Science.gov

Sample records for abrasive grain size

  1. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  2. Investigations on the trajectories of magnetic abrasive grains in magnetic induction-free abrasive wire sawing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yao, Chunyan; Tang, Chen; Qiu, Tengwei; Xu, Xuefeng

    2016-12-01

    This study presents a novel method of magnetic induction-free abrasive wire sawing. The ferromagnetic wire is magnetized in a uniform magnetic field, forming a high-gradient magnetic field that separates into paramagnetic and diamagnetic regions. Paramagnetic abrasive grains are attracted to the paramagnetic region and adhere to the wire surface but are repelled from the diamagnetic region. The trajectory of the magnetic abrasive grains is analyzed in a mathematical model and in COMSOL Multiphysics simulations. The results are verified by test investigations on the motions and adsorption of the magnetic abrasive grains using a dynamic microscope system. The detailed grain trajectories are investigated in a numerical model. Because it actively transports grains toward the wire (where they can be transported to the sawing channel), our proposed method achieves more efficient wire sawing performance than traditional free abrasive wire sawing. Such efficient performance is highly sought in silicon wafering technologies, which are commonly used in the solar and semiconductor industries.

  3. What Controls Ooid Grain Size?

    NASA Astrophysics Data System (ADS)

    Trower, L.; Lamb, M. P.; Fischer, W. W.

    2015-12-01

    Ooids are subspherical chemical sand grains composed of concentric layers of CaCO₃ surrounding a central nucleus. These grains represent a common mode of carbonate sedimentation, making them potentially powerful proxies for paleoenvironmental conditions, provided a mechanistic understanding of the physical, chemical, and perhaps biological conditions necessary for their formation. At a basic level, growth of an ooid reflects that precipitation has outpaced abrasion over the ooid's lifetime. We can describe change in ooid size over time (net growth rate) mechanistically as the sum of a growth rate (the rate of carbonate precipitation on the ooid surface) and an abrasion rate (the rate of removal of material through grain-grain and grain-bed collisions). Previous studies have addressed the growth rate, investigating the extent to which microbial activity affects and/or controls carbonate precipitation on ooid surfaces, and the net growth rate, using stepwise acid digestion and radiocarbon dating to determine the ages of cortical layers. We focused on the abrasion rate and designed an experimental study to measure abrasion rates of ooids as a function of grain size and sediment transport stage. Preliminary experiments with medium-sand-sized ooids at a Rouse number of ~1.2 yielded an abrasion rate of 0.04 g/hr (or ~40 ng/ooid/hr), which is four orders of magnitude greater than the fastest net growth rates reported in the recent high resolution ooid cortex radiocarbon dating study by Beaupre et al. (2015). This result requires that either: 1) ooids are essentially not moving and therefore not being abraded or 2) precipitation rates are also much more rapid than the net growth rates estimated by incremental radiocarbon dating. The former constraint is inconsistent with field observations that most marine ooids occur in high energy shoal environments, both in modern examples and in the rock record. Precipitation rates must therefore also be relatively rapid compared

  4. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  5. Behavior of HVOF WC-10Co4Cr Coatings with Different Carbide Size in Fine and Coarse Particle Abrasion

    NASA Astrophysics Data System (ADS)

    Ghabchi, Arash; Varis, Tommi; Turunen, Erja; Suhonen, Tomi; Liu, Xuwen; Hannula, S.-P.

    2010-01-01

    A modified ASTM G 65 rubber wheel test was employed in wet and dry conditions using 220 nm titania particles and 368 μm sand particles, respectively. Both tests were conducted on WC-CoCr coatings produced with two powders with different carbide grain sizes (conventional and sub-micron) to address the effect of carbide size and abrasive medium characteristics on the wear performance. The same spot before and after the wet abrasion wear testing was analyzed in detail using SEM to visualize wear mechanisms. It was shown that the wear mechanism depends on the relative size of the carbide and abrasive particles. Wear mechanisms in dry sand abrasion were studied by analyzing the single scratches formed by individual abrasive particles. Interaction of surface open porosity with moving abrasive particles causes formation of single scratches. By tailoring the carbide size, the wear performance can be improved.

  6. The Contribution of Abrasion and Size-Selective Sorting to Downstream Fining in a Tropical Montane Stream

    NASA Astrophysics Data System (ADS)

    Szabo, T.; Miller, K. L.; Jerolmack, D. J.; Domokos, G.

    2014-12-01

    Quantifying the effect of abrasion vs. size-selective transport on downstream diminution of grain size and mass is a long-standing question in fluvial systems. While some authors have emphasized sorting by size-selective transport as the dominant fining mechanism in various rivers, others demonstrated the effectiveness of abrasion in certain fluvial systems. We present a synthetic grain-scale model in which we combine a recently developed geometric abrasion model (the so-called 'box equations' [1]) with a simplistic selective deposition rule. Box equations are capable to describe the evolution of both the shape and the size of the particles during abrasion, as opposed to previous models which only dealt with the size (or alternatively, the mass) diminution. We adapt our synthetic model to numerically simulate the downstream grain size and shape evolution in a short tropical river in Puerto Rico where we conducted a detailed field study. By switching off abrasion and selective deposition separately in the numerical model, the individual effects of these two processes can be examined. Based on our simplistic model we deduce that 1/3 of the mass of the grains may be lost only by abrasion in the examined river system. [1] Domokos, G., and G. W. Gibbons (2012), The evolution of pebble size and shape in space and time, Proc. R. Soc. A, 468(2146), 3059-3079, doi:10.1098/rspa.2011.0562.

  7. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Gregg, Leslie L.; Marino, Anne E.; Hayes, Jennifer C.; Jacobs, Stephen D.

    2004-01-01

    Aluminum oxynitride (ALON) is a polycrystalline material that has proven difficult to polish due to its grain structure. Bound abrasives are an effective means for polishing ALON, and work is being done with them to obtain good surfaces, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices were created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load were studied. Metrology procedures were developed to monitor different aspects of the grain structure and numerically evaluate grain boundary decoration. Strategies were developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  8. Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps

    NASA Astrophysics Data System (ADS)

    Marino, Anne E.; Hayes, Jennifer; Gregg, Leslie L.; Jacobs, Stephen D.

    2003-05-01

    Aluminum oxynitride (ALON) is a material with desirable qualities for a variety of applications that has proven difficult to polish because of its grain structure. Bound abrasives may prove to be an effective means of polishing it, and work is being done with them to obtain good surfaces on ALON, with reasonable removal rates. Laps consisting of abrasives bound in epoxy matrices have been created for polishing ALON. The effects of varying abrasive type, abrasive concentration, lap shape, coolant and load are being studied. Metrology procedures are being developed to monitor different aspects of the grain structure and numerically evaluate its decoration. Strategies have been developed to polish ALON at acceptable rates with reasonably good surface quality. Work is directed toward finding optimal bound abrasive lap formulations that can be fabricated into ring and/or contour tools for testing on CNC machining platforms.

  9. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  10. EFFECT OF GRAIN SIZE ON DYNAMIC SCRATCH RESPONSE IN ALUMINA

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lance, Michael J

    2006-01-01

    The machining and wear of ceramics and ceramic components are obviously influenced by abrasive damage. One parameter that can affect the abrasion process is the grain size of the ceramic material. To investigate this, single-grit pendulum scratch testing was used to investigate the dynamic scratch response in three 99.9% aluminas that each had a tight size distribution about mean grain sizes of 2, 15, or 25 m, respectively. The scratch speeds generated had an order of magnitude of ~ 1 m/s and the maximum scratch depths were several tens of micrometers. Tangential and normal scratch forces were monitored during each test and interpreted in conjunction with postmortem SEM and profilometry results. It was observed that both plastic deformation and brittle fracture participated in the scratching process and the relative activity of each was dependent on depth of penetration. At a specific depth of penetration, the material removal of alumina prevailingly relies on the generation and interaction of oblique radial and lateral cracks. Chip formation is greatly enhanced when the created cracks interact and that interaction itself depends on grain size. Larger grain size gives rise to larger lateral cracks, more severe fracture at the groove's bottom, and larger amplitude of scratch force oscillation. Lastly, the cutting pressure and the scratch hardness of alumina exhibit sensitivity to both grain size and the groove depth.

  11. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  12. The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby

    2003-01-01

    Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.

  13. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

  14. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    NASA Astrophysics Data System (ADS)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  15. Estimating snow grain size using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Nolin, Anne W.; Dozier, Jeff

    1993-01-01

    Estimates of snow grain size for the near-surface snow layer were calculated for the Tioga Pass region and Mammoth Mountain in the Sierra Nevada, California, using an inversion technique and data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The Tioga Pass and Mammoth Mountain single-band AVIRIS radiance images were atmospherically corrected to obtain surface reflectance. A discrete-ordinate model was used to calculate directional reflectance as a function of snowpack grain size for a wide range of snow grain radii. The resulting radius vs. reflectance curves were each fit using a nonlinear least squares technique which provided a means of transforming surface reflectance in each AVIRIS image to optically equivalent grain size on a per-pixel basis. The model results and grain size estimates derived from the AVIRIS data show that, for solar incidence angles between 0 and 30, the technique provides good estimates of grain size. This work provides the first quantitative estimates for grain size using data acquired from an airborne remote sensing instrument and is an important step in improving our ability to retrieve snow physical properties independent of field measurements.

  16. Interstellar chemical differentiation across grain sizes

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Li, Aigen

    2016-07-01

    In this work, we investigate the effects of ion accretion and size-dependent dust temperatures on the abundances of both gas-phase and grain-surface species. While past work has assumed a constant areal density for icy species, we show that this assumption is invalid and the chemical differentiation over grain sizes is significant. We use a gas-grain chemical code to demonstrate this numerically for two typical interstellar conditions: a dark cloud (DC) and a cold neutral medium (CNM). It is shown that, although the grain-size distribution variation (but with the total grain surface area unchanged) has little effect on the gas-phase abundances, it can alter the abundances of some surface species by up to ∼2-4 orders of magnitude. The areal densities of ice species are larger on smaller grains in the DC model as a consequence of ion accretion. However, the surface areal density evolution tracks are more complex in the CNM model due to the combined effects of ion accretion and dust temperature variation. The surface areal density differences between the smallest ( ∼ 0.01 μm) and the biggest ( ∼ 0.2 μm) grains can reach ∼1 and ∼5 orders of magnitude in the DC and CNM models, respectively.

  17. BHQ revisited (1) - Looking at grain size

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Rüdiger; Tullis, Jan

    2016-04-01

    Black Hills Quartzite (BHQ) has been used extensively in experimental rock deformation for numerous studies. Coaxial and general shear experiments have been carried out, for example, to define the dislocation creep regimes of quartz (Hirth & Tullis, 1992), to determine the effect of annealing (Heilbronner & Tullis, 2002) or to study the development of texture and microstructure with strain (Heilbronner & Tullis, 2006). BHQ was also used to determine the widely used quartz piezometer by Stipp & Tullis (2003). Among the microstructure analyses that were performed in those original papers, grain size was usually determined using CIP misorientation images. However, the CIP method (= computer-integrated polarization microscopy, details in Heilbronner and Barrett, 2014) is only capable of detecting the c-axis orientation of optically uniaxial materials and hence is only capable of detecting grain boundaries between grains that differ in c-axis orientation. One of the puzzling results we found (Heilbronner & Tullis, 2006) was that the recrystallized grain size seemed to depend on the crystallographic preferred orientation of the domain. In other words the grain size did not only depend on the flow stress but also on the orientation of the c-axis w/r to the shear direction. At the time, no EBSD analysis (electron back scatter diffraction) was carried out and hence the full crystallographic orientation was not known. In principle it is therefore possible that we missed some grain boundaries (between grains with parallel c-axes) and miscalculated our grain sizes. In the context of recent shear experiments on quartz gouge at the brittle-viscous transition (see Richter et al., this conference), where EBSD is used to measure the recrystallized grain size, we wanted to re-measure the CIP grain sizes of our 2006 samples (deformed in regime 1, 2 and 3 of dislocation) in exactly the same way. In two companion posters we use EBSD orientation imaging to repeat, refine and expand the

  18. Reversal in the Size Dependence of Grain Rotation

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Tamura, Nobumichi; Mi, Zhongying; Lei, Jialin; Yan, Jinyuan; Zhang, Lingkong; Deng, Wen; Ke, Feng; Yue, Binbin; Chen, Bin

    2017-03-01

    The conventional belief, based on the Read-Shockley model for the grain rotation mechanism, has been that smaller grains rotate more under stress due to the motion of grain boundary dislocations. However, in our high-pressure synchrotron Laue x-ray microdiffraction experiments, 70 nm nickel particles are found to rotate more than any other grain size. We infer that the reversal in the size dependence of the grain rotation arises from the crossover between the grain boundary dislocation-mediated and grain interior dislocation-mediated deformation mechanisms. The dislocation activities in the grain interiors are evidenced by the deformation texture of nickel nanocrystals. This new finding reshapes our view on the mechanism of grain rotation and helps us to better understand the plastic deformation of nanomaterials, particularly of the competing effects of grain boundary and grain interior dislocations.

  19. Simulation of grain size effects in nanocrystalline shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajeev; Quek, Siu Sin; Wu, David T.

    2015-06-01

    Recently, it has been demonstrated that martensitic transformation in nanocrystalline shape memory alloys can be suppressed for small grain sizes. Motivated by these results, we study the grain size dependence of martensitic transformations and stress-strain response of nanocrystalline shape memory alloys within the framework of the Ginzburg-Landau (GL) theory. A GL model for a square to rectangle transformation in polycrystals is extended to account for grain boundary effects. We propose that an inhibition of the transformation in grain boundary regions can occur, if the grain boundary energy of the martensite is higher than that of the austenite phase. We show that this inhibition of transformation in grain boundary regions has a strong influence on domain patterns inside grains. Although the transformation is inhibited only at the grain boundaries, it leads to a suppression of the transformation even inside the grains as grain size is decreased. In fact, below a critical grain size, the transformation can be completely suppressed. We explain these results in terms of the extra strain gradient cost associated with grain boundaries, when the transformation is inhibited at grain boundaries. On the other hand, no significant size effects are observed when transformation is not inhibited at grain boundaries. We also study the grain size dependence of the stress strain curve. It is found that when the transformation is inhibited at grain boundaries, a significant reduction in the hysteresis associated with stress-strain curves during the loading-unloading cycles is observed. The hysteresis for this situation reduces even further as the grain size is reduced, which is consistent with recent experiments. The simulations also demonstrate that the mechanical behavior is influenced by inter-granular interactions and the local microstructural neighbourhood of a grain has a stronger influence than the orientation of the grain itself.

  20. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  1. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    PubMed

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding.

  2. Grain-size distribution of volcaniclastic rocks 2: Characterizing grain size and hydraulic sorting

    NASA Astrophysics Data System (ADS)

    Jutzeler, Martin; McPhie, Jocelyn; Allen, Sharon R.; Proussevitch, A. A.

    2015-08-01

    Quantification of the grain size distribution of sediments allows interpretation of processes of transport and deposition. Jutzeler et al. (2012) developed a technique to determine grain size distribution of consolidated clastic rocks using functional stereology, allowing direct comparison between unconsolidated sediments and rocks. Here, we develop this technique to characterize hydraulic sorting and infer transport and deposition processes. We compare computed grain size and sorting of volcaniclastic rocks with field-based characteristics of volcaniclastic facies for which transport and depositional mechanisms have been inferred. We studied pumice-rich, subaqueous facies of volcaniclastic rocks from the Oligocene Ohanapecosh Formation (Ancestral Cascades, Washington, USA), Pliocene Dogashima Formation (Izu Peninsula, Honshu, Japan), Miocene Manukau Subgroup (Northland, New Zealand) and the Quaternary Sierra La Primavera caldera (Jalisco State, Mexico). These sequences differ in bed thickness, grading and abundance of matrix. We propose to evaluate grain size and sorting of volcaniclastic deposits by values of their modes, matrix proportion (< 2 mm; F-1) and D16, instead of median diameter (D50) and standard deviation parameters. F-1 and D16 can be uniformly used to characterize and compare sieving and functional stereology data. Volcaniclastic deposits typically consist of mixtures of particles that vary greatly in density and porosity. Hydraulic sorting ratios can be used to test whether mixed clast populations of pumice and dense clasts are hydraulically sorted with each other, considering various types of transport underwater. Evaluation of this ratio for our samples shows that most studied volcaniclastic facies are deposited by settling from density currents, and that basal dense clast breccias are emplaced by shear rolling. These hydraulic sorting ratios can be applied to any type of clastic rocks, and indifferently on consolidated and unconsolidated samples.

  3. Grain size evolution and convection regimes of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Rozel, A.; Golabek, G. J.; Boutonnet, E.

    2011-12-01

    A new model of grain size evolution has recently been proposed in Rozel et al. 2010. This new approach stipulates that the grain size dynamics is governed by two additive and simultaneous processes: grain growth and dynamic recrystallization. We use the usual normal grain growth laws for the growth part. For dynamic recrystallization, reducing the mean grain size increases the total area of grain boundaries. Grain boundaries carry some surface tension, so some energy is required to decrease the mean grain size. We consider that this energy is available during mechanical work. It is usually considered to produce some heat via viscous dissipation. A partitioning parameter f is then required to know what amount of energy is dissipated and what part is converted in surface tension. This study gives a new calibration of the partitioning parameter on major Earth materials involved in the dynamic of the terrestrial planets. Our calibration is in adequation with the published piezometric relations available in the literature (equilibrium grain size versus shear stress). We test this new model of grain size evolution in a set of numerical computations of the dynamics of the Earth using stagYY. We show that the grain size evolution has a major effect on the convection regimes of terrestrial planets.

  4. Effect of Grain Size and Grain Orientation on the Raman Spectra of Minerals

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Chio, C. H.; Deb, P.; Lucey, P. G.; Domergue-Schmidt, N.; Horton, K. A.

    2000-01-01

    We have examined effects of grain size and grain orientation on the Raman spectra of quartz and olivine to evaluate the effect of these parameters on in situ and remote analysis of planetary surface rocks.

  5. Unfolding grain size effects in barium titanate ferroelectric ceramics

    PubMed Central

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-01-01

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size. PMID:25951408

  6. Physical abrasion of mafic minerals and basalt grains: application to Martian aeolian deposits

    USGS Publications Warehouse

    Cornwall, Carin; Bandfield, Joshua L.; Titus, Timothy N.; Schreiber, B. C.; Montgomery, D.R.

    2015-01-01

    Sediment maturity, or the mineralogical and physical characterization of sediment deposits, has been used to locate sediment source, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold, dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. Abrason tests have been conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical basalt grains. In addition, any volcanic glass present is likely to persist in a mechanical weathering environment while chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide details about erosional and sediment transport systems and preservation processes of layered deposits.

  7. Magnetoresistance of polycrystalline gadolinium with varying grain size

    SciTech Connect

    Chakravorty, Manotosh Raychaudhuri, A. K.

    2015-01-21

    In this paper, we report a study of evolution of low field magnetoresistance (MR) of Gadolinium as the grain size in the sample is changed from few microns (∼4 μm) to the nanoscopic regime (∼35 nm). The low field MR has a clear effect on varying grain size. In large grain sample (few μm), the magnetic domains are controlled by local anisotropy field determined mainly by the magnetocrystalline anisotropy. The low field MR clearly reflects the temperature dependence of the magnetocrystalline anisotropy. For decreasing gain size, the contribution of spin disorder at the grain boundary increases and enhances the local anisotropy field.

  8. Electrical conduction of intrinsic grain and grain boundary in Mn-Co-Ni-O thin film thermistors: Grain size influence

    NASA Astrophysics Data System (ADS)

    He, L.; Ling, Z. Y.

    2011-11-01

    Mn1.85Co0.3Ni0.85O4 (MCN) thin films with pure spinel phase and different grain size were prepared on Al2O3 substrates by chemical deposition method. Temperature dependent ac impedance spectroscopy was employed to analyze the grain size influence on the electrical conduction of intrinsic grain and grain boundary (GB) in MCN thin films. The conduction mechanisms of grain and GB both followed the small-polaron hopping model. It was found that the hopping types of GB (nearest-neighbor-hopping (NNH)) and grain (a transition from variable-range-hopping (VRH) to NNH) were not affected by the grain size, while the resistance, characteristic temperature, and activation energy of grain and GB were affected by the grain size in varying degrees. Additionally, the mechanisms concerning the dependence of electrical conduction of grain and GB on the grain size of MCN thin films were discussed in detail. These studies will also provide a comprehensive understanding of the conduction behaviors of a system with mixed NNH and VRH.

  9. Strategic Regulation of Grain Size in Memory Reporting over Time

    ERIC Educational Resources Information Center

    Goldsmith, M.; Koriat, A.; Pansky, A.

    2005-01-01

    As time passes, people often remember the gist of an event though they cannot remember its details. Can rememberers exploit this difference by strategically regulating the ''grain size'' of their answers over time, to avoid reporting wrong information? A metacognitive model of the control of grain size in memory reporting was examined in two…

  10. Static Recrystallized Grain Size of Coarse-Grained Austenite in an API-X70 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Sha, Qingyun; Li, Guiyan; Li, Dahang

    2013-12-01

    The effects of initial grain size and strain on the static recrystallized grain size of coarse-grained austenite in an API-X70 steel microalloyed with Nb, V, and Ti were investigated using a Gleeble-3800 thermomechanical simulator. The results indicate that the static recrystallized grain size of coarse-grained austenite decreases with decreasing initial grain size and increasing applied strain. The addition of microalloying elements can lead to a smaller initial grain size for hot deformation due to the grain growth inhibition during reheating, resulting in decreasing of static recrystallized grain size. Based on the experimental data, an equation for the static recrystallized grain size was derived using the least square method. The grain sizes calculated using this equation fit well with the measured ones compared with the equations for fine-grained austenite and for coarse-grained austenite of Nb-V microalloyed steel.

  11. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  12. Influence of grain size on the grinding response of alumina

    SciTech Connect

    Xu, H.H.K.; Wei, L.; Jahanmir, S.

    1996-05-01

    The effect of grain size on the grinding response, i.e., grinding forces, surface roughness, and grinding-induced subsurface damage, is investigated in a series of alumina ceramics with the average grain size ranging from 3 to 35 {micro}m. The grinding forces are measured as a function of depth of cut in surface grinding. It is found that the grinding forces decrease as the grain size is increased from 3 to 9 {micro}m. But at larger grain sizes, the grinding forces are independent of the grain size. Subsurface damage in grinding is observed using a bonded-interface sectioning technique. The subsurface damage is found to consist of intragrain twin/slip bands and intergranular microcracks. The density of grinding-induced subsurface microcracks increases with the grain size. In addition to using optical microscopy on the sections of the ground specimens, a nondestructive thermal wave measurement technique is used directly on the ground surfaces for the detection of grinding-induced subsurface microcracks. The grain size dependence of the microcrack density estimated from the thermal images is found to agree with the results obtained using the bonded-interface technique.

  13. Supercube grains leading to a strong cube texture and a broad grain size distribution after recrystallization

    NASA Astrophysics Data System (ADS)

    Lin, F. X.; Zhang, Y. B.; Pantleon, W.; Jensen, D. Juul

    2015-08-01

    This work revisits the classical subject of recrystallization of cold-rolled copper. Two characterization techniques are combined: three-dimensional X-ray diffraction using synchrotron X-rays, which is used to measure the growth kinetics of individual grains in situ, and electron backscatter diffraction, which is used for statistical analysis of the microstructural evolution. As the most striking result, the strong cube texture after recrystallization is found to be related to a few super large cube grains, which were named supercube grains. These few supercube grains become large due to higher growth rates. However, most other cube grains do not grow preferentially. Because of the few supercube grains, the grain size distribution after recrystallization is broad. Reasons for the higher growth rates of supercube grains are discussed, and are related to the local deformed microstructure.

  14. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-03

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  15. Grain size-sensitive creep in ice II

    USGS Publications Warehouse

    Kubo, T.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2006-01-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  16. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  17. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-10-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  18. GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE

    SciTech Connect

    Kataoka, Akimasa; Dullemond, Cornelis P; Muto, Takayuki; Momose, Munetake; Tsukagoshi, Takashi

    2016-03-20

    The millimeter-wave polarization of the protoplanetary disk around HL Tau has been interpreted as the emission from elongated dust grains aligned with the magnetic field in the disk. However, the self-scattering of thermal dust emission may also explain the observed millimeter-wave polarization. In this paper, we report a modeling of the millimeter-wave polarization of the HL Tau disk with the self-polarization. Dust grains are assumed to be spherical and to have a power-law size distribution. We change the maximum grain size with a fixed dust composition in a fixed disk model to find the grain size to reproduce the observed signature. We find that the direction of the polarization vectors and the polarization degree can be explained with the self-scattering. Moreover, the polarization degree can be explained only if the maximum grain size is ∼150 μm. The obtained grain size from the polarization is different from that which has been previously expected from the spectral index of the dust opacity coefficient (a millimeter or larger) if the emission is optically thin. We discuss that porous dust aggregates may solve the inconsistency of the maximum grain size between the two constraints.

  19. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    PubMed

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties.

  20. Grain size and the evolution of Luna 24 soils

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Basu, A.; Waits, G.

    1978-01-01

    The grain size distribution of six Luna 24 samples has been determined. These samples are characterized by a bimodal distribution which is indicative of soils formed primarily by mixing rather than by reworking. Although agglutinate content decreases with depth, it is not likely that the Luna 24 soils have undergone appreciable in situ reworking. Particle types and abundances in each of four size fractions have been determined petrographically. Mineral fragments are very abundant in all analyzed size fractions. Pyroxene and plagioclase increase slightly in abundance at finer grain sizes, but olivine decreases significantly. Compared with typical mare soils, the Luna 24 trends are anomalous. They are compatible with the hypothesis than many, if not most, of the mineral grains in the 20-250-micron fractions come from coarse-grain rocks having average mineral grain sizes greater than 250 microns. The mineralogy and chemistry of the coarse-grained rocks has not been well characterized, but there is evidence that at least some of them are higher in MgO than the analyzed finer-grained basalts.

  1. Grain Size Distribution in the Matrix of Primitive Meteorites

    NASA Astrophysics Data System (ADS)

    Vaccaro, E.; Wozniakiewicz, P. J.; Starkey, N. A.; Franchi, I. A.; Russell, S. S.

    2015-07-01

    We describe the abundances and size distribution of discrete grains of different phases observed within the matrix of: Acfer 094, ALHA77307, MIL 07687 and QUE 99177 and discuss how the observed differences may be evidence of parent body processes.

  2. Unraveling the Anomalous Grain Size Dependence of Cavitation

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. W.; Ramesh, K. T.

    2016-11-01

    Experimental studies have identified an anomalous grain size dependence associated with the critical tensile pressure that a metal may sustain before catastrophic failure by cavitation processes. Here we derive the first quantitative theory (and its associated closed-form solution) capable of explaining this phenomena. The theory agrees well with experimental measurements and atomistic calculations over a very wide range of conditions. Utilizing this theory, we are able to map out three distinct regimes in which the critical tensile pressure for cavitation failure (i) increases with decreasing grain size in accordance with conventional wisdom, (ii) nonintuitively decreases with decreasing grain size, and (iii) is independent of grain size. The theory also predicts microscopic signatures of the cavitation process which agree with available data.

  3. Effect of grain size on actuator properties of piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Hackenberger, Wesley S.; Pan, Ming-Jen; Vedula, Venkata; Pertsch, Patrick; Cao, Wenwu; Randall, Clive A.; Shrout, Thomas R.

    1998-07-01

    Properties of piezoelectric ceramics important for actuator applications have been measured as a function of grain size. Fine grain piezoelectrics (<=1 μm) have been found to exhibit improved machinability and increased mechanical strength over conventional materials. Actuators made from fine grain ceramic are, therefore, expected to have improved reliability, higher driving fields, and lower driving voltages (from thinner layers in stacked or co-fired actuators) over devices fabricated from conventional materials. TRS Ceramics in collaboration with the Pennsylvania State University's Materials Research Laboratory, has developed fine grain piezoelectric ceramics with minimal or no reduction in piezoactivity. New chemical doping strategies designed to compensate ferroelectric domain clamping effects from grain boundaries have been successful in yielding submicron grain sized ceramics with both low and high field properties equivalent to conventional materials. In the case of Type II ceramics, reduced grain size results in a very stable domain state with respect to both electric field and compressive prestress. Work is in progress to develop both epoxy bonded stack and co-fired actuators from fine grain piezoelectrics.

  4. Grain size reduction by electromagnetic stirring inside gold alloys

    NASA Astrophysics Data System (ADS)

    Ernst, R.; Mangelinck-Noël, N.; Hamburger, J.; Garnier, C.; Ramoni, P.

    2005-06-01

    The final properties of cast materials depend greatly on the solidification process undergone by the material. In this paper, we study gold alloys dedicated to the watch industry and jewellery in the framework of a research collaboration with the Metalor Company. The aim is to improve the concentration homogeneity of the ingots by controlling the solidification step. It can be achieved by reducing segregations by a decrease in the grain size. For this purpose, we set up a multiphase electromagnetic stirring of the melt to favour the growth of finer grains and improve the homogeneity of the composition. We first design an electromagnetic stirrer by numerical simulation. The stirrer is then implemented on a model experiment. Eventually, the alloys are characterised by metallography and etching to evidence the grain structure. As expected, we obtain a substantial reduction of the grain size although, some work remains to be done to attain the final goal of even finer grains.

  5. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  6. Grain size evolution and fractionation trends in an experimental regolith

    NASA Technical Reports Server (NTRS)

    Horz, F.; Cintala, M. J.; See, T. H.; Cardenas, F.; Thompson, T. D.

    1984-01-01

    The communication of blocky planetary surfaces into fine-grained regoliths was simulated by impacting a fragmental gabbro target 200 times with stainless steel projectiles. It is found that the comminution efficiency of the surfaces changes with time, being highest in the early stages of regolith formation and decreasing gradually. The relationship between mean grain size and cumulative energy is not linear. Individual, fine-grained regolith components can be generated very early from relatively large progenitor fragments without going through intermediate-size fractions. Impact comminution is capable of producing fractionated fines as postulated by Papike et al. (1982). The role of grain-size selective, lateral transport to explain the fractionated nature of lunar regolith fines may have been overestimated in the past.

  7. The Strength-Grain Size Relationship in Ultrafine-Grained Metals

    NASA Astrophysics Data System (ADS)

    Balasubramanian, N.; Langdon, Terence G.

    2016-12-01

    Metals processed by severe plastic deformation (SPD) techniques, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), generally have submicrometer grain sizes. Consequently, they exhibit high strength as expected on the basis of the Hall-Petch (H-P) relationship. Examples of this behavior are discussed using experimental data for Ti, Al, and Ni. These materials typically have grain sizes greater than 50 nm where softening is not expected. An increase in strength is usually accompanied by a decrease in ductility. However, both high strength and high ductility may be achieved simultaneously by imposing high strain to obtain ultrafine-grain sizes and high fractions of high-angle grain boundaries. This facilitates grain boundary sliding, and an example is presented for a cast Al-7 pct Si alloy processed by HPT. In some materials, SPD may result in a weakening even with a very fine grain size, and this is due to microstructural changes during processing. Examples are presented for an Al-7034 alloy processed by ECAP and a Zn-22 pct Al alloy processed by HPT. In some SPD-processed materials, it is possible that grain boundary segregation and other features are present leading to higher strengths than predicted by the H-P relationship.

  8. Novel ultrafine grain size processing of soft magnetic materials.

    SciTech Connect

    Michael, Joseph Richard; Robino, Charles Victor

    2009-01-01

    High performance soft magnetic alloys are used in solenoids in a wide variety of applications. These designs are currently being driven to provide more margin, reliability, and functionality through component size reductions; thereby providing greater power to drive ratio margins as well as decreases in volume and power requirements. In an effort to produce soft magnetic materials with improved properties, we have conducted an initial examination of one potential route for producing ultrafine grain sizes in the 49Fe-49Co-2V alloy. The approach was based on a known method for the production of very fine grain sizes in steels, and consisted of repeated, rapid phase transformation cycling through the ferrite to austenite transformation temperature range. The results of this initial attempt to produce highly refined grain sizes in 49Fe-49Co-2V were successful in that appreciable reductions in grain size were realized. The as-received grain size was 15 {micro}m with a standard deviation of 9.5 {micro}m. For the temperature cycling conditions examined, grain refinement appears to saturate after approximately ten cycles at a grain size of 6 {micro}m with standard deviation of 4 {micro}m. The process also reduces the range of grain sizes present in these samples as the largest grain noted in the as received and treated conditions were 64 and 26 {micro}m, respectively. The results were, however, complicated by the formation of an unexpected secondary ferritic constituent and considerable effort was directed at characterizing this phase. The analysis indicates that the phase is a V-rich ferrite, known as {alpha}{sub 2}, that forms due to an imbalance in the partitioning of vanadium during the heating and cooling portions of the thermal cycle. Considerable but unsuccessful effort was also directed at understanding the conditions under which this phase forms, since it is conceivable that this phase restricts the degree to which the grains can be refined. Due to this difficulty

  9. Digital grain-size analysis based on autocorrelation algorithm

    NASA Astrophysics Data System (ADS)

    Cheng, Zhixuan; Liu, Haijiang

    2015-08-01

    Grain size is one of the most important parameters in geology and coastal engineering. However, all traditional methods are time consuming, laborious, and expensive. In this study, the autocorrelation technique, which was first expounded by Rubin (2004), was extended to estimate the size of well-sorted sediments and the grain-size distribution of mixed-size sediments. Long and intermediate axes of well-sorted sediments ranging from 1 to 20 mm obtained from applying the autocorrelation method are compared with the corresponding results measured using a vernier caliper. Using the autocorrelation technique, the sediment mean size was calculated and was found to compare better with point counts than sieving. Regarding the mixed-size sediment, a nonlinear programming method, which is different from the conventional 'least-squares with non-negativity' method, the kernel density method, and the maximum entropy method, was used to obtain the representative grain sizes and associated sediment inherent parameters, such as mean diameter, median diameter, sorting, skewness, and kurtosis. Image pre-processing was used in the present analysis to enhance the contrast of the recorded image, and a conversion method applied to take into account the difference between the two-dimensional digital image method and the three-dimensional sieving method. Using the modified fitting points and the improved Gaussian function fitting method, the cumulative grain-size distribution curve and the probability density curve of the mixed-size sediments were obtained. The enhanced autocorrelation technique that was developed from the traditional 'look-up-catalogue' approach provided a more accurate estimation of the grain-size distribution, as well as the relevant physical parameters of the mixed-size sediment.

  10. Yielding transitions and grain-size effects in dislocation theory

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-03-01

    The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of yielding transitions and grain-size effects in polycrystalline solids. Calculations are based on the 1995 experimental results of Meyers, Andrade, and Chokshi [Metall. Mater. Trans. A 26, 2881 (1995), 10.1007/BF02669646] for polycrystalline copper under strain-hardening conditions. The main assertion is that the well-known Hall-Petch effects are caused by enhanced strengths of dislocation sources at the edges of grains instead of the commonly assumed resistance to dislocation flow across grain boundaries. The theory describes rapid transitions between elastic and plastic deformation at yield points; thus it can be used to predict grain-size dependence of both yield stresses and flow stresses.

  11. Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes.

    PubMed

    Kim, Hyung Do; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2016-02-03

    Perovskite solar cells exhibit improved photovoltaic parameters with increasing perovskite grain size. The larger photocurrent is due to the enhanced absorption efficiency for thicker perovskite layers. The larger open-circuit voltage (VOC ) is ascribed to the reduced trap-assisted recombination for the larger grains. As a result, the power conversion efficiency exceeds 19% at best. Further improvement in VOC would be possible if the trap density were reduced.

  12. Effects of grain size evolution on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin

  13. New methods for unmixing sediment grain size data

    NASA Astrophysics Data System (ADS)

    Paterson, Greig A.; Heslop, David

    2015-12-01

    Grain size distribution (GSD) data are widely used in Earth sciences and although large data sets are regularly generated, detailed numerical analyses are not routine. Unmixing GSDs into components can help understand sediment provenance and depositional regimes/processes. End-member analysis (EMA), which fits one set of end-members to a given data set, is a powerful way to unmix GSDs into geologically meaningful parts. EMA estimates end-members based on covariability within a data set and can be considered as a nonparametric approach. Available EMA algorithms, however, either produce suboptimal solutions or are time consuming. We introduce unmixing algorithms inspired by hyperspectral image analysis that can be applied to GSD data and which provide an improvement over current techniques. Nonparametric EMA is often unable to identify unimodal grain size subpopulations that correspond to single sediment sources. An alternative approach is single-specimen unmixing (SSU), which unmixes individual GSDs into unimodal parametric distributions (e.g., lognormal). We demonstrate that the inherent nonuniqueness of SSU solutions renders this approach unviable for estimating underlying mixing processes. To overcome this, we develop a new algorithm to perform parametric EMA, whereby an entire data set can be unmixed into unimodal parametric end-members (e.g., Weibull distributions). This makes it easier to identify individual grain size subpopulations in highly mixed data sets. To aid investigators in applying these methods, all of the new algorithms are available in AnalySize, which is GUI software for processing and unmixing grain size data.

  14. Promise and Pitfalls of Using Grain Size Analysis to Identify Glacial Sediments in Alpine Lake Cores.

    NASA Astrophysics Data System (ADS)

    Clark, D. H.

    2011-12-01

    Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic

  15. Transitional grain-size-sensitive flow of milky quartz aggregates

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2014-12-01

    Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse-grained

  16. Experimental verification of cleavage characteristic stress vs grain size

    SciTech Connect

    Lei, W. . Dept. of Mechanical Engineering); Li, D.; Yao, M. . School of Materials Science and Engineering)

    1994-07-01

    Instead of the accepted cleavage fracture stress [sigma][sub f] proposed by Knott et al, a new parameter S[sub co], named as ''cleavage characteristic stress,'' has been recently recommended to characterize the microscopic resistance to cleavage fracture. To give a definition, S[sub co] is the fracture stress at the brittle/ductile transition temperature of steels in plain tension, below which the yield strength approximately equals the true fracture stress combined with an abrupt curtailment of ductility. By considering a single-grain microcrack arrested at a boundary, Huang and Yao set up an expression of S[sub co] as a function of grain size. The present work was arranged to provide an experimental verification of S[sub co] vs grain size.

  17. Spatial analysis of grain size in Santa Monica Bay.

    PubMed

    Leecaster, Molly

    2003-01-01

    Maps are useful scientific tools for presenting environmental information, but the statistical techniques necessary to prepare scientifically rigorous maps have primarily focused on terrestrial habitats. This study compares three popular techniques (triangulation, kriging, and co-kriging) to map sediment grain size in Santa Monica Bay, California. Two grain size data sets, one collected in 1994 (79 sites) and one collected in 1997 and 1998 (149 sites) were used for model development. A bathymetric data set collected in 1997 was used as a model covariate. A third grain size data set (40 sites) collected in 1996 from independent sites was used for model evaluation. Predictions were compared to validation data by average difference, prediction mean square error (PMSE), and a goodness-of-prediction measure, G. The average difference between prediction and truth was similar for all methods, but the PMSE for triangulation was more than twice that for kriging or co-kriging, which were similar. The G measure also shows triangulation to be a far worse predictor than kriging and co-kriging. Small-scale differences were observed between kriging and co-kriging at steep depth contours, where co-kriging predicted values commensurate with the expected depth-defined grain size.

  18. Effects of Grain Size Distributions on Fluid-Sediment Feedback

    NASA Astrophysics Data System (ADS)

    Conley, Daniel; Buscombe, Daniel

    2010-05-01

    Accounting for the feedback effects between sediment suspension and the generation of turbulence (Conley et al., 2008) has recently been shown to improve predictions of morphological evolution (Falchetti et al. 2010). Accounting for these interactions, which in general lead to an increase in the wave coherent component of transport relative to the mean component of transport, have been shown to even result in a change of transport direction. However most research to date has focused on simulations representing the unrealistic case of sediment beds composed of a single grain size. The recently initiated project TSSAR Waves (Turbulence, Sediment Stratification and Altered Resuspension under Waves) has initially focused on examining how the size distribution of bed sediments affects this fluid-sediment feedback. It has already been demonstrated (Conley et al. 2008) that the magnitude of the effects of sediment stratification scale with the ratio of maximum orbital velocity to grain settling velocity suggesting that the effects will be highly dependent on the grain size distribution. The nature of these effects has been investigated utilizing a modified version of the Generalized Ocean Turbulence Model (GOTM). Implementation of the ability to handle size distributions involved investigating questions such as how the mobility of individual scaseize fractions are related to total bed mobility, how excess shear stress is partitioned among size classes and grain size dependency of the Schmidt number. Observations from these investigations will be presented as well as predictions of sediment mobilization and suspension which are compared to appropriate laboratory experiments. Reference: Conley, D.C., Falchetti, S., Lohmann, I.P., Brocchini, M. (2008) The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows. J. Fluid Mech., 610, 43-67. Falchetti, S., Conley, D.C., Brocchini, M. Elgar, S. (2010), Nearshore bar migration and

  19. Chemical Variations Affect Seismic Velocities Less Than Grain Size Variations

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.; Jacobs, M. H.

    2001-12-01

    It is well known that mantle velocities depend on the ``Magnesium number'' of constituent minerals. According to our recently developed equation of state (Jacobs & Oonk, Calphad 24, 133--147, 2000) this speed varies almost linearly between 6.7422 (Mg2SiO4) and 6.0113 (Fe2SiO4) km/sec at 10 GPa and 1500 K, i.e. a velocity contrast of 730 m/sec, the canonical mantle composition at 400 km depth being 52% Mg2SiO4 in accordance with the estimates by Lee et al. (1998). We have shown experimentally elsewhere that grain size variations of isochemical, equal density, holocrystalline alkali disilicates affect acoustic velocities. These vary at room temperature and ambient pressure between 6.6 km/sec (coarse grained) and 7.7 km/sec (fine grained), a difference of 1100 m/sec, i.e. substantially larger than the above mentioned 730 m/sec for chemical variations. Such differences in grain size occur because of variations in time, temperature, transformation (TTT) conditions to which a material is subjected. Thus velocity variations as observed in the mantle do not necessarily reflect current hottter or colder localities or compositional variations. They more likely reflect different TTT conditions with concomitant fabric variation during subduction.

  20. Grain-size-sensitive creep and its relationship to grain-size-insensitive attenuation in ice-I

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Cooper, R. F.; Goldsby, D. L.

    2014-12-01

    Tidal dissipation in the ice shell of, e.g., Europa, occurs in the context of a periodic strain amplitude ɛa ~10-5 imposed upon a material with a deformation-effected microstructure related to tectonic activity. Tidal flexing "samples" this microstructure; the microstructure's anelastic (attenuation, Q-1) response effects dissipation. Experiments combining steady-state creep of polycrystalline ice-I with superposed sinusoidal loading demonstrated an attenuation response that is (a) an order of magnitude more attenuating than predicted by the Maxwell Solid model, (b) similar in form to the Andrade Solid model, which at high-temperature and/or low-frequency conditions is approximated by a power law, (c) modestly non-linear (i.e., Q-1 is a function of the periodic strain amplitude) and (d) insensitive to grain size [1]. The grain-size insensitivity is profound, as steady-state creep of the specimens occurred by the geologically relevant mechanism of grain boundary sliding accommodated by basal dislocation glide (GBS)—a grain-size-sensitive rheology [2]. Here GBS involves emission, motion and interaction of lattice dislocations, and dislocation structures (e.g., subgrain boundaries and secondary grain boundary dislocations) are part of the microstructure sampled by the periodic stress. Transient creep responses sample the aspects of creep microstructure that effect attenuation. In our experiments, polycrystalline ice-I specimens are crept to steady state in the GBS regime (σ = 0.5-5.0 MPa, T = 243K, d = 30-150µm) and subjected to instantaneous drops in differential stress: initial strain-rate recovery is related to the creep microstructure of the previous, higher stress. Our results map-out in stress-strain rate space a "hardness" curve consistent with dislocation microstructure self-similarity - a requirement for grain size-insensitive attenuation. Cryogenic electron backscatter diffraction (EBSD) characterizes the associated microstructure. We have not observed

  1. Grain Size Hardening Effects in Mg-Gd Solid Solutions

    NASA Astrophysics Data System (ADS)

    Nagarajan, Devarajan; Cáceres, Carlos H.; Griffiths, John R.

    2016-11-01

    Pure Mg and alloys with 0.4, 1.3, and 3.8 at. pct Gd were cast with grain sizes between 700 and 35 µm and tested in tension and compression after solid solution heat treatment and quenching. The grain structure of the castings was random, that is, there was no preferred orientation, unlike the situation in extrusions and forgings usually reported in the literature. The results are compared to earlier work on Mg-Zn alloys. A tension-compression asymmetry in which the yield strength in compression is less than in tension was observed in pure Mg but was reversed for the concentrated alloys. The Hall-Petch stress intensity factor, k, first increased then decreased with the amount of Gd in solution. It is noted that defining the friction stress by extrapolating the data to infinite grain size should be treated with caution in Mg and its alloys: nevertheless, a rationale involving solid solution softening/hardening and twinning is offered for the observed values of the friction stress. The reversion of the tension-compression asymmetry is explained by the operation of { {10bar{1}1} } (contraction) twinning in the concentrated alloys in place of { {10bar{1}2} } (extension) twinning in pure Mg and the dilute alloys. It is argued that the activation of { {10bar{1}1} } twinning in the more concentrated alloys accounts for their lower k-value.

  2. EVOLUTION OF SIZE DISTRIBUTION OF ICY GRAINS BY SUBLIMATION AND CONDENSATION

    SciTech Connect

    Kuroiwa, Takuto; Sirono, Sin-iti

    2011-09-20

    In the outer part of a protoplanetary disk, dust grains consist of silicate core covered by an ice mantle. A temporal heating event in the disk results in sublimation of the ice mantle. After the end of the heating event, as the temperature decreases, H{sub 2}O molecules recondense on the surface of the dust grain. Ultimately, the dust grain is covered by an ice mantle. Because the equilibrium vapor pressure on the grain surface decreases with the grain size, a large grain grows faster than a small grain. As a result, the size of an icy dust grain changes as a result of the heating event. The change in size also affects the mechanical properties of the dust aggregates formed by the icy grains. In this paper, we investigated the evolution of the size distribution of icy dust grains during sublimation and condensation. We found that the size evolution of icy grains can be divided into two stages. In the first stage, the icy grains grow through condensation of H{sub 2}O molecules. In the second stage, the size of grains changes further as H{sub 2}O molecules are transferred between icy grains while the surrounding gas condenses. The size distribution of the icy dust grains becomes bimodal, with a small number of relatively large grains and many small grains without an icy mantle. Possible effects of the size change on the evolution of icy dust aggregates are discussed.

  3. Corneal Abrasions

    MedlinePlus

    ... Causes a Corneal Abrasion? Your eye has other defenses besides the orbital bone: The eyelids and eyelashes ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...

  4. Corneal Abrasions

    MedlinePlus

    ... fingernails short, too.Use care when putting in contact lenses. Make sure you clean them properly each day.Don’t sleep in your contact lenses.Trim low-hanging tree branches. Corneal abrasion treatment ...

  5. Corneal Abrasions

    MedlinePlus

    ... can damage the cornea. This includes dust, sand, wood shavings, hay, sparks, bugs, pieces of paper, and ... prevent a corneal abrasion, make sure to wear protection for your eyes, such as safety goggles or ...

  6. The grain size distribution and the detection of abnormal grain growth of austenite in an eutectoid steel containing niobium

    SciTech Connect

    Bruno, J.C. . Dept. de Engenharia Mecanica e de Materiais); Rios, P.R. . Dept. de Ciencia dos Materiais e Metalurgia)

    1995-02-15

    The abnormal grain growth of austenite was studied in a commercial steel of composition (wt%): 0.70 C, 1.36 Mn, 0.72 Si, 0.015 P, 0.027 S and 0.03 Nb. Specimens were thermocycled at various conditions and then grain size distribution determined. The grain size distribution shape did not change during normal grain growth but this distribution widened and flattened during the abnormal grain growth. The initial smaller mean size of carbonitrides and/or the highest homogeneity of niobium carbonitride size distribution of the samples submitted to thermal cycles, in comparison with the normalized samples, increased the abnormal grain growth temperature from 1,373 K to 1,473 K.

