Science.gov

Sample records for abrasive mass flow

  1. Nanometric Finishing on Biomedical Implants by Abrasive Flow Finishing

    NASA Astrophysics Data System (ADS)

    Subramanian, Kavithaa Thirumalai; Balashanmugam, Natchimuthu; Shashi Kumar, Panaghra Veeraiah

    2016-01-01

    Abrasive flow finishing (AFF) is a non-conventional finishing technique that offers better accuracy, efficiency, consistency, economy in finishing of complex/difficult to machine materials/components and provides the possibility of effective automation as aspired by the manufacturing sector. The present study describes the finishing of a hip joint made of ASTM grade Co-Cr alloy by Abrasive Flow Machining (AFM) process. The major input parameters of the AFF process were optimized for achieving nanometric finishing of the component. The roughness average (Ra) values were recorded during experimentation using surface roughness tester and the results are discussed in detail. The surface finished hip joints were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and residual stress analysis using X-Ray Diffraction (XRD). The discussion lays emphasis on the significance, efficacy and versatile nature of the AFF process in finishing of bio-medical implants.

  2. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  3. Convergent evolution of abrading flow obstacles: Insights from analogue modelling of fluvial bedrock abrasion by coarse bedload

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Lavé, Jérôme

    2014-03-01

    Upstream-facing convex surfaces (UFCS) are formed by bedload abrasion in bedrock rivers and indicate the recent, significant action of bedload abrasion in causing channel incision. Beyond this, little is known of the dynamics of UFCS and the effect of substrate and bedload properties on rates and distribution of bedload abrasion for these bed roughness elements. Grain size populations from 1 to 8 cm (b-axis, in 1- or 2-cm bin widths) were used to bombard preshaped marble and limestone targets bolted to the base of an annular flume. The control of initial shape and lithology of the target and the erodent grain size and lithology were investigated by monitoring the evolution of the target form using laser scanning at predefined time intervals. Eleven experiment suites were carried out containing three initial target shapes constructed from two lithologies, four bedload (erodent) grain sizes of either granodiorites or limestone, or clear water flow. All 10 targets abraded by bedload evolved from their initial form into a steady state (time invariant) form, producing UFCSs. Steady state forms were closely similar for all targets despite different initial conditions. Bedload grain size has a strong control on this equilibrium form, related to the transit path of the grains when moving over the target, whilst initial target form has only a weak control. Steady state morphology is achieved more rapidly with harder erodent bedload particles and/or softer targets. Upstream-facing convex surface stoss sides were characterised by a brighter, sugary, granular appearance on the rock-forming grain scale. Increasing erodent grain size, for a fixed bedload mass, increased the bulk abrasion rate at fixed flow speed and discharge. No detectable erosion occurred for a limestone block in clear water flows under the same flow conditions, indicating solution and cavitation were insignificant mechanisms of erosion in this study. During the experiment suites, suspended load abrasion was

  4. Impact of Abrasion on Mass Loss and Surface Appearance of Woven Fabrics Made with Injected Slub Yarn in Weft

    NASA Astrophysics Data System (ADS)

    Ray, Nemai Chandra; Mukhopadhyay, Arunangshu; Midha, Vinay Kumar

    2016-08-01

    Fancy yarn fabrics are susceptible to abrasive damage during washing and usage but the extent of damage varies with construction and type of fabric. In the present study, effect of different slub parameters viz. slub length, slub thickness and slub frequency of single base injected slub yarn on abrasive damage of woven fabrics has been studied when injected slub yarns are used in weft only. Abrasive damage has been assessed by two ways using loss in fabric mass and deterioration in fabric appearance due to abrasion. These two techniques provide entirely different effect of injected slub yarn parameters on abrasive damage of woven fabric. Fabric abrasion damage in terms of mass loss is not affected by slub thickness and damage is least when both slub length and slub frequency are at central/medium level. Under visual assessment it is observed that all the slub parameters have significant influence on abrasive damage of woven fabric. It is possible to have lower damage in surface appearance in spite of higher mass loss of fabric due to abrasion.

  5. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  6. Simulation of abrasive flow machining process for 2D and 3D mixture models

    NASA Astrophysics Data System (ADS)

    Dash, Rupalika; Maity, Kalipada

    2015-12-01

    Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a

  7. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  8. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  9. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Pawlus, P.; Żelasko, W.

    2011-08-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  10. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  11. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; Fang, Qin; He, Li-Lin

    2014-12-01

    The initial oblique and attacking angles as well as the asymmetrical nose abrasion may lead to bending or even fracture of a projectile, and the penetration efficiency decreases distinctly. The structural stability of a high-speed projectile non-normally penetrating into concrete and the parametric influences involved are analyzed with the mass abrasion taken into account. By considering the symmetrical or asymmetrical nose abrasion as well as the initial oblique and attacking angles, both the axial and the transverse drag forces acting on the projectile are derived. Based on the ideal elastic-plastic yield criterion, an approach is proposed for predicting the limit striking velocity (LSV) that is the highest velocity at which no yielding failure has occurred and the projectile can still maintain its integral structural stability. Furthermore, some particular penetration scenarios are separately discussed in detail. Based on the engineering model for the mass loss and nose-blunting of ogive-nose projectiles established in Part I of this study, the above approach is validated by several high-speed penetration tests. The analysis on parametric influences indicates that the LSV is reduced with an increase in the asymmetrical nose abrasion, the length-diameter-ratio, and the concrete strength, as well as the oblique and attacking angles. Also, the LSV raises with an increase in the initial caliber-radius-head (CRH) and the dimensionless cartridge thickness of a projectile.

  12. Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage

    NASA Astrophysics Data System (ADS)

    Beaud, Flavien; Flowers, Gwenn E.; Pimentel, Sam

    2014-08-01

    Field data and numerical modeling show that glaciations have the potential either to enhance relief or to dampen topography. We aim to model the effect of the subglacial hydraulic system on spatiotemporal patterns of glacial erosion by abrasion and quarrying on time scales commensurate with drainage system fluctuations (e.g., seasonal to annual). We use a numerical model that incorporates a dual-morphology subglacial drainage system coupled to a higher-order ice-flow model and process-specific erosion laws. The subglacial drainage system allows for a dynamic transition between two morphologies: the distributed system, characterized by an increase in basal water pressure with discharge, and the channelized system, which exhibits a decrease in equilibrium water pressure with increasing discharge. We apply the model to a simple synthetic glacier geometry, drive it with prescribed meltwater input variations, and compute sliding and erosion rates over a seasonal cycle. When both distributed and channelized systems are included, abrasion and sliding maxima migrate ~ 20% up-glacier compared to simulations with distributed drainage only. Power-law sliding generally yields to a broader response of abrasion to water pressure changes along the flowline compared to Coulomb-friction sliding. Multi-day variations in meltwater input elicit a stronger abrasion response than either diurnal- or seasonal variations alone for the same total input volume. An increase in water input volume leads to increased abrasion. We find that ice thickness commensurate with ice sheet outlet glaciers can hinder the up-glacier migration of abrasion. Quarrying patterns computed with a recently published law differ markedly from calculated abrasion patterns, with effective pressure being a stronger determinant than sliding speeds of quarrying rates. These variations in calculated patterns of instantaneous erosion as a function of hydrology-, sliding-, and erosion-model formulation, as well as model

  13. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  14. Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet

    NASA Astrophysics Data System (ADS)

    Balz, R.; Mokso, R.; Narayanan, C.; Weiss, D. A.; Heiniger, K. C.

    2013-03-01

    Ultra-fast X-ray velocimetry measurements were taken to measure velocities and spatial positions of individual abrasive particles within the solid-liquid-gaseous three-phase flow of a high-pressure injection method-based abrasive water jet (AWJ). A synchrotron X-ray source provided sufficient photon flux to take double-frame images of the AWJ with an inter-frame time interval of 5 μs. Abrasive particles with a Sauter mean diameter of 265.5 μm were detected by a scintillator optically coupled to a gated image intensifier and a high-speed camera running at a frame rate of 11,250 Hz. A commercially available particle tracking velocimetry software was used to process the acquired images and evaluate the spatial positions and velocities of abrasive particles as a function of water pressure and abrasive mass flow. The acquired data show a Gaussian radial distribution of abrasive particles within the AWJ and an almost uniform mean axial velocity, irrespective of water jet velocity and abrasive flow rates. These results are useful to validate theoretical models for the momentum/energy transfer in AWJ, to provide input for abrasion/erosion models, to further understand and advance the AWJ process, and to develop new process opportunities such as AWJ milling.

  15. Development report, mass flow controller PN 5716068

    NASA Technical Reports Server (NTRS)

    Taylor, W.

    1972-01-01

    The design, development, and manufacture of an all mechanical mass flow controller are discussed. A test program was conducted using inert gas as the test medium. The unit controlled the pressure within plus of minus one percent. An analytical method is presented for relating the control pressure error with error in mass flow.

  16. Mass and energy flow in prominences

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I.

    1990-01-01

    Mass and energy flow in quiescent prominences is considered based on the hypothesis that active region prominences have a different structure and thus different mass and energy flow characteristics. Several important physical parameters have been plotted using the computational model, representing the evolutionary process after the prominence formation. The temperature, velocity, conductive flux, and enthalpy flux are plotted against distance from the highest point in the loop to the coolest part of the prominence. It is shown that the maximum velocity is only about 5 km/s. The model calculations indicate that the transition region of prominences is dominated by complex processes. It is necessary to take into account mass flow at temperatures below 200,000 K, and both mass flow and optical depth effects in hydrogen at temperatures below 30,000 K. Both of these effects lead to a less steep temperature gradient through the prominence corona interface than can be obtained from the conduction alone.

  17. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  18. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  19. Mass flow rate of granular material flowing from tilted bins

    NASA Astrophysics Data System (ADS)

    Klapp, Jaime; Medina, Abraham; Torres Victoria, Ayax Hernando; Peralta Lopez, Salomon

    2015-11-01

    We report experiments performed to describe the behavior of the experimental mass flow rate of cohesionless granular material, Mβexpt', through circular orifices of diameter D made on sidewalls of tilted bins. In such experiments, the influence of the wall thickness of the bin, w, and the tilt angle respect to the vertical, β, were also regarded. The experimental measurements, using beach sand and granulated sugar, yield a linear correlation among Mβexpt' and a theoretical piecewise correlation of the mass flow rate, Mβ',which is valid for the overall range of values of β. Numerical simulation will be also a discussed.

  20. Abrasion resistance of linings in filament wound composite pipe

    SciTech Connect

    Hall, S.C.

    1999-07-01

    Fiberglass filament wound composite pipe has numerous industrial applications including transportation of petroleum and natural gas. Its corrosion resistance is well known but it can be susceptible to abrasion and erosion when it is used to transport slurries or dry gas containing sand particles. However, composite pipe can be manufactured integrally with abrasion resistant linings which protect the pipe from abrasion and erosion and increase its life. Laboratory investigations were performed to determine the effect of abrasive flows through polyurea-lined and unlined glass-reinforced epoxy (GRE) pipe, ultra-high molecular weight (UHMW) polyethylene (PE) pipe, and unlined steel pipe. Results are provided for the abrasion resistance, chemical resistance, adhesion strength, elongation, tensile strength, impact resistance and hardness of selected linings. The abrasion resistance of polyurea-lined composite pipe proved to be almost as resistant to abrasion and erosion as unlined steel pipe without the electrochemical corrosion associated with steel pipe.

  1. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  2. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  3. Solids mass flow indication with radiation

    DOEpatents

    Macko, Joseph E.; Estriplet, Isnard

    1985-06-04

    Method and apparatus for indicating mass flow of a solid particulate material through a rotary feeder. A radiation source and detector are positioned in a manner whereby radiation flux is directed through, and attenuated by, particulate material contained in rotating pockets. A Cesium-137 gamma source can be mounted within the shaft of the feeder, and one or more detectors can be mounted outside of the feeder housing. The detected signal is indicative of the mass of particulate material contained within a given pocket rotating within the feeder.

  4. Abrasives in snuff?

    PubMed

    Dahl, B L; Stølen, S O; Oilo, G

    1989-08-01

    The purpose of this study was to determine and calculate the inorganic contents of four brands of snuff. Visual inspection of wet snuff showed fairly large, yellow crystal-like particles. Scanning electron microscopy and X-ray dispersive (EDX) analyses were used to study both wet snuff and ashes of snuff, whereas light emission spectrography was used to determine elements in the ashes. The crystal-like particles did not dissolve in distilled water or in ethanol heated to 60 degrees C. EDX analyses showed that most elements remained in the particles after washing. The total weight percentage of inorganic material in snuff was calculated after burning dried snuff until constant weight was obtained. The ashes of snuff did not contain any crystal-like particles but consisted of a small-grained amorphous mass. The following elements were detected: Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, Pb, Si, Sr, Ti, Va, and Zr. Other elements such as rare earths were not searched for. The weight percentage of inorganic elements ranged between 12.35 +/- 0.69 and 20.95 +/- 0.81. Provided snuff is used in the same manner as chewing tobacco, and some people admit to doing so, there is a risk that its relatively high contents of inorganic material and heavily soluble salts may be conducive to excessive abrasion of teeth and restorations. PMID:2782061

  5. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  6. Gaseous Nitrogen Orifice Mass Flow Calculator

    NASA Technical Reports Server (NTRS)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  7. Small Scale Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.

  8. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  9. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  10. Tsunamis generated by subaerial mass flows

    USGS Publications Warehouse

    Walder, S.J.; Watts, P.; Sorensen, O.E.; Janssen, K.

    2003-01-01

    Tsunamis generated in lakes and reservoirs by subaerial mass flows pose distinctive problems for hazards assessment because the domain of interest is commonly the "near field," beyond the zone of complex splashing but close enough to the source that wave propagation effects are not predominant. Scaling analysis of the equations governing water wave propagation shows that near-field wave amplitude and wavelength should depend on certain measures of mass flow dynamics and volume. The scaling analysis motivates a successful collapse (in dimensionless space) of data from two distinct sets of experiments with solid block "wave makers." To first order, wave amplitude/water depth is a simple function of the ratio of dimensionless wave maker travel time to dimensionless wave maker volume per unit width. Wave amplitude data from previous laboratory investigations with both rigid and deformable wave makers follow the same trend in dimensionless parameter space as our own data. The characteristic wavelength/water depth for all our experiments is simply proportional to dimensionless wave maker travel time, which is itself given approximately by a simple function of wave maker length/water depth. Wave maker shape and rigidity do not otherwise influence wave features. Application of the amplitude scaling relation to several historical events yields "predicted" near-field wave amplitudes in reasonable agreement with measurements and observations. Together, the scaling relations for near-field amplitude, wavelength, and submerged travel time provide key inputs necessary for computational wave propagation and hazards assessment.

