Science.gov

Sample records for abrasive mass flow

  1. Investigation of wear resistance of polyurethanes in abrasive soil mass

    NASA Astrophysics Data System (ADS)

    Napiórkowski, Jerzy; Ligier, Krzysztof

    2018-04-01

    This paper presents a comparative study of polyurethane wear in different abrasive soil masses. Two types of polyurethanes of various chemical compositions and untreated 38GSA steel were tested, the latter being used as a reference standard. The study was conducted in natural soil mass at a "rotating bowl" stand. Relative wear resistance was determined from measurements of mass wear for the materials under study. The condition of the surface of the materials under wear test was analysed.

  2. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  3. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  4. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  5. A new methodology for hydro-abrasive erosion tests simulating penstock erosive flow

    NASA Astrophysics Data System (ADS)

    Aumelas, V.; Maj, G.; Le Calvé, P.; Smith, M.; Gambiez, B.; Mourrat, X.

    2016-11-01

    Hydro-abrasive resistance is an important property requirement for hydroelectric power plant penstock coating systems used by EDF. The selection of durable coating systems requires an experimental characterization of coating performance. This can be achieved by performing accelerated and representative laboratory tests. In case of severe erosion induced by a penstock flow, there is no suitable method or standard representative of real erosive flow conditions. The presented study aims at developing a new methodology and an associated laboratory experimental device. The objective of the laboratory apparatus is to subject coated test specimens to wear conditions similar to the ones generated at the penstock lower generatrix in actual flow conditions. Thirteen preselected coating solutions were first been tested during a 45 hours erosion test. A ranking of the thirteen coating solutions was then determined after characterisation. To complete this first evaluation and to determine the wear kinetic of the four best coating solutions, additional erosion tests were conducted with a longer duration of 216 hours. A comparison of this new method with standardized tests and with real service operating flow conditions is also discussed. To complete the final ranking based on hydro-abrasive erosion tests, some trial tests were carried out on penstock samples to check the application method of selected coating systems. The paper gives some perspectives related to erosion test methodologies for materials and coating solutions for hydraulic applications. The developed test method can also be applied in other fields.

  6. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  7. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  8. A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow

    NASA Astrophysics Data System (ADS)

    Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A.

    Abrasive flow machining has been the pioneer of new finishing processes. Rotating workpiece and imposing a magnetic field using magnetorheological working medium are some assisting manipulations to improve surface finishing, because they can increase the forces on the workpiece surface. Similarly, swirling the inlet flow using stationary swirler vanes, as a novel idea, may also increase forces on the surface, and then raise the material removal, with a lower expense and energy consumption compared with the case of workpiece rotation. Thus, in this paper, surface roughness improvement is studied in a pipe with rotating inlet flow of a magnetorheological finishing medium under imposing a magnetic field. The results are compared with the case of rotating workpiece, using 3D numerical simulation. The governing hydrodynamic parameters are investigated in both cases to monitor the flow variations. It is shown that surface roughness is improved by rotating inlet flow. However, it is found that finishing in the entrance length of swirling-assisted inlet flow can be so economical for short length workpieces, compared with the case of rotating workpiece, with very near Ra values. By comparison of the numerical results and published experimental data, current study also shows the ability of the numerical simulation, as an inexpensive and efficient tool, to predict the surface roughness changes in finishing processes.

  9. Corneal Abrasions

    MedlinePlus

    ... the doctor looks at the eye under a light that is filtered cobalt blue. The fluorescein causes the abrasion to glow bright green under the light. The doctor also might do a standard ophthalmic ...

  10. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  11. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  12. Charge-to-mass dispersion methods for abrasion-ablation fragmentation models

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Norbury, J. W.

    1985-01-01

    Methods to describe the charge-to-mass dispersion distributions of projectile prefragments are presented and used to determine individual isotope cross-sections or various elements produced in the fragmentation of relativistic argon nuclei by carbon targets. Although slight improvements in predicted cross-sections are obtained for the quantum mechanical giant dipole resonance (GDR) distribution when compared qith the predictions of the geometric GDR model, the closest agreement between theory and experiment continues to be obtained with the simple hypergeometric distribution, which treats the nucleons in the nucleus as completely uncorrelated.

  13. Mass and energy flow in prominences

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I.

    1990-01-01

    Mass and energy flow in quiescent prominences is considered based on the hypothesis that active region prominences have a different structure and thus different mass and energy flow characteristics. Several important physical parameters have been plotted using the computational model, representing the evolutionary process after the prominence formation. The temperature, velocity, conductive flux, and enthalpy flux are plotted against distance from the highest point in the loop to the coolest part of the prominence. It is shown that the maximum velocity is only about 5 km/s. The model calculations indicate that the transition region of prominences is dominated by complex processes. It is necessary to take into account mass flow at temperatures below 200,000 K, and both mass flow and optical depth effects in hydrogen at temperatures below 30,000 K. Both of these effects lead to a less steep temperature gradient through the prominence corona interface than can be obtained from the conduction alone.

  14. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  15. Oxygen-Mass-Flow Calibration Cell

    NASA Technical Reports Server (NTRS)

    Martin, Robert E.

    1996-01-01

    Proposed calibration standard for mass flow rate of oxygen based on conduction of oxygen ions through solid electrolyte membrane made of zirconia and heated to temperature of 1,000 degrees C. Flow of oxygen ions proportional to applied electric current. Unaffected by variations in temperature and pressure, and requires no measurement of volume. Calibration cell based on concept used to calibrate variety of medical and scientific instruments required to operate with precise rates of flow of oxygen.

  16. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  17. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  18. Magnetized, mass-loaded, rotating accretion flows

    NASA Astrophysics Data System (ADS)

    Toniazzo, T.; Hartquist, T. W.; Durisen, R. H.

    2001-03-01

    We present a semi-analytical investigation of a simple one-dimensional, steady-state model for a mass-loaded, rotating, magnetized, hydrodynamical flow. Our approach is analogous to one used in early studies of magnetized winds. The model represents the infall towards a central point mass of the gas generated in a cluster of stars surrounding it, as is likely to occur in some active nuclei and starburst galaxies. We describe the properties of the different classes of infall solutions. We find that the flow becomes faster than the fast-mode speed, and hence decoupled from the centre, only for a limited range of parameter values, and when magnetic stresses are ineffective. Such flow is slowed as it approaches a centrifugal barrier, implying the existence of an accretion disc. When the flow does not become super-fast and the magnetic torque is insufficient, no steady solution extending inward to the centre exists. Finally, with a larger magnetic torque, solutions representing steady sub-Alfvénic flows are found, which can resemble spherical hydrodynamical infall. Such solutions, if applicable, would imply that rotation is not important and that any accretion disc formed would be of very limited size.

  19. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  20. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  1. Gaseous Nitrogen Orifice Mass Flow Calculator

    NASA Technical Reports Server (NTRS)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  2. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  3. Small Scale Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.

  4. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  5. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size

  6. Tsunamis generated by subaerial mass flows

    USGS Publications Warehouse

    Walder, S.J.; Watts, P.; Sorensen, O.E.; Janssen, K.

    2003-01-01

    Tsunamis generated in lakes and reservoirs by subaerial mass flows pose distinctive problems for hazards assessment because the domain of interest is commonly the "near field," beyond the zone of complex splashing but close enough to the source that wave propagation effects are not predominant. Scaling analysis of the equations governing water wave propagation shows that near-field wave amplitude and wavelength should depend on certain measures of mass flow dynamics and volume. The scaling analysis motivates a successful collapse (in dimensionless space) of data from two distinct sets of experiments with solid block "wave makers." To first order, wave amplitude/water depth is a simple function of the ratio of dimensionless wave maker travel time to dimensionless wave maker volume per unit width. Wave amplitude data from previous laboratory investigations with both rigid and deformable wave makers follow the same trend in dimensionless parameter space as our own data. The characteristic wavelength/water depth for all our experiments is simply proportional to dimensionless wave maker travel time, which is itself given approximately by a simple function of wave maker length/water depth. Wave maker shape and rigidity do not otherwise influence wave features. Application of the amplitude scaling relation to several historical events yields "predicted" near-field wave amplitudes in reasonable agreement with measurements and observations. Together, the scaling relations for near-field amplitude, wavelength, and submerged travel time provide key inputs necessary for computational wave propagation and hazards assessment.

  7. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  8. Mass flow in interacting binaries observed in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    1989-01-01

    Recent satellite observations of close binary systems show that practically all binaries exhibit evidence of mass flow and that, where the observations are sufficiently detailed, a fraction of the matter flowing out of the mass-losing component is accreted by the companion and the remainder is lost from the binary system. The mass flow is not conservative. During the phase of dynamic mass flow, the companion star becomes immersed in optically-thick plasma and the physical properties of that star elude close scrutiny.

  9. Zircon U-Pb Age Distributions in Cogenetic Crystal-Rich Dacitic and Crystal-Poor Rhyolitic Members of Zoned Ignimbrites in the Southern Rocky Mountains by Chemical Abrasion Inductively-Coupled-Plasma Mass Spectrometry (CA-LA-ICP-MS).

    NASA Astrophysics Data System (ADS)

    Sliwinski, J.; Zimmerer, M. J.; Guillong, M.; Bachmann, O.; Lipman, P. W.

    2015-12-01

    The San Juan locus of the Southern Rocky Mountain Volcanic Field (SRMVF) in SW Colorado represents an erosional remnant of a mid-Tertiary (~37-23 Ma) ignimbrite flare up that produced some of the most voluminous ignimbrites on Earth. A key feature of many SRMVF ignimbrites is compositional zonation, with many volcanic units comprising both dacitic and rhyolitic horizons. Geochemical, field and petrographic evidence suggests that dacites and rhyolites are cogenetic. Here, we report U-Pb zircon ages by chemical abrasion inductively-coupled-plasma mass spectrometry (CA-LA-ICPMS) for rhyolitic and dacitic components in four units: the Bonanza, Rat Creek, Carpenter Ridge and Nelson Mountain Tuffs. All units show zircon age spectra that are either within analytical uncertainty of Ar/Ar ages or are appreciably older, indicating prolonged magma residence times (~500 ka) prior to eruption. Anomalously young Pb-loss zones in zircon have been largely removed by chemical abrasion. Older, inherited zircons and zircon cores (60-2000 Ma) are rare in all samples, suggesting limited assimilation of upper crustal Precambrian country rock or complete resorption during recharge events and magma chamber growth.

  10. Abrasion resistant composition

    SciTech Connect

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to themore » metal matrix.« less

  11. Seed Cotton Mass Flow Measurement in the Gin

    USDA-ARS?s Scientific Manuscript database

    Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...

  12. Evaluation of a mass flow sensor at a gin

    USDA-ARS?s Scientific Manuscript database

    As part of a system to optimize the cotton ginning process, a custom-built mass flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass flow sensor was fabricated based on the principle of the sensor patented by Thomasson and Sui. The optical and ele...

  13. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-01

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  14. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    PubMed

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  15. New views of granular mass flows

    USGS Publications Warehouse

    Iverson, R.M.; Vallance, J.W.

    2001-01-01

    Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.

  16. Effect of Mass Flow on Stack Eductor Performance.

    DTIC Science & Technology

    1984-06-01

    absolute viscosity, lbf-sec/ft2 - density, Ibm/ft 3 "function of" ENGLISH LETTER SYMBOLS 2 A - area, in , ft B - atmospheric pressure, in Hg c - sonic... absolute temperature ratio T* - tertiary flow to primary flow absolute temperature t ratio - secondary -o primary mass flow rate ratio W* - tertiary to...secondary to primary absolute Tp temperature ratio TiL tertiary to primary absolute -TE temperature ratio secondary to primary flow density ratio

  17. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  18. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  19. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  20. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.

  1. Degradation of the Crystalline Structure of ZnS Ceramics under Abrasive Damage

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Dunaev, A. A.; Chmel, A. E.

    2018-04-01

    Stability of optical elements based on ZnS ceramics to dust and rain erosion is usually estimated from the loss of material mass in a directional flow of solid particles or atmospheric precipitates. In this case, the mechanism of degradation and fracture of the surface layer of an optical element is not considered. The photoluminescence (PL) method was used for investigating the crystal lattice response to the abrasive action and the formation of cleavage in ZnS ceramics, which differ in manufacturing technology and, accordingly, in the grain size by two orders of magnitude. It is shown that during abrasive treatment of samples, their spectra exhibit changes typical of degradation of the crystal lattice of material grains. The PL spectra of cleavage surfaces reveal almost complete degradation of the structure of crystallite grains with a size from 1-2 to 100-200 μm.

  2. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  3. Specific Impulse and Mass Flow Rate Error

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2005-01-01

    Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.

  4. Fiber optic liquid mass flow sensor and method

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  5. Flow of sand and a variable mass Atwood machine

    NASA Astrophysics Data System (ADS)

    Flores, José; Solovey, Guillermo; Gil, Salvador

    2003-07-01

    We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.

  6. Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.

  7. The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.

    PubMed

    Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert

    2008-01-01

    Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.

  8. Conduit Coating Abrasion Testing

    NASA Technical Reports Server (NTRS)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  9. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  10. Physics of loose abrasive microgrinding.

    PubMed

    Golini, D; Jacobs, S D

    1991-07-01

    This study examined the physics of loose abrasive microgrinding (grinding with micron and submicron sized abrasives). More specifically, it focused on the transition from brittle to ductile mode grinding which occurs in this region of abrasive sizes. Process dependency on slurry chemistry was the primary area of emphasis and was studied for diamond abrasives varying in size from 3.0 to 0.75 microm on both ULE and Zerodur, with emphasis on ULE. Ductile mode grinding was achieved with smaller abrasives, as expected, however two significant discoveries were made. The first observation was that by simply changing slurry chemistry, it was possible to induce the transition from brittle fracture to ductile mode grinding in ULE. This transition point could be intentionally moved about for diamonds 3.0-0.75 microm in diameter. For any given abrasive size within these limits, either brittle fracture or ductile removal may be achieved, depending on the slurry used to suspend the diamonds. Several slurries were studied, including water, a series of homologous n-alcohols, and other solvents chosen for properties varying from molecular size to dielectric constant and zeta potential. The study revealed that this slurry dependency is primarily a Rebinder effect. The second finding was that a tremendous amount of surface stress is introduced in loose abrasive ductile mode grinding. This stress was observed when the Twyman Effect in ULE plates increased by a factor of 4 in the transition from the brittle to the ductile mode. An assessment of the cause of this stress is discussed.

  11. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.

  12. Heat and mass transfer and hydrodynamics in swirling flows (review)

    NASA Astrophysics Data System (ADS)

    Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.

    2017-02-01

    Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.

  13. Mass conservation: 1-D open channel flow equations

    USGS Publications Warehouse

    DeLong, Lewis L.

    1989-01-01

    Unsteady flow simulation in natural rivers is often complicated by meandering channels of compound section. Hydraulic properties and the length of the wetted channel may vary significantly as a meandering river inundates its adjacent floodplain. The one-dimensional, unsteady, open-channel flow equations can be extended to simulate floods in channels of compound section. It will be shown that equations derived from the addition of differential equations individually describing flow in main and overbank channels do not in general conserve mass when overbank and main channels are of different lengths.

  14. Fluid Flow and Mass Transfer in Micro/Nano-Channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; McFerran, Jennifer; Hansford, Derek; Zheng, Zhi

    2001-11-01

    In this work the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or somewhat greater than the width of the EDL(nanochannel). For the electroosmotic flow so induced, the velocity field and the potential are similar. The fluid is assumed to behave as a continuum and the Boltzmann distribution for the mole fractions of the ions emerges from the classical dilute mass transfer equation in the limiting case where the EDL thickness is much less than the channel height. Depending on the relative magnitude of the mole fractions at the walls of the channel, both forward and reversed flow may occur. The volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that power requirements for small channels are much greater for pressure driven flow. Supported by DARPA

  15. Calibration of nozzle for air mass flow measurement

    NASA Astrophysics Data System (ADS)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  16. A 3-dimensional mass conserving element for compressible flows

    NASA Technical Reports Server (NTRS)

    Fix, G.; Suri, M.

    1985-01-01

    A variety of finite element schemes has been used in the numerical approximation of compressible flows particularly in underwater acoustics. In many instances instabilities have been generated due to the lack of mass conservation. Two- and three-dimensional elements are developed which avoid these problems.

  17. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    NASA Astrophysics Data System (ADS)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  18. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    NASA Technical Reports Server (NTRS)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  19. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport.

    PubMed

    Abadeh, Aryan; Lew, Roger R

    2013-11-01

    Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.

  20. Field evidence of two-phase abrasion process

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Szabo, T.; Jerolmack, D. J.; Domokos, G.

    2013-12-01

    The rounded shape of river rocks is clear evidence that abrasion due to bed load transport is a significant agent for mass loss. Its contribution to downstream fining, however, is typically assumed to be negligible - as diminution trends may be explained solely by size-selective transport. A recent theory has predicted that pebble abrasion occurs in two well separated phases: in Phase 1, an intially-polyhedral pebble rounds to the shape of an inscribed ellipsoid without any change in axis dimensions; in Phase II, axis dimensions are slowly reduced. Importantly, Phase I abrasion means that an initially-blocky pebble may lose up to half its mass without any apparent change in 'size', which is only measured as the length of a single pebble axis by most field researchers. We hypothesize that field studies have significantly underestimated the importance of abrasion because they do not quantify pebble shape, and we set out to demonstrate that two-phase abrasion occurs in a natural stream. Our study examines downstream trends in pebble size and shape along a 10-km stretch of the Rio Mameyes within the Luquillo Critical Zone observatory, where volcaniclastic cobbles and boulders are transported by bed load at slopes up to 10%. The upper reaches of the stream consist of alluviated bedrock valleys that preclude sediment storage and thus minimize size-selective transport, which allows us to isolate the effects of abrasion. The lower 5 km is an alluvial river in which size-selective transport becomes operative. We quantified the shape and size of thousands of pebbles along the profile using hand and image-based techniques. The data provide the first field validation of two-phase abrasion; in the bedrock reaches, pebbles clearly evolve toward ellipsoids without any significant change in axis dimensions (rounding), while in the lower reaches pebbles slowly reduce their axis dimensions with little or no change in roundness. Results also show that shape metrics determined from

  1. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  2. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  3. Smooth information flow in temperature climate network reflects mass transport

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-03-01

    A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

  4. Abrasion of acrylic veneers by simulated toothbrushing.

    PubMed

    Xu, H C; Söremark, R; Wiktorsson, G; Wang, T; Liu, W Y

    1984-12-01

    The abrasion responses were tested on four acrylic veneer materials, K + B Plus, K + B 75, Isosit, and Ivocron. The studies were performed in two independent research laboratories. Two different brushing machines were used with an abrasive slurry. The results were used for comparing the degree of abrasion for the resin materials. Three analytical methods of measuring the degree of abrasive wear were used: surface profile measurement, microscopic evaluation, and measurement of loss of volume. Isosit showed the best abrasion resistance of the four materials tested.

  5. A monolithic mass tracking formulation for bubbles in incompressible flow

    NASA Astrophysics Data System (ADS)

    Aanjaneya, Mridul; Patkar, Saket; Fedkiw, Ronald

    2013-08-01

    We devise a novel method for treating bubbles in incompressible flow that relies on the conservative advection of bubble mass and an associated equation of state in order to determine pressure boundary conditions inside each bubble. We show that executing this algorithm in a traditional manner leads to stability issues similar to those seen for partitioned methods for solid-fluid coupling. Therefore, we reformulate the problem monolithically. This is accomplished by first proposing a new fully monolithic approach to coupling incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions, and then subsequently making a number of simplifying assumptions on the air flow removing not only the nonlinearities but also the spatial variations of both the density and the pressure. The resulting algorithm is quite robust, has been shown to converge to known solutions for test problems, and has been shown to be quite effective on more realistic problems including those with multiple bubbles, merging and pinching, etc. Notably, this approach departs from a standard two-phase incompressible flow model where the air flow preserves its volume despite potentially large forces and pressure differentials in the surrounding incompressible fluid that should change its volume. Our bubbles readily change volume according to an isothermal equation of state.

  6. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  7. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  8. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  9. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  10. Measurement of Mitochondrial Mass by Flow Cytometry during Oxidative Stress.

    PubMed

    Doherty, Edward; Perl, Andras

    2017-07-01

    Properly assessing mitochondrial health is crucial to understand their role in disease. MitoTracker green (MTG) and nonylacridine orange (NAO) are fluorescent probes which have been commonly used to assess mitochondrial mass. This is based on the assumption that both MTG and NAO accumulate in mitochondria regardless of the mitochondrial transmembrane potential (ΔΨ m ). Here, we utilized flow cytometry to evaluate the performance of these probes for assessment of mitochondrial mass relative to forward (FSC) and side scatter (SSC) in human peripheral blood lymphocytes (PBL). In isolated mitochondria, two subpopulations were identified by FSC and SSC measurements which were matched to subpopulations stained by MTG and NAO. The performance of these dyes was examined under oxidative and nitrosative stress induced by rotenone and NOC-18 while N -acetylcysteine (NAC) was employed as an antioxidant. Production of reactive oxygen species (ROS) and ΔΨ m were monitored in parallel. With respect to representation of mitochondrial mass, neither MTG nor NAO was affected by ΔΨ m . However, MTG showed significant correlation with cytosolic and mitochondrial ROS production and nitrosative stress. Our data suggest that NAO may be more suitable than MTG for assessment of mitochondrial mass by flow cytometry during oxidative stress.

  11. Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion.

    PubMed

    Barclay, Paul L; Lukes, Jennifer R

    2016-12-01

    A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.

  12. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  13. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear

    NASA Astrophysics Data System (ADS)

    Chen, Zhikai; Zhu, Qinghai; Wang, Jing; Yun, Xiao; He, Bing; Luo, Jingshuai

    2018-07-01

    In present work, laser quenching had been carried out to improve the impact abrasive wear resistance of 40Cr steel. The distinct microstructure between original and quenched region was demonstrated after laser quenching. Since the effect of temperature and cooling rate, the phase combinations were apparently different for quenched layer in depth. The impact abrasive wear resistance of sample was experimentally investigated and the improved level was assessed in light of the average mass loss of three repetitive tests. Worn surface was detected by means of SEM, OM and EDS, and results showed that three typical failure modes were performed during the processing of impact abrasive wear, including abrasive wear, impact effect and rolling contact fatigue. Basing on the different worn surface profile, the mainly failure mode was respectively pointed out for matrix and quenched sample, which was significantly in accordance with the result of impact abrasive wear.

  14. RADIAL FLOW PATTERN OF A SLOW CORONAL MASS EJECTION

    SciTech Connect

    Feng, Li; Gan, Weiqun, E-mail: lfeng@pmo.ac.cn; Inhester, Bernd

    2015-06-01

    Height–time plots of the leading edge of coronal mass ejections (CMEs) have often been used to study CME kinematics. We propose a new method to analyze the CME kinematics in more detail by determining the radial mass transport process throughout the entire CME. Thus, our method is able to estimate not only the speed of the CME front but also the radial flow speed inside the CME. We have applied this method to a slow CME with an average leading edge speed of about 480 km s{sup −1}. In the Lagrangian frame, the speeds of the individual CME mass elementsmore » stay almost constant within 2 and 15 R{sub S}, the range over which we analyzed the CME. Hence, we have no evidence of net radial forces acting on parts of the CME in this range or of a pile up of mass ahead of the CME. We find evidence that the leading edge trajectory obtained by tie-pointing may gradually lag behind the Lagrangian front-side trajectories derived from our analysis. Our results also allow a much more precise estimate of the CME energy. Compared with conventional estimates using the CME total mass and leading edge motion, we find that the latter may overestimate the kinetic energy and the gravitational potential energy.« less

  15. Generalized Couette Poiseuille flow with boundary mass transfer

    NASA Astrophysics Data System (ADS)

    Marques, F.; Sanchez, J.; Weidman, P. D.

    1998-11-01

    A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F<0 fluid emitted through the inner cylinder fills the gap and flows uniaxially down the annulus; an asymptotic analysis leads to a scaling that removes the effect of [eta] in the pressure parameter [beta], namely [beta]=[pi]2R*2, where R*=F(1[minus sign][eta])/(1+[eta]). The case of sink flow for F>0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.

  16. Multiscale modeling of fluid flow and mass transport

    NASA Astrophysics Data System (ADS)

    Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.

    2017-12-01

    In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.

  17. Control and Automation of Fluid Flow, Mass Transfer and Chemical Reactions in Microscale Segmented Flow

    NASA Astrophysics Data System (ADS)

    Abolhasani, Milad

    Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a

  18. Mass flows in a prominence spine as observed in EUV

    SciTech Connect

    Kucera, T. A.; Gilbert, H. R.; Karpen, J. T.

    2014-07-20

    We analyze a quiescent prominence observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (AIA) with a focus on mass and energy flux in the spine, measured using Lyman continuum absorption. This is the first time this type of analysis has been applied with an emphasis on individual features and fluxes in a quiescent prominence. The prominence, observed on 2010 September 28, is detectable in most AIA wavebands in absorption and/or emission. Flows along the spine exhibit horizontal bands 5''-10'' wide and kinetic energy fluxes on the order of a few times 10{sup 5} erg s{sup –1}cm{sup –2}, consistent withmore » quiet sun coronal heating estimates. For a discrete moving feature we estimate a mass of a few times 10{sup 11} g. We discuss the implications of our derived properties for a model of prominence dynamics, the thermal non-equilibrium model.« less

  19. Investigation into the mechanisms of closed three-body abrasive wear

    NASA Astrophysics Data System (ADS)

    Dwyer-Joyce, R. S.; Sayles, R. S.; Ioannides, E.

    1994-06-01

    Contacting components frequently fail by abrasion caused by solid contaminants in the lubricant. This process can be classified as a closed three-body abrasive wear process. The mechanisms by which trapped particles cause material removal are not fully understood. This paper describes tests using model elastohydrodynamic contacts to study these mechanisms. An optical elastohydrodynamic lubrication rig has been used to study the deformation and fracture of ductile and brittle lubricant-borne debris. A ball-on-disk machine was used to study the behavior of the particles in partially sliding contacts. Small diamond particles were used as abrasives since these were thought not to break down in the contact; wear could then be directly related to particles of a known size. The particles were found to embed in the softer surface and to scratch the harder. The mass of material worn from the ball surface was approximately proportional to the particle sliding distance and abrasive concentration. Small particles tumbled through the contact, while larger particles ploughed. Mass loss was found to increase with abrasive particle size. Individual abrasion scratches have been measured and related to the abrading particle. A simple model of the abrasive process has been developed and compared with experimental data. The discrepancies are thought to be the result of the uncertainty about the entrainment of particles into the contact.

  20. Mechanisms of flow and water mass variability in Denmark Strait

    NASA Astrophysics Data System (ADS)

    Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.

    2017-04-01

    The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the

  1. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  2. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  3. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  4. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    PubMed Central

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-01-01

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536

  5. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    PubMed

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  6. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  7. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  8. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  9. The automation of an inlet mass flow control system

    NASA Technical Reports Server (NTRS)

    Supplee, Frank; Tcheng, Ping; Weisenborn, Michael

    1989-01-01

    The automation of a closed-loop computer controlled system for the inlet mass flow system (IMFS) developed for a wind tunnel facility at Langley Research Center is presented. This new PC based control system is intended to replace the manual control system presently in use in order to fully automate the plug positioning of the IMFS during wind tunnel testing. Provision is also made for communication between the PC and a host-computer in order to allow total animation of the plug positioning and data acquisition during the complete sequence of predetermined plug locations. As extensive running time is programmed for the IMFS, this new automated system will save both manpower and tunnel running time.

  10. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  11. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  12. A Mass Tracking Formulation for Bubbles in Incompressible Flow

    DTIC Science & Technology

    2012-10-14

    incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of...using the ideas from [19] to couple together incompressible flow with fully nonlinear compressible flow including shocks and rarefactions . The results...compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of simplifying assumptions on the air flow

  13. Controls on wind abrasion patterns through a fractured bedrock landscape

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  14. Determination of hexabromocyclododecane by flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Silberring, Jerzy; Reszke, Edward; Kuc, Joanna; Grochowalski, Adam

    2014-10-01

    The first application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the chemical characterization and determination of hexabromocyclododecane (HBCD) is presented. The samples of technical HBCD and expanded polystyrene foam (EPS) containing HBCD as a flame retardant were prepared by dissolving the appropriate solids in dichloromethane. The ionization of HBCD was achieved with a prototype FAPA source. The ions were detected in the negative-ion mode. The ions corresponding to a deprotonated HBCD species (m/z 640.7) as well as chlorine (m/z 676.8), nitrite (m/z 687.8) and nitric (m/z 703.8) adducts were observed in the spectra. The observed isotope pattern is characteristic for a compound containing six bromine atoms. This technique is an effective approach to detect HBCD, which is efficiently ionized in a liquid phase, resulting in high detection efficiency and sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material

    NASA Astrophysics Data System (ADS)

    Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz

    2018-02-01

    The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.

  16. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  17. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    SciTech Connect

    Pan, Pengmin; McDonald, Timothy; Fulton, John

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  18. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE PAGES

    Pan, Pengmin; McDonald, Timothy; Fulton, John; ...

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  19. Integrating TITAN2D Geophysical Mass Flow Model with GIS

    NASA Astrophysics Data System (ADS)

    Namikawa, L. M.; Renschler, C.

    2005-12-01

    TITAN2D simulates geophysical mass flows over natural terrain using depth-averaged granular flow models and requires spatially distributed parameter values to solve differential equations. Since a Geographical Information System (GIS) main task is integration and manipulation of data covering a geographic region, the use of a GIS for implementation of simulation of complex, physically-based models such as TITAN2D seems a natural choice. However, simulation of geophysical flows requires computationally intensive operations that need unique optimizations, such as adaptative grids and parallel processing. Thus GIS developed for general use cannot provide an effective environment for complex simulations and the solution is to develop a linkage between GIS and simulation model. The present work presents the solution used for TITAN2D where data structure of a GIS is accessed by simulation code through an Application Program Interface (API). GRASS is an open source GIS with published data formats thus GRASS data structure was selected. TITAN2D requires elevation, slope, curvature, and base material information at every cell to be computed. Results from simulation are visualized by a system developed to handle the large amount of output data and to support a realistic dynamic 3-D display of flow dynamics, which requires elevation and texture, usually from a remote sensor image. Data required by simulation is in raster format, using regular rectangular grids. GRASS format for regular grids is based on data file (binary file storing data either uncompressed or compressed by grid row), header file (text file, with information about georeferencing, data extents, and grid cell resolution), and support files (text files, with information about color table and categories names). The implemented API provides access to original data (elevation, base material, and texture from imagery) and slope and curvature derived from elevation data. From several existing methods to estimate

  20. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  1. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  2. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  3. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Quantification of the transient mass flow rate in a simplex swirl injector

    NASA Astrophysics Data System (ADS)

    Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin

    2009-07-01

    When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results.