  7. Mapping Snow Grain Size over Greenland from MODIS

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander

    2008-01-01

    This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the

  8. Magnetospheric ion sputtering and water ice grain size at Europa

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    We present the first calculation of Europa's sputtering (ion erosion) rate as a function of position on Europa's surface. We find a global sputtering rate of 2×1027 H2O s-1, some of which leaves the surface in the form of O2 and H2. The calculated O2 production rate is 1×1026 O2 s-1, H2 production is twice that value. The total sputtering rate (including all species) peaks at the trailing hemisphere apex and decreases to about 1/3rd of the peak value at the leading hemisphere apex. O2 and H2 sputtering, by contrast, is confined almost entirely to the trailing hemisphere. Most sputtering is done by energetic sulfur ions (100s of keV to MeV), but most of the O2 and H2 production is done by cold oxygen ions (temperature ∼ 100 eV, total energy ∼ 500 eV). As a part of the sputtering rate calculation we compared experimental sputtering yields with analytic estimates. We found that the experimental data are well approximated by the expressions of Famá et al. for ions with energies less than 100 keV (Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161), while the expressions from Johnson et al. fit the data best at higher energies (Johnson, R.E., Burger, M.H., Cassidy, T.A., Leblanc, F., Marconi, M., Smyth, W.H., 2009. Composition and Detection of Europa's Sputter-Induced Atmosphere, in: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (Eds.), Europa. University of Arizona Press, Tucson.). We compare the calculated sputtering rate with estimates of water ice regolith grain size as estimated from Galileo Near-Infrared Mapping Spectrometer (NIMS) data, and find that they are strongly correlated as previously suggested by Clark et al. (Clark, R.N., Fanale, F.P., Zent, A.P., 1983. Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus 56, 233-245.). The mechanism responsible for the sputtering rate/grain size link is uncertain. We also report a surface composition estimate using

  9. Formation of asteroids from mm-cm sized grains

    NASA Astrophysics Data System (ADS)

    Carrera, D.; Johansen, A.; Davies, M. B.

    2014-03-01

    Context. Asteroids and comets are intricately connected to life in the universe. Asteroids are the building blocks of terrestrial planets; water-rich asteroids and comets are likely to be the primary source of water for Earth's oceans and other volatiles (Morbidelli et al. 2000; Hartogh et al. 2011); and they may play role in mass extinctions. Yet, the formation of these objects is poorly understood. There is mounting evidence that the traditional picture of the formation of asteroids must be revised. The size distribution of asteroids is hard to reconcile with a traditional bottomup formation scenario. Instead, asteroids may form top-down, with large 100 - 1000 km sized objects forming first by the gravitational collapse of dense clumps of small particles. Experiments and simulations suggest that dust grains cannot grow to sizes larger than mm-cm in protoplanetary disks (Zsom et al. 2010). Also, primitive meteorites from the asteroid belt contain a large mass fraction in chondrules of sizes from 0.1 mm to a few mm. Hence, it is desirable to find a model for asteroid formation from mm-sized particles. Aims. In this work, we model the dynamics of mm-cm sized grains in dust-enriched inner regions of protoplanetary disks. We model the dust-gas interaction to determine whether dust grains of this size can form dense, self-gravitating clouds that can collapse to form asteroids. Methods. We perform shearing box simulations of the inner disk using the Pencil Code (Brandenburg & Dobler 2002). The simulations start with a Solar-type solids-to-gas ratio of 0.01 and we gradually increase the particle concentration. In a real protoplanetary disk, solid particles are expected to migrate from the outer regions and concentrate in the inner disk. Results. Our simulations show that mm-sized particles can form very dense clumps, driven by a run-away convergence in the radial-drift flow of these particles - this dynamic is known as the streaming instability (Youdin & Goodman 2005

  10. Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory

    ERIC Educational Resources Information Center

    Wissman, Kathryn T.; Rawson, Katherine A.

    2015-01-01

    The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…

  11. The coupled effect of grain size and solute on work hardening of Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shadkam, A.; Sinclair, C. W.

    2015-12-01

    A modified grain size-dependent model developed to capture the combined effects of solute and grain size on the work hardening behaviour of fine-grained Cu-Ni alloys is provided. This work builds on a recent model that attributes the grain size-dependent work hardening of fine-grained Cu to backstresses. In the case of Cu-Ni alloys, unlike commercially pure Cu, a grain size-dependent separation between the Kocks-Mecking curves develops, this being explained here based on an extra contribution from geometrically necessary dislocations in the solid solution alloy. This is corroborated by strain-rate sensitivity experiments.

  12. AnalySize: New software for analyzing and unmixing sediment grain size distribution spectra

    NASA Astrophysics Data System (ADS)

    Paterson, G. A.; Heslop, D.

    2015-12-01

    Grain size distribution (GSD) data are a widely used tool in Earth sciences, particularly in understanding sediment transportation and sourcing. Although large data sets are regularly generated, detailed numerical analyses, such as grain size unmixing, are not routinely performed. Unmixing of GSD data involves approximating a given data set by a small number of GSDs, known as end members. These end members, along with their relative abundances, can be used to fully characterize the variability of the data. End member analysis (EMA), which fits one set of end members to a single data set, is one the most robust ways to do this. This approach estimates the form of the end members from the data set itself; hence it is a non-parametric approach. Available algorithms, however, either produce sub-optimal solutions, or are time consuming. To aid investigators in exploring the full potential of their data, we introduce AnalySize, which is a GUI based tool that allows for comprehensive processing and unmixing of grain size data obtained from laser diffraction particle grain size analyzers. AnalySize brings together methods from other disciplines in Earth sciences as well as introducing new techniques and improvements to provide a complete software package for unmixing GSD data. The software utilizes the rapid HALS-NMF algorithm from hyperspectral image analysis to perform non-parametric EMA, which is demonstrated to yield results that are an improvement over algorithms currently used in GSD analysis. Non-parametric EMA, however, is often unable to clearly identify discrete unimodal grain size sub-populations, which can more detailed information about sediment sources. To alleviate this, we introduce a new algorithm to perform parametric EMA, whereby an entire GSD data set can be unmixed into unimodal parametric end members (e.g., lognormal or Weibull end members). This allows individual grain size sub-populations to be more readily identifiable in highly mixed data set

  13. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat

    PubMed Central

    Rebetzke, G. J.; Bonnett, D. G.; Reynolds, M. P.

    2016-01-01

    Genotypic variation in ear morphology is linked to differences in photosynthetic potential to influence grain yield in winter cereals. Awns contribute to photosynthesis, particularly under water-limited conditions when canopy assimilation is restricted. We assessed performance of up to 45 backcross-derived, awned–awnletted NILs representing four diverse genetic backgrounds in 25 irrigated or rainfed, and droughted environments in Australia and Mexico. Mean environment grain yields were wide-ranging (1.38–7.93 t ha−1) with vegetative and maturity biomass, plant height, anthesis date, spike number, and harvest index all similar (P >0.05) for awned and awnletted NILs. Overall, grain yields of awned–awnletted sister-NILs were equivalent, irrespective of yield potential and genetic background. Awnletted wheats produced significantly more grains per unit area (+4%) and per spike (+5%) reflecting more fertile spikelets and grains in tertiary florets. Increases in grain number were compensated for by significant reductions in grain size (–5%) and increased frequency (+0.8%) of small, shrivelled grains (‘screenings’) to reduce seed-lot quality of awnletted NILs. Post-anthesis canopies of awnletted NILs were marginally warmer over all environments (+0.27 °C) but were not different and were sometimes cooler than awned NILs at cooler air temperatures. Awns develop early and represented up to 40% of total spikelet biomass prior to ear emergence. We hypothesize that the allocation of assimilate to large and rapidly developing awns decreases spikelet number and floret fertility to reduce grain number, particularly in distal florets. Individual grain size is increased to reduce screenings and to increase test weight and milling quality, particularly in droughted environments. Despite the average reduction in grain size, awnless lines could be identified that combined higher grain yield with larger grain size, increased grain protein concentration, and reduced

  14. Effect of grain size on the domain structures and electromechanical responses of ferroelectric polycrystal

    NASA Astrophysics Data System (ADS)

    Li, Xinkai; Wang, Jie

    2017-01-01

    The effect of grain size on the domain structures and electromechanical responses of ferroelectric polycrystals is investigated by a phase field model. The phase field simulations show that the different types of domains in different size of grains play an important role in the size-dependent properties of ferroelectric polycrystals. It is found that the remnant polarization, coercive field and dielectric coefficient increase monotonously with the increase of grain size. However, the piezoelectric coefficient increases first and then decreases as the grain size increases. The decrease of vortex domains is responsible for the increase of piezoelectric coefficient in the range of small grain size, the decrease of 90° domain walls results in the decrease of piezoelectric coefficient in the range of large grain size. In addition, different domain structures in different size of grains have also great influence on the mechanical depolarization of the ferroelectric polycrystals subjected to a compressive stress.

  15. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

  16. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE

    SciTech Connect

    Nemecek, Z.; Pavlu, J.; Safrankova, J.; Beranek, M.; Richterova, I.; Vaverka, J.; Mann, I.

    2011-09-01

    The secondary electron emission is believed to play an important role for the dust charging at and close to the lunar surface. However, our knowledge of emission properties of the dust results from model calculations and rather rare laboratory investigations. The present paper reports laboratory measurements of the surface potential on Lunar Highlands Type regolith simulants with sizes between 0.3 and 3 {mu}m in an electron beam with energy below 700 eV. This investigation is focused on a low-energy part, i.e., {<=}100 eV. We found that the equilibrium surface potential of this simulant does not depend on the grain size in our ranges of grain dimensions and the beam energies, however, it is a function of the primary electron beam energy. The measurements are confirmed by the results of the simulation model of the secondary emission from the spherical samples. Finally, we compare our results with those obtained in laboratory experiments as well as those inferred from in situ observations.

  17. PERFORMANCES OF HIGH PURITY NIOBIUM CAVITIES WITH DIFFERENT GRAIN SIZES

    SciTech Connect

    Gianluigi Ciovati; Peter Kneisel; Ganapati Myneni; Swapan Chattopadhyay

    2006-08-21

    Grain boundaries have for some time been suspected of influencing the performance of RF cavities made from high purity niobium by limiting the temperature dependent BCS surface resistance to a residual resistance because of impurity segregation and by causing field limitations due to flux penetration. We have carried out a comparative study of the RF behavior of 2.2 GHz TM{sub 010} cavities of identical shape, fabricated from single crystal niobium, niobium of grain sizes of the order of several cm{sup 2} and standard poly-crystalline material. All the cavities were treated with buffered chemical polishing (BCP), post-purified at 1250 ?C and ?in-situ? baked at 120 C. This contribution reports about the results of the measurements of the temperature dependence of the surface resistance Rs(T) and the Q0 vs. Eacc behavior at 2 K. From the analysis of the Rs(T) data at low RF fields material parameters such as gap value, mean free path and residual resistance could be extracted. The dependence of the Q-value on RF field was analyzed with respect to the medium field Q-slope, Q-drop at high fields and the quench fields. The best performance resulted in a breakdown field of {approx}165 mT, corresponding to an accelerating gradient of E{sub acc} {approx} 38 MV/m.

  18. PERFORMANCES OF HIGH PURITY NIOBIUM CAVITIES WITH DIFFERENT GRAIN SIZES

    SciTech Connect

    Gianluigi Ciovati; Peter Kneisel; Ganapati Myneni; Ganapati Rao Myneni; Ganapati Rao Myneni; Swapan Chattopadhyay

    2006-08-04

    Grain boundaries have for some time been suspected of influencing the performance of RF cavities made from high purity niobium by limiting the temperature dependent BCS surface resistance to a residual resistance because of impurity segregation and by causing field limitations due to flux penetration. We have carried out a comparative study of the RF behavior of 2.2 GHz TM010 cavities of identical shape, fabricated from single crystal niobium, niobium of grain sizes of the order of several cm2 and standard poly-crystalline material. All the cavities were treated with buffered chemical polishing (BCP), post-purified at 1250 C and ''in-situ'' baked at 120 C. This contribution reports about the results of the measurements of the temperature dependence of the surface resistance Rs(T) and the Q0 vs. Eacc behavior at 2 K. From the analysis of the Rs(T) data at low RF fields material parameters such as gap value, mean free path and residual resistance could be extracted. The dependence of the Q-value on RF field was analyzed with respect to the medium field Q-slope, ''Q-drop'' at high fields and the ''quench'' fields. The best performance resulted in a breakdown field of {approx} 165 mT, corresponding to an accelerating gradient of Eacc {approx} 38 MV/m.

  19. Deltaic processes on Titan - the role of grain size

    NASA Astrophysics Data System (ADS)

    Witek, Piotr; Czechowski, Leszek

    2015-04-01

    In Titan's polar regions the Cassini spacecraft observed numerous hydrocarbon lakes surrounded by river valley systems. The rivers transport sediments to the lakes which serve as local sedimentary basins. The shape and evolution of the sedimentary deposits depends, among other parameters, on grain size. This is a result of dependence of settling velocity and drag force on diameter of the sediment particle. In consequence the deltas and alluvial cones take different shapes depending on the source of sediments and the distance from the source, due to natural sorting of rocky material. We used numerical models to simulate development of river deltas in Titanian and terrestrial conditions. Despite differences in gravity and composition, affecting effectiveness of sediment transport, we found many similarities in evolution of sedimentary landforms on both bodies. This gives us another tool for understanding the evolution of the surface of this unique moon.

  20. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  1. A simple autocorrelation algorithm for determining grain size from digital images of sediment

    USGS Publications Warehouse

    Rubin, D.M.

    2004-01-01

    Autocorrelation between pixels in digital images of sediment can be used to measure average grain size of sediment on the bed, grain-size distribution of bed sediment, and vertical profiles in grain size in a cross-sectional image through a bed. The technique is less sensitive than traditional laboratory analyses to tails of a grain-size distribution, but it offers substantial other advantages: it is 100 times as fast; it is ideal for sampling surficial sediment (the part that interacts with a flow); it can determine vertical profiles in grain size on a scale finer than can be sampled physically; and it can be used in the field to provide almost real-time grain-size analysis. The technique can be applied to digital images obtained using any source with sufficient resolution, including digital cameras, digital video, or underwater digital microscopes (for real-time grain-size mapping of the bed). ?? 2004, SEPM (Society for Sedimentary Geology).

  2. Composite grain size sensitive and grain size insensitive creep of bischofite, carnallite and mixed bischofite-carnallite-halite salt rock

    NASA Astrophysics Data System (ADS)

    Muhammad, Nawaz; de Bresser, Hans; Peach, Colin; Spiers, Chris

    2016-04-01

    Deformation experiments have been conducted on rock samples of the valuable magnesium and potassium salts bischofite and carnallite, and on mixed bischofite-carnallite-halite rocks. The samples have been machined from a natural core from the northern part of the Netherlands. Main aim was to produce constitutive flow laws that can be applied at the in situ conditions that hold in the undissolved wall rock of caverns resulting from solution mining. The experiments were triaxial compression tests carried out at true in situ conditions of 70° C temperature and 40 MPa confining pressure. A typical experiment consisted of a few steps at constant strain rate, in the range 10-5 to 10-8 s-1, interrupted by periods of stress relaxation. During the constant strain rate part of the test, the sample was deformed until a steady (or near steady) state of stress was reached. This usually required about 2-4% of shortening. Then the piston was arrested and the stress on the sample was allowed to relax until the diminishing force on the sample reached the limits of the load cell resolution, usually at a strain rate in the order of 10-9 s-1. The duration of each relaxation step was a few days. Carnallite was found to be 4-5 times stronger than bischofite. The bischofite-carnallite-halite mixtures, at their turn, were stronger than carnallite, and hence substantially stronger than pure bischofite. For bischofite as well as carnallite, we observed that during stress relaxation, the stress exponent nof a conventional power law changed from ˜5 at strain rate 10-5 s-1 to ˜1 at 10-9 s-1. The absolute strength of both materials remained higher if relaxation started at a higher stress, i.e. at a faster strain rate. We interpret this as indicating a difference in microstructure at the initiation of the relaxation, notably a smaller grain size related to dynamical recrystallization during the constant strain rate step. The data thus suggest that there is a gradual change in deformation

  3. Assessment of grain size distributions in nanocrystalline copper and their effect on mechanical behavior

    SciTech Connect

    Mitra, R.; Ungar, T.; Morita, T.; Sanders, P.G.; Weertman, J.R.

    1999-07-01

    Grain size measurements by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) observations were carried out on nanocrystalline copper processed by inert gas condensation. Grain size distributions obtained by XRD and TEM follow a log normal relationship. The distributions of both number and volume fractions of grain sizes were evaluated. The mode of the latter was found to be much larger than that of the former. The results of XRD and TEM matched closely in cases of finer mean grain size with a relatively narrow distribution. It was observed that extensive twinning could lead to underestimation of grain size through XRD methods. Grain sizes increased significantly on use of higher compaction temperature during processing or on extended room temperature exposure. Finally, a micromechanical model was used to understand the effect of grain size (volume) distribution on the yielding of nanocrystalline metals. An increase in the mean grain size of standard deviation, which means an increase in the volume fraction of relatively coarse grains, reduces the yield stress significantly. This implies it is not just the average grain size, but the character of the grain size distribution, that controls the mechanical behavior of nanocrystalline metals.

  4. Grain size reduction due to fracturing and subsequent grain-size-sensitive creep in a lower crustal shear zone in the presence of a CO2-bearing fluid

    NASA Astrophysics Data System (ADS)

    Okudaira, Takamoto; Shigematsu, Norio; Harigane, Yumiko; Yoshida, Kenta

    2017-02-01

    To understand rheological weakening in the lower continental crust, we studied mylonites in the Paleoproterozoic Eidsfjord anorthosite, northern Norway. The zones of anorthositic mylonites range from a few millimeters to several meters thick, and include ultramylonites and protomylonites. They contain syn-kinematic metamorphic minerals, including Cl-bearing amphibole and scapolite. Thermodynamic analysis reveals that syn-deformational hydration reactions occurred at ∼600 °C and ∼700 MPa under CO2-bearing conditions. The protomylonites contain many fragmented plagioclase porphyroclasts. The fractures in porphyroclasts are filled with fine-grained plagioclase, suggesting that fracturing is a common mechanism of grain size reduction. The anorthite contents of fine-grained polygonal matrix plagioclase are different from those of porphyroclastic plagioclase, suggesting that the matrix grains nucleated and grew during syn-kinematic metamorphism. Plagioclase aggregates in the matrices of mylonites do not exhibit a distinct crystallographic preferred orientation, which implies that the dominant deformation mechanism was grain-size-sensitive creep. Consequently, in the lower crustal anorthositic mylonites, grain size reduction occurred via fracturing, rather than through dynamic recrystallization, leading to grain-size-sensitive creep. The syn-kinematic recrystallization of minor phases at plagioclase grain boundaries may suppress the growth of plagioclase and contribute to the development of grain-size-sensitive creep.

  5. Grain size constraints on twin expansion in hexagonal close packed crystals

    NASA Astrophysics Data System (ADS)

    Arul Kumar, M.; Beyerlein, I. J.; Tomé, C. N.

    2016-10-01

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause these stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. These results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.

  6. Grain size constraints on twin expansion in hexagonal close packed crystals

    DOE PAGES

    Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.

    2016-10-20

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause thesemore » stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.« less

  7. Grain size constraints on twin expansion in hexagonal close packed crystals

    SciTech Connect

    Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.

    2016-10-20

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause these stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.

  8. Analysis of EBSD Grain Size Measurements Using Microstructure Simulations and a Customizable Pattern Matching Library for Grain Perimeter Estimation

    NASA Astrophysics Data System (ADS)

    Coutinho, Y. A.; Rooney, S. C. K.; Payton, E. J.

    2017-03-01

    Grain size data from electron backscatter diffraction (EBSD) maps are often reported as the mean of the circle equivalent diameters of the measured grain areas. Circle equivalent diameters are not directly comparable to the lineal intercept measurements more historically common for grain size characterization in analog optical microscopy. While the value of mean lineal intercept is the same in 2D and 3D for a given probe direction, the mean 2D circle equivalent section diameter is not directly related to any 3D property. Estimation of mean lineal intercept from circle equivalent diameter is usually carried out by again assuming feature circularity, despite the obvious corners that are inherent to grains from the requirements of space filling. A direct conversion between section areas and lineal intercepts can be performed if the grain perimeters are known. In the present work, a novel pattern matching library approach is investigated for measurement of grain perimeters using simulated 2D EBSD maps. The results are compared to alternative approaches for perimeter measurement and assessed with respect to spatial resolution, grain size distribution parameters, and relevant ASTM and ISO measurement standards. The benefits and drawbacks of each approach are discussed. Empirical estimators for conversion between lineal intercept, circle equivalent diameter, and ASTM grain size number are presented.

  9. THE EFFECTS OF GRAIN SIZE AND TEMPERATURE DISTRIBUTIONS ON THE FORMATION OF INTERSTELLAR ICE MANTLES

    SciTech Connect

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.

  10. Modeling the dependence of strength on grain sizes in nanocrystalline materials.

    PubMed

    He, Wei; Bhole, Sanjeev D; Chen, DaoLun

    2008-01-01

    A model was developed to describe the grain size dependence of hardness (or strength) in nanocrystalline materials by combining the Hall-Petch relationship for larger grains with a coherent polycrystal model for nanoscale grains and introducing a log-normal distribution of grain sizes. The transition from the Hall-Petch relationship to the coherent polycrystal mechanism was shown to be a gradual process. The hardness in the nanoscale regime was observed to increase with decreasing grain boundary affected zone (or effective grain boundary thickness, Δ) in the form of Δ(-1/2). The critical grain size increased linearly with increasing Δ. The variation of the calculated hardness value with the grain size was observed to be in agreement with the experimental data reported in the literature.

  11. The role of grain size in He bubble formation: Implications for swelling resistance

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Nathaniel, J. E.; Leff, A. C.; Muntifering, B. R.; Baldwin, J. K.; Hattar, K.; Taheri, M. L.

    2017-02-01

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  12. Effects of grain size and grain boundary on critical current density of high T(sub c) superconducting oxides

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    By means of adding impurity elements in high T sub c oxides, the effects were studied of grain size and grain boundary on the critical current density of the following systems: YBa2Cu3O(7-y) and Bi-Pr-Sr-Ca-Cu-O. In order to only change the microstructure instead of the superconductivity of the grains in the samples, the impurity elements were added into the systems in terms of the methods like this: (1) substituting Y with the lanthanide except Pr, Ce, and Tb in YBa2Cu3O(7-y) system to finning down grains in the samples, therefore, the effect can be investigated of the grain size on the critical current density of 1:2:3 compounds; (2) mixing the high T sub c oxides with the metal elements, such as Ag, according to the composition of (high T sub c oxide)1-xAgx to metallize the grain boundaries in the samples, studying the effect of the electric conductivity of the grain boundaries on the critical current density; (3) adding SiO2, PbO2, and SnO2 into the high T sub c oxide to form impurity phases in the grain boundaries, trying to find out the effects of the impurity phases or metalloid grain boundaries on the critical current density of the high T sub c superconductors. The experimental results indicate that in the case of of the presence of the metalloid grain boundaries finning down grains fails to enhance the j sub c, but restrains it strongly, the granular high T sub c superconductors with the small size grains coupled weakly is always the low j sub c system.

  13. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  14. Dressing of diamond grinding wheels by abrasive water jet for freeform optical surface grinding

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yao, Peng; Li, Chengwu; Huang, Chuanzhen; Wang, Jun; Zhu, Hongtao; Liu, Zengwen

    2014-08-01

    During the ultra-precision grinding of a large aperture mirror made of RB-SiC, the grinding wheel becomes dull rapidly, which will lead to an increase of grinding force and a decrease of grinding ratio. In this paper, diamond grinding sticks were dressed with micro SiC abrasive water jet and water jet. Through single factorial experiments, the influence of jet pressure on the dressing performance was investigated. To analyze and evaluate the effect of dressing quantitatively, the 3D roughness and the wheel topography were measured and compared with laser scanning confocal microscope before and after dressing. The experimental results show that the abrasive grains are well protruded from binder and the distribution of the abrasive grains becomes uniform after dressing by abrasive water jet when the dressing parameters are properly selected. The dressing performance of abrasive water jet is much better than water jet. For dressing ultra-fine grit size wheels, the abrasive size of the jet should be smaller than the wheel grit size to achieve a better result. The jet pressure is an obvious influence factor of the surface topography.

  15. Migration Reversals in Grain-size Transitions to Shoreline

    NASA Astrophysics Data System (ADS)

    Baumanis, C.; Kim, W.

    2015-12-01

    The migration of the lithofacies boundary recorded in the sedimentary record is key to interpreting changes in depositional environments. Change in grain size in the stratigraphic record is one of the most recognizable physical lithological features. Advance and retreat of the lithofacies boundary (gravel-sand transition) is attributed to external control variation, e.g., climate variation, sea-level change, and tectonic subsidence. While most models focus on predicting the response of the fluviodeltaic shoreline to these forcings, none have thoroughly incorporated the migration of grain-size transitions (GST) that coevolve within the fluviodeltaic system. We present a delta evolution model that treats the shoreline and GST as moving boundaries to provide quantitative understanding of the dynamic interaction between the external boundary (shoreline) and the internal lithofacies boundaries (GSTs) under relative sea-level rise. We tested a range of relative sea-level rise rates in the model. The shoreline and GST gradually reduced their progradation rates and eventually retreated landward as the fluviodeltaic topset and foreset elongated. However, their timings of retreats were different, resulting in a counterintuitive case for a quicker retreat of GST while the shoreline still continued to advance. A series of scaled flume experiments with a sand and crushed walnut sediment mixture captured the same behaviors of these two moving boundaries. We found that GST experienced higher relative sea-level rise rates that scale with the downstream river slope and the shoreline progradation rate, which caused earlier GST retreat timing in comparison to the shoreline. Time series data from the experiments show higher natural variability in migration rate of GST compared to that of the shoreline. Therefore, final recorded stratigraphy displayed a GST trajectory as a shazam line that shows zigzag fluctuations. This study investigates autogenic processes acting on the

  16. The effects of grain size distribution on cavity nucleation and creep deformation in ceramics containing viscous grain boundary phase

    SciTech Connect

    Dey, N.; Hsia, K.J.; Socie, D.F.

    1997-10-01

    The grain size distribution in a polycrystalline ceramic material is not uniform. Such microstructural inhomogeneity may give rise to nonuniform local stress distributions. Here the authors investigate the effect of grain size distribution on the generation of local stress concentration in ceramic materials creeping by localized flow of a viscous grain boundary phase. A simple bimodal grain size distribution is first considered. The critical stress for cavity nucleation, calculated using classical Becker-Doring nucleation theory, is compared with the local stress concentration. The results show that, because of the inhomogeneity, the local stress in the grain boundary viscous phase at the locations of large grains can exceed the critical stress for cavity nucleation. The creep rate due to localized viscous flow of the grain boundary phase and cavity growth is evaluated. Although the creep behavior owing solely to viscous flow is linear with respect to applied stress, it can be highly nonlinear when cavitation occurs. Moreover, as an example, the model has been used to study creep behavior of a whisker-reinforced Si{sub 3}N{sub 4} matrix composite in which long whiskers are surrounded by small equiaxed ceramic grains.

  17. Wind abrasion on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1991-01-01

    Aeolian activity was predicted for Mars from earth based observations of changing surface patterns that were interpreted as dust storms. Mariner 9 images showed conclusive evidence for aeolian processes in the form of active dust storms and various aeolian landforms including dunes and yardangs. Windspeeds to initiate particle movement are an order of magnitude higher on Mars than on Earth because of the low atmospheric density on Mars. In order to determine rates of abrasion by wind blown particles, knowledge of three factors is required: (1) particle parameters such as numbers and velocities of windblown grains as functions of windspeeds at various heights above the surface; (2) the susceptibility to abrasion of various rocks and minerals; and (3) wind frequencies and speeds. For estimates appropriate to Mars, data for the first two parameters can be determined through lab and wind tunnel tests; data for the last two factors are available directly from the Viking Lander meteorology experiments for the two landing sites.

  18. Grain growth of ε-iron: Implications to grain size and its evolution in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yamazaki, Daisuke; Tsujino, Noriyoshi; Yoneda, Akira; Ito, Eiji; Yoshino, Takashi; Tange, Yoshinori; Higo, Yuji

    2017-02-01

    Knowledge of grain growth rate of ε-iron can put constraint on estimation of the grain size in the inner core. We determined grain growth rate of ε-iron at ∼55 GPa and 1200-1500 K by means of in-situ X-ray diffraction observation to be Gn - G0n = kt, where G (m) is the grain size at time t (s), G0 (m) is the initial grain size, n is growth exponent (fixed to 2) and k is the growth constant expressed as k =k0 exp ⁡ (-H* / RT) with log k0 (mn /s) = - 5.8 (± 2.4) and activation enthalpy H* = 221 (± 61) kJ /mol, and R is the gas constant and T is the absolute temperature. Extrapolation of the grain growth law of ε-iron to the inner core conditions suggests that the grain size in the inner core is in a range from several hundred meters to several kilometers, which is intermediate among the previous estimations, and hence the dominant deformation mechanism is considered to be Harper-Dorn creep rather than diffusion creep as pointed out by the previous work. This indicates the relatively uniform viscosity in the entire inner core.

  19. Relationship among fatigue strength, mean grain size and compressive strength of a rock

    NASA Astrophysics Data System (ADS)

    Singh, S. K.

    1988-10-01

    Fatigue tests carried on three sets of samples having different mean grain sizes revealed that fatigue strength is a function of mean grain size of the rock. Samples having smaller grain size show higher value of fatigue strength. Graywacke samples from Flagstaff formation having mean grain sizes of 1.79 mm, 1.35 mm and 0.93 mm showed fatigue strengths of 87%, 88.25% and 89.1% respectively. Since the mean uniaxial compressive strength also varied with varying grain size, i. e. higher mean strength value for samples having finer grain size; the fatigue strength of a rock also shows a converse relation with mean uniaxial compressive strength.

  20. Influence of Al2O3 Particle Size on Microstructure, Mechanical Properties and Abrasive Wear Behavior of Flame-Sprayed and Remelted NiCrBSi Coatings

    NASA Astrophysics Data System (ADS)

    Habib, K. A.; Cano, D. L.; Caudet, C. T.; Damra, M. S.; Cervera, I.; Bellés, J.; Ortells, P.

    2017-03-01

    The influence of micrometric alumina (low surface area-to-volume ratio) and nanometric alumina (high surface area-to-volume ratio) on microstructure, hardness and abrasive wear of a NiCrBSi hardfacing alloy coating applied to an AISI 304 substrate using flame spraying (FS) combined with surface flame melting (SFM) is studied. Remelting after spraying improved the mechanical and tribological properties of the coatings. Microstructural characterization using XRD, SEM and EDS indicated that alumina additions produced similar phases (NiSi, Ni3B, CrC and Ni31Si12) regardless of the alumina size, but the phases differed in morphology, size distribution and relative proportions from one coating to another. The addition of 12 wt.% nanometric Al2O3 increased the phases concentration more than five- to sixfold and reduced the hard phases size about four-to threefold compared with NiCrBSi + 12 wt.% micrometric Al2O3. Nanoalumina led to reduced mass loss during abrasive wear compared to micrometric alumina and greater improvement in hardness.

  1. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  2. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  3. A micromechanical theory of grain-size dependence in metal plasticity

    NASA Astrophysics Data System (ADS)

    Weng, G. J.

    T HE EFFECT of grain-size on the elastoplastic behavior of metals is investigated from the micromechanics standpoint. First, based on the observations that dislocation pile-ups, formation of cell structures, and other inelastic activities influenced by the presence of grain boundary actually take place transcrystallinely, a grain-size dependent constitutive equation is proposed for the slip deformation of slip systems. By means of a modified Hill's self-consistent relation the local stress of a grain is calculated, and used in conjunction with this constitutive equation to evaluate the plastic strain of each constituent grain. The grain-size effect on the plastic flow of polycrystals then can be determined by an averaging process. To check the validity of the proposed theory it was finally applied to predict the stress-strain curves and flow stresses of a copper at various grain-sizes. The obtained results were found to be in good agreement with experimental data.

  4. Ductility of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Skripnyak, Nataliya V.; Skripnyak, Evgeniya G.

    Ductility of ultrafine grained (UFG) metal alloys with a distribution of grain size was investigated in wide loading conditions by numerical simulation. The multiscale models with a unimodal and a bimodal grain size distributions were developed using the data of structure research of hexagonal close packed and face center cubic UFG alloys. Macroscopic fracture is considered as a result of the formation of percolation clusters of damage at the mesoscopic level. The critical fracture strain of UFG alloys on the mesoscale level depends on the relative volumes of coarse grains. The nucleation of damages at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. The concentration of damages arise in the vicinity of the boundaries of coarse and ultrafine grains. The occurrence of a bimodal grain size distributions causes the increase of UFG alloys' ductility, but decrease of their tensile strength. Linkoping University, Sweden.

  5. The grain-size lineup: A test of a novel eyewitness identification procedure.

    PubMed

    Horry, Ruth; Brewer, Neil; Weber, Nathan

    2016-04-01

    When making a memorial judgment, respondents can regulate their accuracy by adjusting the precision, or grain size, of their responses. In many circumstances, coarse-grained responses are less informative, but more likely to be accurate, than fine-grained responses. This study describes a novel eyewitness identification procedure, the grain-size lineup, in which participants eliminated any number of individuals from the lineup, creating a choice set of variable size. A decision was considered to be fine-grained if no more than 1 individual was left in the choice set or coarse-grained if more than 1 individual was left in the choice set. Participants (N = 384) watched 2 high-quality or low-quality videotaped mock crimes and then completed 4 standard simultaneous lineups or 4 grain-size lineups (2 target-present and 2 target-absent). There was some evidence of strategic regulation of grain size, as the most difficult lineup was associated with a greater proportion of coarse-grained responses than the other lineups. However, the grain-size lineup did not outperform the standard simultaneous lineup. Fine-grained suspect identifications were no more diagnostic than suspect identifications from standard lineups, whereas coarse-grained suspect identifications carried little probative value. Participants were generally reluctant to provide coarse-grained responses, which may have hampered the utility of the procedure. For a grain-size approach to be useful, participants may need to be trained or instructed to use the coarse-grained option effectively.

  6. Material grain size characterization method based on energy attenuation coefficient spectrum and support vector regression.

    PubMed

    Li, Min; Zhou, Tong; Song, Yanan

    2016-07-01

    A grain size characterization method based on energy attenuation coefficient spectrum and support vector regression (SVR) is proposed. First, the spectra of the first and second back-wall echoes are cut into several frequency bands to calculate the energy attenuation coefficient spectrum. Second, the frequency band that is sensitive to grain size variation is determined. Finally, a statistical model between the energy attenuation coefficient in the sensitive frequency band and average grain size is established through SVR. Experimental verification is conducted on austenitic stainless steel. The average relative error of the predicted grain size is 5.65%, which is better than that of conventional methods.

  7. Measuring pebble abrasion on a mixed sand and gravel beach using abrasion baskets

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Stephenson, Wayne

    2015-11-01

    The abrasion of sediments on mixed sand and gravel beaches has important consequences for local sediment budgets as abrasion often accounts for the major loss of beach volume. Here we report an innovative method using abrasion baskets to measure abrasion in the swash zone of mixed sand and gravel beaches. This method offers significant advantages over laboratory-based tumbler experiments traditionally used to determine abrasion rates. The very high recovery rate from our method is also a significant advantage over previous field methods using radio frequency identification technology to measure abrasion where tagged particles are often lost. Either three or five abrasion baskets were placed across the swash zone on a mixed sand and gravel beach at Timaru, South Island, New Zealand, to measure the abrasion occurring on labeled sediments placed in the baskets. Over two experiments, results showed measurable abrasion across the swash zone with higher abrasion rates occurring in the middle of the swash zone and lower rates towards the swash limit and at the breaker zone. Results also illustrate the role of changing wave energy on abrasion loss. A relationship between particle size and abrasion rate was also found, similar to previous laboratory results reported in the literature. Our preliminary experiments lead us to define an abrasion zone and this idea may help shape future research on abrasion processes on mixed sand and gravel beaches.

  8. Grain Size Effect on Fracture Behavior of the Axis-Tensile Test of Inconel 718 Sheet

    NASA Astrophysics Data System (ADS)

    Liu, B. B.; Han, J. Q.; Zhao, R.; Liu, W.; Wan, M.

    2016-11-01

    Change in mechanical parts from macro-size to micro-size has become a trend in the metal- and alloy-forming process, with an increasing demand on micro-parts in the last decades. The material mechanical behaviors of micro-size parts are quite different from the conventional ones of macro-size parts due to size effect. It is necessary to further investigate the effects of grain size on material mechanisms in micro-scales, especially fracture behaviors. The fracture behaviors of Inconel 718 sheet with the thickness of 300 μm are studied by uniaxial tensile tests in different grain sizes ranging from 18 to 130 μm. The results show that fracture stress and strain decrease with the increase of grain size. A critical value in the specimen thickness (t) to grain size (d) ratio divides the strength levels into separate stages on the basis of an increase of the inverse of grain size. In addition, the grain size-dependent fracture morphology is changed in the number of dimples and micro-voids decreasing on the fracture surfaces and the sizes of micro-voids changing larger with the increase of grain size.

  9. Effect of partial recrystallization on the grain size and grain boundary structure of austenitic steel

    SciTech Connect

    Szabo, Peter J.

    2012-04-15

    Cyclic thermomechanical treatment combined with caliber rolling was applied in order to obtain very fine grain structure with high fraction of special grain boundaries in austenitic stainless steel. Partial recrystallization was observed. Recrystallized fraction was assessed from misorientation data measured by electron back scattering diffraction. Due to the partial recrystallization, elastic energy was stored in the deformed parts, and helped grain boundary movement. As a consequence, very fine grained material with high fraction of special boundaries was formed. - Highlights: Black-Right-Pointing-Pointer I combined the advantage of severe plastic deformation and thermomechanical treatment. Black-Right-Pointing-Pointer A very fine grained steel with high fraction of special boundaries was formed. Black-Right-Pointing-Pointer Stored elastic energy hepled the movement of grain boundaries. Black-Right-Pointing-Pointer The amount of recrystallized part was determined by EBSD.

  10. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  11. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction

    PubMed Central

    Turner, Andrew J; Katz, Richard F; Behn, Mark D

    2015-01-01

    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise. Key Points: The grain-size field beneath MORs can vary over orders of magnitude The grain-size field affects the rheology and permeability of the asthenosphere The grain-size field may focus melt toward the ridge axis PMID:26693211

  12. A New Grain Harvesting System for Single Pass Grain Harvest, Biomass Collection, Crop Residue Sizing and Grain Segregation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  13. A New Grain Harvesting System for Single-Pass Grain Harvest, Biomass Collection, Crop Residue Sizing, and Grain Segregation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  14. Grain size and grain depth restrict oxygen movement in leaky hermetic containers and contribute to protective effect.

    PubMed

    Williams, Scott B; Murdock, Larry L; Kharel, Kabita; Baributsa, Dieudonne

    2016-10-01

    Postharvest insect pests threaten the nutritional and financial security of smallholder farmers in the developing world. Hermetic storage, a technology that protects grain against insects by blocking their supply of oxygen, alleviates the problem of insect-caused losses. PICS (Purdue Improved Crop Storage) bags represent one hermetic technology that improves food availability and incomes of farmers. The polyethylene liners of PICS bags are sometime damaged during use, acquiring small holes or tears. Observations in the laboratory and field suggest that insect development remains localized around the point where the bag is damaged. We hypothesized that the grain within a hermetic container that has minimal localized damage (such as an insect hole), helps retard leakage of oxygen into the bag and contributes to limiting insect damage and to the overall protective effect. To test this hypothesis, we filled 4 cm dia. by 10 cm long PVC pipes with Callosobruchus maculatus (F.) infested cowpeas and sealed them with caps having a single, insect-sized hole in its center. A vertical tube positioned above the cowpea-filled PVC pipe was filled with one of three different grains (sesame, sorghum, and maize) to different depths (0, 5, 15, 30, 50 cm). Seed size and grain barrier depth significantly reduced the level of bruchid damage to the stored cowpea in the PVC container. Smaller sized grains used for the barriers retarded insect development more effectively than larger sized grains, while deeper grain depth was more effective than shallower barriers. The grain held in a hermetic container contributes in a small, but significant, way to the effectiveness of the containers.

  15. HIGH SPATIAL RESOLUTION SURVEY OF GRAIN SIZE INFORMATION ON RIVER BED BY IMAGE PROCESSING

    NASA Astrophysics Data System (ADS)

    Ohashi, Keisuke; Ihara, Kazuki; Yasuda, Shingo

    We tried a method of grain sizing by image processing which is available to survey and analyze in short time. The high-efficiency method actualizes high spatial resolution information of grain size distribution. Thus, the information has a vailability to express a situation of stream flow better than traditional grain sizing methods. For this reason, we paid attention to 50 m reservoir area upper from the check dam in mountainous region and surveyed the grain distribution at 26 sites and river channel landform. The grain sizing by image processing provided the appropriate result qualitatively. Moreover we estimated the critical diameter of moving from hydraulic information simultaneously. A qualitative appropriate result is showed less than 50 mm error as a result, however, quantitative response is not found between the critical diameter of moving and the grain size distribution surveyed. Meanwhile,the different grain sizing methods that are image processing and traditional sieving are used to cover the bilateral weak point. Thereby, a peak of grain existence probability is found in the threshold diameter between image processing and sieving. This result indicates that it is necessary to change the threshold diameter much larger than the limit of image processing grain sizing.

  16. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Katz, Richard F.; Behn, Mark D.

    2015-03-01

    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise.

  17. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction.

    PubMed

    Turner, Andrew J; Katz, Richard F; Behn, Mark D

    2015-03-01

    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise.

  18. Characterizing the Large (cm-size) Grains Around Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica M.; Feaga, Lori M.; Farnham, Tony; Protopapa, Silvia; Kelley, Michael S.; Engle, Anna

    2016-10-01

    During the flyby of comet 103P/Hartley 2, two populations of bright grains were identified in the coma. Small, 1 µm-sized, water ice-rich grains were observed near the small end of the nucleus that were dragged from the interior by CO2 gas emissions. At closest approach a population of larger grains was clearly seen in visible images off the large lobe. The estimated brightness of the isolated grains suggests that they are likely cm-sized particles and likely water ice-rich. Both sets of grains were simultaneously observed in visible images, at two different resolutions, and by Deep Impact infrared spectrometer. However, because of the difficulty in finding isolated grains in the infrared slit, the population of larger grains has not previously been characterized. Doing so allows us to determine both the reflected and thermal properties of the grains, which when compared to visible images can be used to constrain the size of the grains. Their spectral properties can also be used to definitively detect water ice as has been assumed from visible albedos. In addition, the infrared spectra can be used estimate the relative abundance and particle sizes of ice and non-ice components. The velocity and dynamics of these larger grains can also be characterized. These data will be compared with those of the population of smaller grains emanated directly from the nucleus.Funding from NASA'S Discovery Data Analysis Program (NNX16AJ93G) is greatfully acknowledged.

  19. Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-zhi; Koumoto, Kunihito

    2013-07-01

    The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.

  20. Negative temperature dependence of recrystallized grain size: analytical formulation and experimental confirmation

    NASA Astrophysics Data System (ADS)

    Elmasry, M.; Liu, F.; Jiang, Y.; Mao, Z. N.; Liu, Y.; Wang, J. T.

    2017-01-01

    The catalyzing effect on nucleation of recrystallization from pre-existing grains is analyzed, analogy to the foreign nucleus size effect in heterogeneous nucleation. Analytical formulation of the effective nucleation site for recrystallization leads to a negative temperature dependence of recrystallized grain size. Non-isochronal annealing, where annealing time is set just enough for the completion of recrystallization at different temperature, is conducted on pure copper after severe plastic deformation. More homogeneous and smaller grains are obtained at higher annealing temperature. The good fitting between analytical and experimental results unveils the intrinsic feature of this negative temperature dependence of recrystallized grain size.

  1. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials.

    PubMed

    Dong, Huicong; Wen, Bin; Melnik, Roderick

    2014-11-13

    A theoretical model for describing effective thermal conductivity (ETC) of nanocrystalline materials has been proposed, so that the ETC can be easily obtained from its grain size, single crystal thermal conductivity, single crystal phonon mean free path (PMFP), and the Kaptiza thermal resistance. In addition, the relative importance between grain boundaries (GBs) and size effects on the ETC of nanocrystalline diamond at 300 K has been studied. It has been demonstrated that with increasing grain size, both GBs and size effects become weaker, while size effects become stronger on thermal conductivity than GBs effects.

  2. Grain size distributions and their effects on auto-acoustic compaction

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Brodsky, E. E.

    2013-12-01

    A variety of geophysical and geomorphological processes depend on the response of granular mixtures to shear stress. For example, if shear sliding in a fault zone causes gouge to compact or dilate, this has implications on our understanding of earthquake nucleation and propagation. The behavior of granular flows has previously been found to be strongly dependent on shear rate. At relatively slow shear velocities, a granular flow will support stresses elastically through force chains in what is recognized as the 'quasi-static' regime. At relatively high shear velocities, it will support stresses by transferring momentum in higher velocity grain collisions in the 'grain-inertial' regime, which results in dilation of the flow. Recent experiments conducted using a commercial torsional rheometer found that at intermediate shear velocities, force chain collapse in angular sand samples produced sound waves capable of vibrating the shear zone enough to cause compaction. To expand on the characterization of this newly identified rheological regime, the 'auto-acoustic' regime, we used the same experimental set up to observe how volumetric and acoustic response to shear stress changes with grain size mean and range. Stepped velocity ramp experiments were conducted first on five separate grain size bins, and then on various mixtures of these grain sizes. As expected, larger grain sizes entered the mass-dependent grain-inertial regime at lower shear velocities than smaller grain sizes. Interestingly, smaller grain sizes exhibited more pronounced compaction at slower velocities resulting from the auto-acoustic regime, and the largest grain sizes showed no compaction, implying a grain size threshold for auto-acoustic compaction. In mixtures of different grain size bins, the response of the flow to intermediate shear velocities was consistent with the response of the smallest grain size bin included in the mixture, while the response of the flow to high shear velocities was most

  3. Eyewitness Recall: Regulation of Grain Size and the Role of Confidence

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2008-01-01

    Eyewitness testimony plays a critical role in Western legal systems. Three experiments extended M. Goldsmith, A. Koriat, and A. Weinberg-Eliezer's (2002) framework of the regulation of grain size (precision vs. coarseness) of memory reports to eyewitness memory. In 2 experiments, the grain size of responses had a large impact on memory accuracy.…

  4. Effects of grain size and shape in modeling reflectance spectra of mineral mixtures

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Pieters, Carle M.

    1991-01-01

    The effects of grain size and shape on the reflectance spectra of mineral mixtures are investigated to improve a reflectance model called the isograin model, whose prototype was proposed by M. Kinoshita in 1985. The sample powder was assumed to consist of an infinite number of layers, each of which has the same thickness with the grain size d.

  5. Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects

    NASA Astrophysics Data System (ADS)

    Durá, O. J.; López de La Torre, M. A.; Vázquez, L.; Chaboy, J.; Boada, R.; Rivera-Calzada, A.; Santamaria, J.; Leon, C.

    2010-05-01

    We report on the effect of grain size on the ionic conductivity of yttria-stabilized zirconia samples synthesized by ball milling. Complex impedance measurements, as a function of temperature and frequency are performed on 10mol% yttria-stabilized zirconia nanocrystalline samples with grain sizes ranging from 900 to 17 nm. Bulk ionic conductivity decreases dramatically for grain sizes below 100 nm, although its activation energy is essentially independent of grain size. The results are interpreted in terms of a space-charge layer resulting from segregation of mobile oxygen vacancies to the grain-boundary core. The thickness of this space-charge layer formed at the grain boundaries is on the order of 1 nm for large micron-sized grains but extends up to 7 nm when decreasing the grain size down to 17 nm. This gives rise to oxygen vacancies depletion over a large volume fraction of the grain and consequently to a significant decrease in oxide-ion conductivity.

  6. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  7. Tungsten Carbide Grain Size Computation for WC-Co Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Zhou, Dongran; Cui, Haichao; Xu, Peiquan; Lu, Fenggui

    2016-06-01

    A "two-step" image processing method based on electron backscatter diffraction in scanning electron microscopy was used to compute the tungsten carbide (WC) grain size distribution for tungsten inert gas (TIG) welds and laser welds. Twenty-four images were collected on randomly set fields per sample located at the top, middle, and bottom of a cross-sectional micrograph. Each field contained 500 to 1500 WC grains. The images were recognized through clustering-based image segmentation and WC grain growth recognition. According to the WC grain size computation and experiments, a simple WC-WC interaction model was developed to explain the WC dissolution, grain growth, and aggregation in welded joints. The WC-WC interaction and blunt corners were characterized using scanning and transmission electron microscopy. The WC grain size distribution and the effects of heat input E on grain size distribution for the laser samples were discussed. The results indicate that (1) the grain size distribution follows a Gaussian distribution. Grain sizes at the top of the weld were larger than those near the middle and weld root because of power attenuation. (2) Significant WC grain growth occurred during welding as observed in the as-welded micrographs. The average grain size was 11.47 μm in the TIG samples, which was much larger than that in base metal 1 (BM1 2.13 μm). The grain size distribution curves for the TIG samples revealed a broad particle size distribution without fine grains. The average grain size (1.59 μm) in laser samples was larger than that in base metal 2 (BM2 1.01 μm). (3) WC-WC interaction exhibited complex plane, edge, and blunt corner characteristics during grain growth. A WC ( { 1 {bar{{1}}}00} ) to WC ( {0 1 1 {bar{{0}}}} ) edge disappeared and became a blunt plane WC ( { 10 1 {bar{{0}}}} ) , several grains with two- or three-sided planes and edges disappeared into a multi-edge, and a WC-WC merged.

