Science.gov

Sample records for abrasive blasting technology

  1. Evaluation of Needle Gun and Abrasive Blasting Technologies in Bridge Paint Removal Practices.

    PubMed

    Randall, Paul M; Kranz, Paul B; Sonntag, Mary L; Stadelmaier, James E

    1998-03-01

    This paper reviews the results of a U.S. Environmental Protection Agency (EPA) study that assessed needle gun technology as an alternative to conventional abrasive blasting technology to remove lead-based paint from steel bridges in western New York State. The study analyzed the operational and logistical aspects as they relate to worker health and safety, environmental protection, hazardous waste generation, and costs as compared to those arising from conventional abrasive blasting. In this 1992 EPA study, the costs and the product quality aspects favored conventional abrasive blasting over the needle gun technology for removing lead paint. However, abrasive blasting exposed workers to airborne lead levels that exceeded Permissible Exposure Limits (PELs) as established by the Occupational Safety and Health Administration (OSHA), as well as emitting high levels of lead-contaminated dusts and debris into the environment. It was estimated that more than 500 lbs of lead-contaminated spent abrasives and paint waste were released into the environment during paint removal operations. The needle gun system reduced (up to 97.5%) the generation of hazardous waste and the airborne concentrations (up to 99%) of respirable dusts and lead-containing particulates generated during paint removal operations. However, labor costs for the needle gun were three times higher than those for abrasive blasting primarily because of slower production rates that necessitated more operating personnel. The higher labor costs of the needle gun are partially offset by the increased costs associated with the expendable abrasive blast media and hazardous waste disposal. In the EPA study, the productivity of the needle gun system was 12.2 ft 2 /hr vs. 147.5 ft 2 /hr for abrasive blasting. A post blast was needed for the needle gun system to meet surface preparation specifications. When factoring in the costs of full containment structures to meet OSHA's 1993 Lead Exposure in Construction regulation

  2. Control technology for crystalline silica exposures in construction: wet abrasive blasting.

    PubMed

    Golla, Vijay; Heitbrink, William

    2004-03-01

    This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting.

  3. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less

  4. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.

  5. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  6. Surface assessment and modification of concrete using abrasive blasting

    NASA Astrophysics Data System (ADS)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  7. Abrasive blast cleaning method for the renewal of worn-out acceleration tubes

    NASA Astrophysics Data System (ADS)

    Bartha, L.; Koltay, E.; Mórik, Gy.

    1996-04-01

    The degradation of the electrical properties of acceleration tubes emerging with performance time is known to be assigned mainly to impurities and surface breakdown tracks appearing on the inner surface of the insulators. Consequently, a radical treatment for removing the surface layer may result in a renewal of the tube. An abrasive blast cleaning procedure has been used on a set of worn-out acceleration tube units. The cleaned tube exhibited its original electrical characteristics and it has been used for more than 4000 h of operation up to the maximum rated voltage of our 5 MV electrostatic accelerator without any observable degradation. XRF and PIXE analytical measurements performed on used and blast-treated insulators as well as on electrode and pump oil samples reveal the contribution of elementary processes in the acceleration tube to the ageing of the tube and indicate the effectness of the blasting process used for the re-establishment of clean surface conditions.

  8. Evaluation of the Effectiveness of Wet Blast Cleaning Methods of Surface Preparation

    DTIC Science & Technology

    1985-06-01

    for Air Abrasive Wet Blast: Complete System Water Abrasive Mixing Chamber in Slurry Blast Unit Schematic of unit Control Unit Slurry Blast — Air/Water...this discussion we present some general. user guidelines regarding what to look for in con- sidering the use or purchase of wet blasting equipment...These units use compressed air as the medium to propel the eroding material. They differ from air abrasive wet blast units in that the abrasive is mixed

  9. Solidification/stabilization of spent abrasives and use as nonstructural concrete

    SciTech Connect

    Brabrand, D.J.; Loehr, R.C.

    1993-01-01

    Tons of spent abrasives result each year from the removal of old paint from bridges. Because the spent abrasives contain metals from the paint, some spent abrasives may be considered hazardous by the Toxicity Characteristic (TC) criteria. Incorporation of the spent blasting abrasives in nonstructural concrete (rip-rap, dolphins) offers an opportunity to recycle the spent abrasives while immobilizing potentially leachable metals. This study focused on the Portland Cement Solidification/Stabilization (S/S) of spent blasting abrasives taken from a bridge located in Southeast Texas. The study examined (a) the cadmium, chromium, and lead concentrations in extracts obtained by using the Toxicity Characteristicmore » Leaching Procedure (TCLP) and (b) the compressive strengths of Portland Cement mixes that contained different amounts of the spent abrasives. Performance was measured by meeting the TC criteria as well as the requirements for compressive strength. Study results indicated that considerable quantities of these spent abrasives can be solidified/stabilized while reducing the leachability of cadmium, chromium, and lead and producing compressive strengths over 6,895 kN/m[sup 2] (1,000 psi).« less

  10. 7 CFR 3201.78 - Blast media.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Blast media. 3201.78 Section 3201.78 Agriculture... Items § 3201.78 Blast media. (a) Definition. Abrasive particles sprayed forcefully to clean, remove... qualifying biobased blast media. By that date, Federal agencies that have the responsibility for drafting or...

  11. 7 CFR 3201.78 - Blast media.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Blast media. 3201.78 Section 3201.78 Agriculture... Items § 3201.78 Blast media. (a) Definition. Abrasive particles sprayed forcefully to clean, remove... qualifying biobased blast media. By that date, Federal agencies that have the responsibility for drafting or...

  12. Blast Technologies

    DTIC Science & Technology

    2011-06-27

    Development Generic Hull Testing Airbag and Sensor Technology Development Blast Data Recorder Specifications and Fielding Numerical Model Improvement...seat designs, airbag and restraint systems, and energy absorbing flooring solutions  Vehicle event data recorders for collecting highly accurate...treatments.  Airbag or comparable technologies such as bolsters.  Sensors that can detect and deploy/trigger interior treatments within the timeframe of a

  13. FIELD DEMONSTRATION OF LEAD PAINT ABATEMENT TECHNOLOGIES IN RESIDENTIAL HOUSING

    EPA Science Inventory

    This study was conducted to demonstrate lead-based paint (LBP) removal from architectural wood components in CO2 unoccupied residential housing using four technologies: granular carbon dioxide (CO2 blasting), pelletized CO2 blasting, encapsulant paint remover, and wet abrasive bl...

  14. Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication

    NASA Astrophysics Data System (ADS)

    Yanagihara, K.; Kita, R.

    2018-01-01

    This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.

  15. Refurbishment of SRB aluminum components by walnut hull blast removal of protective coatings

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1982-01-01

    A test program was conducted to develop, optimize, and scale up an abrasive blasting procedure was developed for refurbishment of specific SRB components: aft skirt, forward skirt, frustrum, and painted piece parts. Test specimens utilizing 2219 T87 aluminum substrate of varying thicknesses were prepared and blasted at progressively increasing pressures with selected abrasives. Specimens were analyzed for material response. The optimum blasting parameters were determined on panel specimens and verified on a large cylindrical integrated test bed.

  16. FIELD DEMONSTRATION OF LEAD-BASED PAINT REMOVAL AND INORGANIC STABILIZATION TECHNOLOGIES

    EPA Science Inventory

    A study was conducted to demonstrate the effectiveness of a wet abrasive blasting technology to remove lead-based paint from exterior wood siding and brock substrates and to stabilize the resultant blasting media (coal slag and mineral sand) paint debris to reduce the leachable l...

  17. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  18. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  19. Study of abrasive resistance of foundries models obtained with use of additive technology

    NASA Astrophysics Data System (ADS)

    Ol'khovik, Evgeniy

    2017-10-01

    A problem of determination of resistance of the foundry models and patterns from ABS (PLA) plastic, obtained by the method of 3D printing with using FDM additive technology, to abrasive wear and resistance in the environment of foundry sand mould is considered in the present study. The description of a technique and equipment for tests of castings models and patterns for wear is provided in the article. The manufacturing techniques of models with the use of the 3D printer (additive technology) are described. The scheme with vibration load was applied to samples tests. For the most qualitative research of influence of sandy mix on plastic, models in real conditions of abrasive wear have been organized. The results also examined the application of acrylic paintwork to the plastic model and a two-component coating. The practical offers and recommendation on production of master models with the use of FDM technology allowing one to reach indicators of durability, exceeding 2000 cycles of moulding in foundry sand mix, are described.

  20. Deposition of Hydroxyapatite Onto Superelastic Nitinol Using an Ambient Temperature Blast Coating Process

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Ruddy, Mark; Doherty, Kevin A. J.; Twomey, Barry; O'Donoghue, John; Hodgson, Darel; Stanton, Kenneth T.

    2018-06-01

    This work investigates the deposition of hydroxyapatite (HA) onto superelastic nickel-titanium (NiTi) using an ambient temperature coating process known as CoBlast. The process utilises a stream of abrasive alumina (Al2O3) and a coating medium (HA) sprayed simultaneously at the surface of the substrate. The use of traditional coatings methods, such as plasma spray, is unsuitable due to the high temperatures of the process. This can result in changes to both the crystallinity of the HA and properties of the thermally sensitive NiTi. HA is a biocompatible, biodegradable and osteoconductive ceramic, which when used as a coating can promote bone growth and prevent the release of nickel from NiTi in vivo. Samples were coated using different blast pressures and abrasive particle sizes and were examined using a variety of techniques. The coated samples had a thin adherent coating, which increased in surface roughness and coating thickness with increasing abrasive particle size. X-ray diffraction analysis revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of HA onto the surface of superelastic NiTi.

  1. Assessment of thermal spray coatings for wear and abrasion resistance applications

    NASA Astrophysics Data System (ADS)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  2. Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts

    SciTech Connect

    Liu, H T; Hovanski, Yuri; Dahl, Michael E

    2010-08-19

    Current specifications require AWJ-cut aluminum parts for fatigue critical aerospace structures to go through subsequent processing due to concerns of degradation in fatigue performance. The requirement of secondary process for AWJ-machined parts greatly negates the cost effectiveness of waterjet technology. Some cost savings are envisioned if it can be shown that AWJ net cut parts have comparable durability properties as those conventionally machined. To revisit and upgrade the specifications for AWJ machining of aircraft aluminum, “Dog-bone” specimens, with and without secondary processes, were prepared for independent fatigue tests at Boeing and Pacific Northwest National Laboratory (PNNL). Test results show thatmore » the fatigue life is proportional to quality levels of machined edges or inversely proportional to the surface roughness Ra . Even at highest quality level, the average fatigue life of AWJ-machined parts is about 30% shorter than those of conventionally machined counterparts. Between two secondary processes, dry-grit blasting with aluminum oxide abrasives until the striation is removed visually yields excellent result. It actually prolongs the fatigue life of parts at least three times higher than that achievable with conventional machining. Dry-grit blasting is relatively simple and inexpensive to administrate and, equally important, alleviates the concerns of garnet embedment.« less

  3. Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

    PubMed Central

    Jang, Ho-Su; Cho, Myeong-Woo; Park, Dong-Sam

    2008-01-01

    In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed. PMID:27879730

  4. Centrifugal shot blasting. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  5. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL PAINTING

    EPA Science Inventory

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of paint from aircraft wheels. The evaluation was conducted in the Paint Stripping Sho...

  6. Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test.

    PubMed

    Jiang, Lin; Kondo, Akira; Shigeta, Masahiro; Endoh, Shigehisa; Uejima, Mitsugu; Ogura, Isamu; Naito, Makio

    2014-01-01

    To provide data required for assessing the environmental health and safety risks of nanocomposites, abrasion-induced particle release from single-wall carbon nanotube (SWCNT)/polymer composites with or without thermal aging were evaluated by a shot blast system. First, overall composite weight loss (i.e., overall particle release) as a result of shot blasting was measured. Incorporating 5 wt% SWCNTs in polystyrene (PS) matrix was observed to reduce overall particle release by approximately 30% compared with pure PS. Heat treatment of the 5 wt% SWCNT/PS composites at 100°C for 10 days induced very slight change in overall particle release due to shot blasting. However, heat treatment at 350°C for 1 hr greatly deteriorated the abrasion resistance of the composites, enhancing overall particle release. Second, to verify the existence and form of SWCNTs released from the composites, released particles were observed by electron microscopy. Micron-sized particles with protruding SWCNTs and submicron-sized SWCNT clusters were observed in the particles released from the composites. Heat treatment of the composites at 350°C for 1 hr enhanced SWCNT release, which mainly formed clusters or rope-like bundles.

  7. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  8. Technological study on reducing blast-hole rate during laser cutting oil pipe

    NASA Astrophysics Data System (ADS)

    Deng, Qiansong; Yang, Weihong; Tang, Xiahui; Peng, Hao; Qin, Yingxiong

    2012-03-01

    In this paper, a laser cutting technology for the oil pipes with the thickness of 10mm, the diameter of 142mm and the material of N80 has been developed, in order to reduce the high hole-blast rate in processing. Experiments are taken on the Rofin DC025 slab CO2 laser cutting system and a set of flexible fixtures. The reasons of forming blast-hole have been analyzed, and the influences of technique parameters on blast-hole rate have been studied, such as laser power, pulse frequency, laser delay, focus position and oxygen pressure. The results show that the blast-hole rate can be controlled lower than 5% at the conditions of laser power 1500W, laser delay 5s, pulse frequency 180Hz, the oxygen pressure 0.6 kg/cm2, focus length 190mm, nozzle diameter 1.5mm.

  9. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    SciTech Connect

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium.more » In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.« less

  10. Review of Artificial Abrasion Test Methods for PV Module Technology

    SciTech Connect

    Miller, David C.; Muller, Matt T.; Simpson, Lin J.

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended tomore » provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.« less

  11. Accurate masking technology for high-resolution powder blasting

    NASA Astrophysics Data System (ADS)

    Pawlowski, Anne-Gabrielle; Sayah, Abdeljalil; Gijs, Martin A. M.

    2005-07-01

    We have combined eroding 10 µm diameter Al2O3 particles with a new masking technology to realize the smallest and most accurate possible structures by powder blasting. Our masking technology is based on the sequential combination of two polymers:(i) the brittle epoxy resin SU8 for its photosensitivity and (ii) the elastic and thermocurable poly-dimethylsiloxane for its large erosion resistance. We have micropatterned various types of structures with a minimum width of 20 µm for test structures with an aspect ratio of 1, and 50 µm for test structures with an aspect ratio of 2.

  12. Development of underwater cutting system by abrasive water-jet

    NASA Astrophysics Data System (ADS)

    Demura, Kenji; Yamaguchi, Hitoshi

    1993-09-01

    The technology to cut objects in the ocean's depths with abrasive water jets was examined for possible application in view of the greater water depths and sophistication involved in work on the ocean floor today. A test model was developed to study this technology's safety and practicability. The test model was designed for use at great water depths and has functions and a configuration that are unlike equipment used on land. A continuous, stable supply of abrasive is a distinctive design feature. In land applications, there had been problems with plugged tubes and an uneven supply. For this reason, the abrasive was converted to slurry form, and a continuous pressurized tube pump system was adopted for supply to the nozzle head. Also, a hydraulic motor that does not employ oil or electric power was used to provide an underwater drive that is environment-friendly. The report outlines the technology's general design concept including its distinctive functions and its configuration for use at great depths, and the report provides great detail on the equipment.

  13. The Environmental Assessment and Management (TEAM) Guide: North Carolina Supplement

    DTIC Science & Technology

    2010-03-01

    for Federal Regulations incorporated by reference. Definitions • Abrasive - any material used in abrasive blasting operations (15A NCAC 2D.0541...Added March 2001]. • Abrasive Blasting - the operation of cleaning or preparing a surface by forcibly propelling a stream of abrasive material against...the surface. Sandblasting is one form of abrasive blasting (15A NCAC 2D.0541) [Added March 2001]. • Abrasive Blasting Equipment - any equipment

  14. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    NASA Astrophysics Data System (ADS)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  15. Wear resistance and mechanisms of composite hardfacings at abrasive impact erosion wear

    NASA Astrophysics Data System (ADS)

    Surzhenkov, A.; Viljus, M.; Simson, T.; Tarbe, R.; Saarna, M.; Casesnoves, F.

    2017-05-01

    Tungsten carbide based hardmetal containing sprayed and melted composite hardfacings are prospective for protection against abrasive wear. For selection of abrasive wear resistant hardfacings under intensive impact wear conditions, both mechanical properties (hardness, fracture toughness, etc.) and abrasive wear conditions (type of abrasive, impact velocity, etc.) should be considered. This study focuses on the wear (wear rate and mechanisms) of thick metal-matrix composite hardfacings with hardmetal (WC-Co) reinforcement produced by powder metallurgy technology. The influence of the hardmetal reinforcement type on the wear resistance at different abrasive impact erosion wear (AIEW) conditions was studied. An optimal reinforcement for various wear conditions is described. Based on wear mechanism studies, a mathematical model for wear prediction was drafted.

  16. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  17. BLAST FURNACE CAST HOUSE EMISSION CONTROL TECHNOLOGY ASSESSMENT

    EPA Science Inventory

    The study describes the state-of-the-art of controlling fumes escaping from blast furnace cast houses. Background information is based on: a study of existing literature; visits to blast furnaces in the U.S., Japan, and Europe; meetings with an ad hoc group of experienced blast f...

  18. Dry ice blasting

    NASA Astrophysics Data System (ADS)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  19. Blasted copper slag as fine aggregate in Portland cement concrete.

    PubMed

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Abrasion of eroded and sound enamel by a dentifrice containing diamond abrasive particles

    PubMed

    Wegehaupt, Florian J.; Hoegger, Vanessa G. M.; Attin, Thomas

    2017-07-24

    Eroded enamel is more susceptible to abrasive wear than sound enamel. New toothpastes utilizing diamond particles as abrasives have been developed. The present study investigated the abrasive wear of eroded enamel by three commercially available toothpastes (one containing diamond particles) and compared it to the respective wear of sound enamel caused by these toothpastes. Seventy-two bovine enamel samples were randomly allocated to six groups (S1–S3 and E1–E3; n=12). Samples were submitted to an abrasive (S1–S3) or erosion plus abrasion (E1–E3) cycling. Per cycle, all samples were brushed (abrasion; 20 brushing stokes) with the following toothpastes: S1/E1: Signal WHITE SYSTEM, S2/E2: elmex KARIESSCHUTZ and S3-E3: Candida WHITE DIAMOND (diamond particles). Groups E1–E3 were additionally eroded with HCl (pH 3.0) for 2 min before each brushing procedure. After 30, 60 and 90 cycles enamel wear was measured by surface profilometry. Within the same toothpaste and same number of cycles, enamel wear due to erosion plus abrasion was significantly higher than due to mere abrasion. After 30, 60 and 90 cycles, no significant difference in the wear in groups S1 and S2 was observed while the wear in group E1 was significantly (p<0.05, ANOVA, Scheffecyc) lower than that in group E2. After 90 cycles, wear in group S3 was about 5 times higher than that in group S2, while wear in group E3 was about 1.3 times higher than that in group E2. As compared to the other two investigated toothpastes, the dentifrice containing diamond particles caused slightly higher abrasive wear of eroded enamel and distinctly higher wear of sound enamel compared to the conventional toothpastes under investigation.

  1. Robotic edge machining using elastic abrasive tool

    NASA Astrophysics Data System (ADS)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  2. Effect of grit-blasting on substrate roughness and coating adhesion

    NASA Astrophysics Data System (ADS)

    Varacalle, Dominic J.; Guillen, Donna Post; Deason, Douglas M.; Rhodaberger, William; Sampson, Elliott

    2006-09-01

    Statistically designed experiments were performed to compare the surface roughness produced by grit blasting A36/1020 steel using different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using the twin-wire electric are (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D 4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.

  3. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  4. Do Abrasives Play a Role in Toothpaste Efficacy against Erosion/Abrasion?

    PubMed

    Ganss, Carolina; Möllers, Maike; Schlueter, Nadine

    2017-01-01

    Abrasives may counteract the efficacy of anti-erosion toothpastes either due to physical effects or due to interaction with active agents. This study aimed to investigate whether the amount of abrasives is a determinant for the efficacy of Sn2+-containing toothpastes with or without chitosan additive. Enamel samples were eroded (0.50 wt% citric acid, pH 2.5; 6 × 2 min/day) on a shaking desk - 30/min in experiment 1 (E1) and 35/min in experiments 2 (E2) and 3 (E3) - and immersed in toothpaste slurries (2 × 2 min). Half of the samples were additionally brushed (15 s, load 200 g) within the immersion time. The toothpastes contained 0, 5, 10, 15, and 20% silica. In E1 and E2 the active ingredients were F- (700 ppm as amine fluoride, 700 ppm as NaF) and Sn2+ (3,500 ppm as SnCl2); in E3 chitosan (0.5%) was additionally added. The placebo contained 20% silica. Tissue loss was determined profilometrically. In E1, slurries completely inhibited tissue loss; distinct surface deposits occurred. With brushing, tissue loss significantly increased up to an abrasive content of 10%, but decreased significantly with higher amounts; 20% silica revealed similar values as the abrasive-free formulation. In E2, all slurries inhibited tissue loss distinctly irrespective of the amounts of abrasives. With brushing, a similar trend as in E1 was observed but with much less efficacy. The chitosan-containing formulations in E3 were much more effective; similar results as in E1 were found. In conclusion, the amount of abrasives had no effect when toothpastes were applied as slurries, but played an important role with brushing. © 2016 S. Karger AG, Basel.

  5. Blast Coating of Superelastic NiTi Wire with PTFE to Enhance Wear Properties

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Twomey, Barry; Hodgson, Darel; Stanton, Kenneth T.

    2015-03-01

    This work investigates the deposition of polytetrafluoroethylene (PTFE) onto a superelastic NiTi wire using an ambient temperature-coating technique known as CoBlast. The process utilises a stream of abrasive (Al2O3) and a coating medium (PTFE) sprayed simultaneously at the surface of the substrate. Superelastic NiTi wire is used in guidewire applications, and PTFE coatings are commonly applied to reduce damage to vessel walls during insertion and removal, and to aid in accurate positioning by minimising the force required to advance, retract or rotate the wire. The CoBlast coated wires were compared to wire treated with PTFE only. The coated samples were examined using variety of techniques: X-ray diffraction (XRD), microscopy, surface roughness, wear testing and flexural tests. The CoBlast coated samples had an adherent coating with a significant resistance to wear compared to the samples coated with PTFE only. The XRD revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of PTFE onto the surface of superelastic NiTi.

  6. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  7. Physics of loose abrasive microgrinding.

    PubMed

    Golini, D; Jacobs, S D

    1991-07-01

    This study examined the physics of loose abrasive microgrinding (grinding with micron and submicron sized abrasives). More specifically, it focused on the transition from brittle to ductile mode grinding which occurs in this region of abrasive sizes. Process dependency on slurry chemistry was the primary area of emphasis and was studied for diamond abrasives varying in size from 3.0 to 0.75 microm on both ULE and Zerodur, with emphasis on ULE. Ductile mode grinding was achieved with smaller abrasives, as expected, however two significant discoveries were made. The first observation was that by simply changing slurry chemistry, it was possible to induce the transition from brittle fracture to ductile mode grinding in ULE. This transition point could be intentionally moved about for diamonds 3.0-0.75 microm in diameter. For any given abrasive size within these limits, either brittle fracture or ductile removal may be achieved, depending on the slurry used to suspend the diamonds. Several slurries were studied, including water, a series of homologous n-alcohols, and other solvents chosen for properties varying from molecular size to dielectric constant and zeta potential. The study revealed that this slurry dependency is primarily a Rebinder effect. The second finding was that a tremendous amount of surface stress is introduced in loose abrasive ductile mode grinding. This stress was observed when the Twyman Effect in ULE plates increased by a factor of 4 in the transition from the brittle to the ductile mode. An assessment of the cause of this stress is discussed.

  8. Abrasion of acrylic veneers by simulated toothbrushing.

    PubMed

    Xu, H C; Söremark, R; Wiktorsson, G; Wang, T; Liu, W Y

    1984-12-01

    The abrasion responses were tested on four acrylic veneer materials, K + B Plus, K + B 75, Isosit, and Ivocron. The studies were performed in two independent research laboratories. Two different brushing machines were used with an abrasive slurry. The results were used for comparing the degree of abrasion for the resin materials. Three analytical methods of measuring the degree of abrasive wear were used: surface profile measurement, microscopic evaluation, and measurement of loss of volume. Isosit showed the best abrasion resistance of the four materials tested.

  9. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    PubMed Central

    Park, Dong-Sam; Yun, Dae-Jin; Cho, Myeong-Woo; Shin, Bong-Cheol

    2007-01-01

    This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7×1.7×0.6mm for the vibrating mass, and 2.9×0.7×0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 μm in minimum to 20 μm in maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.

  10. Theoretical study on removal rate and surface roughness in grinding a RB-SiC mirror with a fixed abrasive.

    PubMed

    Wang, Xu; Zhang, Xuejun

    2009-02-10

    This paper is based on a microinteraction principle of fabricating a RB-SiC material with a fixed abrasive. The influence of the depth formed on a RB-SiC workpiece by a diamond abrasive on the material removal rate and the surface roughness of an optical component are quantitatively discussed. A mathematical model of the material removal rate and the simulation results of the surface roughness are achieved. In spite of some small difference between the experimental results and the theoretical anticipation, which is predictable, the actual removal rate matches the theoretical prediction very well. The fixed abrasive technology's characteristic of easy prediction is of great significance in the optical fabrication industry, so this brand-new fixed abrasive technology has wide application possibilities.

  11. An epidemiologic approach to toothbrushing and dental abrasion.

    PubMed

    Bergström, J; Lavstedt, S

    1979-02-01

    Abrasion lesions were recorded in 818 individuals representing the adult population of 430,000 residents of the Stockholm region, Sweden. The subjects were asked about toothbrushing habits, toothbrush quality and dentifrice usage; these factors were related to abrasion criteria. Abrasion was prevalent in 30% and wedge-like or deep depressions were observed in 12%. The relationship between abrasion and toothbrushing was evident, the prevalence and severity of abrasion being correlated to toothbrushing consumption. The importance of the toothbrushing technique for the development of abrasion lesions was elucidated. Horizontal brushing technique was strongly correlated to abrasion. It was demonstrated by treating the data with the statistical AID analysis that toothbrushing factors related to the individual (brushing frequency and brushing technique) exert a greater influence than material-oriented toothbrushing factor such as dentifrice abrasivity and bristle stiffness.

  12. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  13. Study on design of light-weight super-abrasive wheel

    NASA Astrophysics Data System (ADS)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  14. A study on practical use of underwater abrasive water jet cutting

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hitoshi; Demura, Kenji

    1993-09-01

    The practicality of underwater abrasive water jet cutting technology was studied in experiments. A study of abrasives in slurried form showed that optimum polymer concentration can be selected to suit underwater conditions. For the long-distance transport of slurry from the ocean surface to the ocean floor, a direct supply system by hose proved to be practical. This system takes advantage of the insolubility of the slurry in water due to a difference in specific gravity. For cutting thick steel plate at great ocean depths, a simulation with a pressurized container revealed the requirements for actual cutting. Confirmation of remote cutting operations will become the most important technology in field applications. Underwater sound vibration characteristics were found to change significantly in direct response to modifications in cutting conditions. This will be important basic data to develop an effective sensoring method.

  15. Simulation of crack propagation in rock in plasma blasting technology

    NASA Astrophysics Data System (ADS)

    Ikkurthi, V. R.; Tahiliani, K.; Chaturvedi, S.

    Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time τ , we have determined the P- τ curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures Ppeak. We have determined the E- Ppeak curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal Ppeak that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.

  16. Corneal Abrasions

    MedlinePlus

    ... the doctor looks at the eye under a light that is filtered cobalt blue. The fluorescein causes the abrasion to glow bright green under the light. The doctor also might do a standard ophthalmic ...

  17. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  18. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  19. Color changing photonic crystals detect blast exposure

    PubMed Central

    Cullen, D. Kacy; Xu, Yongan; Reneer, Dexter V.; Browne, Kevin D.; Geddes, James W.; Yang, Shu; Smith, Douglas H.

    2010-01-01

    Blast-induced traumatic brain injury (bTBI) is the “signature wound” of the current wars in Iraq and Afghanistan. However, with no objective information of relative blast exposure, warfighters with bTBI may not receive appropriate medical care and are at risk of being returned to the battlefield. Accordingly, we have created a colorimetric blast injury dosimeter (BID) that exploits material failure of photonic crystals to detect blast exposure. Appearing like a colored sticker, the BID is fabricated in photosensitive polymers via multi-beam interference lithography. Although very stable in the presence of heat, cold or physical impact, sculpted micro- and nano-structures of the BID are physically altered in a precise manner by blast exposure, resulting in color changes that correspond with blast intensity. This approach offers a lightweight, power-free sensor that can be readily interpreted by the naked eye. Importantly, with future refinement this technology may be deployed to identify soldiers exposed to blast at levels suggested to be supra-threshold for non-impact blast-induced mild TBI. PMID:21040795

  20. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  1. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  2. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage

    PubMed Central

    Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.

    2012-01-01

    We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073

  3. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  4. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  5. Characterization of fine abrasive particles for optical fabrication

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Zhou, Y. Y.; Takahashi, Toshio; Quesnel, David J.; Lambropoulos, John C.

    1995-08-01

    Material removal during fine grinding operations is accomplished primarily by the action of individual abrasive particles on the glass surface. The mechanical properties of the abrasive are therefore important. Unfortunately it is difficult to directly measure the mechanical response of abrasives once they reach the scale of approximately 10 microns. As a result mechanical properties of fine abrasives are sometimes characterized in terms of an empirical `friability', based on the response of the abrasive to crushing by a metal ball in a vial. In this paper we report on modeling/experiments designed to more precisely quantify the mechanical properties of fine abrasives and ultimately to relate them to the conditions experienced by bound particles during grinding. Experiments have been performed on various types and sizes of diamond abrasives. The response of the particles is a strong function of the loading conditions and can be tracked by changing the testing parameters. Diamond size is also found to play a critical role, with finer diamonds less susceptible to fracture. A micromechanical model from the literature is employed estimate the forces likely to be seen during testing. We are also developing dynamic models to better predict the forces experienced during `friability' testing as a function of the testing parameters.

  6. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    NASA Astrophysics Data System (ADS)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  7. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  8. Monitoring and Testing the Parts Cleaning Stations, Abrasive Blasting Cabinets, and Paint Booths

    NASA Technical Reports Server (NTRS)

    Jordan, Tracee M.

    2004-01-01

    I have the opportunity to work in the Environmental Management Office (EMO) this summer. One of the EMO's tasks is to make sure the Environmental Management System is implemented to the entire Glenn Research Center (GRC). The Environmental Management System (EMS) is a policy or plan that is oriented toward minimizing an organization's impact to the environment. Our EMS includes the reduction of solid waste regeneration and the reduction of hazardous material use, waste, and pollution. With the Waste Management Team's (WMT) help, the EMS can be implemented throughout the NASA Glenn Research Center. The WMT is responsible for the disposal and managing of waste throughout the GRC. They are also responsible for the management of all chemical waste in the facility. My responsibility is to support the waste management team by performing an inventory on parts cleaning stations, abrasive cabinets, and paint booths through out the entire facility. These booths/stations are used throughout the center and they need to be monitored and tested for hazardous waste and material. My job is to visit each of these booths/stations, take samples of the waste, and analyze the samples.

