, such as silica pumice, intended to remove debris from the...

  5. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    PubMed

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives. PMID:27326894

  6. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeded. (j) All employees using abrasive wheels shall be protected by eye protection equipment in accordance with the requirements of subpart I of this part except when adequate eye protection is afforded by eye shields which are permanently attached to the bench or floor stand....

  7. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  8. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  9. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  10. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  11. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  12. Dust transport and abrasion assessment within simulated standing vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues are useful in protecting the top soil from depletion and abrasion due to wind erosion. A wind tunnel study was done to measure sand transport and abrasion energies within the simulated artificial standing vegetation. Wind profiles, relative abrasion energies and rates of sand dischar...

  13. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels... Institute, B7.1-1970, Safety Code for the Use, Care and Protection of Abrasive Wheels, and paragraph (d)...

  14. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  15. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  16. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  17. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  18. Comparison of Adhesive Resistance to Chewing Gum among Denture Base Acrylic Resin, Cobalt-Chromium Alloy, and Zirconia.

    PubMed

    Wada, Takeshi; Takano, Tomofumi; Ueda, Takayuki; Sakurai, Kaoru

    2016-01-01

    The purpose of this study was to compare the adhesiveness of chewing gum to acrylic resin, cobalt-chromium alloy, and zirconia. Test specimens were fabricated using acrylic resin (resin), cobalt-chromium alloy (Co-Cr), and Ceria stabilized tetragonal zirconia polycrystal-based nanostructured zirconia/alumina composite (zirconia). Specimens of each material were attached to the upper and lower terminals of a digital force gauge. The operator masticated chewing gum, wiped off any saliva, and placed the gum on the lower specimen. The gum was compressed to a thickness of 1 mm between the upper and lower specimens. Thereafter, traction was applied to the upper specimen at a cross-head speed of 100 mm/min under 3 different conditions (dry, wet with distilled water, and wet with artificial saliva) to determine the maximum adhesive strength of the chewing gum. The statistical analysis was performed using the Bonferroni test after a one-way analysis of variance (α=0.05). Under dry conditions, adhesive force was 14.8±6.8 N for resin, 14.0±4.8 N for Co-Cr, and 4.3±2.3 N for zirconia. Significant differences were noted between resin and zirconia, and between Co-Cr and zirconia. When distilled water was applied to the specimen surface, the adhesive strength was 16.8±1.7 N for resin, 8.3±2.1 N for Co-Cr, and 2.7±0.8 N for zirconia. Significant differences were noted between resin and Co-Cr, resin and zirconia, and Co-Cr and zirconia. When artificial saliva was applied to the specimen surface, the adhesive force was 18.5±2.8 N for resin, 5.3±0.8 N for Co-Cr, and 3.0±1.7 N for zirconia. Significant differences were noted between resin and Co-Cr, and resin and zirconia. Chewing gum adhered less strongly to zirconia than to acrylic resin or cobalt-chromium alloy. PMID:26961330

  19. Comparison of Adhesive Resistance to Chewing Gum among Denture Base Acrylic Resin, Cobalt-Chromium Alloy, and Zirconia.

    PubMed

    Wada, Takeshi; Takano, Tomofumi; Ueda, Takayuki; Sakurai, Kaoru

    2016-01-01

    The purpose of this study was to compare the adhesiveness of chewing gum to acrylic resin, cobalt-chromium alloy, and zirconia. Test specimens were fabricated using acrylic resin (resin), cobalt-chromium alloy (Co-Cr), and Ceria stabilized tetragonal zirconia polycrystal-based nanostructured zirconia/alumina composite (zirconia). Specimens of each material were attached to the upper and lower terminals of a digital force gauge. The operator masticated chewing gum, wiped off any saliva, and placed the gum on the lower specimen. The gum was compressed to a thickness of 1 mm between the upper and lower specimens. Thereafter, traction was applied to the upper specimen at a cross-head speed of 100 mm/min under 3 different conditions (dry, wet with distilled water, and wet with artificial saliva) to determine the maximum adhesive strength of the chewing gum. The statistical analysis was performed using the Bonferroni test after a one-way analysis of variance (α=0.05). Under dry conditions, adhesive force was 14.8±6.8 N for resin, 14.0±4.8 N for Co-Cr, and 4.3±2.3 N for zirconia. Significant differences were noted between resin and zirconia, and between Co-Cr and zirconia. When distilled water was applied to the specimen surface, the adhesive strength was 16.8±1.7 N for resin, 8.3±2.1 N for Co-Cr, and 2.7±0.8 N for zirconia. Significant differences were noted between resin and Co-Cr, resin and zirconia, and Co-Cr and zirconia. When artificial saliva was applied to the specimen surface, the adhesive force was 18.5±2.8 N for resin, 5.3±0.8 N for Co-Cr, and 3.0±1.7 N for zirconia. Significant differences were noted between resin and Co-Cr, and resin and zirconia. Chewing gum adhered less strongly to zirconia than to acrylic resin or cobalt-chromium alloy.

  20. Wheel Abrasion Experiment Conducted on Mars

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1998-01-01

    Sojourner rover showing Lewis' wheel abrasion experiment. The Mars Pathfinder spacecraft soft-landed on Mars on July 4, 1997. Among the many experiments on its small Sojourner rover are three technology experiments from the NASA Lewis Research Center, including the Wheel Abrasion Experiment (WAE). The WAE was designed, built, delivered, and operated on Mars by a team of engineers and scientists from Lewis' Photovoltaics and Space Environments Branch. This experiment collected data to assess wheel surface wear on the Sojourner. It used a specially designed rover wheel, with thin films (200 to 1000 angstroms) of aluminum, nickel, and platinum deposited on black, anodized aluminum strips attached to the rover's right center wheel. As the wheel spun in the Martian soil, a photovoltaic sensor monitored changes in film reflectivity. These changes indicated abrasion of the metal films by Martian surface material. Rolling wear data were accumulated by the WAE. Also, at frequent intervals, all the rover wheels, except the WAE test wheel, were locked to hold the rover stationary while the test wheel alone was spun and dug into the Martian regolith. These tests created wear conditions more severe than simple rolling. The WAE will contribute substantially to our knowledge of Martian surface characteristics. Marked abrasion would indicate a surface composed of hard, possibly sharply edged grains, whereas lack of abrasion would suggest a somewhat softer surface. WAE results will be correlated with ground simulations to determine which terrestrial materials behave most like those on Mars. This knowledge will enable a deeper understanding of erosion processes on Mars and the role they play in Martian surface evolution. Preliminary results show that electrostatic charging of the rover wheels sometimes caused dust to accumulate on the WAE wheel, making interpretation of the reflectance data problematic. If electrostatic charging is the mechanism for dust attraction, this indicates

  1. Using stream sediment lithology to explore the roles of abrasion and channel network structure in shaping downstream sediment yields

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Smith, M. E.; Pitlick, J.

    2012-12-01

    Both the flux and characteristics of stream sediment evolve downstream in response to variations in sediment supply, abrasion rate, and channel network structure. We use a simple erosion-abrasion mass balance to model the downstream evolution of sediment flux in two adjacent watersheds draining differing mixtures of soft and resistant rock types in the northern Rocky Mountains. Measurements of bed sediment grain size and lithology are used in conjunction with measured bed load and suspended load sediment fluxes to constrain the model. The results show that the downstream evolution in bed load flux and composition can be strongly influenced by subtle differences in underlying geology, which shapes both the abrasion characteristics and travel path lengths of individual rock types. In the Big Wood basin, abrasion rapidly reduces the size of soft sedimentary and volcanic rocks exposed in headwater areas, concentrating resistant granitic rocks in the stream bed and depressing bed load in favor of suspended load. Alternatively, in the North Fork Big Lost basin, volcanic and sedimentary lithologies are exposed throughout the catchment, and the bed material becomes dominated by erodible but resistant quartzitic sandstones. The result is a much higher bed load flux best modeled with modest abrasion rates. In both cases, the best-fit model can reproduce within 5% the composition of the stream bed substrate using realistic erosion and abrasion parameters. The results also demonstrate a strong linkage between modern hillslopes and channel systems even in these formerly glaciated landscapes, as the sediment signature of the primary streams reflects the systematic tapping of distinct source areas. While this work shows promise, measurement of the spatial patterns in the size and composition of bed and suspended load fluxes at locations throughout a channel network would better elucidate that relative importance of supply, sorting, and abrasion processes.

  2. The effect of bleaching on toothbrush abrasion of resin composites

    PubMed Central

    Hajizadeh, Hila; Ameri, Hamideh; Eslami, Samaneh; Mirzaeepoor, Behnam

    2013-01-01

    Aim: This experimental study was designed to focus on the effects of bleaching on toothbrush abrasion in three types of composites with different filler size. Materials and Methods: Forty eight disks were prepared from three types of composite and divided into 6 groups. In the first three groups the abrasion test was done. The remaining groups were bleached and the abrasion test was performed. The weight of the samples before and after abrasion was measured. Statistical analysis was done with one-way ANOVA and Duncan test. Results: There was a significant difference in abrasion of composites with different filler size (P < 0.05). The most amount of abrasion was observed in Z100 after being bleached. An increase in abrasion was noticed in all three types of tested composite after bleaching. Conclusion: According to the findings, it is suggested to use a nano filled resin composite for restoration if the bleaching treatment is required. PMID:23349570

  3. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping.

    PubMed

    Alcaide, María; Papaioannou, Stavros; Taylor, Andrew; Fekete, Ladislav; Gurevich, Leonid; Zachar, Vladimir; Pennisi, Cristian Pablo

    2016-05-01

    Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes. PMID:26975747

  4. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  5. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin.

    PubMed

    Inoue, Go; Tsuchiya, Satoko; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2006-01-01

    This study examined the ultrastructure of both intact and caries affected dentin-adhesive interface after artificial secondary caries formation, using scanning electron microscopy and nanoindentation testing. Half of the prepared specimens were bonded with Clearfil SE Bond (Kuraray Medical, Japan) and a resin composite (Metafil Flo, Sun Medical, Japan) for the nanoindentation test. The other specimens were stored in a buffered demineralizing solution for 90 minutes, then observed using SEM. An acid-base resistant zone (ABRZ) was observed beneath the hybrid layer, distinguished by argon-ion etching. The ABRZ of caries-affected dentin was thicker than that of normal dentin, while its nanohardess was lower than normal dentin (p<0.05). It is suggested that the monomer of Clearfil SE Bond penetrated deeper than previously reported, creating a so-called "hybrid layer." However, its physical properties depended on the condition of the dentin.

  6. Loose abrasive slurries for optical glass lapping

    SciTech Connect

    Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier

    2010-10-20

    Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

  7. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  8. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  9. Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces

    PubMed Central

    Bhushan, Bharat; Kwak, Kwang Joo; Gupta, Samit; Lee, Stephen C

    2009-01-01

    Proteins on biomicroelectromechanical systems (BioMEMS) confer specific molecular functionalities. In planar FET sensors (field-effect transistors, a class of devices whose protein-sensing capabilities we demonstrated in physiological buffers), interfacial proteins are analyte receptors, determining sensor molecular recognition specificity. Receptors are bound to the FET through a polymeric interface, and gross disruption of interfaces that removes a large percentage of receptors or inactivates large fractions of them diminishes sensor sensitivity. Sensitivity is also determined by the distance between the bound analyte and the semiconductor. Consequently, differential properties of surface polymers are design parameters for FET sensors. We compare thickness, surface roughness, adhesion, friction and wear properties of silane polymer layers bound to oxides (SiO2 and Al2O3, as on AlGaN HFETs). We compare those properties of the film–substrate pairs after an additional deposition of biotin and streptavidin. Adhesion between protein and device and interfacial friction properties affect FET reliability because these parameters affect wear resistance of interfaces to abrasive insult in vivo. Adhesion/friction determines the extent of stickage between the interface and tissue and interfacial resistance to mechanical damage. We document systematic, consistent differences in thickness and wear resistance of silane films that can be correlated with film chemistry and deposition procedures, providing guidance for rational interfacial design for planar AlGaN HFET sensors. PMID:18986962

  10. Hydration and chain entanglement determines the optimum thickness of poly(HEMA-co-PEG₁₀MA) brushes for effective resistance to settlement and adhesion of marine fouling organisms.

    PubMed

    Yandi, Wetra; Mieszkin, Sophie; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A; Tyson, Lyndsey; Liedberg, Bo; Ederth, Thomas

    2014-07-23

    Understanding how surface physicochemical properties influence the settlement and adhesion of marine fouling organisms is important for the development of effective and environmentally benign marine antifouling coatings. We demonstrate that the thickness of random poly(HEMA-co-PEG10MA) copolymer brushes affect antifouling behavior. Films of thicknesses ranging from 50 to 1000 Å were prepared via surface-initiated atom-transfer radical polymerization and characterized using infrared spectroscopy, ellipsometry, atomic force microscopy and contact angle measurements. The fouling resistance of these films was investigated by protein adsorption, attachment of the marine bacterium Cobetia marina, settlement and strength of attachment tests of zoospores of the marine alga Ulva linza and static immersion field tests. These assays show that the polymer film thickness influenced the antifouling performance, in that there is an optimum thickness range, 200-400 Å (dry thickness), where fouling of all types, as well as algal spore adhesion, was lower. Field test results also showed lower fouling within the same thickness range after 2 weeks of immersion. Studies by quartz crystal microbalance with dissipation and underwater captive bubble contact angle measurements show a strong correlation between lower fouling and higher hydration, viscosity and surface energy of the poly(HEMA-co-PEG10MA) brushes at thicknesses around 200-400 Å. We hypothesize that the reduced antifouling performance is caused by a lower hydration capacity of the polymer for thinner films, and that entanglement and crowding in the film reduces the conformational freedom, hydration capacity and fouling resistance for thicker films.

  11. Hydration and chain entanglement determines the optimum thickness of poly(HEMA-co-PEG₁₀MA) brushes for effective resistance to settlement and adhesion of marine fouling organisms.

    PubMed

    Yandi, Wetra; Mieszkin, Sophie; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A; Tyson, Lyndsey; Liedberg, Bo; Ederth, Thomas

    2014-07-23

    Understanding how surface physicochemical properties influence the settlement and adhesion of marine fouling organisms is important for the development of effective and environmentally benign marine antifouling coatings. We demonstrate that the thickness of random poly(HEMA-co-PEG10MA) copolymer brushes affect antifouling behavior. Films of thicknesses ranging from 50 to 1000 Å were prepared via surface-initiated atom-transfer radical polymerization and characterized using infrared spectroscopy, ellipsometry, atomic force microscopy and contact angle measurements. The fouling resistance of these films was investigated by protein adsorption, attachment of the marine bacterium Cobetia marina, settlement and strength of attachment tests of zoospores of the marine alga Ulva linza and static immersion field tests. These assays show that the polymer film thickness influenced the antifouling performance, in that there is an optimum thickness range, 200-400 Å (dry thickness), where fouling of all types, as well as algal spore adhesion, was lower. Field test results also showed lower fouling within the same thickness range after 2 weeks of immersion. Studies by quartz crystal microbalance with dissipation and underwater captive bubble contact angle measurements show a strong correlation between lower fouling and higher hydration, viscosity and surface energy of the poly(HEMA-co-PEG10MA) brushes at thicknesses around 200-400 Å. We hypothesize that the reduced antifouling performance is caused by a lower hydration capacity of the polymer for thinner films, and that entanglement and crowding in the film reduces the conformational freedom, hydration capacity and fouling resistance for thicker films. PMID:24945705

  12. Circular Signs of the Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by Mars Exploration Rover Opportunity's front hazard-avoidance camera, providing a circular sign of the success of the rover's first grinding of a rock. The round, shallow hole seen in this image is on a rock dubbed 'McKittrick,' located in the 'El Capitan' area of the larger outcrop near Opportunity's landing site.

    Opportunity used its rock abrasion tool to grind off a patch of rock 45.5 millimeters (1.8 inches) in diameter during the 30th martian day, or sol, of its mission (Feb. 23, 2004). The grinding exposed fresh rock for close inspection by the rover's microscopic imager and two spectrometers located on its robotic arm. The Honeybee Robotics team, which designed and operates the rock abrasion tool, determined the depth of the cut at 'McKittrick' to be 4.4 millimeters (0.17 inches) deep.

    On sol 34 (Feb. 27, 2004), the rover is scheduled to grind into its second target on the 'El Capitan' area, a rock dubbed 'Guadalupe' in the upper middle part of this image. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  13. A Study on 3-Body Abrasive Wear Behaviour of Aluminium 8011 / Graphite Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Patil, Rahul

    2016-09-01

    Metals and alloys have found their vital role in many applications like structural, corrosive, tribological, etc., in engineering environment. The alloys/composites having high strength to low weight ratio have gained attention of many researchers recently. In this work, graphite reinforced Aluminium 8011 metal matrix composite was prepared by conventional stir casting route, by varying the weight % of reinforcement. Uniform distribution of Graphite in matrix alloy was confirmed by optical micrographs. Prepared composite specimens were subjected to 3-body abrasive testing by varying applied load and time, the silica particles of 400 grit size were used as abrasive particles. It was observed that with the increase of weight% of Graphite the wear resistance of composite was also increasing and on comparison it was found that reinforced composite gives good wear resistance than base alloy.

  14. The role of Na-hylan in reducing postsurgical tendon adhesions.

    PubMed

    Weiss, C; Levy, H J; Denlinger, J; Suros, J M; Weiss, H E

    1986-01-01

    Na-hylan, a chemically modified sodium hyaluronate jelly, was studied mechanically and histologically as a surgical device to diminish tendon adhesion in the rabbit long toe extensor three weeks after surgical abrasion. This device was found to be highly effective (55% of treated tendons formed no adhesions compared to 5% of controls, and only 18% formed severe adhesions compared to 62% of controls). No gross or histologic evidence of significant acute or chronic inflammatory reaction to the Na-hylan was found.

  15. Platelet endothelial cell adhesion molecule targeted oxidant-resistant mutant thrombomodulin fusion protein with enhanced potency in vitro and in vivo.

    PubMed

    Carnemolla, Ronald; Greineder, Colin F; Chacko, Ann-Marie; Patel, Kruti Rajan; Ding, Bi-Sen; Zaitsev, Sergei; Esmon, Charles T; Muzykantov, Vladimir R

    2013-11-01

    Thrombomodulin (TM) is a glycoprotein normally present in the membrane of endothelial cells that binds thrombin and changes its substrate specificity to produce activated protein C (APC) that has antithrombotic and anti-inflammatory features. To compensate for loss of endogenous TM in pathology, we have fused recombinant TM with single chain variable fragment (scFv) of an antibody to mouse platelet endothelial cell adhesion molecule-1 (PECAM). This fusion, anti-PECAM scFv/TM, anchors on the endothelium, stimulates APC production, and provides therapeutic benefits superior to sTM in animal models of acute thrombosis and inflammation. However, in conditions of oxidative stress typical of vascular inflammation, TM is inactivated via oxidation of the methionine 388 (M388) residue. Capitalizing on the reports that M388L mutation renders TM resistant to oxidative inactivation, in this study we designed a mutant anti-PECAM scFv/TM M388L. This mutant has the same APC-producing capacity and binding to target cells, yet, in contrast to wild-type fusion, it retains APC-producing activity in an oxidizing environment in vitro and in vivo. Therefore, oxidant resistant mutant anti-PECAM scFv/TM M388L is a preferable targeted biotherapeutic to compensate for loss of antithrombotic and anti-inflammatory TM functions in the context of vascular oxidative stress. PMID:23965383

  16. A new dimension to conservative dentistry: Air abrasion

    PubMed Central

    Hegde, Vivek S; Khatavkar, Roheet A

    2010-01-01

    Air abrasion dentistry has evolved over a period of time from a new concept of an alternative means of cavity preparation to an essential means of providing a truly conservative preparation for preservation of a maximal sound tooth structure. The development of bonded restorations in combination with air abrasion dentistry provides a truly minimal intervention dentistry. This article reviews the development of air abrasion, its clinical uses, and the essential accessories required for its use. PMID:20582212

  17. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  18. Fluid bed dryer efficient with abrasive copper concentrate

    SciTech Connect

    Marczeski, C.D.; Hodel, A.E.

    1985-11-01

    Thermally efficient dryers were needed to remove 11-12% moisture from very fine (70%, -325 mesh), copper concentrate at Asarco, Inc., in Hayden, AZ. More than 128 t/hr of the wet, dust-like material produced by the copper mine's grinders had to be made bone dry (0.1% moisture) before being fed to a flash smelting furnace. Two 12 ft diam fluidized bed dryers, each with a capacity of 64 wet t/hr, were installed to dry the copper concentrate. Each dryer's push/pull air system employs a 1250 hp fluidizing air fan to provide air at 80 in (wc) static pressure. A natural gas fired heater raises the air temperature to 600/sup 0/F to dry the dense (100 lb/cu ft bulk density) ore. The dense, wet copper concentrate is fed to the dryer from the top, countercurrent to the flow of the light, dry product. Drying begins when the wet feed reaches the fluidized bed of gravel rock. Lighter, dried material is conveyed by the air back to the top of the dryer and out through a duct to the baghouse. The throughput of the dryer is determined by the wetness of the concentrate and the temperature of the fluidizing air. Asarco, Inc. has found the fluid bed drying system simple and efficient to operate. Fuel gas consumption of the dryer is on the order of 1000 cu ft/ton of wet feed. The abrasion resistant lining provided in the dryer (a hard brick lining in the rock bed zone; castable refractory in the top and in the ducting) and ceramic tiles at the inlet of the dust collector have been effective in long term operation with the highly abrasive product.

  19. Machining human dentin by abrasive water jet drilling.

    PubMed

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin.

  20. Machining human dentin by abrasive water jet drilling.

    PubMed

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin. PMID:24642975

  1. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  2. A New Approach of Improving Rain Erosion Resistance of Nanocomposite Sol-Gel Coatings by Optimization Process Factors

    NASA Astrophysics Data System (ADS)

    Hojjati Najafabadi, Akbar; Shoja Razavi, Reza; Mozaffarinia, Reza; Rahimi, Hamed

    2014-05-01

    Erosion protection nanocomposite sol-gel coatings based on tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxisilane (GPTMS) are prepared and characterized to protect marine structures susceptible to damage caused by liquid impact, e.g., the submarine body. This study focuses on the optimization of compositional and process parameters of transparent hybrid nanocomposite sol-gel coatings resistant to rain erosion by using statistical design of experimental methodology (DoE) based on Taguchi orthogonal design. The impact of compositional and process parameters of the coatings on the erosion protection performance is investigated by five-factor-four-level design methodology. Hybrid coatings were deposited on AA5083 by a dip coating technique. Optimization coatings are analyzed regarding their adhesion (pull-off), flexibility (impact and mandrel bending), hardness (pencil), wear (Taber wear index), and rain erosion resistance (stationary sample erosion test). The surface morphology and roughness were studied by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The optimization coatings showed excellent flexibility and adhesion to the substrate with smooth nanostructure surface; the RMS surface roughness was 1.85 nm. The evaluation of the result obtained from abrasion shows cohesive and interfacial wear with abrasive and adhesive mechanisms, respectively. Liquid impact results show cohesive failure of the coatings without any sign of delamination.

  3. Surface assessment and modification of concrete using abrasive blasting

    NASA Astrophysics Data System (ADS)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  4. Effect of plasma pretreatment on adhesion and mechanical properties of UV-curable coatings on plastics

    NASA Astrophysics Data System (ADS)

    Gururaj, T.; Subasri, R.; Raju, K. R. C. Soma; Padmanabham, G.