  8. The effect of grain size on dynamic tensile extrusion behaviour

    NASA Astrophysics Data System (ADS)

    Park, Leeju; Kim, Hack Jun; Kim, Seok Bong

    2015-09-01

    Dynamic tensile extrusion (DTE) tests were conducted on coarse grained and ultrafine grained (UFG) OFHC Cu, Interstitial free (IF) Steel, and pure Ta. Equal channel angular pressing (ECAP) of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm) to the conical extrusion die at a speed of ˜500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  9. Grain Size as a Control for Melt Focusing Beneath Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Turner, A.; Katz, R. F.; Behn, M. D.

    2015-12-01

    Grain size is a fundamental control on both the rheology and permeability of the mantle. These properties, in turn, affect the transport of melt beneath mid-ocean ridges. Previous models of grain size beneath ridges have considered only the single-phase problem of dynamic recrystallisation and the resultant pattern of grain-size variation [1,2]. These models have not coupled the spatially variable grain-size field to two-phase (partially molten) mechanics to investigate the implications of spatially variable grain size on melt transport. Here, we present new results from numerical models that investigate the consequences of this coupling. In our two-dimensional, two-phase model the grain-size is coupled to both the permeability and rheology. The rheology is strain-rate and grain-size dependent. For simplicity, however, the grain-size field is not computed dynamically — rather, it is imposed from a single-phase, steady-state model [1] that is based on the "wattmeter" theory [3]. Our calculations predicts that a spatially variable grain size field can promote focusing of melt towards the ridge axis. This focusing is distinct from the commonly discussed, sub-lithospheric decompaction channel [4]. Furthermore, our model predicts that the shape of the partially molten region is sensitive to rheological parameters associated with grain size. The comparison of this shape with observations [5] may help to constrain the rheology of the upper mantle beneath mid-ocean ridges. References: [1] Turner et al., Geochem. Geophys. Geosyst., 16, 925-946, 2015. [2] Behn et al., EPSL, 282, 178-189, 2009. [3] Austin and Evans, Geology, 35:343-346, 2007. [4] Sparks and Parmentier, EPSL, 105, 368-377, 1991. [5] Key et al., Nature, 495, 499-502, 2013.

  10. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-09-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  11. Evolutionary models of the Earth with a grain size-dependent rheology: diffusion versus dislocation creep

    NASA Astrophysics Data System (ADS)

    Rozel, Antoine; Golabek, Gregor; Thielmann, Marcel; Schierjott, Jana; Tackley, Paul

    2016-04-01

    We present a set of 2D numerical simulations of mantle convection considering grain size evolution and a composite visco-plastic rheology including diffusion and dislocation creep. A 1D parameterization allows us to anticipate the stress conditions for the present-day temperature profile in a convection cell. We are therefore able to obtain self-consistent 2D convecion models together with non-equilibrium grain size for present-day conditions, controlling the partitioning between diffusion and dislocation creep. However, the internal temperature of the mantle is thought to have significantly evolved throughout the history of the Earth. Using a higher internal temperature is usually believed to decrease both viscosity and internal stresses. In our case, a high temperature potentially increases the grain size, which tends to increase the viscosity: the temperature and grain size-dependence of the viscosity are in competition. We study the evolution of the diffusion-dislocation partitioning throughout the history of the Earth. We report the evolution of grain size and stress over time in our simulations. Several complex processes are included in our models. Grain size evolution is a sum of grain growth and dynamic recrystallization. All our simulations consider thermochemical convection in a compressible mantle with melting producting basaltic crust and depleted mantle. Close to the surface, melting produces basaltic material which is erupted or intruded at the base of the crust. Phase transitions reset the grain size to a low value, which influences the whole dynamics of the mantle.

  12. The effects of surface finish and grain size on the strength of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  13. Seafloor Roughness, Sediment Grain Size, and Temporal Stability

    DTIC Science & Technology

    2005-07-01

    ascribed to the community of smaller infauna such as polychaete worms, crustaceans, and microscopic nematode worms. The cumulative effect of these... burrowing fauna on moving grains is significant due to their great abundance and intense activity near the sediment-water interface where they reside

  14. Can grain size sensitive creep lubricate faults during earthquake propagation?

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Holdsworth, R.; Viti, C.; Collettini, C.; Bullock, R. J.; Faoro, I.

    2014-12-01

    In the shallow portion of crustal fault zones, fracturing and cataclasis are thought to be the dominant processes during earthquake propagation. In the lower crust/upper mantle, viscous flow is inferred to facilitate aseismic creep along shear zones. Recent studies show that slip zones (SZs), in natural and experimental carbonate seismic faults, are made of nanograins with a polygonal texture, a microstructure consistent with deformation by grain boundary sliding (GBS) mechanisms. Friction experiments performed on calcite fine-grained gouges, at speed v = 1 ms-1, normal stress sn = 18 MPa, displacements d = 0.009-1.46 m, and room temperature and humidity, show a four stage-evolution of the fault strength: SI) attainment of initial value, f = 0.67; SII) increase up to peak value f = 0.82; SIII) sudden decrease to low steady-state value, f = 0.18; and SIV) sudden increase to final value, f = 0.44, during sample deceleration. Samples recovered at the end of each displacement-controlled experiments (Stages I-IV) show the following microstructures evolution of the SZ material, which is: SI) poorly consolidated, and made of fine-grained (1 < D < 5 microns), angular clasts formed by brittle fracturing and cataclasis; SII) cohesive, and made of larger clasts of calcite (D ≈ 1 microns), exhibiting a high density of free dislocations and hosting subgrains (D ≤ 200 nm), dispersed within calcite nanograins. SIII) made of nanograin aggregates exhibiting polygonal grain boundaries, and 120° triple junctions between equiaxial grains. The grains display no preferred elongation, no crystal preferred orientation and low free dislocation densities, possibly due to high temperature (> 900 C) GBS creep deformation. Our microstructural observations suggest that GBS mechanisms can operate in geological materials deformed at high strain rates along frictionally heated seismogenic slip surfaces. The observed microstructures in experimental slip zones are strikingly similar to those

  15. Investigating feedback mechanisms between stress and grain-size: preliminary findings from finite-element modelling

    NASA Astrophysics Data System (ADS)

    Cross, A. J.; Prior, D. J.; Ellis, S. M.

    2012-12-01

    It is widely accepted that changes in stress and grain size can induce a switch between grain-size insensitive (GSI) and sensitive (GSS) creep mechanisms. Under steady-state conditions, grains evolve to an equilibrium size in the boundary region between GSS and GSI, described by the paleopiezometer for a given material. Under these conditions, significant rheological weakening is not expected, as grain size reduction processes are balanced by grain growth processes. However, it has been shown that the stress field surrounding faults varies through the seismic cycle, with both rapid loading and unloading of stress possible in the co- and post-seismic stages. We propose that these changes in stress in the region of the brittle-ductile transition zone may be sufficient to force a deviation from the GSI-GSS boundary and thereby cause a change in grain size and creep mechanism prior to system re-equilibration. Here we present preliminary findings from numerical modelling of stress and grain size changes in response to loading of mechanical inhomogeneities. Our results are attained using a grain-size evolution (GSE) subroutine incorporated into the SULEC finite-element code developed by Susan Ellis and Susanne Buiter, which utilises an iterative approach of solving for spatial and temporal changes in differential stress, grain size and active creep mechanism. Preliminary models demonstrate that stress changes in response to the opening of a fracture in a flowing medium can be significant enough to cause a switch from GSI to GSS creep. These results are significant in the context of understanding spatial variations and feedback between stress, grain size and deformation mechanisms through the seismic cycle.

  16. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    SciTech Connect

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data.

  17. Comparative Analysis of Hyperspectral and Multispectral Data for Mapping Snow Cover and Snow Grain Size

    NASA Astrophysics Data System (ADS)

    Anul Haq, M.

    2014-11-01

    The present study demonstrates the potential of imaging spectroscopy to produce the snow cover maps and estimation of snow grain size in the Himalayan region. Snow cover maps and snow grain size produce from imaging spectroscopy data were also compared with multispectral imagery (i.e. Landsat 8 and ASTER). Snow grain size was estimated using the snow grain index and compared with the asymptotic radiative transfer (ART) theory method. The overall matching area was 78.29 % among different snow grain size classes using grain index Method and ART method. An attempt has been made to derive the snow grain size using Landsat 8 and ASTER data for the same area. It was found that grain size derived from Landsat 8 and ASTER data show correlation of 81.67 % and 86.34 % respectively. The snow cover maps were produced using Normalized Difference Snow Index (NDSI). Snow cover maps were also produced using ASTER imagery for the same area and compared with Hyperion snow cover maps. The correlation between both snow cover maps were show 91 % correlation.

  18. Grain size dependence of elastic anomalies accompanying the α β phase transition in polycrystalline quartz

    NASA Astrophysics Data System (ADS)

    McKnight, Ruth E. A.; Moxon, T.; Buckley, A.; Taylor, P. A.; Darling, T. W.; Carpenter, M. A.

    2008-02-01

    The effects of grain size on the elastic properties of quartz through the α-β phase transition have been investigated by resonant ultrasound spectroscopy. It is found that there are three regimes, dependent on grain size, within which elastic properties show different evolutions with temperature. In the large grain size regime, as represented by a quartzite sample with ~100-300 µm grains, microcracking is believed to occur in the vicinity of the transition point, allowing grains to pull apart. In the intermediate grain size regime, as represented by novaculite (1-5 µm grain size) and Ethiebeaton agate (~120 nm grain size), bulk and shear moduli through the transition follow closely the values expected from averages of single crystal data. The novaculite sample, however, has a transition temperature ~7 °C higher than that of single crystal quartz. This is assumed to be due to the development of internal pressure arising from anisotropic thermal expansion. In the small grain size region, agates from Mexico (~65 nm) and Brazil (~50 nm) show significant reductions in the amount of softening of the bulk modulus as the transition point is approached from below. This is consistent with a tendency for the transition to become more second order in character. The apparent changes towards second order character do not match quantitative predictions for samples with homogeneous strain across elastically clamped nanocrystals, however. Some of the elastic variations are also due to the presence of moganite in these samples. True 'nanobehaviour' for quartz in ceramic samples thus appears to be restricted to grain sizes of less than ~50 nm.

  19. Convection in large icy satellites with self-consistent grain-size evolution

    NASA Astrophysics Data System (ADS)

    Barr, A. C.; McKinnon, W. B.

    2005-12-01

    The viscosity of ice I is grain-size dependent for temperature and stress conditions appropriate for ice I shells of midsized and large icy satellites. Satellite thermal evolution, heat flux, critical shell thickness for convection, brittle/ductile transition depth, and potential surface deformation are grain size-dependent. We estimate grain sizes in a convecting shell using the empirical observation from polar ice sheets that d ~ A σ-1, where A is a thermal activation term, and σ is shear stress [De La Chappelle et al., JGR 103, 1998] due to dynamic recrystallization. We use a composite volume diffusion/GBS rheology for ice I in the convection model Citcom [Barr et al., JGR, 2004] to self-consistently model strain rates and grain sizes in convecting shells. Estimates of grain size are reasonable if the grain-growth time scale is less than the convective overturn time scale (~ 105 - 107 yr for large icy satellites), and the shell is free of impurities that limit grain growth. For large icy satellites, the composite rheology and uniform grain size predict sluggish convection unless the grain size is small (<1 mm). Convection can only occur if d < 2 cm [Barr and Pappalardo, JGR, in press, 2005], and then only for d < 2-4 mm if initial thermal perturbations are small [McKinnon, Icarus, in press]. Dynamic recrystallization predicts, for example, d ~ 1 mm in the convecting interior and d ~ 10 cm in the stagnant lid for an ice shell 50 km thick. Compared with models with a similar but uniform grain size in the convective region, heat fluxes are larger, and shallower brittle/ductile transition depths.

  20. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  1. Characterization of a grain size refinement process in cast uranium

    SciTech Connect

    Garlea, Elena; Bridges, R.; Garlea, Vasile O; Carpenter, D; Hemphill, M.; Morrell, J

    2012-01-01

    The refinementofcoarsegrainsincasturaniumcanleadtowrought-likeproperties.Inthisstudy,a bquenchedprocessiscoupledwithashock-loadingtechniqueand a-annealingtomanipulateuranium s grain sizeandtheresultingmicrostructureshavebeencharacterized.Neutronpowderdiffractionhas been usedtoevaluatetheresidualstrainaccumulatedfromthethermo-mechanicaltreatments.Optical microscopyandelectronbackscattering(EBSD)inscanningelectronmicroscopyhavebeenemployed to evaluatethegrainsizevariationandthenatureofdeformationmechanisms,respectively.Large strain anisotropyatthelatticelevelwasobservedonshock-loadedspecimens.Thefinalstressrelief annealingdidnoteliminatealltheresidualstrain.Slipandtwinningwereobservedopticallyonthe shockedspecimenswhileEBSDindicatesthatalthough{130},{172},and{112}deformationtwinswere identified,anunusualtypeoftwinning {176} /o5124 was foundtobedominant.Itisbelievedthat the magnitudeofenergyappliedfavoredtheoccurrenceofthe{176}twininthepolycrystalline uranium.Averagegrainsizeofcasturaniumunderwentasignificantreductionto 92 mm attheendof the process.Theoverallresultsindicatetheshock-loadingapproachasapromisingsteptoward controllingcasturaniumgrainsizeandthusitsmechanicalproperties.

  2. Grain-size distribution of volcaniclastic rocks 1: A new technique based on functional stereology

    NASA Astrophysics Data System (ADS)

    Jutzeler, M.; Proussevitch, A. A.; Allen, S. R.

    2012-09-01

    The power of explosive volcanic eruptions is reflected in the grain size distribution and dispersal of their pyroclastic deposits. Grain size also forms part of lithofacies characteristics that are necessary to determine transport and depositional mechanisms responsible for producing pyroclastic deposits. However, the common process of welding and rock lithification prevents quantification of grain size by traditional sieving methods for deposits in the rock record. Here we show that functional stereology can be used to obtain actual 3D volume fractions of clast populations from 2D cross-sectional images. Tests made on artificially consolidated rocks demonstrate successful correlations with traditional sieving method. We show that the true grain size distribution is finer grained than its representation on a random 2D section. Our method allows the original size of vesicular pumice clasts to be estimated from their compacted shapes. We anticipate that the original grain-size distribution of welded ignimbrites can also be characterized by this method. Our method using functional stereology can be universally applied to any type of consolidated, weakly to non-deformed clastic material, regardless of grain size or age and therefore has a wide application in geology.

  3. Study on pore characteristics and microstructure of sandstones with different grain sizes

    NASA Astrophysics Data System (ADS)

    Li, Huigui; Li, Huamin; Gao, Baobin; Wang, Wen; Liu, Chuang

    2017-01-01

    The grain sizes have a pronounced influence on the pore characteristics and microstructure of sandstone. This work examined the pore structure and characteristics of three kinds of sandstones with different grain sizes using the scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) methods and analyzed their grain size distributions, pore size distributions, T2-distributions, and porosity variations. The experimental results showed that sandstones with different grain sizes have significant differences in the microstructures grain size distribution, pore size distribution, T2-distribution, and porosity variation. The results show that coarse, medium and fine sandstones have two peaks in T2-distributions, mean grain size of 398.5, 145.1 and 25.1 μm, respectively, mean pore size of 46.3, 25.9, and 8.4 μm, respectively, porosity of 7.52%, 5.88% and 1.55%, respectively, indicating that both coarse and medium sandstones contain big pores, while fine sandstone contains small pores. This study is of significance for understanding of water migration characteristics in aquifers and gas in coal seams after the working face exploitation.

  4. Grain size evolution in the mantle and its effect on geodynamics, seismic velocities and attenuation

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Eilon, Zach; Gassmoeller, Rene; Moulik, Pritwiraj; Myhill, Robert; Faul, Ulrich; Asimow, Paul

    2015-04-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth in multiphase assemblages and recrystallisation at phase transitions. Grain size variations also affect seismic properties of mantle materials. We use several published formulations to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing body wave travel times, ray paths, and attenuation (t*) at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. Our models show that rapid metamorphic reactions in mantle upwellings and downwellings lead to high lateral viscosity contrasts, as a result of gradual grain size evolution. Positive feedback between grain size reduction and viscosity reduction results in shear localisation. As a result, the edges of thermal plumes have smaller grain sizes and lower

  5. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy.

    PubMed

    Molotch, Noah P; Barnard, David M; Burns, Sean P; Painter, Thomas H

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m(-1) greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  6. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  7. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    PubMed Central

    Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-01-01

    Abstract The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5–15°C m−1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution. PMID:27917006

  8. The relation of stream sediment surface area, grain size and composition to trace element chemistry

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.

    1987-01-01

    Intensive studies of 17 geographically and hydrologically diverse stream bed sediments provide information on the relation between grain size, surface area, and operationally defined geochemical phases (e.g. Mn oxides, amorphous Fe oxides) to trace element concentrations. Of the size fractions investigated ( 125 ??m), each of the various phases contribute to overall sample surface area. For material having mean grain sizes in the very fine sand range and finer (<125 ??m), the same phases act as surface-area inhibitors by cementing fine grains together to form aggregates. This increases the mean grain size of the sample and reduces the surface area. The presence of these aggregates may explain why the <63 ??m or <125 ??m size fractions are more important to sediment-trace element levels and surface area than other finer fractions. ?? 1987.

  9. Solitary dust sound waves in a plasma with two-temperature ions and distributed grain size

    SciTech Connect

    Prudskikh, V. V.

    2009-01-15

    The propagation of weakly nonlinear dust sound waves in a dusty plasma containing two different-temperature ion species is explored. The nonlinear equations describing both the quadratic and cubic plasma nonlinearities are derived. It is shown that the properties of dust sound waves depend substantially on the grain size distribution. In particular, for solitary dust sound waves with a positive potential to exist in a plasma with distributed grain size, it is necessary that the difference between the temperatures of two ion species be larger than that in the case of equal-size grains.

  10. The Influence of Grain Size on the Mechanical Properties of Steel

    SciTech Connect

    Morris, J. W.

    2001-05-01

    Many of the important mechanical properties of steel, including yield strength and hardness, the ductile-brittle transition temperature and susceptibility to environmental embrittlement can be improved by refining the grain size. The improvement can often be quantified in a constitutive relation that is an appropriate variant on the familiar Hall-Petch relation: the quantitative improvement in properties varies with d-1/2, where d is the grain size. Nonetheless, there is considerable uncertainty regarding the detailed mechanism of the grain size effect, and appropriate definition of “grain size”. Each particular mechanism of strengthening and fracture suggests its own appropriate definition of the “effective grain size”, and how it may be best controlled.

  11. Grain size effect on the nonlinear dielectric properties of barium titanate ceramics

    SciTech Connect

    Curecheriu, Lavinia; Mitoseriu, Liliana; Buscaglia, Maria Teresa; Buscaglia, Vincenzo; Zhao, Zhe

    2010-12-13

    The nonlinear dielectric properties of dense BaTiO{sub 3} ceramics with grain size of 1 {mu}m-90 nm were investigated. In the finest ceramics, the permittivity reduces below 1000 and a remarkable nonhysteretic linear dc-tunability [{epsilon}(E)] is obtained at high field, above 40 kV/cm. The observed behavior was explained by considering the nanostructured ceramic as a composite formed by ferroelectric grains, whose nonlinearity is reducing, and by low-permittivity nonferroelectric grain boundaries, whose volume fraction increases when decreasing the grain size. Reducing the grain size in ferroelectric dense materials is an alternative route to accomplish the application requirements: nonhysteretic tunability and permittivity below 1000.

  12. The mechanical characterization of fully dense Ni sheets with different grain sizes: application of DIC

    NASA Astrophysics Data System (ADS)

    Wu, Jia; Zhou, Jianqiu; Zhang, Dongsheng

    2008-11-01

    The mechanical behaviors of metals vary with the grain size. Typically grain size change from micro to nanometer would cause increase in hardness and strength and a decrease in ductility. In this study, two sorts of fully dense, nanocrystalline and coarse-grained Nickel sheets were prepared. Fully dense, sheets with a purity of 99.9% were purchased from Integran Technologies Inc., Canada). Their nominal grain sizes are about 20nm and were produced by electrodeposition. And the fully dense, coarse-grained Ni sheets with a purity of 99.9% were mechanically polished to a thickness of approximately 0.2 mm and afterwards annealed at 700°C. Both sorts of specimens were subjected to monotonic uniaxial tensile load. The surface intensity was documented with high resolution imaging system. The deformation including displacement and strain fields were quantified with digital image correlation (DIC) algorithm. Experimental results including, stress-strain curve, strain distributions at critical states are presented.

  13. Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films

    SciTech Connect

    Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos; Zhu, Kai; Rumbles, Garry

    2016-09-09

    We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is much slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).

  14. Estimation of riverbed grain-size distribution using image-processing techniques

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chung, Chang-Han

    2012-05-01

    SummaryQuantification of the grain size distribution of fluvial gravels remains an important and challenging issue in the study of river behavior. It is desirable for sampling techniques to achieve accurate estimation of grain size distribution, while simultaneously reducing the time spent. Recent advances in image analysis techniques have facilitated automated grain identification and measurement within digital images. In this study, an image-processing method fusing feedback pulse couple neural network and multilevel thresholding, the I-FM method, is proposed for automatic extraction of grain-size distribution based on digital photographs taken from a river-bed. A decisive image-merging algorithm is also developed for improving the quality of image segmentation in grain-size measurements. The experiments were conducted in both lab and field, and the proposed method was compared with traditional image processing methods. The proposed I-FM produces much more satisfactory results in estimating the amount of gravel and the percentiles of grain-size distribution in comparison with other image processing methods and manual sieving methods. It demonstrates the I-FM method is an efficient method for precisely measuring the grain-size distribution of river-bed material.

  15. The role of grain-size ratio in the mobility of mixed granular beds

    NASA Astrophysics Data System (ADS)

    Staudt, Franziska; Mullarney, Julia C.; Pilditch, Conrad A.; Huhn, Katrin

    2017-02-01

    The main goal of the study was to understand the effects of grain-size distribution on the stability of beds in the sand-silt range, which is a critical subject for the understanding of geomorphological processes in aquatic environments. Although theoretical models can explain the mobilization of a mixed bed, there is a clear lack in knowledge regarding the stabilizing effect of non-cohesive fine material. To connect existing findings, we analysed bed stability in relation to grain-size distribution in laboratory experiments. Erosion experiments in an annular flume were conducted using beds of different size compositions of spherical glass beads, i.e. a) the grain-size ratio RD = D50,coarse/D50,fine (the relative size of coarse and fine grains; D50 = 39-367 μm) and b) the amount of fines. Several glass-bead combinations with unimodal and bimodal grain-size distributions (RD = 3.9, 5.8, and 9.4) and varying fine fractions (10-40% dry weight) were subjected to increasing flow speeds (0.01-0.19 m s-1). Using acoustic Doppler velocimetry (ADV) and optical backscatter, the flow profile in the vicinity of the bed surface, the changes in bed morphology, and the suspended sediment concentration (SSC) were measured. A new method was developed to evaluate the bed-level changes detected by the ADV as a proxy for the bed mobility. We found different modes of bed mobility depending on the grain-size ratio. For low grain-size ratios, an increase in the fine fraction (to 40%) led to increased bed-level changes during the experiment and the mobilization of the mixed bed at the highest flow speed. For high ratios an increase in fine fraction (to 40%) led to a decrease of bed-level changes and the beds remained stable, i.e. no bed forms developed even at the highest flow speed. Therefore, increasing the amount of fine particles can lead to different modes of behaviour depending on the grain-size ratio. For a bimodal sediment bed with spherical grains under unidirectional flow

  16. A High-strain Flow Law for Olivine: Grain-size Sensitivity and Crystallographic Fabric

    NASA Astrophysics Data System (ADS)

    Hansen, L. N.; Zimmerman, M. E.; Kohlstedt, D. L.

    2011-12-01

    The dislocation-accommodated grain-boundary sliding regime, which has recently been recognized in deformation experiments on olivine aggregates, has important implications for the rheological characteristics of the upper mantle and for the interpretation of microstructures in naturally deformed rocks. However, previous experimental studies suffer from both the difficulty in synthesizing samples with a desired mean grain size and the limitation that crystallographic fabrics have not fully developed at low strains. We alleviate these difficulties in a series of innovative deformation experiments. Aggregates of iron-bearing olivine, hot pressed as hollow cylinders, were deformed in torsion at 1200°C in a gas-medium apparatus at constant strain rate until a steady-state shear stress was reached, which occurred by a shear strain of ~5. Since recrystallized grain size is a function of shear stress, we were able to systematically vary the mean grain size among samples by changing the controlling shear-strain rate. Above a shear strain of ~5, strain rate stepping tests were performed to determine the stress exponent. Between each strain-rate step, the strain rate was returned to the original strain rate to reset the microstructure. Experiments were stopped when the total shear strain reached ~11. Our results yield a stress exponent of ~4 and a grain size exponent of ~1, both of which agree with previous small-strain compression experiments on olivine in the dislocation-accommodated grain-boundary sliding regime. If the dependence of strain rate on grain size in the power-law flow law is removed by inserting the grain-size piezometer, the apparent stress exponent in the resulting grain size independent flow law increases to 5.2. Microstructural analyses indicate that very strong crystallographic-preferred orientation (CPO) fabrics are developed with M-indices of ~0.6. The CPO fabrics have [100] maxima sub-parallel to the shear direction and [010] maxima sub

  17. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  18. Millimeter-sized grains in the protostellar envelopes: Where do they come from?

    NASA Astrophysics Data System (ADS)

    Wong, Yi Hang Valerie; Hirashita, Hiroyuki; Li, Zhi-Yun

    2016-08-01

    Grain growth during star formation affects the physical and chemical processes in the evolution of star-forming clouds. We investigate the origin of the millimeter (mm)-sized grains recently observed in Class I protostellar envelopes. We use the coagulation model developed in our previous paper and find that a hydrogen number density of as high as 1010 cm-3, instead of the typical density 105 cm-3, is necessary for the formation of mm-sized grains. Thus, we test a hypothesis that such large grains are transported to the envelope from the inner, denser parts, finding that gas drag by outflow efficiently "launches" the large grains as long as the central object has not grown to ≳0.1 M⊙. By investigating the shattering effect on the mm-sized grains, we ensure that the large grains are not significantly fragmented after being injected in the envelope. We conclude that the mm-sized grains observed in the protostellar envelopes are not formed in the envelopes but formed in the inner parts of the star-forming regions and transported to the envelopes before a significant mass growth of the central object, and that they survive in the envelopes.

  19. Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition.

    PubMed

    Xin, Xing; Fei, Zeyuan; Ma, Teng; Chen, Long; Chen, Mao-Lin; Xu, Chuan; Qian, Xitang; Sun, Dong-Ming; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai

    2017-02-27

    Monolayer circular graphene platelets with a grain structure gradient in the radial direction are synthesized by chemical vapor deposition on immiscible W-Cu substrates. Because of the different interactions and growth behaviors of graphene on Cu and tungsten carbide, such substrates cause the formation of grain size and orientation gradients through the competition between Cu and tungsten carbide in graphene growth.

  20. Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.; Ruggiero, P.; Harney, J.N.; Draut, A.E.; Buscombe, D.

    2009-01-01

    A new application of the autocorrelation grain size analysis technique for mixed to coarse sediment settings has been investigated. Photographs of sand- to boulder-sized sediment along the Elwha River delta beach were taken from approximately 1??2 m above the ground surface, and detailed grain size measurements were made from 32 of these sites for calibration and validation. Digital photographs were found to provide accurate estimates of the long and intermediate axes of the surface sediment (r2 > 0??98), but poor estimates of the short axes (r2 = 0??68), suggesting that these short axes were naturally oriented in the vertical dimension. The autocorrelation method was successfully applied resulting in total irreducible error of 14% over a range of mean grain sizes of 1 to 200 mm. Compared with reported edge and object-detection results, it is noted that the autocorrelation method presented here has lower error and can be applied to a much broader range of mean grain sizes without altering the physical set-up of the camera (~200-fold versus ~6-fold). The approach is considerably less sensitive to lighting conditions than object-detection methods, although autocorrelation estimates do improve when measures are taken to shade sediments from direct sunlight. The effects of wet and dry conditions are also evaluated and discussed. The technique provides an estimate of grain size sorting from the easily calculated autocorrelation standard error, which is correlated with the graphical standard deviation at an r2 of 0??69. The technique is transferable to other sites when calibrated with linear corrections based on photo-based measurements, as shown by excellent grain-size analysis results (r2 = 0??97, irreducible error = 16%) from samples from the mixed grain size beaches of Kachemak Bay, Alaska. Thus, a method has been developed to measure mean grain size and sorting properties of coarse sediments. ?? 2009 John Wiley & Sons, Ltd.

  1. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  2. Snow grain size and albedo in Dronning Maud Land, Antarctica: measurements and modeling

    NASA Astrophysics Data System (ADS)

    Pirazzini, Roberta; Räisänen, Petri; Vihma, Timo; Johansson, Milla; Tastula, Esa-Matti

    2014-05-01

    Snow grain macro-photos collected near the Finnish Antarctic Station Aboa during summer 2009-2010 were analyzed, and the link between snow grain metamorphism and surface albedo was investigated. Snow grain macro-photos were taken twice a day for a one-month period from four snowpack layers (at the surface and at the depths of 5, 10, and 20 cm). A cave inside the snowpack was used as a cold and dark "laboratory". The dataset also includes vertical profiles of snow temperature and density (twice a day), surface broadband albedo, surface spectral reflectance during clear and overcast days, and ancillary meteorological data. With such an extensive and complete dataset, we studied the snow grain metric that best represents the grain scattering properties at various wavelengths, establishing a direct relationship between measured grain dimensions and optically-equivalent grain size. For this purpose, we analyzed the 2D macro-photos with an image processing software (based on Matlab) that allows the determination of the size distribution of many dimensional quantities. A statistical approach was applied to estimate the representativeness error in the snow grain observations. The distributions of the obtained grain size metrics and the snow density profiles were utilized in the radiative transfer model DISORT to simulate the surface spectral albedo. The comparison of the model results with the observed spectral albedo allowed the identification of the snow grain dimensions that best explain the albedo at each wavelength. The impact of the snow grain shape in the model simulations was addressed utilizing spherical and droxtal grain representations.

  3. How to form asteroids from mm-sized grains

    NASA Astrophysics Data System (ADS)

    Carrera, D.; Johansen, A.; Davies, M. B.

    2015-10-01

    The size distribution of asteroids in the solar system suggests that they formed top-down, with 100-1000 km bodies forming from the gravitational collapse of dense clumps of small solid particles. We investigate the conditions under which solid particles can form dense clumps in a protoplanetary disc. We used a hydrodynamic code to model the solid-gas interaction in disc. We found that particles down to millimeter size can form dense clumps, but only in regions where solids make ˜8% of the local surface density. More generally, we mapped the range of particle sizes and concentrations that is consistent with the formation of particle clumps.

  4. Diffusion of Oxygen Isotopes in Thermally Evolving Planetesimals and Size Ranges of Presolar Silicate Grains

    NASA Astrophysics Data System (ADS)

    Wakita, Shigeru; Nozawa, Takaya; Hasegawa, Yasuhiro

    2017-02-01

    Presolar grains are small particles found in meteorites through their isotopic compositions, which are considerably different from those of materials in the solar system. If some isotopes in presolar grains diffused out beyond their grain sizes when they were embedded in parent bodies of meteorites, their isotopic compositions could be washed out, and hence the grains could no longer be identified as presolar grains. We explore this possibility for the first time by self-consistently simulating the thermal evolution of planetesimals and the diffusion length of 18O in presolar silicate grains. Our results show that presolar silicate grains smaller than ∼0.03 μm cannot keep their original isotopic compositions even if the host planetesimals experienced a maximum temperature as low as 600 °C. Since this temperature corresponds to that experienced by petrologic type 3 chondrites, isotopic diffusion can constrain the size of presolar silicate grains discovered in such chondrites to be larger than ∼0.03 μm. We also find that the diffusion length of 18O reaches ∼0.3–2 μm in planetesimals that were heated up to 700–800°C. This indicates that, if the original size of presolar grains spans a range from ∼0.001 μm to ∼0.3 μm like that in the interstellar medium, then the isotopic records of the presolar grains may be almost completely lost in such highly thermalized parent bodies. We propose that isotopic diffusion could be a key process to control the size distribution and abundance of presolar grains in some types of chondrites.

  5. Condition for the formation of micron-sized dust grains in dense molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Hirashita, Hiroyuki; Li, Zhi-Yun

    2013-07-01

    We investigate the condition for the formation of micron-sized grains in dense cores of molecular clouds. This is motivated by the detection of mid-infrared emission from deep inside a number of dense cores, the so-called `coreshine,' which is thought to come from scattering by micron (μm)-sized grains. Based on numerical calculations of coagulation starting from the typical grain-size distribution in the diffuse interstellar medium, we obtain a conservative lower limit to the time t to form μm-sized grains: t/tff > 3(5/S)(nH/105 cm-3)-1/4 (where tff is the free-fall time at hydrogen number density nH in the core and S the enhancement factor of the grain-grain collision cross-section to account for non-compact aggregates). At the typical core density nH = 105 cm-3, it takes at least a few free-fall times to form the μm-sized grains responsible for coreshine. The implication is that those dense cores observed in coreshine are relatively long-lived entities in molecular clouds, rather than dynamically transient objects that last for one free-fall time or less.

  6. The effect of abrasive blasting on the strength of a joint between dental porcelain and metal base.

    PubMed

    Pietnicki, Krzysztof; Wołowiec, Emilia; Klimek, Leszek

    2014-01-01

    This paper presents the effect of selected parameters of abrasive blasting on the strength of a joint between dental porcelain and metal base. Experiments were conducted for different grain sizes of abrasive material and different blasting angles, with a constant blasting pressure. InLine dental porcelain was fused on samples of cobalt-chromium alloy following abrasive blasting; they were subsequently subjected to shearing forces on a testing machine. The fractures were observed under an electron scanning microscope in order to determine the character and course of fracturing. Strength tests showed that the grain size of abrasive material was a parameter with the greatest effect on the strength. The best effects were achieved for samples subjected to abrasive blasting with material with grain size of 110 μm. No statistically significant differences were found for the strength of samples worked at different angles. The results of the fractographic examinations have shown that in all the samples, fracturing occurred mainly along the porcelain-metal boundary, with few cases of fracturing through porcelain.

  7. Evaluating grain size in polycrystals with rough surfaces by corrected ultrasonic attenuation.

    PubMed

    Li, Xiongbing; Han, Xiaoqin; Arguelles, Andrea P; Song, Yongfeng; Hu, Hongwei

    2017-02-27

    Surface roughness of a sample has a great effect on the calculated grain size when measurements are based on ultrasonic attenuation. Combining modified transmission and reflection coefficients at the rough interface with a Multi-Gaussian beam model of the transducer, a comprehensive correction scheme for the attenuation coefficient is developed. An approximate inverse model of the calculated attenuation, based on Weaver's diffuse scattering theory, is established to evaluate grain size in polycrystals. The experimental results showed that for samples with varying surface roughness and matching microstructures, the fluctuation of evaluated average grain size was ±1.17μm. For polished samples with different microstructures, the relative errors to optical microscopy were no more than ±3.61%. The presented method provides an effective nondestructive tool for evaluating the grain size in metals with rough surfaces.

  8. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    USGS Publications Warehouse

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  9. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Storlazzi, Curt D.; Norris, Ben K.; Rosenberger, Kurt J.

    2015-09-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  10. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    USGS Publications Warehouse

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  11. A Genetic Framework for Grain Size and Shape Variation in Wheat[C][W

    PubMed Central

    Gegas, Vasilis C.; Nazari, Aida; Griffiths, Simon; Simmonds, James; Fish, Lesley; Orford, Simon; Sayers, Liz; Doonan, John H.; Snape, John W.

    2010-01-01

    Grain morphology in wheat (Triticum aestivum) has been selected and manipulated even in very early agrarian societies and remains a major breeding target. We undertook a large-scale quantitative analysis to determine the genetic basis of the phenotypic diversity in wheat grain morphology. A high-throughput method was used to capture grain size and shape variation in multiple mapping populations, elite varieties, and a broad collection of ancestral wheat species. This analysis reveals that grain size and shape are largely independent traits in both primitive wheat and in modern varieties. This phenotypic structure was retained across the mapping populations studied, suggesting that these traits are under the control of a limited number of discrete genetic components. We identified the underlying genes as quantitative trait loci that are distinct for grain size and shape and are largely shared between the different mapping populations. Moreover, our results show a significant reduction of phenotypic variation in grain shape in the modern germplasm pool compared with the ancestral wheat species, probably as a result of a relatively recent bottleneck. Therefore, this study provides the genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain. PMID:20363770

  12. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  13. Short- and medium-term grain size changes in deltaic beaches (Ebro Delta, NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Guillén, Jorge; Palanques, Albert

    1996-01-01

    The beach sediment of the Ebro Delta shows significant temporal grain size changes unrelated with seasonal processes. The evolution of the grain size during the 1988-1991 period shows coarsening and fining variations, with a general coarsening trend which ranges from 2.10 to 1.96 phi (about 8 · 10 -3 mm/year). This low-magnitude grain size change is considered significant because it is indicated by both mean values from the data set (textural zones) and individualized sampling points. The coarsening trend of the beach sediment in the Ebro Delta is mainly caused by the sedimentary deficit affecting the Ebro coast. The finer sand fractions of the sediment are progressively winnowed from the initial beach deposit without being replaced by new river sediment supplies. Superimposed on the general coarsening trend there exist grain size variations that may be related with processes of a shorter period such as changes in the sediment supplied from the river into the nearshore zone, variations in the wave energy affecting the beach, and man-induced actions, such as beach nourishment. The mean grain size of beach sediment sampled 20 years ago indicates that the coarsening gradient measured during the study period cannot be extrapolated to longer periods of time (decades). This work shows that processes of a different temporal scale but a similar magnitude must be integrated in order to explain the evolution of sediment grain size in deltaic beaches.

  14. Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Shimizu, I.

    2008-07-01

    The average grain size ( d) arising from dynamic recrystallization (DRX) is often used as an indicator of flow stress ( σ); however, a theoretical basis for the scaling relation between d and σ has yet to be well established. In this paper, theories for the development of recrystallized grain size are reviewed and their applicability is examined. Special attention is paid to the dependence of the d- σ relation on DRX mechanisms. Steady-state DRX is classified into discontinuous DRX with bulging (BLG) nucleation + grain boundary migration (GBM) and continuous DRX with subgrain rotation (SGR) nucleation + GBM. The nucleation-and-growth model derived from Derby-Ashby theory describes the former case, whereas that derived from Shimizu theory applies to the latter. A static energy-balance model derived from Twiss theory is applicable to subgrain size, but not to recrystallized grain size. The lower limit of grain size is possibly constrained by a change in deformation mechanism from dislocation creep to diffusion creep, because deformation-induced grain size reduction ceases in the diffusion creep field. Scaling relations determined in the laboratory support the Shimizu model in the case of SGR + GBM. The theoretical piezometer calibrated for quartz suggests significant temperature effects under low-temperature metamorphic conditions.

  15. A thermo-mechanical framework for analysis of grain size evolution during high temperature creep

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Chrysochoos, A.; Daridon, L.

    2013-12-01

    We develop a theoretical description of high temperature creep with microstructural evolution. The model considers non-linear thermodynamics of irreversible processes (TIP), accounting for dissipated energy associated with creep processes and microstructural changes, as well as energy stored in the microstructure. The "Generalized Standard Materials" (GSM) formalism used here allows for strong coupling among multiple processes through the use of free energy (Helmholtz) and dissipation potentials that are functions of mechanical, thermal and internal or structural state variables. We represent dislocation density and grain size as the structural state variables, to which energy dissipation and storage are associated. We develop two versions of the model, the first with only the grain size and the second with both dislocation density and grain size. These choices reflect current discussion on the physical mechanisms that determine the steady state grain size. We incorporate distinct but coupled processes such as dislocation production, annealing, grain growth, and several creep mechanisms. The first model is designed to evaluate the "field boundary hypothesis" for the steady state grain size and the second to explore the Twiss piezometer model. The hypothesis that a steady state grain size value is associated with a level of energy dissipation (e.g. the "wattmeter") can also be evaluated in the GSM framework. One general advantage of the GSM approach relative to many current grain size evolution models is that the partitioning of energy input between stored and dissipated energy rates is not assumed, but emerges from the derivation and calculation of the stored and dissipated work. We design the approach to extract as much information as possible from torsion experiments (starting with olivine), which contain a continuous range of thermodynamic states (from zero strain at the torsion axis to a maximum at the edge of the sample) during primary (transient) and

  16. Anomaly in Dependence of Radiation-induced Vacancy Accumulation on Grain Size

    SciTech Connect

    Yang, Yi; Huang, Hanchen; Zinkle, Steven J

    2010-01-01

    According to conventional steady-state rate theory predictions of displacement damage evolution in irradiated materials, the accumulation of vacancies decreases as grain size decreases. Using atomistic simulations, the authors report a transient anomaly in the dependence of radiation produced vacancy accumulation on grain size. Contrary to the conventional wisdom, the accumulation of vacancies can be higher in smaller grains than in larger grains during a transient stage. The anomaly is a result of competition between two atomic-level processes: grain boundary absorption and bulk recombination of point defects, each of which has characteristic length and time scales. A simple metal copper is used as the prototype of face-centered cubic material and electron radiation is the source of non-cascade defect production, both choices aiming at clarity for identifying physical mechanisms.

  17. Copy number variation at the GL7 locus contributes to grain size diversity in rice.

    PubMed

    Wang, Yuexing; Xiong, Guosheng; Hu, Jiang; Jiang, Liang; Yu, Hong; Xu, Jie; Fang, Yunxia; Zeng, Longjun; Xu, Erbo; Xu, Jing; Ye, Weijun; Meng, Xiangbing; Liu, Ruifang; Chen, Hongqi; Jing, Yanhui; Wang, Yonghong; Zhu, Xudong; Li, Jiayang; Qian, Qian

    2015-08-01

    Copy number variants (CNVs) are associated with changes in gene expression levels and contribute to various adaptive traits. Here we show that a CNV at the Grain Length on Chromosome 7 (GL7) locus contributes to grain size diversity in rice (Oryza sativa L.). GL7 encodes a protein homologous to Arabidopsis thaliana LONGIFOLIA proteins, which regulate longitudinal cell elongation. Tandem duplication of a 17.1-kb segment at the GL7 locus leads to upregulation of GL7 and downregulation of its nearby negative regulator, resulting in an increase in grain length and improvement of grain appearance quality. Sequence analysis indicates that allelic variants of GL7 and its negative regulator are associated with grain size diversity and that the CNV at the GL7 locus was selected for and used in breeding. Our work suggests that pyramiding beneficial alleles of GL7 and other yield- and quality-related genes may improve the breeding of elite rice varieties.

  18. On the size distribution of newly formed grains in red supergiant atmospheres

    NASA Technical Reports Server (NTRS)

    Seab, C. Gregory; Snow, Theodore P.

    1989-01-01

    Theoretical ultraviolet extinction curves have been calculated for comparison with observed curves for circumstellar dust in M supergiants. The theoretical curves assume a silicate grain composition, because silicate grains are expected in the oxygen-rich environments that are observed. Calculations were performed with and without the inclusion of scattering into the beam, with largely similar results. A comparison of the computed curves with the observed ultraviolet extinction curve for circumstellar dust in Alpha Scorpii indicates that the size distribution of the circumstellar grains must cut off near 800 A; that is, there are few or no grains smaller than this. The conclusion is that smaller interstellar silicate grains, where they exist, must come from other sources such as grain fragmentation in shocks.

  19. The Importance of Grain Size to Mantle Dynamics and Seismological Observations: A Multidisciplinary Approach

    NASA Astrophysics Data System (ADS)

    Gassmöller, Rene; Dannberg, Juliane; Eilon, Zach; Moulik, Pritwiraj; Myhill, Robert; Faul, Ulrich

    2016-04-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT [Bangerth et al., 2013] to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth in multiphase assemblages and recrystallisation at phase transitions. Grain size variations also affect seismic properties of mantle materials. We apply published formalisms [Jackson & Faul, 2010; McCarthy et al., 2011; Takei et al., 2014] to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). We investigate these formalisms for consistency with seismic observations at conditions beyond the range of the experiments upon which they are based; this requires constraining the range of pre-factors and activation volumes relevant for the lower mantle. Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo [Stixrude and Lithgow-Bertelloni, 2013]. We investigate the effect of realistically heterogeneous grain sizes by computing synthetic seismological data; these highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. Our models show that grain size evolution can lead to lateral viscosity variations of six

  20. Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion

    PubMed Central

    Kang, Ji Yun; Kim, Jung Gi; Park, Hyo Wook; Kim, Hyoung Seop

    2016-01-01

    The concept of multiscale architectured materials is established using composition and grain size gradients. Composition-gradient nanostructured materials are produced from coarse grained interstitial free steels via carburization and high-pressure torsion. Quantitative analyses of the dislocation density using X-ray diffraction and microstructural studies clearly demonstrate the gradients of the dislocation density and grain size. The mechanical properties of the gradient materials are compared with homogeneous nanostructured carbon steel without a composition gradient in an effort to investigate the gradient effect. Based on the above observations, the potential of multiscale architecturing to open a new material property is discussed. PMID:27229160

  1. Methods for atomistic abrasion simulations of laterally periodic polycrystalline substrates with fractal surfaces

    NASA Astrophysics Data System (ADS)

    Eder, S. J.; Bianchi, D.; Cihak-Bayr, U.; Gkagkas, K.

    2017-03-01

    In this work we discuss a method to generate laterally periodic polycrystalline samples with fractal surfaces for use in molecular dynamics simulations of abrasion. We also describe a workflow that allows us to produce random lateral distributions of simple but realistically shaped hard abrasive particles with Gaussian size distribution and random particle orientations. We evaluate some on-the-fly analysis and visualization possibilities that may be applied during a molecular dynamics simulation to considerably reduce the post-processing effort. Finally, we elaborate on a parallelizable post-processing approach to evaluating and visualizing the surface topography, the grain structure and orientation, as well as the temperature distribution in large atomistic systems.

  2. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas

    NASA Technical Reports Server (NTRS)

    Chow, V. W.; Mendis, D. A.; Rosenberg, M.

    1993-01-01

    By virtue of being generally immersed in a plasma environment, cosmic dust is necessarily electrically charged. The fact that secondary emission plays an important role in determining the equilibrium grain potential has long been recognized, but the fact that the grain size plays a crucial role in this equilibrium potential, when secondary emission is important, has not been widely appreciated. Using both conducting and insulating spherical grains of various sizes and also both Maxwellian and generalized Lorentzian plasmas (which are believed to represent certain space plasmas), we have made a detailed study of this problem. In general, we find that the secondary emission yield delta increases with decreasing size and becomes very large for grains whose dimensions are comparable to the primary electron penetration depth, such as in the case of the very small grains observed at comet Halley and inferred in the interstellar medium. Moreover, we observed that delta is larger for insulators and equilibrium potentials are generally more positive when the plasma has a broad non-Maxwellian tail. Interestingly, we find that for thermal energies that are expected in several cosmic regions, grains of different sizes can have opposite charge, the smaller ones being positive while the larger ones are negative. This may have important consequences for grain accretion in polydisperse dusty space plasmas.

  3. Materials selection for abrasive duty

    SciTech Connect

    Not Available

    1987-04-01

    The abrasion of equipment caused by the throughput of large volumes of solids or dust is a major problem in mining, handling and processing minerals such as coal and limestone, and in the disposal of waste products such as ash. Loss of material from the surfaces over which these materials pass is caused by the combined effects of impact abrasion, sliding abrasion, and chemical attack. Factors which affect these processes include properties of the conveying medium, and properties of the solids, such as particle size, structural composition, size mix, as well as the velocity of the material, the bulk volume of material passing, and the frequency of plant operation. Guidelines are given for materials selection and the use of linings in the coal handling plant, pulverized coal pipework, and ash disposal plant is reviewed for coal-fired power plants.

  4. Underwater Microscope for Measuring Spatial and Temporal Changes in Bed-Sediment Grain Size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2006-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the lab for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in-situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  5. Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size

    USGS Publications Warehouse

    Rubin, David M.; Chezar, Henry; Harney, Jodi N.; Topping, David J.; Melis, Theodore S.; Sherwood, Christopher R.

    2007-01-01

    For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the laboratory for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.

  6. Treating corneal abrasions.

    PubMed

    Wingate, S

    1999-06-01

    Although corneal abrasions are commonly seen in primary care settings, the primary care literature contains scant references on detecting and managing this problem. This article provides an overview of corneal abrasion assessment and treatment. Four common etiologies of abrasion are discussed: traumatic abrasion, contact lens abrasion, foreign body abrasion, and recurrent erosion. Parameters for the history and physical examination are outlined, including sections on contact lens removal, lid eversion, and fluorescein staining. Treatment regimens for each of the etiologies are discussed, with a focus on current research on using pressure eye patches as an intervention. Indications for referral to an ophthalmologist are noted.