  5. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  6. Evaluation of an experimental mass-flow sensor of cotton-lint at the gin

    USDA-ARS?s Scientific Manuscript database

    As part of a system to optimize the cotton ginning process, a custom built mass-flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass-flow sensor was fabricated based on the principle of the senor patented by Thomasson and Sui (2004). The optical a...

  7. The fabrication of plastic cages for suspension in mass air flow racks.

    PubMed

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  8. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  9. The effect of mass loading on the temperature of a flowing plasma. [in vicinity of Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Kivelson, Margaret G.; Walker, Raymond J.

    1989-01-01

    How the addition of ions at rest (mass loading) affects the temperature of a flowing plasma in a MHD approximation is investigated, using analytic theory and time dependent, three-dimensional MHD simulations of plasma flow past Io. The MHD equations show that the temperature can increase or decrease relative to the background, depending on the local sonic Mach number M(S), of the flow. For flows with M(S) of greater than sq rt 9/5 (when gamma = 5/3), mass loading increases the plasma temperature. However, the simulations show a nonlinear response to the addition of mass. If the mass loading rate is large enough, the temperature increase may be smaller than expected, or the temperature may actually decrease, because a large mass loading rate slows the flow and decreases the thermal energy of the newly created plasma.

  10. Heat-flow properties of systems with alternate masses or alternate on-site potentials.

    PubMed

    Pereira, Emmanuel; Santana, Leonardo M; Ávila, Ricardo

    2011-07-01

    We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.

  11. Mass transfer from a sphere in an oscillating flow with zero mean velocity

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Lyman, Frederic A.

    1990-01-01

    A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of the validity of the quasi-steady assumption for mass transfer is based on these results.

  12. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  13. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics

    SciTech Connect

    Kim, Woohyun; Braun, J.

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less

  14. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    SciTech Connect

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  15. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  16. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  17. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  18. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  19. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  20. Composition Pulse Time-Of-Flight Mass Flow Sensor

    DOEpatents

    Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l

    2004-01-13

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

  1. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  2. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  3. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  4. Mars Pathfinder: The Wheel Abrasion Experiment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Wheel Abrasion Experiment (WAE) will measure the amount of wear on wheel surfaces of the Mars Pathfinder rover. WAE uses thin films of Al, Ni, and Pt (ranging in thickness from 200 to 1000 angstroms) deposited on black, anodized Al strips attached to the rover wheel. As the wheel moves across the martian surface, changes in film reflectivity will be monitored by reflected sunlight. These changes, measured as output from a special photodetector mounted on the rover chassis, will be due to abrasion of the metal films by martian surface sand, dust, and clay.

  5. Composition pulse time-of-flight mass flow sensor

    DOEpatents

    Harnett, Cindy K [Livermore, CA; Crocker, Robert W [Fremont, CA; Mosier, Bruce P [San Francisco, CA; Caton, Pamela F [Berkeley, CA; Stamps, James F [Livermore, CA

    2007-06-05

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.

  6. Abrasion of eroded and sound enamel by a dentifrice containing diamond abrasive particles

    PubMed

    Wegehaupt, Florian J.; Hoegger, Vanessa G. M.; Attin, Thomas

    2017-07-24

    Eroded enamel is more susceptible to abrasive wear than sound enamel. New toothpastes utilizing diamond particles as abrasives have been developed. The present study investigated the abrasive wear of eroded enamel by three commercially available toothpastes (one containing diamond particles) and compared it to the respective wear of sound enamel caused by these toothpastes. Seventy-two bovine enamel samples were randomly allocated to six groups (S1–S3 and E1–E3; n=12). Samples were submitted to an abrasive (S1–S3) or erosion plus abrasion (E1–E3) cycling. Per cycle, all samples were brushed (abrasion; 20 brushing stokes) with the following toothpastes: S1/E1: Signal WHITE SYSTEM, S2/E2: elmex KARIESSCHUTZ and S3-E3: Candida WHITE DIAMOND (diamond particles). Groups E1–E3 were additionally eroded with HCl (pH 3.0) for 2 min before each brushing procedure. After 30, 60 and 90 cycles enamel wear was measured by surface profilometry. Within the same toothpaste and same number of cycles, enamel wear due to erosion plus abrasion was significantly higher than due to mere abrasion. After 30, 60 and 90 cycles, no significant difference in the wear in groups S1 and S2 was observed while the wear in group E1 was significantly (p<0.05, ANOVA, Scheffecyc) lower than that in group E2. After 90 cycles, wear in group S3 was about 5 times higher than that in group S2, while wear in group E3 was about 1.3 times higher than that in group E2. As compared to the other two investigated toothpastes, the dentifrice containing diamond particles caused slightly higher abrasive wear of eroded enamel and distinctly higher wear of sound enamel compared to the conventional toothpastes under investigation.

  7. Sliding-gate valve for use with abrasive materials

    DOEpatents

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  8. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Lane, S. J.; Kueppers, U.

    2015-09-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances ( 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs and

  9. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow-injection fingerprints

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  10. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  11. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  12. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  13. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  14. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  15. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  16. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  17. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  18. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  19. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  20. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  1. An epidemiologic approach to toothbrushing and dental abrasion.

    PubMed

    Bergström, J; Lavstedt, S

    1979-02-01

    Abrasion lesions were recorded in 818 individuals representing the adult population of 430,000 residents of the Stockholm region, Sweden. The subjects were asked about toothbrushing habits, toothbrush quality and dentifrice usage; these factors were related to abrasion criteria. Abrasion was prevalent in 30% and wedge-like or deep depressions were observed in 12%. The relationship between abrasion and toothbrushing was evident, the prevalence and severity of abrasion being correlated to toothbrushing consumption. The importance of the toothbrushing technique for the development of abrasion lesions was elucidated. Horizontal brushing technique was strongly correlated to abrasion. It was demonstrated by treating the data with the statistical AID analysis that toothbrushing factors related to the individual (brushing frequency and brushing technique) exert a greater influence than material-oriented toothbrushing factor such as dentifrice abrasivity and bristle stiffness.

  2. Test of pressure transducer for measuring cotton-mass flow

    USDA-ARS?s Scientific Manuscript database

    In this study, a cotton harvester yield monitor was developed based on the relationship between air pressure and the mass of seed cotton conveyed. The sensor theory was verified by laboratory tests. The sensor was tested on a cotton picker with seed cotton at two moisture contents, 5.9% and 8.5% we...

  3. Robotic edge machining using elastic abrasive tool

    NASA Astrophysics Data System (ADS)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  4. Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.

    PubMed

    Chang, Chee W; Waddell, J Neil; Lyons, Karl M; Swain, Michael V

    2011-12-01

    The purpose of this in vitro study was to evaluate porcelain cracking induced by abrasive grinding with a conventional dental air turbine and abrasive diamond burs. Four commercially available porcelains were examined-Wieland ALLUX, Wieland ZIROX, IPS e.max Ceram, and IPS Empress Esthetic Veneering porcelain. Sixty discs of each porcelain type were fabricated according to manufacturer instructions, followed by an auto-glaze cycle. Abrasive grinding using fine, extra-fine, and ultra-fine diamond burs was carried out, using a conventional dental air turbine. The grinding parameters were standardized with regard to the magnitude of the force applied, rotational speed of the diamond bur, and flow rate of the water coolant. A testing apparatus was used to control the magnitude of force applied during the grinding procedure. The ground surfaces were then examined under scanning electron microscope. Cracking was seen for all porcelain types when ground with the fine bur. Cracking was not seen for specimens ground with the extra-fine or the ultra-fine bur. Wet abrasive grinding with a conventional dental air turbine and fine grit diamond burs has the potential to cause cracking in the four porcelain types tested. Similar abrasive grinding with smaller grit size particles does not cause similar observable cracking. © 2011 by the American College of Prosthodontists.

  5. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

    PubMed

    Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  6. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  7. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    USGS Publications Warehouse

    Bridges, N.T.; Calef, F.J.; Hallett, B.W.; Herkenhoff, Kenneth E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; de Pablo, M.A.; Kocurek, G.A.; Langevin, Y.; Lewis, K.W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N.O.; Rice, CM.S.; Richardson, M.E.; Sautter, V.; Sletten, R.S.; Wiens, R.C.; Yingst, R.A.

    2014-01-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  8. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... discretion. (c) If first-aid oxygen equipment is installed, the minimum mass flow of oxygen to each user may... upon an average flow rate of 3 liters per minute per person for whom first-aid oxygen is required. (d...

  9. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.

    PubMed

    Leypoldt, John K; Kamerath, Craig D; Gilson, Janice F; Friederichs, Goetz

    2006-01-01

    New daily hemodialysis therapies operate at low dialysate flow rates to minimize dialysate volume requirements; however, the dependence of dialyzer clearances and mass transfer-area coefficients for small solutes on dialysate flow rate under these conditions have not been studied extensively. We evaluated in vitro dialyzer clearances for urea and creatinine at dialysate flow rates of 40, 80, 120, 160, and 200 ml/min and ultrafiltration flow rates of 0, 1, and 2 l/h, using a dialyzer containing PUREMA membranes (NxStage Medical, Lawrence, MA). Clearances were measured directly across the dialyzer by perfusing bovine blood with added urea and creatinine single pass through the dialyzer at a nominal blood flow rate of 400 ml/min. Limited, additional studies were performed with the use of dialyzers containing PUREMA membranes at a blood flow rate of 200 ml/min and also with the use of other dialyzers containing polysulfone membranes (Optiflux 160NR, FMC-NA, Ogden, UT) and dialyzers containing Synphan membranes (NxStage Medical). For dialyzers containing PUREMA membranes, urea and creatinine clearances increased (p < 0.001) with increasing dialysate and ultrafiltration flow rates but were not different at blood flow rates of 200 and 400 ml/min. Dialysate saturation, defined as dialysate outlet concentration divided by blood water inlet concentration, for urea and creatinine was independent of blood and ultrafiltration flow rate but varied inversely (p < 0.001) with dialysate flow rate. Mass transfer-area coefficients for urea and creatinine were independent of blood and ultrafiltration flow rate but decreased (p < 0.001) with decreasing dialysate flow rate. Calculated mass transfer-area coefficients at low dialysate flow rates for all dialyzers tested were substantially lower than those reported by the manufacturers under conventional conditions. We conclude that dialyzers require specific characterization under relevant conditions if they are used in novel daily

  10. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  11. An empirical method for estimating travel times for wet volcanic mass flows

    USGS Publications Warehouse

    Pierson, Thomas C.

    1998-01-01

    Travel times for wet volcanic mass flows (debris avalanches and lahars) can be forecast as a function of distance from source when the approximate flow rate (peak discharge near the source) can be estimated beforehand. The near-source flow rate is primarily a function of initial flow volume, which should be possible to estimate to an order of magnitude on the basis of geologic, geomorphic, and hydrologic factors at a particular volcano. Least-squares best fits to plots of flow-front travel time as a function of distance from source provide predictive second-degree polynomial equations with high coefficients of determination for four broad size classes of flow based on near-source flow rate: extremely large flows (>1 000 000 m3/s), very large flows (10 000–1 000 000 m3/s), large flows (1000–10 000 m3/s), and moderate flows (100–1000 m3/s). A strong nonlinear correlation that exists between initial total flow volume and flow rate for "instantaneously" generated debris flows can be used to estimate near-source flow rates in advance. Differences in geomorphic controlling factors among different flows in the data sets have relatively little effect on the strong nonlinear correlations between travel time and distance from source. Differences in flow type may be important, especially for extremely large flows, but this could not be evaluated here. At a given distance away from a volcano, travel times can vary by approximately an order of magnitude depending on flow rate. The method can provide emergency-management officials a means for estimating time windows for evacuation of communities located in hazard zones downstream from potentially hazardous volcanoes.

  12. Air-Abrasive Disinfection of Implant Surfaces in a Simulated Model of Periimplantitis.

    PubMed

    Quintero, David George; Taylor, Robert Bonnie; Miller, Matthew Braden; Merchant, Keith Roshanali; Pasieta, Scott Anthony

    2017-06-01

    This in vitro study aimed to evaluate the ability of air-powder abrasion to decontaminate dental implants. Twenty-six implants were inoculated with a Streptococcus sanguinis biofilm media in a novel periimplantitis defect model. Six implants served as controls, and 20 implants were disinfected with either the Cavitron JET Plus or the AIR-FLOW PERIO air-powder abrasion units. Residual bacteria were cultured, and colony forming units (CFUs) were totaled at 24 hours. As expected, negative control implant cultures showed no evidence of viable bacteria. Bacterial growth was observed on all positive control cultures, whereas only 15% of the experimental cultures displayed evidence of viable bacteria. The average CFU per streak for the positive control was 104 compared with a maximum of 10 and 4 CFUs for the Cavitron JET Plus and AIR-FLOW PERIO, respectively. There was a 99.9% reduction in bacteria for both air-powder abrasion instruments. Air-powder abrasion is an effective technique for the decontamination of dental implants, and the Cavitron JET Plus and AIR-FLOW PERIO are equally successful at eliminating viable bacteria from implant surfaces.

  13. A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone

    2017-08-01

    A simple formula relates lava discharge rate to the heat radiated per unit time from the surface of active lava flows (the "thermal proxy"). Although widely used, the physical basis of this proxy is still debated. In the present contribution, lava flows are approached as open, dissipative systems that, under favorable conditions, can attain a non-equilibrium stationary state. In this system framework, the onset, growth, and demise of lava flow units can be explained as a self-organization phenomenon characterized by a given temporal frequency defined by the average life span of active lava flow units. Here, I review empirical, physical, and experimental models designed to understand and link the flow of mass and energy through a lava flow system, as well as measurements and observations that support a "real-world" view. I set up two systems: active lava flow system (or ALFS) for flowing, fluid lava and a lava deposit system for solidified, cooling lava. The review highlights surprising similarities between lava flows and electric currents, which typically work under stationary conditions. An electric current propagates almost instantaneously through an existing circuit, following the Kirchhoff law (a least dissipation principle). Flowing lavas, in contrast, build up a slow-motion "lava circuit" over days, weeks, or months by following a gravity-driven path down the steepest slopes. Attainment of a steady-state condition is hampered (and the classic thermal proxy does not hold) if the supply stops before completion of the "lava circuit." Although gravity determines initial flow path and extension, the least dissipation principle means that subsequent evolution of mature portions of the active lava flow system is controlled by increasingly insulated conditions.

  14. Equations of motion for the variable mass flow-variable exhaust velocity rocket

    NASA Technical Reports Server (NTRS)

    Tempelman, W. H.

    1972-01-01

    An equation of motion for a one dimensional rocket is derived as a function of the mass flow rate into the acceleration chamber and the velocity distribution along the chamber, thereby including the transient flow changes in the chamber. The derivation of the mass density requires the introduction of the special time coordinate. The equation of motion is derived from both classical force and momentum approaches and is shown to be consistent with the standard equation expressed in terms of flow parameters at the exit to the acceleration chamber.

  15. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G [Augusta, GA; Rossabi, Joseph [Aiken, SC; Riha, Brian D [Augusta, GA

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  16. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  17. Rates of Eolian Rock Abrasion in the Ice-Free Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Hallet, B.; Malin, M. C.; Sletten, R. S.

    2016-12-01

    Eolian abrasion is a principal surface process in dry regions of Earth and Mars and there is evidence for wind processes active on Venus and Titan. Rock abrasion also has practical significance in diverse fields ranging from preservation of cultural material (artifacts, monuments) to damage of solar panels and windshields in arid regions. Despite its scientific and practical importance, and there have ben only few studies that define rates of rock abrasion quantitatively under natural conditions. Herein we report abrasion rates that have been exceptionally well characterized through a unique long-term (30+-year) field experiment in the ice-free McMurdo Dry Valleys, Antarctica. In 1983 and 1984, over 5000 rock targets of several lithologies (25.4 mm-diameter and 5 mm-thick disks of dolerite, basalt, tuff and sandstone) were installed at five heights (7,14, 21, 35, and 70 cm) facing the 4 cardinal directions at 10 locations (one additional site contains fewer targets). Sequential collections of rock targets exposed to abrasion enable definition of mass loss after 1, 5, 10, 30 and 31 years of exposure; the latter were retrieved during the 2014-2015 season. The abrasion rates generally show striking consistency for each lithology at any site; the multiple targets permit definition of intrinsic differences in mass loss. The rates vary considerably from site to site owing to differences in availability of transportable sediment, wind regime, and surface roughness, and at each site, owing to target orientation relative to the dominant winds and, secondarily, to height above the ground. For the hardest targets, basalt and dolerite, mass loss in 30+ years ranged from essentially zero at some sites to 1/3 of the deployed mass (2.59 g; equivalent to a rock thickness >1.8 mm) where abrasion was most active (Site 7, Central Wright Valley). The tuff targets showed the greatest mass loss, and in many cases were entirely abraded away by the end of the experiment.Current work is

  18. Low pressure gas flow analysis through an effusive inlet using mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, David R.; Brown, Kenneth G.

    1988-01-01

    A mass spectrometric method for analyzing flow past and through an effusive inlet designed for use on the tethered satellite and other entering vehicles is discussed. Source stream concentrations of species in a gaseous mixture are determined using a calibration of measured mass spectral intensities versus source stream pressure for standard gas mixtures and pure gases. Concentrations are shown to be accurate within experimental error. Theoretical explanations for observed mass discrimination effects as they relate to the various flow situations in the effusive inlet and the experimental apparatus are discussed.

  19. Abrasion and Fragmentation Processes in Marly Sediment Transport

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Naaim, F.; Mathys, N.; Lave, J.; Kaitna, R.

    2009-04-01

    In the highly erosive marly catchments of Draix (Southern Alps, France), downstream fining of sediments has been observed and can not be explained by selective sorting. Moreover, high concentrations of suspended fine sediment (up to 800 g/L) are measured during flood events in these basins. These observations lead to the hypothesis that abrasion and fragmentation of marly sediments during transport play an important role in the production of fine sediments. Several experiments are conducted in order to quantify these processes: material from the river bed is introduced into the water flow in a circular flume as well as in a large scale rotating drum. Abrasion rates range from 5 to 15%/km, depending on the lithology: marls from the upper basin are more erosive than those from the lower basin. Modifications of grain size distribution in the rough fraction are also observed. Field measurements are also conducted. Downstream of the main marly sediment sources, the river bed is composed of marls and limestone pebbles. We have sampled the river bed for analysis of grain size distribution and lithology. First results show a decrease of the proportion of marls along the river bed. This is in accordance with the high erosion rates observed in our laboratory experiments. Further investigations are planned in order to study more precisely marl grain size distribution, especially in the finer fraction.

  20. Mass flow of a volatile organic liquid mixture in soils

    SciTech Connect

    Gerstl, Z.; Galin, Ts.; Yaron, B.

    1994-05-01

    The flow of kerosene, a volatile organic liquid mixture (VOLM), was studied in loam and clay soils and in a medium sand. The kerosene residual capacity and conductivity were determined for all three media at different initial moisture contents and with kerosene of different compositions. The kerosene conductivity of the soil was found to be strongly influenced by the soil texture and initial moisture content as well as by the kerosene composition. The kerosene conductivity of the sand was two orders of magnitude greater than that of the soils and was unaffected by initial moisture contents as high as fieldmore » capacity. The kerosene conductivity of the loam soil was similar in oven dry and air dry soils, but increased significantly in soils at 70% and fun field capacity due to the Yuster effect. In the clay soil the kerosene conductivity of the air dry sod was four times that of the oven dry sod and increased somewhat in the soil at 70% field capacity. No kerosene flow was observed in the oven dry soil at full field capacity. The differences in kerosene conductivity in these soils and the effect of moisture content were attributed to the different pore-sin distributions of the soil& Changes in the composition of the kerosene due to volatilization of the light fractions resulted in increased viscosity of the residual kerosene. This increased viscosity affected the fluid properties of kerosene, which resulted in decreased kerosene conductivity in the sand and the soils. 29 refs., 4 figs., 4 tabs.« less

  1. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  2. Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    1997-01-01

    Geologic mapping and crater counting in Chryse and Acidalia Planitiae (GAP) reveal five major sedimentary deposits of Hesperian to Early Amazonian age, including (1) a mass flow deposited during the Early Hesperian near Deuteronilus Mensae (northeast of the map region) that may have resulted from the carving of Kasei Valles, >3000 km southwest of the exposed part of the deposit; (2) knobby plains material consisting of channel (likely; from Simud and Tiu Valles and possibly Ares and Shalbatana Valles) and mass-wasting deposits in central and eastern CAP; (3) material largely from Maja and Ares Valles emplaced in at least western and southern CAP (outcrops in southern Chryse Planitia developed thermokarst); (4) a thin mass flow covering much of southern Chryse Planitia that emanated from Simud and Tiu Valles; and (5) a thick, extensive (perhaps >3500 km across) mass flow deposit in central and northern CAP derived from accumulation and backflow of the preceding thin mass flow or perhaps melting of polar deposits. Other possible deposits may not be recognizable owing to burial by younger materials or a lack of morphologic signature. Various associated landforms appear to be consistent with the mass flow interpretations, including lobate and linear scarps along deposit edges, fractures related to desiccation of thick sediments, troughs, and ridges near the edges of the deposit indicative of secondary mass movement and deformation, pitted domes and fissure-fed flows possibly formed by sedimentary (mud) eruptions, and longitudinal channel grooves perhaps formed by roller vortices. No convincing evidence for paleoshorelines or stagnant ice sheets is found in CAP. These findings suggest that mass flow and hyperconcentrated flooding may have been the predominant processes of outflow-channel dissection in CAP. Elsewhere in the northern plains, similar landforms are prevalent. The mass flow interpretation does not require either multiple episodes of extraordinarily high

  3. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

  4. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    SciTech Connect

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less

  5. Dynamic characteristics of a two-stage variable-mass flexible missile with internal flow

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1972-01-01

    A general formulation of the dynamical problems associated with powered flight of a two stage flexible, variable-mass missile with internal flow, discrete masses, and aerodynamic forces is presented. The formulation comprises six ordinary differential equations for the rigid body motion, 3n ordinary differential equations for the n discrete masses and three partial differential equations with the appropriate boundary conditions for the elastic motion. This set of equations is modified to represent a single stage flexible, variable-mass missile with internal flow and aerodynamic forces. The rigid-body motion consists then of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation.

  6. Heat, mass and force flows in supersonic shockwave interaction

    NASA Astrophysics Data System (ADS)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  7. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil.

    PubMed

    Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny

    2014-02-01

    Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10(-8) and 3 × 10(-7)  m s(-1) , thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  9. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  10. Explosibility and Ignitability of Plastic Abrasive Media.

    DTIC Science & Technology

    1987-06-01

    Polyplus Is an alpha cellulose filled urea formaldehyde with a hardness or 3.5. Type III is a urea melamine formaldehyde with a hardness of 4. A fourth...is a thermoplastic acrylic media and the Kopper’s media are thermoset formaldehydes . o The greatest potential for dust explosions is in the baghouss...type or plastio media trom E. I. Du Pont de Nemours and Company was also tested. This Type L Solidstrip plastic stripping abrasive is an acrylic resin

  11. Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.

    2017-04-01

    At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.

  12. The Flow-field From Galaxy Groups In 2MASS

    NASA Astrophysics Data System (ADS)

    Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.

    2011-01-01

    We present the first model of a flow-field in the nearby Universe (cz < 12,000 km/s) constructed from groups of galaxies identified in an all-sky flux-limited survey. The Two Micron All-Sky Redshift Survey (2MRS), upon which the model is based, represents the most complete survey of its class and, with near-IR fluxes, provides the optimal method for tracing baryonic matter in the nearby Universe. Peculiar velocities are reconstructed self-consistently with a density-field based upon groups identified in the 2MRS Ks<11.75 catalog. The model predicts infall toward Virgo, Perseus-Pisces, Hydra-Centaurus, Norma, Coma, Shapley and Hercules, and most notably predicts backside-infall into the Norma Cluster. We discuss the application of the model as a predictor of galaxy distances using only angular position and redshift measurements. By calibrating the model using measured distances to galaxies inside 3000 km/s, we show that, for a randomly-sampled 2MRS galaxy, improvement in the estimated distance over the application of Hubble's law is expected to be 30%, and considerably better in the proximity of clusters. We test the model using distance estimates from the SFI++ sample, and find evidence for improvement over the application of Hubble's law to galaxies inside 4000 km/s, although the performance varies depending on the location of the target. This work has been supported by NSF grant AST 0406906 and the Massachusetts Institute of Technology Bruno Rossi and Whiteman Fellowships.

  13. Dentin abrasivity of various desensitizing toothpastes.

    PubMed

    Arnold, W H; Gröger, Ch; Bizhang, M; Naumova, E A

    2016-04-02

    The aim of this study was to compare the abrasivity of various commercially available toothpastes that claim to reduce dentin hypersensitivity. Dentin discs were prepared from 70 human extracted molars. The discs were etched with lemon juice for 5 min, and one half of the discs were covered with aluminum tape. Following this, they were brushed with 6 different toothpastes, simulating a total brushing time of 6 months. As a negative control, discs were brushed with tap water only. The toothpastes contained pro-arginine and calcium carbonate, strontium acetate, stannous fluoride, zinc carbonate and hydroxyapatite, new silica, or tetrapotassium pyrophosphate and hydroxyapatite. After brushing, the height differences between the control halves and the brushed halves were determined with a profilometer and statistically compared using a Mann-Whitney U test for independent variables. A significant difference (p < 0.001) in height difference between the controls and the toothpaste-treated samples was found in all cases, except for the stannous fluoride-containing toothpaste (p = 0.583). The highest abrasion was found in the toothpaste containing zinc carbonate and hydroxyapatite, and the lowest was found in the toothpaste containing pro-arginine and calcium carbonate. Desensitizing toothpastes with different desensitizing ingredients have different levels of abrasivity, which may have a negative effect on their desensitizing abilities over a long period of time.

  14. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    PubMed Central

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-01-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804

  15. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.

    PubMed

    Otte, T; Pasch, H; Macko, T; Brüll, R; Stadler, F J; Kaschta, J; Becker, F; Buback, M

    2011-07-08

    The molar mass distribution (MMD) of synthetic polymers is frequently analyzed by size exclusion chromatography (SEC) coupled to multi angle light scattering (MALS) detection. For ultrahigh molar mass (UHM) or branched polymers this method is not sufficient, because shear degradation and abnormal elution effects falsify the calculated molar mass distribution and information on branching. High temperatures above 130 °C have to be applied for dissolution and separation of semi-crystalline materials like polyolefins which requires special hardware setups. Asymmetrical flow field-flow fractionation (AF4) offers the possibility to overcome some of the main problems of SEC due to the absence of an obstructing porous stationary phase. The SEC-separation mainly depends on the pore size distribution of the used column set. The analyte molecules can enter the pores of the stationary phase in dependence on their hydrodynamic volume. The archived separation is a result of the retention time of the analyte species inside SEC-column which depends on the accessibility of the pores, the residence time inside the pores and the diffusion ability of the analyte molecules. The elution order in SEC is typically from low to high hydrodynamic volume. On the contrary AF4 separates according to the diffusion coefficient of the analyte molecules as long as the chosen conditions support the normal FFF-separation mechanism. The separation takes place in an empty channel and is caused by a cross-flow field perpendicular to the solvent flow. The analyte molecules will arrange in different channel heights depending on the diffusion coefficients. The parabolic-shaped flow profile inside the channel leads to different elution velocities. The species with low hydrodynamic volume will elute first while the species with high hydrodynamic volume elute later. The AF4 can be performed at ambient or high temperature (AT-/HT-AF4). We have analyzed one low molar mass polyethylene sample and a number of

  16. Scaling of Myocardial Mass to Flow and Morphometry of Coronary Arteries

    PubMed Central

    Choy, Jenny Susana; Kassab, Ghassan S.

    2009-01-01

    There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5±32.7) were used in this study. Various coronary sub-trees of the Left Anterior Descending (LAD), Right Coronary (RCA) and Left Circumflex (LCX) arteries were perfused at pressure of 100 mmHg with different colors of a polymer (Microfil) in order to obtain rubber casts of arterial trees corresponding to different regions of myocardial mass. Volume, diameter and cumulative length of coronary arteries were reconstructed from casts to analyze their relationship to the perfused myocardial mass. Volumetric flow was measured in relationship with perfused myocardial mass. Our results show that arterial volume is linearly related to regional myocardial mass, whereas the sum of coronary arterial branch lengths, vessel diameters and volumetric flow show an approximately 3/4, 3/8 and 3/4 power-law relationship, respectively, in relation to myocardial mass. These scaling laws suggest fundamental design principles underlying the structure-function relationship of the coronary arterial tree that may facilitate diagnosis and management of diffuse coronary artery disease. PMID:18323461

  17. Scaling of myocardial mass to flow and morphometry of coronary arteries.

    PubMed

    Choy, Jenny Susana; Kassab, Ghassan S

    2008-05-01

    There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5 +/- 32.7) were used in this study. Various coronary subtrees of the left anterior descending, right coronary, and left circumflex arteries were perfused at pressure of 100 mmHg with different colors of a polymer (Microfil) to obtain rubber casts of arterial trees corresponding to different regions of myocardial mass. Volume, diameter, and cumulative length of coronary arteries were reconstructed from casts to analyze their relationship to the perfused myocardial mass. Volumetric flow was measured in relationship with perfused myocardial mass. Our results show that arterial volume is linearly related to regional myocardial mass, whereas the sum of coronary arterial branch lengths, vessel diameters, and volumetric flow show an approximately 3/4, 3/8, and 3/4 power-law relationship, respectively, in relation to myocardial mass. These scaling laws suggest fundamental design principles underlying the structure-function relationship of the coronary arterial tree that may facilitate diagnosis and management of diffuse coronary artery disease.