  11. Universal scaling relations for pebble abrasion

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2012-12-01

    The process of abrasion of gravel in bed load transport results from particle-to-particle collisions, where the energy involved is sufficient to cause chipping and spallation but not fragmentation of parent grains. The removed rock material is not infinitesimal; daughter products as large as coarse sand can be produced. Although previous work has shown that lithology, grain shape, and energy of collision are contributing factors that control abrasion rates of river-bed material, little is known regarding the relationship between these factors and diminution rates. Here we explicitly isolate and investigate how these three factors influence rates of abrasion and the size distribution of daughter products, with laboratory experiments. The apparatus is a double pendulum (Newton's cradle) that produces well-controlled binary collisions. A high-speed camera precisely measures collision energy, while mass of parent rocks. and the size and shape distributions of daughter products, are measured periodically. We examined abrasion of initially square-cut 'rocks' as they underwent successive collisions in the binary collision apparatus. We have examined mass loss rate for varied lithologies, and observe a similar power-law relationship between impact energy and mass abraded. When normalized by sensible material properties, mass loss curves for all materials collapse onto a single curve, suggesting that the underlying mechanics of abrasion for different materials are the same. The relationship does not display the linear trend expected from pure energetics, and we suggest that this is a shape effect as protruding - and hence easily eroded - corners are worn away. Analysis of daughter-product particle size distributions for different lithology fragments - including natural rocks and also bricks - show the same functional form. Surprisingly, it is the power-law relation expected for brittle materials undergoing fragmentation. This suggests that brittle fracture theory also

  12. Mechanics, kinematics and geometry of pebble abrasion from binary collisions

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Jerolmack, D. J.

    2014-12-01

    As sediment is transported downstream as bedload, it collides with the bed causing sharp edges to chip and wear away, rounding the rock through the process of abrasion. Previous work has linked abrasion to downstream fining and rounding of grains, however, there has been little attempt to understand the underlying kinematics of abrasion. Furthermore, most studies neglect the fine particle produced during the abrasion process, as the initial grain gets smaller and rounder. In this research, we preform well-controlled laboratory experiments to determine the functional dependence between impact energy and mass lost from abrasion. We use a double-pendulum "Newton's Cradle" set-up to examine the abrasion between two grains and with a high-speed camera, we can quantify the impact energies during collision. Results from experiments verify that mass loss is proportional to kinetic energy. We define a material parameter that incorporates material density, Young's modulus, and tensile stress and show that this parameter is directly related to the proportionality between mass loss and energy. We identify an initial region of the mass loss curves in which abrasion is independent of energy and material properties; results suggest this region is determined by shape. We show that grain size distributions of daughter products are universal and independent of material; they follow a Weibull distribution, which is expected distribution from brittle fracture theory. Finally, scanning electron microscope (SEM) images show a thin damage zone near the surface, suggesting that collision energy is attenuated over some small skin depth. Overall, we find that pebble abrasion by collision can be characterized by two universal scaling relations - the mass loss versus energy curves and the size distribution of daughter products. Results will be useful for estimating expected abrasion rates in the field, and additionally demonstrate that low-energy collisions produce large quantities of sand

  13. Wind abrasion on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1991-01-01

    Aeolian activity was predicted for Mars from earth based observations of changing surface patterns that were interpreted as dust storms. Mariner 9 images showed conclusive evidence for aeolian processes in the form of active dust storms and various aeolian landforms including dunes and yardangs. Windspeeds to initiate particle movement are an order of magnitude higher on Mars than on Earth because of the low atmospheric density on Mars. In order to determine rates of abrasion by wind blown particles, knowledge of three factors is required: (1) particle parameters such as numbers and velocities of windblown grains as functions of windspeeds at various heights above the surface; (2) the susceptibility to abrasion of various rocks and minerals; and (3) wind frequencies and speeds. For estimates appropriate to Mars, data for the first two parameters can be determined through lab and wind tunnel tests; data for the last two factors are available directly from the Viking Lander meteorology experiments for the two landing sites.

  14. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  15. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  16. Zircon U-Pb Age Distributions in Cogenetic Crystal-Rich Dacitic and Crystal-Poor Rhyolitic Members of Zoned Ignimbrites in the Southern Rocky Mountains by Chemical Abrasion Inductively-Coupled-Plasma Mass Spectrometry (CA-LA-ICP-MS).

    NASA Astrophysics Data System (ADS)

    Sliwinski, J.; Zimmerer, M. J.; Guillong, M.; Bachmann, O.; Lipman, P. W.

    2015-12-01

    The San Juan locus of the Southern Rocky Mountain Volcanic Field (SRMVF) in SW Colorado represents an erosional remnant of a mid-Tertiary (~37-23 Ma) ignimbrite flare up that produced some of the most voluminous ignimbrites on Earth. A key feature of many SRMVF ignimbrites is compositional zonation, with many volcanic units comprising both dacitic and rhyolitic horizons. Geochemical, field and petrographic evidence suggests that dacites and rhyolites are cogenetic. Here, we report U-Pb zircon ages by chemical abrasion inductively-coupled-plasma mass spectrometry (CA-LA-ICPMS) for rhyolitic and dacitic components in four units: the Bonanza, Rat Creek, Carpenter Ridge and Nelson Mountain Tuffs. All units show zircon age spectra that are either within analytical uncertainty of Ar/Ar ages or are appreciably older, indicating prolonged magma residence times (~500 ka) prior to eruption. Anomalously young Pb-loss zones in zircon have been largely removed by chemical abrasion. Older, inherited zircons and zircon cores (60-2000 Ma) are rare in all samples, suggesting limited assimilation of upper crustal Precambrian country rock or complete resorption during recharge events and magma chamber growth.

  17. The effects of abrasives on electrical submersible pumps

    SciTech Connect

    Wilson, B.L. )

    1990-06-01

    The electrical submersible pump (ESP) is a high-speed rotating device. Its operational life in oil wells can depend on the type and quantities of abrasives present in the produced fluid. This paper reports on a set of experiments performed in a specialized abrasive test loop. In the test, the size and quantity of abrasives were varied along with flow rate through the pump. This paper also examines recent literature on sand production and explores some of the practical problems in sand measurement.

  18. Evaluation of a mass flow sensor at a gin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a system to optimize the cotton ginning process, a custom-built mass flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass flow sensor was fabricated based on the principle of the sensor patented by Thomasson and Sui. The optical and ele...

  19. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  20. Abrasion resistant composition

    SciTech Connect

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  1. Operational experiences proving mass flow meters with small volume provers

    SciTech Connect

    Whitman, S.K.

    1996-09-01

    Small Volume Provers were introduced several decades ago, and numerous papers have been presented covering the technical and empirical operation of these provers. During this time, mass flow meters based upon the coriolis effect have evolved. The measurement accuracy of these meters has continually improved to the degree that the Hydrocarbon Industry is closely evaluating them for custody transfer measurement. Flow meters used in custody transfer measurement normally require some means of verification, which is generally referred to as meter proving. Meter proving methods for traditional volumetric meters are well established, while those for mass flow meters are still evolving. Coriolis mass flow meters are fundamentally different from traditional custody transfer meters. Therefore, a basic understanding of the principles of operation is necessary to properly prove mass flow meters. This paper will focus on the basic knowledge needed to prove mass meters, with actual case histories to demonstrate operational experiences with small volume provers.

  2. New views of granular mass flows

    USGS Publications Warehouse

    Iverson, R.M.; Vallance, J.W.

    2001-01-01

    Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.

  3. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  4. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  5. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  6. Real time mass flow computer for Arc Jet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vidal, J.

    1978-01-01

    Experiments at the Arc Jet Tunnel at Ames Research Center have typical run times of 5-10 sec during which the test model is subjected to an environment simulating reentry into Jupiter. Previous real-time determination of mass flow required off-line manual computations from taped or strip chart data. The present paper describes a computer which provides personnel with real-time computations of mass flow. Using an 8-bit microprocessor and standard TTL interface circuitry, the unit interrogates temperature and pressure instruments with other parameters to compute mass flow.

  7. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  8. Development of miniaturized mass flow meter for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yamane, Takashi

    2007-05-01

    To grasp the conditions of patients and implantable artificial hearts, it is essential to monitor the blood flow rate continuously and noninvasively. However, it is difficult to monitor the pump flow rate in an implantable artificial heart, because the conventional flow meter is too large to implant into the human body, and the flow estimation method is influenced by changes in the blood characteristics and the pump performance. In particular, the power consumption has neither linearity nor uniqueness with respect to the pump flow rate in an axial flow blood pump. In this research, we develop a prototype miniaturized mass flow meter that uses centrifugal force F(c) for discharged patients with an axial flow blood pump. This flow meter measures the F(c) corresponding to the mass flow rate, and implements compensation for static pressure. Because the strain gauges are attached outside of the curved tube, this mass flow meter has no blood contact point, resulting in a compact design. To evaluate the measurement accuracy and the tracking performance, the mass flow meter was compared with the conventional ultrasonic flow meter in a mock-up circulation study. As a result, the measurement error ranging from 0.5 to 5.0 L/min was less than +/-10% with respect to the maximum flow rate. The tracking performance of pulsation flow was approximately equivalent to that of the conventional flow meter. These experiments demonstrated that the prototype miniaturized mass flow meter using F(c) could accurately measure the mass flow rate continuously and noninvasively. PMID:17470214

  9. Oscillatory flow through submerged canopies: 2. Canopy mass transfer

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Koseff, Jeffrey R.; Monismith, Stephen G.; Falter, James L.

    2005-10-01

    Mass transfer rates from submerged canopies constructed from arrays of vertical cylinders were investigated for a range of different cylinder spacings under both unidirectional and oscillatory flow. Individual canopy elements made from gypsum were dissolved in fresh water to simulate the mass transfer of dissolved metabolites to and from canopies of living benthic organisms. Mass transfer rates under oscillatory flow were up to three times higher than values measured for a comparable unidirectional current. This enhancement was shown to be a strong function of the canopy element spacing. A model was developed to predict canopy mass transfer rates on the basis of the in-canopy flow speed and was generalized to incorporate either unidirectional or oscillatory flow. Agreement between the modeled and experimentally measured mass transfer rates indicate that enhanced mass transfer to/from living benthic canopies under oscillatory flow is driven primarily by the higher in-canopy water motion generated by the oscillatory flow, as detailed in the companion paper (Lowe et al., 2005).

  10. New technology directly measures mass flow of gas

    SciTech Connect

    Hahn, D.T.

    1995-12-31

    According to recent industry surveys and solicitations by organizations such as the Gas Research Institute and Small Business Innovation Research, a need exists for a gas flowmeter with {plus_minus}0.5% or better accuracy, that does not need to be calibrated for specific gas properties, and requires no periodic maintenance. Over the past 18 years, Coriolis mass flowmeters have provided these features for liquid flow applications, and have won a significant share of the liquid flow measurement market. Coriolis meters continue to be the fastest growing technology in the world market for flow measurement. Coriolis mass flowmeters have not, however, had much success in penetrating the gas flow measurement market due to some limitations involved with measuring the low density fluids associated with low pressure gas flow measurement. A new type of Coriolis mass flowmeter has been developed which utilizes a unique new method of creating and measuring the requisite Coriolis forces. This new technology; radial mode Coriolis mass flow measurement, has several inherent features that make it perfectly suited to measuring the mass flow of gas.

  11. Specific Impulse and Mass Flow Rate Error

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2005-01-01

    Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.

  12. Fiber optic liquid mass flow sensor and method

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  13. Abrasion-resistant antireflective coating for polycarbonate

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1978-01-01

    Following plasma-polymerization technique, treatment in oxygen glow discharge further enhances abrasion resistance and transmission. Improvement in abrasion resistance was shown by measuring percentage of haze resulting from abrasion. Coating samples were analyzed for abrasion using standard fresh rubber eraser. Other tests included spectra measurements and elemental analysis with spectrometers and spectrophotometers.

  14. Laboratory and field trials of Coriolis mass flow metering for three-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Feibiao; Henry, Manus; Tombs, Michael

    2014-04-01

    A new three-phase flow metering technology is discussed in this paper, which combines Coriolis mass flow and water cut readings and without applying any phase separation [1]. The system has undergone formal laboratory trials at TUV NEL (National Engineering Laboratory), UK and at VNIIR (National Flow Laboratory), Kazan, Russia; a number of field trials have taken place in Russia. Laboratory trial results from the TUV NEL will be described in detail. For the 50mm (2") metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil + water) liquid mass flow error should fall within ± 2.5%, and the gas mass flow error within ± 5.0%. The oil mass flow error limit is ± 6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ± 15.0%. These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.

  15. Transparent, abrasion resistant coating compositions

    SciTech Connect

    Ashlock, L.T.; Mukamal, H.; White, W.H.

    1985-02-19

    There is disclosed transparent, abrasion resistant coating compositions comprising a colloidal dispersion of a water insoluble dispersant in a water-alcohol solution of the partial condensate of silanol wherein the dispersant comprises metals, alloys and salts thereof.

  16. Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.

  17. The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.

    PubMed

    Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert

    2008-01-01

    Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood. PMID:18204314

  18. Flow monitor reliability design criteria for thermal mass flow measurement systems

    SciTech Connect

    Groce, P.J.

    1995-12-31

    Implementation of Title IV of the Clean Air Act greatly expanded the market of mass flow measurement in utility flue gas ducts and stacks. Lessons learned from recent experience in this demanding application resulted in the rapid evolution of equipment designed to ensure accuracy, reliability and ease of maintenance. Thermal mass flow measurement, one of three accepted methods of mass flow measurement, has proven to be an accurate and reliable means of achieving dependable flow data. Aside from system accuracy and repeatability, on-line time appears to be the critical performance factor for any mass flow measurement system. This paper addresses the major design features that have resulted in maximum on-line time and conformance with compliance plans.

  19. Mass Accretion Rate of Rotating Viscous Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu

    2009-11-01

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim α disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczyński-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate \\dot{m} ≡ \\dot{M}/\\dot{M}_B, where \\dot{M} is the mass accretion rate and \\dot{M}_B is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05 ≲ \\dot{m} ≤ 1 when α = 0.01. We also find that the dimensionless mass accretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, \\dot{m} ≃ 9.0 α λ^{-1} when 0.1 ≲ \\dot{m} ≲ 1, where the dimensionless angular momentum measure λ ≡ l out/lB is the specific angular momentum of gas at

  20. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approxmass accretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, m-dotapprox =9.0 alphalambda{sup -1} when 0.1 approx

  1. Conduit Coating Abrasion Testing

    NASA Technical Reports Server (NTRS)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  2. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  3. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates. PMID:26413663

  4. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.

  5. Compression-Driven Mass Flow in Bulk Solid 4He

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi Gang; Beamish, John

    2016-07-01

    Mass flow has been observed in solid 4He coexisting with superfluid confined in Vycor, but its physical mechanism remains an open question. Here we report observations of flow in experiments in which Vycor has been eliminated, allowing us to study the intrinsic flow in solid 4He without the complications introduced by the presence of superfluid and the associated solid-liquid interfaces. By growing crystals with 3He concentration as low as x3=5 ×10-12, we also avoided the low temperature flow suppression observed in previous experiments and found that the flow rate continued to increase down to at least 28 mK without saturation. In addition, 3He concentrations of 120 ppb, which suppressed most of the low temperature flow in previous experiments, had no effect in our samples. The larger 3He concentrations needed to block the bulk solid flow suggest that the mass flow involves a larger area, such as disordered liquid layer on solid surface and grain boundaries.