    2011-02-01

    An attempt was made to study the effect of plasma surface activation on the adhesion of UV-curable sol-gel coatings on polycarbonate (PC) and polymethylmethacrylate (PMMA) substrates. The sol was synthesized by the hydrolysis and condensation of a UV-curable silane in combination with Zr-n-propoxide. Coatings deposited by dip coating were cured using UV-radiation followed by thermal curing between 80 °C and 130 °C. The effect of plasma surface treatment on the wettability of the polymer surface prior to coating deposition was followed up by measuring the water contact angle. The water contact angle on the surface of as-cleaned substrates was 80° ± 2° and that after plasma treatment was 43° ± 1° and 50° ± 2° for PC and PMMA respectively. Adhesion as well as mechanical properties like scratch resistance and taber abrasion resistance were evaluated for coatings deposited over plasma treated and untreated surfaces.

  5. Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Zafar, Sunny; Sharma, Apurbba Kumar

    2015-10-01

    In the present work, Ni-WC powder was deposited on mild steel substrate to develop clads through microwave hybrid heating technique. The cladding trials were carried out in an industrial microwave applicator at 1.1 kW for 540 s. The Ni-WC composite clads were characterized for microstructure and abrasive wear performance through combination of x-ray diffraction, electron and optical microscopy, microhardness, and wear tests. Phase analysis of the Ni-WC clad indicated the presence of stable carbides such as WC, W2C, Ni2W4C, and Fe6W6C. The microstructure study of the clad layer revealed the presence of a uniformly distributed interlocked WC-based reinforcement embedded in the Ni-based matrix. The average Vicker's microhardness in the clad layer was observed to be 1028 ± 90 HV, which was approximately three times the microhardness of the substrate. Abrasive wear resistance of the microwave clads was superior to the MS substrate. Abrasion was the main wear mechanism in the Ni-WC clads and the substrate samples. However, the presence of WC-based reinforcement in the composite clads reduced microcutting, resulting in enhanced wear resistance.

  6. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a) General requirements—(1) Machine guarding. Abrasive wheels shall be used only on machines provided with... omitted; and (ii) The spindle end, nut, and outer flange may be exposed on machines designed as...

  7. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  8. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy

    PubMed Central

    PASCARETTI-GRIZON, Florence; MABILLEAU, Guillaume; CHAPPARD, Daniel

    2013-01-01

    Objectives The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Material and Methods Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Results Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Conclusion Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials. PMID:24212995

  9. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the... 29 Labor 8 2012-07-01 2012-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303...

  10. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the... 29 Labor 8 2013-07-01 2013-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303...

  11. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the... 29 Labor 8 2011-07-01 2011-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303...

  12. Soybean seedlings tolerate abrasion from air-propelled grit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New tools for controlling weeds would be useful for soybean production in organic systems. Air-propelled abrasive grit is one such tool that performs well for in-row weed control in corn, but crop safety in soybean is unknown. We examined responses to abrasion by corn-cob grit of soybean seedlings a...

  13. Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth Obturated with Resin Based Adhesive Sealers with Conventional Obturation Technique: An In vitro Study

    PubMed Central

    Langalia, Akshay K; Dave, Bela; Patel, Neeta; Thakkar, Viral; Sheth, Sona; Parekh, Vaishali

    2015-01-01

    Background: To compare fracture resistance of endodontically treated teeth obturated with different resin-based adhesive sealers with a conventional obturation technique. Materials and Methods: A total of 60 Single canaled teeth were divided into five groups. The first group was taken as a negative control. The rest of the groups were shaped using ProFile rotary files (Dentsply Maillefer, Ballaigues, Switzerland). The second group was obturated with gutta-percha and a ZOE-based sealer Endoflas FS (Sanlor Dental Products, USA). The third group was obturated with gutta-percha and an epoxy-based sealer AH Plus (Dentsply, DeTrey, Germany). The fourth group was obturated with Resilon (Pentron Clinical Technologies, Wallingford, CT) and RealSeal sealer (Pentron Clinical Technologies). The fifth group was obturated with EndoREZ points and EndoREZ sealer (both from Ultradent, South Jordan, UT). Roots were then embedded into acrylic blocks and were then fixed into a material testing system and loaded with a stainless steel pin with a crosshead speed of 5 mm/min until fracture. The load at which the specimen fractured was recorded in Newtons. Results: It was found that forces at fracture were statistically significant for the newer resin systems, Resilon, and EndoREZ. Conclusion: It was concluded that roots obturated with newer resin systems (Resilon and EndoREZ) enhanced the root strength almost up to the level of the intact roots. PMID:25859099

  14. Grinding force and microcrack density in abrasive machining of silicon nitride

    SciTech Connect

    Xu, H.H.K.; Wei, L.; Jahanmir, S.

    1995-12-01

    The relationship between grinding forces and the material`s resistance to microfracture is investigated in abrasive machining of silicon nitride ceramics. Surface grinding is performed on two forms of silicon nitride with different microstructures, and the grinding forces are measured. In addition, single-point scratching is performed on polished surfaces to amplify the damage associated with the action of an individual abrasive particle in grinding. A thermal wave measurement technique in then used on the cross sections to characterize the density of subsurface microcracks associated with scratching. Compared to a fine-grain silicon nitride, the density of microcracks in a coarse-grain silicon nitride is significantly larger, while the grinding force is smaller. The smaller grinding force for the coarse-grain silicon nitride is attributed to the ease of local intergranular microfracture and grain dislodgement during grinding. {copyright} {ital 1995} {ital Materials} {ital Research} {ital Society}.

  15. Design of an impact abrasion testing machine

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Beeley, P. R.; Baker, A. J.

    1994-04-01

    By using a cam-flat follower-impact shaft with a crank-flat rotating anvil system, the machine to be described can create various impact abrasion conditions to simulate a large range of industrial situations encountered in this field. The main features of the machine are the long working life of the flat rotating anvil, which works in the same way as that of the disk in a pin-on-disk wear tester, and the accurate control of both the impact energy delivered to the specimen and the total sliding distance of the specimen on the anvil. Statistical analysis of test results on the machine with EN24 steel and cast high manganese steel shows that the uncertainty of the population mean is within +/- 4.7% of the sample mean under a 95% confidence level of student distribution, which indicates a very good accuracy of test.

  16. Abrasive Wear Behavior of WC Reinforced Ni-BASED Composite Coating Sprayed and Fused by Oxy-Acetylene Flame

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Chen, Zhenhua; Ding, Zhang Xiong; Chen, Ding

    Microstructure of WC reinforced Ni-based self-fluxing alloy composite coating sprayed and fused by oxy-acetylene flame was investigated by scanning electron microscopy and energy dispersive X-ray Spectrometry, X-ray diffraction, and transmission electron microscopy. The wear performance of the coating was studied by a MLS-225 wet sand rubber wheel abrasive wear tester at various loads and sizes of abrasive particles. Also, the wear resistance of the coating was compared with uncoated ASTM1020 steel. The results indicated that the coating is bonded metallurgically to the substrate and has a homogeneous microstructure composed of both coarse WC and fine carbide and boride grains such as Cr7C3, Cr23C6, and Ni2B which disperse uniformly in the matrix of γ-Ni solid solution and Ni3B. The worn mass loss of the coating and ASTM1020 steel both increased with the load and size of abrasive particles, also, the coating has exhibited excellent abrasive wear resistance compared with ASTM1020 steel.

  17. Mechanics, kinematics and geometry of pebble abrasion from binary collisions

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Jerolmack, D. J.

    2014-12-01

    As sediment is transported downstream as bedload, it collides with the bed causing sharp edges to chip and wear away, rounding the rock through the process of abrasion. Previous work has linked abrasion to downstream fining and rounding of grains, however, there has been little attempt to understand the underlying kinematics of abrasion. Furthermore, most studies neglect the fine particle produced during the abrasion process, as the initial grain gets smaller and rounder. In this research, we preform well-controlled laboratory experiments to determine the functional dependence between impact energy and mass lost from abrasion. We use a double-pendulum "Newton's Cradle" set-up to examine the abrasion between two grains and with a high-speed camera, we can quantify the impact energies during collision. Results from experiments verify that mass loss is proportional to kinetic energy. We define a material parameter that incorporates material density, Young's modulus, and tensile stress and show that this parameter is directly related to the proportionality between mass loss and energy. We identify an initial region of the mass loss curves in which abrasion is independent of energy and material properties; results suggest this region is determined by shape. We show that grain size distributions of daughter products are universal and independent of material; they follow a Weibull distribution, which is expected distribution from brittle fracture theory. Finally, scanning electron microscope (SEM) images show a thin damage zone near the surface, suggesting that collision energy is attenuated over some small skin depth. Overall, we find that pebble abrasion by collision can be characterized by two universal scaling relations - the mass loss versus energy curves and the size distribution of daughter products. Results will be useful for estimating expected abrasion rates in the field, and additionally demonstrate that low-energy collisions produce large quantities of sand

  18. The effects of abrasives on electrical submersible pumps

    SciTech Connect

    Wilson, B.L. )

    1990-06-01

    The electrical submersible pump (ESP) is a high-speed rotating device. Its operational life in oil wells can depend on the type and quantities of abrasives present in the produced fluid. This paper reports on a set of experiments performed in a specialized abrasive test loop. In the test, the size and quantity of abrasives were varied along with flow rate through the pump. This paper also examines recent literature on sand production and explores some of the practical problems in sand measurement.

  19. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  20. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  1. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  2. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  3. Estimating Rock Strength Parameters from Rock Abrasion Tool (RAT) Grinds

    NASA Astrophysics Data System (ADS)

    Thomson, B. J.; Bridges, N. T.; Cohen, J.; Hurowitz, J.; Lennon, A.

    2011-03-01

    We have developed an empirical correlation between rock abrasion tool (RAT) grind energy and compressive strength. This correlation can be used to infer the physical properties of rocks ground by the MER rovers on Mars.

  4. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... excessive restorative materials, such as gold, and to smooth rough surfaces from oral restorations, such...

  5. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... excessive restorative materials, such as gold, and to smooth rough surfaces from oral restorations, such...

  6. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... excessive restorative materials, such as gold, and to smooth rough surfaces from oral restorations, such...

  7. Computed tomography to quantify tooth abrasion

    NASA Astrophysics Data System (ADS)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  8. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  9. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

  10. Coating to enhance metal-polymer adhesion

    SciTech Connect

    Parthasarathi, A.; Mahulikar, D.

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  11. Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Khan, Tahir I.

    2014-06-01

    This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

  12. Exendin-4 pretreated adipose derived stem cells are resistant to oxidative stress and improve cardiac performance via enhanced adhesion in the infarcted heart.

    PubMed

    Liu, Jianfeng; Wang, Haibin; Wang, Yan; Yin, Yujing; Wang, Liman; Liu, Zhiqiang; Yang, Junjie; Chen, Yundai; Wang, Changyong

    2014-01-01

    Reactive oxygen species (ROS), which were largely generated after myocardial ischemia, severely impaired the adhesion and survival of transplanted stem cells. In this study, we aimed to determine whether Exendin-4 pretreatment could improve the adhesion and therapeutic efficacy of transplanted adipose derived stem cells (ADSCs) in ischemic myocardium. In vitro, H2O2 was used to provide ROS environments, in which ADSCs pretreated with Exendin-4 were incubated. ADSCs without pretreatment were used as control. Then, cell adhesion and viability were analyzed with time. Compared with control ADSCs, Exendin-4 treatment significantly increased the adhesion of ADSCs in ROS environment, while reduced intracellular ROS and cell injury as determined by dihydroethidium (DHE) staining live/Dead staining, lactate dehydrogenase-release assay and MTT assay. Western Blotting demonstrated that ROS significantly decreased the expression of adhesion-related integrins and integrin-related focal adhesion proteins, which were significantly reversed by Exendin-4 pretreatment and followed by decreases in caspase-3, indicating that Exendin-4 may facilitate cell survival through enhanced adhesion. In vivo, myocardial infarction (MI) was induced by the left anterior descending artery ligation in SD rats. Autologous ADSCs with or without Exendin-4 pretreatment were injected into the border area of infarcted hearts, respectively. Multi-techniques were used to assess the beneficial effects after transplantation. Longitudinal bioluminescence imaging and histological staining revealed that Exendin-4 pretreatment enhanced the survival and differentiation of engrafted ADSCs in ischemic myocardium, accompanied with significant benefits in cardiac function, matrix remodeling, and angiogenesis compared with non-pretreated ADSCs 4 weeks post-transplantation. In conclusion, transplantation of Exendin-4 pretreated ADSCs significantly improved cardiac performance and can be an innovative approach in the

  13. Improved fire-resistant coatings

    NASA Technical Reports Server (NTRS)

    Hutt, J. B.; Stuart, J. W.

    1971-01-01

    Water-base coatings containing potassium silicate show improvement in areas of quick air-drying, crack, craze, and abrasion resistance, adherence, and leach resistance. Coatings are useful as thermal-barrier layers in furnaces, and as general purpose fire resistant surfaces where vapor impermeability is not a requirement.

  14. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  15. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy.

    Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.

  16. The Effect of Antivascular Endothelial Growth Factor on the Development of Adhesion Formation in Laparotomized Rats: Experimental Study

    PubMed Central

    Basbug, Murat; Bulbuller, Nurullah; Camci, Cemalettin; Ayten, Refik; Aygen, Erhan; Ozercan, Ibrahim Hanifi; Arikanoglu, Zulfu; Akbulut, Sami

    2011-01-01

    Aims. This study determined the effects of a single dose of bevacizumab, an antiangiogenic recombinant monoclonal antibody that specifically targets vascular endothelial growth factor (VEGF), on adhesion formation in the rat cecal abrasion model. Methodology. Thirty female Wistar albino rats (200–224 g) were divided into three groups. All rats underwent laparotomy at which time cecal wall abrasion and abdominal wall injuries were induced. Group I (control) underwent only the abrasion procedure; Groups II and III received saline or bevacizumab intraperitoneally, respectively, following the abrasion. The rats were killed on postoperative day 7, and the severity of adhesions was evaluated, together with histopathological fibrosis parameters and immunohistochemical staining to identify the VEGF receptor. Results. The mean adhesion severity score in Groups I–III was 2.5 ± 0.52, 2.4 ± 0.69, and 0.7 ± 0.82, respectively; the score in Group III was significantly lower than that in Groups I (P < 0.001) and II (P < 0.001). In the histopathological evaluation, the mean fibrosis score in Group III was significantly lower that the scores in Groups I (P < 0.001) and II (P < 0.001). VEGF staining of the adhesion areas in Group III was significantly lower than that in Groups I (P < 0.001) and II (P < 0.001). Conclusion. Bevacizumab decreases adhesion formation following laparotomy in rats by blocking VEGF receptor occupancy. PMID:21760775

  17. Oxygen plasma treatment and deposition of CN{sub x} on a fluorinated polymer matrix composite for improved erosion resistance

    SciTech Connect

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.; Waite, A. R.; Jones, J. G.; Storage, T. M.; Voevodin, A. A.

    2007-07-15

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN{sub x} coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN{sub x} was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relative to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN{sub x} coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN{sub x} reduced the erosion rate by an order of magnitude for normally incident particles.

  18. Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Güney, Melike; Yuksel, Sahru; Gülsoy, Murat

    2015-02-01

    Infections with pathogens could cause serious health problems, such as septicemia and subsequent death. Some of these deaths are caused by nosocomial, chronic, or burn-related wound infections. Photodynamic therapy (PDT) can be useful for the treatment of these infections. Our aim was to investigate the antibacterial effect of indocyanine green (ICG) and 808-nm laser on a rat abrasion wound model infected with the multidrug resistant Staphylococcus aureus strain. Abrasion wounds were infected with a multidrug resistant clinical isolate of S. aureus. ICG concentrations of 500, 1000, and 2000 μg/ml were applied with a 450 J/cm2 energy dose. Temperature change was monitored by a thermocouple system. The remaining bacterial burden was determined by the serial dilution method after each application. Wounds were observed for 11 days posttreatment. The recovery process was assessed macroscopically. Tissue samples were also examined histologically by hematoxylin-eosin staining. Around a 90% reduction in bacterial burden was observed after PDT applications. In positive control groups (ICG-only and laser-only groups), there was no significant reduction. The applied energy dose did not cause any thermal damage to the target tissue or host environment. Results showed that ICG together with a 808-nm laser might be a promising antibacterial method to eliminate infections in animals and accelerate the wound-healing process.

  19. Etude de la degradation des refractaires aluminosiliceux par abrasion, chocs thermiques et corrosion par l'aluminium: Correlation et interaction des mecanismes

    NASA Astrophysics Data System (ADS)

    Ntakaburimvo, Nicodeme

    Aluminosilicate refractories used for melting and holding furnaces on which the present work was focused are submitted to mechanical abuse such as abrasion, mechanical impact and erosion, on one hand; and to chemical degradation by corrosion, as well as to thermal stresses, mostly due to thermal shocks; on the other hand. This thesis is focused on four main objectives. The first one is related to the designing of an experimental set-up allowing abrasion testing of refractories. The second deals with the separate study of the deterioration of aluminosilicate refractories by abrasion, thermal shock and corrosion. The third is the correlation between these three mechanisms while the fourth is related to the interaction between thermal shock and corrosion. One of the contributions of this thesis is the realisation of the above mentioned experimental set-up, which permits to carry out refractories abrasion testing, as well as at room and high temperature, in the absence or in the presence of molten metal. The fact of testing refractory resistance when it is submitted separately and simultaneously to the action of dynamic corrosion, erosion and abrasion leads to the studying of the influence of each of these three mechanisms on the other. One of the characteristics of the designed set-up is the fact that it allows to adjust the seventy testing conditions according to the mechanical resistance of the test material. The other important point is related to the fact the abrasion tests were carried out in such manner to permit degradation quantification, otherwise than by the traditional method of loss of weight measurement; particularly by measuring the wear depth and the residual material properties, such as the rupture force and the strength. A perfect correlation was observed between the wear depth and the loss of weight, both being negatively correlated with the residual rupture force. The abrasion resistance was found to be globally positively correlated with the

  20. NASA Glenn/AADC-Rolls Royce Collaborated to Measure Erosion Resistance on Coated Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Sutter, James K.; Mondry, Richard; Ma, Kong; Horan, Dick; Naik, Subhash; Cupp, Randall

    2003-01-01

    Polymer matrix composites (PMCs) are increasingly used in aerospace and automotive applications because of their light weight and high strength-to-weight ratio relative to metals. However, a major drawback of PMCs is poor abrasion resistance, which restricts their use, especially at high temperatures. Simply applying a hard coating on PMCs to improve abrasion and erosion resistance is not effective since coating durability is short lived (ref. 1). Generally, PMCs have higher coefficients of thermal expansion than metallic or ceramic coatings have, and coating adhesion suffers because of poor interfacial adhesion strength. One technique commonly used to improve coating adhesion or durability is the use of bond coats that are interleaved between a coating and a substrate with vastly different coefficients of thermal expansion. An example of this remedy is the use of bondcoats for ceramic thermal barrier coatings on metallic turbine components (ref. 2). Prior collaborative research between the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) demonstrated that bond coats sandwiched between PMCs and high-quality plasma-sprayed, erosion-resistant coatings substantially improved the erosion resistance of PMCs (ref. 3). One unresolved problem in this earlier collaboration was that there was no easy, accurate way to measure the coating erosion wear scar. Coating wear was determined by both profilometry and optical microscopy. Both techniques are time consuming. Wear measurement by optical microscopy requires sample destruction and does not provide a comprehensive measure of the entire wear volume. An even more subtle, yet critical, problem is that these erosion coatings contain two or more materials with different densities. Therefore, simply measuring specimen mass loss before and after erosion will not provide an accurate gauge for coating and/or substrate volume loss. By using a noncontact technique called scanning optical interferometry

  1. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  2. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  3. Universal adhesive (glue composition) for electrical porcelain products

    SciTech Connect

    Khristoforov, K.K.; Belen'kaya, E.S.; Omel'chenko, Y.A.; Vinogradova, T.K.

    1986-05-01

    The aim of this work is to develop an adhesive for porcelain insulators that exhibits high physicomechanical properties and increased resistance to the simultaneous action of heat and moisture. One method of solving this problem is to introduce special additives possessing hydrophobic (waterrepelling) properties into the adhesive composition during the process of its preparation. The adhesive based on the ED-20 epoxy resin and TEA hardened with 5 parts of AF-2 additive possesses higher resistance to the action of heat and moisture as compared to the adhesive used at the present time for assembling insulators. The improved and stable physiomechanical properties of the developed adhesive permit its use in any climactic conditions.

  4. Assessement of peritoneal adhesions due to starch granules of surgical glove powder an experimental study.

    PubMed

    Nafeh, Ayman I; Nosseir, Mona

    2007-12-01

    Introduction of foreign material into abdominal cavity during surgery causes irritation of peritoneum leading to postoperative (PO) adhesions. To assess and prevent PO adhesions, an experimental study was done to assess the caused by starch granules of the surgical glove powder and to avoid complications using the effect of normal saline and low molecular weight heparin (LMWH). Thirty Wister Albino male rats were subjected to laparotomy and ileocaecal abrasions were done mechanically to induce postoperative peritoneal adhesions. Rats were divided into 3 groups, 10 animals each. The sterile starch powdered gloves were used in the laparotomy procedure. The basic procedure performed in the three groups was serosal abrasions at the ileocaecal region and using the 2-layer technique in the closure of the abdominal cavity. In GI no further management was performed than the basic procedure. In GII & GIII before closure normal saline and (LMWH) was spilled into the peritoneal cavity respectively. The results showed that in GI, there were severe firm intraperitoneal adhesions especially at the site of the ileocaecal abrasions. This was proved macroscopically and histologically. The reactions detected in biopsies of GII & GIII were lesser in intensity compared to GI. Morphometric assessment of collagen deposition in the intra-peritoneal adhesions revealed a significant decrease in GII & GIII compared to GI.

  5. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers

    PubMed Central

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P < 0.05). Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements. PMID:26539485

  6. Adhesion and abrasion of surface materials in the Venusian aeolian environment

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.; Fogleman, G.; Greeley, R.; Hixon, R.; Tucker, D.

    1991-02-01

    In laboratory simulations of the Venusian environment, rock and mineral 'target' surfaces struck by aeolian particles develop a thin layer of accretionary material derived from the particles' attrition debris. Accretion may be (in part) a manifestation of 'cold welding', a process well known in engineering, where bonding occurs between metals at a tribological interface. Accretion on geological materials was found to occur at all Venusian surface temperatures and for all types of materials tested. First-order variations in the amount deposited by particles are related to relative attrition susceptibilities. Second-order variations relate to properties of the particle-target interface. Variations in accretion volume are apparently independent of mineral chemistry and are only weakly dependent on crystallography. The results suggest that accretion should be a fairly universal phenomenon in areas of Venus subject to aeolian activity.

  7. Friability and crushing strength of micrometer-size diamond abrasives used in microgrinding of optical glass

    NASA Astrophysics Data System (ADS)

    Zhou, Yiyang; Takahashi, Toshio; Quesnel, David J.; Funkenbusch, Paul D.