  18. The respective roles of bulk friction and slip velocity during a granular mass flow

    NASA Astrophysics Data System (ADS)

    Staron, Lydie

    2016-04-01

    Catastrophic granular mass flows form an important natural hazard. Mitigation has motivated numerous studies on the properties of natural granular flows, and in particular, their ability to travel long distances away from the release point. The mobility of granular flows is commonly characterised through the definition of rheological properties and effective friction. Yet, it is widely accepted that the description in term of effective friction may include various lubrication effects, softening at the base of the flow and large slip velocities being a most likely one. In this case, flow bulk properties may obliterate the flow boundary conditions. In this contribution, we investigate how disentangling bulk properties from boundary conditions may improve our understanding of the flow. Using discrete simulations, we induce increasing slip velocities in different flow configurations. We show that increased mobility may be achieved without changing bulk properties. The results are interpreted in terms of a Robin-Navier slip condition and implemented in a continuum Navier-Stokes solver. We quantify the respective role of rheological bulk properties and boundary conditions in the general behaviour of a transient mass flow. We show that omitting the description of boundary conditions leads to misinterpretation of the flow properties. The outcome is discussed in terms of models reliability. References P.-Y. Lagrée et al, The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with the mu(I) rheology, J. Fluid Mech. 686, 378-408 (2011) L. Staron and E. Lajeunesse, Understanding how the volume affects the mobility of dry debris flows, Geophys. Res. Lett. 36, L12402 (2009) L. Staron, Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int. 172, 455-463 (2008)

  19. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required "time taken". BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  20. Generalized derivation of the added-mass and circulatory forces for viscous flows

    NASA Astrophysics Data System (ADS)

    Limacher, Eric; Morton, Chris; Wood, David

    2018-01-01

    The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.

  1. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  2. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOEpatents

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  3. Optimization of Tangential Mass Injection for Minimizing Flow Separation in a Scramjet Inlet

    DTIC Science & Technology

    1991-12-01

    34 Aerospace EnQineering, Vol. 11. No. 8, August 1991, p.23. 26. Heppenheimer , Thomas A . Lecture notes from Hypersonic Technologies seminar. University...AFIT/GAE/ENY,/9 lD-2 ( /~ AD-A243 868 "DTIC OPTIMIZATION OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SC.R-.MJET INLET THESIS...OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SCRAMJET INLEr THESIS Presented to the Faculty of the School of E.ngineering of the

  4. Do Abrasives Play a Role in Toothpaste Efficacy against Erosion/Abrasion?

    PubMed

    Ganss, Carolina; Möllers, Maike; Schlueter, Nadine

    2017-01-01

    Abrasives may counteract the efficacy of anti-erosion toothpastes either due to physical effects or due to interaction with active agents. This study aimed to investigate whether the amount of abrasives is a determinant for the efficacy of Sn2+-containing toothpastes with or without chitosan additive. Enamel samples were eroded (0.50 wt% citric acid, pH 2.5; 6 × 2 min/day) on a shaking desk - 30/min in experiment 1 (E1) and 35/min in experiments 2 (E2) and 3 (E3) - and immersed in toothpaste slurries (2 × 2 min). Half of the samples were additionally brushed (15 s, load 200 g) within the immersion time. The toothpastes contained 0, 5, 10, 15, and 20% silica. In E1 and E2 the active ingredients were F- (700 ppm as amine fluoride, 700 ppm as NaF) and Sn2+ (3,500 ppm as SnCl2); in E3 chitosan (0.5%) was additionally added. The placebo contained 20% silica. Tissue loss was determined profilometrically. In E1, slurries completely inhibited tissue loss; distinct surface deposits occurred. With brushing, tissue loss significantly increased up to an abrasive content of 10%, but decreased significantly with higher amounts; 20% silica revealed similar values as the abrasive-free formulation. In E2, all slurries inhibited tissue loss distinctly irrespective of the amounts of abrasives. With brushing, a similar trend as in E1 was observed but with much less efficacy. The chitosan-containing formulations in E3 were much more effective; similar results as in E1 were found. In conclusion, the amount of abrasives had no effect when toothpastes were applied as slurries, but played an important role with brushing. © 2016 S. Karger AG, Basel.

  5. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  6. A quantitative study on accumulation of age mass around stagnation points in nested flow systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Ge, Shemin; Cao, Guo-Liang; Hou, Guang-Cai; Hu, Fu-Sheng; Wang, Xu-Sheng; Li, Hailong; Liang, Si-Hai

    2012-12-01

    The stagnant zones in nested flow systems have been assumed to be critical to accumulation of transported matter, such as metallic ions and hydrocarbons in drainage basins. However, little quantitative research has been devoted to prove this assumption. In this paper, the transport of age mass is used as an example to demonstrate that transported matter could accumulate around stagnation points. The spatial distribution of model age is analyzed in a series of drainage basins of different depths. We found that groundwater age has a local or regional maximum value around each stagnation point, which proves the accumulation of age mass. In basins where local, intermediate and regional flow systems are all well developed, the regional maximum groundwater age occurs at the regional stagnation point below the basin valley. This can be attributed to the long travel distances of regional flow systems as well as stagnancy of the water. However, when local flow systems dominate, the maximum groundwater age in the basin can be located around the local stagnation points due to stagnancy, which are far away from the basin valley. A case study is presented to illustrate groundwater flow and age in the Ordos Plateau, northwestern China. The accumulation of age mass around stagnation points is confirmed by tracer age determined by 14C dating in two boreholes and simulated age near local stagnation points under different dispersivities. The results will help shed light on the relationship between groundwater flow and distributions of groundwater age, hydrochemistry, mineral resources, and hydrocarbons in drainage basins.

  7. Defining an Abrasion Index for Lunar Surface Systems as a Function of Dust Interaction Modes and Variable Concentration Zones

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and subcategorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include: (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  8. A simple mass-conserved level set method for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  9. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  10. CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1994-01-01

    Isothermal CFD analysis was performed on axially opposed rows of jets mixing with cross flow in a rectangular duct. Laterally, the jets' centerlines were aligned with each other on the top and bottom walls. The focus of this study was to characterize the effects of orifice aspect ratio and jet-to-mainstream mass flow ratio on jet penetration and mixing. Orifice aspect ratios (L/W) of 4-to-1, 2-to-1, and 1-to-1, along with circular holes, were parametrically analyzed. Likewise, jet-to-mainstream mass flow ratios (MR) of 2.0, 0.5, and 0.25 were systematically investigated. The jet-to-mainstream momentum-flux ratio (J) was maintained at 36 for all cases, and the orifice spacing-to-duct height (S/H) was varied until optimum mixing was attained for each configuration. The numerical results showed that orifice aspect ratio (and likewise orifice blockage) had little effect on jet penetration and mixing. Based on mixing characteristics alone, the 4-to-1 slot was comparable to the circular orifice. The 4-to-1 slot has a smaller jet wake which may be advantageous for reducing emissions. However, the axial length of a 4-to-1 slot may be prohibitively long for practical application, especially for MR of 2.0. The jet-to-mainstream mass flow ratio had a more significant effect on jet penetration and mixing. For a 4-to-1 aspect ratio orifice, the design correlating parameter for optimum mixing (C = (S/H)(sq. root J)) varied from 2.25 for a mass flow ratio of 2.0 to 1.5 for a mass flow ratio of 0.25.

  11. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    PubMed Central

    Ersöz, Gözde; Altiparmak, Ersin; Aşçı, F. Hülya

    2016-01-01

    The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI). 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differences in behavioral regulations, dispositional flow and social physique anxiety of exercise participants with regards to BMI. In summary, the findings demonstrate that normal weighted participants exercise for internal reasons while underweighted participants are amotivated for exercise participation. Additionally, participants who are underweight had higher dispositional flow and lower social physique anxiety scores than other BMI classification. Key points Normal weighted participants exercise for internal reasons. Underweighted participants are amotivated for exercise participation. Underweighted participants had higher dispositional flow. Underweighted participants have lower social physique anxiety scores than normal weighted, overweight and obese participants. PMID:27274667

  12. Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor

    NASA Astrophysics Data System (ADS)

    Mitroo, Dhruv; Sun, Yujian; Combest, Daniel P.; Kumar, Purushottam; Williams, Brent J.

    2018-03-01

    Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).

  13. Abrasion resistance of direct and indirect resins as a function of a sealant veneer.

    PubMed

    Ferraz Caneppele, Taciana Marco; Rocha, Daniel Maranha; Màximo Araujo, Maria Amelia; Valera, Màrcia Carneiro; Salazar Marocho, Susana MarIa

    2014-01-01

    Abrasive wear is one of the most common type of wear that not only affect teeth, as also dental restorations. Thus to investigate one of the etiological factors as tooth brushing procedure is clinical relevant in order to select the best material combination that may prevent damage of resin dental restoration's abrasion. This study evaluated the influence of tooth brushing on mass loss and surface roughness of direct Venus (Vs) and indirect Signum (Sg) resin composites, with and without a surface sealant, Fortify (F). Twenty-four specimens were prepared with each resin composite, using their proprietary curing units, according to manufacturer's instructions. All the specimens were polished and ultrasonically cleaned in distilled water for 5 minutes. Half of the specimens of each resin (n = 12) were covered with F (Vs F and Sg F ), except for the control (C) specimens (Vs C and Sg C ), which were not sealed. Mass loss (ML) as well as surface roughness (Ra ) was measured for all the specimens. Then, the specimens were subjected to toothbrush-dentifrice abrasion, using a testing machine for 67.000 brushing strokes, in an abrasive slurry. After brushing simulation, the specimens were removed from the holder, rinsed thoroughly and blot dried with soft absorbent paper. The abrasion of the material was quantitatively determined with final measurements of ML and surface roughness, using the method described above. ML data were analyzed by two-way analysis of variance (ANOVA) and the analysis indicated that resin composites were not statistically different; however, the specimens sealed with F showed higher ML. Ra mean values of the groups Vs F and Sg F significantly increased. Tooth brushing affects mainly the roughness of the direct and indirect resin composites veneered with a sealant.

  14. Emissions of OTNE (Iso-E-super) - mass flows in sewage treatment plants.

    PubMed

    Bester, Kai; Klasmeier, Jörg; Kupper, Thomas

    2008-05-01

    The fate and mass flows of OTNE ([1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethylnaphthalen-2yl]ethan-1-one) which is commercialized as Iso-E-Super were studied in three large scale sewage treatment plants (STPs) in detail. The results are compared to 14 smaller ones located in Germany and Switzerland. OTNE inflow concentrations ranged from 4000 to 13,000 ngl(-1) while the effluent concentrations ranged from 500 to 6,900 ngl(-1). It is eliminated from the waste water with 56-64% during waste water treatment. High OTNE concentrations in sewage sludge showed that the elimination was mainly driven by sorption to sludge. This complies with major elimination in the first settling basins (primary settling tanks) while it was removed to a lesser extent in the aeration basin of the activated sludge treatment or in successive biofilters. The mass flows of OTNE in the influent of the German STPs were between 0.9 and 1.9 g per inhabitant and year. In the annual effluents mass flows of OTNE ranged between 0.2 and 0.8 g per inhabitant which complies with data measured in 13 smaller STPs from Switzerland. The similarity of data suggests that the observed mass flow data might be extrapolated to other European regions.

  15. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  16. Mass-conserving advection-diffusion Lattice Boltzmann model for multi-species reacting flows

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Darabiha, N.; Thévenin, D.

    2018-06-01

    Given the complex geometries usually found in practical applications, the Lattice Boltzmann (LB) method is becoming increasingly attractive. In addition to the simple treatment of intricate geometrical configurations, LB solvers can be implemented on very large parallel clusters with excellent scalability. However, reacting flows and especially combustion lead to additional challenges and have seldom been studied by LB methods. Indeed, overall mass conservation is a pressing issue in modeling multi-component flows. The classical advection-diffusion LB model recovers the species transport equations with the generalized Fick approximation under the assumption of an incompressible flow. However, for flows involving multiple species with different diffusion coefficients and density fluctuations - as is the case with weakly compressible solvers like Lattice Boltzmann -, this approximation is known not to conserve overall mass. In classical CFD, as the Fick approximation does not satisfy the overall mass conservation constraint a diffusion correction velocity is usually introduced. In the present work, a local expression is first derived for this correction velocity in a LB framework. In a second step, the error due to the incompressibility assumption is also accounted for through a modified equilibrium distribution function. Theoretical analyses and simulations show that the proposed scheme performs much better than the conventional advection-diffusion Lattice Boltzmann model in terms of overall mass conservation.

  17. Differentiating organic from conventional peppermints using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...

  18. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  19. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  20. Abrasion-Resistant Coating for Flexible Insulation

    NASA Technical Reports Server (NTRS)

    Mui, D.; Headding, R. E.

    1986-01-01

    Ceramic coating increases durability and heat resistance of flexible high-temperature insulation. Coating compatible with quartz-fabric insulation allowing it to remain flexible during and after repeated exposures to temperatures of 1,800 degree F (982 degree C). Prevents fabric from becoming brittle while increasing resistance to aerodynamic abrasion and loading. Coating consists of penetrating precoat and topcoat. Major ingredients high-purity colloidal silica binder and ground silica filler, which ensure stability and compatibility with fabric at high temperatures. Both precoat and topcoat cured at room temperature.

  1. Effect of distributive mass of spring on power flow in engineering test

    NASA Astrophysics Data System (ADS)

    Sheng, Meiping; Wang, Ting; Wang, Minqing; Wang, Xiao; Zhao, Xuan

    2018-06-01

    Mass of spring is always neglected in theoretical and simulative analysis, while it may be a significance in practical engineering. This paper is concerned with the distributive mass of a steel spring which is used as an isolator to simulate isolation performance of a water pipe in a heating system. Theoretical derivation of distributive mass effect of steel spring on vibration is presented, and multiple eigenfrequencies are obtained, which manifest that distributive mass results in extra modes and complex impedance properties. Furthermore, numerical simulation visually shows several anti-resonances of the steel spring corresponding to impedance and power flow curves. When anti-resonances emerge, the spring collects large energy which may cause damage and unexpected consequences in practical engineering and needs to be avoided. Finally, experimental tests are conducted and results show consistency with that of the simulation of the spring with distributive mass.

  2. Characterization of vertical aerosol flows by single particle mass spectrometry for micrometeorological analysis

    NASA Astrophysics Data System (ADS)

    Gelhausen, Elmar; Hinz, Klaus-Peter; Schmidt, Andres; Spengler, Bernhard

    2011-10-01

    A single particle mass spectrometer LAMPAS 2 (Laser Mass Analyzer for Particles in the Airborne State) was combined with an ultrasonic anemometer to provide a measurement system for monitoring environmental substance exchange as caused by emission/deposition of aerosol particles. For this study, 681 mass spectra of detected particles were sorted into groups of similarity by a clustering algorithm leading to five classes of different particle types. Each single mass spectrum was correlated to corresponding anemometer data (vertical wind vector and wind speed) in a time-resolved analysis. Due to sampling constraints time-resolution was limited to 36 s, as a result of transition time distributions through the sampling tube. Vertical particle flow (emission/deposition) was determined for all particles based on these data as acquired during a measuring campaign in Giessen, Germany. For a selected particle class a detailed up- and downwards flow consideration was performed to prove the developed approach. Particle flow of that class was dominated by an emission trend as expected. The presented combination of single-particle mass spectrometry and ultrasonic anemometry provides for the possibility to correlate chemical particle data and wind data in a distinct assignment for the description of turbulent particle behavior near earth surface. Results demonstrate the ability to apply the method to real micrometeorological systems, if sampling issues are properly considered for an intended time resolution.

  3. Calibration of the NASA GRC 16 In. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2012-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 in. and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

  4. Piecewise mass flows within a solar prominence observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Liu, Yu; Tam, Kuan Vai; Zhao, Mingyu; Zhang, Xuefei

    2018-06-01

    The material of solar prominences is often observed in a state of flowing. These mass flows (MF) are important and useful for us to understand the internal structure and dynamics of prominences. In this paper, we present a high resolution Hα observation of MFs within a quiescent solar prominence. From the observation, we find that the plasma primarily has a circular motion and a downward motion separately in the middle section and legs of the prominence, which creates a piecewise mass flow along the observed prominence. Moreover, the observation also shows a clear displacement of MF's velocity peaks in the middle section of the prominence. All of these provide us with a detailed record of MFs within a solar prominence and show a new approach to detecting the physical properties of prominence.

  5. Calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2014-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

  6. Couette flow of an incompressible fluid in a porous channel with mass transfer

    NASA Astrophysics Data System (ADS)

    Niranjana, N.; Vidhya, M.; Govindarajan, A.

    2018-04-01

    The present discussion deals with the study of couette flow through a porous medium of a viscous incompressible fluid between two infinite horizontal parallel porous flat plates with heat and mass transfer. The stationary plate and the plate in uniform motion are subjected to transverse sinusoidal injection and uniform suction of the fluid. Due to this type of injection velocity, the flow becomes three dimensional. The analytical solutions of the nonlinear partial differential equations of this problem are obtained by using perturbation technique. Expressions for the velocity, temperature fields and the rate of heat and mass transfers are obtained. Effects of the following parameters Schmidt number (Sc), Modified Grashof number (Gm) on the velocity, temperature and concentration fields are obtained numerically and depicted through graphs. The rate of heat and mass transfer are also analyzed.

  7. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed

  8. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  9. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    NASA Astrophysics Data System (ADS)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and

  10. Architecture for improved mass transport and system performance in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  11. Variable mass diffusion effects on free convection flow past an impulsively started infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Rushi Kumar, B.; Jayakar, R.; Vijay Kumar, A. G.

    2017-11-01

    An exact analysis of the problem of free convection flow of a viscous incompressible chemically reacting fluid past an infinite vertical plate with the flow due to impulsive motion of the plate with Newtonian heating in the presence of thermal radiation and variable mass diffusion is performed. The resulting governing equations were tackled by Laplace transform technique. Finally the effects of pertinent flow parameters such as the radiation parameter, chemical reaction parameter, buoyancy ratio parameter, thermal Grashof number, Schmidt number, Prandtl number and time on the velocity, temperature, concentration and skin friction for both aiding and opposing flows were examined in detail when Pr=0.71(conducting air) and Pr=7.0(water).

  12. Transition regime analytical solution to gas mass flow rate in a rectangular micro channel

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou; Dongari, Nishanth

    2012-11-01

    We present an analytical model predicting the experimentally observed gas mass flow rate in rectangular micro channels over slip and transition regimes without the use of any fitting parameter. Previously, Sone reported a class of pure continuum regime flows that requires terms of Burnett order in constitutive equations of shear stress to be predicted appropriately. The corrective terms to the conventional Navier-Stokes equation were named the ghost effect. We demonstrate in this paper similarity between Sone ghost effect model and newly so-called 'volume diffusion hydrodynamic model'. A generic analytical solution to gas mass flow rate in a rectangular micro channel is then obtained. It is shown that the volume diffusion hydrodynamics allows to accurately predict the gas mass flow rate up to Knudsen number of 5. This can be achieved without necessitating the use of adjustable parameters in boundary conditions or parametric scaling laws for constitutive relations. The present model predicts the non-linear variation of pressure profile along the axial direction and also captures the change in curvature with increase in rarefaction.

  13. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.

  14. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.

    PubMed

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.

  15. Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases

    NASA Astrophysics Data System (ADS)

    Lilly, T. C.; Gimelshein, S. F.; Ketsdever, A. D.; Markelov, G. N.

    2006-09-01

    Gas flows through orifices and short tubes have been extensively studied from the 1960s through the 1980s for both fundamental and practical reasons. These flows are a basic and often important element of various modern gas driven instruments. Recent advances in micro- and nanoscale technologies have paved the way for a generation of miniaturized devices in various application areas, from clinical analyses to biochemical detection to aerospace propulsion. The latter is the main area of interest of this study, where rarefied gas flow into a vacuum through short tubes with thickness-to-diameter ratios varying from 0.015 to 1.2 is investigated both experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to 770 (based on the tube diameter), corresponding to Knudsen numbers from 40 down to about 0.001. Propulsion properties of relatively thin and thick tubes are examined. Good agreement between experimental and numerical results is observed for mass flow rate and momentum flux, the latter being corrected for the experimental facility background pressure. For thick-to-thin tube ratios of mass flow and momentum flux versus pressure, a minimum is observed at a Knudsen number of about 0.5. A short tube propulsion efficiency is shown to be much higher than that of a thin orifice. The effect of surface specularity on a thicker tube specific impulse was found to be relatively small.

  16. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  17. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  18. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  19. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  20. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  1. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  2. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  3. Evaluation of abrasion resistance of pipe and pipe lining materials.

    DOT National Transportation Integrated Search

    2007-09-01

    This project summarizes an evaluation of pipe material resistance to abrasion over a 5-year period (2001-2006) at a site known to be abrasive. : The key focus of the project was to gather more information to compare against existing guidance to desig...

  4. Mass and energy flows between the Solar chromosphere, transition region, and corona

    NASA Astrophysics Data System (ADS)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  5. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-01-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths

  6. Magnetic scavengers as carriers of analytes for flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS).

    PubMed

    Cegłowski, Michał; Kurczewska, Joanna; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2015-09-07

    In this paper, a procedure for the preconcentration and transport of mixtures of acids, bases, and drug components to a mass spectrometer using magnetic scavengers is presented. Flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS) was used as an analytical method for identification of the compounds by thermal desorption from the scavengers. The proposed procedure is fast and cheap, and does not involve time-consuming purification steps. The developed methodology can be applied for trapping harmful substances in minute quantities, to transport them to specialized, remotely located laboratories.

  7. Conception of a test bench to generate known and controlled conditions of refrigerant mass flow.

    PubMed

    Martins, Erick F; Flesch, Carlos A; Flesch, Rodolfo C C; Borges, Maikon R

    2011-07-01

    Refrigerant compressor performance tests play an important role in the evaluation of the energy characteristics of the compressor, enabling an increase in the quality, reliability, and efficiency of these products. Due to the nonexistence of a refrigerating capacity standard, it is common to use previously conditioned compressors for the intercomparison and evaluation of the temporal drift of compressor performance test panels. However, there are some limitations regarding the use of these specific compressors as standards. This study proposes the development of a refrigerating capacity standard which consists of a mass flow meter and a variable-capacity compressor, whose speed is set based on the mass flow rate measured by the meter. From the results obtained in the tests carried out on a bench specifically developed for this purpose, it was possible to validate the concept of a capacity standard. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Tooth wear: attrition, erosion, and abrasion.

    PubMed

    Litonjua, Luis A; Andreana, Sebastiano; Bush, Peter J; Cohen, Robert E

    2003-06-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification acts through a distinct process that is associated with unique clinical characteristics. Accurate prevalence data for each classification are not available since indices do not necessarily measure one specific etiology, or the study populations may be too diverse in age and characteristics. The treatment of teeth in each classification will depend on identifying the factors associated with each etiology. Some cases may require specific restorative procedures, while others will not require treatment. A review of the literature points to the interaction of the three entities in the initiation and progression of lesions that may act synchronously or sequentially, synergistically or additively, or in conjunction with other entities to mask the true nature of tooth wear, which appears to be multifactorial.

  9. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Iijima, Akihiro; Sato, Keiichi; Yano, Kiyoko; Tago, Hiroshi; Kato, Masahiko; Kimura, Hirokazu; Furuta, Naoki

    Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters ( Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.

  10. Casing window milling with abrasive fluid jet

    SciTech Connect

    Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.

    1995-12-31

    Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less

  11. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS

  12. A cautionary note on the use of some mass flow controllers

    NASA Astrophysics Data System (ADS)

    Weinheimer, Andrew J.; Ridley, Brian A.

    1990-06-01

    Commercial mass flow controllers are widely used in atmospheric research where precise and constant gas flows are required. We have determined, however, that some commonly used controllers are far more sensitive to ambient pressure than is acknowledged in the literature of the manufacturers. Since a flow error can lead directly to a measurement error of the same magnitude, this is a matter of great concern. Indeed, in our particular application, were we not aware of this problem, our measurements would be subject to a systematic error that increased with altitude (i.e., a drift), up to a factor of 2 at the highest altitudes (˜37 km). In this note we present laboratory measurements of the errors of two brands of flow controllers when operated at pressures down to a few millibars. The errors are as large as a factor of 2 to 3 and depend not simply on the ambient pressure at a given time, but also on the pressure history. In addition there is a large dependence on flow setting. In light of these flow errors, some past measurements of chemical species in the stratosphere will need to be revised.

  13. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  14. Modeling hazardous mass flows Geoflows09: Mathematical and computational aspects of modeling hazardous geophysical mass flows; Seattle, Washington, 9–11 March 2009

    USGS Publications Warehouse

    Iverson, Richard M.; LeVeque, Randall J.

    2009-01-01

    A recent workshop at the University of Washington focused on mathematical and computational aspects of modeling the dynamics of dense, gravity-driven mass movements such as rock avalanches and debris flows. About 30 participants came from seven countries and brought diverse backgrounds in geophysics; geology; physics; applied and computational mathematics; and civil, mechanical, and geotechnical engineering. The workshop was cosponsored by the U.S. Geological Survey Volcano Hazards Program, by the U.S. National Science Foundation through a Vertical Integration of Research and Education (VIGRE) in the Mathematical Sciences grant to the University of Washington, and by the Pacific Institute for the Mathematical Sciences. It began with a day of lectures open to the academic community at large and concluded with 2 days of focused discussions and collaborative work among the participants.

  15. Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Bianchi, G.; Sklar, L. S.

    2016-12-01

    Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.

  16. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    NASA Astrophysics Data System (ADS)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  17. Modeling highly transient flow, mass, and heat transport in the Chattahoochee River near Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.; Keefer, Thomas N.

    1979-01-01

    A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. The linear, implicit finite-difference flow model was calibrated by use of a depth profile obtained at steady low flow and unsteady flow data obtained in March 1976. During the calibration period, the model was generally able to reproduce observed stages to within 0.15 m and discharges at less than 100 m 3 /s, to within 5 percent. Peak discharges of about 200 m 3 /s were under-estimated by about 20 percent. During the verification period, October 1975, the flow model reproduced observed stage changes to within about 0.15 m, and its timing and over-all performance was considered to be very good. Dye was added to the upstream end of the river reach at a constant rate while the river flow was highly unsteady. The numerical solution of either the conservative or nonconservative form of the mass-transport equation did an excellent job of simulating the observed concentrations of dye in the river. The temperature model was capable of predicting temperature changes through this reach of as large as 5.8?C with a RMS (root-mean-square) error of 0.32?C in October 1975 and 0.20?C in March 1976. Hydropulsation has a significant effect on the water temperature below Buford Dam. These effects are very complicated because they are quite dependent on the timing of the release with respect to both the time of day and past releases.

  18. Where is The Dark Matter: The Flow-field From 2MASS

    NASA Astrophysics Data System (ADS)

    Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.

    2009-01-01

    We present a map of the flow-field constructed from groups of galaxies in the 2MASS Redshift Survey. Previous efforts have suffered because the underlying surveys either did not penetrate to low galactic latitudes or were not sensitive to elliptical galaxies, thereby missing a significant fraction of the mass. The 2MASS Redshift Survey provides a uniform all-sky magnitude-limited sample in the J, H and Ks bands, 97% complete to Ks<11.75 and |b|>10°, sensitive to both ellipticals and spirals. We demonstrate how utilizing the properties of galaxy groups leads to improved predictions of peculiar velocities in the nearby Universe, and use dynamical mass estimates to construct a reliable flow-field to 12,000 km/s. We demonstrate its effectiveness in providing distance estimates, and discuss the advantages of this model over earlier work. With independent knowledge of the peculiar velocity of the Local Group, we discuss the implications for the matter density parameter and bias. This work is supported by a Whiteman Fellowship and NSF grant AST-0406906.

  19. Energy balance and mass conservation in reduced order models of fluid flows

    NASA Astrophysics Data System (ADS)

    Mohebujjaman, Muhammad; Rebholz, Leo G.; Xie, Xuping; Iliescu, Traian

    2017-10-01

    In this paper, we investigate theoretically and computationally the conservation properties of reduced order models (ROMs) for fluid flows. Specifically, we investigate whether the ROMs satisfy the same (or similar) energy balance and mass conservation as those satisfied by the Navier-Stokes equations. All of our theoretical findings are illustrated and tested in numerical simulations of a 2D flow past a circular cylinder at a Reynolds number Re = 100. First, we investigate the ROM energy balance. We show that using the snapshot average for the centering trajectory (which is a popular treatment of nonhomogeneous boundary conditions in ROMs) yields an incorrect energy balance. Then, we propose a new approach, in which we replace the snapshot average with the Stokes extension. Theoretically, the Stokes extension produces an accurate energy balance. Numerically, the Stokes extension yields more accurate results than the standard snapshot average, especially for longer time intervals. Our second contribution centers around ROM mass conservation. We consider ROMs created using two types of finite elements: the standard Taylor-Hood (TH) element, which satisfies the mass conservation weakly, and the Scott-Vogelius (SV) element, which satisfies the mass conservation pointwise. Theoretically, the error estimates for the SV-ROM are sharper than those for the TH-ROM. Numerically, the SV-ROM yields significantly more accurate results, especially for coarser meshes and longer time intervals.

  20. Finite element modeling of mass transport in high-Péclet cardiovascular flows

    NASA Astrophysics Data System (ADS)

    Hansen, Kirk; Arzani, Amirhossein; Shadden, Shawn

    2016-11-01

    Mass transport plays an important role in many important cardiovascular processes, including thrombus formation and atherosclerosis. These mass transport problems are characterized by Péclet numbers of up to 108, leading to several numerical difficulties. The presence of thin near-wall concentration boundary layers requires very fine mesh resolution in these regions, while large concentration gradients within the flow cause numerical stabilization issues. In this work, we will discuss some guidelines for solving mass transport problems in cardiovascular flows using a stabilized Galerkin finite element method. First, we perform mesh convergence studies in a series of idealized and patient-specific geometries to determine the required near-wall mesh resolution for these types of problems, using both first- and second-order tetrahedral finite elements. Second, we investigate the use of several boundary condition types at outflow boundaries where backflow during some parts of the cardiac cycle can lead to convergence issues. Finally, we evaluate the effect of reducing Péclet number by increasing mass diffusivity as has been proposed by some researchers. This work was supported by the NSF GRFP and NSF Career Award #1354541.

  1. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOEpatents

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  2. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.