  9. Mars rover rock abrasion tool performance enhanced by ultrasonic technology.

    NASA Astrophysics Data System (ADS)

    Macartney, A.; Li, X.; Harkness, P.

    2016-12-01

    The Mars exploration Athena science goal is to explore areas where water may have been present on the early surface of Mars, and investigate the palaeo-environmental conditions of these areas in relation to the existence of life. The Rock Abrasion Tool (RAT) designed by Honeybee Robotics has been one of four key Athena science payload instruments mounted on the mechanical arm of the Spirit, Opportunity and Curiosity Mars Exploration Rovers. Exposed rock surfaces weather and chemically alter over time. Although such weathered rock can present geological interest in itself, there is a limit to what can be learned. If the geological history of a landing site is to be constructed, then it is important to analyse the unweathered rock interior as clearly as possible. The rock abrasion tool's role is to substitute for a geologist's hammer, removing the weathered and chemically altered outer surface of rocks in order to view the pristine interior. The RAT uses a diamond resin standard common grinding technique, producing a 5mm depth grind with a relatively high surface roughness, achieved over a number of hours per grind and consumes approximately 11 watts of energy. This study assesses the benefits of using ultrasonic assisted grinding to improve surface smoothness. A prototype Micro-Optic UltraSonic Exfoliator (MOUSE) is tested on a range of rock types and demonstrates a number of advantages over the RAT. In addition to a smoother grind finish, these advantages include a lower rate of tool tip wear when using a tungsten carbide tip as opposed to diamond resin, less moving parts, a grind speed of minutes instead of hours, and a power consumption of only 1-5 Watts.

  10. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  11. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    PubMed

    Sharma, Parichit; Mantri, Shrikant S

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design

  12. WImpiBLAST: Web Interface for mpiBLAST to Help Biologists Perform Large-Scale Annotation Using High Performance Computing

    PubMed Central

    Sharma, Parichit; Mantri, Shrikant S.

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design

  13. Blasting preparation for selective mining of complex structured ore deposition

    NASA Astrophysics Data System (ADS)

    Marinin, M. A.; Dolzhikov, V. V.

    2017-10-01

    Technological features of ore mining in the open pit development for processing of complex structured ore deposit of steeply falling occurrence have been considered. The technological schemes of ore bodies mining under different conditions of occurrence, consistency and capacity have been considered and offered in the paper. These technologies permit to reduce losses and dilution, but to increase the completeness and quality of mined ore. A method of subsequent selective excavation of ore bodies has been proposed. The method is based on the complex use of buffer-blasting technology for the muck mass and the principle of trim blasting at ore-rock junctions.

  14. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  15. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  16. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  17. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  18. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  19. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions.

  20. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  1. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  2. Field evidence of two-phase abrasion process

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Szabo, T.; Jerolmack, D. J.; Domokos, G.

    2013-12-01

    The rounded shape of river rocks is clear evidence that abrasion due to bed load transport is a significant agent for mass loss. Its contribution to downstream fining, however, is typically assumed to be negligible - as diminution trends may be explained solely by size-selective transport. A recent theory has predicted that pebble abrasion occurs in two well separated phases: in Phase 1, an intially-polyhedral pebble rounds to the shape of an inscribed ellipsoid without any change in axis dimensions; in Phase II, axis dimensions are slowly reduced. Importantly, Phase I abrasion means that an initially-blocky pebble may lose up to half its mass without any apparent change in 'size', which is only measured as the length of a single pebble axis by most field researchers. We hypothesize that field studies have significantly underestimated the importance of abrasion because they do not quantify pebble shape, and we set out to demonstrate that two-phase abrasion occurs in a natural stream. Our study examines downstream trends in pebble size and shape along a 10-km stretch of the Rio Mameyes within the Luquillo Critical Zone observatory, where volcaniclastic cobbles and boulders are transported by bed load at slopes up to 10%. The upper reaches of the stream consist of alluviated bedrock valleys that preclude sediment storage and thus minimize size-selective transport, which allows us to isolate the effects of abrasion. The lower 5 km is an alluvial river in which size-selective transport becomes operative. We quantified the shape and size of thousands of pebbles along the profile using hand and image-based techniques. The data provide the first field validation of two-phase abrasion; in the bedrock reaches, pebbles clearly evolve toward ellipsoids without any significant change in axis dimensions (rounding), while in the lower reaches pebbles slowly reduce their axis dimensions with little or no change in roundness. Results also show that shape metrics determined from

  3. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  4. Casing window milling with abrasive fluid jet

    SciTech Connect

    Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.

    1995-12-31

    Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less

  5. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  6. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  7. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  8. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  9. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  10. CrocoBLAST: Running BLAST efficiently in the age of next-generation sequencing.

    PubMed

    Tristão Ramos, Ravi José; de Azevedo Martins, Allan Cézar; da Silva Delgado, Gabrielle; Ionescu, Crina-Maria; Ürményi, Turán Peter; Silva, Rosane; Koca, Jaroslav

    2017-11-15

    CrocoBLAST is a tool for dramatically speeding up BLAST+ execution on any computer. Alignments that would take days or weeks with NCBI BLAST+ can be run overnight with CrocoBLAST. Additionally, CrocoBLAST provides features critical for NGS data analysis, including: results identical to those of BLAST+; compatibility with any BLAST+ version; real-time information regarding calculation progress and remaining run time; access to partial alignment results; queueing, pausing, and resuming BLAST+ calculations without information loss. CrocoBLAST is freely available online, with ample documentation (webchem.ncbr.muni.cz/Platform/App/CrocoBLAST). No installation or user registration is required. CrocoBLAST is implemented in C, while the graphical user interface is implemented in Java. CrocoBLAST is supported under Linux and Windows, and can be run under Mac OS X in a Linux virtual machine. jkoca@ceitec.cz. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. Study of Abrasive Wear Volume Map for PTFE and PTFE Composites

    NASA Astrophysics Data System (ADS)

    Unal, H.; Sen, U.; Mimaroglu, A.

    2007-11-01

    The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.

  12. Potential Alternatives Report for Validation of Alternative Low-Emission Surface PreparationlDepainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2006-01-01

    For this project, particulates and solvents used during the depainting process of steel structures were the identified hazardous material (HazMat) targeted for elimination or reduction. This Potential Alternatives Report (PAR) provides technical analyses of identified alternatives to the current coating removal processes, criteria used to select alternatives for further analysis, and a list of those alternatives recommended for testing. The initial coating removal alternatives list was compiled using literature searches and center participant recommendations. The involved project participants initially considered fifteen (15) alternatives. In late 2004, stakeholders down-selected the list and identified specific processes as potential alternatives to the current depainting methods. The selected alternatives were: 1. Plastic Blast Media 2. Hard Abrasive Media 3. Sponge Blast Media 4. Mechanical Removal with Vacuum Attachment 5. Liquid Nitrogen 6. Laser Coating Removal Available information about these processes was used to analyze the technical merits and the potential environmental, safety, and occupational health (ESOH) impacts of these methods. A preliminary cost benefit analysis will be performed to determine if implementation of alternative technologies is economically justified. NASA AP2

  13. Investigation into the mechanisms of closed three-body abrasive wear

    NASA Astrophysics Data System (ADS)

    Dwyer-Joyce, R. S.; Sayles, R. S.; Ioannides, E.

    1994-06-01

    Contacting components frequently fail by abrasion caused by solid contaminants in the lubricant. This process can be classified as a closed three-body abrasive wear process. The mechanisms by which trapped particles cause material removal are not fully understood. This paper describes tests using model elastohydrodynamic contacts to study these mechanisms. An optical elastohydrodynamic lubrication rig has been used to study the deformation and fracture of ductile and brittle lubricant-borne debris. A ball-on-disk machine was used to study the behavior of the particles in partially sliding contacts. Small diamond particles were used as abrasives since these were thought not to break down in the contact; wear could then be directly related to particles of a known size. The particles were found to embed in the softer surface and to scratch the harder. The mass of material worn from the ball surface was approximately proportional to the particle sliding distance and abrasive concentration. Small particles tumbled through the contact, while larger particles ploughed. Mass loss was found to increase with abrasive particle size. Individual abrasion scratches have been measured and related to the abrading particle. A simple model of the abrasive process has been developed and compared with experimental data. The discrepancies are thought to be the result of the uncertainty about the entrainment of particles into the contact.

  14. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  15. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  16. Abrasive wear of ceramic wear protection at ambient and high temperatures

    NASA Astrophysics Data System (ADS)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  17. Interaction between attrition,abrasion and erosion in tooth wear.

    PubMed

    Addy, M; Shellis, R P

    2006-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence seems insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear through formation of pellicle and by remineralisation but cannot prevent it.

  18. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  19. Paint removal using wheat starch blast media

    NASA Astrophysics Data System (ADS)

    Foster, Terry; Oestreich, John

    1993-03-01

    A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.

  20. Modeling of Micro Deval abrasion loss based on some rock properties

    NASA Astrophysics Data System (ADS)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  1. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    PubMed

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  2. The effect of grinding and/or airborne-particle abrasion on the bond strength between zirconia and veneering porcelain: a systematic review

    PubMed Central

    Lundberg, Karin; Wu, Lindsey; Papia, Evaggelia

    2017-01-01

    Abstract Objective: The aim of the study was to make an inventory of current literature on the bond strength between zirconia and veneering porcelain after surface treatment of zirconia by grinding with diamond bur and/or with airborne-particle abrasion. Material and methods: The literature search for the present review was made following recommended guidelines using acknowledged methodology on how to do a systematic review. The electronic databases PubMed, Cochrane Library, and Science Direct were used in the present study. Results: Twelve studies were selected. Test methods used in the original studies included shear bond strength (SBS) test, tensile bond strength test, and micro-tensile bond strength test. The majority of studies used SBS. Results showed a large variation within each surface treatment of zirconia, using different grain size, blasting time, and pressure. Conclusions: Airborne-particle abrasion might improve the bond strength and can therefore be considered a feasible surface treatment for zirconia that is to be bonded. Grinding has been recommended as a surface treatment for zirconia to improve the bond strength; however, this recommendation cannot be verified. A standardized test method and surface treatment are required to be able to compare the results from different studies and draw further conclusions. PMID:28642927

  3. 40 CFR 63.11516 - What are my standards and management practices?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... feet (2.4 meters) in any one dimension. If you own or operate a new or existing dry abrasive blasting... than 8 feet (2.4 meters) in any one dimension, you may implement management practices to minimize... practices for dry abrasive blasting of objects greater than 8 feet (2.4 meters) in any one dimension are...

  4. 40 CFR 63.11516 - What are my standards and management practices?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... feet (2.4 meters) in any one dimension. If you own or operate a new or existing dry abrasive blasting... than 8 feet (2.4 meters) in any one dimension, you may implement management practices to minimize... practices for dry abrasive blasting of objects greater than 8 feet (2.4 meters) in any one dimension are...

  5. 40 CFR 63.11516 - What are my standards and management practices?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... feet (2.4 meters) in any one dimension. If you own or operate a new or existing dry abrasive blasting... than 8 feet (2.4 meters) in any one dimension, you may implement management practices to minimize... practices for dry abrasive blasting of objects greater than 8 feet (2.4 meters) in any one dimension are...

  6. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has beenmore » developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.« less

  7. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  8. Degradation of the Crystalline Structure of ZnS Ceramics under Abrasive Damage

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Dunaev, A. A.; Chmel, A. E.

    2018-04-01

    Stability of optical elements based on ZnS ceramics to dust and rain erosion is usually estimated from the loss of material mass in a directional flow of solid particles or atmospheric precipitates. In this case, the mechanism of degradation and fracture of the surface layer of an optical element is not considered. The photoluminescence (PL) method was used for investigating the crystal lattice response to the abrasive action and the formation of cleavage in ZnS ceramics, which differ in manufacturing technology and, accordingly, in the grain size by two orders of magnitude. It is shown that during abrasive treatment of samples, their spectra exhibit changes typical of degradation of the crystal lattice of material grains. The PL spectra of cleavage surfaces reveal almost complete degradation of the structure of crystallite grains with a size from 1-2 to 100-200 μm.

  9. Mars Pathfinder: The Wheel Abrasion Experiment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Wheel Abrasion Experiment (WAE) will measure the amount of wear on wheel surfaces of the Mars Pathfinder rover. WAE uses thin films of Al, Ni, and Pt (ranging in thickness from 200 to 1000 angstroms) deposited on black, anodized Al strips attached to the rover wheel. As the wheel moves across the martian surface, changes in film reflectivity will be monitored by reflected sunlight. These changes, measured as output from a special photodetector mounted on the rover chassis, will be due to abrasion of the metal films by martian surface sand, dust, and clay.

  10. Alkahest NuclearBLAST : a user-friendly BLAST management and analysis system

    PubMed Central

    Diener, Stephen E; Houfek, Thomas D; Kalat, Sam E; Windham, DE; Burke, Mark; Opperman, Charles; Dean, Ralph A

    2005-01-01

    Background - Sequencing of EST and BAC end datasets is no longer limited to large research groups. Drops in per-base pricing have made high throughput sequencing accessible to individual investigators. However, there are few options available which provide a free and user-friendly solution to the BLAST result storage and data mining needs of biologists. Results - Here we describe NuclearBLAST, a batch BLAST analysis, storage and management system designed for the biologist. It is a wrapper for NCBI BLAST which provides a user-friendly web interface which includes a request wizard and the ability to view and mine the results. All BLAST results are stored in a MySQL database which allows for more advanced data-mining through supplied command-line utilities or direct database access. NuclearBLAST can be installed on a single machine or clustered amongst a number of machines to improve analysis throughput. NuclearBLAST provides a platform which eases data-mining of multiple BLAST results. With the supplied scripts, the program can export data into a spreadsheet-friendly format, automatically assign Gene Ontology terms to sequences and provide bi-directional best hits between two datasets. Users with SQL experience can use the database to ask even more complex questions and extract any subset of data they require. Conclusion - This tool provides a user-friendly interface for requesting, viewing and mining of BLAST results which makes the management and data-mining of large sets of BLAST analyses tractable to biologists. PMID:15958161

  11. miBLAST: scalable evaluation of a batch of nucleotide sequence queries with BLAST

    PubMed Central

    Kim, You Jung; Boyd, Andrew; Athey, Brian D.; Patel, Jignesh M.

    2005-01-01

    A common task in many modern bioinformatics applications is to match a set of nucleotide query sequences against a large sequence dataset. Exis-ting tools, such as BLAST, are designed to evaluate a single query at a time and can be unacceptably slow when the number of sequences in the query set is large. In this paper, we present a new algorithm, called miBLAST, that evaluates such batch workloads efficiently. At the core, miBLAST employs a q-gram filtering and an index join for efficiently detecting similarity between the query sequences and database sequences. This set-oriented technique, which indexes both the query and the database sets, results in substantial performance improvements over existing methods. Our results show that miBLAST is significantly faster than BLAST in many cases. For example, miBLAST aligned 247 965 oligonucleotide sequences in the Affymetrix probe set against the Human UniGene in 1.26 days, compared with 27.27 days with BLAST (an improvement by a factor of 22). The relative performance of miBLAST increases for larger word sizes; however, it decreases for longer queries. miBLAST employs the familiar BLAST statistical model and output format, guaranteeing the same accuracy as BLAST and facilitating a seamless transition for existing BLAST users. PMID:16061938

  12. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy.

    Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.

  13. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    NASA Astrophysics Data System (ADS)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  14. The slope and incision length of affected local cross abrasion and accretion using ASTER GDEM image analysis

    NASA Astrophysics Data System (ADS)

    Anugrahadi, A.

    2018-01-01

    Remote sensing technology is to support the identification and assessment of resources and disasters in coastal areas and oceans, because it has the advantage of covering large areas and the highest of the spatial and temporal resolution. Aster GDEM image is used to determine the slope and the length of cross the incision on exposed area abrasion and accretion. Western coastal of Banten Province has experienced abrasion with the furthest distance of 125.05 m to 274.73 m. and experienced accretion with the furthest distance of 31.65 m to 111, 58 m. ASTER GDEM results of image analysis in areas of abrasion has a slope about 1.4° to 3.3° and cross the incision length is approximately 350.52 meters to 506.57 meters. At the accretion region has a slope about 2.0° to 3.1° and cross the incision length about 306.62 m to 562.05 m.

  15. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  16. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  17. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  18. Demonstration Of A Nanomaterial-Modified Primer For Use In Corrosion-Inhibiting Coating Systems

    DTIC Science & Technology

    2011-11-01

    abrasive blasting or other means. This report documents the materials and methodologies used for testing and application of the new coating systems on the...method with improved corrosion resistant coatings will provide the DoD with a means to cost effectively rehabilitate the outer metal surfaces of...contained with environmental controls in place. ........................................ 9 Figure 6. Abrasive blast-cleaned tank surface

  19. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  20. Evaluation of Vacuum Blasting and Heat Guns as Methods for Abating Lead- Based Paint on Buildings

    DTIC Science & Technology

    1993-09-01

    INCOMPATIBILITY - Contact with powerful oxidizing agents such as FLUORINE, CHLORINE TRIFLUORIDE , MANGANESE TRIOXIDE, OXYGEN DIFLUORIDE, MANGANESE...investigating new technologies for lead-based paint abatement. This research evaluates the effectiveness , safety, LEC1L•.T• and cost of vacuum abrasive...paint abatement. This research evaluates the effectiveness , safety, and cost of vacuum abrasive units and heat guns as methods of removing lead-based

  1. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  2. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    NASA Astrophysics Data System (ADS)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  3. Optical-model abrasion cross sections for high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1981-01-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  4. Modification of surface morphology of Ti6Al4V alloy manufactured by Laser Sintering

    NASA Astrophysics Data System (ADS)

    Draganovská, Dagmar; Ižariková, Gabriela; Guzanová, Anna; Brezinová, Janette; Koncz, Juraj

    2016-06-01

    The paper deals with the evaluation of relation between roughness parameters of Ti6Al4V alloy produced by DMLS and modified by abrasive blasting. There were two types of blasting abrasives that were used - white corundum and Zirblast at three levels of air pressure. The effect of pressure on the value of individual roughness parameters and an influence of blasting media on the parameters for samples blasted by white corundum and Zirblast were evaluated by ANOVA. Based on the measured values, the correlation matrix was set and the standard of correlation statistic importance between the monitored parameters was determined from it. The correlation coefficient was also set.

  5. Current advance methods for the identification of blast resistance genes in rice.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Latif, Mohammad A

    2015-05-01

    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    NASA Astrophysics Data System (ADS)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  7. Abrasion Plus Local Fibrin Sealant Instillation Produces Pleurodesis Similar to Pleurectomy in Rabbits.

    PubMed

    Marchi, Evaldo; de Carvalho, Marcus V H; Ventureli, Tiago R; Fruchi, Andre J; Lazaro, Ariane; do Carmo, Deborah C; Barreto, Thayssa Y A S; Dias, Bruno V B; Acencio, Milena M P; Teixeira, Lisete R; Light, Richard W

    2016-09-01

    Pleurodesis performed either by pleurectomy or pleural abrasion is recommended in the approach to primary spontaneous pneumothorax to avoid recurrence. However, the efficacy of parietal pleural abrasion in producing pleurodesis is questioned. This study aims to determine the efficacy of apical abrasion alone, abrasion plus fibrin sealant application, and pleurectomy in producing pleurodesis in rabbits. Rabbits were subjected to video-assisted thoracic surgery alone (control) or to video-assisted thoracic surgery with apical gauze abrasion, abrasion plus fibrin sealant instillation, or apical pleurectomy. Blood samples were collected preoperatively and 48 h and 28 days postoperatively to measure total leukocytes (white blood cell count), neutrophil counts, and serum interleukin (IL)-8 levels. After 28 days the animals were sacrificed for macroscopic evaluation of the degree of apical pleurodesis and microscopic evaluation of local pleural fibrosis and collagen deposition. White blood cell and neutrophil counts were similar in all groups, whereas the serum IL-8 level peaked at 48 h in all groups and decreased after 28 days, except in the pleurectomy group. After 28 days the abrasion plus fibrin sealant and pleurectomy groups had significantly more pleural adhesions, pleural fibrosis, and collagen deposition than the abrasion alone group, mainly due to thick mature fibers. Abrasion with local fibrin sealant instillation is as effective as pleurectomy in producing pleurodesis in rabbits. Apical pleurectomy elicits a more persistent elevation of serum IL-8 levels than apical abrasion alone or abrasion plus fibrin adhesive instillation. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  8. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique.

    PubMed

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-03-15

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.

  9. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique

    PubMed Central

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-01-01

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system’s lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system’s ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection. PMID:29543733

  10. Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits.

    PubMed

    Baumfeld, Daniel; Raduan, Fernando C; Macedo, Benjamim; Silva, Thiago Alexandre Alves; Baumfeld, Tiago; Favato, Danilo Fabrino; de Andrade, Marco Antonio Percope; Nery, Caio

    2015-11-19

    Excessive shoe heel abrasion is of concern to patients and shoe manufacturers, but little scientific information is available about this feature and its possible causes. The purpose of this study was to relate this phenomenon with biomechanical factors that could predispose to shoe heel abrasion. Ninety-seven recruits (median age 25) were enrolled in this study. Shoe abrasion was assessed manually with a metric plastic tape on the posterior part of the heel that comes in contact with the ground. The number of sprains, foot alignment, and calf muscle shortening (Silfverskiold test) was also assessed in order to relate it with shoe heel abrasion. After using our exclusion criteria, 86 recruits and 172 were considered for this study. The most common abrasion site was the lateral portion of the heel surface (50 %). Forty-four percent of the participants had neutral hind-foot alignment and 39 % had valgus alignment. Twenty-six (30 %) patients have had previous ankle or foot sprains. Neutral foot was related with less calf muscle shortening. On the other hand, valgus hind-foot alignment was more associated with Achilles shortening (p < 0.05). Patients with neutral alignment were associated with more uniform shoe heel abrasion and varus feet were associated with more central and lateral abrasion (p < 0.05). The pattern of shoe heel abrasion was not statistically related with calf muscle shortening nor with number of sprains. This study was able to correlate shoe heel abrasion with biomechanical causes (neutral alignment-uniform abrasion/varus alignment-central and lateral abrasion). More effort has to be done to continue evaluating outsole abrasion with its possible biomechanical cause in order to predict and treat possible associated injuries.

  11. [Brushing abrasion of the enamel surface after erosion].

    PubMed

    Lipei, Chen; Xiangke, Ci; Xiaoyan, Ou

    2017-08-01

    Objective A study was conducted to compare the effect of different enamel remineralization periods after erosion on the depth of brushing abrasion. Methods Ten volunteers were selected for a 4-day experiment. A total of 60 enamels were randomly assigned into six groups (A-F) and placed in intraoral palatal devices. On the first day, the palatal devices were placed in oral cavity (24 h) . On the following three days, brushing experiments were performed extraorally, two times per day. The specific experimental method of brushing follows these next steps. First, the group F specimens were covered with a film of wax, and then acid etched for 2 min. Subsequently, the film of wax was detached. The groups from A to D were brushed after remineralization at the following time intervals: group A, 0 min; group B, 20 min; group C, 40 min; group D, 60 min. Erosion and remineralization were performed on group E, but without brushing. Remineralization was performed on group F, but without acid etching and brushing. The depth of enamel abrasion was determined by a mechanical profilometer. The surface morphology of the enamel blocks was observed using a scanning electron microscope. Results 1) The depth of abrasion was different in varied enamel remineralization time after acid etching. The statistical significant differences between groups were as follows. 2) When the time of enamel remineralization after acid etching was short, the surface depression in the electron microscope was deep, and the surface morphology was rough. Conclusion Brushing immediately after acid etching would cause much serious abrasion to the enamel surface. Brushing after 60 min can effectively reduce the abrasion of acid etching enamel.

  12. Blast injury research models

    PubMed Central

    Kirkman, E.; Watts, S.; Cooper, G.

    2011-01-01

    Blast injuries are an increasing problem in both military and civilian practice. Primary blast injury to the lungs (blast lung) is found in a clinically significant proportion of casualties from explosions even in an open environment, and in a high proportion of severely injured casualties following explosions in confined spaces. Blast casualties also commonly suffer secondary and tertiary blast injuries resulting in significant blood loss. The presence of hypoxaemia owing to blast lung complicates the process of fluid resuscitation. Consequently, prolonged hypotensive resuscitation was found to be incompatible with survival after combined blast lung and haemorrhage. This article describes studies addressing new forward resuscitation strategies involving a hybrid blood pressure profile (initially hypotensive followed later by normotensive resuscitation) and the use of supplemental oxygen to increase survival and reduce physiological deterioration during prolonged resuscitation. Surprisingly, hypertonic saline dextran was found to be inferior to normal saline after combined blast injury and haemorrhage. New strategies have therefore been developed to address the needs of blast-injured casualties and are likely to be particularly useful under circumstances of enforced delayed evacuation to surgical care. PMID:21149352

  13. Evaluation of abrasion resistance of pipe and pipe lining materials.

    DOT National Transportation Integrated Search

    2007-09-01

    This project summarizes an evaluation of pipe material resistance to abrasion over a 5-year period (2001-2006) at a site known to be abrasive. : The key focus of the project was to gather more information to compare against existing guidance to desig...

  14. The interactions between attrition, abrasion and erosion in tooth wear.

    PubMed

    Shellis, R Peter; Addy, Martin

    2014-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.

  15. Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

    PubMed Central

    Goldstein, Lee E.; Fisher, Andrew M.; Tagge, Chad A.; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A.; Upreti, Chirag; Kracht, Jonathan M.; Ericsson, Maria; Wojnarowicz, Mark W.; Goletiani, Cezar J.; Maglakelidze, Giorgi M.; Casey, Noel; Moncaster, Juliet A.; Minaeva, Olga; Moir, Robert D.; Nowinski, Christopher J.; Stern, Robert A.; Cantu, Robert C.; Geiling, James; Blusztajn, Jan K.; Wolozin, Benjamin L.; Ikezu, Tsuneya; Stein, Thor D.; Budson, Andrew E.; Kowall, Neil W.; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F.; Moss, William C.; Cleveland, Robin O.; Tanzi, Rudolph E.; Stanton, Patric K.; McKee, Ann C.

    2013-01-01

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173

  16. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model.

    PubMed

    Goldstein, Lee E; Fisher, Andrew M; Tagge, Chad A; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A; Upreti, Chirag; Kracht, Jonathan M; Ericsson, Maria; Wojnarowicz, Mark W; Goletiani, Cezar J; Maglakelidze, Giorgi M; Casey, Noel; Moncaster, Juliet A; Minaeva, Olga; Moir, Robert D; Nowinski, Christopher J; Stern, Robert A; Cantu, Robert C; Geiling, James; Blusztajn, Jan K; Wolozin, Benjamin L; Ikezu, Tsuneya; Stein, Thor D; Budson, Andrew E; Kowall, Neil W; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F; Moss, William C; Cleveland, Robin O; Tanzi, Rudolph E; Stanton, Patric K; McKee, Ann C

    2012-05-16

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein-linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.

  17. Pleurectomy versus pleural abrasion for primary spontaneous pneumothorax in children.

    PubMed

    Joharifard, Shahrzad; Coakley, Brian A; Butterworth, Sonia A

    2017-05-01

    Primary spontaneous pneumothorax (PSP) represents a common indication for urgent surgical intervention in children. First episodes are often managed with thoracostomy tube, whereas recurrent episodes typically prompt surgery involving apical bleb resection and pleurodesis, either via pleurectomy or pleural abrasion. The purpose of this study was to assess whether pleurectomy or pleural abrasion was associated with lower postoperative recurrence. The records of patients undergoing surgery for PSP between February 2005 and December 2015 were retrospectively reviewed. Recurrence was defined as an ipsilateral pneumothorax requiring surgical intervention. Bivariate logistic regressions were used to identify factors associated with recurrence. Fifty-two patients underwent 64 index operations for PSP (12 patients had surgery for contralateral pneumothorax, and each instance was analyzed separately). The mean age was 15.7±1.2years, and 79.7% (n=51) of patients were male. In addition to apical wedge resection, 53.1% (n=34) of patients underwent pleurectomy, 39.1% (n=25) underwent pleural abrasion, and 7.8% (n=5) had no pleural treatment. The overall recurrence rate was 23.4% (n=15). Recurrence was significantly lower in patients who underwent pleurectomy rather than pleural abrasion (8.8% vs. 40%, p<0.01). In patients who underwent pleural abrasion without pleurectomy, the relative risk of recurrence was 2.36 [1.41-3.92, p<0.01]. Recurrence of PSP is significantly reduced in patients undergoing pleurectomy compared to pleural abrasion. Level III, retrospective comparative therapeutic study. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    SciTech Connect

    Resnick, A.M.

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled.

  19. Experimental and Numerical Investigations into Polymeric Coatings for Blast Protection

    DTIC Science & Technology

    2011-09-01

    the effect of applying polyurea coatings made by Defence Science and Technology Organisation (DSTO) to the back face of D36 and X80 steel plates under...blast loading. It was found that the plates coated with polyurea deformed less than uncoated plates when subjected to the same blast loading...three commercially available products that are currently on the market in Australia. Two of the coatings were polyurea /polyurethane blends and the

  20. Molecular Signatures and Diagnostic Biomarkers of Cumulative, Blast-Graded Mild TBI

    DTIC Science & Technology

    2013-10-01

    Kirk, Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, Melbourne FL 32901 January 3 rd , 2013 2. Prima V...induced Neurotrauma “Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite...inflammation biomarkers such as L-selectin and s-ICAM involved in molecular mechanisms of blast-induced injury. The FIT prototype sensor (version 1) to

  1. Study of Dominant Factors Affecting Cerchar Abrasivity Index

    NASA Astrophysics Data System (ADS)

    Rostami, Jamal; Ghasemi, Amireza; Alavi Gharahbagh, Ehsan; Dogruoz, Cihan; Dahl, Filip

    2014-09-01

    The Cerchar abrasion index is commonly used to represent rock abrasion for estimation of bit life and wear in various mining and tunneling applications. Although the test is simple and fast, there are some discrepancies in the test results related to the equipment used, condition of the rock surface, operator skills, and procedures used in conducting and measuring the wear surface. This paper focuses on the background of the test and examines the influence of various parameters on Cerchar testing including pin hardness, surface condition of specimens, petrographical and geomechanical properties, test speed, applied load, and method of measuring wear surface. Results of Cerchar tests on a set of rock specimens performed at different laboratories are presented to examine repeatability of the tests. In addition, the preliminary results of testing with a new device as a potential alternative testing system for rock abrasivity measurement are discussed.

  2. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing.

    PubMed

    Singh, Ajay K; Ditkofsky, Noah G; York, John D; Abujudeh, Hani H; Avery, Laura A; Brunner, John F; Sodickson, Aaron D; Lev, Michael H

    2016-01-01

    Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries. ©RSNA, 2016.

  3. Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations.