    1996-04-01

    In abrasive grinding, the properties of the abrasives and their response to impact loading play a significant role in determining the results achievable. For micrometer-size diamond abrasives used for bound-abrasive microgrinding of optical glass, friability testing is used to estimate the related particle properties. Friability and crushing strength of diamond abrasives are estimated based on the data from comminution of sample powders on a commercial SPEX mixer/mill. Different diamond abrasives as well as a CBN abrasive are tested. Evolution of powder size and size distribution with comminution time is characterized with a HORIBA laser scattering analyzer. Correlation is established for the impact stress and the probability of fracture during comminution. This study demonstrates how to combine the ease of data acquisition found in a conventional friability test with the capability of predicting specific mechanical properties normally found only by crushing individual abrasive particles.

  8. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain...

  9. 9 CFR 311.14 - Abrasions, bruises, abscesses, pus, etc.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Abrasions, bruises, abscesses, pus, etc. 311.14 Section 311.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... excised, leaving only sound, normal tissue, which may be passed for human food. Any organ or other part...

  10. PROTECTIVE EFFECT OF GREEN TEA ON DENTIN EROSION AND ABRASION

    PubMed Central

    Kato, Melissa Thiemi; Magalhães, Ana Carolina; Rios, Daniela; Hannas, Angélica Reis; Attin, Thomas; Buzalaf, Marília Afonso Rabelo

    2009-01-01

    Objective: This in situ study evaluated the protective effect of green tea on dentin erosion (ERO) and erosion-abrasion (ABR). Material and methods: Ten volunteers wore intraoral palatal appliances with bovine dentin specimens subjected to ERO or ERO + toothbrushing abrasion performed immediately (ERO+I-ABR) or 30 min after erosion (ERO+30-min-ABR). During 2 experimental 5-day crossover phases, the volunteers rinsed with green tea or water (control, 1 min) between each erosive (5 min, cola drink) and abrasive challenge (30 s, toothbrushing), 4x/day. Dentin wear was measured by profilometry. Results: The green tea reduced the dentin wear significantly for all conditions compared to control. ERO+I-ABR led to significantly higher wear than ERO, but it was not significantly different from ERO+30-min-ABR. ERO+30-min-ABR provoked significant higher wear than ERO, only for the placebo treatment. Conclusions: From the results of the present study, it may be concluded that green tea reduces the dentin wear under erosive/abrasive conditions. PMID:20027426

  11. Development of a thermal reclamation system for spent blasting abrasive

    SciTech Connect

    Bryan, B.B.; Mensinger, M.C.; Rehmat, A.G.

    1991-01-01

    Abrasive blasting is the most economical method for paint removal from large surface areas such as the hulls and tanks of oceangoing vessels. Tens of thousands of tons of spent abrasive are generated annually by blasting operations in private and US Navy shipyards. Some of this material is classified as hazardous waste, and nearly all of it is currently being either stockpiled or disposed in landfills. The rapid decline in available landfill space and corresponding rise in landfill tipping fees pose a severe problem for shipyard operators throughout the US. This paper discusses the results of a research and development program initiated by the Institute of Gas Technology and supported by the US Navy to develop and test a fluidized-bed thermal reclamation system for spent abrasive waste minimization. Bench- and pilot-scale reclaimer tests and reclaimed abrasive performance tests are described along with the current status of a program to build and test a 5-ton/hour prototype reclaimer at a US Navy shipyard.

  12. Potential of Air-Propelled Abrasives for Selective Weed Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel forms of selective weed control are needed by many types of growers, but especially organic growers who are restricted from using synthetic herbicides. Abrasive grit made from corn cobs was expelled from a sand blaster at 517 kPa pressure and aimed at seedlings of common lambsquarters and corn...

  13. The effect of daily fluoride mouth rinsing on enamel erosive/abrasive wear in situ.

    PubMed

    Stenhagen, K R; Hove, L H; Holme, B; Tveit, A B

    2013-01-01

    It is not known whether application of fluoride agents on enamel results in lasting resistance to erosive/abrasive wear. We investigated if one daily mouth rinse with sodium fluoride (NaF), stannous fluoride (SnF(2)) or titanium tetrafluoride (TiF(4)) solutions protected enamel against erosive/abrasive wear in situ (a paired, randomised and blind study). Sixteen molars were cut into 4 specimens, each with one amalgam filling (measurement reference surface). Two teeth (2 × 4 specimens) were mounted bilaterally (buccal aspects) on acrylic mandibular appliances and worn for 9 days by 8 volunteers. Every morning, the specimens were brushed manually with water (30 s) extra-orally. Then fluoride solutions (0.4% SnF(2) pH 2.5; 0.15% TiF(4) pH 2.1; 0.2% NaF pH 6.5, all 0.05 M F) were applied (2 min). Three of the specimens from each tooth got different treatment, and the fourth served as control. At midday, the specimens were etched for 2 min in 300 ml fresh 0.01 M hydrochloric acid and rinsed in tap water. This etch procedure was repeated in the afternoon. Topographic measurements were performed by a white-light interferometer. Mean surface loss (±SD) for 16 teeth after 9 days was: SnF(2) 1.8 ± 1.9 µm, TiF(4) 3.1 ± 4.8 µm, NaF 26.3 ± 4.7 µm, control 32.3 ± 4.4 µm. Daily rinse with SnF(2), TiF(4) and NaF resulted in 94, 90 and 18% reduction in enamel erosive/abrasive wear, respectively, compared with control (p < 0.05). The superior protective effect of daily rinse with either stannous or titanium tetrafluoride solutions on erosive/abrasive enamel wear is promising.

  14. Wear characterization of abrasive waterjet nozzles and nozzle materials

    NASA Astrophysics Data System (ADS)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  15. UPb ages of zircon rims: A new analytical method using the air-abrasion technique

    USGS Publications Warehouse

    Aleinikoff, J.N.; Winegarden, D.L.; Walter, M.

    1990-01-01

    We present a new technique for directly dating, by conventional techniques, the rims of zircons. Several circumstances, such as a xenocrystic or inherited component in igneous zircon and metamorphic overgrowths on igneous cores, can result in grains with physically distinct age components. Pneumatic abrasion has been previously shown by Krogh to remove overgrowths and damaged areas of zircon, leaving more resistant and isotopically less disturbed parts available for analysis. A new abrader design, which is capable of very gently grinding only tips and interfacial edges of even needle-like grains, permits easy collection of abraded material for dating. Five examples demonstrate the utility of the "dust-collecting" technique, including two studies that compare conventional, ion microprobe and abrader data. Common Pb may be strongly concentrated in the outermost zones of many zircons and this Pb is not easily removed by leaching (even in weak HF). Thus, the benefit of removing only the outermost zones (and avoiding mixing of age components) is somewhat compromised by the much higher common Pb contents which result in less precise age determinations. A very brief abrasion to remove the high common Pb zones prior to collection of material for dating is selected. ?? 1990.

  16. Aeolian Abrasion at the Curiosity Landing Site: Clues to the Role of Wind in Landscape Modification

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Le Mouélic, S.; Hallet, B.; Newman, C. E.; Rice, M. S.; Blaney, D. L.; Calef, F. J.; Herkenhoff, K. E.; Langevin, Y.; Lewis, K. W.; Maurice, S.; Pinet, P. C.; Wiens, R. C.; de Pablo, M.; Renno, N. O.

    2013-12-01

    The broad scale geomorphology of Gale Crater reflects diverse aeolian processes, from airfall settling that likely deposited much of the upper and some of the lower units of Mt. Sharp, to evidence of extensive wind exhumation and removal of material exterior to the mound, to active dunes on the crater floor. The integrated effect of aeolian sand transport can also be examined on a much smaller scale by the study of ventifacts, rocks that have been abraded by windborne particles. A diversity of ventifacts are found along Curiosity's traverse through the upper 'hummocky' (HY) geomorphic unit and the lower Yellowknife Bay (YKB) sedimentary rocks. The textures are analogous to abrasion features found on Earth and include cm-scale facets, keels, elongated pits, grooves, flutes, and basal sills. High-resolution images from ChemCam's Remote Micro-Imager also show mm-scale lineations. Evidence of differential erosion is common, with HY conglomerates (e.g., Hottah, Link) and the YKB Sheepbed mudstone unit containing distinct wind tails in the lee of resistant pebbles, and bedding features within Rocknest 3, the YKB Shaler sandstone unit, and other layered rocks displaying prominent ridge-groove topography. ChemCam LIBS depth profile data so far show no strong evidence for chemical differences in the elemental composition between abraded and non-abraded surfaces (as determined from qualitative assessment), as might be expected if there were rock coatings or weathering rinds undergoing active abrasion. Preliminary measurements of ventifact texture and wind tail orientations indicate sandblasting in HY and YKB from predominantly southwesterly and northerly directions, respectively. Based on meso-scale models of current winds and REMS results, SW flow is uncommon whereas N winds are frequent. Compositional and textural information from the suite of MSL instruments indicate that HY rocks are dominated by various types of basalt (either as whole rocks or the resistant clasts in

  17. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  18. The Comparative Effect of Sugarcane Juice on the Abrasion-Corrosion Behavior of Fe-Cr-B Electric Arc Sprayed and Fe-Cr-C Weld Coatings

    NASA Astrophysics Data System (ADS)

    Buchanan, Vernon E.

    2012-02-01

    Abrasion-corrosion tests were conducted on two commonly Fe-Cr-C shielded metal arc welding (SMAW) hardfacings used in the sugar industry and an arc sprayed Fe-Cr-based coating. The tests were performed on a modified block-on-ring tester with the coatings sliding against compressed sugarcane fiber in the presence of abrasive slurry. The findings showed that, in the presence of sugarcane juice and sand slurry, the SMAW coatings had similar wear performance while the abrasive wear of the arc-sprayed coating was superior to the SMAW coatings. In the presence of a neutral solution, the material loss from the arc-sprayed coating was similar to that obtained in the sugarcane juice while the SMAW coatings showed a marked decrease; this demonstrated that the arc-sprayed coating was more desirable in an abrasive-corrosion environment. The study also showed that the resistance to material does not follow the expected trend, in which wear resistance increases with increasing hardness.

  19. Overexpression of TRIP6 promotes tumor proliferation and reverses cell adhesion-mediated drug resistance (CAM-DR) via regulating nuclear p27(Kip1) expression in non-Hodgkin's lymphoma.

    PubMed

    Miao, Xiaobing; Xu, Xiaohong; Wu, Yaxun; Zhu, Xinghua; Chen, Xudong; Li, Chunsun; Lu, Xiaoyun; Chen, Yali; Liu, Yushan; Huang, Jieyu; Wang, Yuchan; He, Song

    2016-01-01

    Recent studies have identified that thyroid hormone receptor-interacting protein 6 (TRIP6) is implicated in tumorigenesis. However, the functional role of TRIP6 in non-Hodgkin's lymphoma (NHL) has never been elucidated. In this study, we demonstrated that TRIP6 is reversely correlated with the clinical outcomes of NHL patients. Western blot and immunohistochemical analysis revealed that TRIP6 expression is lower in indolent lymphoma than in progressive lymphoma. Kaplan-Meier survival curves indicated that the upregulation of TRIP6 is significantly associated with poor overall survival. Moreover, patients with higher expression of TRIP6 are prone to shorter time to recurrence. Furthermore, we also found that TRIP6 can promote the proliferation of NHL cells via regulating cell cycle progression. In addition, adhesion of lymphoma cells to fibronectin (FN) decreased TRIP6 expression, which led to the upregulation of nuclear p27(Kip1) expression by decreasing phosphorylation of p27(Kip1) at T157. Importantly, overexpression of TRIP6 can reverse cell adhesion-mediated drug resistance (CAM-DR) phenotype in NHL. In summary, these results suggest that TRIP6 is a novel prognostic indicator for NHL patients and may shed new insights into the important role of TRIP6 in cancer development.

  20. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  1. Degradation of nontoxic fouling-release coatings as a result of abrasion and long-term exposure

    SciTech Connect

    Meyer, A.E.; Baier, R.E.; Forsberg, R.L.

    1995-06-01

    Previous work by this research group demonstrates that methylsilicone-based coatings having critical surface tensions between 20 and 25 mN/m allow easy mechanical detachment of zebra mussel infestations and other fouling for at least 2 years. Continuing evaluations of the coated test panels and trash racks at test sites in western New York confirm and extend the 2-year findings. Coatings which, in addition, contain elutable oils display an apparent further resistance to initial colonization by zebra mussels, but this early benefit does not carry over to the brush-removal forces required for cleaning of the once-fouled coating. Several of the elastomeric methylsilicone coatings are prone to cutting and abrasion damage, limiting their suitability for heavy-duty use and/or situations requiring periodic cleaning. Since standard tests for abrasion and wear developed for paints are not applicable to elastomeric coatings, our laboratory is using a brush abrasion test to evaluate fouling-release coatings for an increasing series of wet brushing cycles.

  2. Methodology of evaluation of abrasive tool wear with the use of laser scanning microscopy.

    PubMed

    Lipiński, Dariusz; Kacalak, Wojciech; Tomkowski, Robert

    2014-01-01

    Grinding is one of the basic precise material removal methods. Abrasive and shape wear, as well as smearing of the tools' active surface handicap the processing results. The loss of cutting capacity in abrasive tools or alteration of their shape influences the surface quality and precision of the workpiece dimensions and its shape. Evaluation of the abrasive tool surface is the basic criterion of forecasting the tools' durability and the process results. The applied method of laser scanning made determination of the surface coordinates and subsequently of its geometric features with micrometric accuracy possible. Using the information on the abrasive tool surface geometric structure, a methodology of evaluation of the level of changes in geometric features of the tool during the grinding process was developed. Criteria for evaluation of the level of abrasive grains attritious wear, the degree of smearing of the abrasive tool surface and evaluation of the cutting capability of the abrasive tools were determined. The developed method allowed for evaluation of the level of abrasive tools' wear, and subsequently formed foundations for assessment of the influence of the grinding parameters on the durability of abrasive tools, evaluation of the influence of the parameters of the process of shaping the abrasive tools' active surfaces on their geometric characteristics and evaluation of the level of correlation between the monitored process parameters and the degree of the abrasive tools' wear.

  3. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  4. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  5. New pressure-sensitive silicone adhesive

    NASA Technical Reports Server (NTRS)

    Leiffer, J. L.; Stoops, W. E., Jr.; St. Clair, T. L.; Watkins, V. E., Jr.; Kelly, T. P.

    1981-01-01

    Adhesive for high or low temperatures does not stretch severely under load. It is produced by combining intermediate-molecular-weight pressure sensitive adhesive which does not cure with silicone resin that cures with catalyst to rubbery tack-free state. Blend of silicone tackifier and cured rubbery silicone requires no solvents in either atmospheric or vacuum environments. Ratio of ingredients varies for different degrees of tack, creep resistance, and tensile strength.

  6. Controlling abrasion in coal prep plants

    SciTech Connect

    Schumacher, W.

    1996-12-31

    Maintenance departments in many industries are continually battling the daily fires that run costs up and productivity down. Many plants have equipment that must operate under wet sliding conditions which can lead to accelerated wear of the equipment. Electric power generating plants, for example, have ongoing maintenance concerns for piping, chutes, hoppers, heat exchangers, and valves. Pulp and paper plants have heavy maintenance on: plate screens, conical bottoms of blow tanks, chutes, and augers. Coal handling equipment is often subjected to wet sliding conditions. Utility and coal prep plants can have serious flow problems if an improper structural or wear material is selected. Vibrating screens, chutes, surge bin feeders, conical distributors, screw conveyors, and cyclones are some of the components that must resist the ravages of corrosion and wear. This paper will address many of the issues that affect the life of plant components under wet sliding conditions. Environmental effects and material effects will be examined. Since the material of construction is most times the easier to change, the paper will concentrate on this subject. Such factors as: hardness, surface roughness, corrodent, and material of construction will be explored. Both controlled laboratory studies and real world service evaluations will be presented.

  7. Dental abrasion as a cutting process.

    PubMed

    Lucas, Peter W; Wagner, Mark; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Michael, Shaji; Thai, Lidia A; Strait, David S; Swain, Michael V; van Casteren, Adam; Renno, Waleed M; Shekeban, Ali; Philip, Swapna M; Saji, Sreeja; Atkins, Anthony G

    2016-06-01

    A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential. PMID:27274807

  8. Solidification/stabilization of used abrasive media for non-structural concrete using portland cement. Interim research report

    SciTech Connect

    Webster, M.T.; Carrasquillo, R.L.; Loehr, R.C.; Fowler, D.W.

    1994-11-01

    Highway bridges in the United States are painted to resist corrosion and to help maintain the structural integrity of the bridge. Periodically, it is necessary to remove the existing paint so that the surface can be repainted. Most often the removal process consists of blasting the surface with an abrasive such as sand or slag. The blast media then contains elements present in the paint, such as cadmium, chromium and lead. The spent media may be a hazardous waste as defined by EPA`s Toxicity Characteristic (TC) criterion. This criterion uses the Toxicity Characteristic Leaching Procedure (TCLP) to determine whether a waste is classified as a hazardous waste. This procedure subjects the waste to a highly acidic environment in which chemicals can leach out of the waste. The leachate enviornment is then analyzed to determine the concentration of chemical leached, which must fall within the TC criterion. Some spent blasting material has been shown to have TCLP metal concentrations exceeding the TC criterion. The Texas Department of Transportation (TxDOT) has begun to recycle spent abrasive media in portland cement-based concrete using solidification/stabilization (S/S) techniques. This technology is designed to immobilize the metals while recycling the spent abrasive media as a component in non-structural concrete. The study has revealed the effectiveness of portland cement-based S/S systems in recycling contaminated spent abrasive media in portland cement-based concrete. The long-term leaching behavior of metals from these concrete products was examined using sequential extraction leaching tests.

  9. Nanometric Finishing on Biomedical Implants by Abrasive Flow Finishing

    NASA Astrophysics Data System (ADS)

    Subramanian, Kavithaa Thirumalai; Balashanmugam, Natchimuthu; Shashi Kumar, Panaghra Veeraiah

    2016-01-01

    Abrasive flow finishing (AFF) is a non-conventional finishing technique that offers better accuracy, efficiency, consistency, economy in finishing of complex/difficult to machine materials/components and provides the possibility of effective automation as aspired by the manufacturing sector. The present study describes the finishing of a hip joint made of ASTM grade Co-Cr alloy by Abrasive Flow Machining (AFM) process. The major input parameters of the AFF process were optimized for achieving nanometric finishing of the component. The roughness average (Ra) values were recorded during experimentation using surface roughness tester and the results are discussed in detail. The surface finished hip joints were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and residual stress analysis using X-Ray Diffraction (XRD). The discussion lays emphasis on the significance, efficacy and versatile nature of the AFF process in finishing of bio-medical implants.

  10. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  11. Abrasive-waterjet machining of ceramic-coated materials

    NASA Astrophysics Data System (ADS)

    Hashish, M.; Whalen, J.

    1991-09-01

    This paper addresses an experimental investigation on the feasibility of using abrasive-waterjets (AWJs) for the precision drilling of small-diameter holes in advanced aircraft engine components. These components are sprayed with ceramic thermal barrier coating (TBC), and the required holes are typically 0.025 inch in diameter, with a drilling angle of 25 deg. The parameters of the AWJ were varied to study their effects on both quantitative and qualitative hole drilling parameters. The unique techniques of assisting the abrasive feed process, ramping the waterjet pressure, during drilling, and varying the jet dwell time after piercing were effectively implemented to control hole quality and size. The results of the experiments indicate the accuracy and repeatability of the AWJ technique in meeting the air flow and hole size requirements. Production parts were drilled for prototype engine testing.

  12. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  13. Occlusive Dressings and the Healing of Standardized Abrasions

    PubMed Central

    Beam, Joel W

    2008-01-01

    Context: Acute skin trauma during sport participation, resulting in partial-thickness abrasions, is common. The limited investigations focusing on the acute wound environment and dressing techniques and the subsequent lack of evidence-based standards complicate clinical wound care decisions. Objective: To examine the effects of occlusive dressings on healing of standardized, partial-thickness abrasions. Design: Controlled, counterbalanced, repeated-measures design. Setting: University laboratory. Patients or Other Participants: Sixteen healthy women (n  =  10) and men (n  =  6). Intervention(s): Four standardized, partial-thickness abrasions were inflicted. Film, hydrogel, and hydrocolloid occlusive dressings and no dressing (control) were applied. Participants returned on postwound days 1, 3, 5, 7, 10, and 14 for digital imaging. Wound healing time was measured by change in wound contraction (cm2) and change in wound color (chromatic red) and luminance in red, green, and blue color values. Main Outcome Measure(s): Wound contraction, color (chromatic red), and luminance. Results: A day-by-dressing interaction was found for wound contraction, color, and luminance. Post hoc testing indicated that the film and hydrocolloid dressings produced greater wound contraction than the hydrogel and no dressing on days 7 and 10. Film, hydrogel, and hydrocolloid dressings also resulted in greater wound contraction than the control on day 14. Hydrocolloid dressings produced smaller measures of color and greater measures of luminance than no dressing on day 7. Film, hydrogel, and hydrocolloid dressings also resulted in smaller measures of color and greater measures of luminance compared with no dressing on days 10 and 14. Conclusions: When compared with the control (no dressing), the film, hydrogel, and hydrocolloid occlusive dressings were associated with a faster healing rate of partial-thickness abrasions across time measured by wound contraction, color, and luminance

  14. Abrasion of eroded root dentine brushed with different toothpastes.

    PubMed

    De Menezes, Márcio; Turssi, Cecilia Pedroso; Hara, Anderson Takeo; Messias, Danielle Cristine Furtado; Serra, Mônica Campos

    2004-09-01

    This study evaluated the surface roughness change and wear provided by different dentifrices on root dentine previously exposed to erosive challenges. According to a randomized complete block design, 150 slabs of bovine root dentine (6 x 3 x 2 mm) were ground flat and polished. In an area of 4 x 3 mm on the dentine surface, specimens were submitted to five erosive/abrasive events, each one composed by: exposure to Sprite Diet or distilled water for 5 min, then to a remineralizing solution for 1 min, and simulation of 5,000 brushing strokes. Four dentifrices--regular (RE), baking soda (BS), whitening (WT) and tartar control (TC)--and distilled water (CO), used as control, were compared. Final texture and the wear depth were evaluated using a profilometer. ANOVA did not show significant interaction, indicating that the effect of dentifrices on both surface roughness change and wear did not depend on whether or not the dentine was eroded ( p>0.05). There was no difference between abrasion of eroded and sound dentine. The Tukey's test revealed that WT, BS and TC provided the highest increase in surface roughness differing from RE and CO. TC yielded the deepest wear of root dentine, whereas RE and CO, the shallowest. No significant difference in wear among BS, TC and WT were observed. Within the limitations of this study, the data showed that abrasion of both eroded and sound root dentine was dependent on the dentifrice used. PMID:15146320

  15. Shotcup petal abrasions in close range .410-caliber shotgun injuries.

    PubMed

    Dowling, G P; Dickinson, J A; Cooke, C T

    1988-01-01

    Shotcup petal abrasions centered around a shotgun wound of entrance are generally thought to occur at a range of 30 to 90 cm. A suicidal .410-caliber shotgun injury of the right eye is described in which typical petal abrasions were noted around the entrance wound. However, significant soot deposition around the wound suggested that the range of fire was less than 30 cm and perhaps closer to 15 cm. Test-firing of the weapon and ammunition used by the decedent showed some spread of the shotcup petals at a range of 7.5 cm, progressing to maximum spread at 30 to 52.5 cm. Further testing with other .410 ammunition, containing shotcups, confirmed the spread of shotcup petals at ranges less than 30 cm, irrespective of manufacturer, shotshell length, and birdshot size. When a variety of shotguns were tested, it was found that one weapon with a very short barrel and cylinder bore did not exhibit petal spread until a range of 30 cm was reached. The remaining shotguns, with longer barrels and full choke, all demonstrated definite petal spread at a range of 12.5 cm. The long, narrow configuration of .410 shotcup petals may explain their early spread and the production of petal abrasions at ranges of less than 30 cm.