    PubMed

    Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D

    2014-06-01

    In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0flow; (2) streaming accompanying a volumetric bounce-back procedure in boundary cells; and (3) boundary-induced volumetric fluid migration moving the residual fluid particles into the flow domain when the boundary swipes over a boundary cell toward a solid cell. The MCVLBM strictly satisfies mass conservation and can handle irregular boundary orientation and motion with respect to the mesh. Validation studies are carried out in four cases. The first is to simulate fluid dynamics in syringes focusing on how MCVLBM captures the underlying physics of flow driven by a willfully moving piston. The second and third cases are two-dimensional (2D) peristaltic flow and three-dimensional (3D) pipe flow, respectively. In each case, we compare the MCVLBM simulation result with the analytical solution and achieve quantitatively good agreements. The fourth case is to simulate blood flow in human aortic arteries with a very complicated irregular boundary. We study steady flow in two dimensions and unsteady flow via the pulsation of the cardiac cycle in three dimensions. In the 2D case, both vector (velocity) and

  3. Characterization of fine abrasive particles for optical fabrication

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Zhou, Y. Y.; Takahashi, Toshio; Quesnel, David J.; Lambropoulos, John C.

    1995-08-01

    Material removal during fine grinding operations is accomplished primarily by the action of individual abrasive particles on the glass surface. The mechanical properties of the abrasive are therefore important. Unfortunately it is difficult to directly measure the mechanical response of abrasives once they reach the scale of approximately 10 microns. As a result mechanical properties of fine abrasives are sometimes characterized in terms of an empirical `friability', based on the response of the abrasive to crushing by a metal ball in a vial. In this paper we report on modeling/experiments designed to more precisely quantify the mechanical properties of fine abrasives and ultimately to relate them to the conditions experienced by bound particles during grinding. Experiments have been performed on various types and sizes of diamond abrasives. The response of the particles is a strong function of the loading conditions and can be tracked by changing the testing parameters. Diamond size is also found to play a critical role, with finer diamonds less susceptible to fracture. A micromechanical model from the literature is employed estimate the forces likely to be seen during testing. We are also developing dynamic models to better predict the forces experienced during `friability' testing as a function of the testing parameters.

  4. Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer

    NASA Technical Reports Server (NTRS)

    Bhat, M. K.; Vakili, A. D.; Wu, J. M.

    1990-01-01

    The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.

  5. Elliptic flow of ϕ mesons at intermediate pT: Influence of mass versus quark number

    NASA Astrophysics Data System (ADS)

    Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis

    2017-02-01

    We have studied elliptic flow (v2) of ϕ mesons in the framework of a multiphase transport (AMPT) model at CERN Large Hadron Collider (LHC) energy. In the realms of AMPT model we observe that ϕ mesons at intermediate transverse momentum (pT) deviate from the previously observed [at the BNL Relativistic Heavy Ion Collider (RHIC)] particle type grouping of v2 according to the number of quark content, i.e, baryons and mesons. Recent results from the ALICE Collaboration have shown that ϕ meson and proton v2 has a similar trend, possibly indicating that particle type grouping might be due to the mass of the particles and not the quark content. A stronger radial boost at LHC compared to RHIC seems to offer a consistent explanation to such observation. However, recalling that ϕ mesons decouple from the hadronic medium before additional radial flow is built up in the hadronic phase, a similar pattern in ϕ meson and proton v2 may not be due to radial flow alone. Our study reveals that models incorporating ϕ -meson production from K K ¯ fusion in the hadronic rescattering phase also predict a comparable magnitude of ϕ meson and proton v2 particularly in the intermediate region of pT. Whereas, v2 of ϕ mesons created in the partonic phase is in agreement with quark-coalescence motivated baryon-meson grouping of hadron v2. This observation seems to provide a plausible alternative interpretation for the apparent mass-like behavior of ϕ -meson v2. We have also observed a violation of hydrodynamical mass ordering between proton and ϕ meson v2 further supporting that ϕ mesons are negligibly affected by the collective radial flow in the hadronic phase due to the small in-medium hadronic interaction cross sections.

  6. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  7. Preoperative discrimination between malignant and benign adnexal masses with transvaginal ultrasonography and colour blood flow imaging.

    PubMed

    Sawicki, W; Spiewankiewicz, B; Cendrowski, K; Stelmachów, J

    2001-01-01

    Ovarian cancer is one of the causes of death in women, and in about 70% of cases is recognized only in advanced stages. This study was undertaken to evaluate distinctive values of transvaginal and color Doppler ultrasonography in differentiating malignant and benign adnexal masses through analysis of ultrasonic morphological features of malignancy and estimation of location and intensification of angiogenesis as well as values of resistance of flow in examined masses. 329 women with malignant and benign adnexal masses underwent ultrasonographic and colour Doppler examination 1-5 days before surgery (laparotomy, laparoscopy) thus allowing histological verification of diagnosis. The ultrasonographic structure was assessed using a morphological scoring system devised by Sassone, Jain and Benacerraf. Regions showing vasculature, especially within septae and solid parts of tumours were examined by means of transvaginal colour Doppler. Location and intensification of angiogenesis as well as resistance index (RI) were investigated. Sensitivity, specificity, PPV and NPV of both techniques were assessed. Statistical analysis of obtained data were based on the Student's t test; p < 0.05 level was considered significant. Postoperatively 255 (77.5%) benign and 74 (22.5%) malignant tumours were seen. In the group of benign masses the average age of women was 42.6+/-12.3 and in the malignant it was 53.1+/-12.6 (p<0.0001). The transverse dimension of benign lesions was 77.2+/-19, whereas for malignant it was 107.0+/-31 (p<0.0001). Benign tumours in 63.0% were cystic, in 26.0% mixed cystic-solid and in 11.0% solid echostructures while in malignant they were respectively, 6.8%, 56.8% and 36.4% (p<0.0001). Doppler flow within the tumour was 74.5% in benign and 98.6% in malignant masses (p<0.0001). In benign lesions homogenous superficial or peripheral vasculature was visualized, and in the majority of cases (82.7%) it was of medium intensification. However in malignant central

  8. Antarctic ice sheet mass loss estimates using Modified Antarctic Mapping Mission surface flow observations

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Leslie, Lance M.; Lynch, Mervyn J.

    2013-03-01

    The long residence time of ice and the relatively gentle slopes of the Antarctica Ice Sheet make basal sliding a unique positive feedback mechanism in enhancing ice discharge along preferred routes. The highly organized ice stream channels extending to the interior from the lower reach of the outlets are a manifestation of the role of basal granular material in enhancing the ice flow. In this study, constraining the model-simulated year 2000 ice flow fields with surface velocities obtained from InSAR measurements permits retrieval of the basal sliding parameters. Forward integrations of the ice model driven by atmospheric and oceanic parameters from coupled general circulation models under different emission scenarios provide a range of estimates of total ice mass loss during the 21st century. The total mass loss rate has a small intermodel and interscenario spread, rising from approximately -160 km3/yr at present to approximately -220 km3/yr by 2100. The accelerated mass loss rate of the Antarctica Ice Sheet in a warming climate is due primarily to a dynamic response in the form of an increase in ice flow speed. Ice shelves contribute to this feedback through a reduced buttressing effect due to more frequent systematic, tabular calving events. For example, by 2100 the Ross Ice Shelf is projected to shed 40 km3 during each systematic tabular calving. After the frontal section's attrition, the remaining shelf will rebound. Consequently, the submerged cross-sectional area will reduce, as will the buttressing stress. Longitudinal differential warming of ocean temperature contributes to tabular calving. Because of the prevalence of fringe ice shelves, oceanic effects likely will play a very important role in the future mass balance of the Antarctica Ice Sheet, under a possible future warming climate.

  9. Conventional-Flow Liquid Chromatography-Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses.

    PubMed

    Lenčo, Juraj; Vajrychová, Marie; Pimková, Kristýna; Prokšová, Magdaléna; Benková, Markéta; Klimentová, Jana; Tambor, Vojtěch; Soukup, Ondřej

    2018-04-17

    Due to its sensitivity and productivity, bottom-up proteomics based on liquid chromatography-mass spectrometry (LC-MS) has become the core approach in the field. The de facto standard LC-MS platform for proteomics operates at sub-μL/min flow rates, and nanospray is required for efficiently introducing peptides into a mass spectrometer. Although this is almost a "dogma", this view is being reconsidered in light of developments in highly efficient chromatographic columns, and especially with the introduction of exceptionally sensitive MS instruments. Although conventional-flow LC-MS platforms have recently penetrated targeted proteomics successfully, their possibilities in discovery-oriented proteomics have not yet been thoroughly explored. Our objective was to determine what are the extra costs and what optimization and adjustments to a conventional-flow LC-MS system must be undertaken to identify a comparable number of proteins as can be identified on a nanoLC-MS system. We demonstrate that the amount of a complex tryptic digest needed for comparable proteome coverage can be roughly 5-fold greater, providing the column dimensions are properly chosen, extra-column peak dispersion is minimized, column temperature and flow rate are set to levels appropriate for peptide separation, and the composition of mobile phases is fine-tuned. Indeed, we identified 2 835 proteins from 2 μg of HeLa cells tryptic digest separated during a 60 min gradient at 68 μL/min on a 1.0 mm × 250 mm column held at 55 °C and using an aqua-acetonitrile mobile phases containing 0.1% formic acid, 0.4% acetic acid, and 3% dimethyl sulfoxide. Our results document that conventional-flow LC-MS is an attractive alternative for bottom-up exploratory proteomics.

  10. The Practical Application of Aqueous Geochemistry in Mapping Groundwater Flow Systems in Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Bursey, G.; Seok, E.; Gale, J. E.

    2017-12-01

    Flow to underground mines and open pits takes place through an interconnected network of regular joints/fractures and intermediate to large scale structural features such as faults and fracture zones. Large scale features can serve either as high permeability pathways or as barriers to flow, depending on the internal characteristics of the structure. Predicting long term water quality in barrier-well systems and long-term mine water inflows over a mine life, as a mine expands, requires the use of a 3D numerical flow and transport code. The code is used to integrate the physical geometry of the fractured-rock mass with porosity, permeability, hydraulic heads, storativity and recharge data and construct a model of the flow system. Once that model has been calibrated using hydraulic head and permeability/inflow data, aqueous geochemical and isotopic data provide useful tools for validating flow-system properties, when one is able to recognize and account for the non-ideal or imperfect aspects of the sampling methods used in different mining environments. If groundwater samples are collected from discrete depths within open boreholes, water in those boreholes have the opportunity to move up or down in response to the forces that drive groundwater flow, whether they be hydraulic gradients, gas pressures, or density differences associated with variations in salinity. The use of Br/Cl ratios, for example, can be used to determine if there is active flow into, or out of, the boreholes through open discontinuities in the rock mass (i.e., short-circuiting). Natural groundwater quality can also be affected to varying degrees by mixing with drilling fluids. The combined use of inorganic chemistry and stable isotopes can be used effectively to identify dilution signals and map the dilution patterns through a range of fresh, brackish and saline water types. The stable isotopes of oxygen and hydrogen are nearly ideal natural tracers of water, but situations occur when deep

  11. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  12. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  13. Non-basal dislocations should be accounted for in simulating ice mass flow

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  14. Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities

    NASA Technical Reports Server (NTRS)

    Marziale, M. L.; Mayle, R. E.

    1984-01-01

    Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions.

  15. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    SciTech Connect

    Waluga, Christian, E-mail: waluga@ma.tum.de; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilizedmore » linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.« less

  16. Assessment of thermal spray coatings for wear and abrasion resistance applications

    NASA Astrophysics Data System (ADS)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  17. Correlating field and laboratory rates of particle abrasion, Rio Medio, Sangre de Cristo Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Polito, P. J.; Sklar, L. S.

    2006-12-01

    River bed sediments commonly fine downstream due to a combination of particle abrasion, selective transport of finer grains, and fining of the local sediment supply from hillslopes and tributaries. Particle abrasion rates can be directly measured in the laboratory using tumbling barrels and annular flumes, however, scaling experimental particle abrasion rates to the field has proven difficult due to the confounding effects of selective transport and local supply variations. Here we attempt to correlate laboratory and field rates of particle abrasion in a field setting where these confounding effects can be controlled. The Rio Medio, which flows westward from the crest of the Sangre de Cristo Mountains in north central New Mexico, is one of several streams studied by John P. Miller in the early 1960's. Several kilometers downstream of its headwaters, the river crosses the Picuris-Pecos fault. Upstream of the fault the river receives quartzite, sandstone and shale clasts from the Ortega Formation, while downstream sediments are supplied by the Embudo Granite. Because the upstream lithologies are not resupplied downstream of the fault, any observed fining of these clasts should be due only to abrasion and selective transport. We hypothesize that we can account for the effects of selective transport by comparing relative fining rates for the different upstream lithologies from both the field and a laboratory tumbler. By correlating laboratory abrasion rates with rock strength, we can predict the relative fining rates due solely to abrasion expected in the field; differences between the predicted and observed fining rates could then be attributed to selective transport. We used point counts to measure bed surface sediment grain size distributions at 15 locations along a 25 kilometer reach of the Rio Medio, beginning just downstream of the fault and ending upstream of a developed area with disturbed channel conditions. We recorded intermediate particle diameter as well

  18. Mass flows and removal of antibiotics in two municipal wastewater treatment plants.

    PubMed

    Li, Bing; Zhang, Tong

    2011-05-01

    The mass flows and removal of 20 antibiotics of seven classes in two wastewater treatment plants (WWTPs) of Hong Kong were investigated in different seasons of a whole year, using bihourly 24h flow proportional composite samples. Antibiotics were detected at concentrations of 3.2-1718, 1.3-1176 and 1.1-233ngL(-1) in influents, secondary and disinfection effluents. Total daily discharges of all the detected antibiotics from effluents of Shatin and Stanley WWTPs were 470-710 and 3.0-5.2gd(-1), respectively. Ampicillin, cefalexin, sulfamethoxazole, sulfadiazine, sulfamethazine, chlortetracycline and vancomycin were effectively (52-100%) eliminated by activated sludge process while ampicillin and cefalexin were effectively (91-99%) eliminated by disinfection. Bihourly variation analysis showed that concentrations of the major antibiotics in influents varied more significantly in Stanley WWTP which served small communities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Mass flow meter using the triboelectric effect for measurement in cryogenics

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve

    1987-01-01

    The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.

  20. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  1. Experimental investigation on mass flow rate measurements using fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Thekkethil, S. R.; Thomas, R. J.; Neumann, H.; Ramalingam, R.

    2017-02-01

    Flow measurement and control of cryogens is one of the major requirements of systems such as superconductor magnets for fusion reactors, MRI magnets etc. They can act as an early diagnostic tool for detection of any faults and ensure correct distribution of cooling load while also accessing thermal performance of the devices. Fibre Bragg Grating (FBG) sensors provide compact and accurate measurement systems which have added advantages such as immunity towards electrical and magnetic interference, low attenuation losses and remote sensing. This paper summarizes the initial experimental investigations and calibration of a novel FBG based mass flow meter. This design utilizes the viscous drag due to the flow to induce a bending strain on the fibre. The strain experienced by the fibre will be proportional to the flowrate and can be measured in terms of Bragg wavelength shift. The flowmeter is initially tested at atmospheric conditions using helium. The results are summarized and the performance parameters of the sensor are estimated. The results were also compared to a numerical model and further results for liquid helium is also reported. An overall sensitivity of 29 pm.(g.s-1)-1 was obtained for a helium flow, with a resolution of 0.2 g.s-1. A hysteresis error of 8 pm was also observed during load-unload cycles. The sensor is suitable for further tests using cryogens.

  2. Model development and verification for mass transport to Escherichia coli cells in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Hondzo, Miki; Al-Homoud, Amer

    2007-08-01

    Theoretical studies imply that fluid motion does not significantly increase the molecular diffusive mass flux toward and away from microscopic organisms. This study presents experimental and theoretical evidence that small-scale turbulence modulates enhanced mass transport to Escherichia coli cells in a turbulent flow. Using the technique of inner region and outer region expansions, a model for dissolved oxygen and glucose uptake by E. coli was developed. The mass transport to the E. coli was modeled by the Sherwood (Sh)-Péclet (Pe) number relationship with redefined characteristic length and velocity scales. The model Sh = (1 + Pe1/2 + Pe) agreed with the laboratory measurements well. The Péclet number that quantifies the role and function of small-scale turbulence on E. coli metabolism is defined by Pe = (?) where Ezz is the root mean square of fluid extension in the direction of local vorticity, ηK is the Kolmogorov length scale, Lc is the length scale of E. coli, and D is the molecular diffusion coefficient. An alternative formulation for the redefined Pe is given by Pe = (?) where ? = 0.5(ɛν)1/4 is the Kolmogorov velocity averaged over the Kolmogorov length scale, ɛ is dissipation of turbulent kinetic energy, and ν is the kinematic viscosity of fluid. The dissipation of turbulent kinetic energy was estimated directly from measured velocity gradients and was within the reported range in engineered and natural aquatic ecosytems. The specific growth of E. coli was up to 5 times larger in a turbulent flow in comparison to the still water controls. Dissolved oxygen and glucose uptake were enhanced with increased ɛ in the turbulent flow.

  3. The interactions between attrition, abrasion and erosion in tooth wear.

    PubMed

    Shellis, R Peter; Addy, Martin

    2014-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.

  4. Interaction between attrition,abrasion and erosion in tooth wear.

    PubMed

    Addy, M; Shellis, R P

    2006-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence seems insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear through formation of pellicle and by remineralisation but cannot prevent it.

  5. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    NASA Astrophysics Data System (ADS)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  6. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  7. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    SciTech Connect

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less

  8. Leg blood flow is impaired during small muscle mass exercise in patients with COPD.

    PubMed

    Iepsen, U W; Munch, G W; Rugbjerg, M; Ryrsø, C K; Secher, N H; Hellsten, Y; Lange, P; Pedersen, B K; Thaning, P; Mortensen, S P

    2017-09-01

    Skeletal muscle blood flow is regulated to match the oxygen demand and dysregulation could contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). We measured leg hemodynamics and metabolites from vasoactive compounds in muscle interstitial fluid and plasma at rest, during one-legged knee-extensor exercise, and during arterial infusions of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively. Ten patients with moderate to severe COPD and eight age- and sex-matched healthy controls were studied. During knee-extensor exercise (10 W), leg blood flow was lower in the patients compared with the controls (1.82 ± 0.11 vs. 2.36 ± 0.14 l/min, respectively; P < 0.05), which compromised leg oxygen delivery (372 ± 26 vs. 453 ± 32 ml O 2 /min, respectively; P < 0.05). At rest, plasma endothelin-1 (vasoconstrictor) was higher in the patients with COPD ( P < 0.05) and also tended to be higher during exercise ( P = 0.07), whereas the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response to both endothelium-independent (SNP) and endothelium-dependent (ACh) stimulation. The results suggest that leg muscle blood flow is impaired during small muscle mass exercise in patients with COPD possibly due to impaired formation of prostacyclin and increased levels of endothelin-1. NEW & NOTEWORTHY This study demonstrates that chronic obstructive pulmonary disease (COPD) is associated with a reduced blood flow to skeletal muscle during small muscle mass exercise. In contrast to healthy individuals, interstitial prostacyclin levels did not increase during exercise and plasma endothelin-1 levels were higher in the patients with COPD. Copyright © 2017 the American Physiological

  9. Hall effects on hydromagnetic free convection flow along a porous flat plate with mass transfer

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Rashid, R. I. M. A.

    1987-01-01

    Effect of Hall current on the unsteady free convection flow of a viscous incompressible and electrically conducting fluid, in presence of foreign gases (such as H2, CO2, H2O, NH3), along an infinite vertical porous flat plate subjected to a transpiration velocity inversely proportional to the square-root of time is investigated in the presence of a uniform transverse magnetic field. The results are discussed with the effects of the parameters Gc (the Grashof number for mass transfer), m (the Hall parameter) and Sc (the Schmidt number) for Pr = 0.71, which represents air.

  10. Windward fraction of the total mass or heat transport for flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Gokoglu, S.; Rosner, D. E.

    1983-01-01

    The windward fraction of the total mass or heat transport for flow past a cylindrical aerodynamic object was estimated using the available experimental data for the angular distribution of the Nusselt transfer coefficient, Nu(theta, Re). The Re dependence of the windward surface fraction was calculated for the values of Re between 2 and 400,000. The results obtained from polar integrations of data from eight sources indicate that, for Reynolds numbers up to about 2000, more than 70 percent of the total transfer occurs on the windward surface. For the Re values above 100,000, the windward percentage is less than 50 percent.

  11. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  12. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    PubMed

    Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations.

  13. Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics.

    PubMed

    Du, Lijuan; Lu, Weiying; Cai, Zhenzhen Julia; Bao, Lei; Hartmann, Christoph; Gao, Boyan; Yu, Liangli Lucy

    2018-02-01

    Flow injection mass spectrometry (FIMS) combined with chemometrics was evaluated for rapidly detecting economically motivated adulteration (EMA) of milk. Twenty-two pure milk and thirty-five counterparts adulterated with soybean, pea, and whey protein isolates at 0.5, 1, 3, 5, and 10% (w/w) levels were analyzed. The principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and support vector machine (SVM) classification models indicated that the adulterated milks could successfully be classified from the pure milks. FIMS combined with chemometrics might be an effective method to detect possible EMA in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Apparatus for establishing flow of a fluid mass having a known velocity

    NASA Technical Reports Server (NTRS)

    Price, P.; Veikins, O.; Bate, E. R., Jr.; Jones, R. H. (Inventor)

    1974-01-01

    An apparatus for establishing a flow of fluid mass, such as gas, having a known velocity is introduced. The apparatus is characterized by an hermetically sealed chamber conforming to a closed-loop configuration and including a throat and a plurality of axially displaceable pistons for sweeping through the throat a stream of gas including a core and an unsheared boundary layer. Within the throat there is a cylindrical coring body concentrically related to the throat for receiving the core, and a chamber surrounding the cylindrical body for drawing off the boundary layer, whereby the velocity of the core is liberated from the effects of the velocity of the boundary layer.

  15. Topological susceptibility from twisted mass fermions using spectral projectors and the gradient flow

    NASA Astrophysics Data System (ADS)

    Alexandrou, Constantia; Athenodorou, Andreas; Cichy, Krzysztof; Constantinou, Martha; Horkel, Derek P.; Jansen, Karl; Koutsou, Giannis; Larkin, Conor

    2018-04-01

    We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral-projector method. We use ensembles with dynamical light, strange and charm flavors of maximally twisted mass fermions. For both definitions of the susceptibility we employ ensembles at three values of the lattice spacing and several quark masses at each spacing. The data are fitted to chiral perturbation theory predictions with a discretization term to determine the continuum chiral condensate in the massless limit and estimate the overall discretization errors. We find that both approaches lead to compatible results in the continuum limit, but the gluonic ones are much more affected by cutoff effects. This finally yields a much smaller total error in the spectral-projector results. We show that there exists, in principle, a value of the spectral cutoff which would completely eliminate discretization effects in the topological susceptibility.

  16. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    SciTech Connect

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing withmore » experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.« less

  17. Thermally driven mass flows in the convection zone of the sun

    NASA Technical Reports Server (NTRS)

    Dijkhuis, G. C.

    1973-01-01

    A formulation of the fluid dynamics of convective regions is developed which leads to an analytical description of the solar rotation, the Evershed flow, and the supergranulation. The starting point of the present formulation is the mixing length picture of convective equilibrium, but the earlier point mass model for convective molecules is replaced here by a model with both inertia and intrinsic moment of inertia. This extension introduces three rotational degrees of freedom into the dynamics of individual convective molecules, which enter into the dynamical equations for a mixing length fluid in the form of a separate vector field which we term the spin field. It is shown that for convective molecules having a spherically symmetric mass distribution, the spin field is proportional to the local vorticity.

  18. Surface Abrasive Torsion for Improved Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Moon, Ji Hyun; Baek, Seung Mi; Lee, Seok Gyu; Yoon, Jae Ik; Lee, Sunghak; Kim, Hyoung Seop

    2018-05-01

    A novel process of discrete surface abrasion during simple torsion (ST), named "surface abrasive torsion (SAT)," is proposed to overcome the limitation of ST, i.e., insufficient strain for severe plastic deformation (SPD) due to cracks initiated on the surface, by removing the roughened surface region. The effect of SAT on delayed crack initiation was explained using finite element simulations. Larger shear deformation applicable to the specimen in SAT than ST was demonstrated experimentally.

  19. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    PubMed

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  20. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions.

  1. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less

  2. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This

  3. Filamentous sieve element proteins are able to limit phloem mass flow, but not phytoplasma spread.

    PubMed

    Pagliari, Laura; Buoso, Sara; Santi, Simonetta; Furch, Alexandra C U; Martini, Marta; Degola, Francesca; Loschi, Alberto; van Bel, Aart J E; Musetti, Rita

    2017-06-15

    In Fabaceae, dispersion of forisomes-highly ordered aggregates of sieve element proteins-in response to phytoplasma infection was proposed to limit phloem mass flow and, hence, prevent pathogen spread. In this study, the involvement of filamentous sieve element proteins in the containment of phytoplasmas was investigated in non-Fabaceae plants. Healthy and infected Arabidopsis plants lacking one or two genes related to sieve element filament formation-AtSEOR1 (At3g01680), AtSEOR2 (At3g01670), and AtPP2-A1 (At4g19840)-were analysed. TEM images revealed that phytoplasma infection induces phloem protein filament formation in both the wild-type and mutant lines. This result suggests that, in contrast to previous hypotheses, sieve element filaments can be produced independently of AtSEOR1 and AtSEOR2 genes. Filament presence was accompanied by a compensatory overexpression of sieve element protein genes in infected mutant lines in comparison with wild-type lines. No correlation was found between phloem mass flow limitation and phytoplasma titre, which suggests that sieve element proteins are involved in defence mechanisms other than mechanical limitation of the pathogen. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase flows

    SciTech Connect

    Owkes, Mark, E-mail: mark.owkes@montana.edu; Desjardins, Olivier

    In this work, we present a computational methodology for convection and advection that handles discontinuities with second order accuracy and maintains conservation to machine precision. This method can transport a variety of discontinuous quantities and is used in the context of an incompressible gas–liquid flow to transport the phase interface, momentum, and scalars. The proposed method provides a modification to the three-dimensional, unsplit, second-order semi-Lagrangian flux method of Owkes & Desjardins (JCP, 2014). The modification adds a refined grid that provides consistent fluxes of mass and momentum defined on a staggered grid and discrete conservation of mass and momentum, evenmore » for flows with large density ratios. Additionally, the refined grid doubles the resolution of the interface without significantly increasing the computational cost over previous non-conservative schemes. This is possible due to a novel partitioning of the semi-Lagrangian fluxes into a small number of simplices. The proposed scheme is tested using canonical verification tests, rising bubbles, and an atomizing liquid jet.« less

  5. Radiated chemical reaction impacts on natural convective MHD mass transfer flow induced by a vertical cone

    NASA Astrophysics Data System (ADS)

    Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir

    2018-03-01

    The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.

  6. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.

    PubMed

    Poda, A R; Bednar, A J; Kennedy, A J; Harmon, A; Hull, M; Mitrano, D M; Ranville, J F; Steevens, J

    2011-07-08

    The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure. Published by Elsevier B.V.

  7. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability

  8. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.; Denlinger, Roger P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability

  9. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  10. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  11. Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium

    NASA Astrophysics Data System (ADS)

    Zubair Akbar, Muhammad; Ashraf, Muhammad; Farooq Iqbal, Muhammad; Ali, Kashif

    2016-04-01

    The paper presents the numerical study of heat and mass transfer analysis in a viscous unsteady MHD nanofluid flow through a channel with porous walls and medium in the presence of metallic nanoparticles. The two cases for effective thermal conductivity are discussed in the analysis through H-C model. The impacts of the governing parameters on the flow, heat and mass transfer aspects of the issue are talked about. Under the patronage of small values of permeable Reynolds number and relaxation/contraction parameter, we locate that, when wall contraction is together with suction, flow turning is encouraged close to the wall where the boundary layer is shaped. On the other hand, when the wall relaxation is coupled with injection, the flow adjacent to the porous walls decreased. The outcome of the exploration may be beneficial for applications of biotechnology. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analyzed.

  12. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  13. Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Sánchez Contreras, C.

    2001-10-01

    We have studied the CO emission from protoplanetary nebulae (PPNe). Our sample is composed of 37 objects and includes, we think, all well identified PPNe detected in CO, together with the two yellow hypergiants emitting in CO and one young PN. We present a summary of the existing CO data, including accurate new observations of the 12CO and 13CO J=1-0 and J=2-1 lines in 16 objects. We identify in the nebulae a slowly expanding shell (represented in the spectra by a central core) and a fast outflow (corresponding to the line wings), that in the well studied PPNe is known to be bipolar. Excluding poor data, we end up with a sample of 32 sources (including the 16 observed by us); fast flows are detected in 28 of these nebulae, being absent in only 4. We present a method to estimate from these data the mass, ``scalar'' momentum and kinetic energy of the different components of the molecular outflows. We argue that the uncertainties of our method can hardly lead to significant overestimates of these parameters, although underestimates may be present in not well studied objects. The total nebular mass is often as high as ~1 Msun, and the mass-loss rate, that (presumably during the last stages of the AGB phase) originated the nebula, had typical values ~10-4 Msun yr-1. The momentum corresponding to this mass ejection process in most studied nebulae is accurately coincident with the maximum momentum that radiation pressure, acting through absorption by dust grains, is able to supply (under expected conditions). We estimate that this high-efficiency process lasts about 1000-10 000 yr, after which the star has ejected a good fraction of its mass and the AGB phase ends. On the other hand, the fast molecular outflows, that have probably been accelerated by shock interaction with axial post-AGB jets, carry a significant fraction of the nebular mass, with a very high momentum (in most cases between 1037 and 1040 g cm s-1) and very high kinetic energy (usually between 1044 and

  14. System for pressure letdown of abrasive slurries

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  15. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

  16. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  17. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  18. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahigh-pressure rocks: An ion microprobe and chemical abrasion study

    USGS Publications Warehouse

    Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.

    2004-01-01

    Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.

  19. Optical Measurement of Mass Flow of a Two-Phase Fluid

    NASA Technical Reports Server (NTRS)

    Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don

    2008-01-01

    An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical

  20. Effect of cuticular abrasion and recovery on water loss rates in queens of the desert harvester ant Messor pergandei.