  7. Characterization of grain sizes and roughness of HfO2 single layers.

    PubMed

    Zhang, Lei; Cheng, Xinbin; Zhang, Jinlong; Jiao, Hongfei; Bao, Ganghua; Ding, Tao; Wang, Zhanshan

    2017-02-01

    The grain sizes and their influence on the roughness of an HfO2 single layer prepared with ion-assisted deposition were investigated. Three methods, x ray diffractometry, atomic force microscopy, and the k-correlated power spectral density function model, were used to obtain the grain sizes in two HfO2 single layers with 16 and 20 nm thicknesses. X ray diffractometry showed that the grain sizes were about 7 and 9 nm, respectively, whereas the other two methods demonstrated that the grain sizes were about 14 and 16 nm. It was thought that x ray diffractometry underestimated the grain size due to micro strain or a shallow penetration depth. The grains in an HfO2 single layer lead to a rough surface, which had a significant bulge at the middle-high frequency range in a power spectral density function curve. The coating intrinsic roughness of the HfO2 single layer was separated from the substrate roughness.

  8. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    DOE PAGES

    Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; ...

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model usedmore » to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.« less

  9. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    SciTech Connect

    Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; Arsenlis, A.; Orlikowski, D. A.; Prisbrey, S. T.; Wehrenberg, C. E.; Remington, B. A.

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model used to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.

  10. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Park, H.-S.; Cavallo, R. M.; Arsenlis, A.; Orlikowski, D. A.; Prisbrey, S. T.; Wehrenberg, C. E.; Remington, B. A.

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model used to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. We use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.

  11. Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress, and grain size

    NASA Astrophysics Data System (ADS)

    Brzesowsky, R. H.; Hangx, S. J. T.; Brantut, N.; Spiers, C. J.

    2014-10-01

    Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical behavior of gouge-rich faults. We performed uniaxial creep experiments on sand to investigate the effects of chemical environment (dry versus solution flooded), grain size (d = 196-378 µm), and applied effective stress (σa up to 30 MPa), at room temperature conditions favoring grain-scale brittle processes. Creep measurements were complemented with acoustic emission (AE) detection and microstructural analysis to characterize the main creep mechanism. Wet samples showed much higher creep strains than dry-tested samples. AE event counts showed a direct relation between grain failure and creep strain, with higher AE rates occurring in the wet samples. Therefore, we inferred that time-dependent deformation was dominated by subcritical crack growth, resulting in grain failure accompanied by intergranular sliding rearrangements, and that crack growth in the presence of chemically active fluids was controlled by stress corrosion. The sensitivity of the compaction rate of the sands to d and σa can be expressed as ɛ˙∝diσaj where i ≈ 6 and j ≈ 21 under dry conditions and i ≈ 9 and j ≈ 15 under wet conditions. Our results were compared to a simple model based on Hertzian contact theory, linear elastic fracture mechanics, and subcritical crack growth. This model showed agreement between the observed stress and grain size sensitivities of creep, within a factor of 2.

  12. Trajectories and energy transfer of saltating particles onto rock surfaces : application to abrasion and ventifact formation on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.; Phoreman, James; White, Bruce R.; Greeley, Ronald; Eddlemon, Eric E.; Wilson, Gregory R.; Meyer, Christine J.

    2005-01-01

    The interaction between saltating sand grains and rock surfaces is assessed to gauge relative abrasion potential as a function of rock shape, wind speed, grain size, and planetary environment. Many kinetic energy height profiles for impacts exhibit a distinctive increase, or kink, a few centimeters above the surface, consistent with previous field, wind tunnel, and theoretical investigations. The height of the kink observed in natural and wind tunnel settings is greater than predictions by a factor of 2 or more, probably because of enhanced bouncing off hard ground surfaces. Rebounded grains increase the effective flux and relative kinetic energy for intermediate slope angles. Whether abrasion occurs, as opposed to simple grain impact with little or no mass lost from the rock, depends on whether the grain kinetic energy (EG) exceeds a critical value (EC), as well as the flux of grains with energies above EC. The magnitude of abrasion and the shape change of the rock over time depends on this flux and the value of EG > EC. Considering the potential range of particle sizes and wind speeds, the predicted kinetic energies of saltating sand hitting rocks overlap on Earth and Mars. However, when limited to the most likely grain sizes and threshold conditions, our results agree with previous work and show that kinetic energies are about an order of magnitude greater on Mars.

  13. The influence of stress history on the grain size and microstructure of experimentally deformed quartzite

    NASA Astrophysics Data System (ADS)

    Kidder, Steven; Hirth, Greg; Avouac, Jean-Philippe; Behr, Whitney

    2016-02-01

    Deformation of middle crustal shear zones likely varies with time as a result of the stress build-up and release associated with earthquakes and post-seismic deformation, but the processes involved and their microstructural signature in the rock record are poorly understood. We conducted a series of experiments on quartzite at 900 °C to characterize microstructures associated with changes in stress and strain rate, and to investigate the feasibility of carrying out grain size piezometry in natural rocks that experienced analogous changes. Differential stress (referred to simply as "stress") was varied in two-stage experiments by changing strain rate and by stopping the motor and allowing stress to relax. The two-stage samples preserve a microstructural record that can be interpreted quantitatively in terms of stress history. The microstructure associated with a stress increase is a bimodal distribution of recrystallized grain sizes. The smaller grains associated with the second deformation stage accurately record the stress of the second stage, and the surviving coarse grains remain similar in size to those formed during the earlier stage. The transient microstructure associated with stress decrease is a "partial foam" texture containing a larger concentration of stable 120° triple junctions than occur in samples deformed at a relatively constant strain rate. Our results indicate that microstructures preserved in rocks that experienced relatively simple, two-stage deformation histories can be used to quantitatively assess stress histories. Grain growth rates during deformation are similar to rates observed in previous isostatic growth experiments, supporting theoretical approaches to recrystallized grain size, such as the wattmeter theory (Austin and Evans, 2007), that incorporate static growth rates. From an analysis of the experimental data for quartz recrystallized grain size, we find: 1) Recrystallized grain size quickly reaches a value consistent with

  14. Loose abrasive lapping hardness of optical glasses and its interpretation.

    PubMed

    Lambropoulos, J C; Xu, S; Fang, T

    1997-03-01

    We present an interpretation of the lapping hardness of commercially available optical glasses in terms of a micromechanics model of material removal by subsurface lateral cracking. We analyze data on loose abrasive microgrinding, or lapping at fixed nominal pressure, for many commercially available optical glasses in terms of this model. The Schott and Hoya data on lapping hardness are correlated with the results of such a model. Lapping hardness is a function of the mechanical properties of the glass: The volume removal rate increases approximately linearly with Young's modulus, and it decreases with fracture toughness and (approximately) the square of the Knoop hardness. The microroughness induced by lapping depends on the plastic and elastic properties of the glass, depending on abrasive shape. This is in contrast to deterministic microgrinding (fixed infeed rate), where it is determined from the plastic and fracture properties of the glass. We also show that Preston's coefficient has a similar dependence as lapping hardness on glass mechanical properties, as well as a linear dependence on abrasive size for the case of brittle material removal. These observations lead to the definition of an augmented Preston coefficient during brittle material removal. The augmented Preston coefficient does not depend on glass material properties or abrasive size and thus describes the interaction of the glass surface with the coolant-immersed abrasive grain and the backing plate. Numerical simulations of indentation are used to locate the origin of subsurface cracks and the distribution of residual surface and subsurface stresses, known to cause surface (radial) and subsurface (median, lateral) cracks.

  15. Superplastic tensile ductility enhanced by grain size refinement in a zirconia-dispersed alumina

    SciTech Connect

    Nakano, K.; Suzuki, T.S.; Hiraga, K.; Sakka, Y.

    1997-12-18

    High-temperature tensile ductility in fine-grained pure alumina is limited to {approximately}20% in engineering strain owing to rapid dynamic grain growth accompanied by large strain hardening and resultant severe cavitation. Accordingly, many trials have been made to suppress the dynamic grain growth by use of an additive such as MgO or ZrO{sub 2}. The dynamic grain growth of MgO-doped alumina, however, is still active to limit the tensile ductility to {approximately}80% at 1,623--1,773 K. Although some additional improvement is possible by the codoping of CuO or NiO, the maximum tensile elongation has remained 140%. On the other hand, ZrO{sub 2}-particle dispersion is much more effective in suppressing grain growth and hence strain hardening, whereas the resultant tensile ductility stays up to 110% or less at 1,723--1,773 K. It has been attributed to the increment of flow stress caused inherently by ZrO{sub 2}-dispersion through the suppression of grain boundary sliding. Regardless of these preceding studies, the approach by ZrO{sub 2}-particle pinning has not been completed, because the initial grain sizes of alumina reached about 1 {micro}m already in earlier experiments under tension. A possibility remains to enhance the tensile ductility of ZrO{sub 2}-dispersed alumina by such a reduction in grain size as can compensate the increment of flow stress due to ZrO{sub 2}-addition. From this point of view, the present study examined the high-temperature tensile properties of a fine-grained, 10-vol%-ZrO{sub 2}-dispersed alumina prepared by colloidal processing. The results will demonstrate that large tensile elongation exceeding 500% can be obtained when the initial grain size is maintained below 0.5 {micro}m.

  16. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Nikonenko, Elena; Yurev, Ivan; Kalashnikov, Mark; Kurzina, Irina

    2016-01-01

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  17. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    SciTech Connect

    Popova, Natalya; Yurev, Ivan; Kalashnikov, Mark

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  18. Effects of grain size on the quasi-static mechanical properties of ultrafine-grained and nanocrystalline tantalum

    NASA Astrophysics Data System (ADS)

    Ligda, Jonathan Paul

    The increase in strength due to the Hall-Petch effect, reduced strain hardening capacity, a reduced ductility, and changes in deformation mechanisms are all effects of reducing grain size (d) into the ultrafine-grained (UFG, 100 < d < 1000 nm) and nanocrystalline (NC, d<100 nm) state. However, most of the studies on the mechanical behavior of UFG/NC metals have been on face-centered cubic (FCC) metals. Of the few reports on UFG/NC body-centered cubic (BCC) metals, the interest is related to their increase in strength and reduced strain rate sensitivity. This combination increases their propensity to deform via adiabatic shear bands (ASBs) at high strain rates, which is a desired response for materials being considered as a possible replacement for depleted uranium in kinetic energy penetrators. However, an ideal replacement material must also plastically deform in tension under quasi-static rates to survive initial launch conditions. This raises the question: if the material forms ASBs at dynamic rates, will it also form shear bands at quasi-static isothermal rates? As well as, is there a specific grain size for a material that will plastically deform in tension at quasi-static rates but form adiabatic shear bands at dynamic rates? Using high pressure torsion, a polycrystalline bulk tantalum disk was refined into the UFG/NC regime. Using microscale mechanical testing techniques, such as nanoindentation, microcompression, and microtension, it is possible to isolate locations with a homogeneous grain size within the disk. Pillars are compressed using a nanoindenter with a flat punch tip, while "dog-bone" specimens were pulled in tension using a custom built in-situ tension stage within a scanning electron microscope (SEM). The observed mechanical behavior is related to the microstructure by using transmission electron microscopy (TEM) on the as-processed material and tested specimens. Synchrotron X-ray based texture analysis was also conducted on the disk to

  19. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment.

    PubMed

    Smit, Mathijs G D; Holthaus, Karlijn I E; Trannum, Hilde C; Neff, Jerry M; Kjeilen-Eilertsen, Grete; Jak, Robbert G; Singsaas, Ivar; Huijbregts, Mark A J; Hendriks, A Jan

    2008-04-01

    Assessment of the environmental risk of discharges, containing both chemicals and suspended solids (e.g., drilling discharges to the marine environment), requires an evaluation of the effects of both toxic and nontoxic pollutants. To date, a structured evaluation scheme that can be used for prognostic risk assessments for nontoxic stress is lacking. In the present study we challenge this lack of information by the development of marine species sensitivity distributions (SSDs) for three nontoxic stressors: suspended clays, burial by sediment, and change in sediment grain size. Through a literature study, effect levels were obtained for suspended clays, as well as for burial of biota. Information on the species preference range for median grain size was used to assess the sensitivity of marine species to changes in grain size. The 50% hazardous concentrations (HC50) for suspended barite and bentonite based on 50% effect concentrations (EC50s) were 3,010 and 1,830 mg/L, respectively. For burial the 50% hazardous level (HL50) was 5.4 cm. For change in median grain size, two SSDs were constructed; one for reducing and one for increasing the median grain size. The HL50 for reducing the median grain size was 17.8 mum. For increasing the median grain size this value was 305 mum. The SSDs have been constructed by using information related to offshore oil- and gas-related activities. Nevertheless, the results of the present study may have broader implications. The hypothesis of the present study is that the SSD methodology developed for the evaluation of toxic stress can also be applied to evaluate nontoxic stressors, facilitating the incorporation of nontoxic stressors in prognostic risk assessment tools.

  20. Model for evolution of grain size in the rim region of high burnup UO2 fuel

    NASA Astrophysics Data System (ADS)

    Xiao, Hongxing; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO2 fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO2 fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO2 fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results.

  1. The influence of grain size ratio upon the relative mobility in bimodal sediment mixtures

    NASA Astrophysics Data System (ADS)

    Dudill, Ashley; Frey, Philippe

    2014-05-01

    The behaviour of grain mixtures varies from that of uniform grain, which has implications for bedload sediment transport in gravel-bed rivers. In particular, sediment mixtures act to modify the level of mobility within the bed, leading to aggradation or degradation, which has significant implications for river stability. Previous work has reported upon this change in mobility within bimodal mixtures; however we do not know how far grain size ratio influences these results. We hypothesise that there is a link between the change in levels of mobility and the grain size ratio due to varying amounts of infiltration, which controls the hiding/exposure function. This poster will present experimental results from an investigation designed to isolate the influence of grain size ratio upon the change in levels of mobility in bimodal sediment mixtures. This experimental investigation was undertaken using various sizes of spherical particles in a relatively narrow flume. Using this arrangement, we are able to observe effects at the particle scale in order to understand the individual and bulk grain behaviour.

  2. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  3. Grain Size and Parameter Recovery with TIMSS and the General Diagnostic Model

    ERIC Educational Resources Information Center

    Skaggs, Gary; Wilkins, Jesse L. M.; Hein, Serge F.

    2016-01-01

    The purpose of this study was to explore the degree of grain size of the attributes and the sample sizes that can support accurate parameter recovery with the General Diagnostic Model (GDM) for a large-scale international assessment. In this resampling study, bootstrap samples were obtained from the 2003 Grade 8 TIMSS in Mathematics at varying…

  4. Effect of time and temperature on grain size of V and V-Cr-Ti alloys

    SciTech Connect

    Natesan, K.; Rink, D.L.

    1996-10-01

    Grain growth studies were conducted to evaluate the effect of time and temperature on the grain size of pure V, V-4 wt.%Cr-4 wt.%Ti, and V-5 wt.%Cr-5 wt.%Ti alloys. The temperatures used in the study were 500, 650, 800, and 1000{degrees}C, and exposure times ranged between 100 and {approx}5000 h. All three materials exhibited negligible grain growth at 500, 650, and 800{degrees}C, even after {approx}5000 h. At 1000{degrees}C, pure V showed substantial grain growth after only 100 h, and V-4Cr-4Ti showed growth after 2000 h, while V-5Cr-5Ti showed no grain growth after exposure for up to 2000 h.

  5. Lost in Jupiter's Shadow: Can Resonant Charge Variations Explain Dust Grain Sizes in the Main Ring?

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Hamilton, D. P.

    2012-10-01

    Interplanetary impacts onto the tiny moons Metis and Adrastea replenish Jupiter's main ring with dusty ejecta of all sizes. The equilibrium size distribution present in the rings at a given time is a function of production and loss mechanisms, both of which may be vary with particle size. Loss mechanisms include collisions and dynamical processes. Here we explore some of the latter. Grains tend to pick up negative electric charges due to motion through Jupiter's plasma environment, and positive charges from the photoelectric effect of sunlight. The periodic interruption of sunlight in Jupiter's shadow causes the equilibrium electric charge, and hence the Lorentz force, to resonate with the Kepler orbital frequency. The eccentricity increases for grains moving radially inwards during the shadow transit, and decreases when grains move outward in the shadow, hence the azimuthal location of pericenter is important. For smaller grains, the eccentricity increases monotonically until they collide with Jupiter. For much larger grains, precession due to both the Lorentz force and planetary oblateness causes the eccentricity to oscillate periodically. We explore the shadow instability in the main ring for a variety of uniform plasma density models, comparing numerical data with a semi-analytic approximation. We find that the effect of the shadow dwindles in importance for plasma that is either too sparse or too dense. In sparse plasma, the charging timescale slows, limiting the change in electric potential from sunlight to shadow. In dense plasma, charging currents from the plasma overwhelm the photoelectric effect in sunlight, also resulting in a small change in electric potential. Between these two regimes, the shadow resonance efficiently removes grains up to a particular size threshold in the main ring. This size-dependent loss mechanism may contribute to the observed flattening in the size distribution index for smaller grains.

  6. Grain-size distribution and morphology of metal in E-chondrites

    NASA Astrophysics Data System (ADS)

    Easton, A. J.

    1983-03-01

    The size distribution and morphology of metal grains have been examined in 11 sections of types I and II E-chondrites. The changes in the grain-size distribution and morphology of metal grains correspond with the petrologic types and define a series that reflects increase in thermal metamorphism in the following order: type I, Kota Kota-Indarch-South Oman-St. Mark's; and type II, Jajh deh Kot Lalu-Atlanta-Daniel's Kuil-Hvittis-Pillistfer-Khairpur-Blithfield. Concentrations of metal grains adjacent to the perimeters of chondrules are observable throughout the sequence and delineate relic chondritic structure in six of the seven type II E-chondrites; relic structures are absent from Blithfield.

  7. [The measurement and retrieval of the spectral reflectance of different snow grain size on Northern Xinjiang, China].

    PubMed

    Hao, Xiao-Hua; Wang, Jie; Wang, Jian; Zhang, Pu; Huang, Chun-Lin

    2013-01-01

    The retrieval of snow grain size is one of the important research directions for cryosphere snow remote sensing. In the present study, we designed the measurement plan of different snow grain size by different snow layer. A SVC HR-1024 ground-based spectral radiometer was used for measuring the spectral property of different snow grain size in northern Xinjiang, China. At the same time, the snow grain size and shape were measured by a hand-loupe with scale. Then the DSPP method was used to calculate the equivalent snow grain size. Finally, the asymptotic radiative transfer (ART) theory was applied to retrieve the snow grain size from measured snow spectral reflectance of different snow layer by optimizing the inversion band and the snow grain size factor "b". The retrieved snow grain size was validated by the measured snow grain size from DSPP method. The results showed that the DSPP method is an effective means of measuring the equivalent snow grain size. However, there is a large deviation of the snow grain size sample in the same snow layer. It is necessary to improve the measurement method of the single snow grain size sample; The study showed that the near-infrared bands are the most effective selection for retrieval of snow grain size. The retrieval algorithm from ART is feasible. When the snow is dry, the authors optimize the inversion band and the snow grain size factor b in the Northern Xinjiang, China. The optimal band wavelength is 1.20 microm and b is 3.62.

  8. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency

    PubMed Central

    Kim, Mi-Jin; Kim, Ji-Hwan; Kim, Hae-Young

    2013-01-01

    PURPOSE This study aimed to identify the effects of the sintering conditions of dental zirconia on the grain size and translucency. MATERIALS AND METHODS Ten specimens of each of two commercial brands of zirconia (Lava and KaVo) were made and sintered under five different conditions. Microwave sintering (MS) and conventional sintering (CS) methods were used to fabricate zirconia specimens. The dwelling time was 20 minutes for MS and 20 minutes, 2, 10, and 40 hours for CS. The density and the grain size of the sintered zirconia blocks were measured. Total transmission measurements were taken using a spectrophotometer. Two-way analysis of variance model was used for the analysis and performed at a type-one error rate of 0.05. RESULTS There was no significant difference in density between brands and sintering conditions. The mean grain size increased according to sintering conditions as follows: MS-20 min, CS-20 min, CS-2 hr, CS-10 hr, and CS-40 hr for both brands. The mean grain size ranged from 347-1,512 nm for Lava and 373-1,481 nm for KaVo. The mean light transmittance values of Lava and KaVo were 28.39-34.48% and 28.09-30.50%, respectively. CONCLUSION Different sintering conditions resulted in differences in grain size and light transmittance. To obtain more translucent dental zirconia restorations, shorter sintering times should be considered. PMID:23755342

  9. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Venditti, Jeremy G.

    2016-04-01

    Median grain sizes on riverbeds range from boulders in uplands to silt in lowlands; however, rivers with ~1-5 mm diameter bed sediment are rare. This grain size gap also marks an abrupt transition between gravel- and sand-bedded reaches that is unlike any other part of the fluvial network. Abrupt gravel-sand transitions have been attributed to rapid breakdown or rapid transport of fine gravel, or a bimodal sediment supply, but supporting evidence is lacking. Here we demonstrate that rivers dramatically lose the ability to transport sand as wash load where bed shear velocity drops below ~0.1 m/s, forcing an abrupt transition in bed-material grain size. Using thresholds for wash load and initial motion, we show that the gap emerges only for median bed-material grain sizes of ~1-5 mm due to Reynolds number dependencies in suspension transport. The grain size gap, therefore, is sensitive to material properties and gravity, with coarser gaps predicted on Mars and Titan.

  10. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    PubMed

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.

  11. The influence of grain size on the ductility of micro-scale stainless steel stent struts.

    PubMed

    Murphy, B P; Cuddy, H; Harewood, F J; Connolley, T; McHugh, P E

    2006-01-01

    Vascular stents are used to restore blood flow in stenotic arteries, and at present the implantation of a stent is the preferred revascularisation method for treating coronary artery disease, as the introduction of drug eluting stents (DESs) has lead to a significant improvement in the clinical outcome of coronary stenting. However the mechanical limits of stents are being tested when they are deployed in severe cases. In this study we aimed to show (by a combination of experimental tests and crystal plasticity finite element models) that the ductility of stainless steel stent struts can be increased by optimising the grain structure within micro-scale stainless steel stent struts. The results of the study show that within the specimen size range 55 to 190 microm ductility was not dependent on the size of the stent strut when the grain size maximised. For values of the ratio of cross sectional area to characteristic grain length less than 1,000, ductility was at a minimum irrespective of specimen size. However, when the ratio of cross sectional area to characteristic grain length becomes greater than 1,000 an improvement in ductility occurs, reaching a plateau when the ratio approaches a value characteristic of bulk material properties. In conclusion the ductility of micro-scale stainless steel stent struts is sensitive to microstructure and can be improved by reducing the grain size.

  12. Effect of cold work on recrystallization behavior and grain size distribution in titanium

    NASA Astrophysics Data System (ADS)

    Conrad, H.; Swintowski, M.; Mannan, S. L.

    1985-05-01

    The effect of cold work in the range of 21.9 pct to 94.2 pct reduction in area by swaging on the recrystallization behavior and grain size distribution in Ti (0.2 pct Oeq) was investigated. In keeping with commonly observed behavior, increasing amounts of cold work lead to an increase in hardness prior to annealing and a decrease in the subsequent recrystallization temperature and grain size. Also, there occurred for the recrystallized grains a decrease in the standard deviation of the grain volume distribution In Σv deduced from the one-dimensional linear intercept measurements. The decrease in In Σv with cold work in swaged Ti is in good accord with that reported by Rhines and Patterson following uniaxial deformation of Al. Considering the results for both Al and Ti, it appears that the largest decrease in In Σv occurs for true strains up to R ~0.5, the change with larger strains being more gradual. The reason for the decrease in In Σv with increased cold work is not completely clear. The increased rate of grain growth with reduction in amount of cold work can be understood in terms of the larger number of three-edged grain faces which occur with the greater spread in the recrystallized grain volume distribution.

  13. Different-sized dust grains and the chemical evolution of protostellar objects

    NASA Astrophysics Data System (ADS)

    Kochina, O. V.; Wiebe, D. S.

    2014-04-01

    Results of modeling the chemical evolution of protostellar objects are presented. The models take into account the existence of different dust populations with distinct grain sizes, total mass fractions, and temperatures. In addition to "classical" dust grains, the models include an entirely different second dust population, with dust grain sizes of 30 Å and a higher temperature. Two chemical-evolution models are compared, one taking into account only classical dust and the other including both dust populations. The influence of a complex dust composition on the general evolution of the molecular contents of prestellar cores and the abundances of a number of chemical species is studied. At early evolutionary stages, differences are mainly determined by the modification changes in the photoprocesses' balance due to efficient UV absorption by the second population of dust grains and in collisional reactions with the dust grains. At late stages, distinctions between the models are also determined by the increasing dominance of additional reaction channels. The species that respond to the presence of small grains in different ways are separated into different groups. Allowing for the presence of small grains makes it possible to significantly lower the water abundance in the gas phase.

  14. Fracture toughness dependence on grain size in molybdenum silicide, titanium silicide and aluminum nitride

    NASA Astrophysics Data System (ADS)

    Tsyfanskiy, Vyacheslav Alex

    The fracture toughness of MoSi2, Ti5Si3 and AlN as a function of grain size was measured using the controlled-flaw method in conjunction with the miniaturized disk-bend test (MDBT). The materials investigated had grain sizes of 3.5, 7.0, 11.2 and 16 mum for MoSi 2, 2, 4, 7 and 10--20 mum for Ti5Si 3 and 2.5 and 4.5 mum for AlN. The specimens used in the experiments were 3 mm in diameter and varied in thickness from 280 to 593 mum. These were indented using a Vickers pyramid indentor to indentation loads varying from 10 to 80 N. Indentation cracking was experienced at all indentation loads and R-curve behavior was exhibited. The fracture toughness, Kinfinity, was calculated using a straightforward graphical procedure involving an empirical R-curve equation. Kinfinity of MoSi2 was determined to be relatively grain-size independent, with a value of ˜4 MPa·m1/2. Kinfinity, of Ti5Si3 showed a strong dependence on grain size, with maximum of 3.56 +/- 0.41 MPa·m1/2 at a grain size of ˜4 mum. For AlN Kinfinity decreased from 2.85 +/- 0.40 to 2.32 +/- 0.21 MPa·m1/2 as the grain size increased. The grain growth behavior of polycrystalline MoSi2, Ti 5Si3 and AlN was studied during static annealing at 1400°C in an argon atmosphere. MoSi2 exhibited abnormal grain growth, Ti5Si3 showed normal grain growth behavior and annealing of AlN produced no visible increase in the grain size. The presence of Ni in contact with MoSi2 during annealing significantly increased the rate of grain growth. MoSi2 with grain sizes of 11.2 and 16 mum contained traces of Ni and exhibited a decrease in hardness compared to the Ni-free samples with grain sizes of 3.5 and 7.0 mum. Stresses arising in non-cubic materials during processing, due to the presence of thermal expansion anisotropy, were calculated for AlN, Al 2O3, MoSi2, SiC, Ti5Si3 and ZnS. These stresses, sigmamax, provide information on the maximum grain sizes, ds, that can be tolerated by these materials before they fracture

  15. Effect of Grain Size Distribution on Processing Maps for Isothermal Compression of Inconel 718 Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liu, Dong; Hu, Yang; Yang, Yanhui; Zhu, Xinglin

    2016-02-01

    Cylindrical specimens of Inconel 718 alloys with three types of grain size distribution were used in the compression tests and processing maps were developed in 940-1040 °C and 0.001-10 s-1. The equiaxed fine grain is more effective on the dynamic softening behavior. For partial recrystallized microstructure, the peak efficiency of power dissipation occurs at the strain rate of 0.001 s-1, and the temperature range of 1000-1020 °C. In order to obtain homogeneous microstructure with fine grains, the partial recrystallized microstructure should be deformed at the low temperature and slow strain rates. The area fraction of instability domains decreases with strain increasing. The peak efficiency of power dissipation increases with average grain size decreasing. The efficiency of power dissipation will be stimulated by the precipitation of δ phase at slow strain rate of 0.001-0.01 s-1, and the initial deformed substructure at the strain rate of 0.1-1 s-1. Equiaxed fine grain is the optimum state for forging process and dynamic recrystallization. The grain size distribution has slight influence on the microstructure evolution at high temperatures.

  16. Statistical considerations for grain-size analyses of tills

    USGS Publications Warehouse

    Jacobs, A.M.

    1971-01-01

    Relative percentages of sand, silt, and clay from samples of the same till unit are not identical because of different lithologies in the source areas, sorting in transport, random variation, and experimental error. Random variation and experimental error can be isolated from the other two as follows. For each particle-size class of each till unit, a standard population is determined by using a normally distributed, representative group of data. New measurements are compared with the standard population and, if they compare satisfactorily, the experimental error is not significant and random variation is within the expected range for the population. The outcome of the comparison depends on numerical criteria derived from a graphical method rather than on a more commonly used one-way analysis of variance with two treatments. If the number of samples and the standard deviation of the standard population are substituted in a t-test equation, a family of hyperbolas is generated, each of which corresponds to a specific number of subsamples taken from each new sample. The axes of the graphs of the hyperbolas are the standard deviation of new measurements (horizontal axis) and the difference between the means of the new measurements and the standard population (vertical axis). The area between the two branches of each hyperbola corresponds to a satisfactory comparison between the new measurements and the standard population. Measurements from a new sample can be tested by plotting their standard deviation vs. difference in means on axes containing a hyperbola corresponding to the specific number of subsamples used. If the point lies between the branches of the hyperbola, the measurements are considered reliable. But if the point lies outside this region, the measurements are repeated. Because the critical segment of the hyperbola is approximately a straight line parallel to the horizontal axis, the test is simplified to a comparison between the means of the standard

  17. Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel

    NASA Astrophysics Data System (ADS)

    PremKumar, R.; Samajdar, I.; Viswanathan, N. N.; Singal, V.; Seshadri, V.

    2003-08-01

    Hot rolled low Si (silicon) non-grain oriented electrical steel was cold rolled to different reductions. Cold rolled material was subsequently recrystallized, 650°C and 2 h, and then temper rolled (to 7% reduction) for the final grain growth annealing and decarburization treatment at 850°C for 2-24 h. The development of texture, grain size and magnetic properties were characterized at different stages of processing. Effect of texture on magnetic properties (watt loss and permeability) was observed to be best represented by the ratio of volume fractions of (1 1 1)/(0 0 1) fibers, as estimated by convoluting X-ray ODFs (orientation distribution functions) with respective model functions. Such a ratio was termed as generalized texture factor (tf) for the non-grain oriented electrical steel. An effort was made to delink effects of grain size and texture, as represented by respective tf, on watt loss and permeability by careful analysis of experimental data. In general, low tf and/or high grain size were responsible for low watt loss and high permeability. However, individual effect of grain size or tf on magnetic properties was less significant at low tf or large grain size, respectively. An attempt was made to fit regression equations, namely—linear, exponential and power, relating magnetic properties with tf and grain size, limiting the fitting parameters to 3. Least standard deviations, between experimental and predicted values, were obtained by power regression equations for both magnetic properties.

  18. A new database sub-system for grain-size analysis

    NASA Astrophysics Data System (ADS)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  19. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses

    SciTech Connect

    Adibi, Sara; Branicio, Paulo S. Zhang, Yong-Wei; Joshi, Shailendra P.

    2014-07-28

    Nanoglasses (NGs), metallic glasses (MGs) with a nanoscale grain structure, have the potential to considerably increase the ductility of traditional MGs while retaining their outstanding mechanical properties. We investigated the effects of composition on the structural and mechanical properties of CuZr NG films with grain sizes between 3 to 15 nm using molecular dynamics simulations. Results indicate a transition from localized shear banding to homogeneous superplastic flow with decreasing grain size, although the critical average grain size depends on composition: 5 nm for Cu{sub 36}Zr{sub 64} and 3 nm for Cu{sub 64}Zr{sub 36}. The flow stress of the superplastic NG at different compositions follows the trend of the yield stress of the parent MG, i.e., Cu{sub 36}Zr{sub 64} yield/flow stress: 2.54 GPa/1.29 GPa and Cu{sub 64}Zr{sub 36} yield/flow stress: 3.57 GPa /1.58 GPa. Structural analysis indicates that the differences in mechanical behavior as a function of composition are rooted at the distinct statistics of prominent atomic Voronoi polyhedra. The mechanical behavior of NGs is also affected by the grain boundary thickness and the fraction of atoms at interfaces for a given average grain size. The results suggest that the composition dependence of the mechanical behavior of NGs follows that of their parent MGs, e.g., a stronger MG will generate a stronger NG, while the intrinsic tendency for homogeneous deformation occurring at small grain size is not affected by composition.

  20. Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size

    SciTech Connect

    Furukawa, M.; Horita, Z.; Nemoto, M.; Valiev, R.Z.; Langdon, T.G.

    1996-11-01

    An Al-3% Mg solid solution alloy was subjected to intense plastic deformation, using ether equal-channel angular (ECA) pressing or torsion straining, to produce grain sizes in the submicrometer range. Static annealing at elevated temperatures led to grain growth and average grain sizes of up to >100 {micro}m. As-fabricated and statically annealed specimens were used to determine the variation in microhardness with grain size, and results confirm that the Hall-Petch relationship persists down to at least the finest grain size examined experimentally ({approximately}90 nm). The results provide no evidence to support the claims of a negative Hall-Petch slope when the average grain size is very small, but there is evidence of a decrease in the slope of the Hall-Petch plot at the very finest grain sizes (<150 nm); this is attributed to the increased participation of mobile extrinsic dislocations in the boundary regions when taking the hardness measurements.

  1. Retrieval of Surface Snow Grain Size and Melt Water from AVIRIS Spectra

    NASA Technical Reports Server (NTRS)

    Green Robert O.; Dozier, Jeff

    1996-01-01

    The Earth's energy balance and hydrology are affected by the distribution and characteristics of snow cover on the surface. Snow grain size and snow melt influence surface albedo and hydrology. A model of snow reflectance that depends on both grain size and surface melt water was developed to derive these parameters from remote spectral measurements. This reflectance model is based on a discrete ordinate radiative transfer approach that uses Mie calculations of snow optical properties, which are based on the complex refractive index of ice and water. This snow model was linked to an atmospheric radiative transfer code and a nonlinear least squares fitting algorithm. The resulting combined algorithm was applied to an AVIRIS snow data set acquired over Mammoth Mountain, California. Maps of grain size and surface snow melt were generated that are consistent with the expected ranges and distributions for conditions at the site.

  2. Scattering and Absorption Properties of Polydisperse Wavelength-sized Particles Covered with Much Smaller Grains

    NASA Technical Reports Server (NTRS)

    Dlugach, Jana M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2012-01-01

    Using the results of direct, numerically exact computer solutions of the Maxwell equations, we analyze scattering and absorption characteristics of polydisperse compound particles in the form of wavelength-sized spheres covered with a large number of much smaller spherical grains.The results pertain to the complex refractive indices1.55 + i0.0003,1.55 + i0.3, and 3 + i0.1. We show that the optical effects of dusting wavelength-sized hosts by microscopic grains can vary depending on the number and size of the grains as well as on the complex refractive index. Our computations also demonstrate the high efficiency of the new superposition T-matrix code developed for use on distributed memory computer clusters.

  3. Scattering and absorption properties of polydisperse wavelength-sized particles covered with much smaller grains

    NASA Astrophysics Data System (ADS)

    Dlugach, Janna M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2012-12-01

    Using the results of direct, numerically exact computer solutions of the Maxwell equations, we analyze scattering and absorption characteristics of polydisperse compound particles in the form of wavelength-sized spheres covered with a large number of much smaller spherical grains. The results pertain to the complex refractive indices 1.55+i0.0003, 1.55+i0.3, and 3+i0.1. We show that the optical effects of “dusting” wavelength-sized hosts by microscopic grains can vary depending on the number and size of the grains as well as on the complex refractive index. Our computations also demonstrate the high efficiency of the new superposition T-matrix code developed for use on distributed memory computer clusters.

  4. Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas

    2012-01-01

    An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.

  5. Wear characterization of abrasive waterjet nozzles and nozzle materials

    NASA Astrophysics Data System (ADS)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  6. Grain size distribution of fault rocks: implication from natural gouges and high velocity friction experiments

    NASA Astrophysics Data System (ADS)

    Yang, X.; Chen, J.; Duan, B.

    2011-12-01

    The grain size distribution (GSD) is considered as an important parameter for the characterization of fault rocks. The relative magnitude of energy radiated as seismic waves to fracture energy plays a fundamental role to influence earthquake rupture dynamics. Currently, the details of grain size reduction mechanism and energy-budget are not well known. Here we present GSD measurements on fault rocks (gouge and breccias) in the main slip zone associated with the Wenchuan earthquake happened on 12 May, 2008, and on the gouges produced by high velocity friction (HVF) experiments. High velocity friction experiments were carried out on air dry granitic powder with grain size of 150 - 300 μm at normal stress of 1.0 MPa, a slip rate of 1.0 m / s and slip distances from 10 m to 30 m. On log-log plots of N(r) versus equivalent radius, two distinct linear parts can be discriminated with their intersection at 1 - 2 μm, defined as critical radius rc. One of power-law regime spans about 4 decades from 4 μm to 16 mm and the other covers a range of 0.2 - 2.0 μm. Larger fractal dimension from 2.7 to 3.5 are obtained for larger grain size regime, while lower values ranging from 1.7 to 2.1 for smaller size one. This two-stage distribution means the GSD is not self-similar (scale invariant) and the dominant ways of reducing grain size may be different from one another. XRD data show that the content of quartz drops greatly or disappears at 0.5 - 0.25 μm. GSD of HVF experimental products demonstrates similar feature to natural gouges. For instance, they all show the two-stage GSD with 1 - 2 μm of critical radius rc. The grains with their sizes of less than 1 μm appear rounded edges and equiaxial shapes. A variation in grain shapes can be observed in the grains larger than 5 μm. Some implications could be obtained from the measurements and experiments. (1) rc corresponds to the average value of grinding limit of rock-forming minerals. Further grain size reducing could be

  7. Influence of grain size on ultrasonic spectral parameters in AISI type 316 stainless steel

    SciTech Connect

    Kumar, A.; Jayakumar, T.; Palanichamy, P.; Raj, B.

    1999-01-08

    The grain size of a material is an important engineering parameter which influences the mechanical properties such as fatigue, creep, yield strength, impact transition temperature, etc. The reliability of the ultrasonic methods for grain size measurement, particularly amplitude based measurements are highly dependent upon the couplant condition. Therefore, application of these methods may be difficult for some practical applications, where uniform couplant condition can not be maintained. Therefore, it would be useful if a simplified method is developed, which could be used on-line and is free from the above mentioned limitations of the other methods. The shift in the spectral peak frequency has been used for microstructural characterization in carbon steel and for evaluation of structural variations induced by tensile deformation in SUS304 stainless steel. The spectral peak frequency in SUS304 steel was found to increase with increase in the tensile elongation. This was attributed to formation and growth of martensite structures due to tensile deformation resulting in smaller crystalline grains, thus reducing the attenuation due to ultrasonic scattering. The peak frequency has also been found to shift with the change in the grain size in Inconel 600 and copper. In the present study, the shift in the spectral peak frequency and the change in full width at half maximum (FWHM) of the autopower spectrum are correlated with the grain size in AISI type 316 austenitic stainless steel, a widely used structural material in nuclear, chemical, fertilizer and many other industries.

  8. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Liu, Zhibo; Wen, Jinxiu; Gao, Yang; Ren, Xibiao; Chen, Huanjun; Jin, Chuanhong; Ma, Xiu-Liang; Xu, Ningsheng; Cheng, Hui-Ming; Ren, Wencai

    2017-02-01

    Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ~200 nm to ~1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ~3.8 × 109 W m-2 K-1, while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ~0.01 eV and resistivity of ~0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials.

  9. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering

    PubMed Central

    Ma, Teng; Liu, Zhibo; Wen, Jinxiu; Gao, Yang; Ren, Xibiao; Chen, Huanjun; Jin, Chuanhong; Ma, Xiu-Liang; Xu, Ningsheng; Cheng, Hui-Ming; Ren, Wencai

    2017-01-01

    Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation–adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ∼200 nm to ∼1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ∼3.8 × 109 W m−2 K−1, while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ∼0.01 eV and resistivity of ∼0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials. PMID:28205514

  10. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.

    PubMed

    Ma, Teng; Liu, Zhibo; Wen, Jinxiu; Gao, Yang; Ren, Xibiao; Chen, Huanjun; Jin, Chuanhong; Ma, Xiu-Liang; Xu, Ningsheng; Cheng, Hui-Ming; Ren, Wencai

    2017-02-16

    Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ∼200 nm to ∼1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ∼3.8 × 10(9) W m(-2) K(-1), while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ∼0.01 eV and resistivity of ∼0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials.

  11. Influence of Temperature and Grain Size on Austenite Stability in Medium Manganese Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Wang, Li; Findley, Kip O.; Speer, John G.

    2017-02-01

    With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson-Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.

  12. A universal approximation to grain size from images of non-cohesive sediment

    USGS Publications Warehouse

    Buscombe, D.; Rubin, D.M.; Warrick, J.A.

    2010-01-01

    The two-dimensional spectral decomposition of an image of sediment provides a direct statistical estimate, grid-by-number style, of the mean of all intermediate axes of all single particles within the image. We develop and test this new method which, unlike existing techniques, requires neither image processing algorithms for detection and measurement of individual grains, nor calibration. The only information required of the operator is the spatial resolution of the image. The method is tested with images of bed sediment from nine different sedimentary environments (five beaches, three rivers, and one continental shelf), across the range 0.1 mm to 150 mm, taken in air and underwater. Each population was photographed using a different camera and lighting conditions. We term it a “universal approximation” because it has produced accurate estimates for all populations we have tested it with, without calibration. We use three approaches (theory, computational experiments, and physical experiments) to both understand and explore the sensitivities and limits of this new method. Based on 443 samples, the root-mean-squared (RMS) error between size estimates from the new method and known mean grain size (obtained from point counts on the image) was found to be ±≈16%, with a 95% probability of estimates within ±31% of the true mean grain size (measured in a linear scale). The RMS error reduces to ≈11%, with a 95% probability of estimates within ±20% of the true mean grain size if point counts from a few images are used to correct bias for a specific population of sediment images. It thus appears it is transferable between sedimentary populations with different grain size, but factors such as particle shape and packing may introduce bias which may need to be calibrated for. For the first time, an attempt has been made to mathematically relate the spatial distribution of pixel intensity within the image of sediment to the grain size.

  13. Effects of grain size and porosity on strength of Li2TiO3 tritium breeding pebbles and its grain growth behavior

    NASA Astrophysics Data System (ADS)

    Xiang, Maoqiao; Zhang, Yingchun; Zhang, Yun; Wang, Chaofu; Liu, Wei; Yu, Yonghong

    2016-12-01

    Tons of Li2TiO3 tritium breeding pebbles will be filled in the blanket for obtaining tritium fuel. In this work, isothermal sintering was carried out to study the grain growth behavior of the Li2TiO3 pebbles fabricated by agarose method. The grain growth exponent (n) and the activation energy (Q) calculated by the phenomenological kinetic equation were 2 and 435.65 kJ/mol, respectively. The grain growth was controlled by vapor transport (p = 2S/r). In addition, effects of porosity and grain-size on the strength of Li2TiO3 pebbles were investigated. The strength was affected by the grain size and the porosity of Li2TiO3 pebbles, and high strength (about 72 MPa) depended partly on achieving the optimum balance between the porosity (about 10%) and grain size (about 2 μm).

  14. Beak-shaped grain 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice.

    PubMed

    Yan, Dawei; Zhou, Ya; Ye, Shenghai; Zeng, Longjun; Zhang, Xiaoming; He, Zuhua

    2013-03-01

    Grain shape and size both determine grain weight and therefore crop yield. However, the molecular mechanisms controlling grain shape and size are still largely unknown. Here, we isolated a rice mutant, beak-shaped grain1 (bsg1), which produced beak-shaped grains of decreased width, thickness and weight with a loosely interlocked lemma and palea that were unable to close tightly. Starch granules were also irregularly packaged in the bsg1 grains. Consistent with the lemma and palea shapes, the outer parenchyma cell layers of these bsg1 tissues developed fewer cells with decreased size. Map-based cloning revealed that BSG1 encoded a DUF640 domain protein, TRIANGULAR HULL 1, of unknown function. Quantitative PCR and GUS fusion reporter assays showed that BSG1 was expressed mainly in the young panicle and elongating stem. The BSG1 mutation affected the expression of genes potentially involved in the cell cycle and GW2, an important regulator of grain size in rice. Our results suggest that BSG1 determines grain shape and size probably by modifying cell division and expansion in the grain hull.

  15. Application of composite flow laws to grain size distributions derived from polar ice cores

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp

    2014-05-01

    Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a

  16. Effect of grain size on the high temperature properties of B2 aluminides

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    1987-01-01

    Measurements of the slow plastic flow behavior of cobalt, iron and nickel B2 crystal structure aluminides were conducted on materials fabricated by metallurical techniques. Due to this processing, the aluminides invariably had small equiaxed grains, ranging in size from about 3 to 60 microns in diameter. Grain size was dependent on the extrusion temperature used for powder consolidation, and it proved to be remarkably stable at elevated temperatures. Mechanical properties of all three aluminides were determined via constant velocity compression testing in air between 1000 and 1400 K at strain rates ranging from approx. 10 to the minus 3 power to 10 to the minus 7 power s (-1).

  17. Influence of Grain Size on Sediment Transport Rates With Emphasis on the Total Longshore Rate

    DTIC Science & Technology

    2005-11-01

    rate ∝ Dn), the most appropriate value for the exponent n should be of the order of -1, as seen from Equation 23. However, this tech note argues that...with n within the range of -0.5 to -2.0. To state this another way, the exponent n in Equation 7 is itself a function of grain size...0.08, as shown in Figure 2, demonstrating the small influence of grain size on transport rate. Figure 2. Calculation of exponent n in

  18. Stress and temperature dependence of recrystallized grain size: A subgrain misorientation model

    NASA Astrophysics Data System (ADS)

    Shimizu, Ichiko

    The steady-state grain size of Earth materials undergoing solid state flow is estimated based on a nucleation-and-growth model of dynamic recrystallization. Assuming a nucleation mechanism of subgrain rotation, the mean diameter d of recrystallized grains is obtained as d/b = A(σ/µ)-p exp[-((Qgb - Qv)/mkT)], where b is the length of the Burgers vector, σ is differential stress, µ is the shear modulus, Qgb is the activation energy for the jump of an atom across the grain boundary, Qv is that for self-diffusion in the grain volume, k is the Boltzmann constant, T is temperature, A is a constant, p = 1.25 and m = 4 for intracrystalline nucleation, and p = 1.33 and m = 3 for grain-boundary nucleation. The exponent p = 1.25 ˜ 1.33 agrees well with available data for high- temperature dislocation creep of rock-forming minerals. A weak negative dependence of grain size on temperature is expected from this theory.

  19. Effect of grain size on the melting point of confined thin aluminum films

    SciTech Connect

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J.

    2014-10-28

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.

  20. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    PubMed Central

    Exner, Ulrike; Tschegg, Cornelius

    2012-01-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5–8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir. PMID:26523078

  1. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    NASA Astrophysics Data System (ADS)

    Exner, Ulrike; Tschegg, Cornelius

    2012-10-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.

  2. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands.

    PubMed

    Exner, Ulrike; Tschegg, Cornelius

    2012-10-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.

  3. Irradiation Effects on Microstructure Change in Nanocrystalline Ceria Phase, Lattice Stress, Grain Size and Boundaries

    SciTech Connect

    Edmondson, Dr. Philip; Zhang, Yanwen; Moll, Sandra; Namavar, Fereydoon; Weber, William J

    2012-01-01

    With a wide variety of applications in numerous industries ranging from bio-medical to nuclear, ceramics such as ceria are key engineering materials. It is possible to significantly alter the materials functionality and therefore its applications by reducing the grain size to the nanometer size regime, at which point the unique varieties of grain boundaries and associated interfaces begin to dominate the material properties. Nanocrystalline films of cubic ceria deposited onto Si substrates have been irradiated with 3 MeV Au+ ions at temperatures of 300 and 400 K to evaluate their response to irradiation. It was observed that the films remained phase stable. Following a slight stress relief stage at low damage levels, the overall lattice is extremely stable up to high irradiation dose of {approx} 34 displacements per atom (dpa). The grains were also observed to undergo a temperature dependent grain growth process upon ion irradiation. This is attributed to a defect-driven mechanism in which the diffusion of defects from the collision cascade is critical. Formation of dislocations that terminate and stabilise at symmetric grain boundaries may be the limiting factor in the grain growth and overall energy reduction of the system. Utilizing ion modification, possible improvement of the adhesion of thin films and reduction of the probability of detrimental effects of stress-induced problems are discussed.