    PubMed

    Hara, Anderson T; Turssi, Cecilia P

    2017-11-01

    Toothpastes can be formulated with different abrasive systems, depending on their intended clinical application. This formulation potentially affects their effectiveness and safety and, therefore, requires proper understanding. In this article, the authors focused on abrasive aspects of toothpastes containing sodium bicarbonate (baking soda), which have gained considerable attention because of their low abrasivity and good compatibility, while providing clinical effectiveness (further detailed in the other articles of this special issue). The authors first appraised the role of toothpaste abrasivity on tooth wear, exploring some underlying processes and the existing methods to determine toothpaste abrasivity. The authors reviewed the available data on the abrasivity of toothpastes containing baking soda and reported a summary of findings highlighting the clinical implications. On the basis of the collected evidence, baking soda has an intrinsic low-abrasive nature because of its comparatively lower hardness in relation to enamel and dentin. Baking soda toothpastes also may contain other ingredients, which can increase their stain removal effectiveness and, consequently, abrasivity. Even those formulations have abrasivity well within the safety limit regulatory agencies have established and, therefore, can be considered safe. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  4. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  5. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  6. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  7. Comparison of Some Blast Vibration Predictors for Blasting in Underground Drifts and Some Observations

    NASA Astrophysics Data System (ADS)

    Bhagwat, Vaibhab Pramod; Dey, Kaushik

    2016-04-01

    Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn

  8. Microhardness evaluation of silorane and methacrylate composites submitted to erosion and abrasion processes

    PubMed Central

    Gazola, Eloá Aguiar; Rego, Marcos Augusto; Brandt, William Cunha; D’Arce, Maria Beatriz Freitas; Liporoni, Priscila Christiane Suzy

    2015-01-01

    Abstract Objective: The aim of this study was to evaluate the Knoop hardness number (KHN) of methacrylate (MC) and silorane (SC) composites after being submitted to erosion and abrasion processes. Material and methods: Forty samples were made with each composite: MC and SC. The samples were divided into eight groups (n = 10) according to the type of composite (G1–G4, MC; G5–G8, SC) and the beverages involved in the erosion process (G1 and G5 – Control (C), without erosion, with abrasion; G2 and G6 – Orange Juice (OJ), abrasion; G3 and G7 – Smirnoff Ice® (SI), abrasion; G4 and G8 – Gatorade® (GA), abrasion). The KHN test was performed 24 h after the last cycle of erosion/abrasion. Results: The MC groups showed smaller KHN values for the SI group (p < 0.05) when compared to the Control and OJ groups; however, for the SC groups, no differences were found (p > 0.05). Conclusion: Methacrylate composite when submitted to acidic beverages erosive challenge combined with abrasive process might alter its surface microhardness. However, the beverages used in the present study were not able to interfere in silorane composite surface microhardness. PMID:28642903

  9. Surface characterization of current composites after toothbrush abrasion.

    PubMed

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (p<0.05). Simple regression analysis showed that there was not an association between the surface roughness and the gloss (R(2)=0.191, p<0.001).

  10. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-01

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  11. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    PubMed

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  12. Dentin abrasivity of various desensitizing toothpastes.

    PubMed

    Arnold, W H; Gröger, Ch; Bizhang, M; Naumova, E A

    2016-04-02

    The aim of this study was to compare the abrasivity of various commercially available toothpastes that claim to reduce dentin hypersensitivity. Dentin discs were prepared from 70 human extracted molars. The discs were etched with lemon juice for 5 min, and one half of the discs were covered with aluminum tape. Following this, they were brushed with 6 different toothpastes, simulating a total brushing time of 6 months. As a negative control, discs were brushed with tap water only. The toothpastes contained pro-arginine and calcium carbonate, strontium acetate, stannous fluoride, zinc carbonate and hydroxyapatite, new silica, or tetrapotassium pyrophosphate and hydroxyapatite. After brushing, the height differences between the control halves and the brushed halves were determined with a profilometer and statistically compared using a Mann-Whitney U test for independent variables. A significant difference (p < 0.001) in height difference between the controls and the toothpaste-treated samples was found in all cases, except for the stannous fluoride-containing toothpaste (p = 0.583). The highest abrasion was found in the toothpaste containing zinc carbonate and hydroxyapatite, and the lowest was found in the toothpaste containing pro-arginine and calcium carbonate. Desensitizing toothpastes with different desensitizing ingredients have different levels of abrasivity, which may have a negative effect on their desensitizing abilities over a long period of time.

  13. Blast lung injury.

    PubMed

    Sasser, Scott M; Sattin, Richard W; Hunt, Richard C; Krohmer, Jon

    2006-01-01

    Current trends in global terrorism mandate that emergency medical services, emergency medicine and other acute care clinicians have a basic understanding of the physics of explosions, the types of injuries that can result from an explosion, and current management for patients injured by explosions. High-order explosive detonations result in near instantaneous transformation of the explosive material into a highly pressurized gas, releasing energy at supersonic speeds. This results in the formation of a blast wave that travels out from the epicenter of the blast. Primary blast injuries are characterized by anatomical and physiological changes from the force generated by the blast wave impacting the body's surface, and affect primarily gas-containing structures (lungs, gastrointestinal tract, ears). "Blast lung" is a clinical diagnosis and is characterized as respiratory difficulty and hypoxia without obvious external injury to the chest. It may be complicated by pneumothoraces and air emboli and may be associated with multiple other injuries. Patients may present with a variety of symptoms, including dyspnea, chest pain, cough, and hemoptysis. Physical examination may reveal tachypnea, hypoxia, cyanosis, and decreased breath sounds. Chest radiography, computerized tomography, and arterial blood gases may assist with diagnosis and management; however, they should not delay diagnosis and emergency interventions in the patient exposed to a blast. High flow oxygen, airway management, tube thoracostomy in the setting of pneumothoraces, mechanical ventilation (when required) with permissive hypercapnia, and judicious fluid administration are essential components in the management of blast lung injury.

  14. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  15. Surface Abrasive Torsion for Improved Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Moon, Ji Hyun; Baek, Seung Mi; Lee, Seok Gyu; Yoon, Jae Ik; Lee, Sunghak; Kim, Hyoung Seop

    2018-05-01

    A novel process of discrete surface abrasion during simple torsion (ST), named "surface abrasive torsion (SAT)," is proposed to overcome the limitation of ST, i.e., insufficient strain for severe plastic deformation (SPD) due to cracks initiated on the surface, by removing the roughened surface region. The effect of SAT on delayed crack initiation was explained using finite element simulations. Larger shear deformation applicable to the specimen in SAT than ST was demonstrated experimentally.

  16. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear

    NASA Astrophysics Data System (ADS)

    Chen, Zhikai; Zhu, Qinghai; Wang, Jing; Yun, Xiao; He, Bing; Luo, Jingshuai

    2018-07-01

    In present work, laser quenching had been carried out to improve the impact abrasive wear resistance of 40Cr steel. The distinct microstructure between original and quenched region was demonstrated after laser quenching. Since the effect of temperature and cooling rate, the phase combinations were apparently different for quenched layer in depth. The impact abrasive wear resistance of sample was experimentally investigated and the improved level was assessed in light of the average mass loss of three repetitive tests. Worn surface was detected by means of SEM, OM and EDS, and results showed that three typical failure modes were performed during the processing of impact abrasive wear, including abrasive wear, impact effect and rolling contact fatigue. Basing on the different worn surface profile, the mainly failure mode was respectively pointed out for matrix and quenched sample, which was significantly in accordance with the result of impact abrasive wear.

  17. NOBLAST and JAMBLAST: New Options for BLAST and a Java Application Manager for BLAST results.

    PubMed

    Lagnel, Jacques; Tsigenopoulos, Costas S; Iliopoulos, Ioannis

    2009-03-15

    NOBLAST (New Options for BLAST) is an open source program that provides a new user-friendly tabular output format for various NCBI BLAST programs (Blastn, Blastp, Blastx, Tblastn, Tblastx, Mega BLAST and Psi BLAST) without any use of a parser and provides E-value correction in case of use of segmented BLAST database. JAMBLAST using the NOBLAST output allows the user to manage, view and filter the BLAST hits using a number of selection criteria. A distribution package of NOBLAST and JAMBLAST including detailed installation procedure is freely available from http://sourceforge.net/projects/JAMBLAST/ and http://sourceforge.net/projects/NOBLAST. Supplementary data are available at Bioinformatics online.

  18. Toothbrushing abrasion susceptibility of enamel and dentin bleached with calcium-supplemented hydrogen peroxide gel.

    PubMed

    Borges, A B; Santos, L F T F; Augusto, M G; Bonfiette, D; Hara, A T; Torres, C R G

    2016-06-01

    The objective of this study was to evaluate enamel and dentin susceptibility to toothbrushing abrasion, after bleaching with 7.5% hydrogen peroxide (HP) gel supplemented or not with 0.5% calcium gluconate (Ca). Toothbrushing was performed immediately and 1h after bleaching, with two suspensions (high and low abrasivity). Bovine enamel and dentin specimens were divided into 12 groups (n=10) according to the bleaching gel (with and without Ca), slurry abrasivity (high or low) and elapsed time after bleaching (immediately and after 1h). As control, a group was not bleached, but abraded. The treatment cycle (7 d) consisted of bleaching (1h) and toothbrushing (135 strokes/day) immediatelly or after 1h of artificial saliva exposure. Surface roughness and surface loss (μm) were measured by profilometry and analysed by three-way ANOVA (5%). Surface roughness means were significantly influenced by slurry abrasivity (p<0.0001). For enamel loss, significant triple interaction was observed (p<0.0001). HP-bleached groups and immediately brushed with high-abrasive slurry exhibited increased loss (1.41±0.14) compared to other groups (μm). Control and HP+Ca-bleached groups brushed after 1h with low abrasive slurry presented the lowest loss (0.21±0.03/0.27±0.02). For dentin loss, significant interaction was observed for bleaching and interval factors (p<0.001). 7.5%HP-bleached groups and immediately brushed showed significantly higher loss (8.71±2.45) than the other groups. It was concluded that surface roughness increased when high abrasive was used, independently of bleaching. 7.5%HP increased enamel and dentin loss, mainly with high abrasive slurries. Calcium supplementation of bleaching gel reduced surface loss. Additionally, in order to minimize tooth wear susceptibility, it is recommended to delay brushing after bleaching. After bleaching gel application, postponing toothbrushing is recommended, as well as brushing with low abrasive dentifrices. Additionally

  19. Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun; Xie, Guoxin

    2011-04-01

    In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e.g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.

  20. 29 CFR 1926.909 - Firing the blast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...

  1. 29 CFR 1926.909 - Firing the blast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...

  2. 29 CFR 1926.909 - Firing the blast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...

  3. 29 CFR 1926.909 - Firing the blast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...

  4. 29 CFR 1926.909 - Firing the blast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...

  5. Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1991-01-01

    Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.

  6. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  7. Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-10-01

    Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.

  8. Effect of air abrasion and polishing on primary molar fissures.

    PubMed

    Lenzi, T L; Menezes, L B R; Soares, F Z M; Rocha, R O

    2013-04-01

    To evaluate the effect of air abrasion and polishing on primary molar fissures under light microscopy. 15 exfoliated primary second molars were longitudinally sectioned and photographed under a stereomicroscope (40×; baseline evaluation). Sections were then randomly allocated into one of the two groups (n = 15) and treated by either air abrasion (aluminium oxide jet) or air polishing (sodium bicarbonate jet) for 30 s. After treatment, sections were washed with an air/water spray, dried with absorbent paper, and photographed as previously described (final evaluation). Baseline and final morphology were compared by two blinded examiners who evaluated changes in the width and depth of fissures. The percentage of changed fissures was analysed, and the two treatments were compared using the Mann-Whitney test (α = 0.01). Both air systems resulted in fissure changes in most (93.3 %) of the sections. No significant differences in fissure width changes were found between treatments, but when changes in fissure depth were evaluated, air polishing was found to be less damaging than air abrasion (p < 0.01). Air abrasion and polishing cause changes to the anatomical configuration of occlusal fissures of primary molars.

  9. Neural network approximation of tip-abrasion effects in AFM imaging

    NASA Astrophysics Data System (ADS)

    Bakucz, Peter; Yacoot, Andrew; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf

    2008-06-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods.

  10. A profilometry-based dentifrice abrasion Method for V8 brushing machines. Part I: Introduction to RDA-PE.

    PubMed

    White, Donald J; Schneiderman, Eva; Colón, Ellen; St John, Samuel

    2015-01-01

    This paper describes the development and standardization of a profilometry-based method for assessment of dentifrice abrasivity called Radioactive Dentin Abrasivity - Profilometry Equivalent (RDA-PE). Human dentine substrates are mounted in acrylic blocks of precise standardized dimensions, permitting mounting and brushing in V8 brushing machines. Dentin blocks are masked to create an area of "contact brushing." Brushing is carried out in V8 brushing machines and dentifrices are tested as slurries. An abrasive standard is prepared by diluting the ISO 11609 abrasivity reference calcium pyrophosphate abrasive into carboxymethyl cellulose/glycerin, just as in the RDA method. Following brushing, masked areas are removed and profilometric analysis is carried out on treated specimens. Assessments of average abrasion depth (contact or optical profilometry) are made. Inclusion of standard calcium pyrophosphate abrasive permits a direct RDA equivalent assessment of abrasion, which is characterized with profilometry as Depth test/Depth control x 100. Within the test, the maximum abrasivity standard of 250 can be created in situ simply by including a treatment group of standard abrasive with 2.5x number of brushing strokes. RDA-PE is enabled in large part by the availability of easy-to-use and well-standardized modern profilometers, but its use in V8 brushing machines is enabled by the unique specific conditions described herein. RDA-PE permits the evaluation of dentifrice abrasivity to dentin without the requirement of irradiated teeth and infrastructure for handling them. In direct comparisons, the RDA-PE method provides dentifrice abrasivity assessments comparable to the gold industry standard RDA technique.

  11. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  12. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  13. Impact of dentifrice abrasivity and remineralization time on erosive tooth wear in vitro.

    PubMed

    Buedel, Sarah; Lippert, Frank; Zero, Domenick T; Eckert, George J; Hara, Anderson T

    2018-02-01

    To investigate the in vitro effects of simulated dentifrice slurry abrasivity (L-low, M-medium and H-high) and remineralization time (0, 30, 60 and 120 minutes) on erosive tooth wear. Enamel and root dentin specimens were prepared from bovine incisors (n= 8) and submitted to a cycling protocol including erosion, remineralization at the test times, and brushing with each of the tested slurries, for 5 days. Dental surface loss (SL) was determined by optical profilometry. Data was analyzed using mixed-model ANOVA and Fisher's PLSD tests (alpha= 0.05). SL generally increased along with the increase in slurry abrasive level, with significance dependent upon the specific substrate and remineralization times. H showed the highest SL on both enamel and dentin; remineralization for 30 minutes reduced SL significantly (P< 0.05), but only for enamel. M showed intermediate SL values, with remineralization benefit clearly seen only after 120 minutes of remineralization (P< 0.05). L caused the least SL for both enamel and dentin, which was further reduced after remineralization for 120 and 30 minutes, respectively (both P< 0.05). Overall, root dentin had significantly higher SL than enamel. Less abrasive dentifrice slurries were able to reduce toothbrushing abrasion on both enamel and root dentin. This protection was enhanced by remineralization for all abrasive levels on enamel, but only for L on root dentin. High-risk erosion patients should avoid highly abrasive toothpastes, as remineralization can only partially compensate for their deleterious effects on eroded dental surfaces. Lower abrasive toothpastes are recommended. Copyright©American Journal of Dentistry.

  14. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  15. Blast injury from explosive munitions.

    PubMed

    Cernak, I; Savic, J; Ignjatovic, D; Jevtic, M

    1999-07-01

    To evaluate the effect of blast in common war injuries. One thousand three hundred and three patients injured by explosive munitions and demonstrating extremity wounds without other penetrating injuries were admitted to the Military Medical Academy in Belgrade between 1991 and 1994. Of these, 665 patients (51%) had symptoms and physical signs that were compatible with the clinical diagnosis of primary blast injury, whereas the remaining 658 patients did not. Random sampling of 65 patients in the blast group during the early posttraumatic period showed statistically significant elevations in blood thromboxane A2 (TxA2), prostacyclin (PGI2), and sulfidopeptide leukotrienes compared with the random sample of 62 patients in the nonblast group. This difference could not be accounted for by differing injury severity between the groups, because the severity of wounds as measured by both the Injury Severity Score and the Red Cross Wound Classification was similar in both groups. Amongst blast patients, 200 patients (30%) had long-term (1 year) symptoms and signs reflecting central nervous system disorders. These symptoms and signs were only sporadically found in 4% of the nonblast patients. These findings indicate that primary blast injury is more common in war injuries than previously thought and that of those affected by blast, a surprisingly high proportion retain long-term neurologic disability. The elevation in eicosanoids could be used to confirm and monitor blast injury. In relation to the immediate management of patients injured by explosive weapons, it follows that particular attention should be paid to the presence and/or development of blast injury. Our findings indicate that blast is more common in war injuries than previously thought. Eicosanoid changes after blast injury suggest that blast injury causes a major physiologic stress. A variety of effects on the central nervous system suggest that blast injury could be responsible for some aspects of what is now

  16. 30 CFR 7.72 - New technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false New technology. 7.72 Section 7.72 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.72 New technology. MSHA may approve a blasting unit that incorporates technology for which the requirements of this...

  17. 30 CFR 7.72 - New technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false New technology. 7.72 Section 7.72 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.72 New technology. MSHA may approve a blasting unit that incorporates technology for which the requirements of this...

  18. 30 CFR 7.72 - New technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false New technology. 7.72 Section 7.72 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.72 New technology. MSHA may approve a blasting unit that incorporates technology for which the requirements of this...

  19. 30 CFR 7.72 - New technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false New technology. 7.72 Section 7.72 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.72 New technology. MSHA may approve a blasting unit that incorporates technology for which the requirements of this...

  20. 30 CFR 7.72 - New technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false New technology. 7.72 Section 7.72 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.72 New technology. MSHA may approve a blasting unit that incorporates technology for which the requirements of this...

  1. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE PAGES

    Yim, Won Cheol; Cushman, John C.

    2017-07-22

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  2. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    SciTech Connect

    Yim, Won Cheol; Cushman, John C.

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  3. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  4. Primary blast injuries.

    PubMed

    Phillips, Y Y

    1986-12-01

    Injury from explosion may be due to the direct cussive effect of the blast wave (primary), being struck by material propelled by the blast (secondary), to whole-body displacement and impact (tertiary), or to miscellaneous effects from burns, toxic acids, and so on. Severe primary blast injury is most likely to be seen in military operations but can occur in civilian industrial accidents or terrorist actions. Damage is seen almost exclusively in air-containing organs--the lungs, the gastrointestinal tract, and the auditory system. Pulmonary injury is characterized by pneumothorax, parenchymal hemorrhage, and alveolar rupture. The last is responsible for the arterial air embolism that is the principle cause of early mortality. Treatment for blast injury is similar to that for blunt trauma. The sequalae of air embolization to the cerebral or coronary circulation may be altered by immediate hyperbaric therapy. Use of positive pressure ventilatory systems should be closely monitored as they may increase the risk of air embolism in pneumothorax. Morbidity and mortality may be increased by strenuous exertion after injury and by the wearing of a cloth ballistic vest at the time of the blast.

  5. Computer assisted blast design and assessment tools

    SciTech Connect

    Cameron, A.R.; Kleine, T.H.; Forsyth, W.W.

    1995-12-31

    In general the software required by a blast designer includes tools that graphically present blast designs (surface and underground), can analyze a design or predict its result, and can assess blasting results. As computers develop and computer literacy continues to rise the development of and use of such tools will spread. An example of the tools that are becoming available includes: Automatic blast pattern generation and underground ring design; blast design evaluation in terms of explosive distribution and detonation simulation; fragmentation prediction; blast vibration prediction and minimization; blast monitoring for assessment of dynamic performance; vibration measurement, display and signal processing;more » evaluation of blast results in terms of fragmentation; and risk and reliability based blast assessment. The authors have identified a set of criteria that are essential in choosing appropriate software blasting tools.« less

  6. BLAST BIOLOGY. Technical Progress Report

    SciTech Connect

    White, C.S.; Richmond, D.R.

    1959-09-18

    Experimental data regarding the biologic consequences of exposure to several environmental variations associated with actual and simulated explosive detonations were reviewed. Blast biology is discussed relative to primary, secondary, tentiary, and miscellaneous blast effects as those attributable, respectively, to variations in environmental pressure, trauma from blast-produced missiles (both penetrating and nonpenetrating), the consequences of physical displacement of biological targets by blast-produced winds, and hazards due to ground shock, dust, and thermal phenomena not caused by thermal radiation per se. Primary blast effects were considered, noting physical-biophysical factors contributing to the observed pathophysiology. A simple hydrostatic model was utilized diagrammatically inmore » pointing out possible etiologic mechanisms. The gross biologic response to single. "fast"-rising overpressures were described as was the tolerance of mice, rats, guinea pigs. and rabbits to "long"-duration pressure pulses rising "rapidly" in single and double steps. Data regarding biological response to "slowly" rising over-pressures of "long" duration are discussed. Attention was called to the similarities under certain circumstances between thoracic trauma from nonpenetrating missiles and that noted from air blast. The association between air emboli, increase in lung weight (hemorrhage and edema), and mortality was discussed. Data relevant to the clinical symptoms and therapy of blast injury are presented. The relation of blast hazards to nuclear explosions was assessed and one approach to predicting the maximal potential casualties from blast phenomena is presented making use of arbitrary and tentative criteria. (auth)« less

  7. Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.

    PubMed

    Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas

    2013-04-01

    This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.

  8. Rates of Eolian Rock Abrasion in the Ice-Free Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Hallet, B.; Malin, M. C.; Sletten, R. S.

    2016-12-01

    Eolian abrasion is a principal surface process in dry regions of Earth and Mars and there is evidence for wind processes active on Venus and Titan. Rock abrasion also has practical significance in diverse fields ranging from preservation of cultural material (artifacts, monuments) to damage of solar panels and windshields in arid regions. Despite its scientific and practical importance, and there have ben only few studies that define rates of rock abrasion quantitatively under natural conditions. Herein we report abrasion rates that have been exceptionally well characterized through a unique long-term (30+-year) field experiment in the ice-free McMurdo Dry Valleys, Antarctica. In 1983 and 1984, over 5000 rock targets of several lithologies (25.4 mm-diameter and 5 mm-thick disks of dolerite, basalt, tuff and sandstone) were installed at five heights (7,14, 21, 35, and 70 cm) facing the 4 cardinal directions at 10 locations (one additional site contains fewer targets). Sequential collections of rock targets exposed to abrasion enable definition of mass loss after 1, 5, 10, 30 and 31 years of exposure; the latter were retrieved during the 2014-2015 season. The abrasion rates generally show striking consistency for each lithology at any site; the multiple targets permit definition of intrinsic differences in mass loss. The rates vary considerably from site to site owing to differences in availability of transportable sediment, wind regime, and surface roughness, and at each site, owing to target orientation relative to the dominant winds and, secondarily, to height above the ground. For the hardest targets, basalt and dolerite, mass loss in 30+ years ranged from essentially zero at some sites to 1/3 of the deployed mass (2.59 g; equivalent to a rock thickness >1.8 mm) where abrasion was most active (Site 7, Central Wright Valley). The tuff targets showed the greatest mass loss, and in many cases were entirely abraded away by the end of the experiment.Current work is

  9. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  11. Shock tubes and blast injury modeling.

    PubMed

    Ning, Ya-Lei; Zhou, Yuan-Guo

    2015-01-01

    Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.

  12. Identification of blast resistance genes for managing rice blast disease

    USDA-ARS?s Scientific Manuscript database

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  13. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    SciTech Connect

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  14. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review

    NASA Astrophysics Data System (ADS)

    Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2017-01-01

    The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.

  15. Human Injury Criteria for Underwater Blasts

    PubMed Central

    Lance, Rachel M.; Capehart, Bruce; Kadro, Omar; Bass, Cameron R.

    2015-01-01

    Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study. PMID:26606655

  16. Blast-wave density measurements

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.

    Applications of a densitometer to obtain time-resolved data on the total density in blast-wave flows are described. A beta-source (promethium-147) is separated by a gap from a scintillator and a photomultiplier tube (PMT). Attenuation of the radiation beam by the passing blast wave is due to the total density in the gap volume during the wave passage. Signal conditioning and filtering methods permit the system to output linearized data. Results are provided from use of the system to monitor blast waves emitted by detonation of a 10.7 m diameter fiberglass sphere containing 609 tons of ammonium nitrate/fuel oil at a 50.6 m height. Blast wave density data are provided for peak overpressure levels of 245, 172 and 70 kPa and distances of 183, 201 and 314 m from ground zero. Data resolution was of high enough quality to encourage efforts to discriminate dust and gasdynamic phenomena within passing blast waves.

  17. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    PubMed

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Low-Cost Blast Wave Generator for Studies of Hearing Loss and Brain Injury: Blast Wave Effects in Closed Spaces

    PubMed Central

    Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard

    2015-01-01

    Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910

  19. Canine human scent identifications with post-blast debris collected from improvised explosive devices.

    PubMed

    Curran, Allison M; Prada, Paola A; Furton, Kenneth G

    2010-06-15

    In this study it is demonstrated that human odor collected from items recovered at a post-blast scene can be evaluated using human scent specific canine teams to locate and identify individuals who have been in contact with the improvised explosive device (IED) components and/or the delivery vehicle. The purpose of the experiments presented here was to document human scent survivability in both peroxide-based explosions as well as simulated roadside IEDs utilizing double-blind field trials. Human odor was collected from post-blast device and vehicle components. Human scent specific canine teams were then deployed at the blast scene and in locations removed from the blast scene to validate that human odor remains in sufficient quantities for reliable canine detection and identification. Human scent specific canines have shown the ability to identify individuals who have been in contact with IEDs using post-blast debris with an average success from site response of 82.2% verifying that this technology has great potential in criminal, investigative, and military applications. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    PubMed

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  1. [Confined blasting in microexplosion cystolithotripsy].

    PubMed

    Uchida, M

    1989-03-01

    This paper is the 12th report in a series of studies on the application of microexplosion to medicine and biology. Microexplosion lithotripsy is a newly developed technique in our clinic to crush urinary stones with small quantities of explosives. A systematic research project has been performed since the first report of microexplosion lithotripsy in 1977. As a result, microexplosion was successfully applied to the destruction of bladder stones in 130 cases from 1981 to 1988. In blasting to crush rocks in industrial works, two kinds of blasting are available: external charge blasting and confined blasting. The detonation power of the latter is 10 to 50 times larger than that of the former. A detruction test using several kinds of spherical form model calculus and lead azide explosive was performed. The formula to calculate the suitable explosive dose was determined experimentally as shown below. (formula; see text) Thus the theory in general industrial blasting with massive explosives was proved to be effective also in microexplosion with small explosives. An original electric drill system was developed to make a hole in stones for confined blasting. 60 cases, including 2 cases of giant bladder stones over 100 g in weight, were successfully treated by confined blasting using this system without any complication. We consider that any bladder stones, however big or however many, can be treated by microexplosion lithotripsy with confined blasting.

  2. Effect of Human and Sheep Lung Orientation on Primary Blast Injury Induced by Single Blast

    DTIC Science & Technology

    2010-09-01

    may be injured by m ore than one of these mechanisms in any given event. Primary blast in juries ( PBI ) are exclusively caused by the blast...overpressure. A PBI usually affects air-containing organs such as t he lung, ears and gastrointestinal tract. Secon dary blast injuries are caused by...orientation on blast injuries predicted in human and sheep models. From th is study, it is predicted that the greatest reduction in lung PBI may be

  3. Blast optimization for improved dragline productivity

    SciTech Connect

    Humphreys, M.; Baldwin, G.

    1994-12-31

    A project aimed at blast optimization for large open pit coal mines is utilizing blast monitoring and analysis techniques, advanced dragline monitoring equipment, and blast simulation software, to assess the major controlling factors affecting both blast performance and subsequent dragline productivity. This has involved collaborative work between the explosives supplier, mine operator, monitoring equipment manufacturer, and a mining research organization. The results from trial blasts and subsequently monitored dragline production have yielded promising results and continuing studies are being conducted as part of a blast optimization program. It should be stressed that the optimization of blasting practices for improved draglinemore » productivity is a site specific task, achieved through controlled and closely monitored procedures. The benefits achieved at one location can not be simply transferred to another minesite unless similar improvement strategies are first implemented.« less

  4. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  5. Assessment, development, and testing of glass for blast environments.

    SciTech Connect

    Glass, Sarah Jill

    2003-06-01

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragmentsmore » of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.« less

  6. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  7. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  8. Impact of brushing force on abrasion of acid-softened and sound enamel.

    PubMed

    Wiegand, A; Köwing, L; Attin, T

    2007-11-01

    The study aimed to analyse the effects of different brushing loads on abrasion of acid-softened and sound enamel surfaces. Sound and acid-softened surfaces of each 10 human enamel samples were submitted to brushing abrasion in an automatic brushing machine at 1.5 N (A), 2.5 N (B), 3.5 N (C) or 4.5 N (D) brushing load. Prior to abrasion, demineralisation of half of each enamel surface was performed by storage in hydrochloric acid (pH 2.0) for 60s. Brushing was carried out (1000 strokes) using a manual toothbrush and toothpaste slurry in a ratio of 1:3. Enamel loss was measured after 10, 20, 50, 100, 150, 200, 250, 300, 350 and 1000 brushing strokes (BS). Pre- and post-brushing values of Knoop indentation length (5 indentations each sample) were measured and mean enamel loss was calculated from the change in indentation depth. Within- and between-group comparisons were performed by ANOVA and t-test followed by Bonferroni-correction. Enamel loss of acid-softened surfaces was significantly influenced by the brushing load applied and was mostly significantly higher in group D (10-1000 BS: 225-462 nm) compared to A (10-1000 BS: 164-384), B (10-1000 BS: 175-370 nm) and C (10-1000 BS: 191-396 nm). Abrasion of acid-softened enamel was fourfold higher compared to sound surfaces. Sound enamel was significantly influenced by the brushing force at 20-200 brushing strokes only, but revealed no significant differences between groups A-D. Brushing load influences abrasion of briefly eroded enamel, but might be of minor importance for abrasion of sound enamel surfaces.

  9. Fragment Size Distribution of Blasted Rock Mass

    NASA Astrophysics Data System (ADS)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  10. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  11. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    NASA Astrophysics Data System (ADS)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  12. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process.

    PubMed

    Schlagenhauf, Lukas; Chu, Bryan T T; Buha, Jelena; Nüesch, Frank; Wang, Jing

    2012-07-03

    The abrasion behavior of an epoxy/carbon nanotube (CNT) nanocomposite was investigated. An experimental setup has been established to perform abrasion, particle measurement, and collection all in one. The abraded particles were characterized by particle size distribution and by electron microscopy. The abrasion process was carried out with a Taber Abraser, and the released particles were collected by a tube for further investigation. The particle size distributions were measured with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) and revealed four size modes for all measured samples. The mode corresponding to the smallest particle sizes of 300-400 nm was measured with the SMPS and showed a trend of increasing size with increasing nanofiller content. The three measured modes with particle sizes from 0.6 to 2.5 μm, measured with the APS, were similar for all samples. The measured particle concentrations were between 8000 and 20,000 particles/cm(3) for measurements with the SMPS and between 1000 and 3000 particles/cm(3) for measurements with the APS. Imaging by transmission electron microscopy (TEM) revealed that free-standing individual CNTs and agglomerates were emitted during abrasion.