  16. Dressing methods for grinding wheels made of superhard abrasive materials

    NASA Astrophysics Data System (ADS)

    Spur, G.

    As a result of the increase in the use of difficult-to-machine materials more and more machining tasks are falling within the sphere of grinding. Since the requirements that must be met by the working accuracy under conditions of high productivity of the working cycle are becoming ever more stringent, high-capacity grinding tools are essential. The development of new, superhard abrasives has provided the necessary conditions for achieving technological and economic advantages in the machining of high-alloy materials. In this context cubic crystalline boron nitride (CBN) is used as an abrasive in a number of new fields. After diamond, CBN is the hardest abrasive. While the machining of hard metals is still the field in which diamond grinding wheels are used, the use of CBN grinding wheels in the machining of high alloy, heated treated high-speed steel offers technological and economic advantages. The principal reasons for this are to be found in the fact that CBN does not have a chemical affinity to the alloying elements of the steel, but has a greater thermal stability than diamond.

  17. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar(Registered TradeMark), Vectran(Registered TradeMark), Orthofabric, and Tyvek(Registered TradeMark)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran(Registered TradeMark)) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar(Registered TradeMark) and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek , the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek(Registered TradeMark). This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran(Registered TradeMark) and Kevlar(Registered TradeMark) suffering considerably more extensive filament breakage.

  18. Adhesion performance of UHMWPE after different surface modification techniques.

    PubMed

    Oosterom, R; Ahmed, T J; Poulis, J A; Bersee, H E N

    2006-05-01

    A novel design of an ultra-high molecular weight polyethylene (UHMWPE) glenoid component has been proposed, based on adhesion to PMMA bone cement. However, due to the non-polar nature of UHMWPE, surface modification techniques are needed to obtain good adhesion and thus for the design to be viable. The aim of the study is to investigate adhesion of UHMWPE after different surface treatments. Three gas-phase surface modification techniques were investigated, namely UV/Ozone, corona discharge and radio frequency glow discharge plasma, as well as abrasion. The surface treated samples were examined using water contact angle, surface energy and roughness measurements, as well as single lap-joint shear testing using polymethylmethacrylate (PMMA) bone cement and methylmethacrylate (MMA) adhesive. The effect of aging on bonded samples has also been investigated. Corona and glow discharge treatments were found to activate the surface as shown by an increase in surface energy of over 100% in an order of less than a minute, corresponding to an increase in ultimate shear stress from 0.12 to 0.40 MPa. In contrast, UV/Ozone required exposure times in the order of minutes to have an effect that was still incomparable to the other gas-phase treatments examined. Abrasion produced slightly better adhesion properties for single lap-joints bonded with PMMA compared to the corona treatment. The best treatment was found to be a combined treatment of surface roughening for 10 s, and subsequently a 90 s glow discharge treatment, resulting in failure of the UHMWPE sheet material.

  19. Adhesion performance of UHMWPE after different surface modification techniques.

    PubMed

    Oosterom, R; Ahmed, T J; Poulis, J A; Bersee, H E N

    2006-05-01

    A novel design of an ultra-high molecular weight polyethylene (UHMWPE) glenoid component has been proposed, based on adhesion to PMMA bone cement. However, due to the non-polar nature of UHMWPE, surface modification techniques are needed to obtain good adhesion and thus for the design to be viable. The aim of the study is to investigate adhesion of UHMWPE after different surface treatments. Three gas-phase surface modification techniques were investigated, namely UV/Ozone, corona discharge and radio frequency glow discharge plasma, as well as abrasion. The surface treated samples were examined using water contact angle, surface energy and roughness measurements, as well as single lap-joint shear testing using polymethylmethacrylate (PMMA) bone cement and methylmethacrylate (MMA) adhesive. The effect of aging on bonded samples has also been investigated. Corona and glow discharge treatments were found to activate the surface as shown by an increase in surface energy of over 100% in an order of less than a minute, corresponding to an increase in ultimate shear stress from 0.12 to 0.40 MPa. In contrast, UV/Ozone required exposure times in the order of minutes to have an effect that was still incomparable to the other gas-phase treatments examined. Abrasion produced slightly better adhesion properties for single lap-joints bonded with PMMA compared to the corona treatment. The best treatment was found to be a combined treatment of surface roughening for 10 s, and subsequently a 90 s glow discharge treatment, resulting in failure of the UHMWPE sheet material. PMID:16118059

  20. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  1. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  2. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  3. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin.

    PubMed

    Oh, Jaeho; Edwards, Erin E; McClatchey, P Mason; Thomas, Susan N

    2015-10-15

    Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.

  4. Comparative evaluation of surface properties of enamel and different esthetic restorative materials under erosive and abrasive challenges: An in vitro study

    PubMed Central

    Kaur, Simranjeet; Makkar, Sameer; Kumar, Rajneesh; Pasricha, Shinam; Gupta, Pranav

    2015-01-01

    Introduction: Noncarious tooth surface loss is a normal physiological process occurring throughout the life, but it can often become a problem affecting function, esthetics or cause pain. Aim: The purpose of this study was to assess the effect of erosive and abrasive challenges on the surface microhardness and surface wear of enamel and three different restorative materials, that is, nanofilled composite, microfilled composite and resin-modified glass ionomer cement (RMGIC) by using Vickers microhardness tester and profilometer respectively. Subjects and Methods: Nanofilled composite (Filtek™ Z350 × T), microfilled composite (Heliomolar®) and RMGIC (Fuji II LC) were used in the study. Results: Nanofilled composite resin has the best resistance to erosion and/or abrasion among all the materials tested, followed by microfilled composite and RMGIC respectively. Conclusion: Toothbrush abrasion has a synergistic effect with erosion on substance loss of human enamel, composites, and RMGIC. The susceptibility to acid and/or toothbrush abrasion of human enamel was higher compared to restorative materials. PMID:26752876

  5. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  6. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.

  7. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    NASA Astrophysics Data System (ADS)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  8. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    PubMed

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides. PMID:26250681

  9. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    PubMed

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  10. A Profilometric Study to Assess the Role of Toothbrush and Toothpaste in Abrasion Process

    PubMed Central

    Kumar, Sandeep; Kumar Singh, Siddharth; Gupta, Anjali; Roy, Sayak; Sareen, Mohit; Khajuria, Sarang

    2015-01-01

    Statement of the Problem Despite of many studies conducted on toothbrushes and toothpaste to find out the culprit for abrasion, there is no clear cut evidence to pin point the real cause for abrasion. Purpose An in vitro assessment of the role of different types of toothbrushes (soft/ medium/hard) in abrasion process when used in conjunction with and without a dentifrice. Materials and Method Forty five freshly extracted, sound, human incisor teeth were collected for this study. Enamel specimens of approximately 9 mm2 were prepared by gross trimming of extracted teeth using a lathe machine (Baldor 340 Dental lathe; Ohio, USA). They were mounted on separate acrylic bases. The specimens were divided into three groups, each group containing 15 mounted specimens. Group 1 specimens were brushed with soft toothbrush; Group 2 brushed with medium toothbrush and Group 3 with hard toothbrush. Initially, all the mounted specimens in each group were brushed using dentifrice and then the same procedure was repeated with water as control. Profilometric readings were recorded pre and post to tooth brushing and the differences in readings served as proxy measure to assess surface abrasion. These values were then compared to each other. Kruskal Wallis and Mann-Whitney U test were performed. Results The results showed that brushing, with water alone, caused less abrasion than when toothpaste was added (p< 0.008). When brushed with water, the harder toothbrush caused more abrasion (higher Ra-value), but when toothpaste was added, the softer toothbrush caused more abrasion (p< 0.001). Conclusion Besides supporting the fact that toothpaste is needed to create a significant abrasion, this study also showed that a softer toothbrush can cause more abrasion than harder ones. The flexibility of bristles is only secondary to abrasion process and abrasivity of dentifrice has an important role in abrasion process. PMID:26535407

  11. Surface roughness and wear of resin cements after toothbrush abrasion.

    PubMed

    Ishikiriama, Sérgio Kiyoshi; Ordoñéz-Aguilera, Juan Fernando; Maenosono, Rafael Massunari; Volú, Fernanda Lessa Amaral; Mondelli, Rafael Francisco Lia

    2015-01-01

    Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm) were fabricated according to manufacturer instructions for each group (n = 10): Nexus 3, Kerr (NX3); RelyX ARC, 3M ESPE (ARC); RelyX U100, 3M ESPE (U100); and Variolink II, Ivoclar/Vivadent (VL2). Initial roughness (Ra, µm) was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles), and further evaluation was conducted for final roughness. Vertical wear (µm) was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey's test (p < 0.05). The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05). The mean values of initial/final roughness (Ra, µm)/wear (µm) were as follows: NX3 (0.078/0.127/23.175); ARC (0.086/0.246/20.263); U100 (0.296/0.589/16.952); and VL2 (0.313/0.512/22.876). Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations.

  12. Surface roughness and wear of resin cements after toothbrush abrasion.

    PubMed

    Ishikiriama, Sérgio Kiyoshi; Ordoñéz-Aguilera, Juan Fernando; Maenosono, Rafael Massunari; Volú, Fernanda Lessa Amaral; Mondelli, Rafael Francisco Lia

    2015-01-01

    Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm) were fabricated according to manufacturer instructions for each group (n = 10): Nexus 3, Kerr (NX3); RelyX ARC, 3M ESPE (ARC); RelyX U100, 3M ESPE (U100); and Variolink II, Ivoclar/Vivadent (VL2). Initial roughness (Ra, µm) was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles), and further evaluation was conducted for final roughness. Vertical wear (µm) was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey's test (p < 0.05). The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05). The mean values of initial/final roughness (Ra, µm)/wear (µm) were as follows: NX3 (0.078/0.127/23.175); ARC (0.086/0.246/20.263); U100 (0.296/0.589/16.952); and VL2 (0.313/0.512/22.876). Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations. PMID:25466330

  13. The effect of abrasion on corrosion of dental Co-Cr alloys. An in vitro study.

    PubMed

    de Melo, J F; Gjerdet, N R; Erichsen, E S

    1985-05-01

    The effect of abrasion on corrosion of two dental Co-Cr alloys was investigated in vitro. The metals were abraded with a toothbrush and with a piece of tooth enamel. Changes in corrosion potentials and metal release due to the abrasion were measured. Abrasion by tooth enamel caused a persistent drop in corrosion potentials. The release of both chromium and, in particular, cobalt was higher than during brushing. The two alloys tested did not significantly differ with regard to mode and rate of corrosion. It was demonstrated that the corrosion behavior of electrochemically passive dental alloys was affected by abrasion of a magnitude normally encountered during clinical service. PMID:3863447

  14. Diffuse corneal abrasion after ocular exposure to laundry detergent pod.

    PubMed

    Whitney, Rachel E; Baum, Carl R; Aronson, Paul L

    2015-02-01

    Although ocular injury from alkaline household cleaning products is well described, there is less known about the significance and extent of injury with ocular exposure to detergent pods. We report a 12-month-old with diffuse corneal abrasion caused by ocular contact with a laundry detergent pod. In addition to the known risks with aspiration with detergent pods, the potential for severe ocular injury is important for parents and clinicians to recognize. Children with ocular exposure to detergent pods should seek immediate medical care.

  15. Solution of the Roth-Marques-Durian rotational abrasion model

    NASA Astrophysics Data System (ADS)

    Chen, Bryan Gin-Ge

    2011-03-01

    We solve the rotational abrasion model of Roth, Marques, and Durian [Phys. Rev. EPRLTAO1539-375510.1103/PhysRevE.83.031303 83, 031303 (2011)], a one-dimensional quasilinear partial differential equation resembling the inviscid Burgers equation with the unusual feature of a step function factor as a coefficient. The complexity of the solution is primarily in keeping track of the cases in the piecewise function that results from certain amputation and interpolation processes, so we also extract from it a model of an evolving planar tree graph that tracks the evolution of the coarse features of the contour.

  16. Absence of Platelet Endothelial Cell Adhesion Molecule 1, PECAM-1/CD31, In Vivo Increases Resistance to Salmonella enterica Serovar Typhimurium in Mice

    PubMed Central

    Lovelace, Michael D.; Yap, May Lin; Yip, Jana; Muller, William; Wijburg, Odilia

    2013-01-01

    PECAM-1/CD31 is known to regulate inflammatory responses and exhibit pro- and anti-inflammatory functions. This study was designed to determine the functional role of PECAM-1 in susceptibility to murine primary in vivo infection with Salmonella enterica serovar Typhimurium and in in vitro inflammatory responses of peritoneal macrophages. Lectin profiling showed that cellular PECAM-1 and recombinant human PECAM-1-Ig chimera contain high levels of mannose sugars and N-acetylglucosamine. Consistent with this carbohydrate pattern, both recombinant human and murine PECAM-1-Ig chimeras were shown to bind S. Typhimurium in a dose-dependent manner in vitro. Using oral and fecal-oral transmission models of S. Typhimurium SL1344 infection, PECAM-1−/− mice were found to be more resistant to S. Typhimurium infection than wild-type (WT) C57BL/6 mice. While fecal shedding of S. Typhimurium was comparable in wild-type and PECAM-1−/− mice, the PECAM-1-deficient mice had lower bacterial loads in systemic organs such as liver, spleen, and mesenteric lymph nodes than WT mice, suggesting that extraintestinal dissemination was reduced in the absence of PECAM-1. This reduced bacterial load correlated with reduced tumor necrosis factor (TNF), interleukin-6 (IL-6), and monocyte chemoattractant protein (MCP) levels in sera of PECAM-1−/− mice. Following in vitro stimulation of macrophages with either whole S. Typhimurium, lipopolysaccharide (LPS) (Toll-like receptor 4 [TLR4] ligand), or poly(I·C) (TLR3 ligand), production of TNF and IL-6 by PECAM-1−/− macrophages was reduced. Together, these results suggest that PECAM-1 may have multiple functions in resistance to infection with S. Typhimurium, including binding to host cells, extraintestinal spread to deeper tissues, and regulation of inflammatory cytokine production by infected macrophages. PMID:23509149

  17. Sliding-gate valve for use with abrasive materials

    DOEpatents

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  18. Material removal mechanisms in abrasive vibration polishing of complex molds

    NASA Astrophysics Data System (ADS)

    Brinksmeier, E.; Riemer, O.; Schulte, H.

    2010-10-01

    Optical and medical industries are demanding a large variety of optical elements exhibiting complex geometries and multitude opto-functional areas in the range of a few millimeters [1]. Therefore, mold inserts made of steel or carbides must be finished by polishing for the replication of glass and plastic lenses [2]. For polishing theses complex components in the shape of localized cavities or grooves the application of rotating polishing pads is very limited. Established polishing processes are not applicable, so state of the art is a time consuming and therefore expensive polishing procedures by hand. An automated process with conventional polishing machines is impossible because of the complex mold insert geometry. The authors will present the development of a new abrasive polishing process for finishing these complex mold geometries to optical quality. The necessary relative velocity in the contact area between polishing pad and workpiece surface is exclusively realized by vibration motions which is an advantage over vibration assisted rotating polishing processes. The absence of rotation of the pad opens up the possibility to machine new types of surface geometries. The specific influence factors of vibration polishing were analyzed and will be presented. The determination of material removal behavior and polishing effect on planar steel samples has shown that the conventional abrasive polishing hypothesis of Preston is applicable to the novel vibration polishing process. No overlaid chemical material removal appears.

  19. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  20. Attrition and abrasion models for oil shale process modeling

    SciTech Connect

    Aldis, D.F.

    1991-10-25

    As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

  1. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  2. Comparison of Intraperitoneal Honey and Sodium Hyaluronate-Carboxymethylcellulose (Seprafilm™) for the Prevention of Postoperative Intra-Abdominal Adhesions

    PubMed Central

    Emre, Arif; Akin, Murat; Isikgonul, Ipek; Yuksel, Osman; Anadol, Ahmet Ziya; Cifter, Cagatay

    2009-01-01

    BACKGROUND: Abdominal surgery can lead to postoperative intra-abdominal adhesions (PIAAs) with significant morbidity and mortality. This study compares the use of honey with a standard bioresorbable membrane (Seprafilm™) to prevent the formation of PIAAs in rats. METHODS: Thirty rats underwent laparotomy, and PIAAs were induced by scraping the cecum. The animals were divided into three groups, each containing ten rats. Group 1 (control) represented the cecal abrasion group, with no intraperitoneal administration of any substance. Group 2 (honey group) underwent cecal abrasion and intraperitoneal administration of honey. Group 3 (Seprafilm™ group) underwent cecal abrasion and intraperitoneal Seprafilm™ application. RESULTS: Group 1 exhibited higher adhesion scores for adhesions between the abdominal wall and the organs. Groups 2 and 3 had decreased adhesive attachments to the intra-abdominal structures. Compared to group 1, the incidence of adhesion formation was lower in both group 2 (p=0.001) and group 3 (p=0.001). The incidence of fibrosis was also lower in group 2 (p=0.016) and group 3 (p=0.063) compared to group 1. There was no significant difference between the histopathological fibrosis scores for the rats in group 2 and those in group 3 (p= 0.688). CONCLUSION: This study suggests that both honey and Seprafilm™ decrease the incidence of PIAAs in the rat cecal abrasion model. Although the mechanism of action is not clear, intraperitoneal administration of honey reduced PIAAs. The outcome of this study demonstrates that honey is as effective as Seprafilm™ in preventing PIAAs. PMID:19488596

  3. Effects of partially replacing dietary soybean meal or cottonseed meal with completely hydrolyzed feather meal (defatted rice bran as the carrier) on production, cytokines, adhesive gut bacteria, and disease resistance in hybrid tilapia (Oreochromis niloticus ♀ × Oreochromis aureus ♂).

    PubMed

    Zhang, Zhen; Xu, Li; Liu, Wenshu; Yang, Yalin; Du, Zhenyu; Zhou, Zhigang

    2014-12-01

    We formulated experimental diets for hybrid tilapia to investigate the effects of replacing dietary soybean meal (SBM) or cottonseed meal (CSM) by completely hydrolyzed feather meal (defatted rice bran as the carrier; abbreviated as CHFM), with emphasis on fish growth, the composition of adhesive gut bacteria, intestinal and hepatic immune responses, and disease resistance. A series of four isonitrogenous (33% crude protein) and isolipidic (6% crude lipid) diets were formulated to replace the isonitrogenous percentages of CSM or SBM by 6% or 12% CHFM. Quadruplicate groups of healthy and uniformly sized hybrid tilapia were assigned to each experimental diet. Fish were hand fed three times a day for 8 weeks at a rearing temperature of 25-28 °C. The growth performance of hybrid tilapia fed diets with partial replacement of dietary SBM or CSM with CHFM was comparable to the group of fish fed the control diet. The CHFM-containing diets affected the intestinal autochthonous bacterial community in similar ways. All CHFM-containing diets stimulated the expression of heat shock protein 70 in the intestine but suppressed its expression in the liver. Only the CHFM6/SBM diet stimulated the expression of interleukin-1β in intestine, and no effects were observed in all diets to the expression of interleukin-1β in liver. Thus, regarding the immune response in the intestine and liver, CHFM is a good alternative protein source that induces less stress in the host. CHFM did not affect disease resistance to Aeromonas hydrophila infection in hybrid tilapia. These data suggest that CHFM is a good alternative to partially replace SBM and CSM in tilapia feed. PMID:25304546

  4. Effects of partially replacing dietary soybean meal or cottonseed meal with completely hydrolyzed feather meal (defatted rice bran as the carrier) on production, cytokines, adhesive gut bacteria, and disease resistance in hybrid tilapia (Oreochromis niloticus ♀ × Oreochromis aureus ♂).

    PubMed

    Zhang, Zhen; Xu, Li; Liu, Wenshu; Yang, Yalin; Du, Zhenyu; Zhou, Zhigang

    2014-12-01

    We formulated experimental diets for hybrid tilapia to investigate the effects of replacing dietary soybean meal (SBM) or cottonseed meal (CSM) by completely hydrolyzed feather meal (defatted rice bran as the carrier; abbreviated as CHFM), with emphasis on fish growth, the composition of adhesive gut bacteria, intestinal and hepatic immune responses, and disease resistance. A series of four isonitrogenous (33% crude protein) and isolipidic (6% crude lipid) diets were formulated to replace the isonitrogenous percentages of CSM or SBM by 6% or 12% CHFM. Quadruplicate groups of healthy and uniformly sized hybrid tilapia were assigned to each experimental diet. Fish were hand fed three times a day for 8 weeks at a rearing temperature of 25-28 °C. The growth performance of hybrid tilapia fed diets with partial replacement of dietary SBM or CSM with CHFM was comparable to the group of fish fed the control diet. The CHFM-containing diets affected the intestinal autochthonous bacterial community in similar ways. All CHFM-containing diets stimulated the expression of heat shock protein 70 in the intestine but suppressed its expression in the liver. Only the CHFM6/SBM diet stimulated the expression of interleukin-1β in intestine, and no effects were observed in all diets to the expression of interleukin-1β in liver. Thus, regarding the immune response in the intestine and liver, CHFM is a good alternative protein source that induces less stress in the host. CHFM did not affect disease resistance to Aeromonas hydrophila infection in hybrid tilapia. These data suggest that CHFM is a good alternative to partially replace SBM and CSM in tilapia feed.

  5. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  6. Gecko adhesion: evolutionary nanotechnology.

    PubMed

    Autumn, Kellar; Gravish, Nick

    2008-05-13

    If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). The gecko adhesive differs dramatically from conventional adhesives. Conventional PSAs are soft viscoelastic polymers that degrade, foul, self-adhere and attach accidentally to inappropriate surfaces. In contrast, gecko toes bear angled arrays of branched, hair-like setae formed from stiff, hydrophobic keratin that act as a bed of angled springs with similar effective elastic modulus to that of PSAs. Setae are self-cleaning and maintain function for months during repeated use in dirty conditions. Setae are an anisotropic 'frictional adhesive' in that adhesion requires maintenance of a proximally directed shear load, enabling either a tough bond or spontaneous detachment. Gecko-like synthetic adhesives may become the glue of the future-and perhaps the screw of the future as well.

  7. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  8. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample. PMID:22397643

  9. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  10. Process monitoring evaluation and implementation for the wood abrasive machining process.

    PubMed

    Saloni, Daniel E; Lemaster, Richard L; Jackson, Steven D

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  11. Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet

    NASA Astrophysics Data System (ADS)

    Balz, R.; Mokso, R.; Narayanan, C.; Weiss, D. A.; Heiniger, K. C.