    PubMed

    Johnson, Robert A; Kaiser, Alexander; Quinlan, Michael; Sharp, William

    2011-10-15

    Factors that affect water loss rates (WLRs) are poorly known for organisms in natural habitats. Seed-harvester ant queens provide an ideal system for examining such factors because WLRs for mated queens excavated from their incipient nests are twofold to threefold higher than those of alate queens. Indirect data suggest that this increase results from soil particles abrading the cuticle during nest excavation. This study provides direct support for the cuticle abrasion hypothesis by measuring total mass-specific WLRs, cuticular abrasion, cuticular transpiration, respiratory water loss and metabolic rate for queens of the ant Messor pergandei at three stages: unmated alate queens, newly mated dealate queens (undug foundresses) and mated queens excavated from their incipient nest (dug foundresses); in addition we examined these processes in artificially abraded alate queens. Alate queens had low WLRs and low levels of cuticle abrasion, whereas dug foundresses had high WLRs and high levels of cuticle abrasion. Total WLR and cuticular transpiration were lowest for alate queens, intermediate for undug foundresses and highest for dug foundresses. Respiratory water loss contributed ~10% of the total WLR and was lower for alate queens and undug foundresses than for dug foundresses. Metabolic rate did not vary across stages. Total WLR and cuticular transpiration of artificially abraded alate queens increased, whereas respiratory water loss and metabolic rate were unaffected. Overall, increased cuticular transpiration accounted for essentially all the increased total water loss in undug and dug foundresses and artificially abraded queens. Artificially abraded queens and dug foundresses showed partial recovery after 14 days.

  1. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy.

    Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.

  2. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of darkmore » matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.« less

  3. Gravity assisted recovery of liquid xenon at large mass flow rates

    NASA Astrophysics Data System (ADS)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  4. Technical characterization of dialysis fluid flow and mass transfer rate in dialyzers with various filtration coefficients using dimensionless correlation equation.

    PubMed

    Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka

    2017-06-01

    The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.

  5. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.

    PubMed

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

    2011-04-01

    Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs

  6. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    NASA Astrophysics Data System (ADS)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  7. A simple, mass balance model of carbon flow in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1989-01-01

    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.

  8. Combined Falling Drop/Open Port Sampling Interface System for Automated Flow Injection Mass Spectrometry

    DOE PAGES

    Van Berkel, Gary J.; Kertesz, Vilmos; Orcutt, Matt; ...

    2017-11-07

    The aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7–15 μL range with an injected sample volume of several hundred nanoliters. Sample drop height, positioning of the internal capillary on themore » sampling end of the probe, and carrier solvent flow rate were optimized for maximum signal. Sample throughput, signal reproducibility, matrix effects, and quantitative analysis capability of the system were established using the drug molecule propranolol and its isotope labeled internal standard in water, unprocessed river water and two commercially available buffer matrices. A sample-to-sample throughput of ~45 s with a ~4.5 s base-to-base flow injection peak profile was obtained in these experiments. In addition, quantitation with minimally processed rat plasma samples was demonstrated with three different statin drugs (atorvastatin, rosuvastatin, and fluvastatin). Direct characterization capability of unprocessed samples was demonstrated by the analysis of neat vegetable oils. Employing the autosampler system for spatially resolved liquid extraction surface sampling exemplified by the analysis of propranolol and its hydroxypropranolol glucuronide phase II metabolites from a rat thin tissue section was also illustrated.« less

  9. Combined Falling Drop/Open Port Sampling Interface System for Automated Flow Injection Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J.; Kertesz, Vilmos; Orcutt, Matt

    The aim of this work was to demonstrate and to evaluate the analytical performance of a combined falling drop/open port sampling interface (OPSI) system as a simple noncontact, no-carryover, automated system for flow injection analysis with mass spectrometry. The falling sample drops were introduced into the OPSI using a widely available autosampler platform utilizing low cost disposable pipet tips and conventional disposable microtiter well plates. The volume of the drops that fell onto the OPSI was in the 7–15 μL range with an injected sample volume of several hundred nanoliters. Sample drop height, positioning of the internal capillary on themore » sampling end of the probe, and carrier solvent flow rate were optimized for maximum signal. Sample throughput, signal reproducibility, matrix effects, and quantitative analysis capability of the system were established using the drug molecule propranolol and its isotope labeled internal standard in water, unprocessed river water and two commercially available buffer matrices. A sample-to-sample throughput of ~45 s with a ~4.5 s base-to-base flow injection peak profile was obtained in these experiments. In addition, quantitation with minimally processed rat plasma samples was demonstrated with three different statin drugs (atorvastatin, rosuvastatin, and fluvastatin). Direct characterization capability of unprocessed samples was demonstrated by the analysis of neat vegetable oils. Employing the autosampler system for spatially resolved liquid extraction surface sampling exemplified by the analysis of propranolol and its hydroxypropranolol glucuronide phase II metabolites from a rat thin tissue section was also illustrated.« less

  10. Mass Transfer from Gas Bubbles to Impinging Flow of Biological Fluids with Chemical Reaction

    PubMed Central

    Yang, Wen-Jei; Echigo, R.; Wotton, D. R.; Ou, J. W.; Hwang, J. B.

    1972-01-01

    The rates of mass transfer from a gas bubble to an impinging flow of a biological fluid such as whole blood and plasma are investigated analytically and experimentally. Gases commonly found dissolved in body fluids are included. Consideration is given to the effects of the chemical reaction between the dissolved gas and the liquid on the rate of mass transfer. Through the application of boundary layer theory the over-all transfer is found to be Sh/(Re)1/2 = 0.845 Sc1/3 in the absence of chemical reaction, and Sh/(Re) 1/2 = F′ (0) in the presence of chemical reaction, where Sh, Re, and Sc are the Sherwood, Reynolds, and Schmidt numbers, respectively, and F′ (0) is a function of Sc and the dimensionless reaction rate constant. Analytical results are also obtained for the bubble lifetime and the bubble radius-time history. These results, which are not incompatible with experimental results, can be applied to predict the dissolution of the entrapped gas emboli in the circulatory system of the human body. PMID:4642218

  11. Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, David; Španěl, Patrik

    2018-05-15

    The major objective of this exploratory study was to implement selected ion flow tube mass spectrometry, SIFT-MS, as a method for the on-line quantification of the volatile organic compounds, VOCs, in the headspace of the ground roasted coffee. The optimal precursor ions and characteristic analyte ions were selected for real-time SIFT-MS quantification of those VOCs that are the most abundant in the headspace or known to contribute to aroma. NO + reagent ion reactions were exploited for most of the VOC analyses. VOC identifications were confirmed using gas chromatography/mass spectrometry, GC/MS, coupled with solid-phase microextraction, SPME. Thirty-one VOCs were quantified, including several alcohols, aldehydes, ketones, carboxylic acids, esters and some heterocyclic compounds. Variations in the concentrations of each VOC in the seven regional coffees were typically less than a factor of 2, yet concentrations patterns characteristic of the different regional coffees were revealed by heat map and principal component analyses. The coefficient of variation in the concentrations across the seven coffees was typically below 24% except for furfural, furan, methylfuran and guaiacol. The SIFT-MS analytical method can be used to quantify in real time the most important odoriferous VOCs in ground coffee headspace to sufficient precision to reveal some differences in concentration patterns for coffee produced in different countries. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  13. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  14. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  15. Study of Dominant Factors Affecting Cerchar Abrasivity Index

    NASA Astrophysics Data System (ADS)

    Rostami, Jamal; Ghasemi, Amireza; Alavi Gharahbagh, Ehsan; Dogruoz, Cihan; Dahl, Filip

    2014-09-01

    The Cerchar abrasion index is commonly used to represent rock abrasion for estimation of bit life and wear in various mining and tunneling applications. Although the test is simple and fast, there are some discrepancies in the test results related to the equipment used, condition of the rock surface, operator skills, and procedures used in conducting and measuring the wear surface. This paper focuses on the background of the test and examines the influence of various parameters on Cerchar testing including pin hardness, surface condition of specimens, petrographical and geomechanical properties, test speed, applied load, and method of measuring wear surface. Results of Cerchar tests on a set of rock specimens performed at different laboratories are presented to examine repeatability of the tests. In addition, the preliminary results of testing with a new device as a potential alternative testing system for rock abrasivity measurement are discussed.

  16. Pleurectomy versus pleural abrasion for primary spontaneous pneumothorax in children.

    PubMed

    Joharifard, Shahrzad; Coakley, Brian A; Butterworth, Sonia A

    2017-05-01

    Primary spontaneous pneumothorax (PSP) represents a common indication for urgent surgical intervention in children. First episodes are often managed with thoracostomy tube, whereas recurrent episodes typically prompt surgery involving apical bleb resection and pleurodesis, either via pleurectomy or pleural abrasion. The purpose of this study was to assess whether pleurectomy or pleural abrasion was associated with lower postoperative recurrence. The records of patients undergoing surgery for PSP between February 2005 and December 2015 were retrospectively reviewed. Recurrence was defined as an ipsilateral pneumothorax requiring surgical intervention. Bivariate logistic regressions were used to identify factors associated with recurrence. Fifty-two patients underwent 64 index operations for PSP (12 patients had surgery for contralateral pneumothorax, and each instance was analyzed separately). The mean age was 15.7±1.2years, and 79.7% (n=51) of patients were male. In addition to apical wedge resection, 53.1% (n=34) of patients underwent pleurectomy, 39.1% (n=25) underwent pleural abrasion, and 7.8% (n=5) had no pleural treatment. The overall recurrence rate was 23.4% (n=15). Recurrence was significantly lower in patients who underwent pleurectomy rather than pleural abrasion (8.8% vs. 40%, p<0.01). In patients who underwent pleural abrasion without pleurectomy, the relative risk of recurrence was 2.36 [1.41-3.92, p<0.01]. Recurrence of PSP is significantly reduced in patients undergoing pleurectomy compared to pleural abrasion. Level III, retrospective comparative therapeutic study. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.

    PubMed

    Seeger, Eva M; Maier, Uli; Grathwohl, Peter; Kuschk, Peter; Kaestner, Matthias

    2013-02-01

    For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. Copyright © 2013 The Authors

  19. The effect of water temperature and flow on respiration in barnacles: patterns of mass transfer versus kinetic limitation.

    PubMed

    Nishizaki, Michael T; Carrington, Emily

    2014-06-15

    In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (<7.5 cm (-1)) and high temperature (20-25°C). In contrast, limitation by uptake reaction kinetics, when the biotic capacity of barnacles to absorb and process oxygen is slower than its physical delivery by mass transport, prevailed at high flows (40-150 cm s(-1)) and low temperatures (5-15°C). Moreover, there are intermediate flow-temperature conditions where both mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance. © 2014. Published by The Company of Biologists Ltd.

  20. Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers

    NASA Astrophysics Data System (ADS)

    Attal, Mikaël; Lavé, Jérôme

    2009-12-01

    In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.

  1. Effects of heat and mass transfer on unsteady boundary layer flow of a chemical reacting Casson fluid

    NASA Astrophysics Data System (ADS)

    Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman

    2018-03-01

    In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.

  2. Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows

    SciTech Connect

    Zhou, Ye; Cabot, William H.; Thornber, Ben

    Rayleigh–Taylor instability (RTI) and Richtmyer–Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixedmore » mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Ψ) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass Ψ is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Ψ is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Ξ and Θ.« less

  3. Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland

    USGS Publications Warehouse

    Waythomas, C.F.; Wallace, K.L.

    2002-01-01

    An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated

  4. Determination of local values of gas and liquid mass flux in highly loaded two-phase flow

    NASA Technical Reports Server (NTRS)

    Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.

    1974-01-01

    A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.

  5. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  6. Comprehensive theory of the Deans' switch as a variable flow splitter: fluid mechanics, mass balance, and system behavior.

    PubMed

    Boeker, Peter; Leppert, Jan; Mysliwietz, Bodo; Lammers, Peter Schulze

    2013-10-01

    The Deans' switch is an effluent switching device based on controlling flows of carrier gas instead of mechanical valves in the analytical flow path. This technique offers high inertness and a wear-free operation. Recently new monolithic microfluidic devices have become available. In these devices the whole flow system is integrated into a small metal device with low thermal mass and leak-tight connections. In contrast to a mechanical valve-based system, a flow-controlled system is more difficult to calculate. Usually the Deans' switch is used to switch one inlet to one of two outlets, by means of two auxiliary flows. However, the Deans' switch can also be used to deliver the GC effluent with a specific split ratio to both outlets. The calculation of the split ratio of the inlet flow to the two outlets is challenging because of the asymmetries of the flow resistances. This is especially the case, if one of the outlets is a vacuum device, such as a mass spectrometer, and the other an atmospheric detector, e.g. a flame ionization detector (FID) or an olfactory (sniffing) port. The capillary flows in gas chromatography are calculated with the Hagen-Poiseuille equation of the laminar, isothermal and compressible flow in circular tubes. The flow resistances in the new microfluidic devices have to be calculated with the corresponding equation for rectangular cross-section microchannels. The Hagen-Poiseuille equation underestimates the flow to a vacuum outlet. A corrected equation originating from the theory of rarefied flows is presented. The calculation of pressures and flows of a Deans' switch based chromatographic system is done by the solution of mass balances. A specific challenge is the consideration of the antidiffusion resistor between the two auxiliary gas lines of the Deans' switch. A full solution for the calculation of the Deans' switch including this restrictor is presented. Results from validation measurements are in good accordance with the developed

  7. Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and β2-microglobulin during clinical haemodialysis

    PubMed Central

    Bhimani, Jai P.; Ouseph, Rosemary; Ward, Richard A.

    2010-01-01

    Background. Diffusive clearance depends on blood and dialysate flow rates and the overall mass transfer area coefficient (KoA) of the dialyzer. Although KoA should be constant for a given dialyzer, urea KoA has been reported to vary with dialysate flow rate possibly because of improvements in flow distribution. This study examined the dependence of KoA for urea, phosphate and β2-microglobulin on dialysate flow rate in dialyzers containing undulating fibers to promote flow distribution and two different fiber packing densities. Methods. Twelve stable haemodialysis patients underwent dialysis with four different dialyzers, each used with a blood flow rate of 400 mL/min and dialysate flow rates of 350, 500 and 800 mL/min. Clearances of urea, phosphate and β2-microglobulin were measured and KoA values calculated. Results. Clearances of urea and phosphate, but not β2-microglobulin, increased significantly with increasing dialysate flow rate. However, increasing dialysate flow rate had no significant effect on KoA or Ko for any of the three solutes examined, although Ko for urea and phosphate increased significantly as the average flow velocity in the dialysate compartment increased. Conclusions. For dialyzers with features that promote good dialysate flow distribution, increasing dialysate flow rate beyond 600 mL/min at a blood flow rate of 400 mL/min is likely to have only a modest impact on dialyzer performance, limited to the theoretical increase predicted for a constant KoA. PMID:20543211

  8. Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species

    NASA Astrophysics Data System (ADS)

    Huang, Huilian; Sun, Jianghao; McCoy, Joe-Ann; Zhong, Haiyan; Fletcher, Edward J.; Harnly, James; Chen, Pei

    2015-03-01

    Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC-MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica.

  9. Multiple breath washout with a sidestream ultrasonic flow sensor and mass spectrometry: a comparative study.

    PubMed

    Fuchs, Susanne I; Buess, Christian; Lum, Sooky; Kozlowska, Wanda; Stocks, Janet; Gappa, Monika

    2006-12-01

    Over recent years, there has been renewed interest in the multiple breath wash-out (MBW) technique for assessing ventilation inhomogeneity (VI) as a measure of early lung disease in children. While currently considered the gold standard, use of mass spectrometry (MS) to measure MBW is not commercially available, thereby limiting widespread application of this technique. A mainstream ultrasonic flow sensor was marketed for MBW a few years ago, but its use was limited to infants. We have recently undertaken intensive modifications of both hardware and software for the ultrasonic system to extend its use for older children. The aim of the current in vivo study was to compare simultaneous measurements of end-tidal tracer gas concentrations and lung clearance index (LCI) from this modified ultrasonic device with those from a mass spectrometer. Paired measurements of three MBW, using 4% sulfur hexafluoride (SF(6)) as the tracer gas and the two systems in series, were obtained in nine healthy adult volunteers. End-tidal tracer gas concentrations (n = 675 paired values) demonstrated close agreement (95% CI of difference -0.23; -0.17%, r(2) = 1). FRC was slightly higher from the MS (95%CI 0.08;0.17 L), but there was no difference in LCI (95%CI -0.10; 0.3). We conclude, that this ultrasonic prototype system measures end-tidal tracer gas concentration accurately and may therefore be a valid tool for MBW beyond early childhood. This prototype system could be the basis for a commercial device allowing more widespread application of MBW in the near future.

  10. In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study

    PubMed Central

    2009-01-01

    Background Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA). The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange. Results The in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions. Conclusion The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an unacceptable computational

  11. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  12. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  13. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  14. Propelled abrasive grit for weed control in organic silage corn

    USDA-ARS?s Scientific Manuscript database

    Weed management in organic farming requires many strategies to accomplish acceptable control and maintain crop yields. This two-year field study used air propelled abrasive grit for in-row weed control in a silage corn system. Corncob grit was applied as a single application at corn vegetative growt...

  15. Review of Artificial Abrasion Test Methods for PV Module Technology

    SciTech Connect

    Miller, David C.; Muller, Matt T.; Simpson, Lin J.

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended tomore » provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.« less

  16. Effect of air abrasion and polishing on primary molar fissures.

    PubMed

    Lenzi, T L; Menezes, L B R; Soares, F Z M; Rocha, R O

    2013-04-01

    To evaluate the effect of air abrasion and polishing on primary molar fissures under light microscopy. 15 exfoliated primary second molars were longitudinally sectioned and photographed under a stereomicroscope (40×; baseline evaluation). Sections were then randomly allocated into one of the two groups (n = 15) and treated by either air abrasion (aluminium oxide jet) or air polishing (sodium bicarbonate jet) for 30 s. After treatment, sections were washed with an air/water spray, dried with absorbent paper, and photographed as previously described (final evaluation). Baseline and final morphology were compared by two blinded examiners who evaluated changes in the width and depth of fissures. The percentage of changed fissures was analysed, and the two treatments were compared using the Mann-Whitney test (α = 0.01). Both air systems resulted in fissure changes in most (93.3 %) of the sections. No significant differences in fissure width changes were found between treatments, but when changes in fissure depth were evaluated, air polishing was found to be less damaging than air abrasion (p < 0.01). Air abrasion and polishing cause changes to the anatomical configuration of occlusal fissures of primary molars.

  17. Assessment of Rail Seat Abrasion Patterns and Environment

    DOT National Transportation Integrated Search

    2012-05-01

    Rail seat abrasion (RSA) of concrete ties is manifested by the loss of material under the rail seat area and, in extreme cases, results in loss of rail clip holding power, reverse rail cant, and gauge widening. RSA was measured in several curves on t...

  18. 9 CFR 311.14 - Abrasions, bruises, abscesses, pus, etc.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Abrasions, bruises, abscesses, pus, etc. 311.14 Section 311.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... AND VOLUNTARY INSPECTION AND CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND...

  19. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Image and Video Library

    2006-07-21

    This image shows the round, metallic working end of the rock abrasion tool at the end of a metallic cylinder. The flat grinding face, attached brush, and much of the smooth, metallic exterior of cylinder are covered with a deep reddish-brown layer of dust

  20. [Brushing abrasion of the enamel surface after erosion].

    PubMed

    Lipei, Chen; Xiangke, Ci; Xiaoyan, Ou

    2017-08-01

    Objective A study was conducted to compare the effect of different enamel remineralization periods after erosion on the depth of brushing abrasion. Methods Ten volunteers were selected for a 4-day experiment. A total of 60 enamels were randomly assigned into six groups (A-F) and placed in intraoral palatal devices. On the first day, the palatal devices were placed in oral cavity (24 h) . On the following three days, brushing experiments were performed extraorally, two times per day. The specific experimental method of brushing follows these next steps. First, the group F specimens were covered with a film of wax, and then acid etched for 2 min. Subsequently, the film of wax was detached. The groups from A to D were brushed after remineralization at the following time intervals: group A, 0 min; group B, 20 min; group C, 40 min; group D, 60 min. Erosion and remineralization were performed on group E, but without brushing. Remineralization was performed on group F, but without acid etching and brushing. The depth of enamel abrasion was determined by a mechanical profilometer. The surface morphology of the enamel blocks was observed using a scanning electron microscope. Results 1) The depth of abrasion was different in varied enamel remineralization time after acid etching. The statistical significant differences between groups were as follows. 2) When the time of enamel remineralization after acid etching was short, the surface depression in the electron microscope was deep, and the surface morphology was rough. Conclusion Brushing immediately after acid etching would cause much serious abrasion to the enamel surface. Brushing after 60 min can effectively reduce the abrasion of acid etching enamel.

  1. Fully automated screening of veterinary drugs in milk by turbulent flow chromatography and tandem mass spectrometry

    PubMed Central

    Stolker, Alida A. M.; Peters, Ruud J. B.; Zuiderent, Richard; DiBussolo, Joseph M.

    2010-01-01

    There is an increasing interest in screening methods for quick and sensitive analysis of various classes of veterinary drugs with limited sample pre-treatment. Turbulent flow chromatography in combination with tandem mass spectrometry has been applied for the first time as an efficient screening method in routine analysis of milk samples. Eight veterinary drugs, belonging to seven different classes were selected for this study. After developing and optimising the method, parameters such as linearity, repeatability, matrix effects and carry-over were studied. The screening method was then tested in the routine analysis of 12 raw milk samples. Even without internal standards, the linearity of the method was found to be good in the concentration range of 50 to 500 µg/L. Regarding repeatability, RSDs below 12% were obtained for all analytes, with only a few exceptions. The limits of detection were between 0.1 and 5.2 µg/L, far below the maximum residue levels for milk set by the EU regulations. While matrix effects—ion suppression or enhancement—are obtained for all the analytes the method has proved to be useful for screening purposes because of its sensitivity, linearity and repeatability. Furthermore, when performing the routine analysis of the raw milk samples, no false positive or negative results were obtained. PMID:20379812

  2. Isospin effects on the system mass dependence of nuclear stopping around the energy of vanishing flow

    NASA Astrophysics Data System (ADS)

    Jain, Anupriya; Kumar, Suneel

    2014-10-01

    We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon-nucleon collisions and symmetry potential clearly indicates the dominance of nucleon-nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified.

  3. New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.

    PubMed

    Wu, Qingru; Wang, Shuxiao; Hui, Mulin; Wang, Fengyang; Zhang, Lei; Duan, Lei; Luo, Yao

    2015-03-17

    The mercury (Hg) flow paths from three zinc (Zn) smelters indicated that a large quantity of Hg, approximately 38.0-57.0% of the total Hg input, was stored as acid slag in the landfill sites. Approximately 15.0-27.1% of the Hg input was emitted into water or stored as open-dumped slags, and 3.3-14.5% of the Hg input ended in sulfuric acid. Atmospheric Hg emissions, accounting for 1.4-9.6% of the total Hg input, were from both the Zn production and waste disposal processes. Atmospheric Hg emissions from the waste disposal processes accounted for 40.6, 89.6, and 94.6% of the total atmospheric Hg emissions of the three studied smelters, respectively. The Zn production process mainly contributed to oxidized Hg (Hg2+) emissions, whereas the waste disposal process generated mostly elemental Hg (Hg0) emissions. When the emissions from these two processes are considered together, the emission proportion of the Hg2+ mass was 51, 46, and 29% in smelters A, B, and C, respectively. These results indicated that approximately 10.8±5.8 t of atmospheric Hg emissions from the waste disposal process were ignored in recent inventories. Therefore, the total atmospheric Hg emissions from the Zn industry of China should be approximately 50 t.

  4. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  5. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine.

    PubMed

    Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham

    2017-06-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.

  6. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.

  7. Study on design of light-weight super-abrasive wheel

    NASA Astrophysics Data System (ADS)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  8. Heat and Mass Transfer in the Over-Shower Zone of a Cooling Tower with Flow Rotation

    NASA Astrophysics Data System (ADS)

    Kashani, M. M. Hemmasian; Dobrego, K. V.

    2013-11-01

    The influence of flow rotation in the over-shower zone of a natural draft wet cooling tower (NDCT) on heat and mass transfer in this zone is investigated numerically. The 3D geometry of an actual NDCT and three models of the induced rotation velocity fields are utilized for calculations. Two phases (liquid and gaseous) and three components are taken into consideration. The interphase heat exchange, heat transfer to the walls, condensation-evaporation intensity field, and other parameters are investigated as functions of the induced rotation intensity (the inclination of the velocity vector at the periphery). It is shown that the induced flow rotation intensifies the heat and mass transfer in the over-shower zone of an NDCT. Flow rotation leads to specific redistribution of evaporation-condensation areas in an NDCT and stimulates water condensation near its walls.

  9. Heat and mass transfer enhancement of nanofluids flow in the presence of metallic/metallic-oxides spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, M. Zubair Akbar; Ali, Kashif; Iqbal, M. Farooq; Ashraf, Muhammad; Ahmad, Shazad

    2017-01-01

    The numerical study of heat and mass transfer for an incompressible magnetohydrodynamics (MHD) nanofluid flow containing spherical shaped nanoparticles through a channel with moving porous walls is presented. Further, another endeavour is to study the effect of two types of fluids, namely the metallic nanofluid (Au + water) and metallic-oxides nanofluid (TiO2 + water) are studied. The phenomena of spherical metallic and metallic-oxides nanoparticles have been also mathematically modelled by using the Hamilton-Crosser model. The influence of the governing parameters on the flow, heat and mass transfer aspects of the problem is discussed. The outcome of the investigation may be beneficial to the application of biotechnology and industrial purposes. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analysed.

  10. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  11. The geomorphic effect of recent storms - Quantifying meso scale abrasion across a shore platform

    NASA Astrophysics Data System (ADS)

    Cullen, Niamh; Bourke, Mary; Naylor, Larissa

    2017-04-01

    Boulder abrasion trails (BATs) are lineations on the surface of rock platforms formed by the movement of traction-load clasts by waves. They have been observed on a variety of platform lithologies, including limestone, granite and basalt. Despite previous reporting of these features, the abrasion styles and geomorphic work done by boulder transport has not been quantified. We present the first quantitative measurement of shore platform erosion by boulder transport during extreme storms that occurred in the winter of 2015-2016. Following two storm events in 2016 we mapped and measured 33 individual BATs on a sandstone platform on the west coast of Ireland. The total (minimum) abraded surface area was 10m2. The total (minimum) volume of material abraded was 0.2m3. In order to test the efficacy of this process during non-storm conditions we conducted field experiments on the same platform. We identified two sites on the platform that were similar, but differed in their intertidal roughness. We installed an RBR solo wave pressure transducer (PT) at 0m OD at both locations to record wave data. We measured platform roughness, determined as the fractal dimension of the platform profiles at both sites. We deployed an array of boulders of known dimensions and mass, parallel to the shoreline at 0.5m intervals from the PTs. The experiments were conducted 1. during relatively calm conditions and 2. during higher energy conditions. Data was collected for one tidal cycle. Any boulder displacement distance and direction was measured and geomorphic effects were documented. We find that BATs are formed under a range of wave energy conditions. Our observations indicate that along the North Atlantic coastline, BATs can occur at a high frequency, only limited by sediment supply. Our data show that abrasion by boulder transport is a potentially significant geomorphological process acting to abrade platforms under contemporary climate conditions. In addition, our preliminary findings

  12. Water flow in fractured rock masses: numerical modeling for tunnel inflow assessment

    NASA Astrophysics Data System (ADS)

    Gattinoni, P.; Scesi, L.; Terrana, S.

    2009-04-01

    Water circulation in rocks represents a very important element to solve many problems linked with civil, environmental and mining engineering. In particular, the interaction of tunnelling with groundwater has become a very relevant problem not only due to the need to safeguard water resources from impoverishment and from the pollution risk, but also to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems. The evaluation of the hydrogeological risk linked to the underground excavation is very complex, either for the large number of variables involved or for the lack of data available during the planning stage. The study is aimed to quantify the influence of some geo-structural parameters (i.e. discontinuities dip and dip direction) on the tunnel drainage process, comparing the traditional analytical method to the modeling approach, with specific reference to the case of anisotropic rock masses. To forecast the tunnel inflows, a few Authors suggest analytic formulations (Goodman et al., 1965; Knutsson et al., 1996; Ribacchi et al., 2002; Park et al., 2008; Perrochet et al., 2007; Cesano et al., 2003; Hwang et al., 2007), valid for infinite, homogeneous and isotropic aquifer, in which the permeability value is given as a modulus of equivalent hydraulic conductivity Keq. On the contrary, in discontinuous rock masses the water flow is strongly controlled by joints orientation, by their hydraulic characteristics and by rocks fracturing conditions. The analytic equations found in the technical literature could be very useful, but often they don't reflect the real phenomena of the tunnel inflow in rock masses. Actually, these equations are based on the hypothesis of homogeneous aquifer, and then they don't give good agreement for an heterogeneous fractured medium. In this latter case, the numerical modelling could provide the best results, but only with a detailed conceptual model of the water circulation, high costs and long

  13. Determining the Frequency and Structure of Mass Flows Around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher

    One of the key scientific goals being pursued by NASA, as outlined in its Strategic Plan, is to understand how individual stars form and how those processes that affect star formation also impact the formation of planetary systems. Ultimately, we wish to know how the Earth formed and how life arose on our planet. This knowledge will lead to an understanding of whether there are other life bearing planets in our galaxy and throughout the Universe. In pursuit of this knowledge, we must consider the process of star and planetary system formation for stars of all masses so that we can test and refine our theories related to the origin of life on our planet. It is now well established that planets form in disks of gas and dust that surround newly formed stars. Key factors that determine the structure and lifetime of these disks, thereby determining the likelihood of planet formation, include how rapidly the disk material accretes onto the central star or is expelled in powerful outflows of material that are routinely observed from young stars. It is the goal of this project to study the prevalence of outflows and accretion signature in a class of young stars known as Herbig Ae/Be stars. These stars are higher mass than stars like the Sun; however, they possess unique qualities that allows us to use the study of their accretion and outflow characteristics to test our understanding of these phenomena on solar like stars. This project will combine archival International Ultraviolet Explorer (IUE) satellite data and archival Far-Ultraviolet Spectroscopic Explorer (FUSE) satellite data with spectra at other wavelengths to robustly study the incidence of accretion and outflow signatures around Herbig Ae/Be stars. The IUE and FUSE data are also sensitive to the temperature of these flows and will allow us to understand their overall structure much more completely. This overall project will comprise the PhD thesis research of a graduate student at Rice University. The budget

  14. Analysis of two-phase flow inter-subchannel mass and momentum exchanges by the two-fluid model approach

    SciTech Connect

    Ninokata, H.; Deguchi, A.; Kawahara, A.