  13. Laser abrasion for cosmetic and medical treatment of facial actinic damage

    SciTech Connect

    David, L.M.; Lask, G.P.; Glassberg, E.

    1989-06-01

    Previous studies have shown the carbon dioxide (CO/sub 2/) laser to be effective in the treatment of actinic cheilitis. After CO/sub 2/ laser abrasion, normal skin and marked cosmetic improvement of the lip were noted. In our study, twenty-three patients were treated with CO/sub 2/ laser abrasions for cosmetic improvement of facial lines and actinic changes. Pre- and postoperative histopathologic examinations were made on two patients. Preoperative examination of specimens from actinically damaged skin showed atypical keratinocytes in the basal layer of the epidermis, with overlying dense compact orthokeratosis and parakeratosis. Abundant solar elastosis was seen in the papillary dermis.more » Postoperative histologic specimens showed a normal-appearing epidermis with fibrosis in the papillary dermis and minimal solar elastosis (about four weeks after laser treatment). At present, various modalities are available for the regeneration of the aged skin, including chemical peels and dermabrasion. Significantly fewer complications were noted with CO/sub 2/ laser abrasion than with these methods. Thus, CO/sub 2/ laser abrasion can be useful in the cosmetic and medical treatment of the aged skin. Marked clinical and histologic improvement has been demonstrated.« less

  14. Effect of dried sunflower seeds on incisal edge abrasion: A rare case report.

    PubMed

    Rath, Avita; Ramamurthy, Priyadarshini H; Fernandes, Bennete Aloysius; Sidhu, Preena

    2017-01-01

    Tooth surface loss (TSL) is a complex phenomenon characterized by the loss of hard tooth structure at various locations of the teeth, usually due to more than one factor. TSL due to abrasion can be significant in patients consuming coarse, abrasive diet. The present case reports an interesting incisal edge abrasion in a female patient, attributed to a particular dietary behavior of long-term consumption of sunflower seeds. All her family members and most of the people from her native place were also reported to have similar lesions by the patient. Larger epidemiological studies to assess the prevalence and severity of such abrasive lesions in geographic areas with this particular dietary habit need to be carried out so that people may be made aware and educated about alternative ways of eating sunflower seeds that will not cause any form of tooth wear.

  15. Automated information system for analysis and prediction of production situations in blast furnace plant

    NASA Astrophysics Data System (ADS)

    Lavrov, V. V.; Spirin, N. A.

    2016-09-01

    Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.

  16. NCBI BLAST+ integrated into Galaxy.

    PubMed

    Cock, Peter J A; Chilton, John M; Grüning, Björn; Johnson, James E; Soranzo, Nicola

    2015-01-01

    The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a natural step for sequence comparison workflows. The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate datatypes were defined as needed. The integration of the BLAST+ tool suite into Galaxy has the goal of making common BLAST tasks easy and advanced tasks possible. This project is an informal international collaborative effort, and is deployed and used on Galaxy servers worldwide. Several examples of applications are described here.

  17. Abrasion resistant composition

    SciTech Connect

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to themore » metal matrix.« less

  18. 40 CFR 438.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conversion coating operations. (d) Metal-bearing operations means one or more of the following: abrasive jet... descaling; shot tower—lead shot manufacturing; soldering; solder flux cleaning; solder fusing; solder...) Oily operations means one or more of the following: abrasive blasting; adhesive bonding; alkaline...

  19. 40 CFR 438.2 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conversion coating operations. (d) Metal-bearing operations means one or more of the following: abrasive jet... descaling; shot tower—lead shot manufacturing; soldering; solder flux cleaning; solder fusing; solder...) Oily operations means one or more of the following: abrasive blasting; adhesive bonding; alkaline...

  20. Research on operation mode of abrasive grain during grinding

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Dement’ev, V. B.; Nikitina, O. V.

    2018-03-01

    The processing of materials by cutting with an abrasive tool is carried out by means of thousands of grains bonded together as a single whole. The quality of the abrasive tool is defined by cutting properties of abrasive grains and depends on features of spreading the temperature field in time and in the abrasive grain volume. Grains are exposed to heating and cooling during work. It leads to undesired effects such as a decrease of durability of grain retention in the binder, hardness, intensification of diffusion and oxidation processes between the binder and the grain, the occurrence of considerable temperature stresses in the grain itself. The obtained equation which allows calculation of temperature field of grain for one rotation of grinding wheel shows that the temperature of the wheel depends on grinding modes and thermophysical properties of abrasive material. Thus, as the time of contact of grain with processed material increases, the temperature in the cutting area rises. As thermophysical properties increase, the temperature in cutting area decreases. Thermal working conditions are determined to be different from each other depending on contact time of the grain and the material. For example, in case of creep-feed grinding, the peak value of temperature is higher than during multistep grinding; the depth of expansion is greater. While the speed of the thermal process in creep-feed grinding is 2-3 times lower than in multistep grinding, the gradient reduces 3-4 times. The analysis of machining methods shows that creep-feed grinding ensures greater depth of grain heating, a smaller heating rate and a reduced velocity gradient. It causes a decrease of probable allotropic modifications and prevents from occurring of heat strokes - cracking of grains due to high temperature falls. Consequently, it is necessary to employ creep-feed grinding to increase the efficiency of abrasive tool employing. Three operation modes of grinding wheel including blunting, full

  1. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  2. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  3. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  4. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  5. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  6. Development of a two-body wet abrasion test method with attention to the effects of reused abradant

    SciTech Connect

    Blau, Peter Julian; Dehoff, Ryan R

    2012-01-01

    Abrasive wear is among the most common and costliest causes for material wastage, and it occurs in many forms. A simple method has been developed to quantify the response of metals and alloys to two-body wet abrasion. A metallographic polishing machine was modified to create a disk-on-flat sliding test rig. Adhesive-backed SiC grinding papers were used under fixed load and speed to rank the abrasive wear of seven alloy steels, some of which are candidates for drill cones for geothermal drilling. Standardized two-body abrasion tests, like those described in ASTM G132, feed unused abrasive into the contact; however, the currentmore » work investigated whether useful rankings could still be obtained with a simpler testing configuration in which specimens repeatedly slide on the same wear path under water-lubricated conditions. Tests using abrasive grit sizes of 120 and 180 resulted in the same relative ranking of the alloys although the coarser grit produced more total wear. Wear decreased when the same abrasive disk was re-used for up to five runs, but the relative rankings of the steels remained the same. This procedure was presented to ASTM Committee G2 on Wear and Erosion as a potential standard test for wet two-body abrasive wear.« less

  7. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  8. Cost-Benefit Analysis For Alternative Low-Emission Surface Preparation/ Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    Stennis Space Center (SSC), Kennedy Space Center (KSC) and Air Force Space Command (AFSPC) identified particulate emissions and waste generated from the depainting process of steel structures as hazardous materials to be eliminated or reduced. A Potential Alternatives Report, Potential Alternatives Report for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, provided a technical analyses of identified alternatives to the current coating removal processes, criteria used to select alternatives for further analysis, and a list of those alternatives recommended for testing. The initial coating removal alternatives list was compiled using literature searches and stakeholder recommendations. The involved project participants initially considered approximately 13 alternatives. In late 2003, core project members selected the following depainting processes to be further evaluated: (1) Plastic Blast Media-Quickstrip(R)-A. (2) Hard Abrasive-Steel-Magic(R). (3) Sponge Blasting-Sponge-Jet(R). (4) Liquid Nitrogen-NItroJet(R). (5) Mechanical Removal with Vacuum Attachment-DESCO and OCM Clean-Air (6) Laser Coating Removal Alternatives were tested in accordance with the Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Evaluation Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel. Results of the testing are documented in the Joint Test Report. This Cost-Benefit Analysis (CBA) focuses on the three alternatives (Quickstrip(R)-A, SteelMagic (R), and Sponge-Jet(R)) that were considered viable alternatives for large area operations based on the results of the field demonstration and lab testing. This CBA was created to help participants determine if implementation of the candidate alternatives is economically justified. Each of the alternatives examined reduced Environmental

  9. Air-Abrasive Disinfection of Implant Surfaces in a Simulated Model of Periimplantitis.

    PubMed

    Quintero, David George; Taylor, Robert Bonnie; Miller, Matthew Braden; Merchant, Keith Roshanali; Pasieta, Scott Anthony

    2017-06-01

    This in vitro study aimed to evaluate the ability of air-powder abrasion to decontaminate dental implants. Twenty-six implants were inoculated with a Streptococcus sanguinis biofilm media in a novel periimplantitis defect model. Six implants served as controls, and 20 implants were disinfected with either the Cavitron JET Plus or the AIR-FLOW PERIO air-powder abrasion units. Residual bacteria were cultured, and colony forming units (CFUs) were totaled at 24 hours. As expected, negative control implant cultures showed no evidence of viable bacteria. Bacterial growth was observed on all positive control cultures, whereas only 15% of the experimental cultures displayed evidence of viable bacteria. The average CFU per streak for the positive control was 104 compared with a maximum of 10 and 4 CFUs for the Cavitron JET Plus and AIR-FLOW PERIO, respectively. There was a 99.9% reduction in bacteria for both air-powder abrasion instruments. Air-powder abrasion is an effective technique for the decontamination of dental implants, and the Cavitron JET Plus and AIR-FLOW PERIO are equally successful at eliminating viable bacteria from implant surfaces.

  10. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing.

    PubMed

    Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui

    2016-06-13

    In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained.

  11. Computational modeling of human head under blast in confined and open spaces: primary blast injury.

    PubMed

    Rezaei, A; Salimi Jazi, M; Karami, G

    2014-01-01

    In this paper, a computational modeling for biomechanical analysis of primary blast injuries is presented. The responses of the brain in terms of mechanical parameters under different blast spaces including open, semi-confined, and confined environments are studied. In the study, the effect of direct and indirect blast waves from the neighboring walls in the confined environments will be taken into consideration. A 50th percentile finite element head model is exposed to blast waves of different intensities. In the open space, the head experiences a sudden intracranial pressure (ICP) change, which vanishes in a matter of a few milliseconds. The situation is similar in semi-confined space, but in the confined space, the reflections from the walls will create a number of subsequent peaks in ICP with a longer duration. The analysis procedure is based on a simultaneous interaction simulation of the deformable head and its components with the blast wave propagations. It is concluded that compared with the open and semi-confined space settings, the walls in the confined space scenario enhance the risk of primary blast injuries considerably because of indirect blast waves transferring a larger amount of damaging energy to the head. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury

    SciTech Connect

    Moss, W C; King, M J; Blackman, E G

    In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cmmore » from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff

  13. A Study on Postmortem Wound Dating by Gross and Histopathological Examination of Abrasions.

    PubMed

    Vinay, Javaregowda; Harish, Sathyanarayana; Mangala, Gouri S R; Hugar, Basappa S

    2017-06-01

    Abrasions are the most common blunt force injuries. The precise dating of injury is extremely important in forensic medicine practice. As we know, the wound healing occurs in well-orchestrated sequence, consisting of inflammation, proliferation, and maturation.A study of occurrence of such phases will help in understanding the sequence of events in wound healing. In this context, this study of wound dating from gross and microscopic level was taken. Postmortem study of wound dating by gross and histopathological examination of abrasions was carried out in the Department of Forensic Medicine, in M.S. Ramaiah Medical College. A total of 101 abrasions were correlated to time frame the occurrence of different gross changes and microscopic changes that follow the blunt trauma. Abrasions ranging from 0 hour to a maximum of 45 days were studied. The gross changes of abrasions were in correlation with the microscopic changes; however, the role of the comorbid conditions is significant because the results showed variations with respect to healing process. This study signifies that, if naked eye examination is studied along with histopathological examination, the reliability and accuracy of dating of wound increase. Whenever accurate determination of age is required, the autopsy surgeon can subject the samples for histopathological examination and correlate before opining the age of injury.

  14. Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.

    PubMed

    Chang, Chee W; Waddell, J Neil; Lyons, Karl M; Swain, Michael V

    2011-12-01

    The purpose of this in vitro study was to evaluate porcelain cracking induced by abrasive grinding with a conventional dental air turbine and abrasive diamond burs. Four commercially available porcelains were examined-Wieland ALLUX, Wieland ZIROX, IPS e.max Ceram, and IPS Empress Esthetic Veneering porcelain. Sixty discs of each porcelain type were fabricated according to manufacturer instructions, followed by an auto-glaze cycle. Abrasive grinding using fine, extra-fine, and ultra-fine diamond burs was carried out, using a conventional dental air turbine. The grinding parameters were standardized with regard to the magnitude of the force applied, rotational speed of the diamond bur, and flow rate of the water coolant. A testing apparatus was used to control the magnitude of force applied during the grinding procedure. The ground surfaces were then examined under scanning electron microscope. Cracking was seen for all porcelain types when ground with the fine bur. Cracking was not seen for specimens ground with the extra-fine or the ultra-fine bur. Wet abrasive grinding with a conventional dental air turbine and fine grit diamond burs has the potential to cause cracking in the four porcelain types tested. Similar abrasive grinding with smaller grit size particles does not cause similar observable cracking. © 2011 by the American College of Prosthodontists.

  15. Comment on "chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model".

    PubMed

    Tsao, Jack W

    2012-10-24

    In their recent paper, Goldstein et al. show murine brain tau neuropathology after explosive blast with head rotation but do not present additional evidence that would delineate whether this neuropathology was principally caused by blast exposure alone or by blast exposure plus head rotational injury.

  16. Effect of ceramic coating by aerosol deposition on abrasion resistance of a resin composite material.

    PubMed

    Taira, Yohsuke; Hatono, Hironori; Mizukane, Masahiro; Tokita, Masahiro; Atsuta, Mitsuru

    2006-12-01

    Aerosol deposition (AD coating) is a novel technique to coat solid substances with a ceramic film. The purpose of the present study was to investigate the effect of AD coating on abrasion resistance of a resin composite material. A 5-microm-thick aluminum oxide layer was created on the polymerized resin composite. The specimen was cyclically abraded using a toothbrush abrasion simulator for 100,000 cycles. Abraded surface was then measured with a profilometer to determine the average roughness (Ra) and maximum roughness (Rmax). It was found that abrasion cycling increased the Ra value of the No-AD-coating group, but decreased the Ra and Rmax values of the AD coating group. Moreover, the AD coating group showed significantly smaller Ra and Rmax values after 100,000 abrasion cycles as compared to the No-coating control group. Microscopic observation supported these findings. In conclusion, the resistance of the resin composite against toothbrush abrasion was improved by AD coating.

  17. Lightweight blast shield

    DOEpatents

    Mixon, Larry C.; Snyder, George W.; Hill, Scott D.; Johnson, Gregory L.; Wlodarski, J. Frank; von Spakovsky, Alexis P.; Emerson, John D.; Cole, James M.; Tipton, John P.

    1991-01-01

    A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

  18. Cerebrovascular Injury in Blast Loading

    DTIC Science & Technology

    2010-01-01

    TITLE: Cerebrovascular injury in blast loading PRINCIPAL INVESTIGATOR: Kenneth L. Monson, PhD...SUBTITLE Cerebrovascular injury in blast loading 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6...and pH control. 15. SUBJECT TERMS Blast brain injury; cerebrovascular injury and dysfunction; shock tube 16. SECURITY CLASSIFICATION OF: 17

  19. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.

    2013-01-01

    Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized

  20. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  1. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required "time taken". BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  2. 30 CFR 780.13 - Operation plan: Blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Blasting. 780.13 Section 780.13... SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.13 Operation plan: Blasting. (a) Blasting plan. Each application shall contain a blasting plan for the proposed...

  3. Nuclear Air Blast Effects.

    DTIC Science & Technology

    1982-06-01

    AD-All? 43 SCIENCE APPLICATZOhu INC NCLAA VA F/6 19/4I NUICLEAR AIR BLAST IFPCTS(U) JUR " PRY UNCLASSIFID SAI-63-636-VA NLOOI I-C lit? I. 1174~ 132...SiCuftIt, CLASSFICA?1lOw OF fl.IS PAQ-C( fhbl Dal. Lnt.,.d, REPORT DOCUMENTATION4 PAGE apoI ct~ NUCLEAR AIR BLAST EFFECTS FINAL REPORT SAI-83-836-WA...TUCSON a WASHINGTON NUCLEAR AIR BLAST EFFECTS FINAL REPORT SAI-83-836-WA Submitted to: Laboratory for Computational Physics Naval Research Laboratory

  4. The Effect of Pleural Abrasion on the Treatment of Primary Spontaneous Pneumothorax: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Ming, Mo-yu; Cai, Shuang-qi; Chen, Yi-Qiang

    2015-01-01

    Background Pleural abrasion has been widely used to control the recurrence of primary spontaneous pneumothorax (PSP). However, controversy still exists regarding the advantages and disadvantages of pleural abrasion compared with other interventions in preventing the recurrence of PSP. Methods The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched up to December 15, 2014 to identify randomized controlled trials (RCTs) that compared the effects of pleural abrasion with those of other interventions in the treatment of PSP. The study outcomes included the PSP recurrence rate and the occurrence rate of adverse effects. Results Mechanical pleural abrasion and apical pleurectomy after thoracoscopic stapled bullectomy exhibited similarly persistent postoperative air leak occurrence rates (p = 0.978) and 1-year PSP recurrence rates (p = 0.821), whereas pleural abrasion led to reduced residual chest pain and discomfort (p = 0.001) and a smaller rate of hemothorax (p = 0.036) than did apical pleurectomy. However, the addition of minocycline pleurodesis to pleural abrasion did not reduce the pneumothorax recurrence rate compared with apical pleurectomy (3.8% for both procedures) but was associated with fewer complications. There was no statistical difference in the pneumothorax recurrence rate between mechanical pleural abrasion and chemical pleurodesis with minocycline on either an intention-to-treat basis (4 of 42 versus 0 of 42, p = 0.12; Fisher exact test) or after exclusions (2 of 40 versus 0 of 42, p = 0.24; Fisher exact test). Pleural abrasion plus minocycline pleurodesis also did not reduce the pneumothorax recurrence rate compared with pleural abrasion alone (p = 0.055). Moreover, pleural abrasion plus minocycline pleurodesis was associated with more intense acute chest pain. The postoperative overall recurrence rate in patients who underwent staple line coverage with absorbable cellulose mesh and fibrin glue was similar to that

  5. Durability of traditional plasters with respect to blast furnace slag-based plaster

    SciTech Connect

    Cerulli, T.; Pistolesi, C.; Maltese, C.

    2003-09-01

    Blast furnace slag is a residue of steel production. It is a latent hydraulic binder and is normally used to improve the durability of concrete and mortars. Slag could be also used as rendering mortar for masonry and old buildings. Today, cement and hydraulic lime are the most popular hydraulic binders used to make plasters. They are characterised by a low durability when exposed to the action of chemical and physical agents. The aim of this study was to provide a comparison between the physical-mechanical properties of some renders made with ordinary Portland cement, hydraulic lime, or slag. Furthermore, anmore » investigation was carried out to analyse mortar resistance to several aggressive conditions like acid attack, freezing and thawing cycles, abrasion, sulphate aggression, cycles in ultraviolet screening device, and salt diffusion. The specimens, after chemical attack, have been characterised from the chemical-physical [specific surface according to the BET (Brunauer-Emmet-Teller) method], crystal-chemical (X-ray diffraction, XRD), and morphological (scanning electron microscopy, SEM) points of view.« less

  6. The abrasive effect of commercial whitening toothpastes on eroded enamel.

    PubMed

    Mosquim, Victor; Martines Souza, Beatriz; Foratori Junior, Gerson Aparecido; Wang, Linda; Magalhães, Ana Carolina

    2017-06-01

    To evaluate the in vitro abrasive effect of commercial whitening toothpastes on eroded bovine enamel samples in respect to erosive tooth wear. 72 bovine crowns were embedded, polished and subjected to the baseline profile analysis. The samples were then protected in 2/3 of the enamel surface and were randomly assigned to six groups (n= 12/group): G1: Oral-B 3D White, G2: Close-up Diamond Attraction Power White, G3: Sorriso Xtreme White 4D, G4: Colgate Luminous White, G5: Crest (conventional toothpaste), G6:erosion only (control). All samples were submitted to an erosive pH cycling (4 x 90 seconds in 0.1% citric acid, pH 2.5, per day) and abrasive challenges (2 x 15 seconds, per day) for 7 days. After the first and the last daily cycles, the samples were subjected to abrasive challenges, using a toothbrushing machine, soft toothbrushes and slurry of the tested toothpastes (1.5 N). Between the challenges, the samples were immersed in artificial saliva. The final profile was obtained and overlaid to the baseline profile for the calculation of the erosive tooth wear (μm). The data were subjected to Kruskal-Wallis/Dunn tests (P< 0.05). G1 promoted the highest enamel wear (3.68±1.06 μm), similarly to G3 (3.17± 0.80 μm) and G4 (3.44± 1.29 μm). G3 and G4 performed similarly between them and compared with G5 (2.35± 1.44 μm). G2 (1.51± 0.95 μm) and G6 (0.85± 0.36 μm) showed the lowest enamel wear, which did not differ between them and from G5. Oral-B 3D White showed the highest abrasive potential while Close-up Diamond Attraction Power White showed the lowest abrasive potential on eroded enamel in vitro. This study showed that some commercial whitening toothpastes, especially those containing pyrophosphate associated with hydrated silica, enhanced enamel erosive wear.

  7. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  8. 77 FR 58173 - Proposed Extension of Existing Information Collection; Explosive Materials and Blasting Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... requested data can be provided in the desired format, reporting burden (time and financial resources) is... mining industry. However, since there are no permissible explosives or blasting units available that have..., or other technological collection techniques or other forms of information technology (e.g...

  9. Air powder abrasive treatment as an implant surface cleaning method: a literature review.

    PubMed

    Tastepe, Ceylin S; van Waas, Rien; Liu, Yuelian; Wismeijer, Daniel

    2012-01-01

    To evaluate the air powder abrasive treatment as an implant surface cleaning method for peri-implantitis based on the existing literature. A PubMed search was conducted to find articles that reported on air powder abrasive treatment as an implant surface cleaning method for peri-implantitis. The studies evaluated cleaning efficiency and surface change as a result of the method. Furthermore, cell response toward the air powder abrasive-treated discs, reosseointegration, and clinical outcome after treatment is also reported. The PubMed search resulted in 27 articles meeting the inclusion criteria. In vitro cleaning efficiency of the method is reported to be high. The method resulted in minor surface changes on titanium specimens. Although the air powder abrasive-treated specimens showed sufficient levels of cell attachment and cell viability, the cell response decreased compared with sterile discs. Considerable reosseointegration between 39% and 46% and improved clinical parameters were reported after treatment when applied in combination with surgical treatment. The results of the treatment are influenced by the powder type used, the application time, and whether powder was applied surgically or nonsurgically. The in vivo data on air powder abrasive treatment as an implant surface cleaning method is not sufficient to draw definitive conclusions. However, in vitro results allow the clinician to consider the method as a promising option for implant surface cleaning in peri-implantitis treatment.

  10. A Study on Postmortem Wound Dating by Gross and Histopathological Examination of Abrasions

    PubMed Central

    Vinay, Javaregowda; Harish, Sathyanarayana; Mangala, Gouri S.R.; Hugar, Basappa S.

    2017-01-01

    Introduction Abrasions are the most common blunt force injuries. The precise dating of injury is extremely important in forensic medicine practice. As we know, the wound healing occurs in well-orchestrated sequence, consisting of inflammation, proliferation, and maturation. A study of occurrence of such phases will help in understanding the sequence of events in wound healing. In this context, this study of wound dating from gross and microscopic level was taken. Materials and Methods Postmortem study of wound dating by gross and histopathological examination of abrasions was carried out in the Department of Forensic Medicine, in M.S. Ramaiah Medical College. A total of 101 abrasions were correlated to time frame the occurrence of different gross changes and microscopic changes that follow the blunt trauma. Abrasions ranging from 0 hour to a maximum of 45 days were studied. Results The gross changes of abrasions were in correlation with the microscopic changes; however, the role of the comorbid conditions is significant because the results showed variations with respect to healing process. Conclusions This study signifies that, if naked eye examination is studied along with histopathological examination, the reliability and accuracy of dating of wound increase. Whenever accurate determination of age is required, the autopsy surgeon can subject the samples for histopathological examination and correlate before opining the age of injury. PMID:28418938

  11. Aeolian Rat Tails (ARTs): A New Morphological Indicator of Abrasion Direction

    NASA Astrophysics Data System (ADS)

    Favaro, E. A.; Hugenholtz, C.; Barchyn, T.

    2016-12-01

    Aeolian rat tails (ARTs) are a previously undocumented aeolian abrasion feature observed on ignimbrite surfaces in the Puna Plateau of Northwest Argentina and bare morphological similarity to small-scale features on Mars. We describe the terrestrial features and present an evolutionary sequence from inception to demise. ARTs are regionally-ubiquitous and characterized by a windward abrasion-resistant lithic clast and a downwind-tapering tail. The size of ARTs is controlled by the diameter of the windward lithic clast, observed on the sub-decimeter to meter scale. Their distribution throughout the Campo de Piedra Pómez, and adjacent regions is determined by the ignimbrite clast content. ARTs develop under a uni-modal abrasion direction when lithic clasts are eroded out of the ignimbrite matrix, protrude from the surface, and shelter material directly behind the clast. As the surrounding material is eroded away, a downwind-tapered tail develops. Continued erosion of the adjacent surface leads to the undercutting of clasts, liberating them from the feature where, if small enough, the clasts can be transported downwind, leading to the destruction of the tail and ultimately the feature. This evolutionary sequence accounts not only for the morphology of the feature, but also the presence of loose clasts on the ignimbrite surface, which plays a role in the development of other enigmatic landforms in the area, such as periodic bedrock ridges, yardangs, and megaripples. The significance of the identification of ARTs is due to the necessity of uni-modal abrasion direction for their development, thereby making their orientation a diagnostic indicator of long-term aeolian abrasion direction. ARTs are likely analogs of features identified by MSL Curiosity Rover on Mars, possibly providing information on past and present wind regimes.

  12. Blast waves and how they interact with structures.

    PubMed

    Cullis, I G

    2001-02-01

    The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge.

  13. Army Blast Claims Evaluation Procedures

    DTIC Science & Technology

    1994-03-01

    ARMY RESEARCH LABORATORY ARL-MR-131 Army Blast Claims Evaluation Procedures William P. Wright APPROVED FOR PUBUC RELEASE; DISTRIBtmON IS...NUMBERS Anny Blast Claims Evaluation Procedures 4G061-304-U2 6. AUTHOR(S) William P. Wrisht 1. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...of the technical review process which bas been instituted to develop an opinion as to Army responsibility. 14. SUBJECT TERMS blast effects. muzzle

  14. Experimental Evidence that Abrasion of Carbonate Sand is a Significant Source of Carbonate Mud

    NASA Astrophysics Data System (ADS)

    Trower, L.; Kivrak, L.; Lamb, M. P.; Fischer, W. W.

    2017-12-01

    Carbonate mud is a major sedimentary component of modern and ancient tropical carbonate environments, yet its enigmatic origin remains debated. Early views on the origin of carbonate mud considered the abrasion of carbonate sand during sediment transport as a possible mechanism. In recent decades, however, prevailing thought has generally settled on a binary explanation: 1) precipitation of aragonite needles within the water column, and 2) post-mortem dispersal of biological aragonite, in particular from algae, and perhaps aided by fish. To test these different hypotheses, we designed a model and a set of laboratory experiments to quantify the rates of mud production associated with sediment transport. We adapted a recent model of ooid abrasion rate to predict the rate of mud production by abrasion of carbonate sand as a function of grain size and sediment transport mode. This model predicts large mud production rates, ranging from 103 to 104 g CaCO3/m2/yr for typical grain sizes and transport conditions. These rate estimates are at least one order of magnitude more rapid than the 102 g CaCO3/m2/yr estimates for other mechanisms like algal biomineralization, indicating that abrasion could produce much larger mud fluxes per area as other mechanisms. We tested these estimates using wet abrasion mill experiments; these experiments generated mud through mechanical abrasion of both ooid and skeletal carbonate sand for grain sizes ranging from 250 µm to >1000 µm over a range of sediment transport modes. Experiments were run in artificial seawater, including a series of controls demonstrating that no mud was produced via homogenous nucleation and precipitation in the absence of sand. Our experimental rates match the model predictions well, although we observed small systematic differences in rates between abrasion ooid sand and skeletal carbonate sand that likely stems from innate differences in grain angularity. Electron microscopy of the experimental products revealed

  15. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rodent model of direct cranial blast injury.

    PubMed

    Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc

    2011-10-01

    Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction.

  17. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States.

    PubMed

    Nalley, Lawton; Tsiboe, Francis; Durand-Morat, Alvaro; Shew, Aaron; Thoma, Greg

    2016-01-01

    Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production.

  18. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States

    PubMed Central

    2016-01-01

    Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally—the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world’s population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production. PMID

  19. Adhesive and abrasive wear mechanisms in ion implanted metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1985-03-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation.

  20. Neurological Effects of Blast Injury

    PubMed Central

    Hicks, Ramona R.; Fertig, Stephanie J.; Desrocher, Rebecca E.; Koroshetz, Walter J.; Pancrazio, Joseph J.