    2013-03-01

    Ultra-fast X-ray velocimetry measurements were taken to measure velocities and spatial positions of individual abrasive particles within the solid-liquid-gaseous three-phase flow of a high-pressure injection method-based abrasive water jet (AWJ). A synchrotron X-ray source provided sufficient photon flux to take double-frame images of the AWJ with an inter-frame time interval of 5 μs. Abrasive particles with a Sauter mean diameter of 265.5 μm were detected by a scintillator optically coupled to a gated image intensifier and a high-speed camera running at a frame rate of 11,250 Hz. A commercially available particle tracking velocimetry software was used to process the acquired images and evaluate the spatial positions and velocities of abrasive particles as a function of water pressure and abrasive mass flow. The acquired data show a Gaussian radial distribution of abrasive particles within the AWJ and an almost uniform mean axial velocity, irrespective of water jet velocity and abrasive flow rates. These results are useful to validate theoretical models for the momentum/energy transfer in AWJ, to provide input for abrasion/erosion models, to further understand and advance the AWJ process, and to develop new process opportunities such as AWJ milling.

  12. Monitoring of the Abrasion Processes (by the Example of Alakol Lake, Republic of Kazakhstan)

    ERIC Educational Resources Information Center

    Abitbayeva, Ainagul; Valeyev, Adilet; Yegemberdiyeva, Kamshat; Assylbekova, Aizhan; Ryskeldieva, Aizhan

    2016-01-01

    The purpose of the study is to analyze the abrasion processes in the regions of dynamically changing Alakol lake shores. Using the field method, methods of positioning by the GPS receiver and interpretation of remote sensing data, the authors determined that abrasion processes actively contributed to the formation the modern landscape, causing the…

  13. Potential Use of Abrasive Air-Propelled Agricultural Residues for Weed Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new postemergence weed control tactic is proposed for organic production systems that results in plant abrasion and death upon assault from abrasive grits propelled by compressed air. Grit derived from granulated walnut shells was delivered by a sand blaster at 517 kPa at distances of 30 to 60 cm ...

  14. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  15. Cutting Tools, Files and Abrasives. Pre-Apprenticeship Phase 1 Training.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on cutting tools, files, and abrasives is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to enable students to identify and explain the proper use and care of various knives, saws, snips, chisels, and abrasives. The module may contain some or all of the…

  16. Solidification/stabilization of spent abrasives and use as nonstructural concrete

    SciTech Connect

    Brabrand, D.J.; Loehr, R.C. )

    1993-01-01

    Tons of spent abrasives result each year from the removal of old paint from bridges. Because the spent abrasives contain metals from the paint, some spent abrasives may be considered hazardous by the Toxicity Characteristic (TC) criteria. Incorporation of the spent blasting abrasives in nonstructural concrete (rip-rap, dolphins) offers an opportunity to recycle the spent abrasives while immobilizing potentially leachable metals. This study focused on the Portland Cement Solidification/Stabilization (S/S) of spent blasting abrasives taken from a bridge located in Southeast Texas. The study examined (a) the cadmium, chromium, and lead concentrations in extracts obtained by using the Toxicity Characteristic Leaching Procedure (TCLP) and (b) the compressive strengths of Portland Cement mixes that contained different amounts of the spent abrasives. Performance was measured by meeting the TC criteria as well as the requirements for compressive strength. Study results indicated that considerable quantities of these spent abrasives can be solidified/stabilized while reducing the leachability of cadmium, chromium, and lead and producing compressive strengths over 6,895 kN/m[sup 2] (1,000 psi).

  17. Abrasive, Silica Phytoliths and the Evolution of Thick Molar Enamel in Primates, with Implications for the Diet of Paranthropus boisei

    PubMed Central

    Rabenold, Diana; Pearson, Osbjorn M.

    2011-01-01

    Background Primates—including fossil species of apes and hominins—show variation in their degree of molar enamel thickness, a trait long thought to reflect a diet of hard or tough foods. The early hominins demonstrated molar enamel thickness of moderate to extreme degrees, which suggested to most researchers that they ate hard foods obtained on or near the ground, such as nuts, seeds, tubers, and roots. We propose an alternative hypothesis—that the amount of phytoliths in foods correlates with the evolution of thick molar enamel in primates, although this effect is constrained by a species' degree of folivory. Methodology/Principal Findings From a combination of dietary data and evidence for the levels of phytoliths in plant families in the literature, we calculated the percentage of plant foods rich in phytoliths in the diets of twelve extant primates with wide variation in their molar enamel thickness. Additional dietary data from the literature provided the percentage of each primate's diet made up of plants and of leaves. A statistical analysis of these variables showed that the amount of abrasive silica phytoliths in the diets of our sample primates correlated positively with the thickness of their molar enamel, constrained by the amount of leaves in their diet (R2 = 0.875; p<.0006). Conclusions/Significance The need to resist abrasion from phytoliths appears to be a key selective force behind the evolution of thick molar enamel in primates. The extreme molar enamel thickness of the teeth of the East African hominin Paranthropus boisei, long thought to suggest a diet comprising predominantly hard objects, instead appears to indicate a diet with plants high in abrasive silica phytoliths. PMID:22163299

  18. A review of engineering control technology for exposures generated during abrasive blasting operations.

    PubMed

    Flynn, Michael R; Susi, Pam

    2004-10-01

    This literature review presents information on measures for controlling worker exposure to toxic airborne contaminants generated during abrasive blasting operations occurring primarily in the construction industry. The exposures of concern include respirable crystalline silica, lead, chromates, and other toxic metals. Unfortunately, silica sand continues to be widely used in the United States as an abrasive blasting medium, resulting in high exposures to operators and surrounding personnel. Recently, several alternative abrasives have emerged as potential substitutes for sand, but they seem to be underused Some of these abrasives may pose additional metal exposure hazards. In addition, several new and improved technologies offer promise for reducing or eliminating exposures; these include wet abrasive blasting, high-pressure water jetting, vacuum blasting, and automated/robotic systems. More research, particularly field studies, is needed to evaluate control interventions in this important and hazardous operation.

  19. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Gregg, Leslie L.; Marino, Anne E.; Hayes, Jennifer C.; Jacobs, Stephen D.

    2004-01-01

    Aluminum oxynitride (ALON) is a polycrystalline material that has proven difficult to polish due to its grain structure. Bound abrasives are an effective means for polishing ALON, and work is being done with them to obtain good surfaces, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices were created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load were studied. Metrology procedures were developed to monitor different aspects of the grain structure and numerically evaluate grain boundary decoration. Strategies were developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  20. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Marino, Anne E.; Hayes, Jennifer; Gregg, Leslie L.; Jacobs, Stephen D.

    2003-05-01

    Aluminum oxynitride (ALON) is a material with desirable qualities for a variety of applications that has proven difficult to polish because of its grain structure. Bound abrasives may prove to be an effective means of polishing it, and work is being done with them to obtain good surfaces on ALON, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices have been created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load are being studied. Metrology procedures are being developed to monitor different aspects of the grain structure and numerically evaluate its decoration. Strategies have been developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  1. Neuron adhesion and strengthening

    NASA Astrophysics Data System (ADS)

    Rocha, Aracely; Jian, Kuihuan; Ko, Gladys; Liang, Hong

    2010-07-01

    Understanding the neuron/material adhesion is important for neuron stimulation and growth. The current challenges remain in the lack of precision of measuring techniques and understanding the behavior of neuron. Here, we report a fluid shear method to investigate adhesion at the neuron/poly-D-lysine interface. In this study, the adhesion of 12-day-old chick embryo-retina neurons cultured on poly-D-lysine coated glass coverslips was measured via parallel disk rotational flow. The shear stress experienced by the cells increases with the disk radius. There is a critical point along the radius (Rc) where the stress experienced by the neurons equals their adhesion. The measured Rc can be used to calculate the neuron adhesion. Our results demonstrate that neurons adhered to the poly-D-lysine had a strain hardening effect. The adhesive shear stress of the neuron-material increased with applied shear (τa). When the τa reached or exceeded the value of 40 dyn/cm2, the adhesion remained constant at approximately 30 dyn/cm2. The present work allowed us not only to quantify the adhesive strength and force but also to evaluate the value of strain hardening at the neuron/poly-D-lysine interface.

  2. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  3. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  4. Adhesives in larynx repair.

    PubMed

    Lyons, M B; Lyons, G D; Webster, D; Wheeler, V R

    1989-04-01

    Guinea pig laryngeal fractures were used as a model to compare the ease of application and effectiveness of the fibrinogen-adhesive system with the ease of application and effectiveness of cyanoacrylate glue and control fractures stinted with contralateral gelatin film. Seven fibrin adhesive-treated and two cyanoacrylate glue-treated guinea pigs were perfused after 60 and 35 days, respectively. The larynges were serial sectioned, and the wound sites were compared. The fibrinogen adhesive system was easier to dispense than cyanoacrylate glue, did not require a completely dry surface, and stabilized within 3 minutes. Cartilage segment alignment with focal, complete fracture healing and symmetrical chondrocyte proliferation were seen in fibrogen adhesive-stinted larynges. In the cyanoacrylate glue-treated larynges, there was no alignment and minimal, asymmetrical chondrocyte proliferation. Gelatin film-stinted controls exhibited similar features. Thus, fibrogen adhesive was easier to apply and more effectively bound laryngeal fractures than cyanoacrylate glue or gelatin film.

  5. Impact of Sn/F Pre-Treatments on the Durability of Protective Coatings against Dentine Erosion/Abrasion

    PubMed Central

    Ganss, Carolina; Lussi, Adrian; Peutzfeldt, Anne; Naguib Attia, Nader; Schlueter, Nadine

    2015-01-01

    For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn2+ increases bond strength of the adhesive Clearfil SE (Kuraray), the aim of the present study was to investigate whether pre-treatment with different Sn2+/F− solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group) were freed of smear layer (0.5% citric acid, 10 s), treated (15 s) either with no solution (control), aminefluoride (AmF, 500 ppm F−, pH 4.5), SnCl2 (800/1600 ppm Sn2+; pH 1.5), SnCl2/AmF (500 ppm F−, 800 ppm Sn2+, pH 1.5/3.0/4.5), or Elmex Erosion Protection Rinse (EP, 500 ppm F−, 800 ppm Sn2+, pH 4.5; GABA International), then rinsed with water (15 s) and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5°C/55°C; 2 min) and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80). As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle) were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn2+/F− solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine. PMID:26075906

  6. Impact of Sn/F Pre-Treatments on the Durability of Protective Coatings against Dentine Erosion/Abrasion.

    PubMed

    Ganss, Carolina; Lussi, Adrian; Peutzfeldt, Anne; Naguib Attia, Nader; Schlueter, Nadine

    2015-01-01

    For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn(2+) increases bond strength of the adhesive Clearfil SE (Kuraray), the aim of the present study was to investigate whether pre-treatment with different Sn(2+)/F(-) solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group) were freed of smear layer (0.5% citric acid, 10 s), treated (15 s) either with no solution (control), aminefluoride (AmF, 500 ppm F(-), pH 4.5), SnCl2 (800/1600 ppm Sn(2+); pH 1.5), SnCl2/AmF (500 ppm F(-), 800 ppm Sn(2+), pH 1.5/3.0/4.5), or Elmex Erosion Protection Rinse (EP, 500 ppm F-, 800 ppm Sn(2+), pH 4.5; GABA International), then rinsed with water (15 s) and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5 °C/55 °C; 2 min) and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80). As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle) were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn(2+)/F(-) solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine. PMID:26075906

  7. Fatigue Testing of Abrasive Water Jet Cut Titanium

    SciTech Connect

    Hovanski, Yuri; Dahl, Michael E.; Williford, Ralph E.

    2009-06-08

    Battelle Memorial Institute as part of its U.S. Department of Energy (USDOE) Contract No. DE-AC05-76RL01830 to operate the Pacific Northwest National Laboratory (PNNL) provides technology assistance to qualifying small businesses in association with a Technology Assistance Program (TAP). Qualifying companies are eligible to receive a set quantity of labor associated with specific technical assistance. Having applied for a TAP agreement to assist with fatigue characterization of Abrasive Water Jet (AWJ) cut titanium specimens, the OMAX Corporation was awarded TAP agreement 09-02. This program was specified to cover dynamic testing and analysis of fatigue specimens cut from titanium alloy Ti-6%Al-4%V via AWJ technologies. In association with the TAP agreement, a best effort agreement was made to characterize fatigue specimens based on test conditions supplied by OMAX.

  8. Separation and quantitation of hazardous wastes from abrasive blast media.

    PubMed

    Hwang, J Y; Jeong, M L

    2001-01-01

    A sample of glass bead abrasive blasting material (ABM) waste, received from Robins Air Force Base (Georgia), was examined to determine whether the waste could be rendered nonhazardous by separating paint contaminants from the ABM. The sample was analyzed with size distribution and toxicity characteristics leaching procedure. A Microtrac analyzer was used to measure the size of fine particles (-325 Tyler mesh), and scanning electron microscopy analysis was performed to identify the nature of the contaminants in the ABM waste. Tests using froth flotation, magnetic separation, desliming, and acid washing were conducted to develop a process for removing the contaminants. A pilot plant test using the developed process rendered 82.1% or the ABM waste material nonhazardous.

  9. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Astrophysics Data System (ADS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-02-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  10. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  11. Wear resistant alloys for coal handling equipment. Final technical report, October 1, 1977-March 31, 1981

    SciTech Connect

    Garrison, W.M.; Parker, E.R.; Misra, A.; Finnie, I.

    1981-01-01

    In the progress report for 1977-1979, an extensive literature survey was completed in the areas of abrasive wear mechanisms, wear testing and microstructural effects on abrasive wear. Definitions of the various abrasive wear processes were clarified. A laboratory wear tester capable of simulating high stress two-body abrasive wear and low stress three-body wear was designed, constructed and calibrated. Experiments were run on some standard metals and alloys in the annealed, work hardened, and heat treated conditions under both two-body and three-body wear. In the 1979 to 1980 period, a detailed analysis of the abrasive size effect was performed based on the observations made on two- and three-body abrasion and erosion. It was concluded that the size effect was due to a shallow surface layer exhibiting higher flow stress than the bulk material when the material is abraded or eroded. The effect of certain variables on the wear resistance of different pure metals was compared for two-body abrasion, three-body abrasion and erosion. The variables studied are annealed hardness of the worn metal, the increase in hardness of the worn metal before the wear process due to work hardening and heat treatment, applied load, distance travelled, the abrasive particle size and abrasive hardness. The effect of most of these variables is similar for the three different wear processes. The existing low-stress, open three-body abrasive wear tester was modified and calibrated for testing abrasive wear up to 600/sup 0/C. Some standard materials were tested and in the case of pure aluminum it was found that the wear rate decreased with increase in temperature.

  12. Estimating rock compressive strength from Rock Abrasion Tool (RAT) grinds

    NASA Astrophysics Data System (ADS)

    Thomson, B. J.; Bridges, N. T.; Cohen, J.; Hurowitz, J. A.; Lennon, A.; Paulsen, G.; Zacny, K.

    2013-06-01

    Each Mars Exploration Rover carries a Rock Abrasion Tool (RAT) whose intended use was to abrade the outer surfaces of rocks to expose more pristine material. Motor currents drawn by the RAT motors are related to the strength and hardness of rock surfaces undergoing abrasion, and these data can be used to infer more about a target rock's physical properties. However, no calibration of the RAT exists. Here, we attempt to derive an empirical correlation using an assemblage of terrestrial rocks and apply this correlation to data returned by the rover Spirit. The results demonstrate a positive correlation between rock strength and RAT grind energy for rocks with compressive strengths less than about 150 MPa, a category that includes all but the strongest intact rocks. Applying this correlation to rocks abraded by Spirit's RAT, the results indicate a large divide in strength between more competent basaltic rocks encountered in the plains of Gusev crater (Adirondack-class rocks) and the weaker variety of rock types measured in the Columbia Hills. Adirondack-class rocks have estimated compressive strengths in the range of 70-130 MPa and are significantly less strong than fresh terrestrial basalts; this may be indicative of a degree of weathering-induced weakening. Rock types in the Columbia Hills (Wishstone, Watchtower, Clovis, and Peace class) all have compressive strengths <50 MPa and are consistent with impactites or volcanoclastic materials. In general, when considered alongside chemical, spectral, and rock textural data, these inferred compressive strength results help inform our understanding of rock origins and modification history.

  13. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  14. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  15. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  16. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  17. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  18. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    SciTech Connect

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b) a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.

  19. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  20. Surface tension and deformation in soft adhesion

    NASA Astrophysics Data System (ADS)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  1. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  2. Coatings for rubber bonding and paint adhesion

    NASA Astrophysics Data System (ADS)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  3. Adhesive bacterial colonization of exposed traumatized tendon.

    PubMed

    Webb, L X; Hobgood, C D; Meredith, J W; Gristina, A G

    1987-05-01

    Recent studies of compromised or damaged tissues, as well as biomaterials, have shown that they provide a particularly fertile substratum for bacterial colonization. Colonization in these environments is mediated by a process of microbial adhesion to surfaces of the substrata. In this report, we present electron microscopic studies of a portion of damaged and infected tendon. These studies demonstrate colonies of bacteria surrounded by a ruthenium red-staining exopolysaccharide biofilm and adhesion to the surface of the tendon by means of an exopolysaccharide polymer. We suggest that this adhesive form of bacterial colonization may partially explain the resistance of exposed tendon to effective debridement by simple mechanical measures and to coverage with granulation tissue, partial-thickness skin grafts, and vascularized tissue grafts.

  4. Characterization and dispersion of pollutant releases from the abrasive blasting of lead paint from steel bridges

    SciTech Connect

    Lee, M.; Rana, B.

    1999-07-01

    The characterization of airborne and spent material for abrasive blasting of steel paint was performed as part of the Environmental Impact Statement for Lead Paint Removal Operations on New York City Department of Transportation Bridges1. Laboratory tests were performed on painted steel components of the Williamsburg Bridge, to determine the sizes of particles typically released into the air as aerosol and onto the ground as bulk material, as a result of accidental releases from abrasive blasting operations. Two of the most commonly used abrasives for paint removal on steel structures, recyclable steel grit and expendable abrasives were subjected to the laboratory tests. The results of the tests were used to determine the percentage of existing paint and abrasive which becomes airborne and the resultant particle size distributions, which were employed in the air quality concentration and deposition modeling for the EIS. Particle size distributions of the airborne material indicated that the profiles of airborne lead and particulate matter have a mean particle size between 15 and 21 microns. Spent abrasives and paint chips that settle on the floor are larger in size with a mean diameter greater than 259 microns, although up to 6% of this material has a mean diameter less than 50 microns. The percentage of paint and expendable abrasives that become airborne as a result of abrasive blasting were estimated to be as high as 9.0 and 12.4%, respectively. Potential release rates were derived for total accumulation (duration of the project), annual, quarterly, 24-hour, and 1-hour time averaging periods for abrasives, lead, and other metals. Pollutant releases were simulated as individual sources at multiple release heights with the Environment Protection Agency's ISC3ST model for six representative bridges near potential places of public exposure.

  5. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  6. Abrasive wear by coal-fueled diesel engine and related particles

    SciTech Connect

    Ives, L.K. )

    1992-09-01

    The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

  7. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing.

    PubMed

    Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui

    2016-06-13

    In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained.

  8. High Resolution Laser Scanning Techniques for Rock Abrasion and Texture Analyses on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Razdan, A.; Greeley, R.; Laity, J. E.

    2004-01-01

    Aeolian abrasion is operative in many arid locations on Earth and is probably the dominant rock erosion process in the current Martian environment. Therefore, understanding the controlling parameters and rates of aeolian abrasion provides 1) insight into the stability of rocks on planetary surfaces and the environments under which the rocks abrade, and 2) a link between ventifact (a rock abraded by windblown particles) morphology and: a) abrasion conditions, b) possible ancient environments under which the rocks were abraded, and c) rock properties. promising and we plan further investigations in the wind tunnel and field. Our intent here is to discuss the basic technique, initial results, and upcoming plans.

  9. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  10. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  11. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  12. Prevention of postoperative pericardial adhesions with a hyaluronic acid coating solution. Experimental safety and efficacy studies.

    PubMed

    Mitchell, J D; Lee, R; Hodakowski, G T; Neya, K; Harringer, W; Valeri, C R; Vlahakes, G J

    1994-06-01

    Postoperative pericardial adhesions complicate reoperative cardiac procedures. Topical application of solutions containing hyaluronic acid have been shown to reduce adhesions after abdominal and orthopedic surgery. The mechanism by which hyaluronic acid solutions prevent adhesion formation is unknown but may be due to a cytoprotective effect on mesothelial surfaces, which would limit intraoperative injury. In this study, we tested the efficacy and safety of hyaluronic acid coating solutions for the prevention of postoperative intrapericardial adhesion formation. Eighteen mongrel dogs underwent median sternotomy and pericardiotomy followed by a standardized 2-hour protocol of forced warm air desiccation and abrasion of the pericardial and epicardial surfaces. Group 1 (n = 6) served as untreated control animals. Group 2 (n = 6) received topical administration of 0.4% hyaluronic acid in phosphate-buffered saline solution at the time of pericardiotomy, at 20-minute intervals during the desiccation/abrasion protocol, and at pericardial closure. The total test dose was less than 1% of the circulating blood volume. Group 3 (n = 6) served as a vehicle control, receiving phosphate-buffered saline solution as a topical agent in a fashion identical to that used in group 2. At resternotomy 8 weeks after the initial operation, the intrapericardial adhesions were graded on a 0 to 4 severity scale at seven different areas covering the ventricular, atrial, and great vessel surfaces. In both the untreated control (group 1, mean score 3.2 +/- 0.4) and vehicle control (group 3, mean score 3.3 +/- 0.2) animals, dense adhesions were encountered. In contrast, animals treated with the hyaluronic acid solution (group 2, mean score 0.8 +/- 0.3) characteristically had no adhesions or filmy, transparent adhesions graded significantly less severe than either the untreated control (group 2 versus group 1, p < 0.001) or vehicle control (group 2 versus group 3, p < 0.001) animals. In separate

  13. New wear resistant composite material

    SciTech Connect

    Angers, R.; Champagne, B.; Fiset, M.; Chollet, P.

    1983-01-01

    A composite material consisting of WC-Co particles in a steel matrix was fabricated by sintering mixtures of WC-Co particles and a steel powder and infiltrating the sintered pieces with a copper alloy. Its wear resistance and mechanical properties were studied as a function of the content in WC-Co particles and other characteristics of the composite material microstructure. Infiltration provided a simple means to obtain a strong cohesion between WC-Co particles and the steel matrix. An effective matrix protection against wear is obtained with relatively low additions of particles especially with a silica abrasive which is soft with respect to cemented carbide. The experimental results show that this material has good mechanical properties and wear resistance. Depending upon abrasion resistance, wear losses are reduced up to 10 times by a 30 vol% addition of cemented carbide particles.

  14. Adhesive curing options for photonic packaging

    NASA Astrophysics Data System (ADS)

    Martin, Steven C.; Hubert, Manfred; Tam, Robin

    2002-06-01

    Varying the intensity of illumination used to cure photoactivated adhesives has been applied in medical and dental applications to improve the performance of polymer materials. For example, it has been observed that dental polymer composite materials express reduced shrinkage, important for durability of non-amalgam restorations, by introducing a phased time-intensity cure schedule. This work identified that curing conditions could influence the final properties of materials, and suggested the possibility of extending the characteristics that could be influenced beyond shrinkage to humidity resistance, Tg, outgassing and other important material properties. Obviously, these results have important ramifications for the photonic industry, with current efforts focused on improved manufacturing techniques. Improvement in low cost packaging solutions, including adhesives, will have to be made to bring the component cost down to address the needs of Metro and similar markets. However, there are perceived problems with the widespread use of adhesives, the most prevalent of these involving long term durability of the bond. Devices are typically aligned to sub-micron precision using active feedback and then must be locked in position to maintain performance. In contrast to traditional fastening methods, adhesive bonding is a highly attractive option due to the ease of deployment, lower equipment costs, and improved flexibility. Moreover, using methods analogous to those employed in dental applications, materials properties of photonic adhesives may be tailored using a programmed cure approach.