  6. Compression-Driven Mass Flow in Bulk Solid ^{4}He.

    PubMed

    Cheng, Zhi Gang; Beamish, John

    2016-07-01

    Mass flow has been observed in solid ^{4}He coexisting with superfluid confined in Vycor, but its physical mechanism remains an open question. Here we report observations of flow in experiments in which Vycor has been eliminated, allowing us to study the intrinsic flow in solid ^{4}He without the complications introduced by the presence of superfluid and the associated solid-liquid interfaces. By growing crystals with ^{3}He concentration as low as x_{3}=5×10^{-12}, we also avoided the low temperature flow suppression observed in previous experiments and found that the flow rate continued to increase down to at least 28 mK without saturation. In addition, ^{3}He concentrations of 120 ppb, which suppressed most of the low temperature flow in previous experiments, had no effect in our samples. The larger ^{3}He concentrations needed to block the bulk solid flow suggest that the mass flow involves a larger area, such as disordered liquid layer on solid surface and grain boundaries. PMID:27447513

  7. River flow mass exponents with fractal channel networks and rainfall

    USGS Publications Warehouse

    Troutman, B.M.; Over, T.M.

    2001-01-01

    An important problem in hydrologic science is understanding how river flow is influenced by rainfall properties and drainage basin characteristics. In this paper we consider one approach, the use of mass exponents, in examining the relation of river flow to rainfall and the channel network, which provides the primary conduit for transport of water to the outlet in a large basin. Mass exponents, which characterize the power-law behavior of moments as a function of scale, are ideally suited for defining scaling behavior of processes that exhibit a high degree of variability or intermittency. The main result in this paper is an expression relating the mass exponent of flow resulting from an instantaneous burst of rainfall to the mass exponents of spatial rainfall and that of the network width function. Spatial rainfall is modeled as a random multiplicative cascade and the channel network as a recursive replacement tree; these fractal models reproduce certain types of self-similar behavior seen in actual rainfall and networks. It is shown that under these modeling assumptions the scaling behavior of flow mirrors that of rainfall if rainfall is highly variable in space, and on the other hand flow mirrors the structure of the network if rainfall is not so highly variable. ?? 2001 Elsevier Science Ltd. All rights reserved.

  8. Mass Transfers for Pressure and Boundary Driven Periodic Flow

    NASA Astrophysics Data System (ADS)

    Thomas, Aaron M.; Narayanan, R.

    1997-11-01

    Enhancing the mass transfer of species from one reservoir to another can be achieved by imposing a periodic flow to the system. Periodic flow is obtained using two different mechanisms: an oscillating pressure drop or oscillating the boundary of the system to produce either a periodic Poiseuille or Couette flow, respectively. A simple calculation of an oscillating flat plate in a semi-infinite fluid reveals the process to be dependent on the viscous and mass transfer boundary layers. For gases, the mass transfer of the lighter species is greater than the heavier species, whereas for liquids, the mass transfer of the lighter species is less than the heavier species. In modeling a finite system of parallel plates with either an imposed periodic pressure drop from a piston or oscillating the plates at the same frequency, it is calculated that the mass transfer of the pressure driven system is higher than that for the boundary driven system for all scaled frequencies. However, more power is required to drive the pressure driven system than the boundary driven system, and we find that the mass transfer per power of the pressure driven and boundary driven system are equal to one another.

  9. Mass conservation: 1-D open channel flow equations

    USGS Publications Warehouse

    DeLong, Lewis L.

    1989-01-01

    Unsteady flow simulation in natural rivers is often complicated by meandering channels of compound section. Hydraulic properties and the length of the wetted channel may vary significantly as a meandering river inundates its adjacent floodplain. The one-dimensional, unsteady, open-channel flow equations can be extended to simulate floods in channels of compound section. It will be shown that equations derived from the addition of differential equations individually describing flow in main and overbank channels do not in general conserve mass when overbank and main channels are of different lengths.

  10. Evaporation from flowing channels ( mass-transfer formulas).

    USGS Publications Warehouse

    Fulford, J.M.; Sturm, T.W.

    1984-01-01

    Stability-dependent and Dalton-type mass transfer formulas are determined from experimental evaporation data in ambient and heated channels and are shown to have similar performance in prediction of evaporation. The formulas developed are compared with those proposed by other investigators for lakes and flowing channels. -from ASCE Publications Information

  11. Controlling Surface Roughness to Enhance Mass Flow Rates in Nanochannels

    NASA Astrophysics Data System (ADS)

    Zimon, Malgorzata; Emerson, David; Reese, Jason

    2012-11-01

    A very active field of research in fluid mechanics and material science is predicting the behavior of Newtonian fluids flowing over porous media with different wettabilities. Opposite effects have been observed: some state that wall roughness always suppresses fluid-slip, whereas others show that for some cases roughness may reduce the surface friction. In this work, MD simulations were carried out to further investigate physical mechanisms for liquid slip, and factors affecting it. A rough wall was formed by either periodically spaced rectangular protrusions or was represented by a cosine wave. The MD simulations were conducted to study Poiseuille and Couette flow of liquid argon in a nanochannel with hydrophilic kryptonian walls. The effect of wall roughness and interface wettability on the streaming velocity, and the slip-length at the walls, is observed to be significant. Our results show a dependency of mass flow rate on the type of flow and topography of the channel walls. For a fixed magnitude of the driving force, an increase in the mass flow rate, compared to the smooth surface, was observed for the wavy roughness, whereas the opposite effect was observed for Couette flow where a higher slip was obtained for rectangular gaps. The study is funded in the UK by the Engineering and Physical Sciences Research Council.

  12. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    NASA Technical Reports Server (NTRS)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  13. Granular mass flows and Coulomb's friction in shear cell experiments: Implications for geophysical flows

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Manga, M.

    2004-12-01

    Granular mass flows of rock fragments are studied in the lab by means of a high-speed video camera at 2000 frames per second. These granular flows are generated using beds of pumice fragments positioned on a rough rotating disk, whose angular velocity is controlled by a motor. The experimental apparatus allows an understanding of the arrangement of the particles in granular mass flows with relatively small and relatively large values of the Savage number (the Savage number represents the ratio between grain collision stresses and gravitational grain contact stresses). In particular, these flows develop a basal layer of agitated and colliding particles underneath a relatively rigid upper layer. Our experimental results suggest the validity, on average, of the Coulomb's relationship between shear and normal forces at the base of granular mass flows irrespective of their Savage number value. In Coulomb's equation the shear stresses do not depend on the shear rate. We expect the Coulomb friction law to be valid also in moving pyroclastic flows. Our experiments suggest that the collisions and subsequent comminution of pumice fragments in moving pyroclastic flows could provide ash for the overriding ash clouds. In our experiments the amount of ash generated by particle-particle and particle-boundary interactions increases as the value of the Savage number increases. In nature, part of this ash may also simply move toward the base of the flows because of kinetic sieving.

  14. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  15. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  16. Flow, water mass changes, and hydraulics in the Bosphorus

    NASA Astrophysics Data System (ADS)

    Gregg, Michael C.; Özsoy, Emin

    2002-03-01

    Using average sections along the Bosphorus taken in September 1994 with a loosely tethered profiler and an acoustic Doppler current profiler, Gregg et al. [1999] found the exchange flow between the Sea of Marmara and the Black Sea to be quasi-steady but far from satisfying the hydraulic control conditions for two-layered flows. Here we examine synoptic sections and use images from an acoustic backscatter system to provide the first detailed look at the flow and water mass changes in the Bosphorus and to assess how well the flow satisfies the hydraulic assumptions. Thirty kilometers long, 28-100 m deep, and 0.75-3 km wide, the Bosphorus has bathymetry for more complex than that used in analytic or numerical models of exchange flows. The particulars affect dynamics in important ways. For instance, owing to changes in channel shape, the narrowest section, known as the contraction, is not also the minimum in cross-sectional area. Rather, it is a transition between the wider northern half and the narrower southern half of the strait, and some places south of the contraction have slightly smaller areas. Sharp bends occur throughout the strait and often produce flow separations as well as directing upper and lower flows to opposite sides of the channel. Never <28% of the water column, the interface thickens to 75% in the southern half of the strait as a result of intense mixing downstream of the contraction. As a consequence of the strong mixing and numerous flow separations, we conclude that the exchange flow may be at least partly controlled by friction instead of being a simple hydraulic flow.

  17. Gas mass derived by infrasound and UV cameras: Implications for mass flow rate

    NASA Astrophysics Data System (ADS)

    Delle Donne, D.; Ripepe, M.; Lacanna, G.; Tamburello, G.; Bitetto, M.; Aiuppa, A.

    2016-10-01

    Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining the acoustic source by thermal imagery. We show that different acoustic methods give comparable total gas masses in the 2 to 1425 kg range, which are fully consistent with the gas masses derived by UV cameras and previous direct SO2 measurements. We show that total erupted gas mass, estimated by infrasound is not simply a function of the initial pressure, but rather the full infrasonic waveform should be considered. Thermal imagery provides evidence that infrasound is generated during the entire gas thrust phase. We provide examples to show how total gas masses derived by infrasonic signals can be affected by large uncertainties if duration of the signal is neglected. Only when duration of infrasound is included, the best correlation (0.8) with UV cameras and the 1:1 direct linear proportionality is obtained. Our results open new perspective for remotely derived gas mass and mass flow rates from acoustic signals.

  18. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  19. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  20. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  1. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor... § 1915.134 Abrasive wheels. This section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with...

  2. Evolution of flow velocities and basal stresses in finite-mass granular flows

    NASA Astrophysics Data System (ADS)

    Bugnion, Louis; Schaefer, Marius

    2010-05-01

    Evolution of flow velocities and basal stresses in finite-mass granular flows We present detailed velocity measurements in granular avalanches flowing down a flat chute together with shear and normal force measurements on the running surface. The chute is five meters long and half a meter wide. Granular material (glass beads or ballotini) with grain sizes between 0.1mm to 1.4 mm were used. The flow was recorded through a transparent side-wall by two high-speed cameras, which are able to capture 1825 pictures in a second. Due to the high frame rate of the cameras, several flow features can be observed with accuracy. By analysing the images with a pattern matching algorithm two dimensional velocity fields with high temporal and spatial resolution were obtained. The evolution of flow-normal velocity profiles, velocity fluctuation profiles and other flow characteristic such as the depth averaged velocity, the slip velocity, the surface velocity, shear rates or flow depth through the flow are tracked. By using two high-speed cameras at different downstream positions the evolution of the gradient of the velocities in downstream direction could also be studied. The shear and normal force plates were located at a camera's downstream position. The evolution of the basal forces and friction coefficients could therefore be analysed with respect to the flow characteristics mentioned above. The flow heights were recorded from the films as well as from two laser sensors located at the cameras downstream positions. We varied the roughness of the running surface by gluing sand paper of different grain-size and drawing paper on the wooden chute. The inclination angle was varied, from 20° to 40° degrees depending on the combination of material and running surface roughness. Together with the different sizes of the ballotini various flow conditions scenarios were carried out. As a result different flow structures could be observed and characterized including velocity profile with

  3. Accurate, reliable control of process gases by mass flow controllers

    SciTech Connect

    Hardy, J.; McKnight, T.

    1997-02-01

    The thermal mass flow controller, or MFC, has become an instrument of choice for the monitoring and controlling of process gas flow throughout the materials processing industry. These MFCs are used on CVD processes, etching tools, and furnaces and, within the semiconductor industry, are used on 70% of the processing tools. Reliability and accuracy are major concerns for the users of the MFCs. Calibration and characterization technologies for the development and implementation of mass flow devices are described. A test facility is available to industry and universities to test and develop gas floe sensors and controllers and evaluate their performance related to environmental effects, reliability, reproducibility, and accuracy. Additional work has been conducted in the area of accuracy. A gravimetric calibrator was invented that allows flow sensors to be calibrated in corrosive, reactive gases to an accuracy of 0.3% of reading, at least an order of magnitude better than previously possible. Although MFCs are typically specified with accuracies of 1% of full scale, MFCs may often be implemented with unwarranted confidence due to the conventional use of surrogate gas factors. Surrogate gas factors are corrections applied to process flow indications when an MFC has been calibrated on a laboratory-safe surrogate gas, but is actually used on a toxic, or corrosive process gas. Previous studies have indicated that the use of these factors may cause process flow errors of typically 10%, but possibly as great as 40% of full scale. This paper will present possible sources of error in MFC process gas flow monitoring and control, and will present an overview of corrective measures which may be implemented with MFC use to significantly reduce these sources of error.

  4. Romans-mass-driven flows on the D2-brane

    NASA Astrophysics Data System (ADS)

    Guarino, Adolfo; Tarrío, Javier; Varela, Oscar

    2016-08-01

    The addition of supersymmetric Chern-Simons terms to N=8 super-Yang-Mills theory in three-dimensions is expected to make the latter flow into infrared super-conformal phases. We address this problem holographically by studying the effect of the Romans mass on the D2-brane near-horizon geometry. Working in a consistent, effective four-dimensional setting provided by D = 4 N=8 supergravity with a dyonic ISO(7) gauging, we verify the existence of a rich web of supersymmetric domain walls triggered by the Romans mass that interpolate between the (four-dimensional description of the) D2-brane and various superconformal phases. We also construct domain walls for which both endpoints are superconformal. While most of our results are numerical, we provide analytic results for the SU(3) × U(1)-invariant flow into an N=2 conformal phase recently discovered.

  5. A monolithic mass tracking formulation for bubbles in incompressible flow

    SciTech Connect

    Aanjaneya, Mridul Patkar, Saket Fedkiw, Ronald

    2013-08-15

    We devise a novel method for treating bubbles in incompressible flow that relies on the conservative advection of bubble mass and an associated equation of state in order to determine pressure boundary conditions inside each bubble. We show that executing this algorithm in a traditional manner leads to stability issues similar to those seen for partitioned methods for solid–fluid coupling. Therefore, we reformulate the problem monolithically. This is accomplished by first proposing a new fully monolithic approach to coupling incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions, and then subsequently making a number of simplifying assumptions on the air flow removing not only the nonlinearities but also the spatial variations of both the density and the pressure. The resulting algorithm is quite robust, has been shown to converge to known solutions for test problems, and has been shown to be quite effective on more realistic problems including those with multiple bubbles, merging and pinching, etc. Notably, this approach departs from a standard two-phase incompressible flow model where the air flow preserves its volume despite potentially large forces and pressure differentials in the surrounding incompressible fluid that should change its volume. Our bubbles readily change volume according to an isothermal equation of state.

  6. Shielding Calculations for the BDMS UF6 Mass Flow Meter

    SciTech Connect

    Radev, R; Hall, J

    2001-09-13

    We performed Monte Carlo calculations of the neutron and gamma ray spectra and neutron and gamma dose rates outside the shielding of the UF{sub 6} mass flowmeter. The UF{sub 6} mass flowmeter and the UF{sub 6} mass flowmeter are the two main components of the Blend Down Monitoring System (BDMS) equipment. The BDMS equipment is designed to continuously monitor the UF{sub 6} enrichment and mass flow rates in processing pipes at uranium facilities. The UF{sub 6} mass flowmeter incorporates four {sup 252}Cf neutron sources, surrounded by a polyethylene shielding block. The uranium fission products generated by the {sup 252}Cf neutrons are detected down the pipe, thus confirming the UF{sub 6} mass flow rate. The dose calculations used both U.S. and Russian gamma and neutron fluence-to-dose conversion coefficients. The purpose of these calculations was to facilitate proper interpretation of the neutron dose rate measurements from rem meters (e.g., rem balls) outside of BDMS shielding. An accurate determination of the dose rate is particular interest in that it enables dose rates to be compared with the applicable regulatory limit. The calculations show that neutrons outside of BDMS shielding are significantly reduced in energy, i.e., the spectrum is shifted (i.e., moderated) towards lower energies and contains significantly larger amount of neutrons in the energy range below 100 keV. Results of the calculations indicate that neutron dose rate measurements taken outside of BDMS shielding are overestimated by 25% to 55%, depending on the location around BDMS, when using either Russian or U.S. dose conversion coefficients. For an accurate neutron dose rate evaluation, application of an appropriate correction factor to the neutron dose rate measurements is necessary.