    2010-01-01

    Over the last few years, thousands of soldiers and an even greater number of civilians have suffered traumatic injuries due to blast exposure, largely attributed to improvised explosive devices in terrorist and insurgent activities. The use of body armor is allowing soldiers to survive blasts that would otherwise be fatal due to systemic damage. Emerging evidence suggests that exposure to a blast can produce neurological consequences in the brain, but much remains unknown. To elucidate the current scientific basis for understanding blast-induced traumatic brain injury (bTBI), the NIH convened a workshop in April, 2008. A multidisciplinary group of neuroscientists, engineers, and clinicians were invited to share insights on bTBI, specifically pertaining to: physics of blast explosions, acute clinical observations and treatments, preclinical and computational models, and lessons from the international community on civilian exposures. This report provides an overview of the state of scientific knowledge of bTBI, drawing from the published literature, as well as presentations, discussions, and recommendations from the workshop. One of the major recommendations from the workshop was the need to characterize the effects of blast exposure on clinical neuropathology. Clearer understanding of the human neuropathology would enable validation of preclinical and computational models, which are attempting to simulate blast wave interactions with the central nervous system. Furthermore, the civilian experience with bTBI suggests that polytrauma models incorporating both brain and lung injuries may be more relevant to the study of civilian countermeasures than considering models with a neurological focus alone. PMID:20453776

  1. Innovative Composite Structure Design for Blast Protection

    DTIC Science & Technology

    2007-01-01

    2007-01-0483 Innovative Composite Structure Design for Blast Protection Dongying Jiang, Yuanyuan Liu MKP Structural Design Associates, Inc...protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major...numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and

  2. Comparative evaluation of enamel abrasivity by toothbrush and velcro: An in vitro scanning electron microscope study

    PubMed Central

    Ojha, Saroj Kumar; Javdekar, Sadashiv Bhaskar; Dhir, Sangeeta

    2015-01-01

    Context: Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. Aims: The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. Materials and Methods: The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush) and frictional contacts (hook and loop velcro) and examined under the scanning electron microscope. Results: Comparative assessment of both velcro (hook and loop) and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Conclusions: Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing PMID:26229264

  3. Pre-polishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffer, Adrienne E.

    2003-05-01

    Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  4. Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices

    DTIC Science & Technology

    2013-06-01

    after an acidic challenge . Enamel loss was significantly greater when erosive and abrasive effects were combined. They concluded that acid-softened...surrounding soft tissues. Another benefit of restoration is the elimination of a challenging area for the patient and hygienist to clean. These areas...abrasion challenge ; the resin cement with the smallest sized filler particles had the smallest weight loss and maintained the smoothest surface of all the

  5. Design of a new abrasive slurry jet generator

    NASA Astrophysics Data System (ADS)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  6. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2015-10-01

    characterization of the mouse model of repeated blast also found no cumula- tive effect of repeated blast on cortical levels of reactive oxygen species [39]. C...overpressure in rats to investigate the cumulative effects of multiple blast exposures on neurologic status, neurobehavioral function, and brain...preclinical model of blast overpressure in rats to investigate the cumulative effects of multiple blast exposures using neurological, neurochemical

  7. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications

    PubMed Central

    Kim, Dong-Woo; Cho, Myeong-Woo; Seo, Tae-Il; Shin, Young-Jae

    2008-01-01

    Recently, the magnetorheological (MR) polishing process has been examined as a new ultra-precision polishing technology for micro parts in MEMS applications. In the MR polishing process, the magnetic force plays a dominant role. This method uses MR fluids which contains micro abrasives as a polishing media. The objective of the present research is to shed light onto the material removal mechanism under various slurry conditions for polishing and to investigate surface characteristics, including shape analysis and surface roughness measurement, of spots obtained from the MR polishing process using alumina abrasives. A series of basic experiments were first performed to determine the optimum polishing conditions for BK7 glass using prepared slurries by changing the process parameters, such as wheel rotating speed and electric current. Using the obtained results, groove polishing was then performed and the results are investigated. Outstanding surface roughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present results highlight the possibility of applying this polishing method to ultra-precision micro parts production, especially in MEMS applications. PMID:27879705

  8. Gingival abrasion and recession in manual and oscillating–rotating power brush users

    PubMed Central

    Rosema, NAM; Adam, R; Grender, JM; Van der Sluijs, E; Supranoto, SC; Van der Weijden, GA

    2014-01-01

    Objective To assess gingival recession (GR) in manual and power toothbrush users and evaluate the relationship between GR and gingival abrasion scores (GA). Methods This was an observational (cross-sectional), single-centre, examiner-blind study involving a single-brushing exercise, with 181 young adult participants: 90 manual brush users and 91 oscillating–rotating power brush users. Participants were assessed for GR and GA as primary response variables. Secondary response variables were the level of gingival inflammation, plaque score reduction and brushing duration. Pearson correlation was used to describe the relationship between number of recession sites and number of abrasions. Prebrushing (baseline) and post-brushing GA and plaque scores were assessed and differences analysed using paired tests. Two-sample t-test was used to analyse group differences; ancova was used for analyses of post-brushing changes with baseline as covariate. Results Overall, 97.8% of the study population had at least one site of ≥1 mm of gingival recession. For the manual group, this percentage was 98.9%, and for the power group, this percentage was 96.7% (P = 0.621). Post-brushing, the power group showed a significantly smaller GA increase than the manual group (P = 0.004); however, there was no significant correlation between number of recession sites and number of abrasions for either group (P ≥ 0.327). Conclusions Little gingival recession was observed in either toothbrush user group; the observed GR levels were comparable. Lower post-brushing gingival abrasion levels were seen in the power group. There was no correlation between gingival abrasion as a result of brushing and the observed gingival recession following use of either toothbrush. PMID:24871587

  9. Ultra Safe And Secure Blasting System

    SciTech Connect

    Hart, M M

    2009-07-27

    The Ultra is a blasting system that is designed for special applications where the risk and consequences of unauthorized demolition or blasting are so great that the use of an extraordinarily safe and secure blasting system is justified. Such a blasting system would be connected and logically welded together through digital code-linking as part of the blasting system set-up and initialization process. The Ultra's security is so robust that it will defeat the people who designed and built the components in any attempt at unauthorized detonation. Anyone attempting to gain unauthorized control of the system by substituting components or tappingmore » into communications lines will be thwarted in their inability to provide encrypted authentication. Authentication occurs through the use of codes that are generated by the system during initialization code-linking and the codes remain unknown to anyone, including the authorized operator. Once code-linked, a closed system has been created. The system requires all components connected as they were during initialization as well as a unique code entered by the operator for function and blasting.« less

  10. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  11. Controls on wind abrasion patterns through a fractured bedrock landscape

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  12. The worn dentition--pathognomonic patterns of abrasion and erosion.

    PubMed

    Abrahamsen, Thomas C

    2005-01-01

    Historically, the dental literature has revealed various causes of tooth wear, yet it has failed to provide a conclusive method of differentiation and diagnosis of the condition. The categories of tooth wear encountered most commonly in dental practice are abrasion and erosion. The major causes of wear from abrasion are bruxism and toothpaste abuse, and the major causes of wear from erosion are regurgitation, coke-swishing and fruit-mulling. Through in-depth clinical study of these causes, this paper provides a diagnostic system that will enable dental professionals to determine and differentiate the exact aetiology of the worn dentition simply by the recognition of the pathognomonic wear patterns on diagnostic casts, which are based upon the position and quantity of the non-carious loss of tooth structure.

  13. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  14. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/ C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/ C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/ C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/ C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  15. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  16. Martian and Terrestrial Rock Abrasion from Wind Tunnel and Field Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Greeley, R.; Eddlemon, E.; Laity, J. E.; Meyer, C.; Phoreman, J.; White, B. R.

    2003-01-01

    Earth and Mars exhibit ventifacts, rocks that have been abraded by saltating sand. Previous theoretical and laboratory studies have determined abrasion susceptibilities of rocks as a function of sand type and impact angle and rock material strengths. For the last two years we have been engaged in wind tunnel and field studies to better understand the fundamental factors which control and influence rock abrasion and ventifact formation on Earth and Mars. In particular, we are examining: 1) What types of rocks (composition, texture, and shape) preferentially erode and what are the relative rates of one type vs. another? 2) What are the controlling factors of the aeolian sand cloud (flux, particle speed, surface roughness, etc) which favor rock abrasion?, 3) How do specific ventifact characteristics tie into their mode of formation and rock properties? We find several important factors: 1) Initial rock shape controls the rate of abrasion, with steeper faces abrading faster than shallower ones. The relationship is partly dependent on angle-dependent flux (proportional to sin[theta]) but exhibits additional non-linear effects from momentum transfer efficiency and rebound effects that vary with incidence angle. 2) Irregular targets with pits or grooves abrade at greater rates than targets with smooth surfaces, with indentations generally enlarging with time. Surfaces become rougher with time. 3) Targets also abrade via slope retreat, which is roughly dependent on the slope of the front face. The formation of basal sills is common, as observed on terrestrial and Martian ventifacts.

  17. Porcine head response to blast.

    PubMed

    Shridharani, Jay K; Wood, Garrett W; Panzer, Matthew B; Capehart, Bruce P; Nyein, Michelle K; Radovitzky, Raul A; Bass, Cameron R 'dale'

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G's and were well correlated with peak incident overpressure (R(2) = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are

  18. Porcine Head Response to Blast

    PubMed Central

    Shridharani, Jay K.; Wood, Garrett W.; Panzer, Matthew B.; Capehart, Bruce P.; Nyein, Michelle K.; Radovitzky, Raul A.; Bass, Cameron R. ‘Dale’

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2 = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are

  19. The role of erosion, abrasion and attrition in tooth wear.

    PubMed

    Barbour, Michele E; Rees, Gareth D

    2006-01-01

    There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.

  20. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model.

    PubMed

    Song, Hailong; Cui, Jiankun; Simonyi, Agnes; Johnson, Catherine E; Hubler, Graham K; DePalma, Ralph G; Gu, Zezong

    2018-03-15

    Blast exposures are associated with traumatic brain injury (TBI) and blast-induced TBIs are common injuries affecting military personnel. Department of Defense and Veterans Administration (DoD/VA) reports for TBI indicated that the vast majority (82.3%) has been mild TBI (mTBI)/concussion. mTBI and associated posttraumatic stress disorders (PTSD) have been called "the invisible injury" of the current conflicts in Iraq and Afghanistan. These injuries induce varying degrees of neuropathological alterations and, in some cases, chronic cognitive, behavioral and neurological disorders. Appropriate animal models of blast-induced TBI will not only assist the understanding of physical characteristics of the blast, but also help to address the potential mechanisms. This report provides a brief overview of physical principles of blast, injury mechanisms related to blast exposure, current blast animal models, and the neurological behavioral and neuropathological findings related to blast injury in experimental settings. We describe relationships between blast peak pressures and the observed injuries. We also report preliminary use of a highly reproducible and intensity-graded blast murine model carried out in open-field with explosives, and describe physical and pathological findings in this experimental model. Our results indicate close relationships between blast intensities and neuropathology and behavioral deficits, particularly at low level blast intensities relevant to mTBI. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Control of brushing variables for the in vitro assessment of toothpaste abrasivity using a novel laboratory model.

    PubMed

    Parry, Jason; Harrington, Edward; Rees, Gareth D; McNab, Rod; Smith, Anthony J

    2008-02-01

    Design and construct a tooth-brushing simulator incorporating control of brushing variables including brushing force, speed and temperature, thereby facilitating greater understanding of their importance in toothpaste abrasion testing methodologies. A thermostable orbital shaker was selected as a base unit and 16- and 24-specimen brushing rigs were constructed to fit inside, consisting of: a square bath partitioned horizontally to provide brushing channels, specimen holders for 25 mm diameter mounted specimens to fit the brushing channels and individually weighted brushing arms, able to support four toothbrush holders suspended over the brushing channels. Brush head holders consisted of individually weighted blocks of Delrin, or PTFE onto which toothbrush heads were fixed. Investigating effects of key design criteria involved measuring abrasion depths of polished human enamel and dentine. The brushing simulator demonstrated good reproducibility of abrasion on enamel and dentine across consecutive brushing procedures. Varying brushing parameters had a significant impact on wear results: increased brushing force demonstrated a trend towards increased wear, with increased reproducibility for greater abrasion levels, highlighting the importance of achieving sufficient wear to optimise accuracy; increasing brushing temperature demonstrated increased enamel abrasion for silica and calcium carbonate systems, which may be related to slurry viscosities and particle suspension; varying brushing speed showed a small effect on abrasion of enamel at lower brushing speed, which may indicate the importance of maintenance of the abrasive in suspension. Adjusting key brushing variables significantly affected wear behaviour. The brushing simulator design provides a valuable model system for in vitro assessment of toothpaste abrasivity and the influence of variables in a controlled manner. Control of these variables will allow more reproducible study of in vitro tooth wear processes.

  2. Air-propelled abrasive grit can damage the perennial weed, quackgrass, Elytrigia repens (L.) Nevski

    USDA-ARS?s Scientific Manuscript database

    New techniques are needed to control quackgrass in organic crops. With greater than or equal to 2 applications of abrasive air-propelled (800 kPa) corncob grit to 15 cm tall quackgrass tillers, regrowth was minimal at 5 weeks after treatment. Abrasive grits may be effective tools to help manage pere...

  3. Effects of geometry on blast-induced loadings

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Dyer

    Simulations of blasts in an urban environment were performed using Loci/BLAST, a full-featured fluid dynamics simulation code, and analyzed. A two-structure urban environment blast case was used to perform a mesh refinement study. Results show that mesh spacing on and around the structure must be 12.5 cm or less to resolve fluid dynamic features sufficiently to yield accurate results. The effects of confinement were illustrated by analyzing a blast initiated from the same location with and without the presence of a neighboring structure. Analysis of extreme pressures and impulses on structures showed that confinement can increase blast loading by more than 200 percent.

  4. Numerical modeling and characterization of blast waves for application in blast-induced mild traumatic brain injury research

    NASA Astrophysics Data System (ADS)

    Phillips, Michael G.

    Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.

  5. 30 CFR 77.1910 - Explosives and blasting; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting; general. 77.1910... COAL MINES Slope and Shaft Sinking § 77.1910 Explosives and blasting; general. (a) Light and power circuits shall be disconnected or removed from the blasting area before charging and blasting. (b) All...

  6. Functional Interactions of Major Rice Blast Resistance Genes Pi-ta with Pi-b and Minor Blast Resistance QTLs

    USDA-ARS?s Scientific Manuscript database

    Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait locus (QTLs) were in...

  7. 40 CFR Appendix B to Part 438 - Oily Operations Definitions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed either dry... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...

  8. 40 CFR Appendix B to Part 438 - Oily Operations Definitions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...

  9. 40 CFR Appendix B to Part 438 - Oily Operations Definitions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...

  10. 40 CFR Appendix B to Part 438 - Oily Operations Definitions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...

  11. 40 CFR Appendix B to Part 438 - Oily Operations Definitions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed either dry... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...

  12. Monitoring of the Abrasion Processes (by the Example of Alakol Lake, Republic of Kazakhstan)

    ERIC Educational Resources Information Center

    Abitbayeva, Ainagul; Valeyev, Adilet; Yegemberdiyeva, Kamshat; Assylbekova, Aizhan; Ryskeldieva, Aizhan

    2016-01-01

    The purpose of the study is to analyze the abrasion processes in the regions of dynamically changing Alakol lake shores. Using the field method, methods of positioning by the GPS receiver and interpretation of remote sensing data, the authors determined that abrasion processes actively contributed to the formation the modern landscape, causing the…

  13. Gingival abrasion and recession in manual and oscillating-rotating power brush users.

    PubMed

    Rosema, N A M; Adam, R; Grender, J M; Van der Sluijs, E; Supranoto, S C; Van der Weijden, G A

    2014-11-01

    To assess gingival recession (GR) in manual and power toothbrush users and evaluate the relationship between GR and gingival abrasion scores (GA). This was an observational (cross-sectional), single-centre, examiner-blind study involving a single-brushing exercise, with 181 young adult participants: 90 manual brush users and 91 oscillating-rotating power brush users. Participants were assessed for GR and GA as primary response variables. Secondary response variables were the level of gingival inflammation, plaque score reduction and brushing duration. Pearson correlation was used to describe the relationship between number of recession sites and number of abrasions. Prebrushing (baseline) and post-brushing GA and plaque scores were assessed and differences analysed using paired tests. Two-sample t-test was used to analyse group differences; ancova was used for analyses of post-brushing changes with baseline as covariate. Overall, 97.8% of the study population had at least one site of ≥1 mm of gingival recession. For the manual group, this percentage was 98.9%, and for the power group, this percentage was 96.7% (P = 0.621). Post-brushing, the power group showed a significantly smaller GA increase than the manual group (P = 0.004); however, there was no significant correlation between number of recession sites and number of abrasions for either group (P ≥ 0.327). Little gingival recession was observed in either toothbrush user group; the observed GR levels were comparable. Lower post-brushing gingival abrasion levels were seen in the power group. There was no correlation between gingival abrasion as a result of brushing and the observed gingival recession following use of either toothbrush. © 2014 The Authors International Journal of Dental Hygiene Published by John Wiley & Sons Ltd.

  14. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  15. Assessment of Rail Seat Abrasion Patterns and Environment

    DOT National Transportation Integrated Search

    2012-05-01

    Rail seat abrasion (RSA) of concrete ties is manifested by the loss of material under the rail seat area and, in extreme cases, results in loss of rail clip holding power, reverse rail cant, and gauge widening. RSA was measured in several curves on t...

  16. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  17. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  18. Protection of the lung from blast overpressure by stress wave decouplers, buffer plates or sandwich panels.

    PubMed

    Sedman, Andrew; Hepper, A

    2018-03-19

    This paper outlines aspects of UK Ministry of Defence's research and development of blast overpressure protection technologies appropriate for use in body armour, with the aim of both propagating new knowledge and updating existing information. Two simple models are introduced not only to focus the description of the mechanism by which the lungs can be protected, but also to provide a bridge between fields of research that may hold the key to further advances in protection technology and related body armour. Protection can be provided to the lungs by decoupling the stress wave transmission into the thorax by managing the blast energy imparted through the protection system. It is proposed that the utility of the existing 'simple decoupler' blast overpressure protection is reviewed in light of recent developments in the treatment of those sustaining both overpressure and fragment injuries. It is anticipated that further advances in protection technology may be generated by those working in other fields on the analogous technologies of 'buffer plates' and 'sandwich panels'. © Crown copyright (2018), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk.

  19. Scratching technique for the study and analysis of soil surface abrasion mechanism

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan

    2007-11-01

    Aeolian abrasion is the most fundamental and active surface process that takes place in arid and semi-arid environments. Its nature is a wear process for wind blown grains impinging on a soil or sediment surface, which causes particles and aggregates to fracture from the soil surface through a series of plastic and brittle cracking deformation such as cutting, ploughing and brittle fracturing. Using a Universal Micro-Tribometer (UMT), a scratching test was carried out on six soil surfaces (sandy soil, sand loam, silt loam, loam, silt clay loam, and silt clay). The results indicate that traces of normal and tangential force vs. time show a jagged curve, which can reflect the plastic deformation and brittle fracturing of aggregates and particles of various sizes fractured from the soil surfaces. The jagged curve peaks, and the area enclosed underneath, may represent the bonding forces and bonding energies of some aggregates and grains on the soil surface, respectively. Connecting the scratching test with an impact abrasion experiment furthermore demonstrates that soil surface abrasion rates are proportional to the square of speeds of impacting particles and to the 2.6 power of mean soil grain size, and inversely proportional to the 1.5 power of specific surface abrasive energy or to the 1.7 power of specific surface hardness.

  20. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  1. Blast investigation by fast multispectral radiometric analysis

    NASA Astrophysics Data System (ADS)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  2. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    PubMed

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among

  3. Modeling the Blast Load Simulator Airblast Environment using First Principles Codes. Report 1, Blast Load Simulator Environment

    DTIC Science & Technology

    2016-11-01

    ER D C/ G SL T R- 16 -3 1 Modeling the Blast Load Simulator Airblast Environment Using First Principles Codes Report 1, Blast Load...Simulator Airblast Environment using First Principles Codes Report 1, Blast Load Simulator Environment Gregory C. Bessette, James L. O’Daniel...evaluate several first principles codes (FPCs) for modeling airblast environments typical of those encountered in the BLS. The FPCs considered were

  4. Dependence of Non-Prestonian Behavior of Ceria Slurry with Anionic Surfactant on Abrasive Concentration and Size in Shallow Trench Isolation Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Kang, Hyun‑Goo; Kim, Dae‑Hyeong; Katoh, Takeo; Kim, Sung‑Jun; Paik, Ungyu; Park, Jea‑Gun

    2006-05-01

    The dependencies of the non-Prestonian behavior of ceria slurry with anionic surfactant on the size and concentration of abrasive particles were investigated by performing chemical mechanical polishing (CMP) experiments using blanket wafers. We found that not only the abrasive size but also the abrasive concentration with surfactant addition influences the non-Prestonian behavior. Such behavior is clearly exhibited with small abrasive sizes and a higher concentrations of abrasives with surfactant addition, because the abrasive particles can locally contact the film surface more effectively with applied pressure. We introduce a factor to quantify these relations with the non-Prestonian behavior of a slurry. For ceria slurry, this non-Prestonian factor, βNP, was determined to be almost independent of the abrasive concentration for a larger size and a smaller weight conentration of abrasive particles, but it increased with the surfactant concentration for a smaller size and a higher concentration of abrasives with surfactant addition.

  5. [Indirect blast rupture of the pancreas with a primary unperforated blast injury of the duodenum].

    PubMed

    Ignjatović, Dragan; Ignjatović, Mile; Jevtić, Miodrag

    2006-02-01

    To present a patient with an indirect blast rupture of the head of pancreas, as well as with a blast contusion of the duodenum following abdominal gunshot injury. A patient with the abdominal gunshot injury was submitted to the management of the injury of the liver, gaster and the right kidney in the field hospital. The revealed rupture of the head of the pancreas and the contusion of the duodenum were managed applying the method of Whipple. Indirect blast injuries require extensive surgical interventions, especially under war conditions.

  6. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results.

    PubMed

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-02-09

    BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform

  7. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results

    PubMed Central

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-01-01

    Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Results Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. Conclusion PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface

  8. Feasibility and Economics Study of the Treatment, Recycling and Disposal of Spent Abrasives

    DTIC Science & Technology

    1999-04-09

    compression, and film stripping. The recycling performance testing plan is summarized in Table 2. (The test plan is discussed in detail in Appendix B: Law...D1188 Yes Yes Immersion Compression ................... ASTM C4867 Yes Yes Film Stripping................................... CalTrans 302 Yes Yes...from 10% to 20% for aluminum oxide abrasives, and 15% to 30% for garnet abrasives. 9 Data Intepretation SSPC-AB 1 requires that the conductivitiy of

  9. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  10. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    NASA Astrophysics Data System (ADS)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  11. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  12. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  13. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  14. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  15. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  16. [Polyethylene abrasion: cause or consequence of an endoprosthesis loosening? Investigations of firm and loosened hip implants].

    PubMed

    Busse, B; Niecke, M; Püschel, K; Delling, G; Katzer, A; Hahn, M

    2007-01-01

    Periprosthetic tissue was analysed by the combination of different investigation techniques without destruction. The localisation and geometry of polyethylene abrasion particles were determined quantitatively to differentiate between abrasion due to function and abrasion due to implant loosening. Non-polyethylene particles from implant components which contaminate the tissue were micro-analytically measured. The results will help us to understand loosening mechanisms and thus lead to implant optimisations. A non-destructive particle analysis using highly sensitive proton-induced X-ray emission (PIXE) was developed to achieve a better histological allocation. Five autopsy cases with firmly fitting hip endoprosthesis (2 x Endo-Modell Mark III, 1 x St. Georg Mark II, LINK, Germany; 2 x Spongiosa Metal II, ESKA, Germany) were prepared as ground tissue specimens. Wear investigations were accomplished with a combined application of different microscopic techniques and microanalysis. The abrasion due to implant loosening was histologically evaluated on 293 loosened cup implants (St. Georg Mark II, LINK, Germany). Wear particles are heterogeneously distributed in the soft tissue. In cases of cemented prostheses, cement particles are dominating whereas metal particles could rarely be detected. The concentration of the alloy constituent cobalt (Co) is increased in the mineralised bone tissue. The measured co-depositions depend on the localisation and/or lifetime of an implant. Functional polyethylene (PE) abrasion needs to be differentiated from PE abrasion of another genesis (loosening, impingement) morphologically and by different tissue reactions. In the past a reduction of abrasion was targeted primarily by the optimisation of the bearing surfaces and tribology. The interpretation of our findings indicates that different mechanisms of origin in terms of tissue contamination with wear debris and the alloy should be included in the improvement of implants or implantation

  17. Erosion of enamel by non-carbonated soft drinks with and without toothbrushing abrasion.

    PubMed

    Hemingway, C A; Parker, D M; Addy, M; Barbour, M E

    2006-10-07

    To investigate how enamel loss due to erosion, and due to cycling of erosion and abrasion, depends on compositional parameters of soft drinks, and particularly whether the thickness of the erosive softened layer is a function of drink composition. University dental hospital research laboratory in the UK, 2004. Six drinks were chosen based on their popularity and composition: apple juice, orange juice, apple drink, orange drink, cranberry drink and 'ToothKind' blackcurrant drink. Group A samples (n = 36) were exposed to soft drinks at 36 degrees C for six consecutive 10 minute periods. Group B samples (n = 36) were subjected to alternating erosion and toothbrushing, repeated six times. Enamel loss was measured using optical profilometry. Group A: significant enamel loss was seen for all drinks (p < 0.001). Erosion was correlated with pH and calcium concentration but not phosphate concentration or titratable acidity. Group B: significant additional material loss due to toothbrush abrasion occurred with all drinks. Abrasive enamel loss differed between the drinks and was positively correlated with drink erosive potential. Enamel loss by erosion is exacerbated by subsequent abrasion. The amount of softened enamel removed by toothbrushing is a function of the chemical composition of the erosive medium.

  18. Attenuation of blast pressure behind ballistic protective vests.

    PubMed

    Wood, Garrett W; Panzer, Matthew B; Shridharani, Jay K; Matthews, Kyle A; Capehart, Bruce P; Myers, Barry S; Bass, Cameron R

    2013-02-01

    Clinical studies increasingly report brain injury and not pulmonary injury following blast exposures, despite the increased frequency of exposure to explosive devices. The goal of this study was to determine the effect of personal body armour use on the potential for primary blast injury and to determine the risk of brain and pulmonary injury following a blast and its impact on the clinical care of patients with a history of blast exposure. A shock tube was used to generate blast overpressures on soft ballistic protective vests (NIJ Level-2) and hard protective vests (NIJ Level-4) while overpressure was recorded behind the vest. Both types of vest were found to significantly decrease pulmonary injury risk following a blast for a wide range of conditions. At the highest tested blast overpressure, the soft vest decreased the behind armour overpressure by a factor of 14.2, and the hard vest decreased behind armour overpressure by a factor of 56.8. Addition of body armour increased the 50th percentile pulmonary death tolerance of both vests to higher levels than the 50th percentile for brain injury. These results suggest that ballistic protective body armour vests, especially hard body armour plates, provide substantial chest protection in primary blasts and explain the increased frequency of head injuries, without the presence of pulmonary injuries, in protected subjects reporting a history of blast exposure. These results suggest increased clinical suspicion for mild to severe brain injury is warranted in persons wearing body armour exposed to a blast with or without pulmonary injury.

  19. [An experimental study of blast injury].

    PubMed

    Wang, Z G

    1989-01-01

    This paper presents some aspects of the authors' experimental research on blast injury in the past two years. The main results are as follows: (1) A new designed 39 meter-long shock tube for biological test has been built in the laboratory. Its maximal overpressure values are 215 kPa (in open condition) and 505 kPa (in closed condition). It may meet the need for inflicting blast injuries with various degree of severity. (2) A study of the effect of simulating gun muzzle blast wave on sheep indicated that in the single explosion, the threshold overpressure values inflicting the injury of internal organs were: Lung-37.27 kPa, G-I tract-41.0 kPa; the upper respiratory tract-negative until 73 kPa, while in the multiple (20 times) explosions, they were 23.7, 23.7 and 41.4 kPa, respectively. (3) Using TEM, SEM and some other special techniques, such as morphometry, freeze-fracture technique, labelled lanthanum nitrate technique, etc, it was demonstrated that in the lung with blast injury there were significant pathological changes in pulmonary capillary endothelium, alveolar epithelium and their intercellular junctions with apparent increase of permeability. (4) It has been shown that parallel superficial stripelike hemorrhage typical for lung blast injury is "Intercostal marking" instead of "Rib marking". (5) A new type of material (foamy nickel) for protection against blast wave is presented. It was proved that the material can effectively weaken or eliminate the effect of blast wave on human body.

  20. Blast-induced phenotypic switching in cerebral vasospasm

    PubMed Central

    Alford, Patrick W.; Dabiri, Borna E.; Goss, Josue A.; Hemphill, Matthew A.; Brigham, Mark D.; Parker, Kevin Kit

    2011-01-01

    Vasospasm of the cerebrovasculature is a common manifestation of blast-induced traumatic brain injury (bTBI) reported among combat casualties in the conflicts in Afghanistan and Iraq. Cerebral vasospasm occurs more frequently, and with earlier onset, in bTBI patients than in patients with other TBI injury modes, such as blunt force trauma. Though vasospasm is usually associated with the presence of subarachnoid hemorrhage (SAH), SAH is not required for vasospasm in bTBI, which suggests that the unique mechanics of blast injury could potentiate vasospasm onset, accounting for the increased incidence. Here, using theoretical and in vitro models, we show that a single rapid mechanical insult can induce vascular hypercontractility and remodeling, indicative of vasospasm initiation. We employed high-velocity stretching of engineered arterial lamellae to simulate the mechanical forces of a blast pulse on the vasculature. An hour after a simulated blast, injured tissues displayed altered intracellular calcium dynamics leading to hypersensitivity to contractile stimulus with endothelin-1. One day after simulated blast, tissues exhibited blast force dependent prolonged hypercontraction and vascular smooth muscle phenotype switching, indicative of remodeling. These results suggest that an acute, blast-like injury is sufficient to induce a hypercontraction-induced genetic switch that potentiates vascular remodeling, and cerebral vasospasm, in bTBI patients. PMID:21765001

  1. Low Level Primary Blast Injury in Rodent Brain

    PubMed Central

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID

  2. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  3. Blasting CME

    NASA Image and Video Library

    2017-12-08

    This LASCO C2 image, taken 8 January 2002, shows a widely spreading coronal mass ejection (CME) as it blasts more than a billion tons of matter out into space at millions of kilometers per hour. The C2 image was turned 90 degrees so that the blast seems to be pointing down. An EIT 304 Angstrom image from a different day was enlarged and superimposed on the C2 image so that it filled the occulting disk for effect. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  4. The influence of drilling process automation on improvement of blasting works quality in open pit mining

    NASA Astrophysics Data System (ADS)

    Bodlak, Maciej; Dmytryk, Dominik; Mertuszka, Piotr; Szumny, Marcin; Tomkiewicz, Grzegorz

    2018-01-01

    The article describes the monitoring system of blasthole drilling process called HNS (Hole Navigation System), which was used in blasting works performed by Maxam Poland Ltd. Developed by Atlas Copco's, the HNS system - using satellite data - allows for a very accurate mapping of the designed grid of blastholes. The article presents the results of several conducted measurements of ground vibrations triggered by blasting, designed and performed using traditional technology and using the HNS system and shows first observations in this matter.

  5. Investigation of blast-induced traumatic brain injury.

    PubMed

    Taylor, Paul A; Ludwigsen, John S; Ford, Corey C

    2014-01-01

    Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear.

  6. Investigation of blast-induced traumatic brain injury

    PubMed Central

    Ludwigsen, John S.; Ford, Corey C.

    2014-01-01

    Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear. PMID:24766453

  7. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    NASA Astrophysics Data System (ADS)

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  8. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  9. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  10. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  11. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  12. Toothbrush abrasion of paint-on resins for shade modification and crown resins: effect of water absorption.

    PubMed

    Fujii, Koichi; Arikawa, Hiroyuki; Kanie, Takahito; Ban, Seiji

    2004-06-01

    In order to investigate the clinical application of paint-on resins, the effect of water absorption on toothbrush abrasion and light transmittance of ten crown resins including three paint-on resins was examined. Water absorption into each material ranged from 0.29 to 0.89 mg/cm2 after storage in distilled-water for 6 weeks and their hardnesses decreased by 3.5-22.3%. Maximum surface roughness (Rmax) of the materials stored in distilled water for 6 weeks increased with an increasing number of toothbrush abrasion cycles and ranged from 1.9 to 10.5 microm after 100,000 cycles. Also, Maximum depth and weight loss as an indicator of the amount of each material lost by abrasion showed similar behaviors similar to Rmax. These results indicated that the abrasion resistance of paint-on resins was located in the middle among all materials examined.