  15. Bacterial Adhesion at Synthetic Surfaces

    PubMed Central

    Cunliffe, D.; Smart, C. A.; Alexander, C.; Vulfson, E. N.

    1999-01-01

    A systematic investigation into the effect of surface chemistry on bacterial adhesion was carried out. In particular, a number of physicochemical factors important in defining the surface at the molecular level were assessed for their effect on the adhesion of Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The primary experiments involved the grafting of groups varying in hydrophilicity, hydrophobicity, chain length, and chemical functionality onto glass substrates such that the surfaces were homogeneous and densely packed with functional groups. All of the surfaces were found to be chemically well defined, and their measured surface energies varied from 15 to 41 mJ · m−2. Protein adsorption experiments were performed with 3H-labelled bovine serum albumin and cytochrome c prior to bacterial attachment studies. Hydrophilic uncharged surfaces showed the greatest resistance to protein adsorption; however, our studies also showed that the effectiveness of poly(ethyleneoxide) (PEO) polymers was not simply a result of its hydrophilicity and molecular weight alone. The adsorption of the two proteins approximately correlated with short-term cell adhesion, and bacterial attachment for L. monocytogenes and E. coli also correlated with the chemistry of the underlying substrate. However, for S. aureus and S. typhimurium a different pattern of attachment occurred, suggesting a dissimilar mechanism of cell attachment, although high-molecular-weight PEO was still the least-cell-adsorbing surface. The implications of this for in vivo attachment of cells suggest that hydrophilic passivating groups may be the best method for preventing cell adsorption to synthetic substrates provided they can be grafted uniformly and in sufficient density at the surface. PMID:10543814

  16. Evaluation of the Effectiveness of Peritoneal Adhesion Prevention Devices in a Rat Model

    PubMed Central

    Poehnert, D; Grethe, L; Maegel, L; Jonigk, D; Lippmann, T; Kaltenborn, A; Schrem, H; Klempnauer, J; Winny, M

    2016-01-01

    Background: Abdominal operations are followed by adhesions, a prevalent cause of abdominal pain, and the most frequent cause for bowel obstruction and secondary female infertility. This rat study addresses adhesion prevention capability of Adept®, Interceed®, Seprafilm®, and a novel device, 4DryField® PH which is provided as powder and generates its effect as gel. Methods: Sixty-eight male Lewis rats had cecal abrasion and creation of an equally sized abdominal wall defect, and were grouped randomly: A control group without treatment (n=10); two groups treated with 4DryField® PH using premixed gel (n=15) or in-situ gel technique (n=16); one group each was treated with Seprafilm® (n=8), Interceed® (n=9), or Adept® (n=10). Sacrifice was on day 7 to evaluate incidence, quality, and quantity of adhesions, as expressed via adhesion reduction rate (AR). Histologic specimens were evaluated. Statistical analyses used ANOVA and unpaired t-tests. Results: 4DryField® PH significantly reduced incidence and severity of adhesions both as premixed gel (AR: 85.2%) and as in-situ made gel (AR: 100%), a comparison between these two application techniques showed no differences in efficacy. Seprafilm® did not reduce incidence but severity of adhesions significantly (AR: 53.5%). With Interceed® (AR: 3.7%) and Adept® (AR: 16.1%) no significant adhesion-reduction was achieved. Except for inflammatory response with Interceed®, histopathology showed good tissue compatibility of all other devices. Conclusion: 4DryField® PH and Seprafilm® showed significant adhesion prevention capabilities. 4DryField® PH achieved the highest adhesion prevention effectiveness without restrictions concerning mode of application and compatibility and, thus, is a promising strategy to prevent abdominal adhesions. PMID:27429589

  17. In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model.

    PubMed

    Yeo, Yoon; Highley, Christopher B; Bellas, Evangelia; Ito, Taichi; Marini, Robert; Langer, Robert; Kohane, Daniel S

    2006-09-01

    We studied the efficacy of an in situ cross-linked hyaluronic acid hydrogel (HAX) in preventing post-surgical peritoneal adhesions, using a rabbit sidewall defect-cecum abrasion model. Two cross-linkable precursors were prepared by modifying hyaluronic acid with adipic dihydrazide and aldehyde, respectively. The hydrogel precursors cross-linked to form a flexible hydrogel upon mixing. The hydrogel was biodegradable and provided a durable physical barrier, which was highly effective in reducing the formation of post-operative adhesions. Ten out of 12 animals in the untreated control group developed fibrous adhesions requiring sharp dissection, while only 2 out of 8 animals treated with HAX gels showed such adhesions, and those occurred in locations that were not covered by the hydrogel. We also studied means by which gel degradation time can be modulated by varying the precursor concentration and molecular weight. PMID:16750564

  18. Caries-resistant bonding layer in dentin

    PubMed Central

    Zhou, Wei; Niu, Li-na; Hu, Lin; Jiao, Kai; Chang, Gang; Shen, Li-juan; Tay, Franklin R.; Chen, Ji-hua

    2016-01-01

    The present study examined the mechanism for caries resistance and the pulp responses in vital teeth following the use of the augmented-pressure adhesive displacement technique. Dentin adhesives were applied to the surface of sound dentin disks in 4 experimental groups: non-antibacterial adhesive and gentle adhesive displacement (N-G), non-antibacterial adhesive and augmented-pressure adhesive displacement (N-H), antibacterial adhesive and gentle adhesive displacement (A-G), antibacterial adhesive and augmented-pressure adhesive displacement (A-H). The depth of demineralization induced by biological or chemical demineralization models was measured using confocal laser scanning microscopy and analyzed with two-way ANOVA. Pulp responses of vital dog’s teeth to the augmented-pressure adhesive displacement technique were evaluated using light microscopy. Depth of demineralization was significantly affected by “adhesive type” and “intensity of adhesive displacement” for biological demineralization. For chemical demineralization, only “intensity of adhesive displacement” showed significant influence on lesion depth. Pulp response of 0.1, 0.2 and 0.3 MPa groups showed only moderate disorganization of the odontoblast layer at 24 hours that completely re-organized after 3 weeks. Augmented-pressure adhesive displacement improves the caries resistance property of bonded dentin and does not cause irreversible pulpal damage to vital teeth when the air pressure employed is equal or smaller than 0.3 MPa. PMID:27599621

  19. Caries-resistant bonding layer in dentin

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Niu, Li-Na; Hu, Lin; Jiao, Kai; Chang, Gang; Shen, Li-Juan; Tay, Franklin R.; Chen, Ji-Hua

    2016-09-01

    The present study examined the mechanism for caries resistance and the pulp responses in vital teeth following the use of the augmented-pressure adhesive displacement technique. Dentin adhesives were applied to the surface of sound dentin disks in 4 experimental groups: non-antibacterial adhesive and gentle adhesive displacement (N-G), non-antibacterial adhesive and augmented-pressure adhesive displacement (N-H), antibacterial adhesive and gentle adhesive displacement (A-G), antibacterial adhesive and augmented-pressure adhesive displacement (A-H). The depth of demineralization induced by biological or chemical demineralization models was measured using confocal laser scanning microscopy and analyzed with two-way ANOVA. Pulp responses of vital dog’s teeth to the augmented-pressure adhesive displacement technique were evaluated using light microscopy. Depth of demineralization was significantly affected by “adhesive type” and “intensity of adhesive displacement” for biological demineralization. For chemical demineralization, only “intensity of adhesive displacement” showed significant influence on lesion depth. Pulp response of 0.1, 0.2 and 0.3 MPa groups showed only moderate disorganization of the odontoblast layer at 24 hours that completely re-organized after 3 weeks. Augmented-pressure adhesive displacement improves the caries resistance property of bonded dentin and does not cause irreversible pulpal damage to vital teeth when the air pressure employed is equal or smaller than 0.3 MPa.

  20. Caries-resistant bonding layer in dentin.

    PubMed

    Zhou, Wei; Niu, Li-Na; Hu, Lin; Jiao, Kai; Chang, Gang; Shen, Li-Juan; Tay, Franklin R; Chen, Ji-Hua

    2016-01-01

    The present study examined the mechanism for caries resistance and the pulp responses in vital teeth following the use of the augmented-pressure adhesive displacement technique. Dentin adhesives were applied to the surface of sound dentin disks in 4 experimental groups: non-antibacterial adhesive and gentle adhesive displacement (N-G), non-antibacterial adhesive and augmented-pressure adhesive displacement (N-H), antibacterial adhesive and gentle adhesive displacement (A-G), antibacterial adhesive and augmented-pressure adhesive displacement (A-H). The depth of demineralization induced by biological or chemical demineralization models was measured using confocal laser scanning microscopy and analyzed with two-way ANOVA. Pulp responses of vital dog's teeth to the augmented-pressure adhesive displacement technique were evaluated using light microscopy. Depth of demineralization was significantly affected by "adhesive type" and "intensity of adhesive displacement" for biological demineralization. For chemical demineralization, only "intensity of adhesive displacement" showed significant influence on lesion depth. Pulp response of 0.1, 0.2 and 0.3 MPa groups showed only moderate disorganization of the odontoblast layer at 24 hours that completely re-organized after 3 weeks. Augmented-pressure adhesive displacement improves the caries resistance property of bonded dentin and does not cause irreversible pulpal damage to vital teeth when the air pressure employed is equal or smaller than 0.3 MPa. PMID:27599621

  1. Effect of Annealing Temperature on Hardness and Wear Resistance of Electroless Ni-B-Mo Coatings

    NASA Astrophysics Data System (ADS)

    Serin, Ihsan Gökhan; Göksenli, Ali

    2015-06-01

    Formation of nickel-boron-molybdenum (Ni-B-Mo) coating on steel by electroless plating and evaluation of their morphology, hardness and tribological properties post heat treatment at different temperatures for 1 h is investigated. The 25 μm thick coating is uniform and adhesion between the substrate and coating is good. Ni-B-Mo coating was amorphous-like structure in their as-plated condition and by 400°C heat-treated coating, nickel fully crystallized and nickel borides and molybdenum carbide were formed. All coatings exhibited higher hardness than the substrate steel. Hardness values of all coatings up to 400°C did not change distinctively but decreased partly beyond 400°C. Friction coefficient reached lowest value post heat treatment at 300°C but later increased with increasing tempering temperature. Wear resistance was lowest in as-plated coating; however it reached the highest value at 300°C. Worn surface of the coatings showed the abrasive wear as the dominant wear mechanism. An additional adhesive wear mechanism was detected in coating tempered at 550°C. Moreover, our results confirmed that the molybdenum addition improved the thermal stability of the resulting coating. Therefore, Ni-B-Mo coating has potential for application in precision mould, optical parts mould or bipolar plates, where thermal stability is essential.

  2. Surface roughness and gloss of current CAD/CAM resin composites before and after toothbrush abrasion.

    PubMed

    Koizumi, Hiroyasu; Saiki, Osamu; Nogawa, Hiroshi; Hiraba, Haruto; Okazaki, Tomoyo; Matsumura, Hideo

    2015-01-01

    The purpose of this study was to evaluate the gloss and surface roughness behaviors of newly developed CAD/CAM composite blocks with different filler contents and characteristics. The gloss and surface roughness were quantified before and after a toothbrush dentifrice abrasion test; the results were compared to the gloss and surface roughness of a ceramic CAD/CAM block. Knoop hardness was determined before abrasion test. The results were analyzed by ANOVA, Tukey HSD, and Dunnett t test (p<0.05). The rank order of Knoop hardness was as follows: Vita Mark II>Vita Enamic>Gradia block>Shofu Block HC, Lava Ultimate≥Katana Avencia block≥Cerasmart. After toothbrush abrasion, a significant difference in the gloss unit was detected between the Shofu Block HC material and the ceramic block. The Ra and Rz of the Cerasmart and Shofu Block HC materials were significantly larger than those of the ceramic block after toothbrush abrasion.

  3. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  4. Summary of Rock Abrasion Tool (RAT) Results Pertinent to the Mars Exploration Rover Science Data Set

    NASA Astrophysics Data System (ADS)

    Bartlett, P. W.; Carlson, L. E.; Chu, P. C.; Davis, K. R.; Gorevan, S.; Kusack, A. G.; Myrick, T. M.; Wilson, J. J.

    2005-03-01

    The Rock Abrasion Tool (RAT) serves as the sample preparation device on the Mars Exploration Rover payload, grinding a circular spot on the order of millimeters deep into a rock face to remove surface layers, preparing the rock for observation.

  5. Recent Results from the Mars Exploration Rover Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Cohen, J.; Paulsen, G.; Davis, K.; Gorevan, S.; Zacny, K.

    2009-12-01

    The Rock Abrasion Tool (RAT) serves as the sample preparation device on the Mars Exploration Rovers (MER) science payload. The RAT grinds Martian rock in a cylindrical volume, 45 mm in diameter and to a depth of up to 10 mm. This grinding action is intended to remove the altered outer layers of rock as well as overlying surface fines in preparation for imaging and spectral observations. In addition to acting as a facilitator for other instruments in the MER payload, RAT telemetry acquired during grinding may be used to assess the physical properties of the rocks that it grinds. RAT instruments on both Spirit and Opportunity have continued to operate and return useful data since 2004, despite minor problems that have recently occurred. The RAT on Spirit has recently been used for a purpose outside its original design capabilities: brushing away thin layers of loose soil without solid rock underneath. By progressing into the soil a few millimeters at a time, the RAT has been instrumental in helping to reveal the stratigraphy of this soft material. These results have helped in assessing soil properties and in turn will facilitate extrication of Spirit from its current location. Recent results from the Mars Exploration Rovers are presented along with data from laboratory RAT testing.

  6. Recent Results from the Mars Exploration Rover Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Kusack, A.; Zacny, K.; Gorevan, S.

    2008-12-01

    The Rock Abrasion Tool (RAT) serves as the sample preparation device on the Mars Exploration Rovers (MER) science payload. The RAT grinds a circular area 45 millimeter in diameter and to a depth of 0-15 mm into Martian rock. This is intended to remove the altered outer layers of rock as well as overlying surface fines in preparation for imaging and spectral observations. In addition to acting as a facilitator for other instruments, RAT telemetry acquired during grinding may be used to assess the physical properties of the rocks that it grinds. The most direct rock measurement extractable from the RAT grinding process is the energy expended per unit of rock volume removed. This has been termed the RAT Specific Grind Energy (SGE) and in terms of rock bulk physical properties, correlates roughly with unconfined compressive strength. Recent results from the Mars Exploration Rovers will be presented as will comparisons between Earth rocks and Martian rocks in terms of their SGEs and other physical properties. Although SGE is an uncommon metric for rock physical properties, the SGE calculated from the RAT engineering data, and linked with data from other instruments in the payload, represent the most comprehensive database yet created of the physical properties of Martian rocks. RAT SGE continues to be helpful in understanding the geologic history of Mars and will be of great value in instrument design for future Mars missions.

  7. Recent Results from the Mars Exploration Rover Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Kusack, A.; Zacny, K.; Gorevan, S.

    2007-12-01

    The Rock Abrasion Tool (RAT) serves as the sample preparation device on the Mars Exploration Rovers (MER) science payload. The RAT grinds a circular area 45 millimeter in diameter and to a depth of 0-15 mm into Martian rock. This is intended to remove the altered outer layers of rock as well as overlying surface fines in preparation for imaging and spectral observations. In addition to acting as a facilitator for other instruments, RAT telemetry acquired during grinding may be used to assess the physical properties of the rocks that it grinds. The most direct rock measurement extractable from the RAT grinding process is the energy expended per unit of rock volume removed. This has been termed the RAT Specific Grind Energy (SGE) and in terms of rock bulk physical properties, correlates roughly with unconfined compressive strength. Recent results from the Mars Exploration Rovers will be presented as will comparisons between Earth rocks and Martian rocks in terms of their SGEs and other physical properties. Although SGE is an uncommon metric for rock physical properties, the SGE calculated from the RAT engineering data, and linked with data from other instruments in the payload, represent the most comprehensive database yet created of the physical properties of Martian rocks. RAT SGE continues to be helpful in understanding the geologic history of Mars and will be of great value in instrument design for future Mars missions.

  8. Experimental investigation of the abrasive crown dynamics in orbital atherectomy.

    PubMed

    Zheng, Yihao; Belmont, Barry; Shih, Albert J

    2016-07-01

    Orbital atherectomy is a catheter-based minimally invasive procedure to modify the plaque within atherosclerotic arteries using a diamond abrasive crown. This study was designed to investigate the crown motion and its corresponding contact force with the vessel. To this end, a transparent arterial tissue-mimicking phantom made of polyvinyl chloride was developed, a high-speed camera and image processing technique were utilized to visualize and quantitatively analyze the crown motion in the vessel phantom, and a piezoelectric dynamometer measured the forces on the phantom during the procedure. Observed under typical orbital atherectomy rotational speeds of 60,000, 90,000, and 120,000rpm in a 4.8mm caliber vessel phantom, the crown motion was a combination of high-frequency rotation at 1000, 1500, and 1660.4-1866.1Hz and low-frequency orbiting at 18, 38, and 40Hz, respectively. The measured forces were also composed of these high and low frequencies, matching well with the rotation of the eccentric crown and the associated orbital motion. The average peak force ranged from 0.1 to 0.4N at different rotational speeds. PMID:27160429

  9. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  10. Patient preference: conventional rotary handpieces or air abrasion for cavity preparation.

    PubMed

    Malmström, Hans S; Chaves, Yvette; Moss, Mark E

    2003-01-01

    It has been suggested that patients should accept the use of the air abrasion technique over the conventional handpiece due to the reduced need for anesthesia. Technologies for both air abrasion and the conventional rotary handpiece have, in recent decades, seen major improvements, but there are no recent scientific publications that evaluate the patient's preference for these two technologies when performing a cavity preparation. This study determined the patient's preference for air abrasion or the rotary handpiece for removing occlusal fissure carious lesions in mandibular premolars. Ten healthy subjects 18 years of age or older were recruited from the General Dentistry Clinic of the University of Rochester Eastman Dental Center, with fissure caries at a DEJ depth of similar size (determined by radiographs and clinical examination) in any two mandibular premolars in opposite quadrants. Within each subject, the two methods of caries removal were randomly assigned. In one premolar, air abrasion was used for cavity preparation, and in the other premolar, a conventional rotary handpiece was used. At each visit prior to treatment, the patients were instructed to complete the Emotional Status (ES) questionnaire (SUNY University at Buffalo Craniofacial Pain Clinic) to assess differences in their emotional status between appointments. At each appointment, when the restorative treatment was completed, patients were instructed to rate their pain on the Visual Analogue Scale (VAS). A technique preference questionnaire was given after the second appointment. The subjects rated the perception of pain as significantly lower (p < 0.05) when using air abrasion (6.0 mm versus 29.6 mm). All of the patients preferred air abrasion over conventional rotary handpieces. None of the patients required anesthesia and there was no indication that the emotional status influenced the result. Air abrasion was the preferred method of cavity preparation when removing fissural caries in

  11. Three-body abrasive wear characteristics under reciprocating motion of CFRP in vibrating environment

    SciTech Connect

    Teraoka, Sadakazu; Ishikawa, Ken-ichi; Nakagawa, Tatsuo

    1996-12-31

    Carbon fiber reinforced plastics (CFRP) has been widely used in industry because of their attractive mechanical characteristics. Such CFRP parts are invariably subjected to three-body wear due to small indentations and machine vibrations. In this study, the wear characteristics under the three-body condition and the abrasive wear of CFRP were investigated by using a vibrating environment and silicon carbide abrasive grains.

  12. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE#

    PubMed Central

    Oral, Ebru; Malhi, Arnaz S.; Muratoglu, Orhun K.

    2005-01-01

    Adhesive/abrasive wear in ultra-high molecular weight polyethylene (UHMWPE) has been minimized by radiation cross-linking. Irradiation is typically followed by melting to eliminate residual free radicals that cause oxidative embrittlement. Irradiation and subsequent melting reduce the strength and fatigue resistance of the polymer. We determined the radiation dose dependence and decoupled the effects of post-irradiation melting on the crystallinity, mechanical properties and fatigue crack propagation resistance of room temperature irradiated UHMWPE from those of irradiation alone. Stiffness and yield strength, were largely not affected by increasing radiation dose but were affected by changes in crystallinity, whereas plastic properties, ultimate tensile strength and elongation at break, were dominated at different radiation dose ranges by changes in radiation dose or crystallinity. Fatigue crack propagation resistance was shown to decrease with increase in radiation dose and with decrease in crystalline content. Morphology of fracture surfaces revealed loss of ductility with increase in radiation dose and more detrimental effects on ductility at lower radiation doses after post-irradiation melting. PMID:16105682

  13. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated.

  14. Dressing of diamond grinding wheels by abrasive water jet for freeform optical surface grinding

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yao, Peng; Li, Chengwu; Huang, Chuanzhen; Wang, Jun; Zhu, Hongtao; Liu, Zengwen

    2014-08-01

    During the ultra-precision grinding of a large aperture mirror made of RB-SiC, the grinding wheel becomes dull rapidly, which will lead to an increase of grinding force and a decrease of grinding ratio. In this paper, diamond grinding sticks were dressed with micro SiC abrasive water jet and water jet. Through single factorial experiments, the influence of jet pressure on the dressing performance was investigated. To analyze and evaluate the effect of dressing quantitatively, the 3D roughness and the wheel topography were measured and compared with laser scanning confocal microscope before and after dressing. The experimental results show that the abrasive grains are well protruded from binder and the distribution of the abrasive grains becomes uniform after dressing by abrasive water jet when the dressing parameters are properly selected. The dressing performance of abrasive water jet is much better than water jet. For dressing ultra-fine grit size wheels, the abrasive size of the jet should be smaller than the wheel grit size to achieve a better result. The jet pressure is an obvious influence factor of the surface topography.

  15. A light-scattering study of Al2O3 abrasives of various grit sizes

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Chakrabarti, Amitabha; Sorensen, Christopher M.

    2016-09-01

    We report light scattering phase function measurements for irregularly shaped Al2O3 abrasive powders of various grit sizes. Q-space analysis is applied to the angular scattering to reveal a forward scattering regime, Guinier regime, power law regime with quantifiable exponents, and an enhanced backscattering regime. The exponents of the power laws for Al2O3 abrasives decrease with increasing internal coupling parameter ρ ‧ , which is in agreement with previous observations for other irregular particles. Unlike other dust particles previously studied showing single power laws under Q-space analysis, the largest three abrasives, for which ρ ‧ ≳ 100 , showed a kink in the power law, which is possibly due to the higher degree of symmetry for the abrasives than for all the particles studied previously. Direct comparison of the 1200, 1000, and 800 grit abrasive scattering to scattering by corresponding spheres shows that the scatterings approximately coincide at the spherical particle qR ≃ ρ ‧ crossover point. Furthermore, the scattering at the maximum qR = 2 kR by the irregularly shaped abrasives is close to the geometric centers of the glories of the spheres.