  4. Irradiation Effects on Microstructure Change in Nanocrystalline Ceria – Phase, lattice Stress, Grain Size and Boundaries

    SciTech Connect

    Edmondson, P. D.; Zhang, Yanwen; Moll, Sandra J.; Namavar, Fereydoon; Weber, William J.

    2012-09-01

    With a wide variety of applications in numerous industries, ranging from biomedical to nuclear, ceramics such as ceria are key engineering materials. It is possible to significantly alter the materials functionality and therefore its applications by reducing the grain size to the nanometer size regime, at which point the unique varieties of grain boundaries and associated interfaces begin to dominate the material properties. Nanocrystalline films of cubic ceria deposited onto Si substrates have been irradiated with 3 MeV Au+ ions at temperatures of 300 and 400 K to evaluate their response to irradiation. It was observed that the films remained phase stable. Following a slight stress relief stage at low damage levels, the overall lattice is extremely stable up to high irradiation dose of ~34 displacements per atom. The grains were also observed to undergo a temperature-dependent grain growth process upon ion irradiation. This is attributed to a defect-driven mechanism in which the diffusion of defects from the collision cascade is critical. Formation of dislocations that terminate and stabilize at symmetric grain boundaries may be the limiting factor in the grain growth and overall energy reduction of the system. Utilizing ion modification, possible improvement of the adhesion of thin films and reduction of the probability of detrimental effects of stress-induced problems are discussed.

  5. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  6. Microstructure Evolution and Abrasive Wear Behavior of Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Hadke, Shreyash; Khatirkar, Rajesh K.; Shekhawat, Satish K.; Jain, Shreyans; Sapate, Sanjay G.

    2015-10-01

    This paper investigates the effect of quenching and aging treatment on microstructure and abrasive wear of Ti-6Al-4V alloy. The as-received alloy was solution treated at 1339 K, then oil quenched, followed by aging at 823 K for 4 h (14,400 s). The microstructures of as-received and quench-aged specimens were characterized by using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and electron backscattered diffraction techniques. The as-received specimen consisted of very fine α grains (average grain size 2 μm) with β phase uniformly dispersed throughout. The microstructure of the quench-aged specimen showed α plates (formed by the decomposition of α' during aging). The β phase precipitated out of α' martensite during aging and hence was dispersed uniformly in the α matrix. Ti-6Al-4V alloy was quench-aged to achieve maximum hardness with a view that the increased hardness would lead to an improvement in abrasive wear behavior. Two-body abrasive wear tests were carried out on the as-received and quench-aged specimens using pin-on-disk apparatus with SiC as abrasive media (150-grit size). The effect of sliding distance and normal load on the abrasive wear behavior was studied. The wear resistance of the as-received specimen was greater than that of quench-aged specimen, while hardness of the as-received specimen was lower than that of quench-aged specimen. The abrasive wear behavior of Ti-6Al-4V alloy has been explained based on morphology/microstructure of the alloy and the associated wear mechanism(s).

  7. Optimal reproduction in salmon spawning substrates linked to grain size and fish length

    NASA Astrophysics Data System (ADS)

    Riebe, Clifford S.; Sklar, Leonard S.; Overstreet, Brandon T.; Wooster, John K.

    2014-02-01

    Millions of dollars are spent annually on revitalizing salmon spawning in riverbeds where redd building by female salmon is inhibited by sediment that is too big for fish to move. Yet the conditions necessary for productive spawning remain unclear. There is no gauge for quantifying how grain size influences the reproductive potential of coarse-bedded rivers. Hence, managers lack a quantitative basis for optimizing spawning habitat restoration for reproductive value. To overcome this limitation, we studied spawning by Chinook, sockeye, and pink salmon (Oncorhynchus tshawytscha, O. nerka, and O. gorbuscha) in creeks and rivers of California and the Pacific Northwest. Our analysis shows that coarse substrates have been substantially undervalued as spawning habitat in previous work. We present a field-calibrated approach for estimating the number of redds and eggs a substrate can accommodate from measurements of grain size and fish length. Bigger fish can move larger sediment and thus use more riverbed area for spawning. They also tend to have higher fecundity, and so can deposit more eggs per redd. However, because redd area increases with fish length, the number of eggs a substrate can accommodate is maximized for moderate-sized fish. This previously unrecognized tradeoff raises the possibility that differences in grain size help regulate river-to-river differences in salmon size. Thus, population diversity and species resilience may be linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. Our approach provides a tool for managing grain-size distributions in support of optimal reproductive potential and species resilience.

  8. Automatic River Bed Grain Size Measurement Using Image Processing and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Bellugi, D.; Nelson, P. A.; Dietrich, W. E.

    2010-12-01

    Gravel-bedded rivers cut through hilly and mountainous areas, driving landscape evolution and creating a diverse habitat upon which river food web ecosystems develop. Our understanding of the mechanics underlying important processes in fluvial geomorphology, hydrodynamics, and aquatic ecology inevitably requires knowledge about the grain size distribution of river bed material. Standard methods of sampling bed surface material may introduce errors due to biases and inadequate sample size. Alternative areal or volumetric sampling procedures are often impractical, particularly in coarse channel beds. Furthermore, all invasive sampling techniques can compromise laboratory flume experiments. These concerns suggest that there is a practical need for a reliable, automated, non-invasive procedure for obtaining the grain size distribution of bed surface material. Although considerable effort has been made to automatically generate grain size distributions using image processing and analysis techniques, the problem remains quite challenging: issues such as varying lighting conditions, partial immersion of particles in water, and heterogeneous mineralogy result in ambiguities that cannot be easily resolved. Feature extraction introduces further biases due to over- or under-segmentation of the image. Moreover, unless the grain distributions are fairly homogeneous between different locations, and images are collected in similar fashion, it is difficult to parametrize any such method in a transferable manner. In this study we present an image processing and machine learning procedure to automatically identify and measure grains from photographic images of gravel-bedded rivers. We apply the state-of-the-art of image segmentation techniques, making use of local cues such as brightness, color, and texture in a multi-scale approach. These cues are globalized using a graph partitioning method on the oriented contour signal. The resulting boundary probability signal is treated by a

  9. Sintering Trajectories: Description on How Density, Surface Area, and Grain Size Change

    NASA Astrophysics Data System (ADS)

    German, Randall M.

    2016-03-01

    Sintering is a mainstay production step in forming metal, ceramic, polymer, and composite components from particles. Since the 1940s, the sintering process is treated using a matrix of mathematical relationships that include at least seven atomic transport mechanisms, several options on powder characteristics, and three pore-grain morphology options. The interplay of these relationships is handled by numerical solutions to predict property development. An alternative approach is to track the sintering trajectory using relatively simple relationships based on bulk measures. Energy minimization dictates that initial stage sintering acts to reduce surface area. In late stage sintering, the energy minimization turns to grain boundary area reduction via grain growth. Accordingly, relationships result between density, surface area, and grain size, which largely ignore mechanistic details. These relationships are applicable to a wide variety of materials and consolidation conditions, including hot pressing, and spark sintering.

  10. Influence of grain size on transition temperature of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Miller, Mark J.; Wang, Junlan

    2015-01-01

    Vanadium(IV) oxide (VO2) is a unique material that undergoes a reversible phase transformation around 68 °C. The material could potentially be used as an energy-efficient coating for windows since its reflectance in the infrared (IR) increases significantly more than in the visible region. Currently, VO2 is limited by a transition temperature ( τ c ) that is too high, luminous transmittance that is too low or both. In this study, a transition temperature of 45 °C is achieved for a reactively sputtered, undoped film by restricting grain size to approximately 30 nm. It is concluded that a higher density of grain boundaries (smaller grain size) provides a greater number of nucleating defects which in turn reduces τ c . Similarly, a higher density of grain boundaries may reduce the hysteresis width (difference between transition temperatures in heating and cooling). Also in this study, a new set of optical performance metrics is proposed in which the solar spectrum is divided into the ultraviolet (UV), visible and near infrared (NIR) regions. This approach is more closely aligned with the goals of limiting UV, allowing luminous and modulating NIR transmission. Using these metrics, the optical properties of the low- τ c sample were: 2% UV transmittance, 47% luminous transmittance, and 23% NIR modulation (decrease from 43 to 33%). This study demonstrates that the grain size of VO2 should be viewed as an important parameter for controlling the transition temperature of the material.

  11. EPR investigation of UV light effect on calcium carbonate powders with different grain sizes.

    PubMed

    Kabacińska, Zuzanna; Krzyminiewski, Ryszard; Dobosz, Bernadeta

    2014-06-01

    This study is based on investigation of calcium carbonate powders with different grain sizes exposed to UV light. Calcium carbonate is widely used in many branches of industry, e.g. as a filler for polymer materials; therefore, knowing its properties, among them also its reaction to UV light, is essential. Samples of powdered calcium carbonate with average grain sizes of 69 and 300 nm and 2.1, 6, 16, 25 µm were used in this investigation. Measurements were performed at room temperature using EPR X-band spectrometer, and they have shown the additional signals induced by the light from Hg lamp. The effect of annealing of the micro-grain samples was also studied. The spectra of four micro-grain samples after irradiation are similar, but there are differences between them and the other two powders, which could be related to the different sizes of their grains. Further studies based on these preliminary results may prove useful in research of photodegradation of CaCO3-filled materials, as well as helpful in increasing the accuracy of dating of archaeological and geological objects.

  12. Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2005-01-01

    Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?

  13. Geochemistry of grain-size fractions of soils from the Taurus-Littrow valley floor

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.

    1976-01-01

    Results are presented for a study in which high-precision instrumental neutron activation analysis was applied to determine the abundances of seven rare-earth and nine other elements in two grain-size fractions (90 to 150 microns and less than 20 microns) of eight soils from the Taurus-Littrow Valley floor and one Apollo 11 bulk-soil fraction with grain sizes of less than 1 mm. Compositional differences between the two size fractions of two valley-floor soils are examined, and mixing of soil components is investigated. It is found that a five-component mixing model describes very adequately the chemical composition of bulk soils with grain sizes of less than 1 mm as mixtures of local Apollo 17 rock types (basalt, anorthositic gabbro, noritic breccia), orange glass, and meteorites, but does not describe well the chemical compositions of the other two size fractions. A ten-component model is used to show that the compositions of those two size fractions can be well represented as mixtures of the five components if the mineralogy and chemical composition of the basalt component are allowed to vary in the size fractions.

  14. A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size, and porosity

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1995-11-01

    Particle shape is an important parameter in numerous civil, environmental, and petroleum engineering applications. In ground-water flow, the shape of individual particles comprising the soil affects the soil`s pore size distribution and, hence, the important flow characteristics such as hydraulic conductivity and headloss. A model for delineating the relative importance of particle size, particle shape, and porosity, (and their interactions), in explaining the variability of hydraulic conductivity of a granular porous medium is developed and tested. Three types of porous media are considered in this work: spherical glass beads; granular sand; and irregularly shaped, shredded glass particles. A reliable method for quantifying the three-dimensional shape and packing of large samples of irregular particles based on their angle of repose is presented. The results of column experiments indicate that in the size range examined (i.e., 149 {micro}m to 2,380 {micro}m), the single most important predictor of hydraulic conductivity is seen to be particle size, explaining 69% of the variability. Porous media comprising irregular particles exhibit lower hydraulic conductivity only for the larger (707 to 841 {micro}m) particles. For the smaller (149 to 177 {micro}m) particles, particle shape has no observable influence on hydraulic conductivity. The results of the regression analysis reveal the importance off the interaction between particle size and porosity, indicating that similar pore configurations for a given type of particle are not achieved at different sizes. This empirical model seems to provide better estimates of the hydraulic conductivity of granular porous media comprising irregular particles than selected models based solely on grain size, including Hazen, Kozeny-Carman, and more recently Alyamani and Sen.

  15. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

    NASA Astrophysics Data System (ADS)

    Reyes, L. A.; Páramo, P.; Salas Zamarripa, A.; de la Garza, M.; Guerrero-Mata, M. P.

    2016-01-01

    The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

  16. Frost grain size metamorphism - Implications for remote sensing of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Fanale, F. P.; Zent, A. P.

    1983-01-01

    The effective grain size of a material on a planetary surface affects the strength of absorption features observed in the reflectance of a particulate surface. In the case of a planetary surface containing volatile ices, the absorption characteristics can change in connection with processes leading to a change in the grain size of the material. The present investigation is concerned with an evaluation regarding the occurrence of such processes and the implications for remote sensing applications. It is found that quantitative modeling of the kinetics of grain growth and destruction by thermal and nonthermal processes can provide a means to reconcile apparent optical paths in the volatile portions of planetary surfaces with the physical history of those surfaces. Attention is also given to conditions in the case of the Pluto/Triton system, Uranus and Saturnian satellites, and the Galilean system.

  17. Investigation on grain size effect in high strain rate ductility of 1100 pure aluminum

    NASA Astrophysics Data System (ADS)

    Bonora, N.; Bourne, N.; Ruggiero, A.; Iannitti, G.; Testa, G.

    2017-01-01

    The effect of the initial grain size on the material ductility at high strain rates in 1100 pure aluminum was investigated. Dynamic tensile extrusion (DTE) tests, at different impact velocities, were performed. Samples have been annealed at 350°C for different exposure times to induce grain growth. Extruded fragments were soft-recovered and the overall length of the extruded jets was used as a measure of material ductility at high strain rates. Numerical simulation of DTE test at different velocity was performed using the modified Rusinek-Klepaczko constitutive model. Results indicates that, as reported for pure copper, the overall ductility of the aluminum increases when grain size decreases. Numerical simulation results were in quite good agreement with experimental data.

  18. The Smallest Lunar Grains: Analytical TEM Characterization of the Sub-micron Size Fraction of a Mare Soil

    NASA Technical Reports Server (NTRS)

    Thompson, M.; Christoffersen, R.

    2010-01-01

    The chemical composition, mineralogical type, and morphology of lunar regolith grains changes considerably with decreasing size, and below the approx.25 m size range the correlation between these parameters and remotely-sensed lunar surface properties connected to space weathering increases significantly. Although trends for these parameters across grain size intervals greater than 20 m are now well established, the 0 to 20 m size interval remains relatively un-subdivided with respect to variations in grain modal composition, chemistry and microstructure. Of particular interest in this size range are grains in the approximate < 1 m diameter class, whose fundamental properties are now the focus of lunar research pertaining to electrostatic grain transport, dusty plasmas, and lunar dust effects on crew health and exploration systems. In this study we have used analytical transmission electron microscopy (TEM) to characterize the mineralogy, microstructure and major element composition of grains below the 1 m size threshold in lunar soil 10084.

  19. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  20. Grain-Size Effects on Field Capacity of Soil-Biochar Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Dugan, B.; Masiello, C. A.; Gonnermann, H. M.

    2014-12-01

    While it is known that under some circumstances amending soil with biochar improves soil hydrologic properties, the mechanisms driving these improvements are not well-understood. This is a serious gap: without mechanism understanding, it is much harder to predict when biochar will improve soil properties. Grain size likely plays a key role in controlling biochar effects on water movement and storage, because grain size (of both biochar and soils) plays a major role in soil porosity. Here we report water potential of soil-biochar mixtures in the context of grain size and porosity measurements to better understand the mechanisms controlling how pores in biochar and soil store water. Our soil-biochar mixtures are sand (0.251-0.853 mm) with 2 wt% biochar; we used two separate biochar grain size ranges. Comparison of pure sand with biochar+sand mixtures shows a field capacity (θfc, water content at soil water potential = 33 kPa) increase from 0.014 to 0.027 kgwater/kgsoil+water (increase of 93%) when biochar is 0.251-0.853 mm (same size as sand) and a field capacity increase from 0.014 to 0.032 kgwater/kgsoil+water (increase of 129%) when biochar is 0.853-2.00 mm (larger than sand). Thus when biochar is larger than sand, θfc of biochar+sand mixtures (0.032 kgwater/kgsoil+water) is higher than θfc of biochar+sand mixtures (0.027 kgwater/kgsoil+water) when biochar is the same size as sand. Biochar+sand mixtures have interporosity (porosity between grains) and intraporosity (pores inside biochar particles). The average intraporosity of our biochars is 0.61±0.01 (61±1% of the biochar volume is pore space). Based our results we interpret that this intraporosity can store water and drives the increase of θfc for biochar-amended sand. Field capacity also increases with pore size decreases because smaller pores tend to hold water tightly due to higher capillary forces. The increase of θfc with increased biochar grain size may be caused by the bimodal particle size

  1. Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.; Kolecki, Joseph C.; Siebert, Mark W.; Wilt, David M.; Matijevic, Jacob R.

    1999-04-01

    The Wheel Abrasion Experiment (WAE) on the Mars Pathfinder rover was designed to find out how abrasive the Martian dust would be on strips of pure metals attached to one of the wheels. A specially modified wheel, with 15 thin film samples (five each of three different metals), specularly reflected sunlight to a photovoltaic sensor. When the wheel was rotated to present the different sample surfaces to the sensor, the resulting signal was interpreted in terms of dust adhesion and abrasive wear. Many data sequences were obtained. Ground tests of similar wheels in a simulated Martian environment showed that static charging levels of 100-300 V could be expected. To prevent the possibility of Paschen discharge in the low-pressure Martian atmosphere, charge dissipation points were added to the Sojourner rover and were shown in ground tests to keep charging levels at 80 V or less. Nevertheless, significant dust accumulations on Sojourner's wheels may be interpreted as evidence for electrostatic charging. Simple considerations of the expected maximum level of charging and electrostatic dust adhesion lead to an estimate for the size of the adhering dust grains. From the WAE data, it is hypothesized that the photoelectric effect is the most important mechanism for slow discharge in Martian daylight. Sensor signals obtained late in the Pathfinder mission show that significant wheel wear was seen on the metal wheel strips, with the most wear on the thinnest aluminum samples and the least on the thickest nickel and platinum samples. An estimate is made of the reflectance of the adhering Martian dust. The depth of dig of the WAE wheel shows that the dust is in some places very loose and in others tightly packed. Finally, comparison of the WAE results with ground test results makes possible a comparison of the Martian soil with mineral grain types and sizes found on Earth and show that the Martian dust is fine-grained and of limited hardness.

  2. Comparative studies of grain size separates of 60009. [lunar soil samples

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Morris, R. V.; Dungan, M. A.; Fruland, R. M.; Fuhrman, R.

    1976-01-01

    Five samples from 60009, the lower half of a double drive tube, were analyzed via grain-size methods, with particle types classified and counted in the coarser grain sizes. Studies were undertaken of particle types and distributions by petrographic methods, of magnetic fractions, of the size splits and magnetic splits as analyzed by ferromagnetic resonance (FMR) techniques, of maturity (based on agglutinate content, FMR index Is/FeO, mean size of sub-cm material, magnetic fraction), of possible reworking or mixing in situ, and of depositional history. Maturity indices are in substantial agreement for all of the five samples. Strong positive correlation of percent agglutinates and percent bedrock-derived lithic fragments, combined with negative correlation of those components with percent single crystal plagioclase, argue against in situ reworking of the same soil.

  3. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    PubMed

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H2 O<0.1 ppm, O2 <10 ppm). The PCE of the solar cell based on a perovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells.

  4. Luminescence dating of glacial deposits near the eastern Himalayan syntaxis using different grain-size fractions

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Yi, Chao-Lu; Zhang, Jia-Fu; Liu, Jin-Hua; Jiang, Tao

    2015-09-01

    Numerical dating of glacial deposits is important for understanding Quaternary glacial evolution. Optically stimulated luminescence (OSL) dating is one of the techniques widely used on such sediments. Owing to the short distances traveled before deposition, the incomplete bleaching of luminescence signals in glacial sediments may introduce serious dating problems vis-à-vis glacial and any associated sediments. Here, we report a comparison of OSL ages obtained from the fine (4-11 μm) and medium (38-63 μm) grain size fractions of quartz extracted from glaciofluvial sediments and from glacial tills in the Basongcuo catchment near the eastern Himalayan syntaxis. Initially, four glacial stages were identified based on field observations of moraine distribution and geomorpho-stratigraphic relations. A total of 39 OSL samples were then collected from glaciofluvial sand layers or lenses and from till. Quartz grains in the fine (4-11 μm) and medium (38-63 μm) size fractions were extracted from each sample, and dated using the single-aliquot regeneration (SAR) protocol. The modern supraglacial sediment sample was dated to ˜0.2 (fine grain) to ˜0.7 (medium grain) ka, suggesting that the sediment was not completely bleached on deposition. Contrary to previous experience suggesting that coarse grains are usually better bleached than fine grains prior to deposition, our results show that estimated OSL ages for fine grains are generally younger than those for medium grains. This suggests that the two fractions may have come from different sources and thus have different bleaching histories, and that fine-grained quartz may be more suitable for OSL dating of these materials. Applying the minimum age model to data from medium-grained quartz yields ages close to those obtained from fine-grained quartz, suggesting that both can be used for dating glacial advances. The OSL dates suggest that glaciers in the studied area advanced at 0.1-1.3 ka, ˜7.5 ka and 11-13 ka, and were

  5. Effect of Grain Size on the Internal Fracturing of Polycrystalline Ice,

    DTIC Science & Technology

    1986-07-01

    be- termined using a universal stage according to havior significantly. As grain size increased, pri- methods given by Langway (1958), and using a mary...Metallurgical Science, 16: 118-126. Metallurgica, 27: 1565-1602. Langway , C.C. (1958) Ice fabric and the universal Gold, L.W. (1960) The cracking activity in ice

  6. Grain size dependence of dielectric relaxation in cerium oxide as high-k layer

    PubMed Central

    2013-01-01

    Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. PMID:23587419

  7. Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings.

    PubMed

    Estrada, Nicolas

    2016-12-01

    Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.

  8. Comparison of Geostatistical Kriging Algorithms for Intertidal Surface Sediment Facies Mapping with Grain Size Data

    PubMed Central

    2014-01-01

    This paper compares the predictive performance of different geostatistical kriging algorithms for intertidal surface sediment facies mapping using grain size data. Indicator kriging, which maps facies types from conditional probabilities of predefined facies types, is first considered. In the second approach, grain size fractions are first predicted using cokriging and the facies types are then mapped. As grain size fractions are compositional data, their characteristics should be considered during spatial prediction. For efficient prediction of compositional data, additive log-ratio transformation is applied before cokriging analysis. The predictive performance of cokriging of the transformed variables is compared with that of cokriging of raw fractions in terms of both prediction errors of fractions and facies mapping accuracy. From a case study of the Baramarae tidal flat, Korea, the mapping method based on cokriging of log-ratio transformation of fractions outperformed the one based on cokriging of untransformed fractions in the prediction of fractions and produced the best facies mapping accuracy. Indicator kriging that could not account for the variation of fractions within each facies type showed the worst mapping accuracy. These case study results indicate that the proper processing of grain size fractions as compositional data is important for reliable facies mapping. PMID:24688362

  9. Comparison of geostatistical kriging algorithms for intertidal surface sediment facies mapping with grain size data.

    PubMed

    Park, No-Wook; Jang, Dong-Ho

    2014-01-01

    This paper compares the predictive performance of different geostatistical kriging algorithms for intertidal surface sediment facies mapping using grain size data. Indicator kriging, which maps facies types from conditional probabilities of predefined facies types, is first considered. In the second approach, grain size fractions are first predicted using cokriging and the facies types are then mapped. As grain size fractions are compositional data, their characteristics should be considered during spatial prediction. For efficient prediction of compositional data, additive log-ratio transformation is applied before cokriging analysis. The predictive performance of cokriging of the transformed variables is compared with that of cokriging of raw fractions in terms of both prediction errors of fractions and facies mapping accuracy. From a case study of the Baramarae tidal flat, Korea, the mapping method based on cokriging of log-ratio transformation of fractions outperformed the one based on cokriging of untransformed fractions in the prediction of fractions and produced the best facies mapping accuracy. Indicator kriging that could not account for the variation of fractions within each facies type showed the worst mapping accuracy. These case study results indicate that the proper processing of grain size fractions as compositional data is important for reliable facies mapping.

  10. TOC as a regional sediment conditionindicator: Parsing effects of grain size and organic content

    EPA Science Inventory

    TOC content of sediments is often used as an indicator of benthic condition. Percent TOC is generally positively correlated with sediment percent fines. While sediment grain size may have impacts on benthic organisms independent of organic content, it is often not explicitly co...

  11. TOC as a regional sediment condition indicator: Parsing effects of grain size and organic content

    EPA Science Inventory

    TOC content of sediments is often used as an indicator of benthic condition. Percent TOC is generally positively correlated with sediment percent fines. While sediment grain size may have impacts on benthic organisms independent of organic content, it is often not explicitly co...

  12. Discrimination of sediment provenance in the Yellow Sea: Secondary grain-size effect and REE proxy

    NASA Astrophysics Data System (ADS)

    Jung, Hoi-Soo; Lim, Dhongil; Jeong, Do-Hyun; Xu, Zhaokai; Li, Tiegang

    2016-06-01

    This study analyzed grain size and elemental concentrations (Al, Mg, Fe, and rare earth elements (REEs)) in 91 surface sediments to elucidate sediment provenance in the Yellow Sea. Elemental concentrations were normalized by Al concentration (Celement/CAl) to minimize the sediment grain-size effect (GSE). However, noticeable linear relationships between Al concentration (or mean grain size) and the ratio (e.g., Mg/Al or Fe/Al) appeared unexpectedly in pair diagrams. The spatial distribution patterns of Fe/Al and Mg/Al ratios were also similar to the pattern of mean grain size. This implies that the GSE was not removed completely, even after the normalization process. Thus, great care must be taken when applying the ratios of Celement/CAl as a proxy of sediment provenance. To improve provenance discrimination of the sediments in the Yellow Sea, the difference between the REE distribution patterns of Chinese and Korean river sediments, expressed as δ (δ = REE∗(La) - REE∗(Lu)), was calculated, and the spatial distribution patterns of the δ values were mapped. The δ values gradually increased from the western to the eastern part of the Yellow Sea, except for low δ values in the southeastern part of the Yellow Sea. This result indicates that the majority of Chinese and Korean river sediments are accumulating near to their respective coasts, except for a deposit along the southwestern coast of Korea in which a considerable amount of sediment from Chinese rivers has been accumulating.

  13. Grain-size data from four cores from Walker Lake, Nevada

    SciTech Connect

    Yount, J.C.; Quimby, M.F.

    1990-11-01

    A number of cores, taken from within and near Walker Lake, Nevada are being studied by various investigators in order to evaluate the late-Pleistocene paleoclimate of the west-central Great Basin. In particular, the cores provide records that can be interpreted in terms of past climate and compared to proposed numerical models of the region`s climate. All of these studies are being carried out as part of an evaluation of the regional paleoclimatic setting of a proposed high-level nuclear waste storage facility at Yucca Mountain, Nevada. Changes in past climate often manifest themselves in changes in sedimentary processes or in changes in the volume of sediment transported by those processes. One fundamental sediment property that can be related to depositional processes is grain size. Grain size effects other physical properties of sediment such as porosity and permeability which, in turn, affect the movement and chemistry of fluids. The purposes of this report are: (1) to document procedures of sample preparation and analysis, and (2) to summarize grain-size statistics for 659 samples from Walker Lake cores 84-4, 84-5, 84-8 and 85-2. Plots of mean particle diameter, percent sand, and the ratio of silt to clay are illustrated for various depth intervals within each core. Summary plots of mean grain size, sorting, and skewness parameters allow comparison of textural data between each core. 15 refs., 8 figs., 3 tabs.

  14. Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings

    NASA Astrophysics Data System (ADS)

    Estrada, Nicolas

    2016-12-01

    Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.

  15. H2O grain size and the amount of dust in Mars' residual North polar cap

    USGS Publications Warehouse

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  16. Effect of grain size on thermal shock property of alumina ceramic

    NASA Astrophysics Data System (ADS)

    Xu, Xianghong; Sheng, Shilong; Yuan, Wenjun; Lin, Zhongkang

    2016-04-01

    Ceramic has a great broad application in high-temperature environment due to its favorable mechanical, antioxidant and corrosion resistance properties. However, it tends to exhibit severe crack or fail under thermal shock resulting from its inherent brittleness. Microstructure property is a vital factor and plays a critical role in influencing thermal shock property of ceramic. The present study experimentally tested and characterized thermal-shock crack and residual strength of ceramic under different quench temperature, while two kinds of alumina ceramics with different grain size are employed. A two-dimensional (2D) numerical model based on statistical mesoscopic damage mechanics is introduced to depict the micro-crack propagation of ceramic sheet under water quenching. The effects of grain size on critical thermal shock temperature, crack characteristics and residual strength are studied. And the microscopic mechanism of the influence of grain size on thermal shock resistance of ceramic is discussed based on the crack propagation path obtained from experimental and simulation results. The qualitative effect and evolution change of grain size on thermal shock property of alumina ceramic will be summarized.

  17. Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2017-01-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.

  18. Dolomite microstructures between 390° and 700 °C: Indications for deformation mechanisms and grain size evolution

    NASA Astrophysics Data System (ADS)

    Berger, Alfons; Ebert, Andreas; Ramseyer, Karl; Gnos, Edwin; Decrouez, Danielle

    2016-08-01

    Dolomitic marble on the island of Naxos was deformed at variable temperatures ranging from 390 °C to >700 °C. Microstructural investigations indicate two end-member of deformation mechanisms: (1) Diffusion creep processes associated with small grain sizes and weak or no CPO (crystallographic preferred orientation), whereas (2) dislocation creep processes are related with larger grain sizes and strong CPO. The change between these mechanisms depends on grain size and temperature. Therefore, sample with dislocation and diffusion creep microstructures and CPO occur at intermediate temperatures in relative pure dolomite samples. The measured dolomite grain size ranges from 3 to 940 μm. Grain sizes at Tmax >450 °C show an Arrhenius type evolution reflecting the stabilized grain size in deformed and relative pure dolomite. The stabilized grain size is five times smaller than that of calcite at the same temperature and shows the same Arrhenius-type evolution. In addition, the effect of second phase particle influences the grain size evolution, comparable with calcite. Calcite/dolomite mixtures are also characterized by the same difference in grain size, but recrystallization mechanism including chemical recrystallization induced by deformation may contribute to apparent non-temperature equilibrated Mg-content in calcite.

  19. Grain size effects on the high strain rate deformation of copper

    NASA Astrophysics Data System (ADS)

    Stevenson, Michael Earle

    The high strain rate (>104/s) mechanical properties of OFHC copper were studied by the Taylor impact test for a series of copper grain sizes from 31 to 152 mum. The results are analyzed by both analytical and finite element. There is a significant increase in the dynamic strength of OFHC copper for strain rates greater than approximately 104/s. This strength increase is also dependent upon the grain size of the OFHC copper prior to testing and follows a classical Hall-Petch relationship. In addition to the analytical and finite element models, a universal dynamic stress-strain curve was developed and constructed for each grain size of the OFHC copper. The characterization parameters determined from the universal dynamic stress-strain curve are also grain size dependent. Many of these parameters also follow the classical Hall-Petch trend. Post-impact microstructures of the copper can be generalized into five distinct regions. Beginning at the specimen impact face, those regions are: (i) a nanocrystalline, or sub-micron grain size layer; (ii) a dynamically recrystallized region; (iii) a region of high density (111)[112¯] twinning; (iv) a section dominated by dislocation plastic flow, or slip and (v) the specimen portion where the deformation is completely elastic. The five regions can be related to the mechanical properties derived from the individual models and the universal dynamic stress-strain curve with consideration of the initial microstructure of the copper. The results of this dissertation suggest that there is a direct linkage between the dynamic mechanical state of stress during the impact tests and both the initial and final metallurgical microstructures of the copper.

  20. Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression

    NASA Astrophysics Data System (ADS)

    Patra, S.; Neogy, S.; Kumar, Vinod; Chakrabarti, D.; Haldar, A.

    2012-11-01

    Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite ( α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite ( γ) → ferrite ( α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful "cube" texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//<111>) texture components, along with {332}<133> and {554}<225> components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γ → α transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.

  1. Abrasion in pyroclastic density currents: Insights from tumbling experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Putz, Constanze; Spieler, Oliver; Dingwell, Donald B.

    2012-01-01

    During granular mass movements of any kind, particles may interact with one another. The degree of interaction is a function of several variables including; grain-size distribution, particle concentration, density stratification and degree of fluidisation. The impact of particle interaction is additionally influenced by the relative speed, impact angle and clast temperature. Thus, both source conditions and transport-related processes are expected to influence the flow dynamics of pyroclastic density currents and their subsequent deposition. Here, we use tumbling experiments to shed light on the susceptibility of porous clasts to abrasion. We investigated the abrasion of unaltered volcanic rocks (5.7-80 vol.% porosity) from Unzen (Japan), Bezymianny (Russia) and Santorini (Greece) volcanoes as well as one synthetic analogue material, an insulating material with the trade name Foamglas® (95 vol.% porosity). Each experiment started with angular fragments generated in a jaw crusher from larger clasts. Two experimental series were performed; on samples with narrow and broader grain-size distributions, respectively. The dry samples were subject to rotational movement at constant speed and ambient temperature in a gum rotational tumbler for durations of 15, 30, 45, 60 and 120 min. The amount of volcanic ash (particles <2 mm) generated was evaluated as a function of experimental duration and sample porosity. We term “abrasion” as the ash fraction generated during the experiments. The observed increase of “abrasion” with increasing sample porosity and experimental duration is initially non-linear but becomes linear for experiments of 30 min duration or longer. For any given sample, abrasion appears to be more effective for coarser samples and larger initial mass. The observed range of ash generated in our experiments is between 1 and 35 wt.%. We find that this amount generally increases with increasing initial clast size or increasing breadth of the initial grain-size

  2. Hardening by ion implantation of VT1-0 alloy having different grain size

    SciTech Connect

    Nikonenko, Alisa Kurzina, Irina; Popova, Natalya; Kalashnikov, Mark

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case.

  3. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  4. The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools.

    PubMed

    Walker, Cassandra K; Ford, Rebecca; Muñoz-Amatriaín, María; Panozzo, Joe F

    2013-10-01

    Using a barley mapping population, 'Vlamingh' × 'Buloke' (V × B), whole grain analyses were undertaken for physical seed traits and malting quality. Grain density and size were predicted by digital image analysis (DIA), while malt extract and protein content were predicted using near infrared (NIR) analysis. Validation of DIA and NIR algorithms confirmed that data for QTL analysis was highly correlated (R (2) > 0.82), with high RPD values (the ratio of the standard error of prediction to the standard deviation, 2.31-9.06). Endosperm hardness was measured on this mapping population using the single kernel characterisation system. Grain density and endosperm hardness were significantly inter-correlated in all three environments (r > 0.22, P < 0.001); however, other grain components were found to interact with the traits. QTL for these traits were also found on different genomic regions, for example, grain density QTLs were found on chromosomes 2H and 6H, whereas endosperm hardness QTLs were found on 1H, 5H, and 7H. In this study, the majority of the genomic regions associated with grain texture were also coincident with QTLs for grain size, yield, flowering date and/or plant development genes. This study highlights the complexity of genomic regions associated with the variation of endosperm hardness and grain density, and their relationships with grain size traits, agronomic-related traits, and plant development loci.

  5. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  6. Evolutionary models of the Earth with a grain size-dependent rheology

    NASA Astrophysics Data System (ADS)

    Rozel, Antoine; Golabek, Gregor; Tackley, Paul

    2015-04-01

    Thermodynamically consistent models of single phase grain size evolution have been proposed in the past years [Austin and Evans (2007), Ricard and Bercovici (2009), Rozel et al. (2011), Rozel (2012)]. Following the same physical approach, the mechanics of two-phase grain aggregates has been formulated [Bercovici and Ricard (2012a)]. Several non-linear mechanisms such as dynamic recrystallization or Zener pinning are now available in a single non-equilibrium formulation of grain size distributions evolution. The self-consistent generation of localized plate boundaries is predicted in [Bercovici and Ricard (2012b)] using this model, but it has not been tested in a dynamically consistent way. Our preliminary results have shown that out of equilibrium grain size dynamics leads to localization of deformation below the lithosphere rather than subduction initiation. Yet this result was obtained assuming indealized conditions. We study here, for the first time, the evolution of grain size in the mantle and lithosphere in evolutionary models, starting from a just-frozen magma ocean until the present day situation. Following complexities are considered in these models: melting, phase transitions, compressible convection, and different pressure-temperature-dependent composite rheologies in upper and lower mantles. We use a visco-plastic rheology in which the viscous strain rate is obtained by summation of dislocation and diffusion creep. Pressure and velocity fields are solved on a staggered grid using a SIMPLER-like method. Multigrid W-cycles and extra coarse-grid relaxations are employed to enhance the convergence of Stokes and continuity equations. The grain size is stored on a large number of tracers advected through the computational domain (a 2D spherical annulus), which prevent numerical diffusion and allows a high resolution. We also describe the physical formalism itself and derive a set of free parameters for the model. The results show that Normal growth, dynamic

  7. Effects of grain size and boundary structure on the dynamic tensile response of copper

    NASA Astrophysics Data System (ADS)

    Escobedo, J. P.; Dennis-Koller, D.; Cerreta, E. K.; Patterson, B. M.; Bronkhorst, C. A.; Hansen, B. L.; Tonks, D.; Lebensohn, R. A.

    2011-08-01

    Plate impact experiments have been carried out to examine the influence of grain boundary characteristics on the dynamic tensile response of Cu samples with grain sizes of 30, 60, 100, and 200 μm. The peak compressive stress is ˜1.50 GPa for all experiments, low enough to cause an early stage of incipient spall damage that is correlated to the surrounding microstructure in metallographic analysis. The experimental configuration used in this work permits real-time measurements of the sample free surface velocity histories, soft-recovery, and postimpact examination of the damaged microstructure. The resulting tensile damage in the recovered samples is examined using optical and electron microscopy along with micro x-ray tomography. The free surface velocity measurements are used to calculate spall strength values and show no significant effect of the grain size. However, differences are observed in the free surface velocity behavior after the pull-back minima, when reacceleration occurs. The magnitude of the spall peak and its acceleration rate are dependent upon the grain size. The quantitative, postimpact, metallographic analyses of recovered samples show that for the materials with grain sizes larger than 30 μm, the void volume fraction and the average void size increase with increasing grain size. In the 30 and 200 μm samples, void coalescence is observed to dominate the void growth behavior, whereas in 60 and 100 μm samples, void growth is dominated by the growth of isolated voids. Electron backscatter diffraction (EBSD) observations show that voids preferentially nucleate and grow at grain boundaries with high angle misorientation. However, special boundaries corresponding to Σl (low angle, < 5 °) and Σ3 (˜60 ° <111> misorientation) types are more resistant to void formation. Finally, micro x-ray tomography results show three dimensional (3D) views of the damage fields consistent with the two dimensional (2D) surface observations. Based on these

  8. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  9. ABSORPTION EFFICIENCIES OF FORSTERITE. I. DISCRETE DIPOLE APPROXIMATION EXPLORATIONS IN GRAIN SHAPE AND SIZE

    SciTech Connect

    Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R. E-mail: diane.h.wooden@nasa.gov E-mail: msk@astro.umd.edu E-mail: murphy@nmsu.edu

    2013-03-20

    We compute the absorption efficiency (Q{sub abs}) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {mu}m wavelength range. Using the DDSCAT code, we compute Q{sub abs} for non-spherical polyhedral grain shapes with a{sub eff} = 0.1 {mu}m. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {mu}m) shifts the 10 and 11 {mu}m features systematically toward longer wavelengths and relative to the 11 {mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 {mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.

  10. Absorption Efficiencies of Forsterite. I. Discrete Dipole Approximation Explorations in Grain Shape and Size

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-03-01

    We compute the absorption efficiency (Q abs) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 μm wavelength range. Using the DDSCAT code, we compute Q abs for non-spherical polyhedral grain shapes with a eff = 0.1 μm. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 μm, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 μm) shifts the 10 and 11 μm features systematically toward longer wavelengths and relative to the 11 μm feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 μm spectra provides a potential means to probe the temperatures at which forsterite formed.

  11. The influence of phase and grain size distribution on the dynamics of strain localization in polymineralic rocks

    NASA Astrophysics Data System (ADS)

    Czaplińska, Daria; Piazolo, Sandra; Zibra, Ivan

    2015-03-01

    Deformation microstructures of a quartzo-feldspathic pegmatite deformed at mid-crustal levels allow the study of the dynamics of strain localization in polymineralic rocks. Strain localization results from (i) difference in grain sizes between phases, both original and obtained during fluid present reactions and (ii) initial compositional banding. Due to original difference in grain size stress concentrates in the initially finer-grained phases resulting in their intense grain size reduction via subgrain rotation recrystallization (SGR). When the grain size is sufficiently reduced through either deformation or interphase coupled dissolution-precipitation replacement of the coarse grained feldspar, aggregates start to deform by dominantly diffusion accommodated grain boundary sliding (GBS). Phase mixing inhibits grain growth and sustains a grain size allowing GBS. Consequently, discontinuous microscale shear zones form locally within initially coarse grained areas. At the same time difference in strain rate between feldspar-rich and quartz-rich domains needs to be accommodated at domain boundaries. This results in the formation of continuous mesoscale shear zones deformed by GBS. Once these are formed, deformation in the coarse grained parts is arrested and strain is mainly accommodated in the mesoscale shear zones resulting in "superplastic" behaviour consistent with diffusion creep.

  12. A fault runs through it: Modeling the influence of rock strength and grain-size distribution in a fault-damaged landscape

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Tucker, G. E.; Koons, P. O.; Smith, S. M.; Upton, P.

    2016-10-01

    We explore two ways in which the mechanical properties of rock potentially influence fluvial incision and sediment transport within a watershed: rock erodibility is inversely proportional to rock cohesion, and fracture spacing influences the initial grain sizes produced upon erosion. Fault-weakened zones show these effects well because of the sharp strength gradients associated with localized shear abrasion. A natural example of fault erosion is used to motivate our calibration of a generalized landscape evolution model. Numerical experiments are used to study the sensitivity of river erosion and transport processes to variable degrees of rock weakening. In the experiments, rapid erosion and transport of fault gouge steers surface runoff, causing high-order channels to become confined within the structure of weak zones when the relative degree of rock weakening exceeds 1 order of magnitude. Erosion of adjacent, intact bedrock produces relatively coarser grained gravels that accumulate in the low relief of the eroded weak zone. The thickness and residence time of sediments stored there depends on the relief of the valley, which in these models depends on the degree of rock weakening. The frequency with which the weak zone is armored by bed load increases with greater weakening, causing the bed load to control local channel slope. Conversely, small tributaries feeding into the weak zone are predominantly detachment limited. Our results indicate that mechanical heterogeneity can exert strong controls on rates and patterns of erosion and should be considered in future landscape evolution studies to better understand the role of heterogeneity in structuring landscapes.

  13. Size distribution of dust grains: A problem of self-similarity

    NASA Technical Reports Server (NTRS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e

  14. Effect of melt spinning on grain size and texture in Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1988-01-01

    Chill-block melt-spun ribbons of Ni-Mo alloys with Mo contents of 8 to 41.8 wt pct have been examined for microstructure and texture dependence on processing conditions. Linear features observed in grains solidified with a planar liquid-solid interface at the quench side of the ribbons have been identified to be due to the twins on the (111)gamma plane formed during solidification. Grain size variation with the wheel surface speed and the alloy composition has been studied. The crystallographic texture on the quench side and the free surface side of the ribbons has been investigated.

  15. Conditions necessary for capillary hysteresis in porous media: Tests of grain size and surface tension influences

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-05-01

    Hysteresis in the relation between water saturation and matric potential is generally regarded as a basic aspect of unsaturated porous media. However, the nature of an upper length scale limit for saturation hysteresis has not been previously addressed. Since hysteresis depends on whether or not capillary rise occurs at the grain scale, this criterion was used to predict required combinations of grain size, surface tension, fluid-fluid density differences, and acceleration in monodisperse systems. The Haines number (Ha), composed of the aforementioned variables, is proposed as a dimensionless number useful for separating hysteretic (Ha < 15) versus nonhysteretic (Ha > 15) behavior. Vanishing of hysteresis was predicted to occur for grain sizes greater than 10.4 ± 0.5 mm, for water-air systems under the acceleration of ordinary gravity, based on Miller-Miller scaling and Haines' original model for hysteresis. Disappearance of hysteresis was tested through measurements of drainage and wetting curves of sands and gravels and occurs between grain sizes of 10 and 14 mm (standard conditions). The influence of surface tension was tested through measurements of moisture retention in 7 mm gravel, without and with a surfactant (sodium dodecylbenzenesulfonate (SDBS)). The ordinary water system (Ha = 7) exhibited hysteresis, while the SDBS system (Ha = 18) did not. The experiments completed in this study indicate that hysteresis in moisture retention relations has an upper limit at Ha = 16 ± 2 and show that hysteresis is not a fundamental feature of unsaturated porous media.

  16. Time-evolution of grain size distributions in random nucleation and growth crystallization processes

    NASA Astrophysics Data System (ADS)

    Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.

    2010-02-01

    We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.

  17. Vertical grain size distribution in dust devils: Analyses of in situ samples from southern Morocco

    NASA Astrophysics Data System (ADS)

    Raack, J.; Reiss, D.; Ori, G. G.; Taj-Eddine, K.

    2014-04-01

    Dust devils are vertical convective vortices occurring on Earth and Mars [1]. Entrained particle sizes such as dust and sand lifted by dust devils make them visible [1]. On Earth, finer particles (<~50 μm) can be entrained in the boundary layer and transported over long distances [e.g., 2]. The lifetime of entrained particles in the atmosphere depends on their size, where smaller particles maintain longer into the atmosphere [3]. Mineral aerosols such as desert dust are important for human health, weather, climate, and biogeochemistry [4]. The entrainment of dust particles by dust devil and its vertical grain size distribution is not well constrained. In situ grain size samples from active dust devils were so far derived by [5,6,7] in three different continents: Africa, Australia, and North America, respectively. In this study we report about in situ samples directly derived from active dust devils in the Sahara Desert (Erg Chegaga) in southern Morocco in 2012 to characterize the vertical grain size distribution within dust devils.

  18. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

    PubMed

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M

    2011-07-15

    The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  19. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    SciTech Connect

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  20. Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries

    DOEpatents

    Carlisle, John A.; Auciello, Orlando; Birrell, James

    2006-10-31

    An ultrananocrystalline diamond (UNCD) having an average grain size between 3 and 5 nanometers (nm) with not more than about 8% by volume diamond having an average grain size larger than 10 nm. A method of manufacturing UNCD film is also disclosed in which a vapor of acetylene and hydrogen in an inert gas other than He wherein the volume ratio of acetylene to hydrogen is greater than 0.35 and less than 0.85, with the balance being an inert gas, is subjected to a suitable amount of energy to fragment at least some of the acetylene to form a UNCD film having an average grain size of 3 to 5 nm with not more than about 8% by volume diamond having an average grain size larger than 10 nm.

  1. Reduction of grain size and exchange coupling strength of Nd2Fe14B thin films by Al addition

    NASA Astrophysics Data System (ADS)

    Ma, Y. G.; Yang, Z.; Wei, F. L.; Matsumoto, M.; Morisako, A.; Takei, S.

    2004-07-01

    NdFeB thin films of good perpendicular magnetic anisotropy have been successfully deposited on W underlayer by DC magnetron sputtering. Cu and Al elements are introduced to improve the structural and magnetic properties of the NdFeB films. The deposition temperature is lowered to 400 °C by the addition of 1.0 at.% Cu. The average grain size is reduced to 10 nm by the introduction of 10.0 at.% Al. With the reduction of the grain size, the exchange coupling interaction between the grains is weakened. The magnetization reversal process of the grains directly depends on the grain size and shape. Before Al addition, most of the grains are demagnetized by magnetization incoherent rotation but in the film doped with 5.0 at.% Al, the magnetization is coherently reversed, as demonstrated by the comparison of the physical grain volume and the thermal switching volume.