    1995-09-01

    A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less

  15. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  16. Research on operation mode of abrasive grain during grinding

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Dement’ev, V. B.; Nikitina, O. V.

    2018-03-01

    The processing of materials by cutting with an abrasive tool is carried out by means of thousands of grains bonded together as a single whole. The quality of the abrasive tool is defined by cutting properties of abrasive grains and depends on features of spreading the temperature field in time and in the abrasive grain volume. Grains are exposed to heating and cooling during work. It leads to undesired effects such as a decrease of durability of grain retention in the binder, hardness, intensification of diffusion and oxidation processes between the binder and the grain, the occurrence of considerable temperature stresses in the grain itself. The obtained equation which allows calculation of temperature field of grain for one rotation of grinding wheel shows that the temperature of the wheel depends on grinding modes and thermophysical properties of abrasive material. Thus, as the time of contact of grain with processed material increases, the temperature in the cutting area rises. As thermophysical properties increase, the temperature in cutting area decreases. Thermal working conditions are determined to be different from each other depending on contact time of the grain and the material. For example, in case of creep-feed grinding, the peak value of temperature is higher than during multistep grinding; the depth of expansion is greater. While the speed of the thermal process in creep-feed grinding is 2-3 times lower than in multistep grinding, the gradient reduces 3-4 times. The analysis of machining methods shows that creep-feed grinding ensures greater depth of grain heating, a smaller heating rate and a reduced velocity gradient. It causes a decrease of probable allotropic modifications and prevents from occurring of heat strokes - cracking of grains due to high temperature falls. Consequently, it is necessary to employ creep-feed grinding to increase the efficiency of abrasive tool employing. Three operation modes of grinding wheel including blunting, full

  17. Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools

    PubMed Central

    Strzemiecka, Beata; Klapiszewski, Łukasz; Jamrozik, Artur; Szalaty, Tadeusz J.; Matykiewicz, Danuta; Sterzyński, Tomasz; Voelkel, Adam; Jesionowski, Teofil

    2016-01-01

    Functional lignin–SiO2 hybrid fillers were prepared for potential application in binders for phenolic resins, and their chemical structure was characterized. The properties of these fillers and of composites obtained from them with phenolic resin were compared with those of systems with lignin or silica alone. The chemical structure of the materials was investigated by Fourier transform infrared spectroscopy (FT-IR) and carbon-13 nuclear magnetic resonance spectroscopy (13C CP MAS NMR). The thermal stability of the new functional fillers was examined by thermogravimetric analysis–mass spectrometry (TG-MS). Thermo-mechanical properties of the lignin–silica hybrids and resin systems were investigated by dynamic mechanical thermal analysis (DMTA). The DMTA results showed that abrasive composites with lignin–SiO2 fillers have better thermo-mechanical properties than systems with silica alone. Thus, fillers based on lignin might provide new, promising properties for the abrasive industry, combining the good properties of lignin as a plasticizer and of silica as a filler improving mechanical properties. PMID:28773639

  18. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    NASA Astrophysics Data System (ADS)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  19. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry.

    PubMed

    Carroll, Will; Lenney, Warren; Wang, Tianshu; Spanel, Patrik; Alcock, Alice; Smith, David

    2005-05-01

    Pseudomonas aeruginosa (PA) is associated with a distinctive smell produced by a combination of volatile compounds (VCs). Selected ion flow tube mass spectrometry (SIFT-MS) provides a novel and rapid methodology for rapid, accurate detection of trace quantities (parts per billion; ppb) of VCs in air. We studied the VCs produced by different isolates of PA cultures in vitro from patients with cystic fibrosis. Twenty-one patients with cystic fibrosis provided sputum and cough swab samples for culture. These were used to inoculate blood agar (BA) and Pseudomonas-selective media (PSM). These plates were incubated for 48 hr at 37 degrees C inside sealed plastic bags. The air surrounding the samples after 48 hr (headspace) was analyzed using SIFT-MS. PA growth was commonly associated with the production of significant quantities of VCs, notably hydrogen cyanide gas (HCN). This was detectable in the headspace of 15/22 of PA-positive samples. In contrast, it was only seen in the headspace of 1/13 control samples (6 sterile plates and 7 plates with only mixed upper respiratory tract flora). The concentration of HCN was significantly higher above PA-positive samples than above other bacterial growth (P < 0.01), and in our study, levels of HCN greater than 100 ppb were a sensitive (68%) and highly specific (100%) biomarker of PA. SIFT-MS can detect a range of VCs from PA in vitro. HCN may be a specific indicator of PA infection in vivo, and offers promise as a biomarker for noninvasive detection of PA infection by breath analysis. Copyright 2005 Wiley-Liss, Inc

  20. Monthly Variation of Taiwan Strait Through-flow Transports and Associated Water Masses

    NASA Astrophysics Data System (ADS)

    Jan, S.; Sheu, D.; Kuo, H.

    2005-05-01

    Through-flow transports and associated water masses are analyzed using current data measured by bottom-mounted and ship-board ADCP (1999-2001) across the central Taiwan Strait and strait-wide hydrographic data acquired from 79 CTD survey cruises (1986-2003). The East Asian monsoon, from southwest in July to August and northeast in October to March, controls the transport fluctuation which peaks in August (2.34 Sv northward), is hampered by the northeast monsoon after September and diminishes to the minimum (0.26 Sv southward) in December. The standard deviation of the calculated transport ranges from 0.56 to 1.05 Sv during northeast monsoon months and is relatively small in other months. A cluster analysis together with conventional T-S diagrams identifies the saline and warm Kuroshio Branch Water (KBW), the less saline South China Sea Surface Water (SCSSW), the brackish and cold China Coastal Water (CCW), the saline Subsurface Water (SW) (depth > 100 m) and the Diluted Coastal Water (DCW). The majority of the northward transport in summer carries the SCSSW to the East China Sea. Meanwhile, the DCW appears off the northwest bank of the strait and the SW resides in the bottom layer of a deep trench in the southeastern strait. The onset of the northeast monsoon in September drives the CCW from the Yangtze river mouth to the northern strait. In the southern strait, the northward-moving KBW replaces the SCSSW and meets the southward-intruding CCW in the middle strait during November to April.

  1. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  2. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    USGS Publications Warehouse

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  3. On the modelling of scalar and mass transport in combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; So, R. M. C.

    1989-01-01

    Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.

  4. [The role of patient flow and surge capacity for in-hospital response in mass casualty events].

    PubMed

    Sefrin, Peter; Kuhnigk, Herbert

    2008-03-01

    Mass casualty events make demands on emergency services and disaster control. However, optimized in- hospital response defines the quality of definitive care. Therefore, German federal law governs the role of hospitals in mass casualty incidents. In hospital casualty surge is depending on resources that have to be expanded with a practicable alarm plan. Thus, in-hospital mass casualty management planning is recommended to be organized by specialized persons. To minimise inhospital patient overflow casualty surge principles have to be implemented in both, pre-hospital and in-hospital disaster planning. World soccer championship 2006 facilitated the initiation of surge and damage control principles in in-hospital disaster planning strategies for German hospitals. The presented concept of strict control of in-hospital patient flow using surge principles minimises the risk of in-hospital breakdown and increases definitive hospital treatment capacity in mass casualty incidents.

  5. Acquisition and correlation of cryogenic nitrogen mass flow data through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. Stephen; Saiyed, Naseem H.; Nyland, Ted W.

    1990-05-01

    Liquid nitrogen mass flow rate, pressure drop, and temperature drop data were obtained for a series of multiple orifice Joule-Thomson devices, known as Visco Jets, over a wide range of flow resistance. The test rig used to acquire the data was designed to minimize heat transfer so that fluid expansion through the Visco Jets would be isenthalpic. The data include a range of fluid inlet pressures from 30 to 60 psia, fluid inlet temperatures from 118 to 164 R, outlet pressures from 2.8 to 55.8 psia, outlet temperatures from 117 to 162 R and flow rate from 0.04 to 4.0 lbm/hr of nitrogen. A flow rate equation supplied by the manufacturer was found to accurately predict single-phase (noncavitating) liquid nitrogen flow through the Visco Jets. For cavitating flow, the manufacturer's equation was found to be inaccurate. Greatly improved results were achieved with a modified version of the single-phase equation. The modification consists of a multiplication factor to the manufacturer's equation equal to one minus the downstream quality on an isenthalpic expansion of the fluid across the Visco Jet. For a range of flow resistances represented by Visco Jet Lohm ratings between 17,600 and 80,000, 100 percent of the single-phase data and 85 percent of the two-phase data fall within + or - 10 percent of predicted values.

  6. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  7. The worn dentition--pathognomonic patterns of abrasion and erosion.

    PubMed

    Abrahamsen, Thomas C

    2005-01-01

    Historically, the dental literature has revealed various causes of tooth wear, yet it has failed to provide a conclusive method of differentiation and diagnosis of the condition. The categories of tooth wear encountered most commonly in dental practice are abrasion and erosion. The major causes of wear from abrasion are bruxism and toothpaste abuse, and the major causes of wear from erosion are regurgitation, coke-swishing and fruit-mulling. Through in-depth clinical study of these causes, this paper provides a diagnostic system that will enable dental professionals to determine and differentiate the exact aetiology of the worn dentition simply by the recognition of the pathognomonic wear patterns on diagnostic casts, which are based upon the position and quantity of the non-carious loss of tooth structure.

  8. Design of a new abrasive slurry jet generator

    NASA Astrophysics Data System (ADS)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  9. Abrasion resistance of muscovite in aeolian and subaqueous transport experiments

    NASA Astrophysics Data System (ADS)

    Anderson, Calvin J.; Struble, Alexander; Whitmore, John H.

    2017-02-01

    Complementary aeolian and subaqueous transport experiments showed a trend in muscovite abrasion that may be useful for identifying ancient sandstones as aeolian or subaqueous in origin. We found that our experimental aeolian processes pulverized the micas quickly, while our subaqueous processes did not. In a pair of abrasion resistance experiments conducted with micaceous quartz sand, it was found that large muscovite grains were (1) reduced by aeolian processes to less than 500 μm in just 4 days, and (2) preserved by subaqueous processes to 610 ± 90 μm even after 356 days. At 20 days of aeolian transport no loose micas could be found even under the microscope, but after a year of subaqueous transport loose muscovite grains could still be seen with the naked eye. Thus, the occurrence and character of micas in a sandstone, particularly muscovite, may be helpful in determining the ancient depositional process.

  10. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  11. Couette flow through a porous medium with heat and mass transfer in the presence of tranverse magnetic field

    NASA Astrophysics Data System (ADS)

    Lawanya, T.; Vidhya, M.; Govindarajan, A.

    2018-04-01

    This present paper deals with the investigation of couette flow of a viscous electrically conducting incompressible fluid three dimensionally through a porous medium in presence of transverse magnetic field. Approximate Solution of equations of motion and energy equations are derived using series solution method. Hartmann number, Schmidt number and Grashoff number (or) modified Grashoff number for mass transfer on the velocity and temperature distribution are numerically discussed and shown graphically. The Nusselt number and skin friction coefficients atthe plate are derived and their numerical values are shown graphically. It is seen that in the main flow direction the velocity profiles decreases due to either an increase in Schmidt number (Or) Hartmann number.

  12. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain

    NASA Astrophysics Data System (ADS)

    Ouyang, Chaojun; He, Siming; Xu, Qiang; Luo, Yu; Zhang, Wencheng

    2013-03-01

    A two-dimensional mountainous mass flow dynamic procedure solver (Massflow-2D) using the MacCormack-TVD finite difference scheme is proposed. The solver is implemented in Matlab on structured meshes with variable computational domain. To verify the model, a variety of numerical test scenarios, namely, the classical one-dimensional and two-dimensional dam break, the landslide in Hong Kong in 1993 and the Nora debris flow in the Italian Alps in 2000, are executed, and the model outputs are compared with published results. It is established that the model predictions agree well with both the analytical solution as well as the field observations.

  13. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    DOEpatents

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  14. Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, E. B.; Bauer, A.; Nichita, C. C.

    2005-01-01

    The Titan2D geophysical mass-flow model is evaluated by comparing its simulation results and those obtained from another flow model, FLOW3D, with published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10×10 6 m 3 of broken lava blocks and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically ( H/ L=0.246). Velocities calculated from runup range from 24 to 42 m/s and may have been as high as 130 m/s while the avalanches passed over Emmons Glacier. Titan2D is a code for an incompressible Coulomb continuum; it is a depth-averaged, 'shallow-water', granular-flow model. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the basal interface. The governing equations are solved on multiple processors using a parallel, adaptive mesh, Godunov scheme. Adaptive gridding dynamically concentrates computing power in regions of special interest; mesh refinement and coarsening key on the perimeter of the moving avalanche. The model flow initiates as a pile defined as an ellipsoid by a height ( z) and an elliptical base defined by radii in the x and y planes. Flow parameters are the internal friction angle and bed friction angle. Results from the model are similar in terms of velocity history, lateral spreading, location of runup areas, and final distribution of the Little Tahoma Peak deposit. The avalanches passed over the Emmons Glacier along their upper flow paths, but lower in the valley they traversed stream gravels and glacial outwash deposits. This presents difficulty in assigning an appropriate bed friction angle for the entire deposit. Incorporation of variable bed friction angles into the model using GIS will help to resolve this issue.

  15. Quantification of proteins by flow cytometry: Quantification of human hepatic transporter P-gp and OATP1B1 using flow cytometry and mass spectrometry.

    PubMed

    Hogg, Karen; Thomas, Jerry; Ashford, David; Cartwright, Jared; Coldwell, Ruth; Weston, Daniel J; Pillmoor, John; Surry, Dominic; O'Toole, Peter

    2015-07-01

    Flow cytometry is a powerful tool for the quantitation of fluorescence and is proven to be able to correlate the fluorescence intensity to the number of protein on cells surface. Mass spectroscopy can also be used to determine the number of proteins per cell. Here we have developed two methods, using flow cytometry and mass spectroscopy to quantify number of transporters in human cells. These two approaches were then used to analyse the same samples so that a direct comparison could be made. Transporters have a major impact on the behaviour of a diverse number of drugs in human systems. While active uptake studies by transmembrane protein transporters using model substrates are routinely undertaken in human cell lines and hepatocytes as part of drug discovery and development, the interpretation of these results is currently limited by the inability to quantify the number of transporters present in the test samples. Here we provide a flow cytometric method for accurate quantification of transporter levels both on the cell surface and within the cell, and compare this to a quantitative mass spectrometric approach. Two transporters were selected for the study: OATP1B1 (also known as SLCO1B1, LST-1, OATP-C, OATP2) due to its important role in hepatic drug uptake and elimination; P-gp (also known as P-glycoprotein, MDR1, ABCB1) as a well characterised system and due to its potential impact on oral bioavailability, biliary and renal clearance, and brain penetration of drugs that are substrates for this transporter. In all cases the mass spectrometric method gave higher levels than the flow cytometry method. However, the two methods showed very similar trends in the relative ratios of both transporters in the hepatocyte samples investigated. The P-gp antibody allowed quantitative discrimination between externally facing transporters located in the cytoplasmic membrane and the total number of transporters on and in the cell. The proportion of externally facing transporter

  16. Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: Towards a short-term hazard assessment tool

    NASA Astrophysics Data System (ADS)

    Charbonnier, S. J.; Gertisser, R.

    2012-06-01

    The dynamics and depositional processes associated with block-and-ash flows (BAFs) are most commonly inferred to be a function of granular or inertial grain flow, similar to debris flows and cold rock avalanches. Existing geophysical mass flow models are either based on frictional (Mohr-Coulomb) behavior (the Titan2D model developed at the State University of New York at Buffalo, USA) or another rheological law (i.e., a constant retarding stress), eventually adding some viscous and turbulent components (the VolcFlow model developed at the Laboratoire Magmas et Volcans, Clermont-Ferrand, France). The 2006 BAFs of Merapi present a rare opportunity to test these two well-established models against a well-constrained field example. Integration of high-resolution field-based data into numerical simulations allows the validity of these models to be tested and rapid quantification of best-fit input parameters. We first show that with the incorporation of spatially varying bed friction angles, Titan2D is capable of reproducing the paths, runout distances, areas covered and deposited volumes of the 2006 Merapi flows over highly complex topography. However, some discrepancies with field data are noted and the velocity and travel time of the flows do not match entirely. Using a single free parameter (a constant retarding stress), simulations obtained with the VolcFlow model also reproduce the morphology and distribution of the natural deposits as well as the time of emplacement and velocities of the flows. The results suggest that the performance of these models in simulating actual events is critically dependent on: (1) the calibration of the model by using extensive field-based data such as deposit distribution, and processes of flow generation, transport and deposition; (2) the incorporation of a suitable numerical topographic dataset (i.e., high-resolution digital elevation model), and (3) the choice of input parameters, such as location and volume of the initial pile of

  17. Adhesive and abrasive wear mechanisms in ion implanted metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1985-03-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation.

  18. Surface characterization of current composites after toothbrush abrasion.

    PubMed

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (p<0.05). Simple regression analysis showed that there was not an association between the surface roughness and the gloss (R(2)=0.191, p<0.001).

  19. The role of erosion, abrasion and attrition in tooth wear.

    PubMed

    Barbour, Michele E; Rees, Gareth D

    2006-01-01

    There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.

  20. Development of underwater cutting system by abrasive water-jet

    NASA Astrophysics Data System (ADS)

    Demura, Kenji; Yamaguchi, Hitoshi

    1993-09-01

    The technology to cut objects in the ocean's depths with abrasive water jets was examined for possible application in view of the greater water depths and sophistication involved in work on the ocean floor today. A test model was developed to study this technology's safety and practicability. The test model was designed for use at great water depths and has functions and a configuration that are unlike equipment used on land. A continuous, stable supply of abrasive is a distinctive design feature. In land applications, there had been problems with plugged tubes and an uneven supply. For this reason, the abrasive was converted to slurry form, and a continuous pressurized tube pump system was adopted for supply to the nozzle head. Also, a hydraulic motor that does not employ oil or electric power was used to provide an underwater drive that is environment-friendly. The report outlines the technology's general design concept including its distinctive functions and its configuration for use at great depths, and the report provides great detail on the equipment.

  1. Augmentation of heat and mass transfer in laminar flow of suspensions: A correlation of data

    NASA Astrophysics Data System (ADS)

    Ahuja, Avtar S.

    1980-01-01

    The experimental data from literature on the augmentation of heat and gas transport in the laminar flow of suspensions of polystyrene spheres have been correlated on common coordinates. The correlation includes the influences of particle size, tube diameter and length, shear rate of flow, transport properties of diffusing species (heat or gas) in suspending liquids, and of the particle interactions on the augmentation of heat or gas transfer in flowing suspensions.

  2. Inductively coupled plasma-mass spectrometry as an element-specific detector for field-flow fractionation particle separation

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.; Murphy, Deirdre M.; Beckett, Ronald

    1992-01-01

    An inductively coupled plasma-mass spectrometer was used for the quantitative measurement of trace elements In specific,submicrometer size-fraction particulates, separated by sedimentation field-flow fractionation. Fractions were collected from the eluent of the field-flow fractionation centrifuge and nebulized, with a Babington-type pneumatic nebulizer, into an argon inductively coupled plasma-mass spectrometer. Measured Ion currents were used to quantify the major, minor, and trace element composition of the size-separated colloidal (< 1-microm diameter) particulates. The composition of surface-water suspended matter collected from the Yarra and Darling rivers in Australia is presented to illustrate the usefulness of this tool for characterizing environmental materials. An adsorption experiment was performed using cadmium lon to demonstrate the utility for studying the processes of trace metal-suspended sediment interactions and contaminant transport in natural aquatic systems.

  3. Trajectories and energy transfer of saltating particles onto rock surfaces : application to abrasion and ventifact formation on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.; Phoreman, James; White, Bruce R.; Greeley, Ronald; Eddlemon, Eric E.; Wilson, Gregory R.; Meyer, Christine J.

    2005-01-01

    The interaction between saltating sand grains and rock surfaces is assessed to gauge relative abrasion potential as a function of rock shape, wind speed, grain size, and planetary environment. Many kinetic energy height profiles for impacts exhibit a distinctive increase, or kink, a few centimeters above the surface, consistent with previous field, wind tunnel, and theoretical investigations. The height of the kink observed in natural and wind tunnel settings is greater than predictions by a factor of 2 or more, probably because of enhanced bouncing off hard ground surfaces. Rebounded grains increase the effective flux and relative kinetic energy for intermediate slope angles. Whether abrasion occurs, as opposed to simple grain impact with little or no mass lost from the rock, depends on whether the grain kinetic energy (EG) exceeds a critical value (EC), as well as the flux of grains with energies above EC. The magnitude of abrasion and the shape change of the rock over time depends on this flux and the value of EG > EC. Considering the potential range of particle sizes and wind speeds, the predicted kinetic energies of saltating sand hitting rocks overlap on Earth and Mars. However, when limited to the most likely grain sizes and threshold conditions, our results agree with previous work and show that kinetic energies are about an order of magnitude greater on Mars.

  4. Development of a low-flow multiplexed interface for capillary electrophoresis/electrospray ion trap mass spectrometry using sequential spray.

    PubMed

    Chen, Chao-Jung; Li, Fu-An; Her, Guor-Rong

    2008-05-01

    A multiplexed CE-MS interface using four low-flow sheath liquid ESI sprayers has been developed. Because of the limited space between the low-flow sprayers and the entrance aperture of the ESI source, multichannel analysis is difficult using conventional rotating plate approaches. Instead, a multiplexed low-flow system was achieved by applying an ESI potential sequentially to the four low-flow sprayers, resulting in only one sprayer being sprayed at any given time. The synchronization of the scan event and the voltage relays was accomplished by using the data acquisition signal from the IT mass spectrometer. This synchronization resulted in the ESI voltage being sequentially applied to each of the four sprayers according to the corresponding scan event. With this design, a four-fold increase in analytical throughput was achieved. Because of the use of low-flow interfaces, this multiplexed system has superior sensitivity than a rotating plate design using conventional sheath liquid interfaces. The multiplexed design presented has the potential to be applied to other low-flow multiplexed systems, such as multiplexed capillary LC and multiplexed CEC.

  5. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  6. The turbulent mean-flow, Reynolds-stress, and heat flux equations in mass-averaged dependent variables

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Rose, W. C.

    1973-01-01

    The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.

  7. Grain-size segregation and levee formation in geophysical mass flows

    USGS Publications Warehouse

    Johnson, C.G.; Kokelaar, B.P.; Iverson, Richard M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  8. Grain-size segregation and levee formation in geophysical mass flows

    USGS Publications Warehouse

    Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ~80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ~2 m s-1 during most of the runout. Segregation was measured by placing ~600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ~6–7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  9. Using Mass Spectroscopy to Examine Wetland Carbon Flow from Plants to Methane

    NASA Astrophysics Data System (ADS)

    Waldo, N.; Tfaily, M. M.; Moran, J.; Hu, D.; Cliff, J. B.; Gough, H. L.; Chistoserdova, L.; Beck, D.; Neumann, R. B.

    2017-12-01

    In the anoxic soil of wetlands, microbes produce methane (CH4), a greenhouse gas. Prior studies have documented an increase in CH4 emissions as plant productivity increases, likely due to plants releasing more labile organic carbon from roots. But in the field, it is difficult to separate changes in plant productivity and root carbon exudation from other seasonal changes that can affect methane emissions, e.g. temperature. Clarifying the role that root exudation plays in fueling methane production is important because increasing atmospheric temperatures and CO2 levels are projected to increase plant productivity and exudation. To advance understanding of climate-methane feedbacks, this study tracked the flow of carbon from plants into the wetland rhizosphere as plant productivity increased in controlled laboratory conditions. We grew Carex aquatilis, a wetland sedge, in peat-filled rootboxes. Both early and late during the plant growth cycle, we exposed plants to headspace 13CO2, which the plants fixed. Some of this labeled carbon was exuded by the roots and used by rhizosphere microbes. We tracked the isotope ratio of emitted CH4 to establish the time required for plant-released carbon to fuel methanogenesis, and to determine the relative contribution of plant-derived carbon to total CH4 emission. We destructively harvested root and rhizosphere samples from various locations that we characterized by isotope ratio mass spectrometry (MS) to determine isotopic enrichment and therefore relative abundance of root exudates. We analyzed additional aliquots of rhizosphere soil by Fourier transform ion cyclotron resonance MS to track chemical changes in soil carbon as root exudates were converted into methane. To advance mechanistic understanding of the synergistic and competitive microbial interactions that affect methane dynamics in the wetland rhizosphere, we used fluorescence in-situ hybridization to visualize microbial community composition and spatial associations

  10. The abrasive effect of commercial whitening toothpastes on eroded enamel.

    PubMed

    Mosquim, Victor; Martines Souza, Beatriz; Foratori Junior, Gerson Aparecido; Wang, Linda; Magalhães, Ana Carolina

    2017-06-01

    To evaluate the in vitro abrasive effect of commercial whitening toothpastes on eroded bovine enamel samples in respect to erosive tooth wear. 72 bovine crowns were embedded, polished and subjected to the baseline profile analysis. The samples were then protected in 2/3 of the enamel surface and were randomly assigned to six groups (n= 12/group): G1: Oral-B 3D White, G2: Close-up Diamond Attraction Power White, G3: Sorriso Xtreme White 4D, G4: Colgate Luminous White, G5: Crest (conventional toothpaste), G6:erosion only (control). All samples were submitted to an erosive pH cycling (4 x 90 seconds in 0.1% citric acid, pH 2.5, per day) and abrasive challenges (2 x 15 seconds, per day) for 7 days. After the first and the last daily cycles, the samples were subjected to abrasive challenges, using a toothbrushing machine, soft toothbrushes and slurry of the tested toothpastes (1.5 N). Between the challenges, the samples were immersed in artificial saliva. The final profile was obtained and overlaid to the baseline profile for the calculation of the erosive tooth wear (μm). The data were subjected to Kruskal-Wallis/Dunn tests (P< 0.05). G1 promoted the highest enamel wear (3.68±1.06 μm), similarly to G3 (3.17± 0.80 μm) and G4 (3.44± 1.29 μm). G3 and G4 performed similarly between them and compared with G5 (2.35± 1.44 μm). G2 (1.51± 0.95 μm) and G6 (0.85± 0.36 μm) showed the lowest enamel wear, which did not differ between them and from G5. Oral-B 3D White showed the highest abrasive potential while Close-up Diamond Attraction Power White showed the lowest abrasive potential on eroded enamel in vitro. This study showed that some commercial whitening toothpastes, especially those containing pyrophosphate associated with hydrated silica, enhanced enamel erosive wear.

  11. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Sánchez-García, L; Bolea, E; Laborda, F; Cubel, C; Ferrer, P; Gianolio, D; da Silva, I; Castillo, J R

    2016-03-18

    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99 ± 9% vs. 73 ± 7%, respectively). A limit of detection of 0.9 μg L(-1) CeO2 corresponding to a number concentration of 1.8 × 1012 L(-1) for NPs of 5 nm was achieved for an injection volume of 100 μL. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.

    PubMed

    Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam

    2016-02-01

    Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.

  13. Assessment of the removal of side nanoparticulated populations generated during one-pot synthesis by asymmetric flow field-flow fractionation coupled to elemental mass spectrometry.

    PubMed

    Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M

    2017-10-13

    Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Co-elution effects can influence molar mass determination of large macromolecules with asymmetric flow field-flow fractionation coupled to multiangle light scattering.

    PubMed

    Perez-Rea, Daysi; Zielke, Claudia; Nilsson, Lars

    2017-07-14

    Starch and hence, amylopectin is an important biomacromolecule in both the human diet as well as in technical applications. Therefore, accurate and reliable analytical methods for its characterization are needed. A suitable method for analyzing macromolecules with ultra-high molar mass, branched structure and high polydispersity is asymmetric flow field-flow fractionation (AF4) in combination with multiangle light scattering (MALS) detection. In this paper we illustrate how co-elution of low quantities of very large analytes in AF4 may cause disturbances in the MALS data which, in turn, causes an overestimation of the size. Furthermore, it is shown how pre-injection filtering of the sample can improve the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.

    PubMed

    de Vries, M P; Schutte, H K; Veldman, A E P; Verkerke, G J

    2002-04-01

    A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.

  16. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM

    NASA Astrophysics Data System (ADS)

    Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.

    2013-06-01

    The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.

  17. Modeling highly transient flow, mass, and heat transport in the Chattahoochee River near Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.; Keefer, Thomas N.

    1979-01-01

    A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. A linear, implicit finite-difference flow model was coupled with implicit, finite-difference transport and temperature models. Both the conservative and nonconservative forms of the transport equation were solved, and the difference in the predicted concentrations of dye were found to be insignificant. The temperature model, therefore, was based on the simpler nonconservative form of the transport equation. (Woodard-USGS)

  18. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  19. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  20. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta.