  7. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  8. Optical Mass Flow Diagnostics in Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Cauley, P. Wilson; Johns-Krull, Christopher M.

    2015-09-01

    We examine a broad range of mass flow diagnostics in a large sample of Herbig Ae/Be stars (HAEBES) using high resolution optical spectra. The Hβ and He i 5876 Å lines show the highest incidence of P Cygni (30%) and inverse P Cygni (14%) morphologies, respectively. The Fe ii 4924 Å line also shows a large incidence of P Cygni profiles (11%). We find support for many of the conclusions reached in a study based on the analysis of the He i λ10830 line in a large sample of HAEBES. Namely, HAEBES exhibit smaller fractions of both blueshifted absorption (i.e., mass outflow) and redshifted absorption (i.e., mass infall or accretion) than their lower mass cousins, the classical T Tauri stars (CTTSs). In particular, the optical data supports the conclusion that HAEBES displaying redshifted absorption, in general, show maximum redshifted absorption velocities that are smaller fractions of their stellar escape velocities than is found for CTTSs. This suggests that HAEBE accretion flows are originating deeper in the gravitational potentials of their stars than in CTTS systems. In addition, we find a lack of inner disk wind signatures in the blueshifted absorption objects; only stellar wind signatures are clearly observed. These findings, along with the lack of detected magnetic fields around HAEBES, support the idea that large magnetospheres are not prevalent around HAEBES and that accretion flows are instead mediated by significantly smaller magnetospheres with relatively smaller truncation radii (e.g., 1-2 R*). Redshifted absorption is much more common around Herbig Ae stars than Be stars, suggesting that Herbig Be stars may accrete via a boundary layer rather than along magnetic field lines.

  9. RADIAL FLOW PATTERN OF A SLOW CORONAL MASS EJECTION

    SciTech Connect

    Feng, Li; Gan, Weiqun; Inhester, Bernd

    2015-06-01

    Height–time plots of the leading edge of coronal mass ejections (CMEs) have often been used to study CME kinematics. We propose a new method to analyze the CME kinematics in more detail by determining the radial mass transport process throughout the entire CME. Thus, our method is able to estimate not only the speed of the CME front but also the radial flow speed inside the CME. We have applied this method to a slow CME with an average leading edge speed of about 480 km s{sup −1}. In the Lagrangian frame, the speeds of the individual CME mass elements stay almost constant within 2 and 15 R{sub S}, the range over which we analyzed the CME. Hence, we have no evidence of net radial forces acting on parts of the CME in this range or of a pile up of mass ahead of the CME. We find evidence that the leading edge trajectory obtained by tie-pointing may gradually lag behind the Lagrangian front-side trajectories derived from our analysis. Our results also allow a much more precise estimate of the CME energy. Compared with conventional estimates using the CME total mass and leading edge motion, we find that the latter may overestimate the kinetic energy and the gravitational potential energy.

  10. Generalized Couette Poiseuille flow with boundary mass transfer

    NASA Astrophysics Data System (ADS)

    Marques, F.; Sanchez, J.; Weidman, P. D.

    1998-11-01

    A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F<0 fluid emitted through the inner cylinder fills the gap and flows uniaxially down the annulus; an asymptotic analysis leads to a scaling that removes the effect of [eta] in the pressure parameter [beta], namely [beta]=[pi]2R*2, where R*=F(1[minus sign][eta])/(1+[eta]). The case of sink flow for F>0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.

  11. Mass flow and its pulsation measurements in supersonic wing wake

    NASA Astrophysics Data System (ADS)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  12. Control and Automation of Fluid Flow, Mass Transfer and Chemical Reactions in Microscale Segmented Flow

    NASA Astrophysics Data System (ADS)

    Abolhasani, Milad

    Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a

  13. Mass flows in a prominence spine as observed in EUV

    SciTech Connect

    Kucera, T. A.; Gilbert, H. R.

    2014-07-20

    We analyze a quiescent prominence observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (AIA) with a focus on mass and energy flux in the spine, measured using Lyman continuum absorption. This is the first time this type of analysis has been applied with an emphasis on individual features and fluxes in a quiescent prominence. The prominence, observed on 2010 September 28, is detectable in most AIA wavebands in absorption and/or emission. Flows along the spine exhibit horizontal bands 5''-10'' wide and kinetic energy fluxes on the order of a few times 10{sup 5} erg s{sup –1}cm{sup –2}, consistent with quiet sun coronal heating estimates. For a discrete moving feature we estimate a mass of a few times 10{sup 11} g. We discuss the implications of our derived properties for a model of prominence dynamics, the thermal non-equilibrium model.

  14. Mass-Flow-Meter Leak-Testing System

    NASA Technical Reports Server (NTRS)

    Sorensen, Eric B.; Polidori, Andre V.; Heman, Joe R.; Dresser, Holland L.; Hellum, John

    1996-01-01

    Improved leak-testing system incorporates mass-flow meter as primary sensor for measurement of leakage rate. System easier to use and more reliable and enables leak tests to be completed in less time. Produces test data more plentiful, more accurate, and better suited to leak detection and diagnosis. Operates over range of test conditions, including pressures from atmospheric to 1,000 psi, temperatures from 50 to 120 degrees F and volumes from less than 1 in.(sup3) to 22 in.(sup3). Sensitive enough to measure absorbed gas seeping from O-ring seals after test pressure released.

  15. Acton mass flow system applied to PFBC feed

    NASA Technical Reports Server (NTRS)

    Homburg, E.

    1977-01-01

    Dense phase pneumatic conveying and the Acton Mass Flow concept are defined with emphasis on the specific advantages to the coal and dolomite feed to the Pressurized Fluidized Bed Combustor. The transport and feed functions are explored with a comparison of designing the process for a combined function or for individual functions. The equipment required to accomplish these functions is described together with a typical example of sizing and air or gas requirements. A general outline of the control system required to obtain a uniform feed rate is provided. The condition of the coal and dolomite and conveying gas as required to obtain reliable transport and feed will be discussed.

  16. Computer Simulation of Stress-Strain State of Pipeline Section Affected by Abrasion Due to Mechanical Impurities

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Afanas’ev, R. G.; Burkova, S. P.

    2016-04-01

    The paper presents the effect of abrasive wear of the pipeline section occurred due to mechanical impurities in the transported gas flow. The approaches to the detection of the maximum specific wear of the pipeline wall and the geometry of abrasion are the main problems of computer simulation described in this paper.

  17. Abrasive drill for resilient materials

    NASA Technical Reports Server (NTRS)

    Koch, A. J.

    1981-01-01

    Resilient materials normally present problem in obtaining accurate and uniform hole size and position. Tool is fabricated from stiff metal rod such as tungsten or carbon steel that has diameter slightly smaller than required hole. Piercing/centering point is ground on one end of rod. Rod is then plasma-sprayed (flame-sprayed) with suitable hard abrasive coating. High-speed, slow-feed operation of tool is necessary for accurate holes, and this can be done with drill press, hard drill, or similar machines.

  18. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  19. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  20. Numerical Calibration of Mass Flow Plug for Inlet Testing

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  1. Mass Flow in the Close Binary V342 Aquilae

    NASA Astrophysics Data System (ADS)

    Hartman, C. N.; Polidan, R. S.; Welty, A.; Wade, R.; Etzel, P. B.; Bruhweiler, F. C.

    1995-12-01

    Preliminary analysis of the eclipsing binary V342 Aquilae indicates it is undergoing an extremely active phase of mass flow. Three observational datasets provide complete orbital phase coverage of the 3.39 day period across a wide band; IUE spectroscopic data, photometric uvbyRI data, and optical spectroscopy data. IUE observations made in 1991, 1993 and 1995 include 88 low resolution SWP and LWP spectra spanning from 1150 to 3200 Angstroms. The uvbyRI optical photometry data (P. Etzel) were obtained simultaneously with the 1993 IUE observations. Limited KPNO 2.1 meter telescope optical data (A. Welty) covering from 3840 to 9000 Angstroms were taken in 1994. Our UV spectra show very pronounced Fe II absorption lines arising from ground and metastable levels, indicating an extensive circumstellar shell in the system. The strength of this absorption shows both an orbital and a cycle-to-cycle variability. The eclipse spectra display very strong emission from lines such as C II at 1335 Angstroms, Si IV at 1400 Angstroms, and C IV at 1550 Angstroms, with a striking similarity to the eclipse spectra of TT Hydrae. Based upon these data, we have deduced the effective temperatures, spectral types and orbital geometry of the two stars. The UV spectra show the primary is approximately a late B star and the secondary is a late G star. We also present velocity curve results from the optical data along with the resulting mass ratio estimate. Our ongoing analysis aims to understand the unusually large rate of mass flow occuring in V342 Aquilae. P.B.E. acknowledges support under NSF grant AST-9115104.

  2. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part I: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; He, Li-Lin; Fang, Qin

    2014-12-01

    The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator, obviously reducing the penetration efficiency of penetrator. Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface, an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile. A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile. The critical value V {0/c} of the initial striking velocity is formulated, and the mass loss of projectile tends to increase weakly nonlinearly with I/ N when V 0 < V {0/c}, whilst the mass loss is proportional to the initial kinetic energy of projectile when V 0 < V {0/c}. The theoretical prediction of V {0/c} is further confirmed to be very close to the experimental value of 1.0 km/s based on 11 sets of different penetration tests. Also the validity of the proposed expressions of mass loss and nose-blunting coefficients of a projectile are verified by the tests. Therefore, a theoretical basis is for the empirical conclusions drawn in previous publications. Regarding the completely empirical determinations of the mass loss and nose-blunting coefficients given in previous papers, the present analysis reveals its physical characteristic and also guarantees its prediction accuracy. The engineering model established in the present paper forms the basis for further discussions on the structural stability and the terminal ballistic stability of ogive-nosed projectiles high-speed penetrating into concrete targets, which will respectively be elaborated in Part II and Part III of the present study.

  3. Wear characterization of abrasive waterjet nozzles and nozzle materials

    NASA Astrophysics Data System (ADS)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  4. Determination of hexabromocyclododecane by flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Silberring, Jerzy; Reszke, Edward; Kuc, Joanna; Grochowalski, Adam

    2014-10-01

    The first application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the chemical characterization and determination of hexabromocyclododecane (HBCD) is presented. The samples of technical HBCD and expanded polystyrene foam (EPS) containing HBCD as a flame retardant were prepared by dissolving the appropriate solids in dichloromethane. The ionization of HBCD was achieved with a prototype FAPA source. The ions were detected in the negative-ion mode. The ions corresponding to a deprotonated HBCD species (m/z 640.7) as well as chlorine (m/z 676.8), nitrite (m/z 687.8) and nitric (m/z 703.8) adducts were observed in the spectra. The observed isotope pattern is characteristic for a compound containing six bromine atoms. This technique is an effective approach to detect HBCD, which is efficiently ionized in a liquid phase, resulting in high detection efficiency and sensitivity. PMID:25059130

  5. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively. PMID:21537972

  6. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  7. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  8. Ceramic-bonded abrasive grinding tools

    SciTech Connect

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  9. Scaling heat and mass flow through porous media during pyrolysis

    NASA Astrophysics Data System (ADS)

    Maes, Julien; Muggeridge, Ann H.; Jackson, Matthew D.; Quintard, Michel; Lapene, Alexandre

    2015-03-01

    The modelling of heat and mass flow through porous media in the presence of pyrolysis is complex because various physical and chemical phenomena need to be represented. In addition to the transport of heat by conduction and convection, and the change of properties with varying pressure and temperature, these processes involve transport of mass by convection, evaporation, condensation and pyrolysis chemical reactions. Examples of such processes include pyrolysis of wood, thermal decomposition of polymer composite and in situ upgrading of heavy oil and oil shale. The behaviours of these systems are difficult to predict as relatively small changes in the material composition can significantly change the thermophysical properties. Scaling reduces the number of parameters in the problem statement and quantifies the relative importance of the various dimensional parameters such as permeability, thermal conduction and reaction constants. This paper uses inspectional analysis to determine the minimum number of dimensionless scaling groups that describe the decomposition of a solid porous material into a gas in one dimension. Experimental design is then used to rank these scaling groups in terms of their importance in describing the outcome of two example processes: the thermal decomposition of heat shields formed from polymer composites and the in situ upgrading of heavy oils and oil shales. A sensitivity analysis is used to divide these groups into three sets (primary, secondary and insignificant), thus identifying the combinations of solid and fluid properties that have the most impact on the performance of the different processes.

  10. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  11. Cleaning power and abrasivity of European toothpastes.

    PubMed

    Wülknitz, P

    1997-11-01

    For 41 toothpastes available to European consumers in 1995, the cleaning efficacy was evaluated in comparison with abrasivity on dentin (RDA value). For cleaning power assessment, a modified pellicle cleaning ratio (PCR) measurement method was developed. The method is characterized by a five-day tea-staining procedure on bovine front teeth slabs on a rotating wheel, standardized brushing of the slabs in a V8 cross-brushing machine, and brightness measurement by a chromametric technique. All tested products were in accordance with the new DIN/ISO standard 11,609 for toothpastes in terms of dentin abrasivity. Not a single product exceeded an RDA value of 200. The majority of toothpastes (80%) had an RDA value below 100. Only three products surpassed the reference in cleaning power. Most products (73%) had a cleaning power (PCR value) between 20 and 80. The correlation between cleaning power and dentin abrasion was low (r = 0.66), which can be explained with the different influence on dentin and stains by factors like abrasive type, particle surface and size, as well as the chemical influence of other toothpaste ingredients. Some major trends could be shown on the basis of abrasive types. The ratio PCR to RDA was rather good in most silica-based toothpastes. A lower ratio was found in some products containing calcium carbonate or aluminum trihydrate as the only abrasive. The addition of other abrasives, such as polishing alumina, showed improved cleaning power. Some active ingredients, especially sequenstrants such as sodium tripolyphosphate or AHBP, also improve the PCR/RDA ratio by stain-dissolving action without being abrasive. The data for some special anti-stain products did not differ significantly from standard products. Compared with data measured in 1988, a general trend toward reduced abrasivity without loss of cleaning efficacy could be noticed on the European toothpaste market. This may be mostly due to the increased use of high-performance abrasives such

  12. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cc. with a constant time interval between respirations. (ii) At cabin pressure altitudes above 18,500... between respirations. (2) For each flight crewmember, the minimum mass flow may not be less than the flow... interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied for each user...