  16. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  17. Efficacy and safety of hyaluronate membrane in the rabbit cecum-abdominal wall adhesion model

    PubMed Central

    Kim, Jae Young; Cho, Wan Jin; Kim, Jun Ho; Lim, Sae Hwan; Kim, Hyun Jung; Lee, Young Woo

    2013-01-01

    Purpose Tissue adhesion is a well-known postsurgical phenomenon, causing pain, functional obstruction, and difficult reoperative surgery. To overcome these problems, various synthetic and natural polymer membranes have been developed as postoperative tissue adhesion barriers. However, limitation in their use has hindered its actual application. We prepared a hyaluronate membrane (HM) to evaluate its efficacy and safety as an adhesion barrier compared to a commercialized product (Interceed, Ethicon). Methods To evaluate the antiadhesion effect, a cecum-abdominal wall abrasion model was adopted in a rabbit. The denuded cecum was covered by Interceed or HM or neither and apposed to the abdominal wall (each, n = 10). Four weeks after surgery, the level of adhesion was graded. Acute and chronic toxicity of the three groups were also evaluated. Results Blood samples drawn to evaluate acute toxicity at postoperative day 3 and 7 showed no significant difference among the three groups. The grade and area of adhesion were significantly lower in the HM compared to those of the control and Interceed at four weeks after surgery. Histologic evaluations, which was carried out to estimate tissue reactions at the site of application, as well as to assess chronic toxicity for the major organs, were not significantly different in the three groups. Conclusion This study showed that the antiadhesion efficacy of HM was superior to commercialized antiadhesion membrane, Interceed. Low inflammatory response and nontoxicity were also demonstrated. From these results, we suggest that the HM is a good candidate as a tissue adhesion barrier. PMID:23908960

  18. Feasibility study for the development of low temperature curing adhesives

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Sutherland, J. D.; Sheppard, C. H.

    1974-01-01

    The feasibility of a new approach for the development of stable, easily handled, room temperature (293 K - 311 K) curing adhesives was studied and demonstrated. The work concentrated on a family of unsaturated amide/ester resins. Twelve candidate resins were synthesized and tested for completeness of cure at room temperature, adhesion to aluminum and titanium, shear strength, moisture resistance and heat stability. The three most promising candidate resins were selected and recommended for further development.

  19. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution

    PubMed Central

    Elineni, Kranthi Kumar; Gallant, Nathan D.

    2011-01-01

    Cell adhesion to extracellular matrices is a tightly regulated process that involves the complex interplay between biochemical and mechanical events at the cell-adhesive interface. Previous work established the spatiotemporal contributions of adhesive components to adhesion strength and identified a nonlinear dependence on cell spreading. This study was designed to investigate the regulation of cell-adhesion strength by the size and position of focal adhesions (FA). The cell-adhesive interface was engineered to direct FA assembly to the periphery of the cell-spreading area to delineate the cell-adhesive area from the cell-spreading area. It was observed that redistributing the same adhesive area over a larger cell-spreading area significantly enhanced cell-adhesion strength, but only up to a threshold area. Moreover, the size of the peripheral FAs, which was interpreted as an adhesive patch, did not directly govern the adhesion strength. Interestingly, this is in contrast to the previously reported functional role of FAs in regulating cellular traction where sizes of the peripheral FAs play a critical role. These findings demonstrate, to our knowledge for the first time, that two spatial regimes in cell-spreading area exist that uniquely govern the structure-function role of FAs in regulating cell-adhesion strength. PMID:22208188

  20. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  1. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  2. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  3. The Mars Environmental Compatibility Assessment MECA Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J.; Meloy, T. P.; Cobbly, T.

    1999-09-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs'hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated: note that

  4. The Mars Environmental Compatibility Assessment MECA Abrasion Tool

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J.; Meloy, T. P.; Cobbly, T.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs'hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated: note that

  5. The Mars Environmental Compatibility Assessment (MECA) Abrasion Tool

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J. R.; Meloy, T. P.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere themselves to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs' hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated

  6. Hydro- abrasive jet machining modeling for computer control and optimization

    NASA Astrophysics Data System (ADS)

    Groppetti, R.; Jovane, F.

    1993-06-01

    Use of hydro-abrasive jet machining (HAJM) for machining a wide variety of materials—metals, poly-mers, ceramics, fiber-reinforced composites, metal-matrix composites, and bonded or hybridized mate-rials—primarily for two- and three-dimensional cutting and also for drilling, turning, milling, and deburring, has been reported. However, the potential of this innovative process has not been explored fully. This article discusses process control, integration, and optimization of HAJM to establish a plat-form for the implementation of real-time adaptive control constraint (ACC), adaptive control optimiza-tion (ACO), and CAD/CAM integration. It presents the approach followed and the main results obtained during the development, implementation, automation, and integration of a HAJM cell and its computer-ized controller. After a critical analysis of the process variables and models reported in the literature to identify process variables and to define a process model suitable for HAJM real-time control and optimi-zation, to correlate process variables and parameters with machining results, and to avoid expensive and time-consuming experiments for determination of the optimal machining conditions, a process predic-tion and optimization model was identified and implemented. Then, the configuration of the HAJM cell, architecture, and multiprogramming operation of the controller in terms of monitoring, control, process result prediction, and process condition optimization were analyzed. This prediction and optimization model for selection of optimal machining conditions using multi-objective programming was analyzed. Based on the definition of an economy function and a productivity function, with suitable constraints relevant to required machining quality, required kerfing depth, and available resources, the model was applied to test cases based on experimental results.

  7. Using frictional power to model LSST removal with conventional abrasives

    NASA Astrophysics Data System (ADS)

    Allen, Richard G.; Hubler, William H.

    2015-08-01

    The stressed lap on the Large Polishing Machine (LPM) at the University of Arizona Richard F. Caris Mirror Lab has recently been used to polish the M1 and M3 surfaces of the 8.4-m mirror for the Large Synoptic Survey Telescope (LSST). Loadcells in the three 4-bar links that connect this lap to the spindle of the machine allow the translational forces and torque on the lap to be measured once a second. These force readings and all other available machine parameters are recorded in history files that can be used to create a 2D removal map from one or more polishing runs. While the Preston equation has been used for many years to predict removal in a conventional polishing process, we have adopted a new equation that assumes that removal is proportional to the energy that is transferred from the lap to the substrate via friction. Specifically, the instantaneous removal rate at any point is defined to be the product of four parameters - an energy conversion factor which we call the Allen coefficient, the coefficient of friction, the lap pressure, and the speed of the lap. The Allen coefficient is the ratio of volumetric removal to frictional energy for a particular combination of pad material, abrasive, and substrate. Because our calculations take into account changes in the coefficient of friction between the lap and mirror, our 2D removal maps usually correlate well with optical data. Removal maps for future polishing strokes are created in simulations that track the position and speed of individual lap pads.

  8. Rig for testing the relative wear resistance of materials

    SciTech Connect

    Berdikov, V.F.; Diulin, A.I.; Efimchuk, V.P.; Pushkarev, O.I.; Finogenov, G.P.

    1987-01-01

    The authors have developed a simple and compact rig for studying the relative wear resistance of materials subjected to mechanical abrasion and friction. The rig has an electronic control system. It was used to test the relative wear resistance of a wide range of superhard and brittle materials under mechanical abrasion against a counterbody. The counterbody was made of modified iron and the test medium was a diamond suspension in oil. The results showed that specimen wear exhibits a linear relationship with abrasion time (in the range of 0.5-20 min.) at unit pressure from 0.01 to 0.10 MPa. That a standard wear pattern exists within a wide range of parameters indicates that abrasive conditions are highly stable and makes it possible to control conditions. The rig was used to establish the relative wear resistance of several abrasives, minerals, and refractory compounds. The very large difference (15.2 times) between the most and least-resistant materials (tungsten carbide and fluoride) illustrates the sensitivity of the methodology.

  9. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  10. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  11. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  12. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  13. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  14. The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Balaji; Hodgson, Peter; Timokhina, Ilana; Beladi, Hossein

    2016-10-01

    In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics ( i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on

  15. The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Balaji; Hodgson, Peter; Timokhina, Ilana; Beladi, Hossein

    2016-08-01

    In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the

  16. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  17. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  18. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  19. A geometry-based, theoretical estimation of the role of abrasion by suspended sediment in a pothole-dominated knickpoint: Orange River, Republic of South Africa

    NASA Astrophysics Data System (ADS)

    Springer, G. S.; Tooth, S.; Wohl, E. E.

    2004-12-01

    A 6-m high knickpoint is retreating through resistant granitic rocks of an anabranch of the Orange River, Republic of South Africa. The knickpoint is densely penetrated by potholes and lacks evidence of quarrying. Pothole depths (d) and radii (r) are related to one another by a simple power law, r=dɛ , where k and ɛ are regression coefficients equal to 2.38 and 0.57, respectively. The well-defined relationship between pothole d and r (R2 = 0.72; n = 193) precludes pothole removal by lowering of the surrounding bed, which means that potholes are removed wholesale through coalescence and collapse. The relative contributions to pothole growth resulting from abrasion by suspended sediment and milling of pothole floors by grinders can be determined by a geometrical model of pothole growth that exploits the d-r power law relationship. Using the model, at least 53% of all material is removed from pothole walls during pothole growth. Recognizing that suspended sediment is the probable erosive agent in potholes lacking grinders, and on pothole walls above the level of grinders in the few potholes that contain them, we conclude that suspended sediment concentration in floodwaters is a first-order control on erosion of the observed knickpoint. However, our model also shows that abrasion atop the adjacent bed may contribute significantly to erosion of the knickpoint despite the apparent dominance of potholes. By inference, future experimenters, modelers, and field investigators of erosion in knickpoints and atop resistant substrates will need to pay close attention when devising their research plans to the potentially dominant role of abrasion by suspended sediment.

  20. Wetting and phase separation in soft adhesion

    NASA Astrophysics Data System (ADS)

    Jensen, Katharine; Dufresne, Eric

    2015-11-01

    In the classic theories of solid adhesion, surface energies drive deformation to increase contact area while bulk elasticity opposes it. However, recently solid surface tension has also been shown to play an important role in resisting deformation in soft materials. We explore the consequences for the physics of adhesive contact by performing experiments bringing small, rigid spheres into contact with compliant silicone gel substrates. We measure the quasi-static deformation of the substrate, particularly focusing on its structure near the contact line. In order to satisfy the wetting condition prescribed by surface tension balance while avoiding an elastic singularity at the contact line, we find that the gels undergo an adhesion-induced phase separation. This creates a four-phase contact zone with two additional, hidden contact lines. Our results indicate that accurate theories of adhesion of soft gels need to account both for the compressibility of the gel elastic network and for a non-zero surface stress between the gel and its solvent.

  1. Failure of a novel silicone–polyurethane copolymer (Optim™) to prevent implantable cardioverter-defibrillator lead insulation abrasions

    PubMed Central

    Hauser, Robert G.; Abdelhadi, Raed H.; McGriff, Deepa M.; Kallinen Retel, Linda

    2013-01-01

    Aim The purpose of this study was to determine if Optim™, a unique copolymer of silicone and polyurethane, protects Riata ST Optim and Durata implantable cardioverter-defibrillator (ICD) leads (SJM, St Jude Medical Inc., Sylmar, CA, USA) from abrasions that cause lead failure. Methods and results We searched the US Food and Drug Administration's (FDA's) Manufacturers and User Device Experience (MAUDE) database on 13 April 2012 using the simple search terms ‘Riata ST Optim™ abrasion analysis’ and ‘Durata abrasion analysis’. Lead implant time was estimated by subtracting 3 months from the reported lead age. The MAUDE search returned 15 reports for Riata ST Optim™ and 37 reports for Durata leads, which were submitted by SJM based on its analyses of returned leads for clinical events that occurred between December 2007 and January 2012. Riata ST Optim™ leads had been implanted 29.1 ± 11.7 months. Eight of 15 leads had can abrasions and three abrasions were caused by friction with another device, most likely another lead. Four of these abrasions resulted in high-voltage failures and one death. One failure was caused by an internal insulation defect. Durata leads had been implanted 22.2 ± 10.6 months. Twelve Durata leads had can abrasions, and six leads had abrasions caused by friction with another device. Of these 18 can and other device abrasions, 13 (72%) had electrical abnormalities. Low impedances identified three internal insulation abrasions. Conclusions Riata ST Optim™ and Durata ICD leads have failed due to insulation abrasions. Optim™ did not prevent these abrasions, which developed ≤4 years after implant. Studies are needed to determine the incidence of these failures and their clinical implications. PMID:22915789

  2. Combined effect of end-rounded versus tapered bristles and a dentifrice on plaque removal and gingival abrasion.

    PubMed

    Caporossi, Leonardo Stephan; Dutra, Danilo Antonio Milbradt; Martins, Maritieli Righi; Prochnow, Emilia Pithan; Moreira, Carlos Heitor Cunha; Kantorski, Karla Zanini

    2016-01-01

    Two previous clinical studies evaluated the effect of end-rounded versus tapered bristles of soft manual brushes on the removal of plaque and gingival abrasion. However, the combined effect of an abrasive dentifrice on these outcomes has yet to be understood. The purpose of the present study was to compare the incidence of gingival abrasion and the degree of plaque removal obtained after the use of toothbrushes with tapered or end-rounded bristles in the presence or absence of an abrasive dentifrice. The study involved a randomized, single-blind, crossover model (n = 39) with a split-mouth design. Subjects were instructed to refrain from performing oral hygiene procedures for 72 hours. Quadrants were randomized and subjects brushed with both types of toothbrushes using a dentifrice (relative dentin abrasion = ± 160). Plaque and gingival abrasion were assessed before and after brushing. After 7 days, the experiment was repeated without the dentifrice. The average reduction in plaque scores and the average increase in the number of abrasion sites were assessed by repeated-measures ANOVA and Bonferroni's post-hoc tests. End-rounded bristles removed significantly more plaque than tapered bristles, regardless of the use of a dentifrice. The dentifrice did not improve plaque removal. In the marginal area (cervical free gingiva), no difference in the incidence of gingival abrasion was detected between toothbrush types when used with a dentifrice (p ≥ 0.05). However, the dentifrice increased the incidence of abrasion (p < 0.001), irrespective of the toothbrush type tested. End-rounded bristles therefore removed plaque more effectively without causing a higher incidence of gingival abrasion when compared with tapered bristles. An abrasive dentifrice can increase the incidence of abrasion, and should be used with caution by individuals who are at risk of developing gingival recession. PMID:26981758

  3. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  4. Effect of Internal Limiting Membrane Abrasion on Retinal Tissues in Macular Holes

    PubMed Central

    Almeida, David R. P.; Chin, Eric K.; Tarantola, Ryan M.; Folk, James C.; Boldt, H. Culver; Skeie, Jessica M.; Mullins, Robert F.; Russell, Stephen R.; Mahajan, Vinit B.

    2015-01-01

    Purpose. The purpose of this study was to identify the structural and histological effects of a Tano diamond-dusted membrane scraper (DDMS) on the retinal surface after internal limiting membrane (ILM) abrasion in macular hole surgery. Methods. Institutional experimental study was performed in 11 eyes. All eyes underwent ILM abrasion in the operating room with a DDMS for macular hole repair as an alternative to traditional ILM peeling. Three human donor eyes underwent an identical procedure in the laboratory. Retinal tissues were removed by ILM abrasion with a DDMS during vitrectomy for macular hole repair and retinal tissues remaining in human donor eyes. Main outcome measures were microscopic and immunohistological characteristics of instrument tip tissues and retinal structure after ILM abrasion. Results. The tips of the Tano DDMS showed evidence of cellular membranes and ILM removal. The retinas showed distinct areas of lamellar ILM removal without penetration of the retinal nerve fiber layer (RNFL). Conclusions. Application of the Tano DDMS instrument is sufficient to remove membranes from the surface of the ILM and layers of the ILM without disruption of the underlying RNFL. Internal limiting membrane abrasion can be a useful and effective alternative to complete ILM removal for macular surgery. PMID:26024069

  5. The effect of erosion and abrasion on surface properties of composite resin

    NASA Astrophysics Data System (ADS)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Munteanu, A.; Balan, A.; Iovan, G.

    2016-06-01

    The aim of the study was to evaluate the surface roughness of two commercial composite resins submitted to erosive attack, to abrasive wear and to association of erosive and abrasive challenge. Standardized samples of G-snial anterior (GC Company) and Essentia (GC Company) composite resins were randomly split in 6 groups. In group 1 the samples were maintained in artificial saliva until the evaluation of surface roughness. In group 2 the samples were submitted only to erosive attack, in group 3 only to abrasive challenge and in groups 4,5, and 6 the erosive attack was followed by abrasive challenge immediately (group 4), 30 minutes after the erosive attack (group 5) and one hour after the erosive attack (group 6). The specimens were evaluated using surface roughness measuring tester SJ-210 (Mitutoyo Corporation, Japan) and the mean surface roughness values (Ra, μm) of each specimen were registered. A significantly increase of both composite resins surface roughness was recorded after erosive attack and abrasive challenge. Toothbrushing 60 minutes after acidic contact determined no significant differences in surface roughness of composite resins.

  6. Comparative Evaluation of Gingival Depigmentation using Tetrafluoroethane Cryosurgery and Gingival Abrasion Technique: Two Years Follow Up

    PubMed Central

    Kumar, Santhosh; Bhat, G. Subraya; Bhat, K. Mahalinga

    2013-01-01

    Objective: A comparative evaluation of the gingival depigmentation by using Tetrafluoroethane cryosurgery and the gingival abrasion technique – 2 years of follow up. Material and Methods: Ten systemically healthy patients who were aged 18 to 36 years were selected for the study. Tetrafluoroethane was used for the cryosurgical depigmentation and the gingival abrasion technique used a coarse flame shaped bur. The presence or absence of pigmentation was tabulated, based on the GPI (Gingival Pigmentation Index). For the statistical analysis, Freidman’s test was used. Results: The keratinization was completed within a week after the application of the cryogen and about 10 days after the gingival abrasion technique was done. The statistical analysis which was done after 90th, 180th days and 2 years. The p-value which was obtained (p<.001) showed the superiority of cryosurgery over the gingival abrasion. During the follow up period, no side effects were seen for both the techniques and the improved aesthetics was maintained upto 2 years. Conclusion: The use of cryogen Tetrafluoroethane is easy, practical and inexpensive as compared to gingival abrasion, due to its high rate of recurrence. Hence, it is more acceptable to the patients and the operator. Further studies are needed to assess the long term effectiveness of the cryosurgical method of depigmentation. PMID:23543863

  7. Assessment of the abrasion potential of pesticide-treated seeds using the Heubach test

    PubMed Central

    Zwertvaegher, Ingrid K. A.; Foqué, Dieter; Devarrewaere, Wouter; Verboven, Pieter; Nuyttens, David

    2016-01-01

    ABSTRACT During sowing of pesticide-treated seeds, pesticide-laden dust and abraded seed particles may be emitted to the environment, possibly leading to environmental contamination and posing health risks. In many countries there is currently no legislation concerning the acceptable amount of dust of treated seeds. This study aimed to gain insight in the abrasion potential of available pesticide-treated seeds and its associated factors. The abrasion potential of 45 seed samples of 7 different species (viz. sugar beet, oat, barley, wheat, spelt, pea, and maize) was determined using the Heubach test and amounts of dust were expressed as g 100 kgseeds −1, g 100,000 seeds−1, and g ha−1. The abrasion potential fell generally within the boundaries of maximum permissible values adopted by different countries. Species, seed treatment company, number of active ingredient (AIs) and combination of AIs had significant effects on the abrasion potential, whereas little or no effect of agitation and conservation was found. However, species were situated differently with respect to each other depending on the unit in which the abrasion potential was expressed. A standard unit that takes into account the species’ seed rate is suggested to give the fairest assessment of dust drift risk and would allow international comparison. PMID:27812241

  8. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin. PMID:25424595

  9. Effect of surface treatment and liner material on the adhesion between veneering ceramic and zirconia.

    PubMed

    Yoon, Hyung-in; Yeo, In-sung; Yi, Yang-jin; Kim, Sung-hun; Lee, Jai-bong; Han, Jung-suk

    2014-12-01

    Fully sintered zirconia blocks, each with one polished surface, were treated with one of the followings: 1) no treatment, 2) airborne-particle abrasion with 50μm alumina, and 3) airborne-particle abrasion with 125μm alumina. Before veneering with glass ceramic, either liner Α or liner B were applied on the treated surfaces. All veneered blocks were subjected to shear force in a universal testing machine. For the groups with liner A, irrespective of the particle size, air abrasion on Y-TZP surfaces provided greater bond strength than polishing. Application of liner B on an abraded zirconia surface yielded no significant influence on the adhesion. In addition, specimens with liner A showed higher bond strength than those with liner B, if applied on roughened surfaces. Fractured surfaces were observed as mixed patterns in all groups. For the liner A, surface treatment was helpful in bonding with veneering ceramic, while it was ineffective for the liner B. PMID:25282467

  10. Effect of Adhesive Cementation Strategies on the Bonding of Y-TZP to Human Dentin.

    PubMed

    Alves, Mll; Campos, F; Bergoli, C D; Bottino, M A; Özcan, M; Souza, Roa

    2016-01-01

    This study evaluated the effects of different adhesive strategies on the adhesion of zirconia to dentin using conventional and self-adhesive cements and their corresponding adhesive resins. The occlusal parts of human molars (N=80) were sectioned, exposing the dentin. The teeth and zirconia cylinders (N=80) (diameter=3.4 mm; height=4 mm) were randomly divided into eight groups according to the factors "surface conditioning" and "cement type" (n=10 per group). One conventional cement (CC: RelyX ARC, 3M ESPE) and one self-adhesive cement (SA: RelyX U200, 3M ESPE) and their corresponding adhesive resin (for CC, Adper Single Bond Plus; for SA, Scotchbond Universal Adhesive-SU) were applied on dentin. Zirconia specimens were conditioned either using chairside (CJ: CoJet, 30 μm, 2.5 bar, four seconds), laboratory silica coating (RC: Rocatec, 110 μm, 2.5 bar, four seconds), or universal primer (Single Bond Universal-UP). Nonconditioned groups for both cements acted as the control (C). Specimens were stored in water (37°C, 30 days) and subjected to shear bond strength (SBS) testing (1 mm/min). Data (MPa) were analyzed using two-way analysis of variance and a Tukey test (α=0.05). While surface conditioning significantly affected the SBS values (p=0.0001) (Cadhesive. Air-abrasion and the use of the universal primer improved the bond strength of zirconia to dentin compared to the control group, regardless of the type of resin cement used.