    PubMed

    Liu, Xiao; Fan, Yubo; Deng, Xiaoyan; Zhan, Fan

    2011-04-07

    To investigate the effects of both non-Newtonian behavior and the pulsation of blood flow on the distributions of luminal surface LDL concentration and oxygen flux along the wall of the human aorta, we numerically compared a non-Newtonian model with the Newtonian one under both steady flow and in vivo pulsatile flow conditions using a human aorta model constructed from MRI images. The results showed that under steady flow conditions, although the shear thinning non-Newtonian nature of blood could elevate wall shear stress (WSS) in most regions of the aorta, especially areas with low WSS, it had little effect on luminal surface LDL concentration (c(w)) in most regions of the aorta. Nevertheless, it could significantly enhance c(w) in areas with high luminal surface LDL concentration through the shear dependent diffusivity of LDLs. For oxygen transport, the shear thinning non-Newtonian nature of blood could slightly reduce oxygen flux in most regions of the aorta, but this effect became much more apparent in areas with already low oxygen flux. The pulsation of blood flow could significantly reduce c(w) and enhance oxygen flux in these disturbed places. In most other regions of the aorta, the oxygen flux was also significantly higher than that for the steady flow simulation. In conclusion, the shear shining non-Newtonian nature of blood has little effect on LDL and oxygen transport in most regions of the aorta, but in the atherogenic-prone areas where luminal surface LDL concentration is high and oxygen flux is low, its effect is apparent. Similar is for the effect of pulsatile flow on the transport of LDLs. But, the pulsation of blood flow can apparently affect oxygen flux in the aorta, especially in areas with low oxygen flux. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Soil CO2 emissions as a proxy for heat and mass flow assessment, Taupō Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Bloomberg, S.; Werner, Cynthia A.; Rissmann, C.F.; Mazot, A.; Horton, Travis B.; Gravley, D; Kennedy, B.; Oze, C

    2014-01-01

    The quantification of heat and mass flow between deep reservoirs and the surface is important for understanding magmatic and hydrothermal systems. Here, we use high-resolution measurement of carbon dioxide flux (φCO2) and heat flow at the surface to characterize the mass (CO2 and steam) and heat released to the atmosphere from two magma-hydrothermal systems. Our soil gas and heat flow surveys at Rotokawa and White Island in the Taupō Volcanic Zone, New Zealand, include over 3000 direct measurements of φCO2 and soil temperature and 60 carbon isotopic values on soil gases. Carbon dioxide flux was separated into background and magmatic/hydrothermal populations based on the measured values and isotopic characterization. Total CO2 emission rates (ΣCO2) of 441 ± 84 t d−1 and 124 ± 18 t d−1were calculated for Rotokawa (2.9 km2) and for the crater floor at White Island (0.3 km2), respectively. The total CO2 emissions differ from previously published values by +386 t d−1 at Rotokawa and +25 t d−1 at White Island, demonstrating that earlier research underestimated emissions by 700% (Rotokawa) and 25% (White Island). These differences suggest that soil CO2 emissions facilitate more robust estimates of the thermal energy and mass flux in geothermal systems than traditional approaches. Combining the magmatic/hydrothermal-sourced CO2 emission (constrained using stable isotopes) with reservoir H2O:CO2mass ratios and the enthalpy of evaporation, the surface expression of thermal energy release for the Rotokawa hydrothermal system (226 MWt) is 10 times greater than the White Island crater floor (22.5 MWt).

  2. Characterization of the molar mass distribution of macromolecules in beer for different mashing processes using asymmetric flow field-flow fractionation (AF4) coupled with multiple detectors.

    PubMed

    Choi, Jaeyeong; Zielke, Claudia; Nilsson, Lars; Lee, Seungho

    2017-07-01

    The macromolecular composition of beer is largely determined by the brewing and the mashing process. It is known that the physico-chemical properties of proteinaceous and polysaccharide molecules are closely related to the mechanism of foam stability. Three types of "American pale ale" style beer were prepared using different mashing protocols. The foam stability of the beers was assessed using the Derek Rudin standard method. Asymmetric flow field-flow fractionation (AF4) in combination with ultraviolet (UV), multiangle light scattering (MALS) and differential refractive index (dRI) detectors was used to separate the macromolecules present in the beers and the molar mass (M) and molar mass distributions (MD) were determined. Macromolecular components were identified by enzymatic treatments with β-glucanase and proteinase K. The MD of β-glucan ranged from 10 6 to 10 8  g/mol. In addition, correlation between the beer's composition and foam stability was investigated (increased concentration of protein and β-glucan was associated with increased foam stability).

  3. Control technology for crystalline silica exposures in construction: wet abrasive blasting.

    PubMed

    Golla, Vijay; Heitbrink, William

    2004-03-01

    This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting.

  4. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    PubMed

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among

  5. Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits.

    PubMed

    Baumfeld, Daniel; Raduan, Fernando C; Macedo, Benjamim; Silva, Thiago Alexandre Alves; Baumfeld, Tiago; Favato, Danilo Fabrino; de Andrade, Marco Antonio Percope; Nery, Caio

    2015-11-19

    Excessive shoe heel abrasion is of concern to patients and shoe manufacturers, but little scientific information is available about this feature and its possible causes. The purpose of this study was to relate this phenomenon with biomechanical factors that could predispose to shoe heel abrasion. Ninety-seven recruits (median age 25) were enrolled in this study. Shoe abrasion was assessed manually with a metric plastic tape on the posterior part of the heel that comes in contact with the ground. The number of sprains, foot alignment, and calf muscle shortening (Silfverskiold test) was also assessed in order to relate it with shoe heel abrasion. After using our exclusion criteria, 86 recruits and 172 were considered for this study. The most common abrasion site was the lateral portion of the heel surface (50 %). Forty-four percent of the participants had neutral hind-foot alignment and 39 % had valgus alignment. Twenty-six (30 %) patients have had previous ankle or foot sprains. Neutral foot was related with less calf muscle shortening. On the other hand, valgus hind-foot alignment was more associated with Achilles shortening (p < 0.05). Patients with neutral alignment were associated with more uniform shoe heel abrasion and varus feet were associated with more central and lateral abrasion (p < 0.05). The pattern of shoe heel abrasion was not statistically related with calf muscle shortening nor with number of sprains. This study was able to correlate shoe heel abrasion with biomechanical causes (neutral alignment-uniform abrasion/varus alignment-central and lateral abrasion). More effort has to be done to continue evaluating outsole abrasion with its possible biomechanical cause in order to predict and treat possible associated injuries.

  6. The change in retentive force of magnetic attachment by abrasion.

    PubMed

    Huang, Yuanjin; Tawada, Yasuyuki; Hata, Yoshiaki; Watanabe, Fumihiko

    2008-07-01

    Magnets are frequently applied to removable dentures as retentive attachments. A magnet-retained removable overdenture might be slightly shifted from side to side by eccentric movement in the mouth, and the surface of magnetic attachment may be worn as a result. However, the relationship between the retentive force of magnetic attachment and its surface abrasion has not been reported. The purpose of this research is to investigate this relationship. Ten Mgfit DX 400 magnetic attachments for natural tooth roots were used for this experiment. The magnetic attachments were embedded in autopolymerizing acrylic resin, and ten pairs of specimens were fabricated. A 5-mm repeated gliding motion was applied on each pair of specimens until 30 000, 50 000, or 90 000 cycles had been achieved. The abrasion machine was under 5 kg loading, and the slide speed was 60 times/min. The retentive force of magnetic attachment was measured with a tension gauge at (1) before gliding; (2) after 30 000 gliding cycles; (3)after 50 000 gliding cycles; or (4) after 90 000 gliding cycles. The average change of retentive force of ten magnetic attachments after 30 000, 50 000, and 90 000 gliding cycles was 0.016 N, 0.003 N, and -0.008 N, respectively. The change was statistically analyzed using a paired-sample t test, which showed that the number of gliding cycles did not affect the retentive force of magnetic attachment significantly. The surface of magnetic attachment after gliding was observed by a microscope, and the abrasion of this attachment surface is clearly seen.

  7. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry.

    PubMed

    Kang, Dukjin; Oh, Sunok; Ahn, Sung-Min; Lee, Bong-Hee; Moon, Myeong Hee

    2008-08-01

    Exosomes, small membrane vesicles secreted by a multitude of cell types, are involved in a wide range of physiological roles such as intercellular communication, membrane exchange between cells, and degradation as an alternative to lysosomes. Because of the small size of exosomes (30-100 nm) and the limitations of common separation procedures including ultracentrifugation and flow cytometry, size-based fractionation of exosomes has been challenging. In this study, we used flow field-flow fractionation (FlFFF) to fractionate exosomes according to differences in hydrodynamic diameter. The exosome fractions collected from FlFFF runs were examined by transmission electron microscopy (TEM) to morphologically confirm their identification as exosomes. Exosomal lysates of each fraction were digested and analyzed using nanoflow LC-ESI-MS-MS for protein identification. FIFFF, coupled with mass spectrometry, allows nanoscale size-based fractionation of exosomes and is more applicable to primary cells and stem cells since it requires much less starting material than conventional gel-based separation, in-gel digestion and the MS-MS method.

  8. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.

    2004-06-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.

  9. Optimization of information content in a mass spectrometry based flow-chemistry system by investigating different ionization approaches.

    PubMed

    Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A

    2011-05-15

    Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Optimization of Profile and Material of Abrasive Water Jet Nozzle

    NASA Astrophysics Data System (ADS)

    Anand Bala Selwin, K. P.; Ramachandran, S.

    2017-05-01

    The objective of this work is to study the behaviour of the abrasive water jet nozzle with different profiles and materials. Taguchi-Grey relational analysis optimization technique is used to optimize the value with different material and different profiles. Initially the 3D models of the nozzle are modelled with different profiles by changing the tapered inlet angle of the nozzle. The different profile models are analysed with different materials and the results are optimized. The optimized results would give the better result taking wear and machining behaviour of the nozzle.

  11. Heat sealable, flame and abrasion resistant coated fabric

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R. (Inventor)

    1983-01-01

    Flame retardant, abrasion resistant elastomeric compositions are disclosed which are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Heat sealable coated fabrics employing such elastomeric compositions as coating film are produced by dissolving the elastomeric composition to form a solution, casting the solution onto a release paper and drying it to form an elastomeric film. The film is then bonded to a woven, knitted, or felted fabric.

  12. Microplasma-based flowing atmospheric-pressure afterglow (FAPA) source for ambient desorption-ionization mass spectrometry.

    PubMed

    Zeiri, Offer M; Storey, Andrew P; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Aeolian Abrasion at the Curiosity Landing Site: Clues to the Role of Wind in Landscape Modification

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Le Mouélic, S.; Hallet, B.; Newman, C. E.; Rice, M. S.; Blaney, D. L.; Calef, F. J.; Herkenhoff, K. E.; Langevin, Y.; Lewis, K. W.; Maurice, S.; Pinet, P. C.; Wiens, R. C.; de Pablo, M.; Renno, N. O.

    2013-12-01

    The broad scale geomorphology of Gale Crater reflects diverse aeolian processes, from airfall settling that likely deposited much of the upper and some of the lower units of Mt. Sharp, to evidence of extensive wind exhumation and removal of material exterior to the mound, to active dunes on the crater floor. The integrated effect of aeolian sand transport can also be examined on a much smaller scale by the study of ventifacts, rocks that have been abraded by windborne particles. A diversity of ventifacts are found along Curiosity's traverse through the upper 'hummocky' (HY) geomorphic unit and the lower Yellowknife Bay (YKB) sedimentary rocks. The textures are analogous to abrasion features found on Earth and include cm-scale facets, keels, elongated pits, grooves, flutes, and basal sills. High-resolution images from ChemCam's Remote Micro-Imager also show mm-scale lineations. Evidence of differential erosion is common, with HY conglomerates (e.g., Hottah, Link) and the YKB Sheepbed mudstone unit containing distinct wind tails in the lee of resistant pebbles, and bedding features within Rocknest 3, the YKB Shaler sandstone unit, and other layered rocks displaying prominent ridge-groove topography. ChemCam LIBS depth profile data so far show no strong evidence for chemical differences in the elemental composition between abraded and non-abraded surfaces (as determined from qualitative assessment), as might be expected if there were rock coatings or weathering rinds undergoing active abrasion. Preliminary measurements of ventifact texture and wind tail orientations indicate sandblasting in HY and YKB from predominantly southwesterly and northerly directions, respectively. Based on meso-scale models of current winds and REMS results, SW flow is uncommon whereas N winds are frequent. Compositional and textural information from the suite of MSL instruments indicate that HY rocks are dominated by various types of basalt (either as whole rocks or the resistant clasts in

  14. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  15. IRIS Observations of Coronal Rain and Prominences: Return Flows of the Chromosphere-Corona Mass Cycle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Berger, Thomas; Antolin, Patrick; Schrijver, Karel

    2014-06-01

    It has recently been recognized that a mass cycle (e.g., Berger et al. 2011; McIntosh et al. 2012) between the hot, tenuous solar corona and the cool, dense chromosphere underneath it plays an important role in the mass budget and dynamic evolution of the solar atmosphere. Although the corona ultimately loses mass through the solar wind and coronal mass ejections, a fraction of its mass returns to the chromosphere in coronal rain, downflows of prominences, and other as-yet unidentified processes. We present here analysis of joint observations of IRIS, SDO/AIA, and Hinode/SOT of such phenomena. By utilizing the wide temperature coverage (logT: 4 - 7) provided by these instruments combined, we track the coronal cooling sequence (e.g., Schrijver 2001; Liu et al. 2012; Berger et al. 2012) leading to the formation of such material at transition region or chromospheric temperatures (logT: 4 - 5) in the million-degree corona. We compare the cooling times with those expected from the radiative cooling instability. We also measure the kinematics and densities of such downflows and infer their mass fluxes, which are compared to the upward mass fluxes into the corona, e.g., those associated with spicules and flux emergence. Special attention is paid to coronal rain formed near cusp-shaped portions of coronal loops, funnel-shaped prominences at dips of coronal loops, and their respective magnetic environments. With the information about where and when such catastrophic cooling events take place, we discuss the implications for the enigmatic coronal heating mechanisms (e.g., Antolin et al. 2010).

  16. Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations.

    PubMed

    Hara, Anderson T; Turssi, Cecilia P

    2017-11-01

    Toothpastes can be formulated with different abrasive systems, depending on their intended clinical application. This formulation potentially affects their effectiveness and safety and, therefore, requires proper understanding. In this article, the authors focused on abrasive aspects of toothpastes containing sodium bicarbonate (baking soda), which have gained considerable attention because of their low abrasivity and good compatibility, while providing clinical effectiveness (further detailed in the other articles of this special issue). The authors first appraised the role of toothpaste abrasivity on tooth wear, exploring some underlying processes and the existing methods to determine toothpaste abrasivity. The authors reviewed the available data on the abrasivity of toothpastes containing baking soda and reported a summary of findings highlighting the clinical implications. On the basis of the collected evidence, baking soda has an intrinsic low-abrasive nature because of its comparatively lower hardness in relation to enamel and dentin. Baking soda toothpastes also may contain other ingredients, which can increase their stain removal effectiveness and, consequently, abrasivity. Even those formulations have abrasivity well within the safety limit regulatory agencies have established and, therefore, can be considered safe. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  17. Fluid-Structure Interaction Effects on Mass Flow Rates in Solid Rocket Motors

    DTIC Science & Technology

    2015-09-02

    FEA ) is explored. A propellant flap in a cross flow is analyzed. Comparisons are made between an analytical solution, a solely CFD solution, a manual...finite element analysis ( FEA ) is explored.  A  propellant flap in a cross flow is analyzed.  Comparisons are made between an analytical  solution, a...Condition Zones ..................................................................... 11  Figure 6: Pressure Boundary Condition Applied to  FEA  model

  18. Detection and Quantification of Silver Nanoparticles at Environmentally Relevant Concentrations Using Asymmetric Flow Field??Flow Fractionation Online with Single Particle Inductively Coupled Plasma Mass Spectrometry

    EPA Pesticide Factsheets

    The presence of silver nanoparticles (AgNPs) in aquatic environments could potentially cause adverse impacts on ecosystems and human health. However, current understanding of the environmental fate and transport of AgNPs is still limited because their properties in complex environmental samples cannot be accurately determined. In this study, the feasibility of using asymmetric flow field-flow fractionation (AF4) connected online with single particle inductively coupled plasma mass spectrometry (spICPMS) to detect and quantify AgNPs at environmentally relevant concentrations was investigated. The AF4 channel had a thickness of 350 00b5m and its accumulation wall was a 10 kDa regenerated cellulose membrane. A 0.02 % FL-70 surfactant solution was used as an AF4 carrier. With 1.2 mL/min AF4 cross flow rate, 1.5 mL/min AF4 channel flow rate, and 5 ms spICPMS dwell time, the AF4??spICPMS can detect and quantify 40 ?? 80 nm AgNPs, as well as Ag-SiO2 nanoparticles (51.0 nm diameter Ag core and 21.6 nm SiO2 shell), with good recovery within 30 min. This system was not only effective in differentiating and quantifying different types of AgNPs with similar hydrodynamic diameters, such as in mixtures containing Ag-SiO2 core-shell nanoparticles and 40 ?? 80 nm AgNPs, but also suitable for differentiating between 40 nm AgNPs and elevated dissolved Ag content. The study results indicate that AF4??spICPMS is capable of detecting and quantifying AgNPs and other engineered

  19. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B

  20. The use of the energy flow change theorem in solving the problem of perfectly elastic collision of three mass points

    NASA Astrophysics Data System (ADS)

    Kolyari I., G.

    2018-05-01

    The proposed theoretical model allows for the perfectly elastic collision of three bodies (three mass points) to calculate: 1) the definite value of the three bodies' projected velocities after the collision with a straight line, along which the bodies moved before the collision; 2) the definite value of the scattering bodies' velocities on the plane and the definite value of the angles between the bodies' momenta (or velocities), which the bodies obtain after the collision when moving on the plane. The proposed calculation model of the velocities of the three collided bodies is consistent with the dynamic model of the same bodies' interaction during the collision, taking into account that the energy flow is conserved for the entire system before and after the collision. It is shown that under the perfectly elastic interaction during the collision of three bodies the energy flow is conserved in addition to the momentum and energy conservation.

  1. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  2. A NEW TWO-PHASE FLOW AND TRANSPORT MODEL WITH INTERPHASE MASS EXCHANGE

    EPA Science Inventory

    The focus of this numerical investigation is on modelling the emplacement and subsequent removal, through dissolution, of a Denser-than-water Non-Aqueous Phase Liquid (DNAPL) in a saturated groundwater system. pecifically the model must address two flow and transport regimes. irs...

  3. Macropore Flow and Mass Wasting of Gullies in the Loess Plateau, China

    USDA-ARS?s Scientific Manuscript database

    Due to the extensive gullying from historically excessive erosion in the loess plateau of China, much of this region is being removed from cropping and converted to native grass and shrub vegetation. The effects of this conversion on soil physical properties that result in preferential flow have not...

  4. The Influence of Oscillatory Fractions on Mass Transfer of Non-Newtonian Fluid in Wavy-Walled Tubes for Pulsatile Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Donghui; Bian, Yongning

    2018-03-01

    The shape of pipeline structure, fluid medium and flow state have important influence on the heat transfer and mass effect of fluid. In this paper, we investigated the mass transfer behavior of Non-Newtonian fluid CMC solution with 700ppm concentration in five different-sized axisymmetric wave-walled tubes for pulsatile flow. It is revealed that the effect of mass transfer is enhanced with the increase of oscillatory fractions P based on the PIV measurements. Besides, mass transfer rate was measured by the electrochemical method in the larger oscillatory points rate range. It is observed that mass transfer rate increases with the increase in P and reached the maximum mass transfer rate at the most optimal oscillatory fractions P opt. After reaching the optimal oscillatory fractions P opt, the mass transfer rate decreases with increasing P.

  5. A dilute-and-shoot flow-injection tandem mass spectrometry method for quantification of phenobarbital in urine.

    PubMed

    Alagandula, Ravali; Zhou, Xiang; Guo, Baochuan

    2017-01-15

    Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is the gold standard of urine drug testing. However, current LC-based methods are time consuming, limiting the throughput of MS-based testing and increasing the cost. This is particularly problematic for quantification of drugs such as phenobarbital, which is often analyzed in a separate run because they must be negatively ionized. This study examined the feasibility of using a dilute-and-shoot flow-injection method without LC separation to quantify drugs with phenobarbital as a model system. Briefly, a urine sample containing phenobarbital was first diluted by 10 times, followed by flow injection of the diluted sample to mass spectrometer. Quantification and detection of phenobarbital were achieved by an electrospray negative ionization MS/MS system operated in the multiple reaction monitoring (MRM) mode with the stable-isotope-labeled drug as internal standard. The dilute-and-shoot flow-injection method developed was linear with a dynamic range of 50-2000 ng/mL of phenobarbital and correlation coefficient > 0.9996. The coefficients of variation and relative errors for intra- and inter-assays at four quality control (QC) levels (50, 125, 445 and 1600 ng/mL) were 3.0% and 5.0%, respectively. The total run time to quantify one sample was 2 min, and the sensitivity and specificity of the method did not deteriorate even after 1200 consecutive injections. Our method can accurately and robustly quantify phenobarbital in urine without LC separation. Because of its 2 min run time, the method can process 720 samples per day. This feasibility study shows that the dilute-and-shoot flow-injection method can be a general way for fast analysis of drugs in urine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Study of mass flow distribution and chemical composition of comets from solar induced X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1979-01-01

    The expected performance of an X-ray detector as an instrument aboard a mission to a comet was evaluated. The functions of the detector are both nondispersive analysis of chemical composition and measurement of mass flow from the comet nucleus. Measurements are to be carried out at a distance from the comet. The approach distances considered are of the order of 1000 km and 100 km. A new type of X-ray detector, a proportional scintillation detector, is considered as an X-ray counter for nondispersive elemental analysis.

  7. Investigation of the external flow analysis for density measurements at high altitude. [shuttle upper atmosphere mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Bienkowski, G. K.

    1983-01-01

    A Monte Carlo program was developed for modeling the flow field around the space shuttle in the vicinity of the shuttle upper atmosphere mass spectrometer experiment. The operation of the EXTERNAL code is summarized. Issues associated with geometric modeling of the shuttle nose region and the modeling of intermolecular collisions including rotational energy exchange are discussed as well as a preliminary analysis of vibrational excitation and dissociation effects. The selection of trial runs is described and the parameters used for them is justified. The original version and the modified INTERNAL code for the entrance problem are reviewed. The code listing is included.

  8. Differentiating Organic and Conventional Sage by Chromatographic and Mass Spectrometry Flow-Injection Fingerprints Combined with Principal Component Analysis

    PubMed Central

    Gao, Boyan; Lu, Yingjian; Sheng, Yi; Chen, Pei; Yu, Liangli (Lucy)

    2013-01-01

    High performance liquid chromatography (HPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The individual components in the sage samples were also characterized with an ultra-performance liquid chromatography with a quadrupole-time of flight mass spectrometer (UPLC Q-TOF MS). The results suggested that both HPLC and FIMS fingerprints combined with PCA could differentiate organic and conventional sage samples effectively. FIMS may serve as a quick test capable of distinguishing organic and conventional sages in 1 min, and could potentially be developed for high-throughput applications; whereas HPLC fingerprints could provide more chemical composition information with a longer analytical time. PMID:23464755

  9. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows

    SciTech Connect

    Fakhari, Abbas, E-mail: afakhari@nd.edu; Geier, Martin; Lee, Taehun

    2016-06-15

    A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude fastermore » than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids

  10. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  11. Abrasion resistant coating and method of making the same

    DOEpatents

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  12. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  13. Abrasive-assisted Nickel Electroforming Process with Moving Cathode

    NASA Astrophysics Data System (ADS)

    REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di

    2017-03-01

    In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.

  14. Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Koh, Christine J; Popolan-Vaida, Denisia M; Gallegos, Christopher J; Hooper, Justin B; Bedrov, Dmitry; Vaghjiani, Ghanshyam L; Leone, Stephen R

    2016-10-07

    The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM + DCA - ) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO 3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO 3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

  15. Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters

    PubMed Central

    2018-01-01

    In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance, which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may possess a high Sherwood number. PMID:29657359

  16. Estimation of the REV Size and Equivalent Permeability Coefficient of Fractured Rock Masses with an Emphasis on Comparing the Radial and Unidirectional Flow Configurations

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie

    2018-05-01

    A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.

  17. Abrasion Plus Local Fibrin Sealant Instillation Produces Pleurodesis Similar to Pleurectomy in Rabbits.

    PubMed

    Marchi, Evaldo; de Carvalho, Marcus V H; Ventureli, Tiago R; Fruchi, Andre J; Lazaro, Ariane; do Carmo, Deborah C; Barreto, Thayssa Y A S; Dias, Bruno V B; Acencio, Milena M P; Teixeira, Lisete R; Light, Richard W

    2016-09-01

    Pleurodesis performed either by pleurectomy or pleural abrasion is recommended in the approach to primary spontaneous pneumothorax to avoid recurrence. However, the efficacy of parietal pleural abrasion in producing pleurodesis is questioned. This study aims to determine the efficacy of apical abrasion alone, abrasion plus fibrin sealant application, and pleurectomy in producing pleurodesis in rabbits. Rabbits were subjected to video-assisted thoracic surgery alone (control) or to video-assisted thoracic surgery with apical gauze abrasion, abrasion plus fibrin sealant instillation, or apical pleurectomy. Blood samples were collected preoperatively and 48 h and 28 days postoperatively to measure total leukocytes (white blood cell count), neutrophil counts, and serum interleukin (IL)-8 levels. After 28 days the animals were sacrificed for macroscopic evaluation of the degree of apical pleurodesis and microscopic evaluation of local pleural fibrosis and collagen deposition. White blood cell and neutrophil counts were similar in all groups, whereas the serum IL-8 level peaked at 48 h in all groups and decreased after 28 days, except in the pleurectomy group. After 28 days the abrasion plus fibrin sealant and pleurectomy groups had significantly more pleural adhesions, pleural fibrosis, and collagen deposition than the abrasion alone group, mainly due to thick mature fibers. Abrasion with local fibrin sealant instillation is as effective as pleurectomy in producing pleurodesis in rabbits. Apical pleurectomy elicits a more persistent elevation of serum IL-8 levels than apical abrasion alone or abrasion plus fibrin adhesive instillation. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise

    PubMed Central

    Broxterman, R M; Craig, J C; Smith, J R; Wilcox, S L; Jia, C; Warren, S; Barstow, T J

    2015-01-01

    Abstract The influence of the muscle metabolic milieu on peripheral and central fatigue is currently unclear. Moreover, the relationships between peripheral and central fatigue and the curvature constant (W ′) have not been investigated. Six men (age: 25 ± 4 years, body mass: 82 ± 10 kg, height: 179 ± 4 cm) completed four constant power handgrip tests to exhaustion under conditions of control exercise (Con), blood flow occlusion exercise (Occ), Con with 5 min post-exercise blood flow occlusion (Con + Occ), and Occ with 5 min post-exercise blood flow occlusion (Occ + Occ). Neuromuscular fatigue measurements and W ′ were obtained for each subject. Each trial resulted in significant peripheral and central fatigue. Significantly greater peripheral (79.7 ± 5.1% vs. 22.7 ± 6.0%) and central (42.6 ± 3.9% vs. 4.9 ± 2.0%) fatigue occurred for Occ than for Con. In addition, significantly greater peripheral (83.0 ± 4.2% vs. 69.0 ± 6.2%) and central (65.5 ± 14.6% vs. 18.6 ± 4.1%) fatigue occurred for Occ + Occ than for Con + Occ. W ′ was significantly related to the magnitude of global (r = 0.91) and peripheral (r = 0.83) fatigue. The current findings demonstrate that blood flow occlusion exacerbated the development of both peripheral and central fatigue and that post-exercise blood flow occlusion prevented the recovery of both peripheral and central fatigue. Moreover, the current findings suggest that W ′ may be determined by the magnitude of fatigue accrued during exercise. Key points Critical power represents an important threshold for neuromuscular fatigue development and may, therefore, dictate intensities for which exercise tolerance is determined by the magnitude of fatigue accrued. Peripheral fatigue appears to be constant across O2 delivery conditions for large muscle mass exercise, but this consistency is equivocal for smaller muscle mass exercise. We sought to determine the influence of blood flow

  19. Experimental energy harvesting from fluid flow by using two vibrating masses

    NASA Astrophysics Data System (ADS)

    Nishi, Yoshiki; Fukuda, Kengo; Shinohara, Wataru

    2017-04-01

    In this study, an experiment was performed to determine how the addition of a second degree of freedom to a vibratory system affects its energy extraction from a surrounding fluid flow. A circular cylinder was submerged underwater and subjected to flow, and another cylinder mounted on springs was inserted between the submerged cylinder and a generator. The experiment results demonstrated that vortex-induced vibration occurred at frequencies that were locked-in to the first and second natural modes for reduced velocity ranges of 5.0-9.0 and greater than 12.0, respectively. The output voltages were particularly high when the vibration frequency was locked-in to that of the second natural mode. It was found that application of energy extraction using a system with two degrees of freedom can widen the range of reduced velocity within which power extraction is effective.

  20. Remote Quantification of Smokestack Total Effluent Mass Flow Rates Using Imaging Fourier-Transform Spectroscopy

    DTIC Science & Technology

    2011-03-01

    between plume and air: ∆ρρ = Tair ∆T , where Tair was taken to be 300 ◦ K and ∆T to be 100◦ K . This resulted in final values of M = 735m4/s2, B = 2999m4/s3...37 Appendix A. Extended velocity discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 vi Page Appendix B . Additional... B . Lastly, Appendix C contains MATLAB code developed specifically for the brightness feature tracking method and plume flow anal- ysis. Each primary

  1. Altered Blood Flow Response to Small Muscle Mass Exercise in Cancer Survivors Treated With Adjuvant Therapy.

    PubMed

    Didier, Kaylin D; Ederer, Austin K; Reiter, Landon K; Brown, Michael; Hardy, Rachel; Caldwell, Jacob; Black, Christopher; Bemben, Michael G; Ade, Carl J

    2017-02-07

    Adjuvant cancer treatments have been shown to decrease cardiac function. In addition to changes in cardiovascular risk, there are several additional functional consequences including decreases in exercise capacity and increased incidence of cancer-related fatigue. However, the effects of adjuvant cancer treatment on peripheral vascular function during exercise in cancer survivors have not been well documented. We investigated the vascular responses to exercise in cancer survivors previously treated with adjuvant cancer therapies. Peripheral vascular responses were investigated in 11 cancer survivors previously treated with adjuvant cancer therapies (age 58±6 years, 34±30 months from diagnosis) and 9 healthy controls group matched for age, sex, and maximal voluntary contraction. A dynamic handgrip exercise test at 20% maximal voluntary contraction was performed with simultaneous measurements of forearm blood flow and mean arterial pressure. Forearm vascular conductance was calculated from forearm blood flow and mean arterial pressure. Left ventricular ejection time index (LVETi) was derived from the arterial pressure wave form. Forearm blood flow was attenuated in cancer therapies compared to control at 20% maximal voluntary contraction (189.8±53.8 vs 247.9±80.3 mL·min -1 , respectively). Forearm vascular conductance was not different between groups at rest or during exercise. Mean arterial pressure response to exercise was attenuated in cancer therapies compared to controls (107.8±10.8 vs 119.2±16.2 mm Hg). LEVTi was lower in cancer therapies compared to controls. These data suggest an attenuated exercise blood flow response in cancer survivors ≈34 months following adjuvant cancer therapy that may be attributed to an attenuated increase in mean arterial pressure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. Improved Flow Modulator Construction for GC × GC with Quadrupole Mass Spectrometry.