  13. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cc. with a constant time interval between respirations. (ii) At cabin pressure altitudes above 18,500... between respirations. (2) For each flight crewmember, the minimum mass flow may not be less than the flow... interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied for each user...

  14. Rounding of Clasts by Abrasion and Comminution in Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Patel, A.; Manga, M.; Dufek, J.

    2009-12-01

    Abrasion and comminution of pumice clasts during the propagation of pyroclastic density currents has long been recognized as a potential source for the enhanced production of volcanic ash. The amount of ash produced in-situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. Such ash production should be reflected in the roundness of clasts. We performed experimental measurements to determine the relationship between particle roundness (measured in two-dimensions by how close each particle’s area to perimeter squared ratio is to a circle’s) and mass loss caused by particle-particle interactions. We use airfall pumice from Medicine Lake, and clasts from flow deposits at Taupo and Mount St Helens. We find that average sample roundness reaches a maximum value once particles lose between 10 and 70% of their mass. The most texturally homogeneous clasts (Taupo) become the most round. We compared our experimental measurements with the roundness of clasts in the May 18, 1980 pyroclastic flow units at Mount St Helens, deposited 4.5-8 km from the vent. The roundness measurements of these clasts are close to the experimentally determined maximum values, suggesting that a significant amount of ash may have been produced in-situ within the flow. Numerical multiphase flow simulations for conditions similar to this eruption (Dufek and Manga, JGR 2008) are consistent with this conclusion.

  15. Erosion, cavitation, and abrasion resistance of choke trim materials

    SciTech Connect

    Seger, F.O.; Maroofian, I.

    1984-05-01

    An experimental investigation was performed to determine the relative erosion, abrasion and cavitation resistance characteristics of selected materials. Testing was conducted under controlled laboratory conditions to simulate service conditions encountered in production and injection chokes. The testing effort is ongoing. The data accumulated allow informed material selection of conventional and novel trim for all chokes, valves, flow metering orifices, fixed beans and other devices used during drilling, completion and production of offshore and onshore oil and gas wells. Sintered silicon carbide, and tungsten carbide with minimum binder content were the most erosion and abrasion resistant of the materials tested. Cobalt base alloys bar and nickelchrome alloy 625 bar proved to be most cavitation resistant.

  16. Abrasive-waterjet machining of ceramic-coated materials

    NASA Astrophysics Data System (ADS)

    Hashish, M.; Whalen, J.

    1991-09-01

    This paper addresses an experimental investigation on the feasibility of using abrasive-waterjets (AWJs) for the precision drilling of small-diameter holes in advanced aircraft engine components. These components are sprayed with ceramic thermal barrier coating (TBC), and the required holes are typically 0.025 inch in diameter, with a drilling angle of 25 deg. The parameters of the AWJ were varied to study their effects on both quantitative and qualitative hole drilling parameters. The unique techniques of assisting the abrasive feed process, ramping the waterjet pressure, during drilling, and varying the jet dwell time after piercing were effectively implemented to control hole quality and size. The results of the experiments indicate the accuracy and repeatability of the AWJ technique in meeting the air flow and hole size requirements. Production parts were drilled for prototype engine testing.

  17. Mass flow of polycyclic musks in two wastewater treatment plants.

    PubMed

    Reiner, J L; Berset, J D; Kannan, K

    2007-05-01

    Synthetic musks are found in varying amounts in many consumer products. After use, synthetic musks go down the drain into the sewer system and then reach wastewater treatment plants (WWTPs). In this study, mass flows of two synthetic polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[gamma]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), along with HHCB-lactone (the oxidation product of HHCB) were examined in two WWTPs. Wastewater and sludge samples were collected at various stages of the treatment process for analysis. HHCB, AHTN, and HHCB-lactone were found in all wastewater samples at concentrations in the ranges of 1780 to 12700, 304 to 2590, and 146 to 4000 ng/L, respectively. The highest concentrations for all compounds were found in sludge samples. Sludge samples contained HHCB at 7.23 to 108 mg/kg dry weight, AHTN at 0.809 to 16.8 mg/kg dry weight, and HHCB-lactone at 3.16 to 22.0 mg/kg dry weight. This is the first study to report HHCB-lactone in wastewater and HHCB, HHCB-lactone, and AHTN in sludge in WWTPs from the United States. HHCB and AHTN concentrations decreased during treatment. However, the concentrations of HHCB-lactone increased in water after treatment. Based on the daily flow rates and mean concentrations of the three compounds in effluent, a WWTP representative of those studied here is expected to release 288 g HHCB, 60.4 g AHTN, and 158 g HHCB-lactone/100,000 people/d. Partitioning HHCB, AHTN, and HHCB-lactone to sludge is the major removal mechanism for polycyclic musks in WWTPs.

  18. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  19. Mass flow calibration of the helios CL1 and CL2 laser control consoles

    NASA Astrophysics Data System (ADS)

    Sentman, L. H.; Theodoropoulos, P.; Gumus, A.

    1986-08-01

    Calibration curves of laser control console pressure versus mass flow rate for the four input species H2, SF6, O2 and He were measured for the single and two channel laser control consoles. Several interesting phenomena were observed. The mass flow meter choked unless placed upstream of the flow control orifice and a laminar to turbulent transition occurred in the flow control orifice.

  20. The abrasion and impact-abrasion behavior of austempered ductile irons

    SciTech Connect

    Hawk, Jeffrey A.; Dogan, Omer N.; Lerner, Y.S.

    1998-01-01

    Austempering of ductile irons has led to a new class of irons, Austempered Ductile Irons (ADIs), with improved mechanical strength and fracture toughness lacking in gray cast irons. Laboratory wear tests have been used to evaluate the abrasive and impact-abrasive wear behavior of a suite of ADIs. The use of high-stress, two-body abrasion, low-stress, three-body abrasion, and impact-abrasion tests provides a clear picture of the abrasive wear behavior of the ADIs and the mechanisms of material removal. When combined with hardness measurements, fracture toughness and a knowledge of the microstructure of the ADIs, the overall performance can be assessed relative to more wear resistant materials such as martensitic steels and high-chromium white cast irons

  1. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  2. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  3. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  4. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  5. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  6. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  7. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  8. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  9. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated.

  10. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  11. Determining seed cotton mass flow rate by pressure drop across a blowbox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A seed cotton mass flow rate sensor would offer useful feedback for gin managers and provide a critical input for advanced process control systems. Several designs of seed cotton mass flow rate sensors have been evaluated in the laboratory, but none have found acceptance in commercial gins. The obje...

  12. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across the Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox usi...

  13. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  14. Evaluation of an experimental mass-flow sensor of cotton-lint at the gin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a system to optimize the cotton ginning process, a custom built mass-flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass-flow sensor was fabricated based on the principle of the senor patented by Thomasson and Sui (2004). The optical a...

  15. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tidal volume of 700cc with a constant time interval between respirations. (ii) At cabin pressure... time interval between respirations. (2) For each flight crewmember, the minimum mass flow may not be... constant time interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied...

  16. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tidal volume of 700cc with a constant time interval between respirations. (ii) At cabin pressure... time interval between respirations. (2) For each flight crewmember, the minimum mass flow may not be... constant time interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied...

  17. Air abrasion: an old technology reborn.

    PubMed

    Berry, E A; Eakle, W S; Summitt, J B

    1999-08-01

    Recently, air abrasion has experienced a rebirth in restorative dentistry. Originally developed in the late 1940s, the principle of air abrasion is the imparting of kinetic energy to tiny aluminum oxide particles that are projected by a stream of compressed air or gas and expelled from a small nozzle. The force generated by the relatively hard particles striking a relatively hard surface is sufficient to cut into that surface. In the last decade, more than a dozen models of air abrasion units have been introduced into the marketplace and more are on the way. Manufacturers have developed air abrasion instruments that offer a broad range of features, from small table-top units to self-contained systems with compressors, vacuums, and curing lights. The costs range dramatically--from $1,000 to $20,000 or more--depending on the complexity of the features and attachments. Manufacturers make a variety of claims to support the value of this technology to the practicing dentist. A term often used to describe one of the benefits of air abrasion is microdentistry. The claim is that smaller, less invasive tooth preparations may be accomplished using air abrasion than with a traditional bur and air turbine. This may be true in some instances, but it would certainly depend on the operator's experience and ability to visually discern fine detail. Other claims about air abrasion are that it can be used to cut into tooth structure without local anesthesia and that it should be used on all stained grooves or fissures to determine if incipient carious lesions are present. Despite the limited number of clinical studies, the popularity of air abrasion continues to grow. To gain additional insight about these claims and to see what might be on the horizon for this technology, I spoke with three highly respected educators who are recognized for their expertise in air abrasion. What they said should give the reader a better understanding of how air abrasion might augment restorative

  18. The impact of separated flow on heat and mass transfer. Final report

    SciTech Connect

    Goldstein, R.J.

    1998-08-01

    An investigation of the effect of flow separation on heat and mass transfer has been completed. This research provided enhanced understanding of fundamental mechanisms governing important heat and mass transfer flow processes. This report summarizes the work conducted under the project. This research has provided considerable new knowledge on flow and heat transfer situations of great interest in a number of energy conversion devices, including heat exchangers, gas turbines, solar energy systems and general heat transfer systems.

  19. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  20. Mass transfer from a sphere in an oscillating flow with zero mean velocity

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Lyman, Frederic A.

    1990-01-01

    A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of the validity of the quasi-steady assumption for mass transfer is based on these results.

  1. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    PubMed

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa.

  2. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    SciTech Connect

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    2005-03-16

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  3. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  4. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    NASA Astrophysics Data System (ADS)

    Hakim Kamarudin, Naqib; Prasada Rao, A. K.; Azhari, Azmir

    2016-02-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work.

  5. Heat/mass transfer and flow characteristics of pin fin cooling channels in turbine blades

    NASA Astrophysics Data System (ADS)

    Lau, S. C.; Saxena, A.

    Experiments studied the local heat/mass transfer distributions and pressure drops in pin fin channels that modeled internal cooling passages in gas turbine blades. Heat/mass transfer distributions were determined for a straight flow through a pin fin channel (H/D = 1.0, X/D = S/D = 2.5) and a flow through the pin fin channel with trailing edge flow ejection. The overall friction factor and local pressure drop results were obtained for various configurations and lengths of the trailing edge ejection holes. The results show that, when there is trailing edge flow ejection, the main flow stream turns toward the trailing edge ejection holes. The wake regions downstream of the pins and the regions affected by secondary flow shift toward the ejection holes. The local channel wall heat/mass transfer is generally high immediately upstream of a pin, in the wake region downstream of a pin, and in the regions affected by secondary flow. In the case with trailing edge flow ejection, the heat/mass transfer generally decreases in the radial direction as a result of the reducing radial mass flow rate. The overall friction is higher when the trailing edge ejection holes are longer and when they are configured such that more flow is forced further downstream in the pin fin channel before exiting through the ejection holes.

  6. Abrasion resistance of medical glove materials.

    PubMed

    Walsh, Donna L; Schwerin, Matthew R; Kisielewski, Richard W; Kotz, Richard M; Chaput, Maria P; Varney, George W; To, Theresa M

    2004-01-15

    Due to the increasing demand for nonlatex medical gloves in the health-care community, there is a need to assess the durability of alternative glove materials. This study examines durability characteristics of various glove materials by abrasion resistance testing. Natural rubber latex (latex), polyvinyl chloride (vinyl), acrylonitrile butadiene (nitrile), polychloroprene (neoprene), and a styrene-ethylene/butylene-styrene block copolymer (SEBS) were tested. All test specimens, with the exception of the vinyl, were obtained from surgical gloves. Unaged out-of-the-box specimens as well as those subjected to various degrees of artificial aging were included in the study. After the abrasion sequence, the barrier integrity of the material was assessed through the use of a static leak test. Other traditional tests performed on these materials were viral penetration to validate the abrasion data and tear testing for comparative purposes. The results indicate that specific glove-material performance is dependent upon the particular test under consideration. Most notably, abrasion, even in controlled nonsevere conditions, may compromise to varying degrees the barrier integrity of latex, vinyl, SEBS, nitrile, and neoprene glove materials. However, as evidenced by the results of testing three brands of neoprene gloves, the abrasion resistance of any one glove material may be significantly affected by variations in production processes. PMID:14689500

  7. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  8. Composition Pulse Time-Of-Flight Mass Flow Sensor

    DOEpatents

    Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l

    2004-01-13

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

  9. Mass flows of endocrine disruptors in the Glatt River during varying weather conditions.

    PubMed

    Jonkers, Niels; Kohler, Hans-Peter E; Dammshäuser, Anna; Giger, Walter

    2009-03-01

    This study focused on the occurrence and behaviour in wastewater and surface waters of several phenolic endocrine disrupting compounds (EDCs) including parabens, alkylphenolic compounds, phenylphenol (PhP) and bisphenol A (BPA). Analytical procedures using solid-phase-extraction and LC-MS/MS techniques were applied to samples of influents and effluents of wastewater treatment plants (WWTPs) discharging into the Glatt River (Switzerland) as well as to river water samples. A mass flow analysis provided insight into the main sources and the fate of these contaminants during different weather conditions. Concentrations in influents were in the low microg/L range for most analytes. Removal of parabens in the WWTPs was mostly above 99%. Nonylphenol polyethoxylates (A(9)PEO) removal amounted to 98%, but in some cases nonylphenoxy acetic acid (A(9)PEC) or nonylphenols (NP) were formed. In effluents, concentrations were highest for the A(9)PEC, A(9)PEO and NP. Concentrations in river water were in the high ng/L range for alkylphenolic compounds and in the low ng/L range for BPA, PhP and the parabens. During the sampling period, in which several rain events occurred, both water flows and mass flows varied strongly. Mass flows in WWTP effluents and in the river increased with increasing water flows for most compounds indicating that higher water flows do not lead necessarily to a proportional dilution of the pollutants. Throughout the low water flow period, mass flows predicted from the known inputs were similar to the actual mass flows at the end of the river for most analytes. For none of the EDCs, significant in-stream removal could be observed. In the periods with high water flows, mass flows in the river were much higher than can be explained by the initially defined sources. Discharge of untreated wastewater influent into the river was assessed as an additional source. Adding this source improved the mass balance for some, but not all of the analytes.