  13. Predictive control of thermal state of blast furnace

    NASA Astrophysics Data System (ADS)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  14. The importance of measuring toothpaste abrasivity in both a quantitative and qualitative way

    PubMed Central

    Tellefsen, Georg; Johannsen, Annsofi; Liljeborg, Anders

    2013-01-01

    Objective. To evaluate the relative abrasivity of different toothpastes and polishing pastes both qualitatively and quantitatively. Materials and methods. Acrylic plates were exposed to brushing in a brushing machine with a toothpaste/water slurry for 1 and 6 h. Twelve different toothpastes were used and also four different polishing pastes. The results were evaluated using a profilometer after 1 and 6 h of brushing (corresponding to 2000 and 12 000 double strokes, respectively). A surface roughness value (Ra-value) and also a volume loss value were calculated from the profilometer measurements. These values were then correlated to each other. An unpaired t-test for the difference in the abrasion values between the toothpastes and the abrasion values over time was used. Results. The polishing paste RDA® 170 yielded higher Ra-values than RDA 250®, both after 1 and 6 h of brushing (1.01 ± 0.22 and 8.99 ± 1.55 compared to 0.63 ± 0.26 and 7.83 ± 5.89, respectively) as well as volume loss values (3.71 ± 0.17 and 20.20 ± 2.41 compared to 2.15 ± 1.41 and 14.79 ± 11.76, respectively), thus poor correlations between the RDA and Ra and Volume loss values were shown. Among the toothpastes, Apotekets® showed the highest Ra value after 1 h of brushing and Pepsodent® whitening after 6 h of brushing. Pepsodent® whitening also showed the highest volume loss values, both after 1 and 6 h of brushing. Conclusion. This study emphasizes the importance of not only considering the RDA value, but also a roughness value, when describing the abrasivity of a toothpaste. Furthermore, it can be concluded that so called ‘whitening' toothpastes do not necessarily have a higher abrasive effect than other toothpastes. PMID:22746180

  15. The importance of measuring toothpaste abrasivity in both a quantitative and qualitative way.

    PubMed

    Johannsen, Gunnar; Tellefsen, Georg; Johannsen, Annsofi; Liljeborg, Anders

    2013-01-01

    To evaluate the relative abrasivity of different toothpastes and polishing pastes both qualitatively and quantitatively. Acrylic plates were exposed to brushing in a brushing machine with a toothpaste/water slurry for 1 and 6 h. Twelve different toothpastes were used and also four different polishing pastes. The results were evaluated using a profilometer after 1 and 6 h of brushing (corresponding to 2000 and 12 000 double strokes, respectively). A surface roughness value (Ra-value) and also a volume loss value were calculated from the profilometer measurements. These values were then correlated to each other. An unpaired t-test for the difference in the abrasion values between the toothpastes and the abrasion values over time was used. The polishing paste RDA® 170 yielded higher Ra-values than RDA 250®, both after 1 and 6 h of brushing (1.01 ± 0.22 and 8.99 ± 1.55 compared to 0.63 ± 0.26 and 7.83 ± 5.89, respectively) as well as volume loss values (3.71 ± 0.17 and 20.20 ± 2.41 compared to 2.15 ± 1.41 and 14.79 ± 11.76, respectively), thus poor correlations between the RDA and Ra and Volume loss values were shown. Among the toothpastes, Apotekets® showed the highest Ra value after 1 h of brushing and Pepsodent® whitening after 6 h of brushing. Pepsodent® whitening also showed the highest volume loss values, both after 1 and 6 h of brushing. This study emphasizes the importance of not only considering the RDA value, but also a roughness value, when describing the abrasivity of a toothpaste. Furthermore, it can be concluded that so called 'whitening' toothpastes do not necessarily have a higher abrasive effect than other toothpastes.

  16. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics.

    PubMed

    Borges, Gilberto Antonio; Sophr, Ana Maria; de Goes, Mario Fernando; Sobrinho, Lourenço Correr; Chan, Daniel C N

    2003-05-01

    The ceramic composition and microstructure surface of all-ceramic restorations are important components of an effective bonding substrate. Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding. Although surface treatments of feldspathic and leucite porcelains have been studied previously, the high alumina-containing and lithium disilicate ceramics have not been fully investigated. The purpose of this study was to assess the surface topography of 6 different ceramics after treatment with either hydrofluoric acid etching or airborne aluminum oxide particle abrasion. Five copings each of IPS Empress, IPS Empress 2 (0.8 mm thick), Cergogold (0.7 mm thick), In-Ceram Alumina, In-Ceram Zirconia, and Procera (0.8 mm thick) were fabricated following the manufacturer's instructions. Each coping was longitudinally sectioned into 4 equal parts by a diamond disk. The resulting sections were then randomly divided into 3 groups depending on subsequent surface treatments: Group 1, specimens without additional surface treatments, as received from the laboratory (control); Group 2, specimens treated by use of airborne particle abrasion with 50-microm aluminum oxide; and Group 3, specimens treated with 10% hydrofluoric acid etching (20 seconds for IPS Empress 2; 60 seconds for IPS Empress and Cergogold; and 2 minutes for In-Ceram Alumina, In-Ceram Zirconia, and Procera). Airborne particle abrasion changed the morphologic surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. The surface topography of these ceramics exhibited shallow irregularities not evident in the control group. For Procera, the 50-microm aluminum oxide airborne particle abrasion produced a flattened surface. Airborne particle abrasion of In-Ceram Alumina and In-Ceram Zirconia did not change the morphologic characteristics and the same shallows pits found in the control group remained. For IPS Empress 2, 10% hydrofluoric

  17. Military blast exposure, ageing and white matter integrity

    PubMed Central

    Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.

    2015-01-01

    Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure—one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan—is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a ‘dose-response’ relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast

  18. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  19. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  20. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  1. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  2. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  3. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  4. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  5. Sliding-gate valve for use with abrasive materials

    DOEpatents

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  6. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    NASA Astrophysics Data System (ADS)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  7. Temporal Progression of Visual Injury from Blast Exposure

    DTIC Science & Technology

    2013-09-01

    carprofen one day before the blast for pain management. A baseline of vision functionality is established before the blast using the metrics...returned to the animal facility. While animals do not show signs of pain following the blast exposure, carprofen is administered the next day as a

  8. Abrasive wear behavior of in-situ RZ5-10wt%TiC composite

    NASA Astrophysics Data System (ADS)

    Mehra, Deepak; Mahapatra, M. M.; Harsha, S. P.

    2018-05-01

    RZ5 Magnesium alloys containing zinc, rare earth and zirconium are well-known to have high specific strength, good creep resistance widely used in aerospace components. The incorporation of hard ceramic strengthens RZ5 mg alloy. The RZ5-10wt%TiC composite has been fabricated in situ using RZ5 mg alloy as matrix and TiC as reinforcement by self propagating high temperature synthesis (SHS) technique. This paper investigates the abrasive wear behavior of RZ5-10wt%TiC. Tests were performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load. The results showed improvement in the wear resistance of testing composite as compared to the unreinforced RZ5 Mg alloy. The coefficient of friction and weight loss increased linearly as applied load and sliding distance increased. The field emission scanning electron microscopic (FESEM) showed dominate wear mechanisms: abrasion, ploughing grooves.

  9. Blast furnace supervision and control system

    SciTech Connect

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas --more » operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.« less

  10. Abrasion-Resistant Coating for Flexible Insulation

    NASA Technical Reports Server (NTRS)

    Mui, D.; Headding, R. E.

    1986-01-01

    Ceramic coating increases durability and heat resistance of flexible high-temperature insulation. Coating compatible with quartz-fabric insulation allowing it to remain flexible during and after repeated exposures to temperatures of 1,800 degree F (982 degree C). Prevents fabric from becoming brittle while increasing resistance to aerodynamic abrasion and loading. Coating consists of penetrating precoat and topcoat. Major ingredients high-purity colloidal silica binder and ground silica filler, which ensure stability and compatibility with fabric at high temperatures. Both precoat and topcoat cured at room temperature.

  11. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting

    PubMed Central

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-01-01

    This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740

  12. Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2013-01-01

    After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.

  13. Otologic blast injuries due to the Kenya embassy bombing.

    PubMed

    Helling, Eric Robert

    2004-11-01

    Otologic injuries are frequently associated with large blasts. On August 7, 1998, a large truck bomb exploded next to the U.S. Embassy in Nairobi, Kenya. Initial patient findings and care are reviewed. Five months later, an otologic screening and care mission was then sent to comprehensively screen all remaining blast victims on site in Nairobi and to determine degree of persistent injury. Surgical care appropriate for an outpatient environment was provided. Five of 14 tympanic membranes without intervention failed to heal, while 3 of 3 with previous intervention had. Blast injury severity did not correlate to distance from blast epicenter. This may be due to channeling of the blast through the embassy building and an unpredictable pattern of blast overpressure within the building. It is recommended that comprehensive otologic screening be performed after blast events to identify occult injuries and improve outcomes. Early intervention for tympanic membrane perforation (suctioning, eversion of perforations, and paper patch) is recommended.

  14. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    NASA Astrophysics Data System (ADS)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  15. Testing different discrimination methods between microearthquakes and quarry blasts - a case study in Hungary

    NASA Astrophysics Data System (ADS)

    Kalocsai, Lilla; Kiszely, Márta; Süle, Bálint; Győri, Erzsébet

    2017-04-01

    Due to the development of seismological network, increasing number of events have been detected in the last years in Hungary. However about 50% of these shocks were quarry blasts. Therefore decontamination of catalogue for revealing the reliable natural seismicity has become an important task. We have studied the events occurring in the surroundings of Mecsek Hills. The goal of our research was to find the best method to separate earthquakes and quarry blasts. In the first step we have studied the diurnal distributions of the events. Because of different focal mechanisms, the waveforms and amplitudes of arriving phases of earthquakes and quarry blasts are different. We have tested the most typical parameter, the P and S amplitude ratio, which is often used for separation. The waveform similarities have been analyzed using cross-correlation matrix and dendrograms. The earthquakes and the blasts of different quarries have been arranged into different clusters. We have computed spectrograms and because the blasts were carried out by delay-fired technology we have computed binary spectrograms too. Computation of binary spectra is a useful visualization method to recognize the delay-fired explosions, because it emphasizes the long-duration modulations of the spectra. It is made from the original spectra by application of a filter that replaces the spectral amplitudes with a binary code, which simply reflects the local spectral highs and lows. The modulations were present in most of the spectra of blasts and in contrast to the earthquakes, the modulations have been observable until the end of the spectrogram. We also have studied the scalloping and steepness of the spectra.

  16. On firework blasts and qualitative parameter dependency.

    PubMed

    Zohdi, T I

    2016-01-01

    In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given.

  17. Bomb blast imaging: bringing order to chaos.

    PubMed

    Dick, E A; Ballard, M; Alwan-Walker, H; Kashef, E; Batrick, N; Hettiaratchy, S; Moran, C G

    2018-06-01

    Blast injuries are complex, severe, and outside of our everyday clinical practice, but every radiologist needs to understand them. By their nature, bomb blasts are unpredictable and affect multiple victims, yet require an immediate, coordinated, and whole-hearted response from all members of the clinical team, including all radiology staff. This article will help you gain the requisite expertise in blast imaging including recognising primary, secondary, and tertiary blast injuries. It will also help you understand the fundamental role that imaging plays during mass casualty attacks and how to avoid radiology becoming a bottleneck to the forward flow of severely injured patients as they are triaged and treated. Copyright © 2018. Published by Elsevier Ltd.

  18. On firework blasts and qualitative parameter dependency

    PubMed Central

    Zohdi, T. I.

    2016-01-01

    In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given. PMID:26997903

  19. Defining an Abrasion Index for Lunar Surface Systems as a Function of Dust Interaction Modes and Variable Concentration Zones

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and subcategorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include: (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  20. 9 CFR 311.14 - Abrasions, bruises, abscesses, pus, etc.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Abrasions, bruises, abscesses, pus, etc. 311.14 Section 311.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... AND VOLUNTARY INSPECTION AND CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND...

  1. Abrasion resistant coating and method of making the same

    DOEpatents

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  2. Comment on "chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model".

    PubMed

    Tisdall, Martin; Petzold, Axel

    2012-10-24

    In a case study, the authors report an increase in phosphorylated neurofilament heavy chain, a marker of neuroaxonal damage, in the plasma of a blast-exposed patient immediately after injury. They suggest that this phosphoprotein may be a useful body fluid indicator of acute blast traumatic brain injury.

  3. Distinguishing the Unique Neuropathological Profile of Blast Polytrauma

    PubMed Central

    Greenberg, Shaylen; Eck, Joseph; Lavik, Erin

    2017-01-01

    Traumatic brain injury sustained after blast exposure (blast-induced TBI) has recently been documented as a growing issue for military personnel. Incidence of injury to organs such as the lungs has decreased, though current epidemiology still causes a great public health burden. In addition, unprotected civilians sustain primary blast lung injury (PBLI) at alarming rates. Often, mild-to-moderate cases of PBLI are survivable with medical intervention, which creates a growing population of survivors of blast-induced polytrauma (BPT) with symptoms from blast-induced mild TBI (mTBI). Currently, there is a lack of preclinical models simulating BPT, which is crucial to identifying unique injury mechanisms of BPT and its management. To meet this need, our group characterized a rodent model of BPT and compared results to a blast-induced mTBI model. Open field (OF) performance trials were performed on rodents at 7 days after injury. Immunohistochemistry was performed to evaluate cellular outcome at day seven following BPT. Levels of reactive astrocytes (GFAP), apoptosis (cleaved caspase-3 expression), and vascular damage (SMI-71) were significantly elevated in BPT compared to blast-induced mTBI. Downstream markers of hypoxia (HIF-1α and VEGF) were higher only after BPT. This study highlights the need for unique therapeutics and prehospital management when handling BPT. PMID:28424745

  4. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    DOT National Transportation Integrated Search

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  5. Influence of different toothpaste abrasives on the bristle end-rounding quality of toothbrushes.

    PubMed

    de Oliveira, G J P L; de Aveiro, J M; Pavone, C; Marcantonio, R A C

    2015-02-01

    To evaluate the influence of different toothpaste abrasives on the bristle wear and bristle tip morphology of toothbrushes with different degrees of hardness. Ninety samples of bovine incisor teeth were used in this study. The samples were randomly divided into three groups according to the bristle hardness of the toothbrush used: soft bristles (S); extra-soft bristles (ES); hard bristles (H). The toothbrushes of each group were randomly divided into six subgroups with five toothbrushes each, according to the abrasive of the toothpaste used in the simulation: Negative control (distilled water); toothpaste 1 (silica); toothpaste 2 (hydrated silica); toothpaste 3 (calcium carbonate, calcium bicarbonate and silica); toothpaste 4 (tetrapotassium pyrophosphate, silica and titanium dioxide); toothpaste 5 (calcium carbonate). The samples were placed in a toothbrushing simulating machine that simulating three months of brushing. The toothbrush bristles were evaluated by the bristle wear index, and the bristle tips morphology was evaluated by the bristle tip morphology index. The ES brush presented the highest bristle wear among the toothbrushes. Additionally, the S brushes showed better morphology of the bristles followed by ES and H brushes. The type of abrasive only influenced the bristle tip morphology of the ES brushes. The toothpaste 3 induced the worse bristle tip morphology than all the other toothpastes. Different abrasives have influence only on the bristle tip morphology of the ES brushes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Topical non-steroidal anti-inflammatory drugs for analgesia in traumatic corneal abrasions.

    PubMed

    Wakai, Abel; Lawrenson, John G; Lawrenson, Annali L; Wang, Yongjun; Brown, Michael D; Quirke, Michael; Ghandour, Omar; McCormick, Ryan; Walsh, Cathal D; Amayem, Ahmed; Lang, Eddy; Harrison, Nick

    2017-05-18

    Traumatic corneal abrasions are relatively common and there is a lack of consensus about analgesia in their management. It is therefore important to document the clinical efficacy and safety profile of topical ophthalmic non-steroidal anti-inflammatory drugs (NSAIDs) in the management of traumatic corneal abrasions. To identify and evaluate all randomised controlled trials (RCTs) comparing the use of topical NSAIDs with placebo or any alternative analgesic interventions in adults with traumatic corneal abrasions (including corneal abrasions arising from foreign body removal), to reduce pain, and its effects on healing time. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 2), MEDLINE Ovid (1946 to 30 March 2017), Embase Ovid (1947 to 30 March 2017), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 30 March 2017), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/); searched 30 March 2017, ZETOC (1993 to 30 March 2017), the ISRCTN registry (www.isrctn.com/editAdvancedSearch); searched 30 March 2017, ClinicalTrials.gov (www.clinicaltrials.gov); searched 30 March 2017 and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 30 March 2017. We did not use any date or language restrictions in the electronic searches for trials.We checked the reference lists of identified trials to search for further potentially relevant studies. RCTs comparing topical NSAIDs to placebo or any alternative analgesic interventions in adults with traumatic corneal abrasions. Two review authors independently performed data extraction and assessed risks of bias in the included studies. We rated the certainty of the evidence using GRADE. We included nine studies that met the inclusion criteria, reporting data on 637 participants.The studies took place in the UK, USA, Israel, Italy

  7. 30 CFR 57.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in...

  8. NIOSH comments to DOL on the Mine Safety and Health Administration's proposed rule on air quality, chemical substances, and respiratory protection standards by J. D. Millar, March 1, 1990

    SciTech Connect

    Not Available

    The testimony concerns the views of NIOSH regarding the Mine Safety and Health Administration (MSHA) proposed rule on permissible exposure limits; exposure monitoring, abrasive blasting; drill dust control; dangerous atmospheres; and prohibited areas for food and beverages. NIOSH continues to endorse the recommended exposure limit of 1 part per million (ppm) as a 15 minute short term exposure limit for nitrogen-dioxide (10102440). NIOSH supports MSHA in proposing an 8 hour time weighted average of 25ppm for nitric-oxide (10102439). NIOSH supports MSHA in proposing a limit of 35ppm as an 8 hour time weighted average (TWA) for carbon-monoxide (630080) and recommendsmore » that sulfur-dioxide (7446095) exposure be limited to 0.5ppm as an 8 hour TWA. NIOSH recommends that routine air monitoring be required on a periodic basis. NIOSH recommends that mine operators be required to establish a written exposure monitoring plan for each facility that outlines where area and personal samples should be taken, how many samples should be taken, and the implementation of the remaining portions of the proposed rule change. NIOSH supports the rules for abrasive blasting for both coal and metal/nonmetal mines and has identified several substitutive materials for silica sand that could be used in abrasive blasting.« less

  9. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  10. Abrasive wear of resin composites as related to finishing and polishing procedures.

    PubMed

    Turssi, Cecilia P; Ferracane, Jack L; Serra, Mônica C

    2005-07-01

    Finishing and polishing procedures may cause topographical changes and introduce subsurface microcracks in dental composite restoratives. Since both of these effects may contribute toward the kinetics of wear, the purpose of this study was to assess and correlate the wear and surface roughness of minifilled and nanofilled composites finished and polished by different methods. Specimens (n=10) made of a minifilled and a nanofilled composite were finished and polished with one of the four sequences: (1) tungsten carbide burs plus Al(2)O(3)-impregnated brush (CbBr) or (2) tungsten carbide burs plus diamond-impregnated cup (CbCp), (3) diamond burs plus brush (DmBr) or (4) diamond burs plus cup (DmCp). As a control, abrasive papers were used. After surface roughness had been quantified, three-body abrasion was simulated using the OHSU wear machine. The wear facets were then scanned to measure wear depth and post-testing roughness. All sets of data were subjected to ANOVA and Tukey's tests (alpha=0.05). Pearson's correlation test was applied to check for the existence of a relationship between pre-testing roughness and wear. Significantly smoother surfaces were attained with the sequences CbBr and CbCp, whereas DmCp yielded the roughest surface. Regardless of the finishing/polishing technique, the nanofilled composite exhibited the lowest pre-testing roughness and wear. There was no correlation between the surface roughness achieved after finishing/polishing procedures and wear (p=0.3899). Nano-sized materials may have improved abrasive wear resistance over minifilled composites. The absence of correlation between wear and surface roughness produced by different finishing/polishing methods suggests that the latter negligibly influences material loss due to three-body abrasion.

  11. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment.

    PubMed

    Prasad, Hari A; Pasha, Naveed; Hilal, Mohammed; Amarnath, G S; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-06-01

    airborne-particle abrasion using 50 µm Al 2 O 3 particles and 50 µm silica coated Al 2 O 3 are applied to the upper and lower surfaces of the specimens. Each specimen is held under a pressure of 30 psi for 15 seconds at a direction perpendicular to the surface and at a distance of 30mm with an airborne particle abrasion device for the specimens in the airborne particle abraded groups. Heat treatments were performed at a starting temperature of 500°C, heating rate of 100°c/ min, ending at a temperature of 1000°C and 15 minutes holding time without vacuum for the specimens in the group 4, 5, 9 and 10. Airborne-particle abrasion mimicking the preparation for cementation was applied to the lower surfaces with 50 µm alumina and silica coated alumina particles for the specimens in the groups 6, 7, 8, 9 and 10. The specimens were cleaned for 15 minutes in an ultrasonic bath containing distilled water. To determine the fracture strength, a disc of 10 mm diameter was used to place 3 hardened steel balls of 3 mm diameter separated each other by 120 degrees (described in the ISO standard 6872 for dental ceramics). Each specimen was centrally placed on this disc. The lower surface mimicking the internal surface of zirconia was the tension side, facing the supporting device testing, while the upper surface mimicking the external surface of the zirconia core was loaded with a flat punch (1 mm in diameter). A universal testing machine was used to perform the test at a cross head speed of 1mm/min. The failure stress was calculated with the equation listed in ISO 6872. The results were then statistically analyzed. A post hoc test was used for pair wise comparisons. The mean fracture strength of commercially available Zirconia Ceramill (AMANNGIRBACH) showed a significant higher value compared to the ZR-White (UPCERA) Zirconia ( P <0.001), Airborne abrasion treatment to the specimens showed a significant difference between the abraded groups and the control group ( P <0.001); further

  12. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    PubMed Central

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    specimens each. Heat treatment after airborne-particle abrasion using 50 µm Al2O3 particles and 50 µm silica coated Al2O3 are applied to the upper and lower surfaces of the specimens. Each specimen is held under a pressure of 30 psi for 15 seconds at a direction perpendicular to the surface and at a distance of 30mm with an airborne particle abrasion device for the specimens in the airborne particle abraded groups. Heat treatments were performed at a starting temperature of 500°C, heating rate of 100°c/ min, ending at a temperature of 1000°C and 15 minutes holding time without vacuum for the specimens in the group 4, 5, 9 and 10. Airborne-particle abrasion mimicking the preparation for cementation was applied to the lower surfaces with 50 µm alumina and silica coated alumina particles for the specimens in the groups 6, 7, 8, 9 and 10. The specimens were cleaned for 15 minutes in an ultrasonic bath containing distilled water. To determine the fracture strength, a disc of 10 mm diameter was used to place 3 hardened steel balls of 3 mm diameter separated each other by 120 degrees (described in the ISO standard 6872 for dental ceramics). Each specimen was centrally placed on this disc. The lower surface mimicking the internal surface of zirconia was the tension side, facing the supporting device testing, while the upper surface mimicking the external surface of the zirconia core was loaded with a flat punch (1 mm in diameter). A universal testing machine was used to perform the test at a cross head speed of 1mm/min. The failure stress was calculated with the equation listed in ISO 6872. The results were then statistically analyzed. A post hoc test was used for pair wise comparisons. Result: The mean fracture strength of commercially available Zirconia Ceramill (AMANNGIRBACH) showed a significant higher value compared to the ZR-White (UPCERA) Zirconia (P<0.001), Airborne abrasion treatment to the specimens showed a significant difference between the abraded groups and the

  13. Abrasion resistance of direct and indirect resins as a function of a sealant veneer.

    PubMed

    Ferraz Caneppele, Taciana Marco; Rocha, Daniel Maranha; Màximo Araujo, Maria Amelia; Valera, Màrcia Carneiro; Salazar Marocho, Susana MarIa

    2014-01-01

    Abrasive wear is one of the most common type of wear that not only affect teeth, as also dental restorations. Thus to investigate one of the etiological factors as tooth brushing procedure is clinical relevant in order to select the best material combination that may prevent damage of resin dental restoration's abrasion. This study evaluated the influence of tooth brushing on mass loss and surface roughness of direct Venus (Vs) and indirect Signum (Sg) resin composites, with and without a surface sealant, Fortify (F). Twenty-four specimens were prepared with each resin composite, using their proprietary curing units, according to manufacturer's instructions. All the specimens were polished and ultrasonically cleaned in distilled water for 5 minutes. Half of the specimens of each resin (n = 12) were covered with F (Vs F and Sg F ), except for the control (C) specimens (Vs C and Sg C ), which were not sealed. Mass loss (ML) as well as surface roughness (Ra ) was measured for all the specimens. Then, the specimens were subjected to toothbrush-dentifrice abrasion, using a testing machine for 67.000 brushing strokes, in an abrasive slurry. After brushing simulation, the specimens were removed from the holder, rinsed thoroughly and blot dried with soft absorbent paper. The abrasion of the material was quantitatively determined with final measurements of ML and surface roughness, using the method described above. ML data were analyzed by two-way analysis of variance (ANOVA) and the analysis indicated that resin composites were not statistically different; however, the specimens sealed with F showed higher ML. Ra mean values of the groups Vs F and Sg F significantly increased. Tooth brushing affects mainly the roughness of the direct and indirect resin composites veneered with a sealant.

  14. KrioBlast TM as a New Technology of Hyper-fast Cryopreservation of Cells and Tissues. Part I. Thermodynamic Aspects and Potential Applications in Reproductive and Regenerative Medicine.

    PubMed

    Katkov, I I; Bolyukh, V F; Sukhikh, G T

    2018-03-01

    Kinetic (dynamic) vitrification is a promising trend in cryopreservation of biological materials because it allows avoiding the formation of lethal intracellular ice and minimizes harmful effects of highly toxic penetrating cryoprotectants. A uniform cooling protocol and the same instruments can be used for practically all types of cells. In modern technologies, the rate of cooling is essentially limited by the Leidenfrost effect. We describe a novel platform for kinetic vitrification of biological materials KrioBlast TM that realizes hyper-fast cooling and allows overcoming the Leidenfrost effect. This opens prospects for creation of a novel technology of cell cryopreservation for reproductive and regenerative medicine.

  15. 22 CFR 121.11 - Military demolition blocks and blasting caps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Military demolition blocks and blasting caps... blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not include the following articles: (a) Electric squibs. (b) No. 6 and No. 8 blasting caps, including electric...

  16. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Loading of explosives or blasting agents. 1926.905 Section... Explosives § 1926.905 Loading of explosives or blasting agents. (a) Procedures that permit safe and efficient... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left...

  17. Investigations of primary blast-induced traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  18. Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)

    PubMed Central

    Dowd, Scot E; Zaragoza, Joaquin; Rodriguez, Javier R; Oliver, Melvin J; Payton, Paxton R

    2005-01-01

    Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from

  19. 30 CFR 75.1323 - Blasting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by...) Each wire connection in a blasting circuit shall be— (1) Properly spliced; and (2) Separated from other connections in the circuit to prevent accidental contact and arcing. (h) Uninsulated connections in each...

  20. 30 CFR 75.1323 - Blasting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by...) Each wire connection in a blasting circuit shall be— (1) Properly spliced; and (2) Separated from other connections in the circuit to prevent accidental contact and arcing. (h) Uninsulated connections in each...

  1. Evolution and diagnostic utility of aeolian rat-tails: A new type of abrasion feature on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Favaro, Elena A.; Hugenholtz, Christopher H.; Barchyn, Thomas E.

    2017-10-01

    Aeolian rat-tails (ARTs) are a previously undocumented, regionally-ubiquitous aeolian abrasion feature observed on matrix-supported ignimbrite surfaces in the Puna Plateau of Northwest Argentina. ARTs consist of an abrasion-resistant lithic clast projecting above the surface with a lee tail or 'keel' in the more erodible matrix. Size is controlled by the dimensions of the windward lithic clast, ranging from centimetre to meter scale; spatial density varies with clast content, which may reflect variations in ignimbrite facies. Field observations suggest ARTs follow a definable evolutionary sequence. First, an abrasion-resistant lithic clast contained within the ignimbrite is exposed to abrasion at the surface. Impacts from abrading particles erode the softer ignimbrite matrix adjacent to the clast. The clast shelters the leeward surface under a unimodal abrasion direction, creating a tail that tapers downwind and elongates as the clast emerges. Clasts become dislodged from the matrix as the surrounding surface erodes, ultimately destroying the feature if the clast is small enough to be mobilized directly by wind or impacting particles. This evolutionary sequence explains the morphology of ARTs and the presence of loose clasts on the ignimbrite surface, which contributes to the development of other landforms in the region, such as periodic bedrock ridges, yardangs, and megaripples. Satellite and rover images suggest similar features also exist on Mars. Because the formation and preservation of ARTs is contingent on unimodal abrasion direction, their orientation can be used as an indicator of long-term aeolian sediment transport direction.

  2. Acceleration from short-duration blast

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.

    2018-01-01

    The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.

  3. Prevention of Blast-Related Injuries

    DTIC Science & Technology

    2015-07-14

    pathology of traumatic axonal injury involves distinct injury processes, neurofilament compaction (NFC) and impaired axoplasmic transport (IAT)1. In rat...assessments and may render diagnosis of blast related pathology even more difficult. These neuronal injury changes in the grey matter that appeared...were from blast studies using rodents16,17 and impulse noise18. A putative pathological implication for microglia comes from studies by Kane et al

  4. Note: A table-top blast driven shock tube

    NASA Astrophysics Data System (ADS)

    Courtney, Michael W.; Courtney, Amy C.

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  5. Note: A table-top blast driven shock tube.

    PubMed

    Courtney, Michael W; Courtney, Amy C

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  6. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.

    PubMed

    Naderizadeh, Sara; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-01

    Nanoparticle films are one of the most suitable platforms for obtaining sub-micrometer and nanometer dual-scale surface texture required for liquid repellency. The assembly of superhydrophobic nanoparticles into conformal and strongly adherent films having abrasion-induced wear resistance still poses a significant challenge. Various techniques have been developed over the years to render nanoparticle films with good liquid repellent properties and transparency. However, forming abrasion resistant superhydrophobic nanoparticle films on hard surfaces is challenging. One possibility is to partially embed or weld nanoparticles in thin thermoplastic primers applied over metals. Hexamethyldisilazane-functionalized fumed silica nanoparticle films spray deposited on aluminum surfaces were rendered abrasion resistant by thermally welding them into thermoplastic polyurethane (TPU) primer applied a priori over aluminum. Different solvents, nanoparticle concentrations and annealing temperatures were studied to optimize nanoparticle film morphology and hydrophobicity. Thermal annealing at 150 °C enhanced stability and wear resistance of nanoparticle films. A thin thermal interface layer of graphene nanoplatelets (GnPs) between the primer and the nanoparticle film significantly improved superhydrophobic wear resistance after annealing. As such, superhydrophobic nanocomposite films with the GnPs thermal interface layer displayed superior abrasion-induced wear resistance under 20 kPa compared to films having no GnPs-based thermal interface. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. 30 CFR 56.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Use § 56.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from...

  8. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    USDA-ARS?s Scientific Manuscript database

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  9. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  10. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  11. Micro-blast waves using detonation transmission tubing

    NASA Astrophysics Data System (ADS)

    Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

    2013-07-01

    Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

  12. Application of Carbon Composite Bricks for Blast Furnace Hearth

    NASA Astrophysics Data System (ADS)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  13. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  14. Quantitative electroencephalography in a swine model of blast-induced brain injury.