  2. Grain size reduction, fluid infiltration, and extreme weakening in the continental lower crust

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Stünitz, Holger; Nasipuri, Pritam

    2013-04-01

    Knowledge of the rheology of the continental lower crust is essential when trying to model major geodynamic processes and to understand the mechanics and distribution of earthquakes at different depths in the lithosphere. However, whether the lower crust is mechanically strong or weak is still a debated issue, and convincing evidence for both, a weak and a strong lower crust has been shown. A key aspect in this controversy is the role of aqueous fluids, with anhydrous conditions typically invoked as the main reason for high strength of large parts of the granulite facies lower crust. The Lofoten islands in northern Norway represent an outstanding natural laboratory to investigate the progressive microstructural and rheological evolution of localized shear zones exhumed from the continental lower crust. In the anhydrous mangerite-charnockite rocks from Lofoten, deformation is strongly localized along discrete ductile shear zones developed under upper amphibolite to granulite facies conditions (T=730° C, P=0.65 GPa). Shear zone formation was associated with an extreme grain size reduction of the main minerals of the magmatic protolith (perthite + clinopyroxene). Grain size reduction occurred by fracturing and neocrystallization in perthites, and by fracturing and hydration reactions in pyroxene, which was replaced by amphibole + quartz + calcite. Recrystallized perthites and reaction products show fine grain size (20-30 μm), equant shape, dispersed phase distribution, and the lack of a crystallographic preferred orientation. These observations are consistent with diffusion creep as the dominant deformation mechanism in the shear zones. The occurrence of new phases (amphibole, quartz) in triple and quadruple junctions, as well as the concentration of fine quartz grains along bands with a C' orientation strongly suggest the concomitant operation of grain boundary sliding and cavitation during grain-size sensitive creep. Bulk-rock chemical analysis indicates an

  3. Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Kishimoto, Kengo; Koyanagi, Tsuyoshi

    2002-09-01

    Sintered degenerate n-type PbTe samples with small grain sizes ranging from 0.7 to 4 mum were prepared and the effects of grain size on their thermoelectric properties were then investigated. The Seebeck coefficient of the sintered samples increased almost double when the grain size decreased from 4 to 0.7 mum. On the other hand, their electrical and thermal conductivity decreased with decreasing grain size. Accordingly, decreasing their grain size increased their thermoelectric figure-of-merit. A maximum value of the figure-of-merit of the obtained small grain-size samples was significantly higher than that of large grain-size samples with the same carrier concentration reported. This favorable result was caused mainly by the increase in the Seebeck coefficient. The influences of grain boundaries on the increase in the Seebeck coefficient were discussed. It is concluded that the Seebeck coefficient was increased by potential barrier scattering, which occurred at the grain boundaries in the sintered samples.

  4. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size

  5. MinSORTING: an Excel macro for modelling sediment composition and grain-size distribution

    NASA Astrophysics Data System (ADS)

    Resentini, Alberto; Malusà, Marco G.; Garzanti, Eduardo

    2013-04-01

    Detrital mineral analyses are gaining increasing attention in the geosciences as new single-grain analytical techniques are constantly improving their resolution, and consequently widening their range of application, including sedimentary petrology, tectonic geomorphology and archaeology (Mange and Wright, 2007; von Eynatten and Dunkl, 2012). We present here MinSORTING, a new tool to quickly predict the size distribution of various minerals and rock fragments in detrital sediments, based on the physical laws that control sedimentation by tractive wind or water currents (Garzanti et al., 2008). The input values requested by the software are the sediment mean size, sorting, fluid type (seawater, freshwater, air) and standard sediment composition chosen from a given array including nine diverse tectonic settings. MinSORTING calculates the bulk sediment density and the settling velocity. The mean size of each single detrital component, assumed as lognormally-distributed, is calculated from its characteristic size-shift with respect to bulk sediment mean size, dependent in turn on its density and shape. The final output of MinSORTING is the distribution of each single detrital mineral in each size classes (at the chosen 0.25, 0.5 or 1 phi intervals). This allows geochronolgists to select the most suitable grain size of sediment to be sampled in the field, as well as the most representative size-window for analysis. Also, MinSORTING provides an estimate of the volume/weight of the fractions not considered in both sizes finer and coarser than the selected size-window. A beta version of the software is available upon request from: alberto.resentini@unimib.it Mange, M., and Wright, D. (eds), 2007. Heavy minerals in use. Developments in Sedimentology Series, 58. Elsevier, Amsterdam. Garzanti, E., Andò, S., Vezzoli, G., 2008. Settling-equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters 273, 138-151. von

  6. Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques

    USGS Publications Warehouse

    Cuttler, Michael V. W.; Lowe, Ryan J.; Falter, James L.; Buscombe, Daniel D.

    2017-01-01

    Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain-size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root-mean-square error of up to 28%, depending upon settling velocity model and grain-size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity-dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root-mean-square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand-sized bioclastic sediments from sieve, laser diffraction, or image analysis-derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain-size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.

  7. Resistivity, grain size, and impurity effects in chemically vapor-deposited tungsten films

    NASA Astrophysics Data System (ADS)

    Learn, Arthur J.; Foster, Derrick W.

    1985-09-01

    The room-temperature electrical resistivity, grain size, and impurity content of tungsten films deposited at low pressure on silicon wafers from tungsten hexafluoride and hydrogen reactants were determined. These properties were examined as functions of deposition temperature and film thickness. The resistivity is independent of thickness at a value of approximately 13.5 μΩ cm for films deposited at 300 °C. For films deposited at 400 °C, the resistivity decreases from 24 to 8.5 μΩ cm as thickness increases from 0.075 to 1 μm. The resistivity behavior is interpreted in terms of grain-boundary scattering with a zero reflection coefficient for the 300 °C films. For the 400 °C films, a reflection coefficient that decreases from 0.67 to 0.38 over the above thickness range and a linear dependence of grain size on thickness are utilized. For both deposition temperatures, the grain size exhibits a rapid initial growth to 30 nm followed by growth at a slope of 0.32 with respect to thickness. The rapid initial growth is associated with the rapid, self-limiting tungsten hexafluoride/silicon reaction. The oxygen content of the films tracks the trend of the reflection coefficient in that it increases with increased deposition temperature or decreased film thickness. Evidence suggests that the oxygen is located predominantly at grain boundaries and may be the primary determinant of boundary scattering. Fluorine is found in films at concentrations (0.03-0.05 at. %) similar to those of oxygen but does not vary with thickness and decreases with increased deposition temperature. No evidence is found for surface scattering of carriers suggesting that all are specularly scattered. Grain-boundary scattering, with a constant reflection coefficient, adequately interprets previously published data. Utilizing such results, together with the present ones, leads to the conclusions that the grain size is relatively independent of deposition temperature while the intragrain

  8. Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma

    SciTech Connect

    Duan Jizheng; Wang Canglong; Zhang Jianrong; Ma Shengqian; Hong Xueren; Sun Jianan; Duan Wenshan; Yang Lei

    2012-08-15

    The effects of dust size distribution and charging process of dust grains on the complex electric conductivity of dusty plasmas have been investigated in the present paper. Comparisons are made between real dusty plasma in which there are many different dust grain species and the mono-sized dusty plasma (MDP) in which there is only one kind of dust grain whose size is the average dust size. In some cases the complex electric conductivity of real dusty plasma is larger than that of MDP, while in other cases it is smaller than that of MDP, it depends on the dust size distribution function.

  9. Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma

    NASA Astrophysics Data System (ADS)

    Duan, Ji-Zheng; Wang, Cang-Long; Zhang, Jian-Rong; Ma, Sheng-Qian; Hong, Xue-Ren; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2012-08-01

    The effects of dust size distribution and charging process of dust grains on the complex electric conductivity of dusty plasmas have been investigated in the present paper. Comparisons are made between real dusty plasma in which there are many different dust grain species and the mono-sized dusty plasma (MDP) in which there is only one kind of dust grain whose size is the average dust size. In some cases the complex electric conductivity of real dusty plasma is larger than that of MDP, while in other cases it is smaller than that of MDP, it depends on the dust size distribution function.

  10. Resistivity, grain size, and impurity effects in chemically vapor-deposited tungsten films

    SciTech Connect

    Learn, A.J.; Foster, D.W.

    1985-09-01

    The room-temperature electrical resistivity, grain size, and impurity content of tungsten films deposited at low pressure on silicon wafers from tungsten hexafluoride and hydrogen reactants were determined. These properties were examined as functions of deposition temperature and film thickness. The resistivity is independent of thickness at a value of approximately 13.5 ..mu cap omega.. cm for films deposited at 300 /sup 0/C. For films deposited at 400 /sup 0/C, the resistivity decreases from 24 to 8.5 ..mu cap omega.. cm as thickness increases from 0.075 to 1 ..mu..m. The resistivity behavior is interpreted in terms of grain-boundary scattering with a zero reflection coefficient for the 300 /sup 0/C films. For the 400 /sup 0/C films, a reflection coefficient that decreases from 0.67 to 0.38 over the above thickness range and a linear dependence of grain size on thickness are utilized. For both deposition temperatures, the grain size exhibits a rapid initial growth to 30 nm followed by growth at a slope of 0.32 with respect to thickness. The rapid initial growth is associated with the rapid, self-limiting tungsten hexafluoride/silicon reaction. The oxygen content of the films tracks the trend of the reflection coefficient in that it increases with increased deposition temperature or decreased film thickness. Evidence suggests that the oxygen is located predominantly at grain boundaries and may be the primary determinant of boundary scattering. Fluorine is found in films at concentrations (0.03--0.05 at. %) similar to those of oxygen but does not vary with thickness and decreases with increased deposition temperature. No evidence is found for surface scattering of carriers suggesting that all are specularly scattered.

  11. Importance of Pore Size Distribution of Fine-grained Sediments on Gas Hydrate Equilibrium

    NASA Astrophysics Data System (ADS)

    Kwon, T. H.; Kim, H. S.; Cho, G. C.; Park, T. H.

    2015-12-01

    Gas hydrates have been considered as a new source of natural gases. For the gas hydrate production, the gas hydrate reservoir should be depressurized below the equilibrium pressure of gas hydrates. Therefore, it is important to predict the equilibrium of gas hydrates in the reservoir conditions because it can be affected by the pore size of the host sediments due to the capillary effect. In this study, gas hydrates were synthesized in fine-grained sediment samples including a pure silt sample and a natural clayey silt sample cored from a hydrate occurrence region in Ulleung Basin, East Sea, offshore Korea. Pore size distributions of the samples were obtained by the nitrogen adsorption and desorption test and the mercury intrusion porosimetry. The equilibrium curve of gas hydrates in the fine-grained sediments were found to be significantly influenced by the clay fraction and the corresponding small pores (>50 nm in diameter). For the clayey silt sample, the equilibrium pressure was higher by ~1.4 MPa than the bulk equilibrium pressure. In most cases of oceanic gas hydrate reservoirs, sandy layers are found interbedded with fine-grained sediment layers while gas hydrates are intensively accumulated in the sandy layers. Our experiment results reveal the inhibition effect of fine-grained sediments against gas hydrate formation, in which greater driving forces (e.g., higher pressure or lower temperature) are required during natural gas migration. Therefore, gas hydrate distribution in interbedded layers of sandy and fine-grained sediments can be explained by such capillary effect induced by the pore size distribution of host sediments.

  12. Influence of grain size on transition temperature of thermochromic VO{sub 2}

    SciTech Connect

    Miller, Mark J.; Wang, Junlan

    2015-01-21

    Vanadium(IV) oxide (VO{sub 2}) is a unique material that undergoes a reversible phase transformation around 68 °C. The material could potentially be used as an energy-efficient coating for windows since its reflectance in the infrared (IR) increases significantly more than in the visible region. Currently, VO{sub 2} is limited by a transition temperature (τ{sub c}) that is too high, luminous transmittance that is too low or both. In this study, a transition temperature of 45 °C is achieved for a reactively sputtered, undoped film by restricting grain size to approximately 30 nm. It is concluded that a higher density of grain boundaries (smaller grain size) provides a greater number of nucleating defects which in turn reduces τ{sub c}. Similarly, a higher density of grain boundaries may reduce the hysteresis width (difference between transition temperatures in heating and cooling). Also in this study, a new set of optical performance metrics is proposed in which the solar spectrum is divided into the ultraviolet (UV), visible and near infrared (NIR) regions. This approach is more closely aligned with the goals of limiting UV, allowing luminous and modulating NIR transmission. Using these metrics, the optical properties of the low-τ{sub c} sample were: 2% UV transmittance, 47% luminous transmittance, and 23% NIR modulation (decrease from 43 to 33%). This study demonstrates that the grain size of VO{sub 2} should be viewed as an important parameter for controlling the transition temperature of the material.

  13. The dust grain size-stellar luminosity trend in debris discs

    NASA Astrophysics Data System (ADS)

    Pawellek, Nicole; Krivov, Alexander V.

    2015-12-01

    The cross-section of material in debris discs is thought to be dominated by the smallest grains that can still stay in bound orbits despite the repelling action of stellar radiation pressure. Thus the minimum (and typical) grain size smin is expected to be close to the radiation pressure blowout size sblow. Yet a recent analysis of a sample of Herschel-resolved debris discs showed the ratio smin/sblow to systematically decrease with the stellar luminosity from about 10 for solar-type stars to nearly unity in the discs around the most luminous A-type stars. Here, we explore this trend in more detail, checking how significant it is and seeking to find possible explanations. We show that the trend is robust to variation of the composition and porosity of dust particles. For any assumed grain properties and stellar parameters, we suggest a recipe of how to estimate the `true' radius of a spatially unresolved debris disc, based solely on its spectral energy distribution. The results of our collisional simulations are qualitatively consistent with the trend, although additional effects may also be at work. In particular, the lack of grains with small smin/sblow for lower luminosity stars might be caused by the grain surface energy constraint that should limit the size of the smallest collisional fragments. Also, a better agreement between the data and the collisional simulations is achieved when assuming debris discs of more luminous stars to have higher dynamical excitation than those of less-luminous primaries. This would imply that protoplanetary discs of more massive young stars are more efficient in forming big planetesimals or planets that act as stirrers in the debris discs at the subsequent evolutionary stage.

  14. Size and shape of grain boundary network components and their atomic structures in polycrystalline nanoscale materials

    SciTech Connect

    Xu, Tao; Li, Mo

    2015-10-28

    Microstructure in polycrystalline materials is composed of grain boundary plane, triple junction line, and vertex point. They are the integral parts of the grain boundary network structure and the foundation for the structure-property relations. In polycrystalline, especially nanocrystalline, materials, it becomes increasingly difficult to probe the atomistic structure of the microstructure components directly in experiment due to the size limitation. Here, we present a numerical approach using pair correlation function from atomistic simulation to obtain the detailed information for atomic order and disorder in the grain boundary network in nanocrystalline materials. We show that the atomic structures in the different microstructural components are related closely to their geometric size and shape, leading to unique signatures for atomic structure in microstructural characterization at nanoscales. The dependence varies systematically with the characteristic dimension of the microstructural component: liquid-like disorder is found in vertex points, but a certain order persists in triple junctions and grain boundaries along the extended dimensions of these microstructure components.

  15. Fluorescein Dye Penetration in Round Top Rhyolite (Hudspeth County, Texas, USA) to Reveal Micro-permeability and Optimize Grain Size for Heavy REE Heap Leach

    NASA Astrophysics Data System (ADS)

    Negron, L. M.; Clague, J. W.; Gorski, D.; Amaya, M. A.; Pingitore, N. E.

    2013-12-01

    Millimeter- and micrometer-scale permeability of fine-grained igneous rocks has generated limited research interest. Nonetheless, the scale and distribution of such micro-permeability determines fluid penetration and pathways, parameters that define both the ability to heap leach a rock and the optimal grain size for such an operation. Texas Rare Earth Resources is evaluating the possibility of heap leaching of yttrium and heavy rare earth elements (YHREE) from the peraluminous rhyolite laccolith that forms one-mile-diameter Round Top Mountain. The YHREEs in this immense, surface-exposed deposit (minimum 1.6 billion tons, Texas Bureau Economic Geology) are dilute and diffuse, suggesting leaching as the best option for recovery. The REE grade is 0.05% and YHREEs comprise more than 70% of the total REE content. The YHREEs are hosted exclusively in micron-scale yttrofluorite grains, which proved soluble in dilute sulfuric acid. Laboratory experiments showed YHREE recoveries of up to 90%. Within limits, recoveries decrease with larger grain sizes, and increase with acid strength and exposure time. Our research question centers on dissolution effectiveness: Is YHREE recovery, relative to grain size, limited by (1) diffusion time of acid into, and dissolved solids, including YHREEs, out of the micro-permeability paths inherent in the rock particles; (2) the effective lengths of the natural micro-permeability paths in the rock; or (3) the putative role of the acid in dissolving new micro-paths into the grains? The maximum grain size should not exceed twice the typical path length (unless acid creates new paths), lest YHREEs in the core of a larger grain than that not be reached by acid. If instead diffusion time is limiting, longer leach time may prove effective. Rather than perform an extensive and expensive series of laboratory leaching experiments--some of which would be several months in duration--to determine optimal grain size, we developed a technique to

  16. Determination of grain size distribution function using two-dimensional Fourier transforms of tone pulse encoded images

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.

  17. Abrasive wear of alumina fibre-reinforced aluminium

    NASA Astrophysics Data System (ADS)

    Axen, N.; Alahelisten, A.; Jacobson, S.

    1994-04-01

    The friction and abrasive wear behaviour of an Al-Si1MgMn aluminium alloy reinforced with 10, 15 and 30 vol.% of alumina fibers has been evaluated. The influence of fiber content, matrix hardness, applied load as well as the hardness and size of the abrasive grits was investigated. The tests were performed with a pin-on-drum two-body abrasion apparatus. The wear mechanisms were studied using scanning electron microscopy. It is shown that fiber reinforcement increases the wear resistance in milder abrasive situations, i.e. small and soft abrasives and low loads. However, in tougher abrasive situations, meaning coarse and hard abrasives and high loads, the wear resistance of the composites is equal to or, in some cases, even lower than that of the unreinforced material. It is also shown that the coefficient of friction decreases with increasing fiber content and matrix hardness of the composites.

  18. Turbidite systems in deep-water basin margins classified by grain size and feeder system

    SciTech Connect

    Reading, H.G. ); Richards, M. )

    1994-05-01

    Depositional system in deep-water basin margins can be classified on the basis of grain size and feeder system into 12 classes: mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]point-source submarine fans,[close quotes] mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]multiple-source submarine ramps;[close quotes] and mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]linear-source slope aprons.[close quotes] The size and stability of channels and the organization of the depositional sequences decreases toward a linear source as does the length:width ratio of the system. As grain size increases, so does slope gradient, impersistence of channel systems, and tendency for channels to migrate. As grain size diminishes, there is an increase in the size of the source area, the size of the depositional system, the downcurrent length, the persistence and size of flows, fan channels, channel-levee systems, and in the tendency to meander and for major slumps and sheet sands to reach the lower fan and basin plan. The exact positioning of any one depositional system within the scheme cannot always be precise and the position may be altered by changes in tectonic, climate, supply, and sea level. The models derived from each system are sufficiently different to significantly affect the nature of petroleum prospectivity and reservoir pattern. Understanding and recognizing this variability is crucial to all elements of the exploration-production chain. In exploration, initial evaluations of prospectivity and commerciality rely on the accurate stratigraphic prediction of reservoir facies, architecture, and trapping styles. For field appraisal and reservoir development, a similar appreciation of variability aids reservoir description by capturing the distribution and architecture of reservoir and nonreservoir facies and their impact on reservoir delineation, reservoir behavior, and production performance. 161 refs., 19 figs., 4 tabs.

  19. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Warrier, Anish Kumar; Pednekar, Hemant; Mahesh, B. S.; Mohan, Rahul; Gazi, Sahina

    2016-03-01

    In this study we report the sediment grain size parameters and surface textural observations (using scanning electron microscopy (SEM)) of quartz grains from sediments of Sandy Lake, Schirmacher Oasis, East Antarctica. The sediment core spans the last 43 cal ka B.P. The statistical parameters of grain size data (sorting, skewness, kurtosis, mean grain size, D10, D50, D90 and SPAN index) indicate that the sediments are primarily transported by melt-water streams and glaciers. However, during the last glacial period, sediments seem to be transported due to wind activity as evident by the good correlation between rounded quartz data and dust flux data from EPICA ice-core data. The mean grain size values are low during the last glacial period indicating colder climatic conditions and the values increase after the last glacial maximum suggesting an increase in the energy of the transporting medium, i.e., melt-water streams. The sediments are poorly sorted and finely skewed and show different modes of grain size distribution throughout the last 43 cal ka B.P. SEM studies of selected quartz grains and analyses of various surface textures indicate that glacigenic conditions must have prevailed at the time of their transport. Semi-quantitative analyses of mineral (quartz, feldspar, mica, garnet and rock fragments & other minerals) counts suggest a mixed population of minerals with quartz being the dominant mineral. Higher concentration of quartz grains over other minerals indicates that the sediments are compositionally mature. The study reveals the different types of physical weathering, erosive signatures, and chemical precipitation most of them characteristic of glacial environment which affected these quartz grains before final deposition as lake sediments. The palaeoclimatic signals obtained from this study show similarities with ice-core and lake sediment records from Schirmacher Oasis and other ice-free regions in East Antarctica.

  20. Influence of tungsten content, swaging, and grain size on the viscoplastic response of tungsten heavy alloys

    SciTech Connect

    Ramesh, K.T.

    1992-12-31

    The response of tungsten-nickel-iron (W-Ni-Fe) alloys to high rates of deformation has been investigated using compression and torsional Kolsky bars. The influence of tungsten content, swaging, and grain size on the dynamic behavior of commercially available alloys has been examined, The results indicate that the flow stresses sustained by these materials have a distinct dependence on strain rate, over a range from 10(exp {minus}4)/sec to 7 x 10(exp 3)/sec. The rate sensitivity itself appears to be influenced by tungsten content and degree of prior swaging, but appears to be almost independent of tungsten grain size. Metallographic analyses and microhardness measurements were performed to study the microstructural evolution with increasing strain at high rates. Adiabatic shear localization has been observed in high-rate shearing tests; relatively narrow shear bands are formed, followed immediately by catastrophic fracture.

  1. Effect of grain size and heavy metals on As immobilization by marble particles.

    PubMed

    Simón, M; García, I; González, V; Romero, A; Martín, F

    2015-05-01

    The effect of grain size and the interaction of heavy metals on As sorption by marble waste with different particle sizes was investigated. Acidic solutions containing only arsenic and a mixture of arsenic, lead, zinc, and cadmium were put in contact with the marble waste. The amount of metal(loid)s that were immobilized was calculated using the difference between the concentration in the acidic solution and in the liquid phase of the suspensions. Approximately 420 μg As m(-2) was sorbed onto the marble grains, both nonspecifically and specifically, where ≥ 80 % of the total arsenic in the acidic solution remained soluble, which suggests that this amendment is not effective to immobilize arsenic. However, in mixed contamination, relatively stable Pb-Ca arsenates were formed on the surface of the marble particles, and the soluble arsenic was reduced by 95 %, which indicates that marble particles can effectively immobilize arsenic and lead when both appear together.

  2. Grain size disposed structural, optical and polarization tuning in ZnO

    NASA Astrophysics Data System (ADS)

    Para, Touseef Ahmad; Reshi, Hilal Ahmad; Pillai, Shreeja; Shelke, Vilas

    2016-08-01

    Structural, optical and polarization properties were investigated in different batches of ZnO synthesized by sol-gel method at varying sintering temperature. The structural visualization and charge scattering density analysis on the basis of X-ray diffraction data indicate polarized nature of sample. The structure- and polarization-related parameters were determined from Raman and Fourier transformed infrared spectroscopy data. Urbach energies and band gap were calculated using UV-visible spectroscopy. We observed increase in polarization, decrease in optical activity and band gap with increasing grain size without any increase in defects. Distortion in ZnO tetrahedra resulted in nonlinear optical behaviour above band edges. The results show direct correlation between grain size, band gap, optical behaviour and polarization. Low band gap and high polarization in ZnO can be employed for the production of opto-electronic devices.

  3. Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone

    USGS Publications Warehouse

    Schultz, Richard A.; Okubo, Chris H.; Fossen, Haakon

    2010-01-01

    Determining the rock properties that permit or impede the growth of compaction bands in sedimentary sequences is a critical problem of importance to studies of strain localization and characterization of subsurface geologic reservoirs. We determine the porosity and average grain size of a sequence of stratigraphic layers of Navajo Sandstone that are then used in a critical state model to infer plastic yield envelopes for the layers. Pure compaction bands are formed in layers having the largest average grain sizes (0.42–0.45 mm) and porosities (28%), and correspondingly the smallest values of critical pressure (-22 MPa) in the sequence. The results suggest that compaction bands formed in these layers after burial to -1.5 km depth in association with thrust faulting beneath the nearby East Kaibab monocline, and that hardening of the yield caps accompanied compactional deformation of the layers.

  4. Grain size dependent bandgap shift of SnO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Viter, Roman; Katoch, Akash; Kim, Sang Sub

    2014-01-01

    SnO2 nanofibers with various grain sizes ranging from 18.5 to 31.6 nm in diameter were fabricated by electrospinning a polymeric solution and subsequent controlled calcination of the as-spun fibers. The calcined fibers were polycrystalline and composed of densely packed nano-sized SnO2 grains. The effect of the nanograin size on the optical bandgap of SnO2 nanofibers was examined by ultraviolet-visible spectroscopy. The bandgap showed a strong dependence on the nanograin size. The bandgap decreased with increasing nanograin size. Some calculations were performed to understand the relationship between the experimentally obtained bandgaps of the SnO2 nanofibers and the theoretical ones. Quantum confinement and lattice strain of the SnO2 nanofibers are likely responsible for the bandgap shift. This suggests that optimization of the nanograin size is essential not only for achieving the required optical properties of oxide nanofibers, but also to secure superior working properties of electronic devices that are fabricated with electrospinning-synthesized oxide nanofibers.

  5. Disk radii and grain sizes in Herschel-resolved debris disks

    SciTech Connect

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease

  6. In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes.

    PubMed

    Lee, Woomin; Kihm, Kenneth David; Kim, Hong Goo; Shin, Seungha; Lee, Changhyuk; Park, Jae Sung; Cheon, Sosan; Kwon, Oh Myoung; Lim, Gyumin; Lee, Woorim

    2017-03-06

    Manipulation of the chemical vapor deposition graphene synthesis conditions, such as operating P, T, heating/cooling time intervals, and precursor gas concentration ratios (CH4/H2), allowed for synthesis of polycrystalline single-layered graphene with controlled grain sizes. The graphene samples were then suspended on 8 μm diameter patterned holes on a silicon-nitride (Si3N4) substrate, and the in-plane thermal conductivities k(T) for 320 K < T < 510 K were measured to be 2660-1230, 1890-1020, and 680-340 W/m·K for average grain sizes of 4.1, 2.2, and 0.5 μm, respectively, using an opto-thermal Raman technique. Fitting of these data by a simple linear chain model of polycrystalline thermal transport determined k = 5500-1980 W/m·K for single-crystal graphene for the same temperature range above; thus, significant reduction of k was achieved when the grain size was decreased from infinite down to 0.5 μm. Furthermore, detailed elaborations were performed to assess the measurement reliability of k by addressing the hole-edge boundary condition, and the air-convection/radiation losses from the graphene surface.

  7. Computer program for the calculation of grain size statistics by the method of moments

    USGS Publications Warehouse

    Sawyer, Michael B.

    1977-01-01

    A computer program is presented for a Hewlett-Packard Model 9830A desk-top calculator (1) which calculates statistics using weight or point count data from a grain-size analysis. The program uses the method of moments in contrast to the more commonly used but less inclusive graphic method of Folk and Ward (1957). The merits of the program are: (1) it is rapid; (2) it can accept data in either grouped or ungrouped format; (3) it allows direct comparison with grain-size data in the literature that have been calculated by the method of moments; (4) it utilizes all of the original data rather than percentiles from the cumulative curve as in the approximation technique used by the graphic method; (5) it is written in the computer language BASIC, which is easily modified and adapted to a wide variety of computers; and (6) when used in the HP-9830A, it does not require punching of data cards. The method of moments should be used only if the entire sample has been measured and the worker defines the measured grain-size range. (1) Use of brand names in this paper does not imply endorsement of these products by the U.S. Geological Survey.

  8. Reflectance Spectra of Regolith Analogs in the middle-IR: Influence of Grain Size

    NASA Astrophysics Data System (ADS)

    Le Bras, A.

    1999-09-01

    Reflectance spectroscopy of asteroids permits to infer the mineral composition of their surface. Since spectral mineral features are sensitive to surface parameters such as grain size, regolith compactness, temperature, maturity,... the interpretation of remote-sensing asteroids spectra is not easy nor unique. Asteroids family members show a continuous dispersion of their spectral characteristics (Doressoudiram et al., 1997) which seems to be due first to a compositional variation but also to some space weathering processes. Space weathering may contribute to the spectral dispersion of the smallest S-type asteroids too. New laboratory spectra are required in order to understand the influence of surface parameters and space weathering effects, and to interpret the recent high-spectral resolution observations from ISO. We started an experimental program at Institut d'Astrophysique Spatiale (Orsay, France), using the 2.5-120 microns interferometer spectrometer, to study the influence of surface parameters on mineral features. First, we study grain size effects with two types of terrestrial rocks: anorthosite (bright) and basalt (dark) in the 2-40 microns range. In a second part, we will extend our experiments to other samples (meteorites and asteroid-like mixtures), and to the visible and NIR range. We present the experimental setup and the preliminary results obtained for 6 different grain size ranges with basalt and anorthosite.

  9. Simulating the grain-size distribution of Wisconsinan age glaciofluvial sediments: Applications to fluid transport

    SciTech Connect

    Webb, E.K.; Anderson, M.P. )

    1991-03-01

    A sedimentary deposition model, SEDSIM, was used to simulate the deposition of glaciofluvial sediments in south-central Wisconsin. These types of deposits are present at or near the surface over much of the northern United States and have a high contamination potential. They also represent relatively recent analogs for ancient braided stream systems. Sixty sediment samples were used to determine the average sediment properties for a facies assemblage located 8-10 km from the ice margin. A regional depositional system was simulated, using SEDSIM, to determine the range of input values that reproduced the observed average sediment characteristics. Progressively smaller scale models were constructed to produce more detailed estimates of the grain-size distribution. the grain-size estimates from the finest scale model were translated into relative hydraulic conductivity values using the method of Hazen. The resulting conductivities were incorporated into a fluid flow model to illustrate the control that heterogeneity of petrologic properties has on the direction and rate of fluid movement. This work indicates that a wide range of input parameters will reproduce the bulk sediment properties. Furthermore, small-scale features may not be reproduced under the assumptions incorporated in the current SEDSIM code. Thus, for sedimentary depositional models to be used to predict permeability and porosity distributions, or to interpret paleo-flow conditions, one must determine calibration targets that are more sensitive to flow parameters than bulk grain-size distributions.

  10. The influence of grain size coating and shaft angulation of different diamond tips on dental cutting

    PubMed Central

    Santos-Pinto, Lourdes; Bortoletto, Carolina Carvalho; Oliveira, Ana Carolina Mascarenhas; Santos-Pinto, Ary; Zuanon, Angela Cristina Cilense; Lima, Luciana Monti

    2011-01-01

    Objectives: To evaluate the influence of the grain size coating and shaft angulation of ultrasonic and high-speed diamond burs on the dental cutting effectiveness. Materials and Methods: For the grain size evaluation, cavities were prepared on 40 incisors using high-speed (1092 and 1093F KG Sorensen®) and ultrasonic tips (8.2142 and 6.2142-CVDentus®). For the shaft angulation evaluation, cavities were prepared on 40 incisors using uniangulated (T1-CVDentus®) and biangulated (T1-A CVDentus®) ultrasonic tips. The cavities were bisected and examined at ×50 magnification. The width and depth of cavities were measured by Leica QWin software. Kruskal–Wallis non-parametric test was used for analysis. Results: The grain size did not affect the cutting effectiveness, but the high-speed burs promoted deeper and wider cavities than the ultrasonic tips. The shaft angulation did not affect the cutting effectiveness; both the angulated and biangulated tips had greater cutting efficiency in dentin than in enamel. Conclusions: Ultrasonic tips promoted more conservative preparations and seemed promising for cavity preparation. PMID:21814352

  11. Determination of hydraulic conductivity from grain-size distribution for different depositional environments.

    PubMed

    Rosas, Jorge; Lopez, Oliver; Missimer, Thomas M; Coulibaly, Kapo M; Dehwah, Abdullah H A; Sesler, Kathryn; Lujan, Luis R; Mantilla, David

    2014-01-01

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1 m/day for the beach subgroups, 3.4 to 7.1 m/day for dune subgroups, and 2.2 to 11 m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23 m/day.

  12. Development Support Environment of Business ApplicationsBased on a Multi-Grain-Size Repository

    NASA Astrophysics Data System (ADS)

    Terai, Koichi; Izumi, Noriaki; Yamaguchi, Takahira

    In order to build the Web-based application as a shopping site on the Web, various ideas from the different viewpoints are required, such as enterprise modeling, workflow modeling, software development, and so on. From the above standpoint, this paper proposes an integrated environment to support the whole development process of analysis, design and implementation of business application. In order to reuse know-hows of various ideas in the business application development, we device a multi-grain-size repository, which consists of coarse-, middle-, and fine-grain-size repositories that correspond to the enterprise models, workflow models, and software models, respectively. We also provide a methodology that rebuilds heterogeneous information resources required for the business applications development into a multi-grain-size repository based on ontologies. The contents of the repositories are modeled by the is-a, has-a, and E-R relations, and described by the XML language. We have implemented Java-based prototype environment with the tools dealing with the multi-layered repository and confirmed that it supports us in various phases of business application development including business model manifestation, detailed business model definition and an implementation of business software applications.

  13. Can we use only Grain Size Data for Paleo-Flow Reconstructions?

    NASA Astrophysics Data System (ADS)

    Perillo, M. M.; Pohl, F.; Eggenhuisen, J. T.; Fedele, J.; Hoyal, D. C. J. D.; Mohrig, D. C.

    2015-12-01

    Paleo-flow and paleo-environmental reconstruction from ancient deposits is a critical task for earth surface scientists interested in the sedimentary record. Forming processes are commonly interpreted from the architectural characteristics of sedimentary deposits using quantitative relationships derived from experiments or geomorphic studies. However, very little attention has been paid to the equivalent problem at the scale of micro-facies: can we interpret the conditions at the time of sediment accumulation from grain size information in a small sample? Here we investigate the use of grain size distributions alone to reconstruct the flow conditions based on a set of experiments conducted in a 2D flume tank in the Eurotank facilities at Utrecht University. The experiments are designed for the examination of grain size distributions within sediments which were deposited by flows with known conditions (e.g. velocity, turbulence, shear velocity, concentration). By changing the slope of the flume tank we were able to create a range of flows from strongly depositional (depletive) to bypassing. Inspired by Eastwood et al (2012), we propose a working methodology to link the grain size distribution of the deposit to flow conditions. Our method utilizes the following empiric relations: i) the finer fraction of the deposit was deposited while most of that range surpass the Bagnold (1966)'s suspension threshold (shear velocity υ* approx. 3 times the settling velocity ωs); ii) the mean fraction was at incipient suspension stage (υ* ~ ωs); iii) the finer portion of the coarser grains were at bedload/saltation stage, where u* is approx. υ*c (critical shear velocity for initiation of motion); and iv) the coarser portion of the coarser grains were at creep-bedload stage, where υ* is approx. 0.7υ*c . We test whether this set of rules can be applied to the probability distribution function of deposit grainsize in an inversion that converges on a single value for the shear

  14. The influence of grain size and composition on slow plastic flow in FeAl between 1100 and 1400 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1986-01-01

    The slow plastic flow properties of a series of binary B2 FeAl intermetallics at elevated temperatures, and ranging in aluminum content from 39.8 to 48.7 at. pct, were investigated using constant-velocity compression tests at strain rates from 2 x 10 to the -3rd to 2 x 10 to the -7th. Two deformation mechanisms with the same activation energy are found. For the mode with a stress component of 6, the strength increases with decreasing grain size, probably as a result of Hall-Petch behavior, while for the mode with stress component of 3, the strength increases with increasing grain size, probably due to the action of diffusional creep. Creep in the high stress exponent mode can be described in terms of the initial grain size because the large-angle grain structure is replaced by a small-angle grain microstructure of similar grain diameter during deformation.

  15. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    SciTech Connect

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro E-mail: stakeru@nagoya-u.jp

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  16. Only pick the right grains: Modelling the bias due to subjective grain-size interval selection for chronometric and fingerprinting approaches.

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Fuchs, Margret; Kreutzer, Sebastian

    2016-04-01

    Many modern approaches of radiometric dating or geochemical fingerprinting rely on sampling sedimentary deposits. A key assumption of most concepts is that the extracted grain-size fraction of the sampled sediment adequately represents the actual process to be dated or the source area to be fingerprinted. However, these assumptions are not always well constrained. Rather, they have to align with arbitrary, method-determined size intervals, such as "coarse grain" or "fine grain" with partly even different definitions. Such arbitrary intervals violate principal process-based concepts of sediment transport and can thus introduce significant bias to the analysis outcome (i.e., a deviation of the measured from the true value). We present a flexible numerical framework (numOlum) for the statistical programming language R that allows quantifying the bias due to any given analysis size interval for different types of sediment deposits. This framework is applied to synthetic samples from the realms of luminescence dating and geochemical fingerprinting, i.e. a virtual reworked loess section. We show independent validation data from artificially dosed and subsequently mixed grain-size proportions and we present a statistical approach (end-member modelling analysis, EMMA) that allows accounting for the effect of measuring the compound dosimetric history or geochemical composition of a sample. EMMA separates polymodal grain-size distributions into the underlying transport process-related distributions and their contribution to each sample. These underlying distributions can then be used to adjust grain-size preparation intervals to minimise the incorporation of "undesired" grain-size fractions.

  17. Effects of particle optical properties on grain size measurements of aeolian dust deposits

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Szalai, Zoltán

    2015-04-01

    Particle size data are holding crucial information on the sedimentary environment at the time the aeolian dust deposits were accumulated. Various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed from proper grain size distribution data. Laser diffraction methods provide much more accurate and reliable information on the major granulometric properties of wind-blown sediments compared to the sieve and pipette methods. The Fraunhofer and Mie scattering theories are generally used for laser diffraction grain size measurements. () The two different approaches need different 'background' information on the medium measured. During measurements following the Fraunhofer theory, the basic assumption is that parcticles are relatively large (over 25-30 µm) and opaque. The Mie theory could offer more accurate data on smaller fractions (clay and fine silt), assuming that a proper, a'priori knowledge on refraction and absorption indices exists, which is rarely the case for polymineral samples. This study is aimed at determining the effects of different optical parameters on grain size distributions (e.g. clay-content, median, mode). Multiple samples collected from Hungarian red clay and loess-paleosol records have been analysed using a Malvern Mastersizer 3000 laser diffraction particle sizer (with a Hydro LV unit). Additional grain size measurements have been made on a Fritsch Analysette 22 Microtec and a Horiba Partica La-950 v2 instrument to investigate possible effects of the used laser sources with different wavelengths. XRF and XRD measurements have also been undertaken to gain insight into the geochemical/mineralogical compositions of the samples studied. Major findings include that measurements using the Mie theory provide more accurate data on the grain size distribution of aeolian dust deposits, when we use a proper optical setting. Significant

  18. The causes and consequences of particle size change in fluvial systems

    NASA Astrophysics Data System (ADS)

    Miller, Kimberly Louise Litwin

    One of the most common features in fluvial environments is the systematic downstream decline in grain size, which is usually attributed to either abrasion - the reduction in sediment size due to attrition of mass - or selective sorting - the size segregation of grains due to their relative transport mobility. Despite the ubiquity of this grain pattern and the extensive research on both of these processes, there remains questions regarding the underlying principles driving abrasion and sorting, as well as the relative contribution of these processes to grain fining. Therefore, a mechanistic understanding of these processes is necessary to observe their direct effect on pattern formation. This dissertation investigates the controls and limits on abrasion and sorting through field studies and laboratory experiments. First, using the well-defined boundary conditions of an alluvial fan, we examine how grain hiding limits gravel sorting by tracking changes in the grain size distribution measured using a novel image-based technique. Further downfan, we compare surface sand fractions measured in the field with those from the lab and show that the gravel-sand sorting profiles are self-similar, suggesting generality in their development. In a second field study, using detailed hand and image-based measurements characterizing size and shape of thousands of grains throughout a watershed, we are able to directly observe the effectiveness of abrasion. We then input these measurements into a simple numerical model to tease apart the contribution of abrasion and sorting to downstream grains size and shape evolution. Finally, we conduct laboratory experiments to isolate the effects of impact energy on abrasion rates and use material properties of the grains to collapse mass loss curves between different lithologies. We measure the grain size distribution of the products of abrasion to show that they are in agreement with expectations from brittle fracture theory. The results from

  19. Interpreting Hydraulic Conditions from Morphology, Sedimentology, and Grain Size of Sand Bars in the Colorado River in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.; Topping, D. J.; Schmidt, J. C.; Grams, P. E.; Buscombe, D.; East, A. E.; Wright, S. A.

    2015-12-01

    During three decades of research on sand bars and sediment transport in the Colorado River in Grand Canyon, we have collected unprecedented quantities of data on bar morphology, sedimentary structures, grain size of sand on the riverbed (~40,000 measurements), grain size of sand in flood deposits (dozens of vertical grain-size profiles), and time series of suspended sediment concentration and grain size (more than 3 million measurements using acoustic and laser-diffraction instruments sampling every 15 minutes at several locations). These data, which include measurements of flow and suspended sediment as well as sediment within the deposits, show that grain size within flood deposits generally coarsens or fines proportionally to the grain size of sediment that was in suspension when the beds were deposited. The inverse problem of calculating changing flow conditions from a vertical profile of grain size within a deposit is difficult because at least two processes can cause similar changes. For example, upward coarsening in a deposit can result from either an increase in discharge of the flow (causing coarser sand to be transported to the depositional site), or from winnowing of the upstream supply of sand (causing suspended sand to coarsen because a greater proportion of the bed that is supplying sediment is covered with coarse grains). These two processes can be easy to distinguish where suspended-sediment observations are available: flow-regulated changes cause concentration and grain size of sand in suspension to be positively correlated, whereas changes in supply can cause concentration and grain size of sand in suspension to be negatively correlated. The latter case (supply regulation) is more typical of flood deposits in Grand Canyon.

  20. Grain-size signature of Saharan dust over the Atlantic Ocean at 12°N

    NASA Astrophysics Data System (ADS)

    van der Does, Michelle; Korte, Laura; Munday, Chris; Brummer, Geert-Jan; Stuut, Jan-Berend

    2015-04-01

    Every year, an estimated 200 million tons of Saharan dust are deposited in the Atlantic Ocean. On its way from source to sink, the dust can be influenced by many climatic processes, but it also affects climate itself in various ways that are far from understood. In order to constrain the relations between atmospheric dust and climate, we deployed ten submarine sediment traps along a transect in the Atlantic Ocean at 12˚N, at 1200m and 3500m water depth. These have been sampling Saharan dust settling in the ocean since October 2012. Samples of seven of these sediment traps have been successfully recovered during RV Pelagia cruise 64PE378 in November 2013. The transect also includes three floating dust collectors and two on-land dust collectors, and all the instruments lie directly underneath the largest dust plume originating from the African continent. This study focuses on the size of the dust particles, which can have an effect on the positive or negative radiation balance in the atmosphere. Small particles in the high atmosphere can reflect incoming radiation and therefore have a cooling effect on climate. Large particles in the lower atmosphere have the opposite effect by absorbing reflected radiation from the Earth's surface. Mineral dust also affects carbon export to the deep ocean by providing mineral ballast for organic particles, and the size of the dust particles directly relates to the downward transport velocity. Here I will present the measured grain-size distributions of samples from seven sediment traps recovered from the 12°N-latitude transect. The data show seasonal variations, with finer grained dust particles during winter and spring, and coarser grained particles during summer and fall. Samples from multiple years should give more details about the dust's seasonality. Also a fining trend of the grain sizes of the dust particles from source (Africa) to sink (Caribbean) is observed, which is also expected due to intuitive relationships between

  1. Effect of grain size on optical transmittance of birefringent polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Wen, Tzu-Chien

    Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light

  2. Debris flow grain size scales with sea surface temperature over glacial-interglacial timescales

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.; Araújo, João Paulo C.

    2015-04-01

    Debris flows are common erosional processes responsible for a large volume of sediment transfer across a range of landscapes from arid settings to the tropics. They are also significant natural hazards in populated areas. However, we lack a clear set of debris flow transport laws, meaning that: (i) debris flows remain largely neglected by landscape evolution models; (ii) we do not understand the sensitivity of debris flow systems to past or future climate changes; and (iii) it remains unclear how to interpret debris flow stratigraphy and sedimentology, for example whether their deposits record information about past tectonics or palaeoclimate. Here, we take a grain size approach to characterising debris flow deposits from 35 well-dated alluvial fan surfaces in Owens Valley, California. We show that the average grain sizes of these granitic debris flow sediments precisely scales with sea surface temperature throughout the entire last glacial-interglacial cycle, increasing by ~ 7 % per 1 ° C of climate warming. We compare these data with similar debris flow systems in the Mediterranean (southern Italy) and the tropics (Rio de Janeiro, Brazil), and find equivalent signals over a total temperature range of ~ 14 ° C. In each area, debris flows are largely governed by rainfall intensity during triggering storms, which is known to increase exponentially with temperature. Therefore, we suggest that these debris flow systems are transporting predictably coarser-grained sediment in warmer, stormier conditions. This implies that debris flow sedimentology is governed by discharge thresholds and may be a sensitive proxy for past changes in rainfall intensity. Our findings show that debris flows are sensitive to climate changes over short timescales (≤ 104 years) and therefore highlight the importance of integrating hillslope processes into landscape evolution models, as well as providing new observational constraints to guide this. Finally, we comment on what grain size

  3. Reproductive Potential of Salmon Spawning Substrates Inferred from Grain Size and Fish Length

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Sklar, L. S.; Overstreet, B. T.; Wooster, J. K.; Bellugi, D. G.

    2014-12-01

    The river restoration industry spends millions of dollars every year on improving salmon spawning in riverbeds where sediment is too big for fish to move and thus use during redd building. However, few studies have addressed the question of how big is too big in salmon spawning substrates. Hence managers have had little quantitative basis for gauging the amount of spawning habitat in coarse-bedded rivers. Moreover, the scientific framework has remained weak for restoration projects that seek to improve spawning conditions. To overcome these limitations, we developed a physically based, field-calibrated model for the fraction of the bed that is fine-grained enough to support spawning by fish of a given size. Model inputs are fish length and easy-to-measure indices of bed-surface grain size. Model outputs include the number of redds and eggs the substrate can accommodate when flow depth, temperature, and other environmental factors are not limiting. The mechanistic framework of the model captures the biophysical limits on sediment movement and the space limitations on redd building and egg deposition in riverbeds. We explored the parameter space of the model and found a previously unrecognized tradeoff in salmon size: bigger fish can move larger sediment and thus use more riverbed area for spawning; they also tend to have higher fecundity, and so can deposit more eggs per redd; however, because redd area increases with fish length, the number of eggs a substrate can accommodate is highest for moderate-sized fish. One implication of this tradeoff is that differences in grain size may help regulate river-to-river differences in salmon size. Thus, our model suggests that population diversity and, by extension, species resilience are linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. We cast the model into easy-to-use look-up tables, charts, and computer applications, including a JavaScript app that works on tablets and mobile

  4. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  5. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, G.; Byun, T. S.; Pappano, P.; Snead, L. L.; Burchell, T. D.

    2015-07-01

    We present here a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mm diameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constants did not show significant dependence on specimen size. Experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.

  6. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    SciTech Connect

    Vasudevamurthy, Gokul; Byun, Thak Sang; Pappano, Pete; Snead, Lance L.; Burchell, Tim D.

    2015-03-13

    We present here a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mmdiameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constants did not show significant dependence on specimen size. Experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.

  7. An extension of the Saltykov method to quantify 3D grain size distributions in mylonites

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco A.; Llana-Fúnez, Sergio

    2016-12-01

    The estimation of 3D grain size distributions (GSDs) in mylonites is key to understanding the rheological properties of crystalline aggregates and to constraining dynamic recrystallization models. This paper investigates whether a common stereological method, the Saltykov method, is appropriate for the study of GSDs in mylonites. In addition, we present a new stereological method, named the two-step method, which estimates a lognormal probability density function describing the 3D GSD. Both methods are tested for reproducibility and accuracy using natural and synthetic data sets. The main conclusion is that both methods are accurate and simple enough to be systematically used in recrystallized aggregates with near-equant grains. The Saltykov method is particularly suitable for estimating the volume percentage of particular grain-size fractions with an absolute uncertainty of ±5 in the estimates. The two-step method is suitable for quantifying the shape of the actual 3D GSD in recrystallized rocks using a single value, the multiplicative standard deviation (MSD) parameter, and providing a precision in the estimate typically better than 5%. The novel method provides a MSD value in recrystallized quartz that differs from previous estimates based on apparent 2D GSDs, highlighting the inconvenience of using apparent GSDs for such tasks.

  8. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size.

    PubMed

    Alomar, Carme; Estarellas, Fernando; Deudero, Salud

    2016-04-01

    Marine litter loads in sea compartments are an emergent issue due to their ecological and biological consequences. This study addresses microplastic quantification and morphological description to test spatial differences along an anthropogenic gradient of coastal shallow sediments and further on to evaluate the preferential deposition of microplastics in a given sediment grain fraction. Sediments from Marine Protected Areas (MPAs) contained the highest concentrations of microplastics (MPs): up to 0.90 ± 0.10 MPs/g suggesting the transfer of microplastics from source areas to endpoint areas. In addition, a high proportion of microplastic filaments were found close to populated areas whereas fragment type microplastics were more common in MPAs. There was no clear trend between sediment grain size and microplastic deposition in sediments, although microplastics were always present in two grain size fractions: 2 mm > x > 1 mm and 1 mm > x 0.5 mm.