  10. Mass flows of endocrine disruptors in the Glatt River during varying weather conditions.

    PubMed

    Jonkers, Niels; Kohler, Hans-Peter E; Dammshäuser, Anna; Giger, Walter

    2009-03-01

    This study focused on the occurrence and behaviour in wastewater and surface waters of several phenolic endocrine disrupting compounds (EDCs) including parabens, alkylphenolic compounds, phenylphenol (PhP) and bisphenol A (BPA). Analytical procedures using solid-phase-extraction and LC-MS/MS techniques were applied to samples of influents and effluents of wastewater treatment plants (WWTPs) discharging into the Glatt River (Switzerland) as well as to river water samples. A mass flow analysis provided insight into the main sources and the fate of these contaminants during different weather conditions. Concentrations in influents were in the low microg/L range for most analytes. Removal of parabens in the WWTPs was mostly above 99%. Nonylphenol polyethoxylates (A(9)PEO) removal amounted to 98%, but in some cases nonylphenoxy acetic acid (A(9)PEC) or nonylphenols (NP) were formed. In effluents, concentrations were highest for the A(9)PEC, A(9)PEO and NP. Concentrations in river water were in the high ng/L range for alkylphenolic compounds and in the low ng/L range for BPA, PhP and the parabens. During the sampling period, in which several rain events occurred, both water flows and mass flows varied strongly. Mass flows in WWTP effluents and in the river increased with increasing water flows for most compounds indicating that higher water flows do not lead necessarily to a proportional dilution of the pollutants. Throughout the low water flow period, mass flows predicted from the known inputs were similar to the actual mass flows at the end of the river for most analytes. For none of the EDCs, significant in-stream removal could be observed. In the periods with high water flows, mass flows in the river were much higher than can be explained by the initially defined sources. Discharge of untreated wastewater influent into the river was assessed as an additional source. Adding this source improved the mass balance for some, but not all of the analytes. PMID:19117654

  11. Infrared Renormalization-Group Flow for Heavy-Quark Masses

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2008-10-10

    A short-distance heavy-quark mass depends on two parameters: the renormalization scale {mu} and a scale R controlling the absorption of infrared fluctuations. The radius for perturbative corrections that build up the mass beyond its pointlike definition in the pole scheme is {approx}1/R. Treating R as a variable gives a renormalization-group equation. R evolution improves the stability of conversion between short-distance mass schemes, allowing us to avoid large logs and the renormalon. R evolution can also be used to study IR renormalons without using bubble chains, yielding a convergent sum rule for the coefficient of the O({lambda}{sub QCD}) renormalon ambiguity of the pole mass.

  12. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  13. Mechanics of the pad-abrasive-wafer contact in chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Bozkaya, Dincer

    2009-12-01

    In chemical mechanical polishing (CMP), a rigid wafer is forced on a rough, elastomeric polishing pad, while a slurry containing abrasive particles flows through the interface. The applied pressure on the wafer is carried partially by the 2-body pad-wafer contact (direct contact) and partially by the 3-body contact of pad, wafer and abrasive particles ( particle contact). The fraction of the applied pressure carried by particle contacts is an important factor affecting the material removal rate (MRR) as the majority of the material is removed by the abrasive particles trapped between the pad asperities and the wafer. In this thesis, the contact of a rough, deformable pad and a smooth, rigid wafer in the presence of rigid abrasive particles at the contact interface is investigated by using contact mechanics and finite element (FE) modeling. The interactions between the pad, the wafer and the abrasive particles are modeled at different scales of contact, starting from particle level interactions, and gradually expanding the contact scale to the multi-asperity contact of pad and wafer. The effect of surface forces consisting of van der Waals and electrical double layer forces acting between the wafer and the abrasive particles are also investigated in this work. The wear rate due to each abrasive particle is calculated based on the wafer-abrasive particle contact force, and by considering adhesive and abrasive wear mechanisms. A passivated layer on the wafer surface with a hardness and thickness determined by the chemical effects is modeled, in order to characterize the effect of chemical reactions between slurry and wafer on the MRR. The model provides accurate predictions for the MRR as a function of pad related parameters; pad elastic modulus, pad porosity and pad topography, particle related parameters; particle size and concentration, and slurry related parameters; slurry pH, thickness and hardness of the passivated surface layer of wafer. A good qualitative

  14. Composition pulse time-of-flight mass flow sensor

    DOEpatents

    Harnett, Cindy K.; Crocker, Robert W.; Mosier, Bruce P.; Caton, Pamela F.; Stamps, James F.

    2007-06-05

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.

  15. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  16. Mass flow measurement of liquid cryogens using the triboelectric effect

    NASA Technical Reports Server (NTRS)

    Dechene, Ronald L.

    1986-01-01

    A cross correlator technique using triboelectric technology has been shown to be a feasible method to measure liquid flow rate for liquid nitrogen and JP4 jet fuel. This technology, invented and pioneered by Auburn International, Inc., is also expected to be suitable for use with all other insulating liquids and cryogens. The technology described is particularly well suited for cryogenic use, since the sensor is non-contacting and non-intrusive, and therefore, causes no additional pressure drop within the flow stream. Further development of the in-line sensor is required to produce a prototypical version for the test purposes under SSME fuel flow conditions. However, with the knowledge gained from this feasibility study, it is very likely that an acceptable sensor design for a full test bed evaluation could be produced.

  17. Flow-dependent mass transfer may trigger endothelial signaling cascades.

    PubMed

    Vandrangi, Prashanthi; Sosa, Martha; Shyy, John Y-J; Rodgers, Victor G J

    2012-01-01

    It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades.

  18. An in-vitro investigation of the effects of variable operating parameters on alumina air-abrasion cutting characteristics.

    PubMed

    Paolinelis, George; Banerjee, Avijit; Watson, Timothy F

    2009-01-01

    Air-abrasion is a tooth preparation technology developed in the 1940s that is currently gaining popularity due to its compatibility with adhesive restorations. Variables, including propellant pressure, powder flow rate, nozzle angle and distance to the tooth surface abrasion time, can affect the cutting rate of the air-abrasion unit. A static setup and a more clinically realistic dynamic experimental setup have been used to assess the effect of these parameters of the cutting rate on an enamel analogue. By keeping each parameter fixed, its effect on the cutting rate was examined. The results showed that increasing the propellant pressure (20-100 PSI) caused an almost linear increase in the cutting rate in both setups. Increasing the powder flow rate (0.5 - 3 g/minute) concurrently increased the powder flow and caused an increase in the cutting rate but with a plateau differing for the different propellant pressures. The nozzle angles producing the highest cutting rates were 60 degrees and 75 degrees for static and dynamic cutting, respectively, with smaller and larger angles producing lower rates. Increasing abrasion time in static cutting and the nozzle advancement rate in dynamic cutting both caused an increase in the cutting rate. These findings are relevant for both clinicians, who might wish to alter the cutting rate of their instrument, and researchers, who should always control the numerous parameters in studies involving air-abrasion in order to control the variables, which can influence the end effect of air-abrasion.

  19. Sliding-gate valve for use with abrasive materials

    DOEpatents

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  20. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow-injection fingerprints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  1. Test of pressure transducer for measuring cotton-mass flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a cotton harvester yield monitor was developed based on the relationship between air pressure and the mass of seed cotton conveyed. The sensor theory was verified by laboratory tests. The sensor was tested on a cotton picker with seed cotton at two moisture contents, 5.9% and 8.5% we...

  2. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing... that contains an abrasive material, such as silica pumice, intended to remove debris from the...

  3. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing... that contains an abrasive material, such as silica pumice, intended to remove debris from the...

  4. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing... that contains an abrasive material, such as silica pumice, intended to remove debris from the...

  5. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

    PubMed

    Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  6. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  7. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    USGS Publications Warehouse

    Bridges, N.T.; Calef, F.J.; Hallett, B.W.; Herkenhoff, Kenneth E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; de Pablo, M.A.; Kocurek, G.A.; Langevin, Y.; Lewis, K.W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N.O.; Rice, CM.S.; Richardson, M.E.; Sautter, V.; Sletten, R.S.; Wiens, R.C.; Yingst, R.A.

    2014-01-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  8. Understanding Characteristic of Abrasion of Refractory Lining Caused by Bath Oscillation in BOF Steelmaking

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Li, Mingming; Kuang, S. B.; Zou, Zongshu

    2016-08-01

    This paper presents a numerical study of the refractory abrasion occurring widely inside basic oxygen furnace (BOF) steelmaking. The mechanism of refractory abrasion is examined numerically referring to the bath oscillation with regard to flows, turbulence and wall shear stress inside a BOF. The simulation results reveal that the refractory abrasion tends to occur on the wall region between the slag/atmosphere and slag/metal interfaces due to the oscillation of the bath in the blowing process, which generally promotes slag-line erosion. The decreased nozzle angle, and either increased lance height or operation pressure can lead to more serious refractory erosion that occurs more likely during the slag-making period in the operation of BOF.

  9. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Calef, F. J.; Hallet, B.; Herkenhoff, K. E.; Lanza, N. L.; Le Mouélic, S.; Newman, C. E.; Blaney, D. L.; Pablo, M. A.; Kocurek, G. A.; Langevin, Y.; Lewis, K. W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N. O.; Rice, M. S.; Richardson, M. E.; Sautter, V.; Sletten, R. S.; Wiens, R. C.; Yingst, R. A.

    2014-06-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from "Bradbury Landing" to "Rocknest," they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  10. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  11. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeded. (j) All employees using abrasive wheels shall be protected by eye protection equipment in accordance with the requirements of subpart I of this part except when adequate eye protection is afforded by eye shields which are permanently attached to the bench or floor stand....

  12. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  13. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  14. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  15. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  16. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  17. Effects of fluid recirculation on mass transfer from the arterial surface to flowing blood

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Guo; Zhang, Xi-Wen; Liu, Ying-Xi

    2012-06-01

    The effect of disturbed flow on the mass transfer from arterial surface to flowing blood was studied numerically, and the results were compared with that of our previous work. The arterial wall was assumed to be viscoelastic and the blood was assumed to be incompressible and non-Newtonian fluid, which is more close to human arterial system. Numerical results indicated that the mass transfer from the arterial surface to flowing blood in regions of disturbed flow is positively related with the wall shear rates and it is significantly enhanced in regions of disturbed flow with a local minimum around the reattachment point which is higher than the average value of the downstream. Therefore, it may be implied that the accumulation of cholesterol or lipids within atheromatous plaques is not caused by the reduced efflux of cholesterol or lipids, but by the infiltration of the LDL (low-density lipoprotein) from the flowing blood to the arterial wall.

  18. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  19. Dust transport and abrasion assessment within simulated standing vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues are useful in protecting the top soil from depletion and abrasion due to wind erosion. A wind tunnel study was done to measure sand transport and abrasion energies within the simulated artificial standing vegetation. Wind profiles, relative abrasion energies and rates of sand dischar...

  20. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels... Institute, B7.1-1970, Safety Code for the Use, Care and Protection of Abrasive Wheels, and paragraph (d)...

  1. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  2. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  3. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abrasive device and accessories. 872.6010 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various...

  4. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  5. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    PubMed

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa. PMID:8350082

  6. High-velocity bipolar mass flow in the planetary nebula NGC 2392

    SciTech Connect

    Gieseking, F.; Becker, I.; Solf, J.

    1985-08-01

    Detailed spectroscopic observations of a high-velocity component in the velocity field of the Eskimo nebula, NGC 2392, are presented. It is interpreted as a jetlike multiknot bipolar mass flow with a velocity of nearly 200 km/s and a small angle of collimation less than 10 deg. Electron density, mass, kinetic energy, and power are estimated. 19 references.

  7. An empirical method for estimating travel times for wet volcanic mass flows

    USGS Publications Warehouse

    Pierson, Thomas C.

    1998-01-01

    Travel times for wet volcanic mass flows (debris avalanches and lahars) can be forecast as a function of distance from source when the approximate flow rate (peak discharge near the source) can be estimated beforehand. The near-source flow rate is primarily a function of initial flow volume, which should be possible to estimate to an order of magnitude on the basis of geologic, geomorphic, and hydrologic factors at a particular volcano. Least-squares best fits to plots of flow-front travel time as a function of distance from source provide predictive second-degree polynomial equations with high coefficients of determination for four broad size classes of flow based on near-source flow rate: extremely large flows (>1 000 000 m3/s), very large flows (10 000–1 000 000 m3/s), large flows (1000–10 000 m3/s), and moderate flows (100–1000 m3/s). A strong nonlinear correlation that exists between initial total flow volume and flow rate for "instantaneously" generated debris flows can be used to estimate near-source flow rates in advance. Differences in geomorphic controlling factors among different flows in the data sets have relatively little effect on the strong nonlinear correlations between travel time and distance from source. Differences in flow type may be important, especially for extremely large flows, but this could not be evaluated here. At a given distance away from a volcano, travel times can vary by approximately an order of magnitude depending on flow rate. The method can provide emergency-management officials a means for estimating time windows for evacuation of communities located in hazard zones downstream from potentially hazardous volcanoes.

  8. Mass Transfer Effects on the Unsteady Flow of UCM Fluid Over a Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Awais, M.; Sajid, M.

    This paper looks at the mass transfer effects on the unsteady two-dimensional and magnetohydrodynamic flow of an upper-convected Maxwell fluid bounded by a stretching surface. Homotopy analysis method is used for the development of series solution of the arising nonlinear problem. Plots of velocity and concentration fields are displayed and discussed. The values of surface mass transfer and gradient of mass transfer are also tabulated.

  9. Signal processing circuit for a mass flow rate digital meter design

    NASA Astrophysics Data System (ADS)

    Abdul-Hameed, Kamal Hilal; Abdul-Karim, Majid A. H.

    1987-07-01

    This paper introduces the design of a signal processing circuit which can be used in conjunction with additional arrangement for measuring gas mass flow rate. Measurement is based on Bernoulli's equation for subsonic flow. Voltages representing gas static pressure, static temperature, and difference pressure generated across an orifice plate are supposed to be taken from appropriate transducers. These voltages are processed with this circuit in such a way as to produce a digital number representing the mass flow rate value. The circuit shows a good accuracy result with uncertainty of about ±0.1%.

  10. Equations of motion for the variable mass flow-variable exhaust velocity rocket

    NASA Technical Reports Server (NTRS)

    Tempelman, W. H.

    1972-01-01

    An equation of motion for a one dimensional rocket is derived as a function of the mass flow rate into the acceleration chamber and the velocity distribution along the chamber, thereby including the transient flow changes in the chamber. The derivation of the mass density requires the introduction of the special time coordinate. The equation of motion is derived from both classical force and momentum approaches and is shown to be consistent with the standard equation expressed in terms of flow parameters at the exit to the acceleration chamber.

  11. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  12. Pacific Basin Tsunami Hazards Associated with Mass Flows in the Aleutian Islands of Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Watts, P.; Shi, F.; Kirby, J. T.

    2007-12-01

    The Aleutian Islands are a chain of volcanic islands formed by an intra-oceanic subduction zone. This area consists of a submerged chain of mountains, volcanic islands, and submarine canyons, surrounded by a low- relief continental shelf above about 1000-2000 m water depth. Part of the island chain is fragmented into a series of fault-bounded blocks, tens to hundreds of km in length, and separated from one another by distinctive fault- controlled canyons that are roughly normal to the arc axis. The canyons are geomorphically low areas between the higher relief blocks and are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. The physical setting of the Aleutian Islands indicates that mass flows of unconsolidated debris that originate either as submarine mass flows or as subaerial debris avalanches entering the sea may be potential tsunami sources. Large scale mass-flow deposits have not been identified on the seafloor south of the Aleutian Islands, primarily because the area has never been mapped or examined at the resolution required to identify such features. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. We suggest that tsunamigenic mass flows are a plausible geologic process in the Aleutian Islands and that the tsunamis produced by such flows may be large enough to cross the Pacific Ocean basin. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides. The flows

  13. Low pressure gas flow analysis through an effusive inlet using mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, David R.; Brown, Kenneth G.