    PubMed

    Chen, Chaoyang; Zhou, Chengpeng; Cavanaugh, John M; Kallakuri, Srinivasu; Desai, Alok; Zhang, Liying; King, Albert I

    2017-01-01

    Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.

  15. Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy.

    PubMed

    Reymus, Marcel; Roos, Malgorzata; Eichberger, Marlis; Edelhoff, Daniel; Hickel, Reinhard; Stawarczyk, Bogna

    2018-04-27

    Because of their industrially standardized process of manufacturing, CAD/CAM resin composites show a high degree of conversion, making a reliable bond difficult to achieve. The purpose of this experiment was to investigate the tensile bond strength (TBS) of luting composite to CAD/CAM resin composite materials as influenced by air abrasion and pretreatment strategies. The treatment factors of the present study were (1) brand of the CAD/CAM resin composite (Brilliant Crios [Coltene/Whaledent], Cerasmart [GC Europe], Shofu Block HC [Shofu], and Lava Ultimate [3M]); (2) air abrasion vs. no air abrasion; and (3) pretreatment using a silane primer (Clearfil Ceramic Primer, Kuraray) vs. a resin primer (One Coat 7 Universal, Coltene/Whaledent). Subsequently, luting composite (DuoCem, Coltene/Whaledent) was polymerized onto the substrate surface using a mold. For each combination of the levels of the three treatment factors (4 (materials) × 2 (air abrasion vs. no air abrasion; resin) × 2 (primer vs. silane primer)), n = 15, specimens were prepared. After 24 h of water storage at 37 °C and 5000 thermo-cycles (5/55 °C), TBS was measured and failure types were examined. The resulting data was analyzed using Kaplan-Meier estimates of the cumulative failure distribution function with Breslow-Gehan tests and non-parametric ANOVA (Kruskal-Wallis test) followed by the multiple pairwise Mann-Whitney U test with α-error adjustment using the Benjamini-Hochberg procedure and chi-square test (p < 0.05). The additional air abrasion step increased TBS values and lowered failure rates. Specimens pretreated using a resin primer showed significantly higher TBS and lower failure rates than those pretreated using a silane primer. The highest failure rates were observed for groups pretreated with a silane primer. Within the Shofu Block HC group, all specimens without air abrasion and pretreatment with a silane primer debonded during the aging procedure. Before fixation of CAD

  16. Modelling the blast environment and relating this to clinical injury: experience from the 7/7 inquest.

    PubMed

    Hepper, Alan E; Pope, D J; Bishop, M; Kirkman, E; Sedman, A; Russell, R; Mahoney, P F; Clasper, J

    2014-06-01

    This paper addresses the computational modelling of a series of specific blast-related incidents and the relationships of clinical and engineering interpretations. The Royal Centre for Defence Medicine and the Defence Science and Technology Laboratory were tasked in 2010 by the UK Ministry of Defence to assist the Coroner's inquests into the 7 July 2005 London bombings. A three phase approach was taken. The first phase included an engineering expert in blast effects on structures reviewing photographs of the damaged carriages and bus to give a view on the likely physical effects on people close to the explosions. The second phase was a clinical review of the evidence by military clinicians to assess blast injury in the casualties. The third phase was to model the blast environment by structural dynamics experts to assess likely blast loading on victims to evaluate the potential blast loading on individuals. This loading information was then assessed by physiology experts. Once all teams (engineering, clinical and modelling/physiological) had separately arrived at their conclusions, the information streams were integrated to arrive at a consensus. The aim of this paper is to describe the methodology used as a potential model for others to consider if faced with a similar investigation, and to show the benefit of the transition of military knowledge to a civilian environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Abrasive wear behavior of heat-treated ABC-silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  18. Application of AI techniques to blast furnace operations

    SciTech Connect

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination ofmore » fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.« less

  19. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  20. The quinary pattern of blast injury.

    PubMed

    Kluger, Yoram; Nimrod, Adi; Biderman, Philippe; Mayo, Ami; Sorkin, Patric

    2007-01-01

    Bombing is the primary weapon of global terrorism, and it results in a complicated, multidimensional injury pattern. It induces bodily injuries through the well-documented primary, secondary, tertiary, and quaternary mechanisms of blast. Their effects dictate special medical concern and timely implementation of diagnostic and management strategies. Our objective is to report on clinical observations of patients admitted to the Tel Aviv Medical Center following a terrorist bombing. The explosion injured 27 patients, and three died. Four survivors who had been in close proximity to the explosion, as indicated by their eardrum perforation and additional blast injuries, were exposed to the blast wave. They exhibited a unique and immediate hyperinflammatory state, two upon admission to the intensive care unit and two during surgery. This hyperinflammatory state manifested as hyperpyrexia, sweating, low central venous pressure, and positive fluid balance. This state did not correlate with the complexity of injuries sustained by any of the 67 patients admitted to the intensive care unit after previous bombings. The patients' hyperinflammatory behavior, unrelated to their injury complexity and severity of trauma, indicates a new injury pattern in explosions, termed the "quinary blast injury pattern." Unconventional materials used in the manufacture of the explosive can partly explain the observed early hyperinflammatory state. Medical personnel caring for blast victims should be aware of this new type of bombing injury.

  1. Abrasion resistance of muscovite in aeolian and subaqueous transport experiments

    NASA Astrophysics Data System (ADS)

    Anderson, Calvin J.; Struble, Alexander; Whitmore, John H.

    2017-02-01

    Complementary aeolian and subaqueous transport experiments showed a trend in muscovite abrasion that may be useful for identifying ancient sandstones as aeolian or subaqueous in origin. We found that our experimental aeolian processes pulverized the micas quickly, while our subaqueous processes did not. In a pair of abrasion resistance experiments conducted with micaceous quartz sand, it was found that large muscovite grains were (1) reduced by aeolian processes to less than 500 μm in just 4 days, and (2) preserved by subaqueous processes to 610 ± 90 μm even after 356 days. At 20 days of aeolian transport no loose micas could be found even under the microscope, but after a year of subaqueous transport loose muscovite grains could still be seen with the naked eye. Thus, the occurrence and character of micas in a sandstone, particularly muscovite, may be helpful in determining the ancient depositional process.

  2. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    PubMed

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  3. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2011-01-01

    The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width as currently defined by the ASTM G 171 Standard. The ZOI has been found to be at least twice the size of a standard width measurement, in some cases considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for detailed analysis. Documenting additional changes to various surface roughness parameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Data are presented to show that different combinations of scratch tips and abraded materials can actually yield the same scratch width, but result in different volume displacement or removal measurements and therefore, the ZOI method is more discriminating than the ASTM method scratch width. Furthermore, by investigating the use of custom scratch tips for our specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized manner, and not just by scratch width alone, is reinforced. This benefit is made apparent when a tip creates an intricate contour having multiple peaks and valleys within a single scratch. This work lays the foundation for updating scratch measurement standards to improve modeling and characterization of three-body abrasion test results.

  4. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  5. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  6. The change in retentive force of magnetic attachment by abrasion.

    PubMed

    Huang, Yuanjin; Tawada, Yasuyuki; Hata, Yoshiaki; Watanabe, Fumihiko

    2008-07-01

    Magnets are frequently applied to removable dentures as retentive attachments. A magnet-retained removable overdenture might be slightly shifted from side to side by eccentric movement in the mouth, and the surface of magnetic attachment may be worn as a result. However, the relationship between the retentive force of magnetic attachment and its surface abrasion has not been reported. The purpose of this research is to investigate this relationship. Ten Mgfit DX 400 magnetic attachments for natural tooth roots were used for this experiment. The magnetic attachments were embedded in autopolymerizing acrylic resin, and ten pairs of specimens were fabricated. A 5-mm repeated gliding motion was applied on each pair of specimens until 30 000, 50 000, or 90 000 cycles had been achieved. The abrasion machine was under 5 kg loading, and the slide speed was 60 times/min. The retentive force of magnetic attachment was measured with a tension gauge at (1) before gliding; (2) after 30 000 gliding cycles; (3)after 50 000 gliding cycles; or (4) after 90 000 gliding cycles. The average change of retentive force of ten magnetic attachments after 30 000, 50 000, and 90 000 gliding cycles was 0.016 N, 0.003 N, and -0.008 N, respectively. The change was statistically analyzed using a paired-sample t test, which showed that the number of gliding cycles did not affect the retentive force of magnetic attachment significantly. The surface of magnetic attachment after gliding was observed by a microscope, and the abrasion of this attachment surface is clearly seen.

  7. Comparison of shear bond strength and surface structure between conventional acid etching and air-abrasion of human enamel.

    PubMed

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-11-01

    Recently, air-abrasion technology has been examined for potential applications within dentistry, including the field of orthodontics. The purpose of this study was to compare the traditional acid-etch technique with an air-abrasion surface preparation technique, with two different sizes of abrading particles. The following parameters were evaluated: (a) shear bond strength, (b) bond failure location, and (c) enamel surface preparation, as viewed through a scanning electron microscope. Sixty extracted human third molars were pumiced and divided into three groups of 20. The first group was etched with a 37% phosphoric acid gel for 30 seconds, rinsed for 30 seconds, and dried for 20 seconds. The second and third groups were air-abraded with (a) a 50 microm particle and (b) a 90 microm particle of aluminum oxide, with the Micro-etcher microabrasion machine (Danville Engineering Inc.). All three groups had molar stainless steel orthodontic brackets bonded to the buccal surface of each tooth with Transbond XT bonding system (3M Unitek). A Zwick Universal Testing Machine (Calitek Corp.) was used to determine shear bond strengths. The analysis of variance was used to compare the three groups. The Adhesive Remnant Index (ARI) was used to evaluate the residual adhesive on the enamel after bracket removal. The chi square test was used to evaluate differences in the ARI scores among the groups. The significance for all tests was predetermined at p < or = 0.05. The results indicated that there was a significant difference in shear bond strength among the three groups (p = 0.0001). The Duncan Multiple Range test showed a significant decrease in shear bond strength in the air-abraded groups. The chi square test revealed significant differences among the ARI scores of the acid-etched group and the air-abraded groups (chi(2) = 0.0001), indicating no adhesive remained on the enamel surface after debonding when air-abrasion was used. In conclusion, the current findings indicate that

  8. Explosibility and Ignitability of Plastic Abrasive Media.

    DTIC Science & Technology

    1987-06-01

    Polyplus Is an alpha cellulose filled urea formaldehyde with a hardness or 3.5. Type III is a urea melamine formaldehyde with a hardness of 4. A fourth...is a thermoplastic acrylic media and the Kopper’s media are thermoset formaldehydes . o The greatest potential for dust explosions is in the baghouss...type or plastio media trom E. I. Du Pont de Nemours and Company was also tested. This Type L Solidstrip plastic stripping abrasive is an acrylic resin

  9. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  10. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  11. Modelling and Testing of Blast Effect On the Structures

    NASA Astrophysics Data System (ADS)

    Figuli, Lucia; Jangl, Štefan; Papán, Daniel

    2016-10-01

    As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.

  12. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Image and Video Library

    2006-07-21

    This image shows the round, metallic working end of the rock abrasion tool at the end of a metallic cylinder. The flat grinding face, attached brush, and much of the smooth, metallic exterior of cylinder are covered with a deep reddish-brown layer of dust

  13. Blast Injury: Translating Research Into Operational Medicine (Preprint)

    DTIC Science & Technology

    2008-05-20

    i Blast Injury: Translating Research into Operational Medicine Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...SUBTITLE Blast Injury: Translating Research Into Operational Medicine 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Z39-18 iii Blast Injury: Translating Research into Operational Medicine Preprint BI-QP-JHS-CH10 Borden Institute This chapter was originally

  14. Metallurgical Evaluations of Depainting Processes on Aluminum Substrate

    NASA Technical Reports Server (NTRS)

    McGill, Preston

    1999-01-01

    In December 1993, the Environmental Protection Agency (EPA) Emission Standards Division and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) signed an Interagency Agreement (IA) initiating a task force for the technical assessment of alternative technologies for aerospace depainting operations. The United States Air Force (USAF) joined the task force in 1994. The mandates of the task force were: (1) To identify available alternative depainting systems that do not rely on methylene chloride or other ozone-depleting, chlorinated, and volatile organic carbon solvents. (2) To determine the viability, applicability, and pollution prevention potential of each identified alternative. (3) To address issues of safety, environmental impact, reliability, and maintainability. Through a Technical Implementation Committee (TIC), the task force selected and evaluated eight alternative paint stripping technologies: chemical stripping, carbon dioxide (CO2) blasting, xenon flashlamp and CO2 coatings removal (FLASHJET(R)), CO2 laser stripping, plastic media blasting (PMB), sodium bicarbonate wet stripping, high-pressure water blasting (WaterJet), and wheat starch abrasive blasting (Enviro-Strip(R)). (The CO2 blasting study was discontinued after the first depainting sequence.) This final report presents the results of the Joint EPA/NASA/USAF Interagency Depainting Study. Significant topics include: (1) Final depainting sequence data for the chemical stripping, PMB, sodium bicarbonate wet stripping, and WaterJet processes. (2) Strip rates for all eight technologies. (3) Sequential comparisons of surface roughness measurements for the seven viable depainting technologies. (4) Chronological reviews of and lessons learned in the conduct of all eight technologies. (5) An analysis of the surface roughness trends for each of the seven technologies. (6) Metallurgic evaluations of panels Summaries of corrosion and hydrogen embrittlement

  15. On the Interaction and Coalescence if Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert J.

    2005-01-01

    The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.

  16. Determination of Destress Blasting Effectiveness Using Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.

    2017-12-01

    Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.

  17. Computational modeling of blast exposure associated with recoilless weapons combat training

    NASA Astrophysics Data System (ADS)

    Wiri, S.; Ritter, A. C.; Bailie, J. M.; Needham, C.; Duckworth, J. L.

    2017-11-01

    Military personnel are exposed to blast as part of routine combat training with shoulder-fired recoilless rifles. These weapons fire large-caliber ammunitions capable of disabling structures and uparmored vehicles (e.g., tanks). Scientific, medical, and military leaders are beginning to recognize the blast overpressure from these shoulder-fired weapons may result in acute and even long-term physiological effects to military personnel. However, the back blast generated from the Carl Gustav and Shoulder-launched Multipurpose Assault Weapon (SMAW) shoulder-fired weapons on the weapon operator has not been quantified. By quantifying and modeling the full-body blast exposure from these weapons, better injury correlations can be constructed. Blast exposure data from the Carl Gustav and SMAW were used to calibrate a propellant burn source term for computational simulations of blast exposure on operators of these shoulder-mounted weapon systems. A propellant burn model provided the source term for each weapon to capture blast effects. Blast data from personnel-mounted gauges during weapon firing were used to create initial, high-fidelity 3D computational fluid dynamic simulations using SHAMRC (Second-order Hydrodynamic Automatic Mesh Refinement Code). These models were then improved upon using data collected from static blast sensors positioned around the military personnel while weapons were utilized in actual combat training. The final simulation models for both the Carl Gustav and SMAW were in good agreement with the data collected from the personnel-mounted and static pressure gauges. Using the final simulation results, contour maps were created for peak overpressure and peak overpressure impulse experienced by military personnel firing the weapon as well as those assisting with firing of those weapons. Reconstruction of the full-body blast loading enables a more accurate assessment of the cause of potential mechanisms of injury due to air blast even for subjects not

  18. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part II: Comparison of RDA-PE and Radiotracer RDA Measures.

    PubMed

    Schneiderman, Eva; Colón, Ellen; White, Donald J; St John, Samuel

    2015-01-01

    The purpose of this study was to compare the abrasivity of commercial dentifrices by two techniques: the conventional gold standard radiotracer-based Radioactive Dentin Abrasivity (RDA) method; and a newly validated technique based on V8 brushing that included a profilometry-based evaluation of dentin wear. This profilometry-based method is referred to as RDA-Profilometry Equivalent, or RDA-PE. A total of 36 dentifrices were sourced from four global dentifrice markets (Asia Pacific [including China], Europe, Latin America, and North America) and tested blindly using both the standard radiotracer (RDA) method and the new profilometry method (RDA-PE), taking care to follow specific details related to specimen preparation and treatment. Commercial dentifrices tested exhibited a wide range of abrasivity, with virtually all falling well under the industry accepted upper limit of 250; that is, 2.5 times the level of abrasion measured using an ISO 11609 abrasivity reference calcium pyrophosphate as the reference control. RDA and RDA-PE comparisons were linear across the entire range of abrasivity (r2 = 0.7102) and both measures exhibited similar reproducibility with replicate assessments. RDA-PE assessments were not just linearly correlated, but were also proportional to conventional RDA measures. The linearity and proportionality of the results of the current study support that both methods (RDA or RDA-PE) provide similar results and justify a rationale for making the upper abrasivity limit of 250 apply to both RDA and RDA-PE.

  19. Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization.

    PubMed

    Milly, Hussam; Festy, Frederic; Andiappan, Manoharan; Watson, Timothy F; Thompson, Ian; Banerjee, Avijit

    2015-05-01

    To evaluate the effect of pre-conditioning enamel white spot lesion (WSL) surfaces using bioactive glass (BAG) air-abrasion prior to remineralization therapy. Ninety human enamel samples with artificial WSLs were assigned to three WSL surface pre-conditioning groups (n=30): (a) air-abrasion with BAG-polyacrylic acid (PAA-BAG) powder, (b) acid-etching using 37% phosphoric acid gel (positive control) and (c) unconditioned (negative control). Each group was further divided into three subgroups according to the following remineralization therapy (n=10): (I) BAG paste (36 wt.% BAG), (II) BAG slurry (100 wt.% BAG) and (III) de-ionized water (negative control). The average surface roughness and the lesion step height compared to intra-specimen sound enamel reference points were analyzed using non-contact profilometry. Optical changes within the lesion subsurface compared to baseline scans were assessed using optical coherence tomography (OCT). Knoop microhardness evaluated the WSLs' mechanical properties. Raman micro-spectroscopy measured the v-(CO3)(2-)/v1-(PO4)(3-) ratio. Structural changes in the lesion were observed using confocal laser scanning microscopy (CLSM) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). All comparisons were considered statistically significant if p<0.05. PAA-BAG air-abrasion removed 5.1 ± 0.6 μm from the lesion surface, increasing the WSL surface roughness. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion reduced subsurface light scattering, increased the Knoop microhardness and the mineral content of the remineralized lesions (p<0.05). SEM-EDX revealed mineral depositions covering the lesion surface. BAG slurry resulted in a superior remineralization outcome, when compared to BAG paste. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion modified the lesion surface physically and enhanced remineralization using BAG 45S5 therapy. Copyright © 2015 Academy of Dental Materials. Published by Elsevier

  20. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following

  1. Blasting response of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  2. Erosion and abrasion on dental structures undergoing at-home bleaching

    PubMed Central

    Demarco, Flávio Fernando; Meireles, Sônia Saeger; Sarmento, Hugo Ramalho; Dantas, Raquel Venâncio Fernandes; Botero, Tatiana; Tarquinio, Sandra Beatriz Chaves

    2011-01-01

    This review investigates erosion and abrasion in dental structures undergoing at- home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled. PMID:23674914

  3. Comparison between different interdental stripping methods and evaluation of abrasive strips: SEM analysis.

    PubMed

    Grippaudo, Cristina; Cancellieri, Daniela; Grecolini, Maria E; Deli, Roberto

    2010-01-01

    The aim of this study was to evaluate the morphological effects and the surface irregularities produced by different methods of mechanical stripping (abrasive strips and burs) and chemical stripping (37% orthophosphoric acid) and the surface changes following the finishing procedures (polishing strips) or the subsequent application of sealants, in order to establish the right stripping method that can guarantee the smoothest surface. We have also analysed the level of wear on the different abrasive strips employed, according to their structure. 160 proximal surfaces of 80 sound molar teeth extracted for orthodontic and periodontal reasons, were divided into: 1 control group with non-treated enamel proximal surfaces and 5 different groups according to the stripping method used, were observed with scanning electron microscopy (SEM). Each one of the 5 treated groups was also divided into 3 different subgroups according to the finishing procedures or the subsequent application of sealants. The finishing stage following the manual reduction proves to be fundamental in reducing the number and depth of grooves created by the stripping. After the air rotor stripping method, the use of sealants is advised in order to obtain a smoother surface. The analysis of the combinations of mechanical and chemical stripping showed unsatisfactory results. Concerning the wear of the strips, we have highlighted a different abrasion degree for the different types of strips analysed with SEM. The enamel damages are limited only if the finishing procedure is applied, independently of the type of abrasive strip employed. It would be advisable, though clinically seldom possible, the use of sealants after the air rotor stripping technique. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  4. Mechanisms of Hearing Loss after Blast Injury to the Ear

    PubMed Central

    Cho, Sung-Il; Gao, Simon S.; Xia, Anping; Wang, Rosalie; Salles, Felipe T.; Raphael, Patrick D.; Abaya, Homer; Wachtel, Jacqueline; Baek, Jongmin; Jacobs, David; Rasband, Matthew N.; Oghalai, John S.

    2013-01-01

    Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body’s most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction. PMID:23840874

  5. Drill Holes and Predation Traces versus Abrasion-Induced Artifacts Revealed by Tumbling Experiments

    PubMed Central

    Gorzelak, Przemysław; Salamon, Mariusz A.; Trzęsiok, Dawid; Niedźwiedzki, Robert

    2013-01-01

    Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces. PMID:23505530

  6. Effect of Whitening Toothpastes on Dentin Abrasion: An In Vitro Study.

    PubMed

    Vieira, Gustavo Henrique Apolinario; Nogueira, Marcia Bessa; Gaio, Eduardo Jose; Rosing, Cassiano Kuchenbecker; Santiago, Sergio Lima; Rego, Rodrigo Otavio

    To compare the effect of toothbrushing abrasion with hydrated silica-based whitening and regular toothpastes on root dentin using contact profilometry. Ninety dentin specimens (4 x 4 x 2 mm) were randomly divided into five experimental groups (n = 18) according to the toothpaste: three whitening (W1, W2 and W3) and two regular toothpastes (R1 and R2) produced by two different manufacturers. Using a brushing machine, each specimen was brushed with a constant load of 300 g for 2500 cycles (4.5 cycles/s). The toothpastes were diluted at a ratio of 1:3 w/w (dentifrice:distilled water). The brush diamond tip of the profilometer moved at a constant speed of 0.05 mm/s with a force of 0.7 mN. The average value of brushing abrasion in μm (mean ± SD) was obtained from five consecutive measurements of each specimen: W1 = 8.86 ± 1.58, W2 = 7.59 ± 1.04, W3 = 8.27 ± 2.39, R1 = 2.89 ± 1.05 and R2= 2.94 ± 1.29. There was a significant difference between groups (ANOVA, p<0.0001). Post-hoc Tukey's test for multiple comparisons showed differences between all the whitening and regular toothpastes, but not among the whitening nor among the regular toothpastes. The whitening toothpastes tested can cause more dentin abrasion than the regular ones.

  7. Property-process relations in simulated clinical abrasive adjusting of dental ceramics.

    PubMed

    Yin, Ling

    2012-12-01

    This paper reports on property-process correlations in simulated clinical abrasive adjusting of a wide range of dental restorative ceramics using a dental handpiece and diamond burs. The seven materials studied included four mica-containing glass ceramics, a feldspathic porcelain, a glass-infiltrated alumina, and a yttria-stabilized tetragonal zirconia. The abrasive adjusting process was conducted under simulated clinical conditions using diamond burs and a clinical dental handpiece. An attempt was made to establish correlations between process characteristics in terms of removal rate, chipping damage, and surface finish and material mechanical properties of hardness, fracture toughness and Young's modulus. The results show that the removal rate is mainly a function of hardness, which decreases nonlinearly with hardness. No correlations were noted between the removal rates and the complex relations of hardness, Young's modulus and fracture toughness. Surface roughness was primarily a linear function of diamond grit size and was relatively independent of materials. Chipping damage in terms of the average chipping width decreased with fracture toughness except for glass-infiltrated alumina. It also had higher linear correlations with critical strain energy release rates (R²=0.66) and brittleness (R²=0.62) and a lower linear correlation with indices of brittleness (R²=0.32). Implications of these results can provide guidance for the microstructural design of dental ceramics, optimize performance, and guide the proper selection of technical parameters in clinical abrasive adjusting conducted by dental practitioners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Abrasive-assisted Nickel Electroforming Process with Moving Cathode

    NASA Astrophysics Data System (ADS)

    REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di

    2017-03-01

    In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.

  9. Randomized Controlled Trial to Explore the Effect of Experimental Low Abrasivity Dentifrices on Enamel Gloss and Smoothness, and the Build-up of Extrinsic Tooth Stain.

    PubMed

    Milleman, Kimberly R; Milleman, Jeffery L; Young, Sarah; Parkinson, Charles

    2017-06-01

    To evaluate and compare examiner-assessed changes in enamel gloss, extrinsic dental stain, and surface smoothness following one, two, four, and eight weeks of twice-daily use of an experimental low abrasivity desensitizing dentifrice (relative dentin abrasivity [RDA] ~40) containing 5% sodium tripolyphosphate (STP) chemical cleaning agent and 1% aluminum trioxide abrasive. This was compared with an ultra-low abrasivity dentifrice (5% STP only; RDA ~13), a moderate abrasivity fluoride dentifrice (RDA ~80), and a higher abrasivity marketed whitening dentifrice (RDA ~142). This was a single-center, examiner-blind, randomized, controlled, parallel group study in healthy adults stratified by gloss score and age. Following a washout period with a conventional silica abrasive dentifrice, subjects received a dental scale and polish and were randomized to treatment. Subjects brushed their teeth for two minutes, twice daily, with their assigned dentifrice. Enamel gloss was assessed visually by comparing the facial surfaces of the maxillary incisors to the Sturzenberger gloss standards. Extrinsic dental stain was measured on the 12 anterior teeth (facial and lingual) using the Macpherson modification of the Lobene Stain Index (MLSI). Tooth smoothness was assessed using scanning electron microscope (SEM) analysis of a silicone impression of the central incisors. Of 120 screened subjects, 95 were randomized to the study. Subjects using the low abrasivity aluminum trioxide/STP dentifrice demonstrated statistically significant (p < 0.05) and increasing improvements in surface gloss over baseline at all time points, with a significant treatment effect compared to all other study dentifrices from Week 2 (p < 0.05). With respect to dental stain, the low abrasivity dentifrice group had the lowest stain score at each post-treatment time point and demonstrated statistically significantly less stain compared to all study dentifrices at Weeks 2 (p < 0.05) and 8 (p < 0.01). For tooth

  10. 30 CFR 57.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...

  11. 30 CFR 57.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...

  12. 30 CFR 57.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...

  13. 30 CFR 57.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...

  14. Propelled abrasive grit for weed control in organic silage corn

    USDA-ARS?s Scientific Manuscript database

    Weed management in organic farming requires many strategies to accomplish acceptable control and maintain crop yields. This two-year field study used air propelled abrasive grit for in-row weed control in a silage corn system. Corncob grit was applied as a single application at corn vegetative growt...

  15. Lateral blasts at Mount St. Helens and hazard zonation

    USGS Publications Warehouse

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano

  16. 30 CFR 77.1304 - Blasting agents; special provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored in... Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions. (b) Where pneumatic loading is...

  17. 30 CFR 77.1304 - Blasting agents; special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored in... Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions. (b) Where pneumatic loading is...

  18. 30 CFR 77.1304 - Blasting agents; special provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored in... Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions. (b) Where pneumatic loading is...

  19. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  20. Explosively driven air blast in a conical shock tube

    SciTech Connect

    Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less

  1. 30 CFR 75.1326 - Examination after blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1326 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1326 Examination... and dust. (b) Immediately after the blasting area has cleared, a qualified person or a person working...

  2. Tooth brush abrasion of paint-on resins for shade modification of crown and bridge resins.

    PubMed

    Fujii, Koichi; Ban, Seiji; McCabe, John F

    2003-09-01

    The purpose of this study was to evaluate the surface roughness and resistance to toothbrush abrasion of three experimental paint-on composite resins developed for the shade modification of crown and bridge resins. The paint-on resins had less filler volume fraction than restorative composites or the crown and bridge resins and consequently were of low viscosity. The maximum surface roughness (Rmax) and the maximum depth loss by abrasion for the paint-on resins following 40,000 cycles of brushing ranged from 2.45 to 4.07 microm and 8.63 to 13.67 microm, respectively. Rmax values were 37.7-67.5% lower than that for the crown and bridge resin subjected to the same test. Wear depth was 19.9-49.4% lower than for the crown and bridge resin. These results suggest that the paint-on resins are expected to have adequate resistance to toothbrush abrasion and may therefore be suitable for clinical use.

  3. Seismic safety in conducting large-scale blasts

    NASA Astrophysics Data System (ADS)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  4. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    USGS Publications Warehouse

    Bridges, N.T.; Calef, F.J.; Hallett, B.W.; Herkenhoff, Kenneth E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; de Pablo, M.A.; Kocurek, G.A.; Langevin, Y.; Lewis, K.W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N.O.; Rice, CM.S.; Richardson, M.E.; Sautter, V.; Sletten, R.S.; Wiens, R.C.; Yingst, R.A.

    2014-01-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  5. Blasting, graphical interfaces and Unix

    SciTech Connect

    Knudsen, S.; Preece, D.S.

    1993-11-01

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less

  6. Blasting, graphical interfaces and Unix

    SciTech Connect

    Knudsen, S.; Preece, D.S.

    1994-12-31

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less

  7. A modeling of elementary passes taking into account the firing angle in abrasive water jet machining of titanium alloy

    NASA Astrophysics Data System (ADS)

    Bui, Van-Hung; Gilles, Patrick; Cohen, Guillaume; Rubio, Walter

    2018-05-01

    The use of titanium alloys in the aeronautical and high technology domains is widespread. The high strength and the low mass are two outstanding characteristics of titanium alloys which permit to produce parts for these domains. As other hard materials, it is challenging to generate 3D surfaces (e.g. pockets) when using conventional cutting methods. The development of Abrasive Water Jet Machining (AWJM) technology shows the capability to cut any kind of materials and it seems to be a good solution for such titanium materials with low specific force, low deformation of parts and low thermal shocks. Applying this technology for generating 3D surfaces requires to adopt a modelling approach. However, a general methodology results in complex models due to a lot of parameters of the machining process and based on numerous experiments. This study introduces an extended geometry model of an elementary pass when changing the firing angle during machining Ti-6AL-4V titanium alloy with a given machine configuration. Several experiments are conducted to observe the influence of major kinematic operating parameters, i.e. jet inclination angle (α) (perpendicular to the feed direction) and traverse speed (Vf). The material exposure time and the erosion capability of abrasives particles are affected directly by a variation of the traverse speed (Vf) and firing angle (α). These variations lead to different erosion rates along the kerf profile characterized by the depth and width of cut. A comparison demonstrated an efficiency of the proposed model for depth and width of elementary passes. Based on knowledge of the influence of both firing angle and traverse speed on the elementary pass shape, the proposed model allows to develop the simulation of AWJM process and paves a way for milling flat bottom pockets and 3D complex shapes.