    PubMed

    Ston, Martin; Cabala, Radomir; Bierhanzl, Vaclav Matej; Krajicek, Jan; Bosakova, Zuzana

    2016-08-18

    Improvement and testing of a flow modulator for the application in comprehensive two-dimensional gas chromatography separations is the subject of the presented paper. This improved setup constructed from two independent capillary branches each consisting of a pressure regulator, a pressure sensor, a two-way solenoid valve and a microfluidic T-connector, allows an independent and easy settings of the pressures and flow velocities in the modulator and provides system flexibility in an operation without need of any component exchange. The estimated flow rates were 0.4 mL/min in the first column and 3.2 mL/min in the second column. This setup was compared with the commercial Zoex cryogenic modulator for the separation of 17 selected solvents at isothermal conditions. Modulator working conditions were optimized and its separation power was demonstrated on the analysis of a lavender extract under an application of two orthogonal capillary column sets (nonpolar-polar vs. polar-nonpolar) and temperature program. The results were evaluated by two commercial software packages and discussed with respect to the identification compliance. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    PubMed

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

  4. Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame?

    USGS Publications Warehouse

    McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.

    2017-01-01

    Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.

  5. Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame?

    NASA Astrophysics Data System (ADS)

    McGuire, Luke A.; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.

    2017-07-01

    Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.

  6. Asymmetrical flow field-flow fractionation hyphenated to Orbitrap high resolution mass spectrometry for the determination of (functionalised) aqueous fullerene aggregates.

    PubMed

    Herrero, P; Bäuerlein, P S; Emke, E; Pocurull, E; de Voogt, P

    2014-08-22

    In this short communication we report on the technical implementations of coupling an asymmetric flow field-flow fractionation (AF4) instrument to a high resolution mass spectrometer (Orbitrap) using an atmospheric photoionisation interface. This will allow for the first time online identification of different fullerenes in aqueous samples after their aggregates have been fractionated in the FFF channel. Quality parameters such as limits of detection (LODs), limits of quantification (LOQs) or linear range were evaluated and they were in the range of hundreds ng/L for LODs and LOQs and the detector response was linear in the range tested (up to ∼20 μg/L). The low detection and quantification limits make this technique useful for future environmental or ecotoxicology studies in which low concentration levels are expected for fullerenes and common on-line detectors such as UV or MALS do not have enough sensitivity and selectivity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-11-13

    Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.

  8. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    NASA Astrophysics Data System (ADS)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-07-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  9. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  10. Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow

    PubMed Central

    2017-01-01

    We report a computational fluid dynamics–discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas–solid contact efficiencies. Cluster gas–solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors. PMID:28553011

  11. Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow.

    PubMed

    Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M

    2017-05-17

    We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.

  12. Using He I λ10830 to Diagnose Mass Flows Around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Cauley, Paul W.; Johns-Krull, Christopher M.

    2015-01-01

    The pre-main sequence Herbig Ae/Be stars (HAEBES) are the intermediate mass cousins of the low mass T Tauri stars (TTSs). However, it is not clear that the same accretion and mass outflow mechanisms operate identically in both mass regimes. Classical TTSs (CTTSs) accrete material from their disks along stellar magnetic field lines in a scenario called magnetospheric accretion. Magnetospheric accretion requires a strong stellar dipole field in order to truncate the inner gas disk. These fields are either absent or very weak on a large majority of HAEBES, challenging the view that magnetospheric accretion is the dominant accretion mechanism. If magnetospheric accretion does not operate similarly around HAEBES as it does around CTTSs, then strong magnetocentrifugal outflows, which are directly linked to accretion and are ubiquitous around CTTSs, may be driven less efficiently from HAEBE systems. Here we present high resolution spectroscopic observations of the He I λ10830 line in a sample of 48 HAEBES. He I λ10830 is an excellent tracer of both mass infall and outflow which is directly manifested as red and blue-shifted absorption in the profile morphologies. These features, among others, are common in our sample. The occurrence of both red and blue-shifted absorption profiles is less frequent, however, than is found in CTTSs. Statistical contingency tests confirm this difference at a significant level. In addition, we find strong evidence for smaller disk truncation radii in the objects displaying red-shifted absorption profiles. This is expected for HAEBES experiencing magnetospheric accretion based on their large rotation rates and weak magnetic field strengths. Finally, the low incidence of blue-shifted absorption in our sample compared to CTTSs and the complete lack of simultaneous red and blue-shifted absorption features suggests that magnetospheric accretion in HAEBES is less efficient at driving strong outflows. The stellar wind-like outflows that are

  13. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  14. Simultaneous estimation of local-scale and flow path-scale dual-domain mass transfer parameters using geoelectrical monitoring

    USGS Publications Warehouse

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.

    2013-01-01

    Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.

  15. Monitoring of the Abrasion Processes (by the Example of Alakol Lake, Republic of Kazakhstan)

    ERIC Educational Resources Information Center

    Abitbayeva, Ainagul; Valeyev, Adilet; Yegemberdiyeva, Kamshat; Assylbekova, Aizhan; Ryskeldieva, Aizhan

    2016-01-01

    The purpose of the study is to analyze the abrasion processes in the regions of dynamically changing Alakol lake shores. Using the field method, methods of positioning by the GPS receiver and interpretation of remote sensing data, the authors determined that abrasion processes actively contributed to the formation the modern landscape, causing the…

  16. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  17. Abrasive wear of ceramic wear protection at ambient and high temperatures

    NASA Astrophysics Data System (ADS)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  18. Air-propelled abrasive grit can damage the perennial weed, quackgrass, Elytrigia repens (L.) Nevski

    USDA-ARS?s Scientific Manuscript database

    New techniques are needed to control quackgrass in organic crops. With greater than or equal to 2 applications of abrasive air-propelled (800 kPa) corncob grit to 15 cm tall quackgrass tillers, regrowth was minimal at 5 weeks after treatment. Abrasive grits may be effective tools to help manage pere...

  19. Modeling of Micro Deval abrasion loss based on some rock properties

    NASA Astrophysics Data System (ADS)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  20. Solidification/stabilization of spent abrasives and use as nonstructural concrete

    SciTech Connect

    Brabrand, D.J.; Loehr, R.C.

    1993-01-01

    Tons of spent abrasives result each year from the removal of old paint from bridges. Because the spent abrasives contain metals from the paint, some spent abrasives may be considered hazardous by the Toxicity Characteristic (TC) criteria. Incorporation of the spent blasting abrasives in nonstructural concrete (rip-rap, dolphins) offers an opportunity to recycle the spent abrasives while immobilizing potentially leachable metals. This study focused on the Portland Cement Solidification/Stabilization (S/S) of spent blasting abrasives taken from a bridge located in Southeast Texas. The study examined (a) the cadmium, chromium, and lead concentrations in extracts obtained by using the Toxicity Characteristicmore » Leaching Procedure (TCLP) and (b) the compressive strengths of Portland Cement mixes that contained different amounts of the spent abrasives. Performance was measured by meeting the TC criteria as well as the requirements for compressive strength. Study results indicated that considerable quantities of these spent abrasives can be solidified/stabilized while reducing the leachability of cadmium, chromium, and lead and producing compressive strengths over 6,895 kN/m[sup 2] (1,000 psi).« less

  1. Importance of poplar plantations in the groundwater mass balance and stream base flow of a Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ferrer, Nuria; Folch, Albert

    2015-04-01

    Poplar plantations are used for biomass production in many countries.Poplar (Populus spp.) is well known for its large biomass production, its ability to adapt to different environments, its ability to synergise with agriculture and its high energy potential. These plantations areoften located in areas where the tree roots can reach the water table of shallow aquifers to reduce irrigation costs but increasing evapotranspiration, mainly during the summer. This study aims to assess the effects of these plantations on an aquifer water budget and on the stream base flow of a Mediterranean basin, the Santa Coloma river (321.3 km2) located in the NE Spain. A numerical flow model was constructed using Visual Modflow 4.5 Software to simulate groundwater flow in the shallow aquifers and the stream-aquifer interaction for a period of 9 years. Once the model was calibrated, different land use scenarios, such as deciduous forests, dry farming and irrigated farming, were simulated for comparison. The mass balance shows that poplar extracts an average of 2.40 hm3 from the aquifer. This amount of water represents the 30% of the aquifer withdrawal, approximately 18% of the average recharge of the aquifer and 12 % of the total outputs of the system. This effect reduces the groundwater flow to the main stream and increases the infiltration from the stream to the aquifer. Compared with deciduous forest as a soil use , there is an average reduction in the main stream flow by 46% during the summer months, when the lowest flow occurs and when the river is most sensitive. These results indicate that this impact should be considered in basin management plans and in evaluating the benefits of this type of biomass production.Additional research is needed to conceptualise the costs and benefits of this type of non-natural plantations for biomass production, specifically, the associated economic benefits and the effects on the water budget (i.e., stream flow) at various scales (local, basin

  2. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes

    NASA Astrophysics Data System (ADS)

    Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.

  3. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    NASA Astrophysics Data System (ADS)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the

  4. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  5. Wear resistance and mechanisms of composite hardfacings at abrasive impact erosion wear

    NASA Astrophysics Data System (ADS)

    Surzhenkov, A.; Viljus, M.; Simson, T.; Tarbe, R.; Saarna, M.; Casesnoves, F.

    2017-05-01

    Tungsten carbide based hardmetal containing sprayed and melted composite hardfacings are prospective for protection against abrasive wear. For selection of abrasive wear resistant hardfacings under intensive impact wear conditions, both mechanical properties (hardness, fracture toughness, etc.) and abrasive wear conditions (type of abrasive, impact velocity, etc.) should be considered. This study focuses on the wear (wear rate and mechanisms) of thick metal-matrix composite hardfacings with hardmetal (WC-Co) reinforcement produced by powder metallurgy technology. The influence of the hardmetal reinforcement type on the wear resistance at different abrasive impact erosion wear (AIEW) conditions was studied. An optimal reinforcement for various wear conditions is described. Based on wear mechanism studies, a mathematical model for wear prediction was drafted.

  6. Effect of ceramic coating by aerosol deposition on abrasion resistance of a resin composite material.

    PubMed

    Taira, Yohsuke; Hatono, Hironori; Mizukane, Masahiro; Tokita, Masahiro; Atsuta, Mitsuru

    2006-12-01

    Aerosol deposition (AD coating) is a novel technique to coat solid substances with a ceramic film. The purpose of the present study was to investigate the effect of AD coating on abrasion resistance of a resin composite material. A 5-microm-thick aluminum oxide layer was created on the polymerized resin composite. The specimen was cyclically abraded using a toothbrush abrasion simulator for 100,000 cycles. Abraded surface was then measured with a profilometer to determine the average roughness (Ra) and maximum roughness (Rmax). It was found that abrasion cycling increased the Ra value of the No-AD-coating group, but decreased the Ra and Rmax values of the AD coating group. Moreover, the AD coating group showed significantly smaller Ra and Rmax values after 100,000 abrasion cycles as compared to the No-coating control group. Microscopic observation supported these findings. In conclusion, the resistance of the resin composite against toothbrush abrasion was improved by AD coating.

  7. Effects of partial slip boundary condition and radiation on the heat and mass transfer of MHD-nanofluid flow

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.; Ebaid, Abdelhalim

    2017-12-01

    In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.

  8. Wear model simulating clinical abrasion on composite filling materials.

    PubMed

    Johnsen, Gaute Floer; Taxt-Lamolle, Sébastien F; Haugen, Håvard J

    2011-01-01

    The aim of this study was to establish a wear model for testing composite filling materials with abrasion properties closer to a clinical situation. In addition, the model was used to evaluate the effect of filler volume and particle size on surface roughness and wear resistance. Each incisor tooth was prepared with nine identical standardized cavities with respect to depth, diameter, and angle. Generic composite of 3 different filler volumes and 3 different particle sizes held together with the same resin were randomly filled in respective cavities. A multidirectional wet-grinder with molar cusps as antagonist wore the surface of the incisors containing the composite fillings in a bath of human saliva at a constant temperature of 37°C. The present study suggests that the most wear resistant filling materials should consist of medium filling content (75%) and that particles size is not as critical as earlier reported.

  9. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  10. Abrasive slurry jet cutting model based on fuzzy relations

    NASA Astrophysics Data System (ADS)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  11. Mars rover rock abrasion tool performance enhanced by ultrasonic technology.

    NASA Astrophysics Data System (ADS)

    Macartney, A.; Li, X.; Harkness, P.

    2016-12-01

    The Mars exploration Athena science goal is to explore areas where water may have been present on the early surface of Mars, and investigate the palaeo-environmental conditions of these areas in relation to the existence of life. The Rock Abrasion Tool (RAT) designed by Honeybee Robotics has been one of four key Athena science payload instruments mounted on the mechanical arm of the Spirit, Opportunity and Curiosity Mars Exploration Rovers. Exposed rock surfaces weather and chemically alter over time. Although such weathered rock can present geological interest in itself, there is a limit to what can be learned. If the geological history of a landing site is to be constructed, then it is important to analyse the unweathered rock interior as clearly as possible. The rock abrasion tool's role is to substitute for a geologist's hammer, removing the weathered and chemically altered outer surface of rocks in order to view the pristine interior. The RAT uses a diamond resin standard common grinding technique, producing a 5mm depth grind with a relatively high surface roughness, achieved over a number of hours per grind and consumes approximately 11 watts of energy. This study assesses the benefits of using ultrasonic assisted grinding to improve surface smoothness. A prototype Micro-Optic UltraSonic Exfoliator (MOUSE) is tested on a range of rock types and demonstrates a number of advantages over the RAT. In addition to a smoother grind finish, these advantages include a lower rate of tool tip wear when using a tungsten carbide tip as opposed to diamond resin, less moving parts, a grind speed of minutes instead of hours, and a power consumption of only 1-5 Watts.

  12. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    NASA Technical Reports Server (NTRS)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  13. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    PubMed Central

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-01-01

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621

  14. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.

    PubMed

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-11-13

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  15. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  16. A Three Dimensional Picture of Galactic Center Mass Flows From Kiloparsec to Subparsec Scales

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth A.

    2018-06-01

    The centers of galaxies host extreme and energetic phenomena, from the amassing of incredibly dense reservoirs of gas to nuclear starbursts producing tens to hundreds of solar masses per year to accreting supermassive black holes launching jets. All of these are found on compact scales from hundreds of parsecs to less than a microparsec. The nearest laboratory for examining these processes is the center of our own Milky Way Galaxy. Although the black hole is not currently active and the star formation rate is relatively low, it is still our best opportunity for detailed insight into the processes that regulate the growth of the central supermassive black hole. By providing access to mid and far infrared wavelengths, SOFIA plays a unique role in connecting large and small scales in the Galactic center and studying the cycling of gas through this region. In this talk I will highlight several key open questions and outline the role that SOFIA continues to play in answering them.

  17. From Vulcanian explosions to sustained explosive eruptions: The role of diffusive mass transfer in conduit flow dynamics

    NASA Astrophysics Data System (ADS)

    Mason, R. M.; Starostin, A. B.; Melnik, O. E.; Sparks, R. S. J.

    2006-05-01

    Magmatic explosive eruptions are influenced by mass transfer processes of gas diffusion into bubbles caused by decompression. Melnik and Sparks [Melnik, O.E., Sparks, R.S.J. 2002, Modelling of conduit flow dynamic during explosive activity at Soufriere Hills Volcano, Montserrat. In: Druitt, T.H., Kokelaar, B.P. (eds). The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, 307-317] proposed two end member cases corresponding to complete equilibrium and complete disequilibrium. In the first case, diffusion is fast enough to maintain the system near equilibrium and a long-lived explosive eruption develops. In the latter case, pre-existing bubbles expand under conditions of explosive eruption and decompression, but diffusive gas transfer is negligible. This leads to a much shorter eruption. Here we develop this model to consider the role of mass transfer by investigating transient flows at the start of an explosive eruption triggered by a sudden decompression. The simulations reveal a spectrum of behaviours from sustained to short-lived highly non-equilibrium Vulcanian-style explosions lasting a few tens of seconds, through longer lasting eruptions that can be sustained for tens of minutes and finally to eruptions that can last hours or even days. Behaviour is controlled by a mass-transfer parameter, ω, which equals n*2/3D, where n* is the bubble number density and D is the diffusivity. The parameter ω is expected to vary between 10 - 5 and 1 s - 1 in nature and reflects a time-scale for efficient diffusion. The spectrum of model behaviours is consistent with variations in styles of explosive eruptions of silicic volcanoes. In the initial stages peak discharges occur over 10-20 s and then decline to low discharges. If a critical bubble overpressure is assumed to be the criterion for fragmentation then fragmentation may stop and start several times in the declining period causing several pulses of high

  18. DIAGNOSING MASS FLOWS AROUND HERBIG Ae/Be STARS USING THE HE I λ10830 LINE

    SciTech Connect

    Cauley, P. Wilson; Johns-Krull, Christopher M., E-mail: pcauley@wesleyan.edu, E-mail: cmj@rice.edu

    2014-12-20

    We examine He I λ10830 profile morphologies for a sample of 56 Herbig Ae/Be stars (HAEBES). We find significant differences between HAEBES and classical T-Tauri stars (CTTS) in the statistics of both blueshifted absorption (i.e., mass outflows) and redshifted absorption features (i.e., mass infall or accretion). Our results suggest that, in general, Herbig Be (HBe) stars do not accrete material from their inner disks in the same manner as CTTS, which are believed to accrete material via magnetospheric accretion, whereas Herbig Ae (HAe) stars generally show evidence for magnetospheric accretion. We find no evidence in our sample of narrow blueshiftedmore » absorption features, which are typical indicators of inner disk winds and are common in He I λ10830 profiles of CTTS. The lack of inner-disk-wind signatures in HAEBES, combined with the paucity of detected magnetic fields on these objects, suggests that accretion through large magnetospheres that truncate the disk several stellar radii above the surface is not as common for HAe and late-type HBe stars as it is for CTTS. Instead, evidence is found for smaller magnetospheres in the maximum redshifted absorption velocities in our HAEBE sample. These velocities are, on average, a smaller fraction of the system escape velocity than is found for CTTS, suggesting accretion is taking place closer to the star. Smaller magnetospheres, and evidence for boundary layer accretion in HBe stars, may explain the less common occurrence of redshifted absorption in HAEBES. Evidence is found that smaller magnetospheres may be less efficient at driving outflows compared to CTTS magnetospheres.« less

  19. Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun; Xie, Guoxin

    2011-04-01

    In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e.g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.

  20. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  1. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the

  2. Prospects and difficulties in TiO₂ nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry.

    PubMed

    López-Heras, Isabel; Madrid, Yolanda; Cámara, Carmen

    2014-06-01

    In this work, we proposed an analytical approach based on asymmetrical flow field-flow fractionation combined to an inductively coupled plasma mass spectrometry (AsFlFFF-ICP-MS) for rutile titanium dioxide nanoparticles (TiO2NPs) characterization and quantification in cosmetic and food products. AsFlFFF-ICP-MS separation of TiO2NPs was performed using 0.2% (w/v) SDS, 6% (v/v) methanol at pH 8.7 as the carrier solution. Two problems were addressed during TiO2NPs analysis by AsFlFFF-ICP-MS: size distribution determination and element quantification of the NPs. Two approaches were used for size determination: size calibration using polystyrene latex standards of known sizes and transmission electron microscopy (TEM). A method based on focused sonication for preparing NPs dispersions followed by an on-line external calibration strategy based on AsFlFFF-ICP-MS, using rutile TiO2NPs as standards is presented here for the first time. The developed method suppressed non-specific interactions between NPs and membrane, and overcame possible erroneous results obtained when quantification is performed by using ionic Ti solutions. The applicability of the quantification method was tested on cosmetic products (moisturizing cream). Regarding validation, at the 95% confidence level, no significant differences were detected between titanium concentrations in the moisturizing cream prior sample mineralization (3865±139 mg Ti/kg sample), by FIA-ICP-MS analysis prior NPs extraction (3770±24 mg Ti/kg sample), and after using the optimized on-line calibration approach (3699±145 mg Ti/kg sample). Besides the high Ti content found in the studied food products (sugar glass and coffee cream), TiO2NPs were not detected. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    PubMed

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Characteristics of buoyancy force on stagnation point flow with magneto-nanoparticles and zero mass flux condition

    NASA Astrophysics Data System (ADS)

    Uddin, Iftikhar; Khan, Muhammad Altaf; Ullah, Saif; Islam, Saeed; Israr, Muhammad; Hussain, Fawad

    2018-03-01

    This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution.

  5. Mass spectrometry detection and imaging of inorganic and organic explosive device signatures using desorption electro-flow focusing ionization.

    PubMed

    Forbes, Thomas P; Sisco, Edward

    2014-08-05

    We demonstrate the coupling of desorption electro-flow focusing ionization (DEFFI) with in-source collision induced dissociation (CID) for the mass spectrometric (MS) detection and imaging of explosive device components, including both inorganic and organic explosives and energetic materials. We utilize in-source CID to enhance ion collisions with atmospheric gas, thereby reducing adducts and minimizing organic contaminants. Optimization of the MS signal response as a function of in-source CID potential demonstrated contrasting trends for the detection of inorganic and organic explosive device components. DEFFI-MS and in-source CID enabled isotopic and molecular speciation of inorganic components, providing further physicochemical information. The developed system facilitated the direct detection and chemical mapping of trace analytes collected with Nomex swabs and spatially resolved distributions within artificial fingerprints from forensic lift tape. The results presented here provide the forensic and security sectors a powerful tool for the detection, chemical imaging, and inorganic speciation of explosives device signatures.

  6. Effects of magnetic, radiation and chemical reaction on unsteady heat and mass transfer flow of an oscillating cylinder

    NASA Astrophysics Data System (ADS)

    Ahmed, Rubel; Rana, B. M. Jewel; Ahmmed, S. F.

    2017-06-01

    The effects of magnetic, radiation and chemical reaction parameters on the unsteady heat and mass transfer boundary layer flow past an oscillating cylinder is considered. The dimensionless momentum, energy and concentration equations are solved numerically by using explicit finite difference method with the help of a computer programming language Compaq visual FORTRAN 6.6a. The obtained results of this study have been discussed for different values of well-known parameters with different time steps. The effect of these parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number, streamlines and isotherms has been studied and results are presented by graphically represented by the tabular form quantitatively. The stability and convergence analysis of the solution parameters that have been used in the mathematical model have been tested.

  7. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  8. Sheathless interface to match flow rate of capillary electrophoresis with electrospray mass spectrometry using regular-sized capillary.

    PubMed

    Yin, Yue; Li, Gongyu; Guan, Yafeng; Huang, Guangming

    2016-08-01

    The flow rate match has been a great challenge when coupling capillary electrophoresis (CE) with electrospray ionization mass spectrometry (ESI-MS). Conventional CE-ESI-MS interfaces used liquid sheath flow, narrowed capillary or additional pressure to meet this requirement; sacrifice of either capillary inner diameter (i.d.) or separation efficiency is often inevitable. Thus, a regular-sized capillary-based sheathless interface would be attractive for flow rate match in CE-MS. The regular-sized capillary-based CE-MS interface was achieved by coupling CE with induced electrospray ionization (iESI) which was stimulated by the fact that the iESI could both achieve flow rate down to 0.2 μL/min and retain ionization efficiency. The CE-iESI-MS interface was completed with an intact separation capillary, outside the outlet end of which a metal electrode was attached for the application of alternating current (ac) high voltage (HV). The feasibility of this CE-iESI-MS interface was demonstrated through the stable total ion chromatograms obtained by continuous CE infusion of tripropylamine with regular-sized capillaries. Tripropylamine and atenolol were separated and detected successfully in phosphate buffer solution (PBS) by CE-iESI-MS using a 50 or 75 μm i.d. capillary. Furthermore, this new interface showed a better signal-to-noise (S/N) of 3 to 7 times enhancement compared with another sheathless CE-ESI-MS interface that using one high voltage for both separation and electrospray when analyzing the mixture of tripropylamine and proline in NH4 OAc buffer. In addition, the reproducibility of this interface gave satisfactory results with relative standard deviation (RSD) in retention time in the range between 1% and 3%. The novel sheathless CE-MS interface introduced here could match conventional electroosmotic flow (EOF) with electrospray which could also preserve the separation efficiency and sensitivity of CE-MS. This newly developed CE-iESI-MS interface was also

  9. The mass flow and proposed management of bisphenol A in selected Norwegian waste streams.

    PubMed

    Arp, Hans Peter H; Morin, Nicolas A O; Hale, Sarah E; Okkenhaug, Gudny; Breivik, Knut; Sparrevik, Magnus

    2017-02-01

    Current initiatives for waste-handling in a circular economy favor prevention and recycling over incineration or landfilling. However, the impact of such a transition on environmental emissions of contaminants like bisphenol A (BPA) during waste-handling is not fully understood. To address this, a material flow analysis (MFA) was constructed for selected waste categories in Norway, for which the amount recycled is expected to increase in the future; glass, vehicle, electronic, plastic and combustible waste. Combined, 92tons/y of BPA are disposed of via these waste categories in Norway, with 98.5% associated with plastic and electronic waste. During the model year 2011, the MFA showed that BPA in these waste categories was destroyed through incineration (60%), exported for recycling into new products (35%), stored in landfills (4%) or released into the environment (1%). Landfilling led to the greatest environmental emissions (up to 13% of landfilled BPA), and incinerating the smallest (0.001% of incinerated BPA). From modelling different waste management scenarios, the most effective way to reduce BPA emissions are to incinerate BPA-containing waste and avoid landfilling it. A comparison of environmental and human BPA concentrations with CoZMoMAN exposure model estimations suggested that waste emissions are an insignificant regional source. Nevertheless, from monitoring studies, landfill emissions can be a substantial local source of BPA. Regarding the transition to a circular economy, it is clear that disposing of less BPA-containing waste and less landfilling would lead to lower environmental emissions, but several uncertainties remain regarding emissions of BPA during recycling, particularly for paper and plastics. Future research should focus on the fate of BPA, as well as BPA alternatives, in emerging reuse and recycling processes, as part of the transition to a circular economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Microhardness evaluation of silorane and methacrylate composites submitted to erosion and abrasion processes

    PubMed Central

    Gazola, Eloá Aguiar; Rego, Marcos Augusto; Brandt, William Cunha; D’Arce, Maria Beatriz Freitas; Liporoni, Priscila Christiane Suzy

    2015-01-01

    Abstract Objective: The aim of this study was to evaluate the Knoop hardness number (KHN) of methacrylate (MC) and silorane (SC) composites after being submitted to erosion and abrasion processes. Material and methods: Forty samples were made with each composite: MC and SC. The samples were divided into eight groups (n = 10) according to the type of composite (G1–G4, MC; G5–G8, SC) and the beverages involved in the erosion process (G1 and G5 – Control (C), without erosion, with abrasion; G2 and G6 – Orange Juice (OJ), abrasion; G3 and G7 – Smirnoff Ice® (SI), abrasion; G4 and G8 – Gatorade® (GA), abrasion). The KHN test was performed 24 h after the last cycle of erosion/abrasion. Results: The MC groups showed smaller KHN values for the SI group (p < 0.05) when compared to the Control and OJ groups; however, for the SC groups, no differences were found (p > 0.05). Conclusion: Methacrylate composite when submitted to acidic beverages erosive challenge combined with abrasive process might alter its surface microhardness. However, the beverages used in the present study were not able to interfere in silorane composite surface microhardness. PMID:28642903

  11. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique

    PubMed Central

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-01-01

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system’s lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system’s ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection. PMID:29543733

  12. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  13. Study of Abrasive Wear Volume Map for PTFE and PTFE Composites

    NASA Astrophysics Data System (ADS)

    Unal, H.; Sen, U.; Mimaroglu, A.

    2007-11-01

    The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.

  14. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique.

    PubMed

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-03-15

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.

  15. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    SciTech Connect

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  16. General Solutions for Hydromagnetic Free Convection Flow over an Infinite Plate with Newtonian Heating, Mass Diffusion and Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Fetecau, Constatin; Shah, Nehad Ali; Vieru, Dumitru

    2017-12-01

    The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined. Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration, three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution (the steady-state), for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.

  17. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    PubMed

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reduction of matrix effects in inductively coupled plasma mass spectrometry by flow injection with an unshielded torch.

    PubMed

    Gross, Cory T; McIntyre, Sally M; Houk, R S

    2009-06-15

    Solution samples with matrix concentrations above approximately 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (FI) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (approximately 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only approximately 14% loss of analyte signal. However, barium causes a much worse matrix effect, that is, approximately 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used.

  19. A comparative study on heat and mass transfer of the Blasius and Falkner-Skan flow of a bio-convective Casson fluid past a wedge

    NASA Astrophysics Data System (ADS)

    Raju, C. S. K.; Sandeep, N.

    2016-11-01

    Nowadays, many theoretical models are available for analyzing the heat and mass transfer of flows through different geometries. Nevertheless, it is challenging for researchers to choose among these models, the most suitable for a particular geometry. In addition to this, the extrinsic magnetic field is capable to set the thermal and physical properties of magnetic fluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of the fluids and makes it anisotropic. With this incentive, we attempt to study the thermophoresis and Brownian motion effects on the magnetohydrodynamic radiative Casson fluid flow over a wedge filled with gyrotactic microorganisms by considering the Blasius and Falkner-Skan models. Numerical solutions are offered graphically as well as in tabular form with the aid of Runge-Kutta and Newton's methods. Results for Blasius and Falkner-Skan flow cases are exhibited through plots for the parameters of concern. For real life applications, we also calculated the heat and mass transfer rates. It is observed that thermal and concentration boundary layers are not uniform for Falkner-Skan and Blasius flow cases. It is also observed that the heat and mass transfer rate is high in Falkner-Skan flow when compared with Blasius flow.