    1988-01-01

    A mass spectrometric method for analyzing flow past and through an effusive inlet designed for use on the tethered satellite and other entering vehicles is discussed. Source stream concentrations of species in a gaseous mixture are determined using a calibration of measured mass spectral intensities versus source stream pressure for standard gas mixtures and pure gases. Concentrations are shown to be accurate within experimental error. Theoretical explanations for observed mass discrimination effects as they relate to the various flow situations in the effusive inlet and the experimental apparatus are discussed.

  14. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  15. Base flow separation: A comparison of analytical and mass balance methods

    NASA Astrophysics Data System (ADS)

    Lott, Darline A.; Stewart, Mark T.

    2016-04-01

    Base flow is the ground water contribution to stream flow. Many activities, such as water resource management, calibrating hydrological and climate models, and studies of basin hydrology, require good estimates of base flow. The base flow component of stream flow is usually determined by separating a stream hydrograph into two components, base flow and runoff. Analytical methods, mathematical functions or algorithms used to calculate base flow directly from discharge, are the most widely used base flow separation methods and are often used without calibration to basin or gage-specific parameters other than basin area. In this study, six analytical methods are compared to a mass balance method, the conductivity mass-balance (CMB) method. The base flow index (BFI) values for 35 stream gages are obtained from each of the seven methods with each gage having at least two consecutive years of specific conductance data and 30 years of continuous discharge data. BFI is cumulative base flow divided by cumulative total discharge over the period of record of analysis. The BFI value is dimensionless, and always varies from 0 to 1. Areas of basins used in this study range from 27 km2 to 68,117 km2. BFI was first determined for the uncalibrated analytical methods. The parameters of each analytical method were then calibrated to produce BFI values as close to the CMB derived BFI values as possible. One of the methods, the power function (aQb + cQ) method, is inherently calibrated and was not recalibrated. The uncalibrated analytical methods have an average correlation coefficient of 0.43 when compared to CMB-derived values, and an average correlation coefficient of 0.93 when calibrated with the CMB method. Once calibrated, the analytical methods can closely reproduce the base flow values of a mass balance method. Therefore, it is recommended that analytical methods be calibrated against tracer or mass balance methods.

  16. Magnetic structure and origin of counter-streaming mass flows in solar prominences

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng

    2015-08-01

    The magnetic structure and origin of counter-streaming mass flows in solar prominences are hitherto unknown, however, these issues are vitally important for understanding the instability and eruption of solar and stellar prominences, as well as the associated coronal mass ejections (CMEs). Here we report high-resolution observations of a quiescent solar prominence that clearly manifests the magnetic structure and origin of counter-streaming mass flows in solar prominences. Based on the observational results, we propose a new prominence model in the present paper, which can reconcile many discrepancies in previous studies, for example, the distribution of magnetic fields in solar prominences, the relationship between the photospheric magnetic fields and the ends of prominence feet, as well as the origin of counterstreaming mass flows in solar prominences. In addition, we also find that the photospheric pressure-driven three and five minutes oscillations can effectively modulate the kinematics of solar prominences.

  17. Technical characterization of dialysis fluid flow of newly developed dialyzers using mass transfer correlation equations.

    PubMed

    Kunikata, Satoru; Fukuda, Makoto; Yamamoto, Ken-ichiro; Yagi, Yutaka; Matsuda, Masato; Sakai, Kiyotaka

    2009-01-01

    Dialysis fluid flow and mass transfer rate of newly developed dialyzers were evaluated using mass transfer correlation equations of dialysis fluid-side film coefficient. Aqueous creatinine clearance and overall mass transfer coefficient for APS-15S (Asahi Kasei Kuraray) as a conventional dialyzer, and APS-15SA (Asahi Kasei Kuraray), PES-150Salpha (Nipro), FPX140 (Fresenius), and CS-1.6U (Toray) as newly developed dialyzers were obtained at a blood-side flow rate (QB) of 200 ml/min, dialysis fluid-side flow rates (QD) of 200-800 ml/min and a net filtration rate (QF) of 0 ml/min. Mass transfer correlation equations between Sherwood number (Sh) containing dialysis fluid-side mass transfer film coefficient and Reynolds number (Re) were formed for each dialyzer. The exponents of Re were 0.62 for APS-15S whereas approximately 0.5 for the newly developed dialyzers. The dialysis fluid-side mass transfer film coefficients of the newly developed dialyzers were higher than those of the conventional dialyzer. Based on the mass transfer correlation equations, introduction of short taper, full baffle of dialyzer jacket and further wave-shaped hollow fiber improves the dialysis fluid flow of the newly developed dialyzers.

  18. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  19. Sediment mass-flow processes on a depositional lobe, outer Mississippi Fan

    SciTech Connect

    Schwab, W.C.; Twichell, D.C.; Lee, H.J.; Nelson, C.H.; McArthur, W.G.; Locat, J.; Kenyon, N.H.

    1996-09-01

    As exploration for hydrocarbons moves toward subtler traps, channel-end sand deposits of deep-sea fans and related turbidite systems are among the key targets. SeaMARC 1A sidescan-sonar imagery and cores from the distal reaches of a depositional lobe on the Mississippi Fan show that channelized mass flow as the dominant mechanism for transport of silt and sand during the formation of this part of the fan. Sediments in these flows were rapidly deposited once outside of their confining channels. The depositional lobe is formed of a series of long, narrow sublobes composed of thin-bedded turbidites (normally graded siliciclastic sand and silt, 20 cm thick on average), debris-flow deposits (soft clay clasts up to 5 cm in diameter in a siliciclastic silt matrix, 48 cm thick on average), and background-sedimentation hemipelagic muds. The mass flows most likely originated from slope failure at the head of the Mississippi Canyon or on the outer continental shelf and flowed approximately 500 km to the distal reaches of the fan, with debris flow being the dominant flow type. An analysis that uses the geometry of the confining channels and strength properties of the debris-flow material shows that these thin debris flows could have traveled hundreds of kilometers on extremely small sea-floor slopes at low velocities if the flowing medium behaved as Bingham fluids and were steady-state phenomena.

  20. Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    1997-01-01

    Geologic mapping and crater counting in Chryse and Acidalia Planitiae (GAP) reveal five major sedimentary deposits of Hesperian to Early Amazonian age, including (1) a mass flow deposited during the Early Hesperian near Deuteronilus Mensae (northeast of the map region) that may have resulted from the carving of Kasei Valles, >3000 km southwest of the exposed part of the deposit; (2) knobby plains material consisting of channel (likely; from Simud and Tiu Valles and possibly Ares and Shalbatana Valles) and mass-wasting deposits in central and eastern CAP; (3) material largely from Maja and Ares Valles emplaced in at least western and southern CAP (outcrops in southern Chryse Planitia developed thermokarst); (4) a thin mass flow covering much of southern Chryse Planitia that emanated from Simud and Tiu Valles; and (5) a thick, extensive (perhaps >3500 km across) mass flow deposit in central and northern CAP derived from accumulation and backflow of the preceding thin mass flow or perhaps melting of polar deposits. Other possible deposits may not be recognizable owing to burial by younger materials or a lack of morphologic signature. Various associated landforms appear to be consistent with the mass flow interpretations, including lobate and linear scarps along deposit edges, fractures related to desiccation of thick sediments, troughs, and ridges near the edges of the deposit indicative of secondary mass movement and deformation, pitted domes and fissure-fed flows possibly formed by sedimentary (mud) eruptions, and longitudinal channel grooves perhaps formed by roller vortices. No convincing evidence for paleoshorelines or stagnant ice sheets is found in CAP. These findings suggest that mass flow and hyperconcentrated flooding may have been the predominant processes of outflow-channel dissection in CAP. Elsewhere in the northern plains, similar landforms are prevalent. The mass flow interpretation does not require either multiple episodes of extraordinarily high

  1. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

  2. On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer.

    PubMed

    Bristow, Tony W T; Ray, Andrew D; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed. PMID:25106707

  3. Method and apparatus for measuring mass flow and energy content using a differential pressure meter

    SciTech Connect

    Vander Heyden, W.H.

    1993-07-13

    An apparatus is described for measuring a ratio of a mass flow rate of a pipeline gas flowing through a pipeline compared to a mass flow rate of a sample gas tapped from the pipeline, the pipeline having a first device means for producing a pipeline gas pressure differential, the apparatus comprising: a second device means for producing a sample gas pressure differential while maintaining the sample gas at substantially the same temperature as the pipeline gas; means for routing the sample gas to the second device means; means for measuring the pipeline gas pressure differential as the pipeline gas flows through the first device means; means for measuring the sample gas pressure differential as the sample gas flows through the second device means; a flow controlling means located downstream of the second device means for maintaining a sample gas flow rate through the second device means independent of the pipeline gas pressure differential; and a control means for comparing the sample gas pressure differential with the pipeline gas pressure differential in order to obtain the mass flow rate ratio. A method is described for using the above apparatus.

  4. Wheel Abrasion Experiment Conducted on Mars

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1998-01-01

    Sojourner rover showing Lewis' wheel abrasion experiment. The Mars Pathfinder spacecraft soft-landed on Mars on July 4, 1997. Among the many experiments on its small Sojourner rover are three technology experiments from the NASA Lewis Research Center, including the Wheel Abrasion Experiment (WAE). The WAE was designed, built, delivered, and operated on Mars by a team of engineers and scientists from Lewis' Photovoltaics and Space Environments Branch. This experiment collected data to assess wheel surface wear on the Sojourner. It used a specially designed rover wheel, with thin films (200 to 1000 angstroms) of aluminum, nickel, and platinum deposited on black, anodized aluminum strips attached to the rover's right center wheel. As the wheel spun in the Martian soil, a photovoltaic sensor monitored changes in film reflectivity. These changes indicated abrasion of the metal films by Martian surface material. Rolling wear data were accumulated by the WAE. Also, at frequent intervals, all the rover wheels, except the WAE test wheel, were locked to hold the rover stationary while the test wheel alone was spun and dug into the Martian regolith. These tests created wear conditions more severe than simple rolling. The WAE will contribute substantially to our knowledge of Martian surface characteristics. Marked abrasion would indicate a surface composed of hard, possibly sharply edged grains, whereas lack of abrasion would suggest a somewhat softer surface. WAE results will be correlated with ground simulations to determine which terrestrial materials behave most like those on Mars. This knowledge will enable a deeper understanding of erosion processes on Mars and the role they play in Martian surface evolution. Preliminary results show that electrostatic charging of the rover wheels sometimes caused dust to accumulate on the WAE wheel, making interpretation of the reflectance data problematic. If electrostatic charging is the mechanism for dust attraction, this indicates

  5. A fluidic device for measuring constituent masses of a flowing binary gas mixture

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1973-01-01

    A continuous reading mass flow device was developed to measure the component flow of a binary gas mixture. The basic components of the device are a fluidic humidity sensor and a specially designed flow calorimeter. These components provide readings of gas mixture ratio, mixture heat capacity, heat dissipated by the calorimeter and the gas temperature rise across the calorimeter. These parameter values, applied in the general definitions of specific heat capacity and the heat capacity of a gas mixture, produce calculated component flow rates of the mixture being metered. A test program was conducted to evaluate both the steady state and dynamic performance of the device.

  6. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests

    SciTech Connect

    Gong, R; Lu, C; Wu, Wei-min; Cheng, H.; Gu, Baohua; Watson, David B; Criddle, Craig; Kitanidis, Peter K.; Brooks, Scott C; Jardine, Philip M; Luo, Jian

    2010-06-01

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  7. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D B; Criddle, C S; Kitanidis, P K; Brooks, S C; Jardine, P M; Luo, J

    2010-09-20

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  8. Liquid phase controlled mass transfer in gas-liquid slug flow at low Reynolds numbers

    SciTech Connect

    Elperin, T.; Fominykh, A.

    1995-09-01

    A model of mass transfer during isothermal gas absorption from slugs rising in a channel filled with liquid at small Reynolds numbers is suggested. Fluid flow in the region below the bottom of gas slugs is assumed laminar and therefore vortex rings are not formed at the trailing edge of a gas slug. It is assumed also that a flow of dissolved gas can be described by a point source of mass which is located at the bottom of a gas slug. Intensity of this point source of mass at the bottom of the first gas slug emerging into a pure liquid is equal to the total mass flux from the surface of the first slug. The second gas slug emerges into a liquid with concentration distribution formed by a point source of mass at the bottom of the first gas slug. The third gas slug emerges in a liquid with a concentration distribution formed by a point source of mass at the bottom of the second gas slug and so on. Using this model a recurrent relation for mass flux from the n-th gas slug is derived and the total mass flux from n gas slugs in a gas-liquid slug flow is determined.

  9. Abrasion-Resistant Technology and its Prospect for CFB Boilers

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y. J.; Wang, L. J.; Liu, S. H.; Dou, Q. R.

    In recent years, CFB boilers (CFBB) have been widely used in the commercial power plants due to its environmental benefits, high combustion efficiency, wide coal flexibility, and some other advantages. At the same time, the abrasion problem, the greatest weakness of this kind of boiler, has been gradually exposed in its application process. The abrasion, particularly on key parts such as the heating surface of water-cooled wall, furnace corners, separator entrance, seriously restricts the long-period operation ability of the CFBB. This article discusses current development status for various abrasion resistant refractory materials used in a CFBB. Some comments are provided for developing new high-performance abrasion resistant refractory materials and rapid-repaired materials according to the abrasion principle and the abrasion on different parts, as well as the economical and environmental requirements for the material. The abrasion solution and operation period of CFBB can be better improved given realization.

  10. The effect of bleaching on toothbrush abrasion of resin composites

    PubMed Central

    Hajizadeh, Hila; Ameri, Hamideh; Eslami, Samaneh; Mirzaeepoor, Behnam

    2013-01-01

    Aim: This experimental study was designed to focus on the effects of bleaching on toothbrush abrasion in three types of composites with different filler size. Materials and Methods: Forty eight disks were prepared from three types of composite and divided into 6 groups. In the first three groups the abrasion test was done. The remaining groups were bleached and the abrasion test was performed. The weight of the samples before and after abrasion was measured. Statistical analysis was done with one-way ANOVA and Duncan test. Results: There was a significant difference in abrasion of composites with different filler size (P < 0.05). The most amount of abrasion was observed in Z100 after being bleached. An increase in abrasion was noticed in all three types of tested composite after bleaching. Conclusion: According to the findings, it is suggested to use a nano filled resin composite for restoration if the bleaching treatment is required. PMID:23349570

  11. Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima

    PubMed Central

    Furch, Alexandra C. U.; Zimmermann, Matthias R.; Will, Torsten; Hafke, Jens B.; van Bel, Aart J. E.