  11. Reduction of Postsurgical Adhesions in a Rat Model: A Comparative Study

    PubMed Central

    Irkorucu, Oktay; Ferahköşe, Zafer; Memiş, Leyla; Ekinci, Özgür; Akin, Murat

    2009-01-01

    BACKGROUND: Adhesion formation after peritoneal surgery is a major cause of postoperative bowel obstruction, infertility, and chronic pelvic pain. In this study, we compared the possible individual effects of phosphatidylcholine (PC), Seprafilm® II, and tissue plasminogen activator (t-PA) and the combined effects of phosphatidylcholine and t-PA on postoperative adhesion formation in a rat surgical model. MATERIALS AND METHODS: A total of 50 Wistar male rats underwent median laparotomy and standardized abrasion of the visceral and parietal peritoneum. phosphatidylcholine, Seprafilm II, and t-PA alone and phosphatidylcholine and t-PA in combination were applied intraperitoneally at the end of the surgical procedure. Seven days after surgery, a relaparotomy was performed for adhesion grading and histopathological examination. RESULTS: A comparison of adhesion stages demonstrated a significant difference between the control group and the study groups (p<0.001). The adhesion grade of the combined treatment group was statistically different from that of the other groups (p<0.05). In the t-PA group and the combined group, six and two rats, respectively, developed hematomas locally on the cecum. CONCLUSIONS: PC, t-PA, and Seprafilm II used individually reduced the adhesion grade. The t-PA and phosphatidylcholine combination was most effective in reducing adhesion formation. On the other hand, usage of t-PA alone or in combination may increase risk of bleeding. More detailed studies are needed, and future studies on the efficacy of a material for decreasing adhesion formation should include a comparison of several control materials in the same model. PMID:19219320

  12. Three Functions of Cadherins in Cell Adhesion

    PubMed Central

    Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2013-01-01

    Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major functions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial tension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. PMID:23885883

  13. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  14. Experimental Investigation on Effect of Adhesives on Thermoelectric Generator Performance

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Remeli, Muhammad Fairuz; Chet, Ding Lai; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2015-06-01

    Thermoelectric generators (TEGs) convert heat energy into electricity. Currently, these devices are attached to heat exchangers by means of mechanical devices such as clamps or fixtures with nuts and bolts. These mechanical devices are not suitable for use in harsh environments due to problems with rusting and maintenance. To eliminate the need for such mechanical devices, various kinds of adhesives used to attach thermoelectric generators to heat exchangers are investigated experimentally in this work. These adhesives have been selected based on their thermal properties and also their stability to work in harsh environments to avoid damage to the integrity of the attachment over long periods of time. Stainless-steel plates were attached to a thermoelectric generator using the adhesives. The introduction of the adhesive as a means of attachment for thermoelectric generators contributes to increase the thermal resistance to heat transfer across the TEG. The adhesive layers increased the thermal resistance of the thermoelectric generator by 16% to 109%. This work examines the effect of the adhesives on the thermal performance and power output of a single thermoelectric generator for various heat inputs.

  15. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  16. Reliability characterization of UV-curable adhesives used in optical devices

    NASA Astrophysics Data System (ADS)

    Plitz, Irene M.; Gebizlioglu, Osman S.; Dugan, Michael P.

    1994-09-01

    UV (ultra-violet)-curable adhesives were identified as the underlying cause for failure of devices subjected to accelerated aging conditions. These adhesives must be resistant to degradation and dimensional/mechanical instabilities such as creep. We examined two UV-curable adhesives and found that thermal post-curing caused some shrinkage and degradation. However, post-curing also raised the adhesive glass transition temperature, thereby reducing the reliability risk associated with mechanical instability. We investigated the dimensional/mechanical stability of UV adhesives by measuring thermal expansion/contraction and creep compliance. We found that the adhesive thermal expansion and creep compliance are large enough to pose device reliability risk. Raising the glass transition temperature of UV-curable adhesives by thermal post-cure can improve optical device reliability by lowering the creep compliance.

  17. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    USGS Publications Warehouse

    Bridges, N.T.; Calef, F.J.; Hallett, B.W.; Herkenhoff, Kenneth E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; de Pablo, M.A.; Kocurek, G.A.; Langevin, Y.; Lewis, K.W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N.O.; Rice, CM.S.; Richardson, M.E.; Sautter, V.; Sletten, R.S.; Wiens, R.C.; Yingst, R.A.

    2014-01-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  18. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  19. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    NASA Astrophysics Data System (ADS)

    Hakim Kamarudin, Naqib; Prasada Rao, A. K.; Azhari, Azmir

    2016-02-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work.

  20. Photodetector Development for the Wheel Abrasion Experiment on the Sojourner Microrover of the Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Jenkins, Phillip P.; Scheiman, David A.

    1997-01-01

    On-board the Mars Pathfinder spacecraft, launched in December of 1996, is a small roving vehicle named Sojourner. On Sojourner is an experiment to determine the abrasive characteristics of the Martian surface, called the Wheel Abrasion Experiment (WAE). The experiment works as follows: one of the wheels of the rover has a strip of black anodized aluminum bonded to the tread. The aluminum strip has thin coatings of aluminum, nickel and platinum deposited in patches. There are five (5) patches or samples of each metal, and the patches range in thickness from 200 A to 1000 A. The different metals were chosen for their differing hardness and their environmental stability. As the wheel is spun in the Martian soil, the thin patches of metal are abraded away, exposing the black anodization. The abrasion is monitored by measuring the amount of light reflected off of the samples. A photodetector was developed for this purpose, and that is the subject of this paper.

  1. Friction Process in the Presence of Hard Abrasive Particles — Cooperation Model

    NASA Astrophysics Data System (ADS)

    Oleksowicz, Selim; Mruk, Andrzej

    The paper presents the results of the investigation performed on a stand for model testing of the friction pair like a car disc brake. The tests were performed for the mating operation of a frictional node with the dosage of hard abrasive particles into the friction zone. Based on the observation of the phenomena in the friction zone and the analysis of the parameters describing operating conditions of a frictional node, physical models of the frictional node cooperation in the presence of hard abrasive particles have been proposed. During the tests, using the transparent material of a friction cover plate and a fast recording camera, a visual analysis of the material transfer in the friction zone was done. It allowed to positively verifying the proposed physical models of the frictional node cooperation in the presence of hard abrasive particles.

  2. Understanding Characteristic of Abrasion of Refractory Lining Caused by Bath Oscillation in BOF Steelmaking

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Li, Mingming; Kuang, S. B.; Zou, Zongshu

    2016-08-01

    This paper presents a numerical study of the refractory abrasion occurring widely inside basic oxygen furnace (BOF) steelmaking. The mechanism of refractory abrasion is examined numerically referring to the bath oscillation with regard to flows, turbulence and wall shear stress inside a BOF. The simulation results reveal that the refractory abrasion tends to occur on the wall region between the slag/atmosphere and slag/metal interfaces due to the oscillation of the bath in the blowing process, which generally promotes slag-line erosion. The decreased nozzle angle, and either increased lance height or operation pressure can lead to more serious refractory erosion that occurs more likely during the slag-making period in the operation of BOF.

  3. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Calef, F. J.; Hallet, B.; Herkenhoff, K. E.; Lanza, N. L.; Le Mouélic, S.; Newman, C. E.; Blaney, D. L.; Pablo, M. A.; Kocurek, G. A.; Langevin, Y.; Lewis, K. W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N. O.; Rice, M. S.; Richardson, M. E.; Sautter, V.; Sletten, R. S.; Wiens, R. C.; Yingst, R. A.

    2014-06-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from "Bradbury Landing" to "Rocknest," they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  4. Assessment of piezoelectric sensor adhesive bonding

    NASA Astrophysics Data System (ADS)

    Wandowski, T.; Moll, J.; Malinowski, P.; Opoka, S.; Ostachowicz, W.

    2015-07-01

    Piezoelectric transducers are widely utilized in Structural Health Monitoring (SHM). They are used both in guided wave-based and electromechanical impedance-based methods. Transducer debonding or unevenly distributed glue underneath the transducer reduce the performance and reliability of the SHM system. Therefore, quality assessment methods for glue layer need to be developed. In this paper, the authors present results obtained from two methods that allow the quality assessment of adhesive bonds of piezoelectric transducers. The electromechanical impedance method is utilized to analyze transducer adhesive bonding. An improperly prepared bonding layer is a source for changes in the electromechanical impedance characteristics in comparison to a perfectly bonded transducer. In the resistance characteristics of the properly bonded transducer the resonance peaks of the structure were clearly visible. In the case when adhesive layer is not equally distributed under sensor, the amplitudes of structural resonance peaks are reduced. In the case of completely detached transducer, the structural resonance peaks disappear and only resonance peaks of the transducer itself are visible. These peaks (peaks of free transducer hanging on wires) are significantly larger than the resonance peaks of the investigated structure in the considered frequency interval. The bonding layer shape is also analyzed using time-domain terahertz spectroscopy in reflection mode. This method allows to visualize the adhesive layer distribution based on C-scan analysis. C-scans of signals or envelope-detected signals can be used to estimate the area of proper adhesion between bonding agent and transducer and hence provides a more quantitative approach towards transducer inspection.

  5. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  6. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  7. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  8. Adhesion barrier reduces postoperative adhesions after cardiac surgery.

    PubMed

    Kaneko, Yukihiro; Hirata, Yasutaka; Achiwa, Ikuya; Morishita, Hiroyuki; Soto, Hajime; Kobayahsi, Jotaro

    2012-06-01

    Reoperation in cardiac surgery is associated with increased risk due to surgical adhesions. Application of a bioresorbable material could theoretically reduce adhesions and allow later development of a free dissection plane for cardiac reoperation. Twenty-one patients in whom a bioresorbable hyaluronic acid-carboxymethylcellulose adhesion barrier had been applied in a preceding surgery underwent reoperations, while 23 patients underwent reoperations during the same period without a prior adhesion barrier. Blinded observers graded the tenacity of the adhesions from surgical video recordings of the reoperations. No excessive bleeding requiring wound reexploration, mediastinal infection, or other complication attributable to the adhesion barrier occurred. Multiple regression analysis showed that shorter duration of the preceding surgery, non-use of cardiopulmonary bypass in the preceding surgery, and use of the adhesion barrier were significantly associated with less tenacious surgical adhesions. The use of a bioresorbable material in cardiac surgery reduced postoperative adhesions, facilitated reoperation, and did not promote complications. The use of adhesion barrier is recommended in planned staged procedures and those in which future reoperation is likely.

  9. Comparison of methods for quantifying dental wear caused by erosion and abrasion.

    PubMed

    Passos, Vanara F; Melo, Mary A S; Vasconcellos, Andréa Araújo; Rodrigues, Lidiany K A; Santiago, Sérgio L

    2013-02-01

    Various methods have been applied to evaluate the effect of erosion and abrasion. So, the aim of this study was to check the applicability of stylus profilometry (SP), surface hardness (SH) and focus-variation 3D microscopy (FVM) to the analysis of human enamel and dentin subjected to erosion/abrasion. The samples were randomly allocated into four groups (n = 10): G1-enamel/erosion, G2-enamel/erosion plus abrasion, G3-dentin/erosion, and G4-dentin/erosion plus abrasion. The specimens were selected by their surface hardness, and they were subjected to cycles of demineralization (Coca-Cola®-60 s) and remineralization (artificial saliva-60 min). For groups G2 and G4, the remineralization procedures were followed by toothbrushing (150 strokes). The above cycle was repeated 3×/day during 5 days. The samples were assessed using SH, SP, and FVM. For each substrate, the groups were compared using an unpaired t-test, and Pearson correlation coefficients were calculated (α = 5%). For enamel, both profilometry technique showed greater surface loss when the erosion and abrasion processes were combined (P <0.05). The correlation analysis did not reveal any relationships among SH, SP, and FVM to G2 and G4. There were significant correlation coefficients (-0.70 and -0.67) for the comparisons between the FVM and SH methods in enamel and dentin, respectively, in G1 and G3. Choosing the ideal technique for the analysis of erosion depends on the type of dental substrate. SP was not sufficiently sensitive to measure the effects on dentin of erosion or erosion/abrasion. However, SP, FVM and SH were adequate for the detection of tissue loss and demineralization in enamel. PMID:23129538

  10. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  11. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  12. Subsurface mechanical damage during bound abrasive grinding of fused silica glass

    NASA Astrophysics Data System (ADS)

    Blaineau, P.; André, D.; Laheurte, R.; Darnis, P.; Darbois, N.; Cahuc, O.; Neauport, J.

    2015-10-01

    The subsurface damage (SSD) introduced during bound abrasive grinding of fused silica glass was measured using a wet etch technique. Various process parameters and grinding configurations were studied. The relation between the SSD depth, the process parameters and forces applied by the grinding wheel on the sample was investigated and compared to a simulation using a discrete element method to model the grinding interface. The results reveal a relation between the SSD depth and the grinding forces normalized by the abrasive concentration. Regarding the creation of the SSD, numerical simulations indicate that only a small fraction of the largest particles in the diamond wheel are responsible for the depth of the damaged layer.

  13. Effects of Intraperitoneal Administration of Simvastatin in Prevention of Postoperative Intra-abdominal Adhesion Formation in Animal Model of Rat

    PubMed Central

    Javaherzadeh, Mojtaba; Shekarchizadeh, Ali; Kafaei, Marjan; Mirafshrieh, Abass; Mosaffa, Nariman; Sabet, Babak

    2016-01-01

    Objective: To determine the preventive effects of local administration of simvastatin for postoperative intra-abdominal adhesion formation in animal model of rat.  Methods: In this experimental study, 32 Wistar albino rats as the animal model of intra-abdominal adhesion formation were included. Adhesions were induced in all the animals via abrasion of the peritoneal and intestinal surface during laparotomy. Afterwards, the rats were randomly assigned to receive simvastatin (30 mg/kg body weight) as a single intraperitoneal dose at the time of laparotomy (n=16) or normal saline in same volume at the same time (n=16). At the day 21, animals were euthanized and the adhesions were quantified clinically (via repeated laparotomy) and pathologically and compared between the two groups. Results: The baseline characteristics of the animals were comparable between two study groups. Clinically, in simvastatin group, 10 rats (62.5%) did not develop any adhesion and 6 (37.5%) had first-grade adhesion; whereas in the control group, 11 (68.8%) rats had first- and 5 (31.2%) had second-grade adhesions (p<0.001). Pathologically, in simvastatin group, 6 rats (37.5%) had first-grade adhesion, while in control group, 11 rats (68.8%) had first- and 5 (31.2%) had second-grade adhesions (p<0.001). Conclusion: Our findings suggest that intraperitoneal administration of simvastatin is an effective method for prevention of postoperative intra-abdominal adhesion formation in animal model of rat.   PMID:27540550

  14. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  15. Impact of Abrasion on Mass Loss and Surface Appearance of Woven Fabrics Made with Injected Slub Yarn in Weft

    NASA Astrophysics Data System (ADS)

    Ray, Nemai Chandra; Mukhopadhyay, Arunangshu; Midha, Vinay Kumar

    2016-08-01

    Fancy yarn fabrics are susceptible to abrasive damage during washing and usage but the extent of damage varies with construction and type of fabric. In the present study, effect of different slub parameters viz. slub length, slub thickness and slub frequency of single base injected slub yarn on abrasive damage of woven fabrics has been studied when injected slub yarns are used in weft only. Abrasive damage has been assessed by two ways using loss in fabric mass and deterioration in fabric appearance due to abrasion. These two techniques provide entirely different effect of injected slub yarn parameters on abrasive damage of woven fabric. Fabric abrasion damage in terms of mass loss is not affected by slub thickness and damage is least when both slub length and slub frequency are at central/medium level. Under visual assessment it is observed that all the slub parameters have significant influence on abrasive damage of woven fabric. It is possible to have lower damage in surface appearance in spite of higher mass loss of fabric due to abrasion.

  16. Computer Simulation of Stress-Strain State of Pipeline Section Affected by Abrasion Due to Mechanical Impurities

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Afanas’ev, R. G.; Burkova, S. P.

    2016-04-01

    The paper presents the effect of abrasive wear of the pipeline section occurred due to mechanical impurities in the transported gas flow. The approaches to the detection of the maximum specific wear of the pipeline wall and the geometry of abrasion are the main problems of computer simulation described in this paper.

  17. Use of additives to enhance the properties of cottonseed protein as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein is currently being used commercially as a “green” wood adhesive. Previous work in this laboratory has shown that cottonseed protein isolate, tested on maple wood veneer, produced higher adhesive strength and hot water resistance relative to soy protein. In the present study, cottonseed...

  18. Toward Optimum Scale and TBC Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1998-01-01

    Single crystal superalloys exhibit excellent cyclic oxidation resistance if their sulfur content is reduced from typical impurity levels of approximately 5 ppmw to below 0.5 ppmw. Excellent alumina scale adhesion was documented for PWA 1480 and PWA 1484 without yttrium additions. Hydrogen annealing produced effective desulfurization of PWA 1480 to less than 0.2 ppmw and was also used to achieve controlled intermediate levels. The direct relationship between cyclic oxidation behavior and sulfur content was shown. An adhesion criterion was proposed based on the total amount of sulfur available for interfacial segregation, e.g., less than or equal to 0.2 ppmw S will maximize adhesion for a 1 mm thick sample. PWA 1484, melt desulfurized to 0.3 ppmw S, also exhibited excellent cyclic oxidation resistance and encouraging TBC lives (10 mils of 8YSZ, plasma sprayed without a bond coat) in 1100 C cyclic oxidation tests.

  19. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used.

  20. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. PMID:24123837

  1. Conditioning method development for 3M Trizact diamond tile fixed abrasives used in the finishing of brittle substrates; Technical Digest

    NASA Astrophysics Data System (ADS)

    Fletcher, Tim; Gobena, Feben T.; Romero, Vince; Sventek, Bruce; Schoenhofen, Walter

    2005-05-01

    Results of a series of single sided lapping experiments designed to develop appropriate conditioning methods for 3M Trizact Diamond Tile fixed abrasives are reported. Trizact™ Diamond Tile is a structured fixed abrasive lapping technology developed by 3M. The Trizact™ Diamond Tile structured abrasive pad consists of an organic (polymeric binder)-inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. The effect of platen and conditioner speed on pad wear will be explored for a roller yoke single-side lapping machine. Pad break-in conditioning was studied in detail for a 6 micron Trizact™ Diamond Tile abrasive used to lap soda-lime glass.

  2. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  3. Preparation and testing of plant seed meal-based wood adhesives.

    PubMed

    He, Zhongqi; Chapital, Dorselyn C

    2015-03-05

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  4. Development of aircraft lavatory compartments with improved fire resistance characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Johnson, G. A.

    1978-01-01

    The Boeing's participation in a NASA-funded program (FIREMEN) included developing materials for use as lavatory wall panels, sidewall panels, and ceiling panels possessing flammability, smoke, and toxicity (FS&T) characteristics superior to current materials of construction is described. A sandwich panel system is developed for improving FS&T characteristics and acceptable cost, processing requirements, aesthetic qualities, abrasion resistance, strain resistance, scuff resistance, and washability.

  5. [Adhesive cutaneous pharmaceutical forms].

    PubMed

    Gafiţanu, E; Matei, I; Mungiu, O C; Pavelescu, M; Mîndreci, I; Apostol, I; Ionescu, G

    1989-01-01

    The adhesive cutaneous pharmaceutical forms aimed to local action release the drug substance in view of a dermatological, traumatological, antirheumatic, cosmetic action. Two such preparations were obtained and their stability, consistency and pH were determined. The "in vitro" tests of their bioavailability revealed the dynamics of calcium ions release according to the associations of each preparation. The bioavailability determined by evaluating the pharmacological response demonstrated the antiinflammatory action obtained by the association of calcium ions with the components extracted from poplar muds. The therapeutical efficiency of the studied preparations has proved in the treatment of some sport injuries.

  6. Direct and indirect adhesive restorative materials: a review.

    PubMed

    Kugel, G

    2000-11-01

    Esthetic restorative materials require a bonding procedure in order to be durable and reliable. In order to accomplish this ideal, the bonding system must be biocompatible, bond indifferently to enamel and dentin, have sufficient strength to resist masticator forces, have mechanical properties close to those of tooth structures, be resistant to degradation in the oral environment and easy to use. This paper reviews the published literature on direct and indirect adhesive restorative materials.

  7. Puerperal endometritis and intrauterine adhesions.

    PubMed

    Polishuk, W Z; Anteby, S O; Weinstein, D

    1975-08-01

    The role of puerperal endometritis in intrauterine adhesion formation was studied by hysterography in 171 women who had cesarean sections. Of 28 patients who developed significant endometritis, only one developed intracervical adhesions. In the control group of 143 cases, there was also only one such case. Endometritis alone apparently does not play a significant role in intrauterine and endocervical adhesion formation. The possible role of placental fibroblasts in preventing endometrial regeneration is discussed. PMID:1158622

  8. Adhesion properties of gecko setae

    NASA Astrophysics Data System (ADS)

    Hill, Ginel; Peattie, Anne; Daniels, Roxanne; Full, Robert; Kenny, Thomas

    2005-03-01

    Millions of keratin hairs on gecko feet, called setae, act as a spectacular dry adhesive. Each seta branches into hundreds of smaller fibers that terminate in spatula-shaped ends. Morphological differences between the setae from different gecko species are suspected to affect both single-seta and whole-animal adhesion properties. Single-seta adhesive force measurements made using a MEMS piezoresistive cantilever capable of two-axis measurements are presented.

  9. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural killer cells are lymphocytes of the innate immune system that have crucial cytotoxic and regulatory roles in adaptive immunity and inflammation. Herein, we consider a role for these cells in corneal wound healing. After a 2-mm central epithelial abrasion of the mouse cornea, a subset of clas...

  10. Abrasion and fracture testing in a high-pressure hydrogen environment

    NASA Technical Reports Server (NTRS)

    Sneesby, G. V.; Walker, R. J.

    1969-01-01

    Two devices are necessary for abrasion and fracture testing of materials evaluated for storage of hydrogen at high pressure for long periods. The first device abrades tensile specimens. The second device tests for fracture toughness of metals. Both devices permit testing in both yield and failure modes in high pressure hydrogen.

  11. A review on nozzle wear in abrasive water jet machining application

    NASA Astrophysics Data System (ADS)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  12. Investigation of abrasion in Al–MgO metal matrix composites

    SciTech Connect

    Muharr em Pul; Çalin, Recep; Gül, Ferhat

    2014-12-15

    In this study, the effects of reinforcement volume fractions on abrasive wear behavior were examined in Al–MgO reinforced metal matrix composites of 5%, 10% and 15% reinforcement – volume ratios produced by melt-stirring. Abrasive wear tests were carried out by 60, 80 and 100 mesh sized Al{sub 2}O{sub 3} abrasive papers and pin-on-disc wear test apparatus under 10, 20 and 30 N loads at 0.2 m/s sliding speed. The mechanical properties such as hardness and fracture strength were determined. Subsequent to the wear tests, the microstructures of worn surfaces were examined by scanning electron microscope analyses. While increased MgO reinforcement volume fraction in the composite resulted increased hardness, fracture strength was determined to decrease. Additionally, it was found that increased MgO reinforcement volume fraction in the composite was accompanied with increased wear loss and porosity as well as reinforcement – volume ratio was identified to be significant determinants of abrasive wear behavior.

  13. Air-propelled abrasive grit for postemergence in-row weed control in field corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic growers need additional tools for weed control. A new technique involving abrasive grit propelled by compressed air was tested in field plots. Grit derived from corn cobs was directed at seedlings of summer annual weeds growing at the bases of corn plants when the corn was at differing early...

  14. Platelet recruitment promotes keratocyte repopulation following corneal epithelial abrasion in the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and ne...

  15. IBPAT/OSHA Health and Safety Education Quiz Book. Painters, Abrasive Blasters, Tapers, Paint Makers, Floorcoverers.

    ERIC Educational Resources Information Center

    International Brotherhood of Painters and Allied Trades, Washington, DC.

    Designed for use by instructors using the "Health and Safety Education Book" (International Brotherhood of Painters and Allied Trades/Occupational Safety and Health Act), this book contains quizzes specifically for painters, abrasive blasters, tapers, paint makers, and floorcoverers. Quizzes included in the book focus on testing areas such as (1)…

  16. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  17. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  18. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  19. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  20. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...