  9. Influence of grain size and exchange interaction on the LLB modeling procedure

    NASA Astrophysics Data System (ADS)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-12-01

    Reliably predicting bit-error rates in realistic heat-assisted magnetic recording simulations is a challenging task. Integrating the Landau-Lifshitz-Bloch (LLB) equation, within a coarse graining approach, can reduce the computational effort to determine the magnetization dynamics in the vicinity of the Curie temperature, compared to solving the atomistic Landau-Lifshitz-Gilbert equation. If the aim is that the dynamics of both approaches coincide, temperature dependent material functions, such as the zero-field equilibrium magnetization as well as the parallel and normal susceptibilities, must be modeled carefully in order to use them as input in the LLB equation. We present an extensive study on how these functions depend on grain size and exchange interactions. We show that, if the size or the exchange constant of a reference grain is modified, the material functions can be scaled, according to the changed Curie temperature, yielding negligible errors. This is shown to be valid for volume changes of up to ±40% and variations of the exchange constant of up to ±10%. Besides the temperature dependent material curves, computed switching probabilities also agree well with probabilities separately determined for each system. Our study suggests that there is no need to recalculate the required LLB input functions for each particle. Within the presented limits, it is sufficient to scale them to the Curie temperature of the altered system.

  10. Grain size effect on electrical resistivity of bulk nanograined Bi{sub 2}Te{sub 3} material

    SciTech Connect

    Ivanov, Oleg Maradudina, Oxana; Lyubushkin, Roman

    2015-01-15

    The bulk nanograined Bi{sub 2}Te{sub 3} material with various mean grain sizes changing from ~ 97 nm to ~ 51 nm was prepared by microwave assisted solvothermal method and hot pseudo-isostatic pressure. It was found that the specific electrical resistivity of the material increases as mean grain size decreases. Such kind of the grain effect on the resistivity can be attributed to enhanced electron scattering at the grain boundaries. The Mayadas–Shatzkes model was applied to explain experimental results. In this model the grain boundaries are regarded as potential barriers which have to be overcome by the electrons. The reflectivity R of the grain boundaries for the material under study was estimated to be equal to ~ 0.7. - Highlights: • The bulk nanograined Bi{sub 2}Te{sub 3} material with various mean grain sizes was prepared. • It was found that the electrical resistivity of the material increases as grain size decreases. • The Mayadas–Shatzkes model was applied to explain experimental results. • The reflectivity R of the grain boundaries was estimated to be equal to ~ 0.7.

  11. Effect of grain size on the mechanical properties of dual phase Fe/Si/C steels

    SciTech Connect

    Ahn, J.H.

    1983-08-01

    For an Fe/2Si/0.1C steel with an intermediate quenching heat treatment, it was found that as the prior austenite grain size is refined, significant improvements in total elongation, reduction in area and impact toughness can be achieved, while uniform elongation, yield and tensile strengths are not affected. These improvements are analyzed in terms of microstructure and fracture characteristics. The cleavage cracks propagate nearly straight without deviation at the ferrite/martensite interfaces within the sub-units of the DFM structure, but change their path at high angle sub-unit boundaries. The crack is less likely to be deflected at the ferrite/martensite interface because the interface is coherent. Comparison of optical micrographs and SEM fractographs has shown that there is close agreement between the sub-unit size and cleavage facet size. The observations lead to the conclusion that the sub-unit size is the basic microstructure unit controlling the fracture behavior of DFM steels produced by the intermediate quenching heat treatment. A controlled rolling process was undertaken to obtain grain refined DFM steels. Results showed that this produces micro-duplex structures with attractive mechanical properties in an economicl way.

  12. Influence of Grain Size Distribution on the Mechanical Behavior of Light Alloys in Wide Range of Strain Rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2015-06-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.

  13. Grain size control for CVD-grown single crystal mono- and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Luo, Zhengtang

    2015-03-01

    By suppressing the nucleation density during Chemical Vapor Deposition (CVD) growth, we demonstrate that the large-size single crystal monolayer and bilayer graphene can be synthesized by this method. For single layer, single crystals with diameter up to 5.9 mm, have been successfully obtained by adjusting degree of oxidation during surface treatment step and hydrogen annealing duration during growth, thereby allow us to control nucleation density and consequently to control graphene grains sizes. For bilayer growth, our main strategy is to maximize the duration that is controlled by the absorption-diffusion mechanism. With this method, sub-millimeter size single crystal bilayer graphene is also obtained. Electron transport measurement on those produced graphene has shown carrier mobility that is comparable with that of mechanical exfoliated graphene, indicating the high quality of our graphene sample. This project is supported by the Research Grant Council of Hong Kong SAR (Project Number 623512 and DAG12EG05).

  14. Predicting Bed Grain Size in Threshold Channels Using Lidar Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Nesheim, A. O.; Wilkins, B. C.; Edmonds, D. A.

    2011-12-01

    Over the past 20 years, researchers have developed GIS-based algorithms to extract channel networks and measure longitudinal profiles from digital elevation models (DEMs), and have used these to study stream morphology in relation to tectonics, climate and ecology. The accuracy of stream elevations from traditional DEMs (10-50 m pixels) is typically limited by the contour interval (3-20 m) of the rasterized topographic map source. This is a particularly severe limitation in low-relief watersheds, where 3 m of channel elevation change may occur over several km. Lidar DEMs (~1 m pixels) allow researchers to resolve channel elevation changes of ~0.5 m, enabling reach-scale calculations of gradient, which is the most important parameter for understanding channel processes at that scale. Lidar DEMs have the additional advantage of allowing users to make estimates of channel width. We present a process-based model that predicts median bed grain size in threshold gravel-bed channels from lidar slope and width measurements using the Shields and Manning equations. We compare these predictions to field grain size measurements in segments of three Maine rivers. Like many paraglacial rivers, these have longitudinal profiles characterized by relatively steep (gradient >0.002) and flat (gradient <0.0005) segments, with length scales of several km. This heterogeneity corresponds to strong variations in channel form, sediment supply, bed grain size, and aquatic habitat characteristics. The model correctly predicts bed sediment size within a factor of two in ~70% of the study sites. The model works best in single-thread channels with relatively low sediment supply, and poorly in depositional, multi-thread and/or fine (median grain size <20 mm) reaches. We evaluate the river morphology (using field and lidar measurements) in the context of the Parker et al. (2007) hydraulic geometry relations for single-thread gravel-bed rivers, and find correspondence in the locations where both

  15. The Influence of Grain Size and Crystal Content on Rheology and Deformation of Pyroclastic Material

    NASA Astrophysics Data System (ADS)

    Paquereau-Lebti, P.; Robert, G.; Grunder, A. L.; Russell, K. J.

    2007-12-01

    Pyroclastic deposits undergo variable degrees of sintering, viscous deformation of particles and loss of pore space, which combine to produce the dramatic textural variations that define welded facies. We here investigate the effects of grain size and crystal content on the rheology and welding of pyroclastic material.Uniaxial deformation experiments were conducted using sintered cores of natural rhyolite ash under conditions consistent with welding. Experiments were done in the University of British Columbia Volcanology Deformation Rig (VDR). This apparatus is designed to run experiments relevant to volcanology, by supporting low-load, high temperature, deformation experiments (Quane et al., 2004). We ran experiments at constant displacement rate (2.5.10-6 m.s-1), under ambient water pressure ("Dry"), at temperatures of 850 and 900°C and to maximal strain of 50%. Grain-size effect was investigated using sintered cores from three different sieving fractions of Rattlesnake Tuff (RST, Eastern Oregon, USA) ash: fine ash (grain size < 0.6 mm), coarse ash (0.6 to 2mm) and row unsieved ash. The effect of crystal content was explored using cores of sintered unsieved RST ash, variably enriched in crystals of feldspars and quartz.Unsieved and fine ash cores suffered higher total porosity reduction than coarse ash cores during deformation experiments. For cores of unsieved ash, porosity loss is facilitated by mechanical compaction, which includes orientation and organisation of different size clasts to a compact assemblage, without any deformation of individual particles. Isolated porosity decreases faster than connected porosity in coarse and fine ash cores, whereas cores of raw ash mainly loose connected porosity. This is also consistent with mechanical compaction for cores of unsieved ash, in which isolated porosity of weakly deformed individual pumice clasts or glass shards is maintained. Increasing strain causes a reduction in porosity and correlates with increase in

  16. Grain Size of the North-Atlantic Drifts Sediments: is the Gloria Drift a Contourite Drift?

    NASA Astrophysics Data System (ADS)

    Dorokhova, E.; Sivkov, V.; Bashirova, L.

    2015-12-01

    Mean size of mineral particles of 10-63 fraction, so-called sortable silt mean size (SS) (McCave, 1995) and modes of grain-size distribution were used as proxies for reconstruction of paleocurrents intensity variations in the North Atlantic. It was assumed that the first mode (3-8 μm) is formed as the result of normal pelagic sedimentation and the second mode (10-30 μm) appears under the bottom currents influence. The sediments with bimodal grain-size distribution (the second mode varies from 10 to 28 μm) correlate with increased SS (up to 18-23 μm) in the Hatton and Snorry Drifts, indicating an increase in contour currents intensity during MIS 1, 3 and 5e. In contrast, there are no any relationships between grain size distribution (high SS values, appearance of bimodal distributions) and climatic cyclicity of variations in contour currents intensity at the Gloria Drift. Moreover, the Gloria Drift sediments differ from the contourite sediments of the Snorry and Hatton Drifts by shifting of the second mode toward the coarse particles (25-40 μm), higher sedimentation rates and higher IRD content. This evidence puts in doubt the contourite origin of the Gloria Drift. At the same time, we have identified the similarity between the Gloria Drift sediments and IRD-containing hemiturbidites of Labrador Sea (Hesse and Khodabakhsh, 2006). Fine-grained sediment lofting has been inferred for ice marginal regions of the northwest Labrador Sea. Sediment failure on the Labrador Slope predominantly produces muddy turbidity currents, because the slope sediments are mud-dominated. Their deposits are the indicative muddy spill-over turbidites of the NAMOC levees and the levees of the tributaries to the NAMOC. Dispersal of the IRD throughout the graded mud layers is evidence that the two processes, ice rafting and the delivery of the fines by lofting, occurred simultaneously. This work was supported by Russian Scientific Fund (grant No. 14-50-00095).

  17. Contact air abrasion.

    PubMed

    Porth, R

    1999-05-01

    The advantages of contact air abrasion techniques are readily apparent. The first, of course, is the greatly increased ease of use. Working with contact also tends to speed the learning curve by giving the process a more natural dental feel. In addition, as one becomes familiar with working with a dust stream, the potential for misdirecting the air flow is decreased. The future use of air abrasion for deep decay removal will make this the treatment of choice for the next millennium.

  18. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation

  19. Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization

    USGS Publications Warehouse

    Stern, L.A.; Durham, W.B.; Kirby, S.H.

    1997-01-01

    Grain-size-dependent flow mechanisms tend to be favored over dislocation creep at low differential stresses and can potentially influence the rheology of low-stress, low-strain rate environments such as those of planetary interiors. We experimentally investigated the effect of reduced grain size on the solid-state flow of water ice I, a principal component of the asthenospheres of many icy moons of the outer solar system, using techniques new to studies of this deformation regime. We fabricated fully dense ice samples of approximate grain size 2 ?? 1 ??m by transforming "standard" ice I samples of 250 ?? 50 ??m grain size to the higher-pressure phase ice II, deforming them in the ice II field, and then rapidly releasing the pressure deep into the ice I stability field. At T ??? 200 K, slow growth and rapid nucleation of ice I combine to produce a fine grain size. Constant-strain rate deformation tests conducted on these samples show that deformation rates are less stress sensitive than for standard ice and that the fine-grained material is markedly weaker than standard ice, particularly during the transient approach to steady state deformation. Scanning electron microscope examination of the deformed fine-grained ice samples revealed an unusual microstructure dominated by platelike grains that grew normal to the compression direction, with c axes preferentially oriented parallel to compression. In samples tested at T ??? 220 K the elongation of the grains is so pronounced that the samples appear finely banded, with aspect ratios of grains approaching 50:1. The anisotropic growth of these crystallographically oriented neoblasts likely contributes to progressive work hardening observed during the transient stage of deformation. We have also documented remarkably similar microstructural development and weak mechanical behavior in fine-grained ice samples partially transformed and deformed in the ice II field.

  20. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    SciTech Connect

    Asgari, H.; Odeshi, A.G.; Szpunar, J.A.; Zeng, L.J.; Olsson, E.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found to decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.

  1. A study on the correlation between the grain size and the conversion efficiency of Mc-Si solar cells.

    PubMed

    Lee, Myoung-Bok; Song, Kyu-Ho; Park, Kwang-Mook; Jung, Ji-Hee; Bae, So-Ik

    2012-07-01

    For grain size estimation, a prototype system was developed by integrating a vision-acquiring hardware and a vision-assistant-processing module based on the platform software package of LabVIEW, to systematically estimate the average grain size of solar-grade multicrystalline (mc)-Si wafers. Three groups of 156 x 156 mm mc-Si wafers were selected to produce the average grain sizes of 3.4 mm (Group 1), 3.8 mm (Group II), and 4.6 mm (Group III), and were used for the fabrication of mc-Si solar cells by employing the standard mc-Si cell fabrication procedure of the 30 MW mass production line. The conversion efficiency including Jsc and Pmax, showed a quasi linear dependence on the mean grain size, with a correlation factor of 0.525%/mm. By combining the EL image and the grain size/position-dependent EQE spectra in a wavelength range of 400-1100 nm, the conversion efficiency of uniformly-surface-texturized mc-Si solar cells with larger grain sizes can be made much higher as a result of the much-reduced spatial density of the nano/microscope grain boundaries acting as recombination centers or traps.

  2. Grain size distribution uncertainty quantification in volcanic ash dispersal and deposition from weak plumes

    NASA Astrophysics Data System (ADS)

    Pardini, Federica; Spanu, Antonio; de'Michieli Vitturi, Mattia; Salvetti, Maria Vittoria; Neri, Augusto

    2016-02-01

    We present the results of uncertainty quantification and sensitivity analysis applied to volcanic ash dispersal from weak plumes with focus on the uncertainties associated to the original grain size distribution of the mixture. The Lagrangian particle model Lagrangian Particles Advection Code is used to simulate the transport of inertial particles under the action of realistic atmospheric conditions. The particle motion equations are derived by expressing the particle acceleration as the sum of forces acting along its trajectory, with the drag force calculated as a function of particle diameter, density, shape, and Reynolds number. Simulations are representative of a weak plume event of Mount Etna (Italy) and aimed at quantifying the effect on the dispersal process of the uncertainty in the mean and standard deviation of a lognormal function describing the initial grain size distribution and in particle sphericity. In order to analyze the sensitivity of particle dispersal to these uncertain variables with a reasonable number of simulations, response surfaces in the parameter space are built by using the generalized polynomial chaos expansion technique. The mean diameter and standard deviation of particle size distribution, and their probability density functions, at various distances from the source, both airborne and on ground, are quantified. Results highlight that uncertainty ranges in these quantities are drastically reduced with distance from source, making them largely dependent just on the location. Moreover, at a given distance from source, the distribution is mostly controlled by particle sphericity, particularly on the ground, whereas in air also mean diameter and sorting play a main role.

  3. Reconstructing Deep Circulation Strength in Fram Strait Using Grain Size Analysis

    NASA Astrophysics Data System (ADS)

    McDermott, K. J.; Hoffmann, S. S.

    2014-12-01

    Marine sediment cores obtained from Fram Strait, the Arctic's only deep passage for exchange with the world oceans, may capture records of past circulation between the Arctic and North Atlantic. Changes in grain size can be correlated to changes in bottom water current velocity, enabling the reconstruction of past deep circulation strength. We will present new sortable silt grain size data from sediment cores in Fram Strait, enhancing our understanding of deep circulation in this region throughout the Holocene and deglaciation. Cores from depths between 1 and 2.5 km on the Svalbard slope, Greenland slope, and in the central strait will provide a transect to compare data from areas dominated by northward Atlantic-derived waters, southward Arctic-derived waters, and east/west recirculation. Analyzing the coarse-fraction and sortable silt-sized fraction will assist us in untangling the effects of ice-rafting and current speed. These records, coupled with age models derived from radiocarbon and stable isotopic analyses from planktonic foraminifera, will provide new insight into the past dynamics of Arctic/Atlantic deep water exchange.

  4. Extending and simplifying the standard Köhn-pipette technique for grain size analysis

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Raab, Thomas

    2014-05-01

    Grain size distribution is a fundamental parameter to characterize physical properties of soils and sediments. Manifold approaches exist and according to the DIN ISO 11277 soil texture is analyzed by default with the combined pipette sieving and sedimentation method developed by Köhn. With this standard technique subfractions of sand and silt as well as the total clay content can be determined but the differentiation of clay subfractions is impossible. As the differentiation of the clay subfractions yields relevant information about pedogenesis, we present a protocol basing on standard techniques of granulometry with easy to handle and low cost equipment. The protocol was tested on a set of soil samples to cover the range of grain size distributions. We used a three-step procedure for achieving the grain size distribution of soil samples taking into account the subfractions of sand, silt and clay by a combination of sedimentation, centrifugal sedimentation and wet sieving. The pipetting was done with a piston-stroke pipette instead of the referred complex pipette from the DIN ISO 11277. Our first results show that the applied protocol is less prone to operating errors than the standard Köhn-pipette technique. Furthermore, even a less experienced laboratory worker can handle 10 samples in one day. Analyses of a luvisol profile, sampled in high spatial resolution, showed that the lessivation process is characterized by translocation of fine clay from the eluvial horizon to the illuvial horizon. Therefore our protocol is a fast alternative to detect lessivation, which is otherwise only clearly identifiable by micromorphological investigation and not by the standard Köhn-pipette technique.

  5. An improved snow hydrology for GCMS. Part 1: Snow cover fraction, albedo, grain size, and age

    SciTech Connect

    Marshall, S.; Oglesby, R.J.

    1994-07-01

    A new, physically-based snow hydrology has been implemented into the NCAR CCM1. The snow albedo is based on snow depth, solar zenith angle, snow cover pollutants, cloudiness, and a new parameter, the snow grain size. Snow grain size in turn depends on temperature and snow age. An improved expression is used for fractional snow cover which relates it to surface roughness and to snow depth. Each component of the new snow hydrology was implemented separately and then combined to make a new control run integrated for ten seasonal cycles. With the new snow hydrology, springtime snow melt occurs more rapidly, leading to a more reasonable late spring and summer distribution of snow cover. Little impact is seen on winter snow cover, since the new hydrology affects snow melt directly, but snowfall only indirectly, if at all. The influence of the variable grain size appears more important when snow packs are relatively deep while variable fractional snow cover becomes increasingly important as the snow pack thins. Variable surface roughness affects the snow cover fraction directly, but shows little effect on the seasonal cycle of the snow line. As an application of the new snow hydrology, we have rerun simulations involving Antarctic and Northern Hemisphere glaciation. Relatively little difference is seen for Antarctica, but a profound difference occurs for the Northern Hemisphere. In particular, ice sheets computed using new snow accumulations from the GCM are more numerous and larger in extent with the new snow hydrology. The new snow hydrology leads to a better simulation of the seasonal cycle of snow cover, however, our primary goal in implementing it into the GCM is to improve the predictive capabilities of the model. Since the snow hydrology is based on fundamental physical processes, and has well-defined parameters. it should enable model simulations of climatic change in which we have increased confidence. 37 refs., 15 figs., 2 tabs.

  6. Grain size trends reveal alluvial fan sensitivity to late Pleistocene climate change

    NASA Astrophysics Data System (ADS)

    Whittaker, A. C.; D'Arcy, M. K.; Roda Boluda, D. C.

    2015-12-01

    The effects of climate change on eroding landscapes and the sedimentary record remain poorly understood. The measurement of grain size fining rates in stream-flow dominated deposits provides one way to address this issue because, in principle, these trends embed important information about the dynamics of sediment routing systems and their sensitivities to external forcing. At a fundamental level, downstream fining is often driven by selective deposition of sediment. The relative efficiency of this process is determined by the physical characteristics of the input sediment supply and the spatial distribution of subsidence rate, which generates the accommodation necessary for mass extraction. Here, we measure grain size fining rates from apex to toe on two alluvial fan systems in northern Death Valley, California, which have well-exposed modern and 70 ka surfaces, where the long-term tectonic boundary conditions are known and where climatic variation over this time period is well-constrained. We integrate a self-similar gravel fraction fining model, based on selective sediment extraction, with cosmogenically-derived catchment erosion rates and gravel fining data, to estimate the change in sediment flux that occurred between 70 ka and the present day. Our results show that a 30 % decrease in average precipitation rate led to a 20 % decrease in sediment flux and a clear increase in the down-fan rate of fining. This supports existing landscape evolution models that relate a decrease in precipitation rate to a decrease in sediment flux, but implies that this relationship may be sub-linear. This study offers a new approach to applying grain size fining models to mountain catchments and their alluvial fan systems, and shows fan stratigraphy can be highly sensitive to climate changes over <105 years. However we also observe that this sensitivity is lost when sediment is remobilised and recycled over a time period longer than the duration of the climatic perturbation.

  7. GRAIN SIZING AND CALIBRATING OF DISTORTION BY IMAGE PROCESSING WITH INCLINED PHOTOGRAPH

    NASA Astrophysics Data System (ADS)

    Yasuda, Shingo; Ohashi, Keisuke; Ihara, Kazuki

    River bed material is normally heterogeneous, and the grain size distribution shows some features of each rivers. The information of distribution is, therefore, important factor in river engineering, and several traditional methods is practically used. Image processing method with digital photograph is modern analysis by using computer and replaced traditional analog photograph method. In image processing, however, optical distortion brings measurement error. We present a calibration of the distortion with optical theorem. In laboratory experiment with balls supposed river bed gravel, the theoretical calibration is considered to be appropriate. In field experiment, actual coefficient to calibrate distortion is estimated. In consequence of the investigation, it makes image processing method more accurate.

  8. Grain size effect on activation energy in spinel CoFe2O4 ceramic

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2016-05-01

    Cobalt ferrite of different average crystallites (from nanocrystallite to micro crystallites) has been prepared by the Sol-Gel Method. The X-ray diffraction (XRD) analysis confirms the cubic spinel phase with no trace of impurity phases. The effect of annealing temperature on micro structure and electric transport properties as a function of frequency and temperature has been studied. It is observed that the electric impedance and conductivity are strongly dependent on grain size. The impedance spectroscopic study is employed to understand the electrical transport properties of cobalt ferrite.

  9. Delineation of river bed-surface patches by clustering high-resolution spatial grain size data

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Bellugi, Dino; Dietrich, William E.

    2014-01-01

    The beds of gravel-bed rivers commonly display distinct sorting patterns, which at length scales of ~ 0.1 - 1 channel widths appear to form an organization of patches or facies. This paper explores alternatives to traditional visual facies mapping by investigating methods of patch delineation in which clustering analysis is applied to a high-resolution grid of spatial grain-size distributions (GSDs) collected during a flume experiment. Specifically, we examine four clustering techniques: 1) partitional clustering of grain-size distributions with the k-means algorithm (assigning each GSD to a type of patch based solely on its distribution characteristics), 2) spatially-constrained agglomerative clustering ("growing" patches by merging adjacent GSDs, thus generating a hierarchical structure of patchiness), 3) spectral clustering using Normalized Cuts (using the spatial distance between GSDs and the distribution characteristics to generate a matrix describing the similarity between all GSDs, and using the eigenvalues of this matrix to divide the bed into patches), and 4) fuzzy clustering with the fuzzy c-means algorithm (assigning each GSD a membership probability to every patch type). For each clustering method, we calculate metrics describing how well-separated cluster-average GSDs are and how patches are arranged in space. We use these metrics to compute optimal clustering parameters, to compare the clustering methods against each other, and to compare clustering results with patches mapped visually during the flume experiment.All clustering methods produced better-separated patch GSDs than the visually-delineated patches. Although they do not produce crisp cluster assignment, fuzzy algorithms provide useful information that can characterize the uncertainty of a location on the bed belonging to any particular type of patch, and they can be used to characterize zones of transition from one patch to another. The extent to which spatial information influences

  10. Magnetic memory in a ceramic YBCO superconductor composed of sub-micron-size grains

    NASA Astrophysics Data System (ADS)

    Deguchi, Hiroyuki; Ashida, Takuya; Syudo, Mitsuhiro; Mito, Masaki; Takagi, Seishi; Hagiwara, Makoto; Koyama, Kuniyuki

    2013-06-01

    The ceramic YBa2Cu4O8 (YBCO) composed of sub-micron-size grains is considered as a random Josephson-coupled network of 0 and π junctions and shows successive phase transitions. The first transition occurs inside each grain at T c1 = 81 K, and the second transition occurs among the grains at T c2 = 47 K. A magnetic glass behavior similar to those of spin-glasses is observed at temperatures below T c2. The memory phenomena are investigated by recording the zero-fieldcooled and thermoremanent magnetizations measured on heating after the cooling process with a halt at T s = 41 K. Memory effects of the halt are imprinted in the system when the sample is re-heated. In the case without a field switch at T s , the influence of the halt is confined to a narrow temperature region near T s whereas the memory effect of the halt employing a field switch is extended over a wide temperature region below T s . The results suggest that chiral-glass ordering occurs at T c2 in the ceramic YBCO.

  11. Grain Size Effect of Commercial Pure Titanium Foils on Mechanical Properties, Fracture Behaviors and Constitutive Models

    NASA Astrophysics Data System (ADS)

    Daming, Nie; Zhen, Lu; Kaifeng, Zhang

    2017-02-01

    The constitutive models based on grain size effect are crucial for analyzing the deformation of metal foils. Previous investigations on the constitutive models concentrate on the foils whose thickness/average grain diameter (T/D) ratios are more than 3. In this study, the commercial pure titanium foils with thickness of 0.1 and 0.2 mm were employed as the experimental materials. The mechanical properties of foils with dimensions of nine different T/D ratios categorized into three ranges (T/D < 1, 1 ≤ T/D < 3, T/D ≥ 3)were tested. Meanwhile, the fracture behaviors and fracture mechanisms of the samples with different T/D ratios were compared and analyzed. Besides, three constitutive models incorporating the surface layer effect and grain boundary strengthening effect were established for the three T/D ratio ranges correspondingly. In these models, the thickness of the surface layers is set T for T/D < 1 foils, D for T/D > 3, and increases with D linearly in 1 ≤ T/D < 3. The results calculated by the three models were compared. The experiments indicate that those models are all in good agreement.

  12. Ti distribution in grain-size fractions of Apollo soils 10084 and 71501

    NASA Astrophysics Data System (ADS)

    Kong, W. G.; Jolliff, B. L.; Wang, Alian

    2013-09-01

    Much work has been devoted to the correlation between the remotely sensed UV-VIS slope and the TiO2 concentration of the lunar surface, and this correlation has been used to map the lunar surface TiO2 distributions using data obtained from various missions. However, additional work is needed to fully evaluate the UV-VIS-TiO2 correlation. Such work would help ongoing efforts to improve TiO2 mapping (e.g., as currently underway with LROC Wide Angle Camera (WAC) data). To evaluate the UV-VIS-TiO2 correlation, we are investigating soil petrographic factors (e.g., modal abundances of Ti bearing minerals, lithic, and glass hosts, ilmenite morphology, grain size, and maturity) that may influence the spectra. This “ground truth” approach will be useful in comparing between sample information and laboratory spectra to investigate the influence of petrographic factors on the spectra. In this work, we report the quantitative results of a systematic laboratory investigation of three size fractions (210-100 μm, 100-48 μm, 48-20 μm) of two high Ti lunar soils 10084 and 71501 using a combined digital imaging (backscattered electron image and X-ray maps) method. For each size fraction, the results include: (1) the modal abundances for single phase minerals and lithologic components; (2) the Ti distributions among Ti host components; and (3) the shape of ilmenite grains. We compile and compare the data together for the three size fractions of the two high Ti soils with different maturities as well as data from previous studies. Future work will include the investigation of finer size fractions (<20 μm) and more samples (Apollo 12, Apollo 15) covering a larger range of Ti concentration and maturity, and comparison with their spectra.

  13. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  14. Oxygen isotopic composition of micrometer-sized quartz grains in EPICA-Dome C ice core

    NASA Astrophysics Data System (ADS)

    Delmonte, B.; Hoppe, P.; Hellebrand, E.; Huth, J.; Petit, J.; Maggi, V.

    2006-12-01

    Depicting the geographic provenance of aeolian dust reaching the interior of the East Antarctic plateau is of primary importance for a thorough underst94anding of paleo-atmospheric circulation patterns. A geochemical approach based on the 87Sr/86Sr versus 143Nd/144Nd isotopic signature of mineral particles extracted from Antarctic ice cores and comparison with samples from the Potential Source Areas (PSA) of the Southern Hemisphere has been classically used. This allowed pointing out a dominant Southern South American provenance for dust in the EPICA-Dome C and Vostok ice cores during late Quaternary glacial stages. However, the Sr-Nd isotopic fields from other potential source regions did show a partial overlap with the South American and glacial dust fields, and complementary arguments had to be invoked to infer that their possible contribution is negligible. In this study, we propose a new approach for dust fingerprinting based on the 18O/16O ratios of micrometer- sized quartz grains (1 to 2 μm in size) entrapped in Antarctic ice. Micrometric quartz grains were first identified through SEM/EDX in a sample from the EPICA-Dome C ice core dating back the last glacial maximum. O-isotopic measurements on 25 single grains were performed with the NanoSIMS ion microprobe at the Max-Plank-Institute for Chemistry in Mainz. 18OSMOW values are between 2 and 43 per mil; however most 18OSMOW values fall within a gaussian distribution with a mean 18OSMOW of 25.5 per mil and standard deviation of 2.6 per mil (1^3). These results suggest that a significant contribution from Australian and New Zealand sources seems very unlikely during glacial stage 2, but unfortunately 18OSMOW values for small quartz grains from the Southern Hemisphere PSAs are very scarce. NanoSIMS O-isotopic measurements on Aeolian quartz grains entrapped in Antarctic ice by is a promising tool for investigating the geographic provenance of mineral dust in Quaternary times.

  15. Grain size dependence of electrical and optical properties in Nb-doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Li, W. S.; Li, H.; Sun, Y.; Dou, R. F.; Xiong, C. M.; He, L.; Nie, J. C.

    2009-11-01

    Anatase thin films of pure TiO2 and 6% niobium doped TiO2 (Nb:TiO2) were fabricated on LaAlO3(100) by pulsed laser deposition. The electrical properties of Nb:TiO2 films are grain-size dependent, i.e., the larger grain size, the higher conductivity, and mobility. For all TiO2 and for Nb:TiO2 with small mean grain size (d <15 nm), the band gap energy is found to increase systematically with the decrease in d, which is consistent with the quantum confinement model. For the films with large mean grain size (d >15 nm), particularly, a blueshift in Nb:TiO2 is governed by the Burstein-Moss effect.

  16. Mean grain size detection of DP590 steel plate using a corrected method with electromagnetic acoustic resonance.

    PubMed

    Wang, Bin; Wang, Xiaokai; Hua, Lin; Li, Juanjuan; Xiang, Qing

    2017-04-01

    Electromagnetic acoustic resonance (EMAR) is a considerable method to determine the mean grain size of the metal material with a high precision. The basic ultrasonic attenuation theory used for the mean grain size detection of EMAR is come from the single phase theory. In this paper, the EMAR testing was carried out based on the ultrasonic attenuation theory. The detection results show that the double peaks phenomenon occurs in the EMAR testing of DP590 steel plate. The dual phase structure of DP590 steel is the inducement of the double peaks phenomenon in the EMAR testing. In reaction to the phenomenon, a corrected method with EMAR was put forward to detect the mean grain size of dual phase steel. Compared with the traditional attenuation evaluation method and the uncorrected method with EMAR, the corrected method with EMAR shows great effectiveness and superiority for the mean grain size detection of DP590 steel plate.

  17. Development of a System to Measure Austenite Grain Size of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Lim, C. S.; Hong, S. T.; Yi, J. K.; Choi, S. G.; Oh, K. J.; Nagata, Y.; Yamada, H.; Hamada, N.

    2007-03-21

    A measurement system for austenite grain size of plate steel using laser-based ultrasonics has been developed. At first, the relationship between the ultrasonic attenuation coefficients using longitudinal waves and austenite grain size of samples was investigated in the laboratory experiments. According to the experimental results, the ultrasonic attenuation coefficients showed a good correlation with actual austenite grain sizes. For the next step, the system was installed in a hot rolling pilot plant of plate steel, and it was verified that the austenite grain size could be measured even in the environment of a hot rolling pilot plant. In the experiments, it was also confirmed that the fiber delivery system could deliver Nd:YAG laser beam of 810 mJ/pulse and ultrasonic signals could be obtained successfully.

  18. Grain size and chemical controls on the ductile properties of mostly frictional faults at low-temperature hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    1994-03-01

    A conceptually simple process which establishes a steady grain size distribution is envisioned to control the ductile creep properties of fault zones that mainly slip by frictional processes. Fracture during earthquakes and aseismic frictional creep tend to reduce grain size. However, sufficiently small grains tend to dissolve so that larger grains grow at their expense, a process called Ostwald ripening. A dynamic stedy state is reached where grain size reduction by fracture is balanced by grain growth from Ostwald ripening. The ductile creep mechanism within fault zones in hard rock is probably pressure solution where the rate is limited by diffusion along load-bearing grain-grain contacts. The diffusion paths that limit Ostwald repening are to a considerable extent the same as those for pressure solution. Active Ostwald ripening thus implies conditions suitable for ductile creep. An analytic theory allows estimation of the steady-state mean grain size and the viscosity for creep implied by this dynamic steady state from material properties and from the width, shear traction, and long-term slip velocity of the fault zone. Numerical models were formulated to compute the steady state grain size distribution. The results indicate that ductile creep, as suggested in the companion paper, is a plausible mechanism for transiently increasing fluid pressure within mostly sealed fault zones so that frictional failure occurs at relatively low shear tractions, ˜10 MPa. The relevant material properties are too poorly known, however, for the steady state theory (or its extension to a fault that slips in infrequent large earthquakes) to have much predictive value without additional laboratory experiments and studies of exhumed faults.

  19. A texture-component Avrami model for predicting recrystallization textures, kinetics and grain size

    NASA Astrophysics Data System (ADS)

    Raabe, Dierk

    2007-03-01

    The study presents an analytical model for predicting crystallographic textures and the final grain size during primary static recrystallization of metals using texture components. The kinetics is formulated as a matrix variant of the Johnson-Mehl-Avrami-Kolmogorov equation. The matrix form is required since the kinetic and crystallographic evolution of the microstructure is described in terms of a limited set of growing (recrystallizing) and swept (deformed) texture components. The number of components required (5-10) defines the order of the matrix since the kinetic coupling occurs between all recrystallizing and all deformed components. Each such couple is characterized by corresponding values for the nucleation energy and grain boundary mobility. The values of these parameters can be obtained by analytical or numerical coarse graining according to a renormalization scheme which replaces many individual grains which grow via recrystallization in a deformed texture component by a single equivalent recrystallization texture component or by fitting to experimental data. Each deformed component is further characterized by an average stored deformation energy. Each element of the kinetic matrix, reflecting one of the possible couplings between a deformed and a recrystallizing texture component, is then derived in each time step by a set of two differential equations. The first equation describes the thermally activated nucleation and growth processes for the expanded (free) volume for a particular couple of a deformed and a recrystallizing texture component and the second equation is used for calculating the constrained (real) volume for that couple which corrects the free volume for those portions of the deformation component which were already swept. The new method is particularly developed for the fast and physically based process simulation of recrystallization textures with respect to processing. The present paper introduces the method and applies it to the

  20. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al{sub 2}O{sub 3}/TiC, and zirconia

    SciTech Connect

    Krell, A.; Klaffke, D.

    1996-05-01

    Friction and wear of sintered alumina with grain sizes between 0.4 and 3 {micro}m were measured in comparison with Al{sub 2}O{sub 3}/TiC composites and with tetragonal ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effect reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al{sub 2}O{sub 3}/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 {micro}m.

  1. Technologies and experience with monitoring sediments for protecting turbines from abrasion

    NASA Astrophysics Data System (ADS)

    Agrawal, Y.; Slade, W.; Pottsmith, C.; Dana, D.

    2016-11-01

    Abrasion of turbines by sediments is a constant threat in high head and high sediment load situations. It is widely recognized that larger grains cause abrasion, although no consensus on a critical size exists. Grain hardness plays a second key role. Thus monitoring of sediment concentration is highly desirable, particularly with attention paid to the large grains. This has recently become possible with LISST instruments that use laser diffraction (LD) technology. These in-line instruments measure multi-angle laser light scattering, which is converted to a particle size distribution in a pre-defined size range. In order to reach high concentrations, the instruments incorporate auto-dilution capability. The data are transmitted to the control room. Provided software displays concentration history in up to 4 size classes, and the software is capable of generating alarms when sufficiently high concentrations occur. Since no definition exists for this sufficiently high concentration, in this paper we propose an objective criterion based on the rate of revenue generation contrasted with rate of cost of turbine repair. This simple idea helps guide the plant operator to set shut-down thresholds during sediment transport events. We also introduce a lower cost, high-frequency pulsed acoustic sensor for sediment monitoring. The rather lower accuracy of this device is offset by its lower cost that is suitable for small plants.

  2. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna.

    PubMed

    Xia, Xinghui; Zhang, Xiaotian; Zhou, Dong; Bao, Yimeng; Li, Husheng; Zhai, Yawei

    2016-07-01

    Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition.

  3. Effects of grain size on the dielectric behavior of layered perovskite SrBi 4Ti 4O 15 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Chu, Ruiqing; Hao, Jigong; Zhang, Yanjie; Li, Guorong; Yin, Qingrui

    2009-07-01

    In this paper, the effects of grain size on the dielectric behavior of SrBi 4Ti 4O 15 (SBT) ceramics were investigated. When the grain size is between 5 and 10 μm, there is an anomaly in dielectric behavior occurring below the Curie temperature ( Tc). This anomaly is grain-size dependent and is associated with the relaxation of oxygen vacancy clusters. We also found that the Tc of SBT increased with decreasing grain size.

  4. Assessing tephra total grain-size distribution: Insights from field data analysis

    NASA Astrophysics Data System (ADS)

    Costa, A.; Pioli, L.; Bonadonna, C.

    2016-06-01

    The Total Grain-Size Distribution (TGSD) of tephra deposits is crucial for hazard assessment and provides fundamental insights into eruption dynamics. It controls both the mass distribution within the eruptive plume and the sedimentation processes and can provide essential information on the fragmentation mechanisms. TGSD is typically calculated by integrating deposit grain-size at different locations. The result of such integration is affected not only by the number, but also by the spatial distribution and distance from the vent of the sampling sites. In order to evaluate the reliability of TGSDs, we assessed representative sampling distances for pyroclasts of different sizes through dedicated numerical simulations of tephra dispersal. Results reveal that, depending on wind conditions, a representative grain-size distribution of tephra deposits down to ∼100 μm can be obtained by integrating samples collected at distances from less than one tenth up to a few tens of the column height. The statistical properties of TGSDs representative of a range of eruption styles were calculated by fitting the data with a few general distributions given by the sum of two log-normal distributions (bi-Gaussian in Φ-units), the sum of two Weibull distributions, and a generalized log-logistic distribution for the cumulative number distributions. The main parameters of the bi-lognormal fitting correlate with height of the eruptive columns and magma viscosity, allowing general relationships to be used for estimating TGSD generated in a variety of eruptive styles and for different magma compositions. Fitting results of the cumulative number distribution show two different power law trends for coarse and fine fractions of tephra particles, respectively. Our results shed light on the complex processes that control the size of particles being injected into the atmosphere during volcanic explosive eruptions and represent the first attempt to assess TGSD on the basis of pivotal physical

  5. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The

  6. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  7. Grain-size dependence of the magnetic properties of street dusts from Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Dytłow, Sylwia; Winkler, Aldo; Sagnotti, Leonardo

    2015-04-01

    In recent years, in connection with a substantial development of transportation in urban areas, vehicular traffic increased its importance as source of pollution and consequent cause of health problems in urban environments. In fact, it is well established that the concentration and size of pollution related particulate matter (PM) are important factors affecting human health. The aim of this study is to identify the variations of the magnetic properties and of the chemical composition of different granulometric fractions from street dusts collected at four locations in Warsaw: the city center, a suburb, a tramline and a big crossroad. Dust samples were mechanically sieved and classified using the laboratory shaker with a standard sieve set (0.5 mm, 0.25 mm, 0.1 mm and 0.071 mm). Data show a distribution of magnetic susceptibility (χ) in the wide range of 80-370 × 10-8 m3kg-1. Comparison of magnetic parameters shows that the street dust contains the pollution characteristics for air and soil. The samples were characterized by uniform magnetic mineralogy, typical for fine-grained magnetite, in a grain size range between pseudo-single-domain and fine multi-domain, with a small contribution from ultrafine superparamagnetic particles (~2-3.5 %). The street dust contains, as usual for the urban areas, spherical magnetic particles produced by fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements. The magnetic susceptibility and hysteresis properties of the dusts have been analyzed in detail; the temperature variation of the saturation of remanent magnetization and of the magnetic susceptibility revealed that the main magnetic mineral, for all the fractions, is almost stoichiometric magnetite, with the finest fractions (d=0.1 mm, 0.071 mm and d

  8. Size-dependent mechanical behavior of nanoscale polymer particles through coarse-grained molecular dynamics simulation.

    PubMed

    Zhao, Junhua; Nagao, Shijo; Odegard, Gregory M; Zhang, Zhiliang; Kristiansen, Helge; He, Jianying

    2013-12-21

    Anisotropic conductive adhesives (ACAs) are promising materials used for producing ultra-thin liquid-crystal displays. Because the mechanical response of polymer particles can have a significant impact in the performance of ACAs, understanding of this apparent size effect is of fundamental importance in the electronics industry. The objective of this research is to use a coarse-grained molecular dynamics model to verify and gain physical insight into the observed size dependence effect in polymer particles. In agreement with experimental studies, the results of this study clearly indicate that there is a strong size effect in spherical polymer particles with diameters approaching the nanometer length scale. The results of the simulations also clearly indicate that the source for the increases in modulus is the increase in relative surface energy for decreasing particle sizes. Finally, the actual contact conditions at the surface of the polymer nanoparticles are shown to be similar to those predicted using Hertz and perfectly plastic contact theory. As ACA thicknesses are reduced in response to reductions in polymer particle size, it is expected that the overall compressive stiffness of the ACA will increase, thus influencing the manufacturing process.

  9. Size-dependent mechanical behavior of nanoscale polymer particles through coarse-grained molecular dynamics simulation

    PubMed Central

    2013-01-01

    Anisotropic conductive adhesives (ACAs) are promising materials used for producing ultra-thin liquid-crystal displays. Because the mechanical response of polymer particles can have a significant impact in the performance of ACAs, understanding of this apparent size effect is of fundamental importance in the electronics industry. The objective of this research is to use a coarse-grained molecular dynamics model to verify and gain physical insight into the observed size dependence effect in polymer particles. In agreement with experimental studies, the results of this study clearly indicate that there is a strong size effect in spherical polymer particles with diameters approaching the nanometer length scale. The results of the simulations also clearly indicate that the source for the increases in modulus is the increase in relative surface energy for decreasing particle sizes. Finally, the actual contact conditions at the surface of the polymer nanoparticles are shown to be similar to those predicted using Hertz and perfectly plastic contact theory. As ACA thicknesses are reduced in response to reductions in polymer particle size, it is expected that the overall compressive stiffness of the ACA will increase, thus influencing the manufacturing process. PMID:24359191

  10. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    PubMed Central

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-01-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials. PMID:27264347

  11. Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea

    2017-01-01

    Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.

  12. Sediment grain size estimation using airborne remote sensing, field sampling, and robust statistic.

    PubMed

    Castillo, Elena; Pereda, Raúl; Luis, Julio Manuel de; Medina, Raúl; Viguri, Javier

    2011-10-01

    Remote sensing has been used since the 1980s to study parameters in relation with coastal zones. It was not until the beginning of the twenty-first century that it started to acquire imagery with good temporal and spectral resolution. This has encouraged the development of reliable imagery acquisition systems that consider remote sensing as a water management tool. Nevertheless, the spatial resolution that it provides is not adapted to carry out coastal studies. This article introduces a new methodology for estimating the most fundamental physical property of intertidal sediment, the grain size, in coastal zones. The study combines hyperspectral information (CASI-2 flight), robust statistic, and simultaneous field work (chemical and radiometric sampling), performed over Santander Bay, Spain. Field data acquisition was used to build a spectral library in order to study different atmospheric correction algorithms for CASI-2 data and to develop algorithms to estimate grain size in an estuary. Two robust estimation techniques (MVE and MCD multivariate M-estimators of location and scale) were applied to CASI-2 imagery, and the results showed that robust adjustments give acceptable and meaningful algorithms. These adjustments have given the following R(2) estimated results: 0.93 in the case of sandy loam contribution, 0.94 for the silty loam, and 0.67 for clay loam. The robust statistic is a powerful tool for large dataset.

  13. A CONCENTRATION OF CENTIMETER-SIZED GRAINS IN THE OPHIUCHUS IRS 48 DUST TRAP

    SciTech Connect

    Marel, N. van der; Pinilla, P.; Tobin, J.; Kempen, T. van; Andrews, S.; Ricci, L.; Birnstiel, T.

    2015-09-01

    Azimuthally asymmetric dust distributions observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in transition disks have been interpreted as dust traps. We present Very Large Array Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at a 0.″2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 ± 0.9 times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data are required for definitive confirmation.

  14. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

    NASA Astrophysics Data System (ADS)

    Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D.

    2016-10-01

    One of the most promising means to increase the energy density of state-of-the-art lithium Li-ion batteries is to replace the graphite anode with a Li metal anode. While the direct use of Li metal may be highly advantageous, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency, CE. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the “dry” electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies.

  15. A theoretical explanation of grain size distributions in explosive rock fragmentation

    NASA Astrophysics Data System (ADS)

    Fowler, A. C.; Scheu, Bettina

    2016-06-01

    We have measured grain size distributions of the results of laboratory decompression explosions of volcanic rock. The resulting distributions can be approximately represented by gamma distributions of weight per cent as a function of ϕ =-log2⁡d , where d is the grain size in millimetres measured by sieving, with a superimposed long tail associated with the production of fines. We provide a description of the observations based on sequential fragmentation theory, which we develop for the particular case of `self-similar' fragmentation kernels, and we show that the corresponding evolution equation for the distribution can be explicitly solved, yielding the long-time lognormal distribution associated with Kolmogorov's fragmentation theory. Particular features of the experimental data, notably time evolution, advection, truncation and fines production, are described and predicted within the constraints of a generalized, `reductive' fragmentation model, and it is shown that the gamma distribution of coarse particles is a natural consequence of an assumed uniform fragmentation kernel. We further show that an explicit model for fines production during fracturing can lead to a second gamma distribution, and that the sum of the two provides a good fit to the observed data.

  16. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

    PubMed Central

    Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D.

    2016-01-01

    One of the most promising means to increase the energy density of state-of-the-art lithium Li-ion batteries is to replace the graphite anode with a Li metal anode. While the direct use of Li metal may be highly advantageous, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency, CE. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the “dry” electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies. PMID:27703188

  17. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

    SciTech Connect

    Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D.

    2016-10-05

    One of the most promising means to increase the energy density of state-of-the-art lithium (Li)-ion batteries is to replace the graphite anode with a Li metal anode1, 2, 3. While the direct use of Li metal may be highly advantageous4,5, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency (CE)6. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the "dry" electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies.

  18. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-06-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.

  19. Abrasive drill for resilient materials

    NASA Technical Reports Server (NTRS)

    Koch, A. J.

    1981-01-01

    Resilient materials normally present problem in obtaining accurate and uniform hole size and position. Tool is fabricated from stiff metal rod such as tungsten or carbon steel that has diameter slightly smaller than required hole. Piercing/centering point is ground on one end of rod. Rod is then plasma-sprayed (flame-sprayed) with suitable hard abrasive coating. High-speed, slow-feed operation of tool is necessary for accurate holes, and this can be done with drill press, hard drill, or similar machines.