  8. H-BLAST: a fast protein sequence alignment toolkit on heterogeneous computers with GPUs.

    PubMed

    Ye, Weicai; Chen, Ying; Zhang, Yongdong; Xu, Yuesheng

    2017-04-15

    The sequence alignment is a fundamental problem in bioinformatics. BLAST is a routinely used tool for this purpose with over 118 000 citations in the past two decades. As the size of bio-sequence databases grows exponentially, the computational speed of alignment softwares must be improved. We develop the heterogeneous BLAST (H-BLAST), a fast parallel search tool for a heterogeneous computer that couples CPUs and GPUs, to accelerate BLASTX and BLASTP-basic tools of NCBI-BLAST. H-BLAST employs a locally decoupled seed-extension algorithm for better performance on GPUs, and offers a performance tuning mechanism for better efficiency among various CPUs and GPUs combinations. H-BLAST produces identical alignment results as NCBI-BLAST and its computational speed is much faster than that of NCBI-BLAST. Speedups achieved by H-BLAST over sequential NCBI-BLASTP (resp. NCBI-BLASTX) range mostly from 4 to 10 (resp. 5 to 7.2). With 2 CPU threads and 2 GPUs, H-BLAST can be faster than 16-threaded NCBI-BLASTX. Furthermore, H-BLAST is 1.5-4 times faster than GPU-BLAST. https://github.com/Yeyke/H-BLAST.git. yux06@syr.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Highly concentrated foam formulation for blast mitigation

    DOEpatents

    Tucker, Mark D.; Gao, Huizhen

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  10. Blast overpressure after tire explosion: a fatal case.

    PubMed

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration.

  11. Characterising the acceleration phase of blast wave formation

    SciTech Connect

    Fox, T. E., E-mail: tef503@york.ac.uk; Pasley, J.; Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX

    2014-10-15

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relationmore » for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.« less

  12. Comparative study on the processing of armour steels with various unconventional technologies

    NASA Astrophysics Data System (ADS)

    Herghelegiu, E.; Schnakovszky, C.; Radu, M. C.; Tampu, N. C.; Zichil, V.

    2017-08-01

    The aim of the current paper is to analyse the suitability of three unconventional technologies - abrasive water jet (AWJ), plasma and laser - to process armour steels. In view of this, two materials (Ramor 400 and Ramor 550) were selected to carry out the experimental tests and the quality of cuts was quantified by considering the following characteristics: width of the processed surface at the jet inlet (Li), width of the processed surface at the jet outlet (Lo), inclination angle (a), deviation from perpendicularity (u), surface roughness (Ra) and surface hardness. It was fond that in terms of cut quality and environmental impact, the best results are offered by abrasive water jet technology. However, it has the lowest productivity comparing to the other two technologies.

  13. Toothbrush abrasion, simulated tongue friction and attrition of eroded bovine enamel in vitro.

    PubMed

    Vieira, A; Overweg, E; Ruben, J L; Huysmans, M C D N J M

    2006-05-01

    Enamel erosion results in the formation of a softened layer that is susceptible to disruption by mechanical factors such as brushing abrasion, tongue friction and attrition. The aim of this study was to investigate the individual contribution of those mechanical insults to the enamel loss caused by dental erosion. Forty two bovine enamel samples were randomly divided into seven groups (n=6 per group) that were submitted to 3cycles of one of the following regimes: erosion and remineralization (er/remin); toothbrush abrasion and remineralization (abr/remin); erosion, toothbrush abrasion and remineralization (er/abr/remin); attrition and remineralization (at/remin); erosion, attrition and remineralization (er/at/remin); simulated tongue friction and remineralization (tg/remin); erosion, simulated tongue friction and remineralization (er/tg/remin). Erosion took place in a demineralization solution (50mM citric acid, pH 3) for 10min under agitation. Brushing abrasion, tongue friction and attrition were simulated for 1min using a home-made wear device. Remineralization was carried out in artificial saliva for 2h. Enamel loss was quantified using optical profilometry. One-way ANOVA indicated a significant difference between the amounts of enamel lost due to the different wear regimes (p

  14. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  15. Correlating field and laboratory rates of particle abrasion, Rio Medio, Sangre de Cristo Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Polito, P. J.; Sklar, L. S.

    2006-12-01

    River bed sediments commonly fine downstream due to a combination of particle abrasion, selective transport of finer grains, and fining of the local sediment supply from hillslopes and tributaries. Particle abrasion rates can be directly measured in the laboratory using tumbling barrels and annular flumes, however, scaling experimental particle abrasion rates to the field has proven difficult due to the confounding effects of selective transport and local supply variations. Here we attempt to correlate laboratory and field rates of particle abrasion in a field setting where these confounding effects can be controlled. The Rio Medio, which flows westward from the crest of the Sangre de Cristo Mountains in north central New Mexico, is one of several streams studied by John P. Miller in the early 1960's. Several kilometers downstream of its headwaters, the river crosses the Picuris-Pecos fault. Upstream of the fault the river receives quartzite, sandstone and shale clasts from the Ortega Formation, while downstream sediments are supplied by the Embudo Granite. Because the upstream lithologies are not resupplied downstream of the fault, any observed fining of these clasts should be due only to abrasion and selective transport. We hypothesize that we can account for the effects of selective transport by comparing relative fining rates for the different upstream lithologies from both the field and a laboratory tumbler. By correlating laboratory abrasion rates with rock strength, we can predict the relative fining rates due solely to abrasion expected in the field; differences between the predicted and observed fining rates could then be attributed to selective transport. We used point counts to measure bed surface sediment grain size distributions at 15 locations along a 25 kilometer reach of the Rio Medio, beginning just downstream of the fault and ending upstream of a developed area with disturbed channel conditions. We recorded intermediate particle diameter as well

  16. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  17. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  18. Bomb blast mass casualty incidents: initial triage and management of injuries.

    PubMed

    Goh, S H

    2009-01-01

    Bomb blast injuries are no longer confined to battlefields. With the ever present threat of terrorism, we should always be prepared for bomb blasts. Bomb blast injuries tend to affect air-containing organs more, as the blast wave tends to exert a shearing force on air-tissue interfaces. Commonly-injured organs include the tympanic membranes, the sinuses, the lungs and the bowel. Of these, blast lung injury is the most challenging to treat. The clinical picture is a mix of acute respiratory distress syndrome and air embolism, and the institution of positive pressure ventilation in the presence of low venous pressures could cause systemic arterial air embolism. The presence of a tympanic membrane perforation is not a reliable indicator of the presence of a blast injury in the other air-containing organs elsewhere. Radiological imaging of the head, chest and abdomen help with the early identification of blast lung injury, head injury, abdominal injury, eye and sinus injuries, as well as any penetration by foreign bodies. In addition, it must be borne in mind that bomb blasts could also be used to disperse radiological and chemical agents.

  19. Reconstruction of improvised explosive device blast loading to personnel in the open

    NASA Astrophysics Data System (ADS)

    Wiri, Suthee; Needham, Charles

    2016-05-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  20. Spent coffee grounds as air-propelled abrasive grit for weed control

    USDA-ARS?s Scientific Manuscript database

    Spent coffee grounds (SCG) represent a significant food waste residue. Value-added uses for this material would be beneficial. Gritty agricultural residues, such as corncob grit, can be employed as abrasive air-propelled agents for organically-compatible postemergence shredding of weed seedlings sel...

  1. Lasting Retinal Injury in a Mouse Model of Blast-Induced Trauma.

    PubMed

    Mammadova, Najiba; Ghaisas, Shivani; Zenitsky, Gary; Sakaguchi, Donald S; Kanthasamy, Anumantha G; Greenlee, Justin J; West Greenlee, M Heather

    2017-07-01

    Traumatic brain injury due to blast exposure is currently the most prevalent of war injuries. Although secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure resulting from blast wave pressure has been reported among survivors of explosions, but with limited understanding of the resulting retinal pathologies. Using a compressed air-driven shock tube system, adult male and female C57BL/6 mice were exposed to blast wave pressure of 300 kPa (43.5 psi) per day for 3 successive days, and euthanized 30 days after injury. We assessed retinal tissues using immunofluorescence for glial fibrillary acidic protein, microglia-specific proteins Iba1 and CD68, and phosphorylated tau (AT-270 pThr181 and AT-180 pThr231). Primary blast wave pressure resulted in activation of Müller glia, loss of photoreceptor cells, and an increase in phosphorylated tau in retinal neurons and glia. We found that 300-kPa blasts yielded no detectable cognitive or motor deficits, and no neurochemical or biochemical evidence of injury in the striatum or prefrontal cortex, respectively. These changes were detected 30 days after blast exposure, suggesting the possibility of long-lasting retinal injury and neuronal inflammation after primary blast exposure. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  3. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dangerous. Blasting cap leg wires shall be kept short-circuited (shunted) until they are connected into the..., in accordance with the manufacturer's recommendations. (f) Connecting wires and lead wires shall be... manufacturer of the electric blasting caps used. (o) The number of electric blasting caps connected to a...

  4. Evaluation of Blast Resistance of Fiber Reinforced Composite Specimens under Contact Blast Load

    NASA Astrophysics Data System (ADS)

    Janota, O.; Foglar, M.

    2017-09-01

    This paper presents results of experimental programme which took place in 2014, 2015 and 2016. Experiments were focused on the resistance of full scale concrete panels subjected to contact blast loading. Specimens were loaded by contact blast by plastic explosive. All specimens were reinforced concrete slabs made of fiber concrete. Basalt mesh and textile sheets were added to some of the experiments for creating more heterogeneous material to achieve better resistance of the specimens. Evaluation of experiments was mainly focused on the damaged area on the contact side and soffit of the specimens. Dependency of the final damage of concrete panels on the weight of explosive and concrete strength was assessed.

  5. Blasting Damage Predictions by Numerical Modeling in Siahbishe Pumped Storage Powerhouse

    NASA Astrophysics Data System (ADS)

    Eslami, Majid; Goshtasbi, Kamran

    2018-04-01

    One of the popular methods of underground and surface excavations is the use of blasting. Throughout this method of excavation, the loading resulted from blasting can be affected by different geo-mechanical and structural parameters of rock mass. Several factors affect turbulence in underground structures some of which are explosion, vibration, and stress impulses caused by the neighbouring blasting products. In investigating the blasting mechanism one should address the processes which expand with time and cause seismic events. To protect the adjoining structures against any probable deconstruction or damage, it is very important to model the blasting process prior to any actual operation. Efforts have been taken in the present study to demonstrate the potentiality of numerical methods in predicting the specified parameters in order to prevent any probable destruction. For this purpose the blasting process was modeled, according to its natural implementation, in one of the tunnels of Siahbishe dam by the 3DEC and AUTODYN 3D codes. 3DEC was used for modeling the blasting environment as well as the blast holes and AUTODYN 3D for modeling the explosion process in the blast hole. In this process the output of AUTODYN 3D, which is a result of modeling the blast hole and is in the form of stress waves, is entered into 3DEC. For analyzing the amount of destruction made by the blasting operation, the key parameter of Peak Particle Velocity was used. In the end, the numerical modeling results have been compared with the data recorded by the seismographs planted through the tunnel. As the results indicated 3DEC and AUTODYN 3D proved appropriate for analyzing such an issue. Therefore, by means of these two softwares one can analyze explosion processes prior to their implementation and make close estimation of the damage resulting from these processes.

  6. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  7. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Iijima, Akihiro; Sato, Keiichi; Yano, Kiyoko; Tago, Hiroshi; Kato, Masahiko; Kimura, Hirokazu; Furuta, Naoki

    Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters ( Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.

  8. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave

  9. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  10. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  11. Mine Blast Loading: Experiments and Simulations

    DTIC Science & Technology

    2010-04-01

    plates by approximately 50%. We investigated the root cause for this discrepancy. The simulations calculate a turbulent-like flow field characterized...Toussaint [19] evaluated two numerical methods, Smooth Particle Hydrodynamics ( SPH ) and Arbitrary Lagrangian Eulerian (ALE), to simulate a mine blast on...That is, the mine blast products were not flowing along the solid plate boundary in the simulations as freely as they should. 6 In particular, the V

  12. Vascular and Inflammatory Factors in the Pathophysiology of Blast-Induced Brain Injury

    PubMed Central

    Elder, Gregory A.; Gama Sosa, Miguel A.; De Gasperi, Rita; Stone, James Radford; Dickstein, Dara L.; Haghighi, Fatemeh; Hof, Patrick R.; Ahlers, Stephen T.

    2015-01-01

    Blast-related traumatic brain injury (TBI) has received much recent attention because of its frequency in the conflicts in Iraq and Afghanistan. This renewed interest has led to a rapid expansion of clinical and animal studies related to blast. In humans, high-level blast exposure is associated with a prominent hemorrhagic component. In animal models, blast exerts a variety of effects on the nervous system including vascular and inflammatory effects that can be seen with even low-level blast exposures which produce minimal or no neuronal pathology. Acutely, blast exposure in animals causes prominent vasospasm and decreased cerebral blood flow along with blood-brain barrier breakdown and increased vascular permeability. Besides direct effects on the central nervous system, evidence supports a role for a thoracically mediated effect of blast; whereby, pressure waves transmitted through the systemic circulation damage the brain. Chronically, a vascular pathology has been observed that is associated with alterations of the vascular extracellular matrix. Sustained microglial and astroglial reactions occur after blast exposure. Markers of a central and peripheral inflammatory response are found for sustained periods after blast injury and include elevation of inflammatory cytokines and other inflammatory mediators. At low levels of blast exposure, a microvascular pathology has been observed in the presence of an otherwise normal brain parenchyma, suggesting that the vasculature may be selectively vulnerable to blast injury. Chronic immune activation in brain following vascular injury may lead to neurobehavioral changes in the absence of direct neuronal pathology. Strategies aimed at preventing or reversing vascular damage or modulating the immune response may improve the chronic neuropsychiatric symptoms associated with blast-related TBI. PMID:25852632

  13. Storage stability of flour-blasted brown rice

    USDA-ARS?s Scientific Manuscript database

    Brown rice was blasted with rice flour rather than sand in a sand blaster to make microscopic nicks and cuts so that water can easily penetrate into the brown rice endosperm and cook the rice in a shorter time. The flour-blasted American Basmati brown rice, long grain brown rice, and parboiled long...

  14. The Pre-Blast Concept for use on Armour Materials

    DTIC Science & Technology

    2016-02-01

    to improve blast resistance Repeated blast test results (up to 7 times) of candidate armour materials showed that the greatest deformation...may be used to increase blast resistance of steels. To test this, the ‘pre-blast’ concept test program includes hardening of materials by sheet charge...steels with hardness 450 HV or higher (up to 650 HV). In general, the improvement in deformation resistance is associated with increases in

  15. PaperBLAST: Text Mining Papers for Information about Homologs.

    PubMed

    Price, Morgan N; Arkin, Adam P

    2017-01-01

    Large-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources (Swiss-Prot, GeneRIF, and EcoCyc) that link protein sequences to scientific articles. PaperBLAST's database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quickly finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. PaperBLAST is available at http://papers.genomics.lbl.gov/. IMPORTANCE With the recent explosion of genome sequencing data, there are now millions of uncharacterized proteins. If a scientist becomes interested in one of these proteins, it can be very difficult to find information as to its likely function. Often a protein whose sequence is similar, and which is likely to have a similar function, has been studied already, but this information is not available in any database. To help find articles about similar proteins, PaperBLAST searches the full text of scientific articles for protein identifiers or gene identifiers, and it links these articles to protein sequences. Then, given a protein of interest, it can quickly find similar proteins in its database by using standard software (BLAST), and it can show snippets of text from relevant papers. We hope that PaperBLAST will make it easier for biologists to predict proteins' functions.

  16. 13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH SAWDUST HOPPER. BLASTING TUB HAS DOUBLE WALLS OF 3/4' THICK STEEL ARMOR PLATE. CHARGE TO BE TESTED IS BURIED IN SAWDUST WITH FLAME RESISTANT CHEMICALS. ELEVATOR BEHIND TUB CARRIES SAWDUST BACK TO TOP OF SAWDUST HOPPER AFTER TEST IS COMPLETED AND SAWDUST IN BLASTING TUB HAS BEEN SIFTED FOR SHELL FRAGMENTS. LOUVERS IN WALLS ARE HINGED FREELY SO THEY OPEN TO RELIEVE BLAST PRESSURE DURING A TEST. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  17. Experimental Study of the Effect of Water Mist Location On Blast Overpressure Attenuation in A Shock Tube

    NASA Astrophysics Data System (ADS)

    Mataradze, Edgar; Chikhradze, Nikoloz; Bochorishvili, Nika; Akhvlediani, Irakli; Tatishvili, Dimitri

    2017-12-01

    Explosion protection technologies are based on the formation of a shock wave mitigation barrier between the protection site and the explosion site. Contemporary protective systems use water mist as an extinguishing barrier. To achieve high effectiveness of the protective system, proper selection of water mist characteristics is important. The main factors defining shock wave attenuation in water mist include droplet size distribution, water concentration in the mist, droplet velocity and geometric properties of mist. This paper examines the process of attenuation of shock waves in mist with droplets ranging from 25 to 400 microns under different conditions of water mist location. Experiments were conducted at the Mining Institute with the use of a shock tube to study the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for the dosed supply of water, sensors, data recording equipment, and a process control module. Shock wave overpressure reduction coefficient was studied in the shock tube under two different locations of water mist: a) when water mist is created in direct contact with blast chamber and b) the blast chamber and the mist are separated by air space. It is established that in conditions when the air space distance between the blast chamber and the mist is 1 meter, overpressure reduction coefficient is 1.5-1.6 times higher than in conditions when water mist is created in direct contact with blast chamber.

  18. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  19. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  20. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  1. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  2. Abrasion and Fragmentation Processes in Marly Sediment Transport

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Naaim, F.; Mathys, N.; Lave, J.; Kaitna, R.

    2009-04-01

    In the highly erosive marly catchments of Draix (Southern Alps, France), downstream fining of sediments has been observed and can not be explained by selective sorting. Moreover, high concentrations of suspended fine sediment (up to 800 g/L) are measured during flood events in these basins. These observations lead to the hypothesis that abrasion and fragmentation of marly sediments during transport play an important role in the production of fine sediments. Several experiments are conducted in order to quantify these processes: material from the river bed is introduced into the water flow in a circular flume as well as in a large scale rotating drum. Abrasion rates range from 5 to 15%/km, depending on the lithology: marls from the upper basin are more erosive than those from the lower basin. Modifications of grain size distribution in the rough fraction are also observed. Field measurements are also conducted. Downstream of the main marly sediment sources, the river bed is composed of marls and limestone pebbles. We have sampled the river bed for analysis of grain size distribution and lithology. First results show a decrease of the proportion of marls along the river bed. This is in accordance with the high erosion rates observed in our laboratory experiments. Further investigations are planned in order to study more precisely marl grain size distribution, especially in the finer fraction.

  3. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  4. Performance analysis of cutting graphite-epoxy composite using a 90,000psi abrasive waterjet

    NASA Astrophysics Data System (ADS)

    Choppali, Aiswarya

    Graphite-epoxy composites are being widely used in many aerospace and structural applications because of their properties: which include lighter weight, higher strength to weight ratio and a greater flexibility in design. However, the inherent anisotropy of these composites makes it difficult to machine them using conventional methods. To overcome the major issues that develop with conventional machining such as fiber pull out, delamination, heat generation and high tooling costs, an effort is herein made to study abrasive waterjet machining of composites. An abrasive waterjet is used to cut 1" thick graphite epoxy composites based on baseline data obtained from the cutting of ¼" thick material. The objective of this project is to study the surface roughness of the cut surface with a focus on demonstrating the benefits of using higher pressures for cutting composites. The effects of major cutting parameters: jet pressure, traverse speed, abrasive feed rate and cutting head size are studied at different levels. Statistical analysis of the experimental data provides an understanding of the effect of the process parameters on surface roughness. Additionally, the effect of these parameters on the taper angle of the cut is studied. The data is analyzed to obtain a set of process parameters that optimize the cutting of 1" thick graphite-epoxy composite. The statistical analysis is used to validate the experimental data. Costs involved in the cutting process are investigated in term of abrasive consumed to better understand and illustrate the practical benefits of using higher pressures. It is demonstrated that, as pressure increased, ultra-high pressure waterjets produced a better surface quality at a faster traverse rate with lower costs.

  5. Off-center blast in a shocked medium

    DOE PAGES

    Duncan-Miller, Gabrielle Christiane; Stone, William D.

    2017-11-16

    When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky [1] on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and makingmore » use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. Specifically, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.« less

  6. Off-center blast in a shocked medium

    SciTech Connect

    Duncan-Miller, Gabrielle Christiane; Stone, William D.

    When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky [1] on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and makingmore » use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. Specifically, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.« less

  7. Blast-induced tinnitus and hyperactivity in the auditory cortex of rats.

    PubMed

    Luo, Hao; Pace, Edward; Zhang, Jinsheng

    2017-01-06

    Blast exposure can cause tinnitus and hearing impairment by damaging the auditory periphery and direct impact to the brain, which trigger neural plasticity in both auditory and non-auditory centers. However, the underlying neurophysiological mechanisms of blast-induced tinnitus are still unknown. In this study, we induced tinnitus in rats using blast exposure and investigated changes in spontaneous firing and bursting activity in the auditory cortex (AC) at one day, one month, and three months after blast exposure. Our results showed that spontaneous activity in the tinnitus-positive group began changing at one month after blast exposure, and manifested as robust hyperactivity at all frequency regions at three months after exposure. We also observed an increased bursting rate in the low-frequency region at one month after blast exposure and in all frequency regions at three months after exposure. Taken together, spontaneous firing and bursting activity in the AC played an important role in blast-induced chronic tinnitus as opposed to acute tinnitus, thus favoring a bottom-up mechanism. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Characterization of Viscoelastic Materials for Low-Magnitude Blast Mitigation

    NASA Astrophysics Data System (ADS)

    Bartyczak, Susan; Mock, Willis

    2013-06-01

    Recent preliminary research indicates that exposure to low amplitude blast waves, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of this research is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. A 40-mm-bore gas gun is used as a shock tube to generate blast waves (ranging from 5 to 30 psi) in a test fixture mounted at the gun muzzle. A fast opening valve is used to release helium gas from a breech which forms into a blast wave and impacts instrumented targets in the test fixture. Blast attenuation of selected materials is determined through the measurement of pressure and accelerometer data in front of and behind the target. Materials evaluated in this research include 6061-T6 aluminum, polyurea 1000, Styrofoam, and Sorbothane (durometer 50, shore 00). The experimental technique, calibration and checkout procedures, and results will be presented.

  9. A Mouse Model of Blast-Induced mild Traumatic Brain Injury

    PubMed Central

    Rubovitch, Vardit; Ten-Bosch, Meital; Zohar, Ofer; Harrison, Catherine R.; Tempel-Brami, Catherine; Stein, Elliot; Hoffer, Barry J.; Balaban, Carey D.; Schreiber, Shaul; Chiu, Wen-Ta; Pick, Chaim G.

    2011-01-01

    Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 meters distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability one month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities. PMID:21946269

  10. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion.

    PubMed

    Civardi, Chiara; Schlagenhauf, Lukas; Kaiser, Jean-Pierre; Hirsch, Cordula; Mucchino, Claudio; Wichser, Adrian; Wick, Peter; Schwarze, Francis W M R

    2016-11-28

    We investigated the particles released due to abrasion of wood surfaces pressure-treated with micronized copper azole (MCA) wood preservative and we gathered preliminary data on its in vitro cytotoxicity for lung cells. The data were compared with particles released after abrasion of untreated, water (0% MCA)-pressure-treated, chromated copper (CC)-pressure-treated wood, and varnished wood. Size, morphology, and composition of the released particles were analyzed. Our results indicate that the abrasion of MCA-pressure-treated wood does not cause an additional release of nanoparticles from the unreacted copper (Cu) carbonate nanoparticles from of the MCA formulation. However, a small amount of released Cu was detected in the nanosized fraction of wood dust, which could penetrate the deep lungs. The acute cytotoxicity studies were performed on a human lung epithelial cell line and human macrophages derived from a monocytic cell line. These cell types are likely to encounter the released wood particles after inhalation. Our findings indicate that under the experimental conditions chosen, MCA does not pose a specific additional nano-risk, i.e. there is no additional release of nanoparticles and no specific nano-toxicity for lung epithelial cells and macrophages.

  11. Comparative Efficacy of a Soft Toothbrush with Tapered-tip Bristles to an ADA Reference Toothbrush on Gingival Abrasion over a 12-Week Period.

    PubMed

    Gallob, John; Petrone, Dolores M; Mateo, Luis R; Chaknis, Patricia; Morrison, Boyce M; Panagakos, Foti; Williams, Malcolm

    2016-06-01

    Evaluation of the impact of a soft toothbrush with tapered-tip (Test Toothbrush) bristles and an ADA reference toothbrush (ADA Toothbrush) on gingival abrasion over a 12-week period. This was a randomized, single-center, examiner-blind, two-cell, parallel clinical research study and used the Danser Gingival Abrasion Index to assess the level of gingival abrasion after a single brushing, as well as after six weeks and 12 weeks of twice-daily brushing. Adult male and female subjects from the Central New Jersey, USA area refrained from all oral hygiene procedures for 24 hours. They reported to the study site after refraining from eating, drinking, and smoking for four hours. Following a qualifying examination using plaque and gingivitis scores along with a baseline gingival abrasion examination, subjects were randomized into two balanced groups, each group using one of the two study toothbrushes. Subjects were instructed to brush their teeth for one minute, under supervision, with their assigned toothbrush and a commercially available fluoride toothpaste (Colgate© Cavity Protection Toothpaste), after which they were again evaluated for gingival abrasion. Subjects were dismissed from the study site with their assigned toothbrush and toothpaste, and instructed to brush twice daily at home for the next 12 weeks. The subjects were instructed to brush for one minute during each tooth brushing. The subjects reported to the study site after six weeks and 12 weeks of product use, at which time they were evaluated for gingival abrasion. Seventy-one (71) subjects complied with the protocol and completed the clinical study. The results of this study showed that the Test Toothbrush provided statistically significantly (p < 0.05) greater reductions in gingival abrasion scores as compared to the gingival abrasion scores of the ADA Toothbrush after a single tooth brushing, after six weeks, and after 12 weeks of product use (75.0%, 85.5%, 73.9%, respectively). The soft toothbrush

  12. Dynamic response analysis of surrounding rock under the continuous blasting seismic wave

    NASA Astrophysics Data System (ADS)

    Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.

    2017-10-01

    The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.

  13. Development of a Continuous Drill and Blast Tunneling Concept, Phase II

    DOT National Transportation Integrated Search

    1974-05-01

    A spiral drilling pattern is described which offers high efficiency drill and blast tunnelling via frequent small blasts rather than occasional large blasts. Design work is presented for a machine which would stay at the face to provide essentially c...

  14. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  15. Recent developments in multi-wire fixed abrasive slicing technique (FAST). [for low cost silicon wafer production from ingots

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.; Smith, M. B.; Lynch, L. D.

    1982-01-01

    Slicing is an important processing step for all technologies based on the use of ingots. A comparison of the economics of three slicing techniques shows that the fixed abrasive slicing technique (FAST) is superior to the internal diameter (ID) and the multiblade slurry (MBS) techniques. Factors affecting contact length are discussed, taking into account kerf width, rocking angle, ingot size, and surface speed. Aspects of blade development are also considered. A high concentration of diamonds on wire has been obtained in wire packs usd for FAST slicing. The material removal rate was found to be directly proportional to the pressure at the diamond tips.

  16. Reduction of optically observed artillery blast wave trajectories using low dimensionality models

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Gross, Kevin C.; Perram, Glen P.

    2011-05-01

    Muzzle blast trajectories from firings of a 152 mm caliber gun howitzer were obtained with high-speed optical imagers and used to assess the fidelity with which low dimensionality models can be used for data reduction. Characteristic flow regions were defined for the blast waves. The near-field region was estimated to extend to 0.98 - 1.25 meters from the muzzle and the far-field region was estimated to begin at 2.61 - 3.31 meters. Blast wave geometries and radial trajectories were collected in the near through far-fields with visible imagers operating at 1,600 Hz. Beyond the near-field the blast waves exhibited a near-spherical geometry in which the major axis of the blast lay along the axis of the gun barrel and measured within 95% of the minor axis. Several blast wave propagation models were applied to the mid and far-field data to determine their ability to reduce the blast wave trajectories to fewer parameters while retaining the ability to distinguish amongst three munitions configurations. A total of 147 firings were observed and used to assess within-configuration variability relative to separation between configurations. Results show that all models perform well, and drag and point blast model parameters additionally provide insight into phenomenology of the blast.

  17. Photodetector Development for the Wheel Abrasion Experiment on the Sojourner Microrover of the Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Jenkins, Phillip P.; Scheiman, David A.

    1997-01-01

    On-board the Mars Pathfinder spacecraft, launched in December of 1996, is a small roving vehicle named Sojourner. On Sojourner is an experiment to determine the abrasive characteristics of the Martian surface, called the Wheel Abrasion Experiment (WAE). The experiment works as follows: one of the wheels of the rover has a strip of black anodized aluminum bonded to the tread. The aluminum strip has thin coatings of aluminum, nickel and platinum deposited in patches. There are five (5) patches or samples of each metal, and the patches range in thickness from 200 A to 1000 A. The different metals were chosen for their differing hardness and their environmental stability. As the wheel is spun in the Martian soil, the thin patches of metal are abraded away, exposing the black anodization. The abrasion is monitored by measuring the amount of light reflected off of the samples. A photodetector was developed for this purpose, and that is the subject of this paper.

  18. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.

    2017-05-01

    Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.

  19. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    DOT National Transportation Integrated Search

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  20. Comparison of effectiveness of abrasive and enzymatic action of whitening toothpastes in removal of extrinsic stains - a clinical trial.

    PubMed

    Patil, P A; Ankola, A V; Hebbal, M I; Patil, A C

    2015-02-01

    To compare the effectiveness of abrasive component (perlite/calcium carbonate) and enzymatic component (papain and bromelain) of whitening toothpaste in removal of extrinsic stains. This study is a randomized, triple blind and parallel group study in which 90 subjects aged 18-40 years were included. At baseline, stains scores were assessed by Macpherson's modification of Lobene Stain Index and subjects were randomly assigned to two groups with 45 subjects in each. Group 1 used whitening toothpaste with enzymatic action and group 2 with abrasive action. After 1 month, stain scores were assessed for the effectiveness of the two toothpastes and 2 months later to check the stain prevention efficacy. Wilcoxson's test was used to compare between baseline 1 and 2 months stain scores, and Mann-Witney U-test was applied for intragroup comparison. The mean baseline total stain score for the subjects allocated to the enzymatic toothpaste was 37.24 ± 2.11 which reduced to 30.77 ± 2.48 in 1 month, and for the abrasive paste, total stain reduced from 35.08 ± 2.96 to 32.89 ± 1.95. The reductions in total stain scores with both the pastes were significant compared with baseline stain scores (at 1 month Group 1, P = 0.0233 and Group 2, P = 0.0324; at 2 months, Group 1 P = 0.0356). Both the toothpastes proved to be equally good in removal of extrinsic stains; however, the enzymatic paste showed better results as compared to abrasive toothpaste. Whitening toothpaste with abrasive action and enzymatic action are equally effective in removal of extrinsic stains; however, whitening toothpaste with abrasive action needs to be used with caution. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.