  20. Transient response in longitudinal grain size to reduced sediment supply in a large river

    NASA Astrophysics Data System (ADS)

    Singer, Michael

    2010-05-01

    Bed material grain size is an important degree of freedom in fluvial systems as they adjust to system-wide perturbations such as sediment supply changes. However, little is known about processes and patterns of such adjustment in longitudinal grain size sorting in large rivers. This research uses unprecedented datasets collected in a large fluvial system to investigate transient response to recent supply changes associated with anthropogenic activities. Separate fining trends for gravel and fines, a protracted gravel-sand (G-S) transition, and bed patchiness identified in Singer (2008) were interrogated using output from a hydraulic model with grain size distributions (GSDs) extracted from ~125 cross sections spanning ~400 river kilometers of the Sacramento River, California. The analysis suggests that interactions between hydraulics, bed material sorting, and sediment flux explain these previously identified anomalies. Highest values of sorting occur in the G-S transition and represent the overlap of separate fining trends for gravel and fines, where the long profile is jagged with evidence of progressive incision. Much of the sediment in this poorly sorted zone is organized into patches, where transport apparently occurs as bedload sheets. Patchiness occurs over short length scales leading to strong differences in entrainment and flux, regardless of hydraulic conditions. A modified Shields stress is proposed that is scaled by GSD sorting to improve characterization of entrainment/disentrainment. Sediment flux calculations based on an equation sensitive bed material conditions (Singer and Dunne, 2004) reveal a strong relationship between fine sediment flux and d90, suggesting that the efficiency of fine patch flux controls bed material bed surface roughness. Results are in part consistent with Paola and Seal (1995) suggesting that patches are a result of overlapping pdfs of shear stress and sorting and with Ferguson (2003) in that the final end of the protracted G

  1. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  2. Remote Analysis of Grain Size Characteristic in Submarine Pyroclastic Deposits from Kolumbo Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Smart, C.; Whitesell, D. P.; Roman, C.; Carey, S.

    2011-12-01

    Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo submarine volcano located about seven kilometers off the coast of Santorini, Greece. The highly stratified, pumice-rich deposit was likely created by the last explosive eruption of the volcano that took place in 1650 AD. Each image was taken from a distance of only a few meters from the outcrop in order to capture the outlines of individual clasts with relatively high resolution. Mosaics of individual images taken as the ROV transected approximately 150 meters of vertical outcrop were used to create large-scale vertical stratigraphic columns that proved useful for overall documentation of the eruption sequence and intracaldera correlations of distinct tephra units. Initial image processing techniques, including morphological operations, edge detection, shape and size estimation were implemented in MatLab and applied to a subset of individual images of the mosiacs. A large variety of algorithms were tested in order to best discriminate the outlines of individual pumices. This proved to be challenging owing to the close packing and overlapping of individual pumices. Preliminary success was achieved in discriminating the outlines of the large particles and measurements were carried out on the largest clasts present at different stratigraphic levels. In addition, semi-quantitative analysis of the

  3. The Evolution of Grain Size Distribution in Explosive Rock Fragmentation - Sequential Fragmentation Theory Revisited

    NASA Astrophysics Data System (ADS)

    Scheu, B.; Fowler, A. C.

    2015-12-01

    Fragmentation is a ubiquitous phenomenon in many natural and engineering systems. It is the process by which an initially competent medium, solid or liquid, is broken up into a population of constituents. Examples occur in collisions and impacts of asteroids/meteorites, explosion driven fragmentation of munitions on a battlefield, as well as of magma in a volcanic conduit causing explosive volcanic eruptions and break-up of liquid drops. Besides the mechanism of fragmentation the resulting frequency-size distribution of the generated constituents is of central interest. Initially their distributions were fitted empirically using lognormal, Rosin-Rammler and Weibull distributions (e.g. Brown & Wohletz 1995). The sequential fragmentation theory (Brown 1989, Wohletz at al. 1989, Wohletz & Brown 1995) and the application of fractal theory to fragmentation products (Turcotte 1986, Perfect 1997, Perugini & Kueppers 2012) attempt to overcome this shortcoming by providing a more physical basis for the applied distribution. Both rely on an at least partially scale-invariant and thus self-similar random fragmentation process. Here we provide a stochastic model for the evolution of grain size distribution during the explosion process. Our model is based on laboratory experiments in which volcanic rock samples explode naturally when rapidly depressurized from initial pressures of several MPa to ambient conditions. The physics governing this fragmentation process has been successfully modelled and the observed fragmentation pattern could be numerically reproduced (Fowler et al. 2010). The fragmentation of these natural rocks leads to grain size distributions which vary depending on the experimental starting conditions. Our model provides a theoretical description of these different grain size distributions. Our model combines a sequential model of the type outlined by Turcotte (1986), but generalized to cater for the explosive process appropriate here, in particular by

  4. Effect of Freeze-Thaw Cycles on Grain Size of Biochar

    NASA Astrophysics Data System (ADS)

    Dugan, B.; Liu, Z.; Masiello, C. A.; Gonnermann, H. M.; Nittrouer, J. A.

    2015-12-01

    Biochar may improve soil performance by altering soil physical properties such as porosity, density, hydraulic conductivity, and water holding capacity. Because these physical properties of soil-biochar mixtures are associated with the grain size of the soil and the biochar, they may change if biochar particles are physically broken down in the environment. In cold regions, biochar may be fragmented into smaller particles when water in biochar's internal pores expands during freezing. This expansion may mechanically break particles. In this study we investigate if freeze-thaw cycles affect grain size of biochars produced at two temperatures (350°C and 500°C) from four types of feedstock (mesquite, pine, sewage waste, and miscanthus). Prior to freeze-thaw cycles, biochar's internal porosity increases with pyrolysis temperature and also varies with feedstock type. In our study, the highest internal porosity is 0.82±0.11 for 500 °C miscanthus biochar and the lowest internal porosity is 0.27±0.01 for 350 °C sewage waste biochar. Our biochars also have different median grain diameter (D50) and aspect ratio (AR). The largest D50 is 4836±132 μm for 350 °C miscanthus biochar and the smallest D50 is 2238±13 μm for 350°C sewage waste biochar. The highest AR is 0.85±0.01 for 500 °C sewage waste biochar and the lowest AR is 0.31±0.01 for 350 °C miscanthus biochar. After characterizing the initial properties of biochars, we saturated our biochar using synthetic rain water and subjected them to 10 freeze-thaw cycles (freeze at -19±3°C for 8 hours and thaw at 20±0°C for 16 hours). We expect that D50 will be reduced and AR will be changed by freeze-thaw cycles and the effect will vary with biochar porosity. Ultimately this work will help constrain how biochar particle size changes due to freezing, which can be extrapolated to understand transients in soil performance associated with biochar particle size.

  5. Influence of grain size on optical properties of Sr{sub 2}CeO{sub 4} nanocrystals

    SciTech Connect

    Stefanski, M.; Marciniak, L. Hreniak, D.; Strek, W.

    2015-05-14

    The absorption, excitation, and emission spectra of the Sr{sub 2}CeO{sub 4} nanocrystals prepared by the modified sol–gel method were investigated. The impact of the average grain size of Sr{sub 2}CeO{sub 4} nanocrystals on their optical properties was investigated. It was observed that with increasing the average grain size of Sr{sub 2}CeO{sub 4} nanocrystals, the emission decay times decreased significantly. A similar behavior was observed for the emission quantum efficiencies and the Huang–Rhys factors. The grain size dependence of optical parameters of Sr{sub 2}CeO{sub 4} nanocrystals was found well fitted by functions of the reciprocal of the grain diameter. It was shown that this dependence may be rationalized assuming that the correction for electric local field associated with effective refractive index affecting the spherical nanoparticle is governed by its shell.

  6. The dependence of room-temperature oxidation of silicon catalyzed by Cu3Si on the silicide grain size

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Chen, L. J.

    1994-03-01

    The dependence of room-temperature oxidation of silicon catalyzed by Cu3Si on the silicide grain size has been investigated by transmission electron microscopy and x-ray diffractometry. The thickness of the SiO2 layer was found to decrease with the average grain size of the starting Cu3Si layer. High-resolution transmission electron microscopy revealed that oxidation is initiated at the grain boundaries. Oxide film as thick as 4.5 μm, compared to a previous record of about 2 μm, was grown at room temperature over a period of two weeks in (001) samples. The growth of thick oxide films was achieved by minimizing the grain size of Cu3Si through a reaction between Cu and an intermediate amorphous silicon layer at 200 °C.

  7. Tracking eolian dust with helium and thorium: Impacts of grain size and provenance

    NASA Astrophysics Data System (ADS)

    McGee, David; Winckler, Gisela; Borunda, Alejandra; Serno, Sascha; Anderson, Robert F.; Recasens, Cristina; Bory, Aloys; Gaiero, Diego; Jaccard, Samuel L.; Kaplan, Michael; McManus, Jerry F.; Revel, Marie; Sun, Youbin

    2016-02-01

    Reconstructions of the deposition rate of windblown mineral dust in ocean sediments offer an important means of tracking past climate changes and of assessing the radiative and biogeochemical impacts of dust in past climates. Dust flux estimates in ocean sediments have commonly been based on the operationally defined lithogenic fraction of sediment samples. More recently, dust fluxes have been estimated from measurements of helium and thorium, as rare isotopes of these elements (He-3 and Th-230) allow estimates of sediment flux, and the dominant isotopes (He-4 and Th-232) are uniquely associated with the lithogenic fraction of marine sediments. In order to improve the fidelity of dust flux reconstructions based on He and Th, we present a survey of He and Th concentrations in sediments from dust source areas in East Asia, Australia and South America. Our data show systematic relationships between He and Th concentrations and grain size, with He concentrations decreasing and Th concentrations increasing with decreasing grain size. We find consistent He and Th concentrations in the fine fraction (<5 μm) of samples from East Asia, Australia and Central South America (Puna-Central West Argentina), with Th concentrations averaging 14 μg/g and He concentrations averaging 2 μcc STP/g. We recommend use of these values for estimating dust fluxes in sediments where dust is dominantly fine-grained, and suggest that previous studies may have systematically overestimated Th-based dust fluxes by 30%. Source areas in Patagonia appear to have lower He and Th contents than other regions, as fine fraction concentrations average 0.8 μcc STP/g and 9 μg/g for 4He and 232Th, respectively. The impact of grain size on lithogenic He and Th concentrations should be taken into account in sediments proximal to dust sources where dust grain size may vary considerably. Our data also have important implications for the hosts of He in long-traveled dust and for the 3He/4He ratio used for

  8. The effect of grain size on the biocompatibility, cell-materials interface, and mechanical properties of microwave-sintered bioceramics.

    PubMed

    Veljović, Djordje; Colić, Miodrag; Kojić, Vesna; Bogdanović, Gordana; Kojić, Zvezdana; Banjac, Andrijana; Palcevskis, Eriks; Petrović, Rada; Janaćković, Djordje

    2012-11-01

    The effect of decreasing the grain size on the biocompatibility, cell-material interface, and mechanical properties of microwave-sintered monophase hydroxyapatite bioceramics was investigated in this study. A nanosized stoichiometric hydroxyapatite powder was isostatically pressed at high pressure and sintered in a microwave furnace in order to obtain fine grained dense bioceramics. The samples sintered at 1200°C, with a density near the theoretical one, were composed of micron-sized grains, while the grain size decreased to 130 nm on decreasing the sintering temperature to 900°C. This decrease in the grain size certainly led to increases in the fracture toughness by much as 54%. An in vitro investigation of biocompatibility with L929 and human MRC-5 fibroblast cells showed noncytotoxic effects for both types of bioceramics, while the relative cell proliferation rate, cell attachment and metabolic activity of the fibroblasts were improved with decreasing of grain size. An initial in vivo investigation of biocompatibility by the primary cutaneous irritation test showed that both materials exhibited no irritation properties.

  9. Relationship between hydraulic conductivity and formation factor of coarse-grained soils as a function of particle size

    NASA Astrophysics Data System (ADS)

    Choo, H.; Kim, J.; Lee, W.; Lee, C.

    2016-04-01

    This theoretical and experimental study investigates the variations of both the hydraulic conductivity and the electrical conductivity of coarse-grained soils as a function of pore water conductivity, porosity, and median particle size, with the ultimate goal of developing the relationship between the hydraulic conductivity (K) and the formation factor (F) in coarse-grained soils as a function of particle size. To monitor the variations of both the hydraulic conductivity and electrical conductivity (formation factor) of six sands with varying particle sizes, a series of hydraulic conductivity tests were conducted using a modified constant head permeameter equipped with a four electrode resistivity probe. It is demonstrated that K of the tested coarse-grained soils is mainly determined by the porosity and particle size. In contrast, the effect of particle size on the measured electrical conductivity (or F) is negligible, and the variation of F of the tested soils is mainly determined by porosity. Because the porosity may act as a connecting characteristic between K and F, the relation between them in coarse-grained soils can be expressed as a function of particle size. Finally, simple charts are developed for estimating the hydraulic conductivity of coarse-grained soils from the measured particle sizes and formations factors.

  10. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    USGS Publications Warehouse

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than

  11. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    SciTech Connect

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.; Hu, Qinhong

    2015-09-28

    This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.

  12. Downstream lightening and upward heavying, sorting of sediments of uniform grain size but differing in density

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Solari, L.; Hill, K. M.

    2014-12-01

    Downstream fining, i.e. the tendency for a gradual decrease in grain size in the downstream direction, has been observed and studied in alluvial rivers and in laboratory flumes. Laboratory experiments and field observations show that the vertical sorting pattern over a small Gilbert delta front is characterized by an upward fining profile, with preferential deposition of coarse particles in the lowermost part of the deposit. The present work is an attempt to answer the following questions. Are there analogous sorting patterns in mixtures of sediment particles having the same grain size but differing density? To investigate this, we performed experiments at the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. During the experiments a Gilbert delta formed and migrated downstream allowing for the study of transport and sorting processes on the surface and within the deposit. The experimental results show 1) preferential deposition of heavy particles in the upstream part of the deposit associated with a pattern of "downstream lightening"; and 2) a vertical sorting pattern over the delta front characterized by a pattern of "upward heavying" with preferential deposition of light particles in the lowermost part of the deposit. The observed downstream lightening is analogous of the downstream fining with preferential deposition of heavy (coarse) particles in the upstream part of the deposit. The observed upward heavying was unexpected because, considering the particle mass alone, the heavy (coarse) particles should have been preferentially deposited in the lowermost part of the deposit. Further, the application of classical fractional bedload transport relations suggests that in the case of mixtures of particles of uniform size and different densities equal mobility is not approached. We hypothesize that granular physics mechanisms traditionally associated with sheared granular flows may be responsible for the observed upward heavying and for the

  13. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples.

  14. Grain Size Analyses of Neogene-Quaternary Sediments from the Arctic Coring Expedition

    NASA Astrophysics Data System (ADS)

    Moran, K.; Lado-Insua, T.; O'Regan, M.

    2013-12-01

    The Arctic Coring Expedition (ACEX) recovered the first Cenozoic sediment sequence from the central Arctic Ocean. Results from this expedition indicate that perennial sea ice may have formed in the Arctic at or before the early mid-Miocene. Sea ice formation is an important process in the global climate system, affecting directly the Earth's albedo and indirectly the Meridional Overturning Circulation. The deep Arctic Ocean receives sediment primarily from ice-rafted debris and turbidity currents. Suspension freezing on the shallow continental shelves of the Arctic has generally been considered the major process trapping sediment within sea ice. Sea ice motion is largely driven by wind. The anticyclonic Beaufort Gyre transports sea ice over the Amerasia Basin, while the Transpolar Drift transports it across the Eurasian Basin. The Transpolar Drift is divided into a Siberian and Polar branch, both branches cross the position of the ACEX drilling sites on the Lomonosov Ridge. Grain size analyses of ACEX sediments were obtained with a Malvern Mastersizer 2000 laser diffraction particle sizing system. Preliminary analyses indicate pulses with a higher percentage of sand between 3.64 Ma ago until the end of the Gelasian (1.8 Ma). The percent sand remained relatively low during the Cenozoic with the exception of two major increases of sand occurring ~6.2 and 9.2 Ma ago and a smaller peak ~8.2 Ma ago. These intervals also show less sorting and lower values for skewness and kurtosis. Increases in the percentage of sand and less sorting at this latitude relate to ice rafted debris, indicating an increase in sea-ice melting during these periods. A Principal Components Analysis and a Maximum Correlation Factor Analysis agree on a correlation between different grain sizes that would divide the grain size in two major distributions (<19 μm and 19 μm to 2 mm) based on the sedimentation and transport mechanism. These two classes do not agree with the major divisions of sand (63

  15. Acoustic Measurements of Residual Stresses and Grain Sizes in Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fisher, Martin John

    The theory of acoustoelasticity relates the velocity of an acoustic wave in a solid to the elastic stress state in that solid. This thesis presents new theories, measurement techniques, and methodologies related to the use of longitudinal wave acoustoelasticity in aluminum alloys. A one-dimensional model has been developed to provide a simple understanding of the acoustoelastic effect. A new acoustic device for accurately measuring relative thickness variations has been designed and built. This device is used--in conjunction with a pulse-echo phase measurement device and a computer controlled scanning system--to measure acoustic velocity variations in plastically deformed and non-flat-and-parallel samples. Acoustic velocity variations from point to point in an unstressed sample can sometimes be on the same order as velocity changes due to applied or residual stresses, and this can make stress measurements difficult. A statistical theory has been developed to relate these unstressed velocity variations to the average grain size in the sample and to the active area of the acoustic transducer used. Large transducers and small grain sizes will minimize these variations. This relationship has been verified by tests on a number of aluminum alloys and a new method for non-destructive grain size determination has been suggested. A systematic methodology has been developed and tested for studying the influence of uniaxial plastic deformation on the acoustoelastic response. Samples have been plastically deformed in four-point bending to produce elastic-plastic and residual stress states. Acoustic measurements of these stresses have then been compared directly to theoretical predictions based on the materials' stress-strain curves and simple beam theory. In the aluminum alloys tested (2024-T351 and 7075-T651), the acoustoelastic constants are shown to be virtually unchanged by uniaxial plastic strains of less than 2.5%. Thus, the acoustoelastic technique can be reliably

  16. Expading fluvial remote sensing to the riverscape: Mapping depth and grain size on the Merced River, California

    NASA Astrophysics Data System (ADS)

    Richardson, Ryan T.

    This study builds upon recent research in the field of fluvial remote sensing by applying techniques for mapping physical attributes of rivers. Depth, velocity, and grain size are primary controls on the types of habitat present in fluvial ecosystems. This thesis focuses on expanding fluvial remote sensing to larger spatial extents and sub-meter resolutions, which will increase our ability to capture the spatial heterogeneity of habitat at a resolution relevant to individual salmonids and an extent relevant to species. This thesis consists of two chapters, one focusing on expanding the spatial extent over which depth can be mapped using Optimal Band Ratio Analysis (OBRA) and the other developing general relations for mapping grain size from three-dimensional topographic point clouds. The two chapters are independent but connected by the overarching goal of providing scientists and managers more useful tools for quantifying the amount and quality of salmonid habitat via remote sensing. The OBRA chapter highlights the true power of remote sensing to map depths from hyperspectral images as a central component of watershed scale analysis, while also acknowledging the great challenges involved with increasing spatial extent. The grain size mapping chapter establishes the first general relations for mapping grain size from roughness using point clouds. These relations will significantly reduce the time needed in the field by eliminating the need for independent measurements of grain size for calibrating the roughness-grain size relationship and thus making grain size mapping with SFM more cost effective for river restoration and monitoring. More data from future studies are needed to refine these relations and establish their validity and generality. In conclusion, this study adds to the rapidly growing field of fluvial remote sensing and could facilitate river research and restoration.

  17. Effect of grain size on stability of X-ray diffraction patterns used for threat detection

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Rebuffel, V.; Tabary, J.; Paulus, C.; Verger, L.; Duvauchelle, Ph.

    2012-08-01

    Energy Dispersive X-ray Diffraction (EDXRD) is well-suited to detecting narcotics and a wide range of explosives. The integrated intensity of an X-ray diffraction peak is proportional to the number of grains in the inspected object which are oriented such that they satisfy Bragg's condition. Several parameters have a significant influence on this number. Among them, we can list grain size and the fill rate for polycrystalline materials that both may significantly vary for a same material according to its way of production. Consequently, peak intensity may change significantly from one measurement to another one, thus increasing the risk of losing peaks. This instability is one of the many causes of false alarms. To help avoid these, we have developed a model to quantify the stability of the diffraction patterns measured. Two methods (extension of the detector in a direction perpendicular to the diffractometer plane and slow rotation of both source and detector) can be used to decrease the coefficient of variation, leading to a more stable spectral measurement.

  18. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  19. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Mehta, Virat; Wang, Tianhan; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Wu, Benny; Graves, Catherine; Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo; Hellwig, Olav

    2015-05-01

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L3 absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  20. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    SciTech Connect

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav; Wang, Tianhan; Wu, Benny; Graves, Catherine; Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  1. Numerical Estimation of the Dependence of Dielectric Constant of BaTiO3 Thick Films on Grain-Size Distribution

    NASA Astrophysics Data System (ADS)

    Yamashita, Kimihiro; Yamazaki, Shozo; Koumoto, Kunihito; Yanagida, Hiroaki

    1981-10-01

    An exponential function of the grain size was assumed in calculating the apparent (total) dielectric constant of BaTiO3 thick films with the average grain diameter known. The function was tested and estimated experimentally, for cases where the grain sizes were calculated using the following methods; the two-dimensional diameter analysis, the Schwartz-Saltykov method and Oel’s method for converting a two-dimensional grain distribution to a spacial grain sizedistribution. Using the present assumed function and the extended logarithmic mixing rule to combine the dielectric constants of individual grains, the grain-size distribution-dependence of the dielectric constant was successfully simulated. From the simulated results it was concluded that the dielectric constants of coarse grains of thick films increase with increase of grain size in the range from room temperature up to 135°C.

  2. Laboratory analyses of micron-sized solid grains: Experimental techniques and recent results

    NASA Technical Reports Server (NTRS)

    Colangeli, L.; Bussoletti, E.; Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.; Schwehm, G.

    1989-01-01

    Morphological and spectrophotometric investigations have been extensively applied in the past years to various kinds of micron and/or submicron-sized grains formed by materials which are candidate to be present in space. The samples are produced in the laboratory and then characterized in their physio-chemical properties. Some of the most recent results obtained on various kinds of carbonaceous materials are reported. Main attention is devoted to spectroscopic results in the VUV and IR wavelength ranges, where many of the analyzed samples show typical fingerprints which can be identified also in astrophysical and cometary materials. The laboratory methodologies used so far are also critically discussed in order to point out capabilities and present limitations, in the view of possible application to returned comet samples. Suggestions are given to develop new techniques which should overcome some of the problems faced in the manipulation and analysis of micron solid samples.

  3. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    NASA Astrophysics Data System (ADS)

    Sharma, Giriraj; Dad, R. C.; Ghosh, S.

    2015-07-01

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered.

  4. Analytical modeling for bridging stress function involving grain size distribution in a polycrystalline alumina

    NASA Astrophysics Data System (ADS)

    Sohn, Kee-Sun; Lee, Sunghak; Baik, Sunggi

    1995-05-01

    In order to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina, an analytical model has been proposed based on the relationship between bridging stress and crack opening displacement. The crack opening displacement was measured using an in situ SEM fracture method, and then used for a fitting procedure to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation, and that the grain size distribution was closely related to the bridging stress. Thus, the current model explained well the correlation between the bridging stress distribution and the local-fracture-controlling microstructural parameter to interpret the microfracture mechanism, including the R-curve behavior.

  5. New Technology/Old Technology: Comparing Lunar Grain Size Distribution Data and Methods

    NASA Technical Reports Server (NTRS)

    Fruland, R. M.; Cooper, Bonnie L.; Gonzalexz, C. P.; McKay, David S.

    2011-01-01

    Laser diffraction technology generates reproducible grain size distributions and reveals new structures not apparent in old sieve data. The comparison of specific sieve fractions with the Microtrac distribution curve generated for those specific fractions shows a reasonable match for the mean of each fraction between the two techniques, giving us confidence that the large existing body of sieve data can be cross-correlated with new data based on laser diffraction. It is well-suited for lunar soils, which have as much as 25% of the material in the less than 20 micrometer fraction. The fines in this range are of particular interest because they may contain a record of important space weathering processes.

  6. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    SciTech Connect

    Sharma, Giriraj; Dad, R. C.; Ghosh, S.

    2015-07-31

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered.

  7. Vibracore, Radiocarbon, Microfossil, and Grain-Size Data from Apalachicola Bay, Florida

    USGS Publications Warehouse

    Twichell, D.C.; Pendleton, E.A.; Poore, R.Z.; Osterman, L.E.; Kelso, K.W.

    2009-01-01

    In 2007, the U.S. Geological Survey collected 24 vibracores within Apalachicola Bay, Florida. The vibracores were collected by using a Rossfelder electric percussive (P-3) vibracore system during a cruise on the Research Vessel (R/V) G.K. Gilbert. Selection of the core sites was based on a geophysical survey that was conducted during 2005 and 2006 in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) Coastal Services Center (CSC) and the Apalachicola Bay National Estuarine Research Reserve. This report contains the vibracore data logs, photographs, and core-derived data including grain-size analyses, radiocarbon ages, microfossil counts, and sedimentological interpretations. The long-term goal of this study is to provide maps, data, and assistance to the Apalachicola Bay National Estuarine Research Reserve in their effort to monitor and understand the geology and ecology of Apalachicola Bay Estuary. These data will inform coastal managers charged with the responsibility for resource preservation.

  8. Grain size effect on mechanical performance of nanostructured superelastic NiTi alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2017-03-01

    The mechanical performance of superelastic NiTi with various grain sizes (GSs) in nanocrystalline regime (GS  <  30 nm) are investigated. With the help of digital image correlation, both global and local mechanical responses of NiTi during quasi-static test and fatigue cycling are recorded. If GS is below 14 nm, NiTi deforms homogenously; if GS is above 14 nm, NiTi deforms in a heterogeneous manner. The mechanical response, the fatigue life, the dissipation energy and the resistance to the dissipation energy degradation of nanostructured NiTi are addressed and analyzed. The results indicate that the mechanical performance of NiTi can be designed and optimized by controlling GS in a moderate regime.

  9. Statistical relationship between pyrite grain size distribution and pyritic sulfur reduction in Ohio coal

    USGS Publications Warehouse

    Mazumdar, M.; Carlton, R.W.; Irdi, G.A.

    1988-01-01

    This paper presents a statistical relationship between the pyrite particle size distribution and the potential amount of pyritic sulfur reduction achieved by specific-gravity-based separation. This relationship is obtained from data on 26 Ohio coal samples crushed to 14 ?? 28 mesh. In this paper a prediction equation is developed that considers the complete statistical distribution of all the pyrite particle sizes in the coal sample. Assuming that pyrite particles occurring in coal have a lognormal distribution, the information about the particle size distribution can be encapsulated in terms of two parameters only, the mean and the standard deviation of the logarithms of the grain diameters. When the pyritic sulfur reductions of the 26 coal samples are related to these two parameters, a very satisfactory regression equation (R2 = 0.91) results. This equation shows that information on both these parameters is needed for an accurate prediction of potential sulfur reduction, and that the mean and the standard deviation interact negatively insofar as their influence on pyritic sulfur reduction is concerned. ?? 1988.

  10. Orthographic transparency modulates the grain size of orthographic processing: behavioral and ERP evidence from bilingualism.

    PubMed

    Lallier, Marie; Carreiras, Manuel; Tainturier, Marie-Josèphe; Savill, Nicola; Thierry, Guillaume

    2013-04-10

    Grapheme-to-phoneme mapping regularity is thought to determine the grain size of orthographic information extracted whilst encoding letter strings. Here we tested whether learning to read in two languages differing in their orthographic transparency yields different strategies used for encoding letter-strings as compared to learning to read in one (opaque) language only. Sixteen English monolingual and 16 early Welsh-English bilingual readers undergoing event-related brain potentials (ERPs) recordings were asked to report whether or not a target letter displayed at fixation was present in either a nonword (consonant string) or an English word presented immediately before. Bilinguals and monolinguals showed similar behavioural performance on target detection presented in words and nonwords, suggesting similar orthographic encoding in the two groups. By contrast, the amplitude of ERPs locked to the target letters (P3b, 340-570 ms post target onset, and a late frontal positive component 600-1,000 ms post target onset) were differently modulated by the position of the target letter in words and nonwords between bilinguals and monolinguals. P3b results show that bilinguals who learnt to read simultaneously in an opaque and a transparent orthographies encoded orthographic information presented to the right of fixation more poorly than monolinguals. On the opposite, only monolinguals exhibited a position effect on the late positive component for both words and nonwords, interpreted as a sign of better re-evaluation of their responses. The present study shed light on how orthographic transparency constrains grain size and visual strategies underlying letter-string encoding, and how those constraints are influenced by bilingualism.

  11. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum

    PubMed Central

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-01-01

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm2 V−1 s−1 under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications. PMID:22426220

  12. 3D granulometry: grain-scale shape and size distribution from point cloud dataset of river environments

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Lague, Dimitri; Gourdon, Aurélie; Croissant, Thomas; Crave, Alain

    2016-04-01

    The grain-scale morphology of river sediments and their size distribution are important factors controlling the efficiency of fluvial erosion and transport. In turn, constraining the spatial evolution of these two metrics offer deep insights on the dynamics of river erosion and sediment transport from hillslopes to the sea. However, the size distribution of river sediments is generally assessed using statistically-biased field measurements and determining the grain-scale shape of river sediments remains a real challenge in geomorphology. Here we determine, with new methodological approaches based on the segmentation and geomorphological fitting of 3D point cloud dataset, the size distribution and grain-scale shape of sediments located in river environments. Point cloud segmentation is performed using either machine-learning algorithms or geometrical criterion, such as local plan fitting or curvature analysis. Once the grains are individualized into several sub-clouds, each grain-scale morphology is determined using a 3D geometrical fitting algorithm applied on the sub-cloud. If different geometrical models can be conceived and tested, only ellipsoidal models were used in this study. A phase of results checking is then performed to remove grains showing a best-fitting model with a low level of confidence. The main benefits of this automatic method are that it provides 1) an un-biased estimate of grain-size distribution on a large range of scales, from centimeter to tens of meters; 2) access to a very large number of data, only limited by the number of grains in the point-cloud dataset; 3) access to the 3D morphology of grains, in turn allowing to develop new metrics characterizing the size and shape of grains. The main limit of this method is that it is only able to detect grains with a characteristic size greater than the resolution of the point cloud. This new 3D granulometric method is then applied to river terraces both in the Poerua catchment in New-Zealand and

  13. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  14. The effects of snowpack grain size on satellite passive microwave observations from the Upper Colorado River Basin

    USGS Publications Warehouse

    Josberger, E.G.; Gloersen, P.; Chang, A.; Rango, A.

    1996-01-01

    Understanding the passive microwave emissions of a snowpack, as observed by satellite sensors, requires knowledge of the snowpack properties: water equivalent, grain size, density, and stratigraphy. For the snowpack in the Upper Colorado River Basin, measurements of snow depth and water equivalent are routinely available from the U.S. Department of Agriculture, but extremely limited information is available for the other properties. To provide this information, a field program from 1984 to 1995 obtained profiles of snowpack grain size, density, and temperature near the time of maximum snow accumulation, at sites distributed across the basin. A synoptic basin-wide sampling program in 1985 showed that the snowpack exhibits consistent properties across large regions. Typically, the snowpack in the Wyoming region contains large amounts of depth hoar, with grain sizes up to 5 mm, while the snowpack in Colorado and Utah is dominated by rounded snow grains less than 2 mm in diameter. In the Wyoming region, large depth hoar crystals in shallow snowpacks yield the lowest emissivities or coldest brightness temperatures observed across the entire basin. Yearly differences in the average grain sizes result primarily from variations in the relative amount of depth hoar within the snowpack. The average grain size for the Colorado and Utah regions shows much less variation than do the grain sizes from the Wyoming region. Furthermore, the greatest amounts of depth hoar occur in the Wyoming region during 1987 and 1992, years with strong El Nin??o Southern Oscillation, but the Colorado and Utah regions do not show this behavior.

  15. Seasonal changes of magnetic minerals and their grain sizes in the Hiroshima Bay sediments

    NASA Astrophysics Data System (ADS)

    Kawamura, N.; Ishikawa, N.

    2011-12-01

    Frequent outbreaks of red tide have been reported since 1970 in the Hiroshima bay, and the red tide is caused by a bloom of dinoflagellates. Iron is an essential element for dinoflagellates, and is supplied as bivalent or trivalent ions and iron compounds from lands to sea. For damage predictions of red tide, it is important to research the distribution of iron in the bay. The acidification of seawater during summer has been also observed in the Hiroshima Bay. Increase of CO2 concentration and decrease of dissolved oxygen (DO) content in seawater cause an anoxic condition in the bay. It is known that iron oxides are dissolved and sulfides are formed in an anoxic condition. For clarifying variations of the distribution and mode of iron in sediments and bottom water in the Hiroshima Bay, we investigated kinds of iron compounds in the sediments and the amount of dissolved iron in the bottom waters. Sediment cores of 5cm in depth were taken at three sites in the Hiroshima Bay by using a multiple corer and crab sampler. Data of oceanographic observations at these sites showed that the temperature of the bottom water increased, whereas DO and pH values decreased during the sampling period. The sediment samples were composed of clayey silt. We measured dissolved iron concentration in interstitial and bottom waters filtered above 0.45 um grains, and performed magnetic hysteresis measurements and high temperature magnetometry on the sediment samples. The presence of magnetite (Fe3O4) and hematite (Fe2O3) were recognized in all analyzed samples, whereas greigite (Fe3S4) appeared at these sites with an anoxic condition in the bottom water. Magnetic grain size increased from June to August, while iron concentration increased in the bottom waters. It is suggested that magnetite and hematite were dissolved and greigite was formed, associated with the proceeding of the anoxic condition, and that the grain-size of magnetic minerals and the iron concentration of the bottom water

  16. Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat

    PubMed Central

    Guo, Zifeng; Slafer, Gustavo A; Schnurbusch, Thorsten

    2016-01-01

    Spike fertility traits are critical attributes for grain yield in wheat (Triticum aestivum L.). Here, we examine the genotypic variation in three important traits: maximum number of floret primordia, number of fertile florets, and number of grains. We determine their relationship in determining spike fertility in 30 genotypes grown under two contrasting conditions: field and greenhouse. The maximum number of floret primordia per spikelet (MFS), fertile florets per spikelet (FFS), and number of grains per spikelet (GS) not only exhibited large genotypic variation in both growth conditions and across all spikelet positions studied, but also displayed moderate levels of heritability. FFS was closely associated with floret survival and only weakly related to MFS. We also found that the post-anthesis process of grain set/abortion was important in determining genotypic variation in GS; an increase in GS was mainly associated with improved grain survival. Ovary size at anthesis was associated with both floret survival (pre-anthesis) and grain survival (post-anthesis), and was thus believed to ‘connect’ the two traits. In this work, proximal florets (i.e. the first three florets from the base of a spikelet: F1, F2, and F3) produced fertile florets and set grains in most cases. The ovary size of more distal florets (F4 and beyond) seemed to act as a decisive factor for grain setting and effectively reflected pre-anthesis floret development. In both growth conditions, GS positively correlated with ovary size of florets in the distal position (F4), suggesting that assimilates allocated to distal florets may play a critical role in regulating grain set. PMID:27279276

  17. Assessing grain-size correspondence between flow and deposits of controlled floods in the Colorado River, USA

    USGS Publications Warehouse

    Draut, Amy; Rubin, David M.

    2013-01-01

    Flood-deposited sediment has been used to decipher environmental parameters such as variability in watershed sediment supply, paleoflood hydrology, and channel morphology. It is not well known, however, how accurately the deposits reflect sedimentary processes within the flow, and hence what sampling intensity is needed to decipher records of recent or long-past conditions. We examine these problems using deposits from dam-regulated floods in the Colorado River corridor through Marble Canyon–Grand Canyon, Arizona, U.S.A., in which steady-peaked floods represent a simple end-member case. For these simple floods, most deposits show inverse grading that reflects coarsening suspended sediment (a result of fine-sediment-supply limitation), but there is enough eddy-scale variability that some profiles show normal grading that did not reflect grain-size evolution in the flow as a whole. To infer systemwide grain-size evolution in modern or ancient depositional systems requires sampling enough deposit profiles that the standard error of the mean of grain-size-change measurements becomes small relative to the magnitude of observed changes. For simple, steady-peaked floods, 5–10 profiles or fewer may suffice to characterize grain-size trends robustly, but many more samples may be needed from deposits with greater variability in their grain-size evolution.

  18. Comparison of hydraulic conductivities by grain-size analysis pumping, and slug tests in Quaternary gravels, NE Slovenia

    NASA Astrophysics Data System (ADS)

    Pucko, Tatjana; Verbovšek, Timotej

    2015-08-01

    Hydraulic conductivities (K) can be obtained from pumping and slug tests as well as grain size analysis. Although empirical methods for such estimations are longstanding, there is still insufficient comparison of K values among the various approaches. Six grain-size analysis methods were tested on coarse-grained alluvial sediments from 12 water wells in NE Slovenia. Values of K from grainsize methods were compared to those of pumping tests and slug tests. Six grain-size methods (USBR, Slichter, Hazen, Beyer, Kozeny-Carman, and Terzaghi) were used for comparison with the Theis and Neuman pumping test method and the Bouwer-Rice method for slug tests. The results show that the USBR (US Bureau of Reclamation) method overestimates K values and there is no correlation with other results, so its use is not advised. Conversely, whilst the Slichter method gives much lower estimates of K, it is the only one to completely fulfill the grain size requirements. Other methods (Hazen, Beyer, Kozeny- Carman, and Terzaghi) result in intermediate values and are similar to the Slichter method; however they should be used for smaller-sized sediments. Due to their high transmissivity and small radius of inffiuence, slug tests should be avoided in the analysis of gravels, as they only test a small portion of the aquifer compared to pumping tests. This is confirmed by the low correlation coefficients between hydraulic conductivities obtained from pumping tests and slug tests.

  19. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    PubMed

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  20. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production.

    PubMed

    Liu, Shuying; Hua, Lei; Dong, Sujun; Chen, Hongqi; Zhu, Xudong; Jiang, Jun'e; Zhang, Fang; Li, Yunhai; Fang, Xiaohua; Chen, Fan

    2015-11-01

    Grain size is an important agronomic trait in determining grain yield. However, the molecular mechanisms that determine the final grain size are not well understood. Here, we report the functional analysis of a rice (Oryza sativa L.) mutant, dwarf and small grain1 (dsg1), which displays pleiotropic phenotypes, including small grains, dwarfism and erect leaves. Cytological observations revealed that the small grain and dwarfism of dsg1 were mainly caused by the inhibition of cell proliferation. Map-based cloning revealed that DSG1 encoded a mitogen-activated protein kinase (MAPK), OsMAPK6. OsMAPK6 was mainly located in the nucleus and cytoplasm, and was ubiquitously distributed in various organs, predominately in spikelets and spikelet hulls, consistent with its role in grain size and biomass production. As a functional kinase, OsMAPK6 interacts strongly with OsMKK4, indicating that OsMKK4 is likely to be the upstream MAPK kinase of OsMAPK6 in rice. In addition, hormone sensitivity tests indicated that the dsg1 mutant was less sensitive to brassinosteroids (BRs). The endogenous BR levels were reduced in dsg1, and the expression of several BR signaling pathway genes and feedback-inhibited genes was altered in the dsg1 mutant, with or without exogenous BRs, indicating that OsMAPK6 may contribute to influence BR homeostasis and signaling. Thus, OsMAPK6, a MAPK, plays a pivotal role in grain size in rice, via cell proliferation, and BR signaling and homeostasis.

  1. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching.

    PubMed

    Zhang, Yu-Chan; Yu, Yang; Wang, Cong-Ying; Li, Ze-Yuan; Liu, Qing; Xu, Jie; Liao, Jian-You; Wang, Xiao-Jing; Qu, Liang-Hu; Chen, Fan; Xin, Peiyong; Yan, Cunyu; Chu, Jinfang; Li, Hong-Qing; Chen, Yue-Qin

    2013-09-01

    Increasing grain yields is a major focus of crop breeders around the world. Here we report that overexpression of the rice microRNA (miRNA) OsmiR397, which is naturally highly expressed in young panicles and grains, enlarges grain size and promotes panicle branching, leading to an increase in overall grain yield of up to 25% in a field trial. To our knowledge, no previous report has shown a positive regulatory role of miRNA in the control of plant seed size and grain yield. We determined that OsmiR397 increases grain yield by downregulating its target, OsLAC, whose product is a laccase-like protein that we found to be involved in the sensitivity of plants to brassinosteroids. As miR397 is highly conserved across different species, our results suggest that manipulating miR397 may be useful for increasing grain yield not only in rice but also in other cereal crops.

  2. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    SciTech Connect

    Zaham, B.; Tahraoui, A. Chekour, S.; Benlemdjaldi, D.

    2014-12-15

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grains trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.

  3. Evolution of grain sizes and orientations during phase transitions in hydrous Mg2SiO4

    NASA Astrophysics Data System (ADS)

    Rosa, Angelika D.; Hilairet, Nadège; Ghosh, Sujoy; Perrillat, Jean-Philippe; Garbarino, Gaston; Merkel, Sébastien

    2016-10-01

    Transformation microstructures in mantle minerals, such as (Mg,Fe)2SiO4, are critical for predicting the rheological properties of rocks and the interpretation of seismic observations. We present in situ multigrain X-ray diffraction experiments on hydrous Mg2SiO4 at the P/T conditions relevant for deep cold subducting slabs (up to 40 GPa and 850°C) at a low experimental strain rate ( 4 * 10-6s-1). We monitor the orientations of hundreds of grains and grain size variations during the series of α-β-γ (forsterite-wadsleyite-ringwoodite) phase transformations. Microtextural results indicate that the β and an intermediate γ* phase grow incoherently relatively to the host α phase consistent with a nucleation and growth model. The β and γ phases exhibit orientation relationships which are in agreement with previous ex situ observations. The β and intermediate γ* show texturing due to moderate differential stress in the sample. Both the α-β and α-γ transformation induce significant reductions of the mean sample grain size of up to 90% that starts prior to the appearance of the daughter phase. Apart from the γ*, in the newly formed β and γ phases, the nucleation rate is faster than the growth rate, inhibiting the formation of large grains. These results on grain orientations and grain size reductions in relation to transformation kinetics should allow refining existing slab strength models.

  4. Effects of grain size and disorder on domain wall propagation in CoFeB thin films

    NASA Astrophysics Data System (ADS)

    Voto, Michele; Lopez-Diaz, Luis; Torres, Luis

    2016-05-01

    Micromagnetic simulations are used to investigate the effect of disorder on field-driven domain wall motion in perpendicularly magnetized CoFeB thin films. It is found that some degree of inhomogeneity in the form of an irregular grain structure needs to be introduced in the model in order to account for the domain wall velocities measured experimentally, even for applied fields much larger than the finite propagation field induced by weak disorder in the film. Moreover, the details of this grain structure have a large impact on domain wall motion in this flow regime. In particular, it is found that, for a fixed applied field, domain wall velocity rapidly increases with grain size up to a diameter of 40 nm, above which it slowly decreases. This is explained showing that the grain structure of the material introduces a new form of dissipation of energy via spin wave emission during domain wall propagation. We focus on the relation between grain size and domain wall velocity, finding that the frequency of emission of spin waves packets during domain wall motion depends on the grain size and affects directly the domain wall velocity of propagation.

  5. GaN photovoltaic leakage current and correlation to grain size

    NASA Astrophysics Data System (ADS)

    Matthews, K. D.; Chen, X.; Hao, D.; Schaff, W. J.; Eastman, L. F.

    2010-10-01

    GaN p-i-n solar PV structures grown by rf plasma assisted molecular beam epitaxy (MBE) produce high performance IV characteristics with a leakage current density of less than 1×10-4 mA cm-2 at 0.1 V forward bias and an on-resistance of 0.039 Ω cm2. Leakage current measurements taken for different size diodes processed on the same sample containing the solar cells reveal that current density increases with diode area, indicating that leakage is not a large function of surface leakage along the mesa. Nonannealed Pt/Au Ohmic p-contacts produce a contact resistivity of 4.91×10-4 Ω cm-2 for thin Mg doped contact layers with sheet resistivity of 62196 Ω/◻. Under concentrated sunlight the cells produce an open-circuit voltage of 2.5 V and short circuit currents as high as 30 mA cm-2. Multiple growths comprised the study and on each wafer the IV curves representing several diodes showed considerable variation in parasitic leakage current density at low voltages on some wafers and practically no variation on others. It appears that a smaller grain size within the GaN thin film accounts for higher levels of dark current.

  6. Simulations of a binary-sized mixture of inelastic grains in rapid shear flow.

    PubMed

    Clelland, R; Hrenya, C M

    2002-03-01

    In an effort to explore the rapid flow behavior associated with a binary-sized mixture of grains and to assess the predictive ability of the existing theory for such systems, molecular-dynamic simulations have been carried out. The system under consideration is composed of inelastic, smooth, hard disks engaged in rapid shear flow. The simulations indicate that nondimensional stresses decrease with an increase in d(L)/d(S) (ratio of large particle diameter to small particle diameter) or a decrease in nu(L)/nu(S) (area fraction ratio), as is also predicted by the kinetic theory of Willits and Arnarson [Phys. Fluids 11, 3116 (1999)]. Furthermore, the level of quantitative agreement between the theoretical stress predictions and simulation data is good over the entire range of parameters investigated. Nonetheless, the molecular-dynamic simulations also show that the assumption of an equipartition of energy rapidly deteriorates as the coefficient of restitution is decreased. The magnitude of this energy difference is found to increase with the difference in particle sizes.

  7. GaN photovoltaic leakage current and correlation to grain size

    SciTech Connect

    Matthews, K. D.; Chen, X.; Hao, D.; Schaff, W. J.; Eastman, L. F.

    2010-10-15

    GaN p-i-n solar PV structures grown by rf plasma assisted molecular beam epitaxy (MBE) produce high performance IV characteristics with a leakage current density of less than 1x10{sup -4} mA cm{sup -2} at 0.1 V forward bias and an on-resistance of 0.039 {Omega} cm{sup 2}. Leakage current measurements taken for different size diodes processed on the same sample containing the solar cells reveal that current density increases with diode area, indicating that leakage is not a large function of surface leakage along the mesa. Nonannealed Pt/Au Ohmic p-contacts produce a contact resistivity of 4.91x10{sup -4} {Omega} cm{sup -2} for thin Mg doped contact layers with sheet resistivity of 62196 {Omega}/{open_square}. Under concentrated sunlight the cells produce an open-circuit voltage of 2.5 V and short circuit currents as high as 30 mA cm{sup -2}. Multiple growths comprised the study and on each wafer the IV curves representing several diodes showed considerable variation in parasitic leakage current density at low voltages on some wafers and practically no variation on others. It appears that a smaller grain size within the GaN thin film accounts for higher levels of dark current.

  8. Controls on the Size and Occurrence of Pools in Coarse-Grained Forest Rivers

    NASA Astrophysics Data System (ADS)

    Buffington, J. M.; Lisle, T. E.; Woodsmith, R. D.; Hilton, S.

    2001-12-01

    Controls on pool formation are examined in gravel- and cobble-bed rivers in forest mountain drainage basins of northern California, southern Oregon, and southeastern Alaska. We demonstrate that the majority of pools at our study sites are formed by flow obstructions and that pool geometry and frequency largely depend on obstruction characteristics (size, type, and frequency). However, the effectiveness of obstructions to induce scour also depends on channel characteristics, such as channel gradient, width-depth ratio, relative submergence (ratio of flow depth to grain size), and the caliber and rate of bed material supply. Moreover, different reach-scale channel types impose different characteristic physical processes and boundary conditions that further control the occurrence of pools within a watershed. Our findings indicate that effective management of pools and associated aquatic habitat requires consideration of a variety of factors, each of which may be more or less important depending on channel type and location within a watershed. Consequently, strategies for managing pools that are based solely on single-factor, regional target values (e.g. a certain number of wood pieces or pools per stream length) are likely to be ineffective because they do not account for the variety of local and watershed controls on pool scour and, therefore, may be of limited value for proactive management of complex ecosystems.

  9. Effects of grain size and temperature on virus attachment onto quartz sand

    NASA Astrophysics Data System (ADS)

    Aravantinou, Andriana F.; Chrysikopoulos, Constantinos V.

    2014-05-01

    Virus transport in groundwater is controlled mainly by attachment onto the solid matrix and inactivation. Therefore, understanding how the various parameters affect virus attachment can lead to improved virus transport predictions and better health risk evaluations. This study is focused on the attachment of viruses onto quartz sand under batch experimental conditions. The bacteriophages ΦX174 and MS2 were used as model viruses. Three different sand grain sizes were employed for the static and dynamic experiments. The batch sorption experiments were performed under static conditions at 4°C and 20°C and dynamic conditions at 4°C. The experimental data were adequately described by the Freudlich isotherm. It was shown that temperature significantly affects virus attachment under static conditions. The attachment of both MS2 and ΦX174 onto quartz sand was greater at 20°C than 4°C. Higher virus attachment was observed under dynamic than static conditions, and in all cases, the affinity of MS2 for quartz sand was greater than that of ΦX174. Furthermore, in most of the cases considered, bacteriophage attachment was shown to decrease with increasing quartz sand size.

  10. Influence of Shock Prestraining and Grain Size on the Dynamic-Tensile-Extrusion Response of Copper: Experiments and Simulation