    2010-01-01

    The relationships between damage-induced electropotential waves (EPWs), sieve tube occlusion, and stop of mass flow were investigated in intact Cucurbita maxima plants. After burning leaf tips, EPWs propagating along the phloem of the main vein were recorded by extra- and intracellular microelectrodes. The respective EPW profiles (a steep hyperpolarization/depolarization peak followed by a prolonged hyperpolarization/depolarization) probably reflect merged action and variation potentials. A few minutes after passage of the first EPW peak, sieve tubes gradually became occluded by callose, with maximum synthesis occurring ∼10 min after burning. Early stop of mass flow, well before completion of callose deposition, pointed to an occlusion mechanism preceding callose deposition. This obstruction of mass flow was inferred from the halt of carboxyfluorescein movement in sieve tubes and intensified secretion of aqueous saliva by feeding aphids. The early occlusion is probably due to proteins, as indicated by a dramatic drop in soluble sieve element proteins and a simultaneous coagulation of sieve element proteins shortly after the burning stimulus. Mass flow resumed 30–40 min after burning, as demonstrated by carboxyfluorescein movement and aphid activities. Stop of mass flow by Ca2+-dependent occlusion mechanisms is attributed to Ca2+ influx during EPW passage; the reversibility of the occlusion is explained by removal of Ca2+ ions. PMID:20584788

  12. Anatomy and function relation in the coronary tree: from bifurcations to myocardial flow and mass.

    PubMed

    Kassab, Ghassan S; Finet, Gerard

    2015-01-01

    The study of the structure-function relation of coronary bifurcations is necessary not only to understand the design of the vasculature but also to use this understanding to restore structure and hence function. The objective of this review is to provide quantitative relations between bifurcation anatomy or geometry, flow distribution in the bifurcation and degree of perfused myocardial mass in order to establish practical rules to guide optimal treatment of bifurcations including side branches (SB). We use the scaling law between flow and diameter, conservation of mass and the scaling law between myocardial mass and diameter to provide geometric relations between the segment diameters of a bifurcation, flow fraction distribution in the SB, and the percentage of myocardial mass perfused by the SB. We demonstrate that the assessment of the functional significance of an SB for intervention should not only be based on the diameter of the SB but also on the diameter of the mother vessel as well as the diameter of the proximal main artery, as these dictate the flow fraction distribution and perfused myocardial mass, respectively. The geometric and flow rules for a bifurcation are extended to a trifurcation to ensure optimal therapy scaling rules for any branching pattern.

  13. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil.

    PubMed

    Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny

    2014-02-01

    Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10(-8) and 3 × 10(-7)  m s(-1) , thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition.

  14. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil.

    PubMed

    Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny

    2014-02-01

    Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10(-8) and 3 × 10(-7)  m s(-1) , thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition. PMID:24134319

  15. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    PubMed Central

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-01-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804

  16. A novel approach to abrasion resistance

    SciTech Connect

    Steele, W.A.; Mohr, P.B.; Leider, H.R.; Hirschfeld, T.B.

    1988-03-01

    The high abrasion and impact loads characteristic of many technologies require frequent maintenance or special materials. Conventional approaches to protection have used either extremely hard coatings or complaint elastomeric coatings. The former are typically ceramic or ceramic-like surfaces produced by direct deposition or by in situ formation by oxidation, carburization or nitriding. Ceramic coatings are very good against abrasion, but are vulnerable to impact damage. Elastomeric coatings have excellent impact resistance and are capable of withstanding deformation; however, they are limited in thermal range and chemical resistance. It is possible to combine the desirable properties of both types by using ''hair,'' a structure in which an extremely hard material can be simultaneously elastic and compliant by virture of a very high L/D ratio. We have demonstrated the good performance of carbon fiber ''hair'' in resisting damage from impacting particles and have identified a probable failure mechanism. 7 refs., 6 figs., 1 tab.

  17. Loose abrasive slurries for optical glass lapping

    SciTech Connect

    Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier

    2010-10-20

    Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

  18. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  19. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  20. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.

    PubMed

    Otte, T; Pasch, H; Macko, T; Brüll, R; Stadler, F J; Kaschta, J; Becker, F; Buback, M

    2011-07-01

    The molar mass distribution (MMD) of synthetic polymers is frequently analyzed by size exclusion chromatography (SEC) coupled to multi angle light scattering (MALS) detection. For ultrahigh molar mass (UHM) or branched polymers this method is not sufficient, because shear degradation and abnormal elution effects falsify the calculated molar mass distribution and information on branching. High temperatures above 130 °C have to be applied for dissolution and separation of semi-crystalline materials like polyolefins which requires special hardware setups. Asymmetrical flow field-flow fractionation (AF4) offers the possibility to overcome some of the main problems of SEC due to the absence of an obstructing porous stationary phase. The SEC-separation mainly depends on the pore size distribution of the used column set. The analyte molecules can enter the pores of the stationary phase in dependence on their hydrodynamic volume. The archived separation is a result of the retention time of the analyte species inside SEC-column which depends on the accessibility of the pores, the residence time inside the pores and the diffusion ability of the analyte molecules. The elution order in SEC is typically from low to high hydrodynamic volume. On the contrary AF4 separates according to the diffusion coefficient of the analyte molecules as long as the chosen conditions support the normal FFF-separation mechanism. The separation takes place in an empty channel and is caused by a cross-flow field perpendicular to the solvent flow. The analyte molecules will arrange in different channel heights depending on the diffusion coefficients. The parabolic-shaped flow profile inside the channel leads to different elution velocities. The species with low hydrodynamic volume will elute first while the species with high hydrodynamic volume elute later. The AF4 can be performed at ambient or high temperature (AT-/HT-AF4). We have analyzed one low molar mass polyethylene sample and a number of

  1. Mass accretion flows in the high-mass star forming complex NGC 6334

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Schilke, P.; Zernickel, A.; Schmiedeke, A.; Möller, Th.; Qin, S.-L.

    2016-05-01

    The formation of high-mass stars is one of the major topics of astrophysical research, in particular the process of accretion from large-scale clouds down to small-scale cores. We have selected the nearby, filamentary, high-mass star forming complex NGC 6334 to study the gas velocity at different scales and probe the infall rates onto the protostellar cores embedded in the NGC 6334-I and I(N) clusters. This study makes use of single-dish and interferometric submillimeter observations, complemented with 3D numerical non-LTE radiative transfer modeling. We measure a mass accretion rate of 10-5 M⊙ yr-1 throughout the filament increasing up to 10-3 M⊙ yr-1 towards the densest regions where high-mass stars are forming. At smaller scales, our 3D model is consistent with accretion rates of 10-3 M⊙ yr-1 towards the clusters, and 10-4 M⊙ yr-1 onto the protostars.

  2. Circular Signs of the Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by Mars Exploration Rover Opportunity's front hazard-avoidance camera, providing a circular sign of the success of the rover's first grinding of a rock. The round, shallow hole seen in this image is on a rock dubbed 'McKittrick,' located in the 'El Capitan' area of the larger outcrop near Opportunity's landing site.

    Opportunity used its rock abrasion tool to grind off a patch of rock 45.5 millimeters (1.8 inches) in diameter during the 30th martian day, or sol, of its mission (Feb. 23, 2004). The grinding exposed fresh rock for close inspection by the rover's microscopic imager and two spectrometers located on its robotic arm. The Honeybee Robotics team, which designed and operates the rock abrasion tool, determined the depth of the cut at 'McKittrick' to be 4.4 millimeters (0.17 inches) deep.

    On sol 34 (Feb. 27, 2004), the rover is scheduled to grind into its second target on the 'El Capitan' area, a rock dubbed 'Guadalupe' in the upper middle part of this image. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  3. Total variation diminishing and mass conservative implementation of hydrological flow routing

    NASA Astrophysics Data System (ADS)

    Schwanenberg, Dirk; Alvarado Montero, Rodolfo

    2016-08-01

    Hydrological flow routing methods are widely used as components of distributed hydrological models and in operational flow forecasting systems. The paper presents a novel approach to reformulate several of these routing schemes as a cascade of implicit pool routing models. Its numerical implementation is mass conservative and total variation diminishing, i.e. the solution does not oscillate or overshoot, for arbitrary time steps. It is shown that these numerical properties are achieved regardless of the accuracy of the scheme and its physical routing characteristics. Numerical experiments compare the computational performance and accuracy of the novel, reformulated approach with existing schemes including linear reservoir routing, nonlinear reservoir routing, and the Muskingum-Cunge method. We show that the approach can reproduce the original schemes, if these are already mass conservative, otherwise fixes the mass conservation in the reformulated version and improves the solution at sharp gradients by suppressing numerical oscillations, overshooting or negative flows.

  4. On the optimum fields and bounds for heat and mass transport in two turbulent flows

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay

    2011-12-01

    The optimum theory of turbulence is one of the few tools for obtaining analytical results for transport of heat, mass or momentum by turbulent flows. This is achieved by asymptotic theory which is valid for large values of the characteristic numbers of the investigated fluid system. For small and intermediate values of the Reynolds, Rayleigh or Taylor numbers we have to solve numerically the Euler-Lagrange equations of the corresponding variational problems. Below we discuss numerical results from the application of the Howard-Busse method of the optimum theory of turbulence to two problems: convective heat transport in non-rotating and rotating fluid layer and mass transport in pipe flow. We obtain profiles of the optimum fields and discuss the evolution of the thickness of the boundary layers as well as present our first results about the lower bound on the mass transport in a pipe flow.

  5. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  6. The respective roles of bulk friction and slip velocity during a granular mass flow

    NASA Astrophysics Data System (ADS)

    Staron, Lydie

    2016-04-01

    Catastrophic granular mass flows form an important natural hazard. Mitigation has motivated numerous studies on the properties of natural granular flows, and in particular, their ability to travel long distances away from the release point. The mobility of granular flows is commonly characterised through the definition of rheological properties and effective friction. Yet, it is widely accepted that the description in term of effective friction may include various lubrication effects, softening at the base of the flow and large slip velocities being a most likely one. In this case, flow bulk properties may obliterate the flow boundary conditions. In this contribution, we investigate how disentangling bulk properties from boundary conditions may improve our understanding of the flow. Using discrete simulations, we induce increasing slip velocities in different flow configurations. We show that increased mobility may be achieved without changing bulk properties. The results are interpreted in terms of a Robin-Navier slip condition and implemented in a continuum Navier-Stokes solver. We quantify the respective role of rheological bulk properties and boundary conditions in the general behaviour of a transient mass flow. We show that omitting the description of boundary conditions leads to misinterpretation of the flow properties. The outcome is discussed in terms of models reliability. References P.-Y. Lagrée et al, The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with the mu(I) rheology, J. Fluid Mech. 686, 378-408 (2011) L. Staron and E. Lajeunesse, Understanding how the volume affects the mobility of dry debris flows, Geophys. Res. Lett. 36, L12402 (2009) L. Staron, Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int. 172, 455-463 (2008)

  7. A Twophase Multirate-Mass Transfer Model for Flow and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Dentz, M.; Tecklenburg, J.; Neuweiler, I.; Carrera, J.

    2015-12-01

    We present an upscaled non-local model for two-phase flow and transport in highly heterogeneous porous media. The media under consideration are characterized by sharp contrasts in the hydraulic properties typical for fractured porous media, for example. A two-scale expansion gives an upscaled flow and transport formulation that models multiratemass transfer between mobile (fracture) and immobile (matrix) medium portions. The evolution of saturation due to viscous dominated flow in the mobile domain and mass exchange with the immobile zones through capillary countercurrent flow. The medium heterogeneity is mapped onto the mass transfer parameters, which are encoded in a memory functionthat describes the non-local flux between mobile and immobile zones. The upscaled model is parameterized by the medium heterogeneity and the distribution of hydraulic parameters. Breakthrough of the displaced fluidshows characteristic heavy tails due to fluid retention in immobile zones.

  8. Taphonomic implications from Upper Triassic mass flow deposits: 2-dimensional reconstructions of an ammonoid mass occurrence (Carnian, Taurus Mountains, Turkey)

    NASA Astrophysics Data System (ADS)

    Mayrhofer, Susanne; Mayrhofer, Susanne

    2014-10-01

    Ammonoid mass occurrences of Late Triassic age were investigated in sections from A şağlyaylabel and Yukarlyaylabel, which are located in the Taurus Platform-Units of eastern Turkey. The cephalopod beds are almost monospecific, with > 99.9 % of individuals from the ceratitic genus Kasimlarceltites, which comprises more than hundreds of millions of ammonoid specimens. The ontogenetic composition of the event fauna varies from bed to bed, suggesting that these redeposited shell-rich sediments had different source areas. The geographical extent of the mass occurrence can be traced over large areas up to 10 km2. Each of the Early Carnian (Julian 2) ammonoid mass occurrences signifies a single storm (e.g. storm-wave action) or tectonic event (e.g. earthquake) that caused gravity flows and turbidity currents. Three types of ammonoid accumulation deposits are distinguished by their genesis: 1) matrix-supported floatstones, produced by low density debris flows, 2) mixed floatstones and packstones formed by high density debris flows, and 3) densely ammonoid shell-supported packstones which result from turbidity currents. Two-dimensional calculations on the mass occurrences, based on sectioning, reveal aligned ammonoid shells, implying transport in a diluted sediment. The ammonoid shells are predominantely redeposited, preserved as mixed autochthonous/parautochnonous/ allochthonous communities based on biogenic and sedimentological concentration mechanisms ( = in-situ or post-mortem deposited). This taphonomic evaluation of the Kasimlarceltites beds thus reveals new insights into the environment of deposition of the Carnian section, namely that it had a proximal position along a carbonate platform edge that was influenced by a nearby shallow water regime. The Kasimlarceltites-abundance zone is a marker-zone in the study area, developed during the drowning of a shallow water platform, which can be traceable over long distances.

  9. Combined mass and heat transfer during nonisothermal absorption in gas-liquid slug flow

    SciTech Connect

    Elperin, T.; Fominykh, A.

    1995-03-01

    A model of combined mass and heat transfer during nonisothermal gas absorption from a slug rising, in a channel filled with liquid is suggested. The expressions for coefficients of heat and mass transfer from a single slug are derived in the approximation of the thin concentration and heat boundary layers in a liquid phase. Under the assumptions of a perfect mixing of the dissolved -as in liquid plugs and uniform temperature distribution in liquid plugs, recurrent relations for the dissolved gas concentration and temperature in the n-th liquid plug and mass and heat fluxes from the n-th gas slug are derived. The total mass and heat fluxes in a gas-liquid slug flow are determined. In the limiting case of absorption without heat release the derived formulas recover the expressions for isothermal absorption in a gas-liquid slug flow.

  10. Nonequilibrium ionization due to thermal diffusion and mass flows. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1980-01-01

    Recent calculations of diffusion coefficients are used in the continuity equation to compute ion populations of carbon in the solar transition region. Thermal diffusion causes strong departures from ionization equilibrium in the region where the temperature gradient is steepest. Mass-conserving flows are also included in our calculations. These dominate over thermal diffusion depending on the magnitude of the flows and also lead to departures from ionization equilibrium. These results have important implications for the interpretation of EUV line emission.

  11. Reactor mass flow data base prepared for the nonproliferation alternative systems assessment program

    SciTech Connect

    Primm III, R.T.C

    1981-02-01

    This report presents charge and discharge mass flow data for reactors judged to have received sufficient technical development to enable them to be demonstrated or commercially available by the year 2000. Brief descriptions of the reactors and fuel cycles evaluated are presented. A discussion of the neutronics methods used to produce the mass flow data is provided. Detailed charge and discharge fuel isotopics are presented. U/sub 3/O/sub 8/, separative work, and fissile material requirements are computed and provided for each fuel cycle.

  12. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOEpatents

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  13. Mass on a spring map for the dripping faucet at low flow rates.

    PubMed

    Renna, L

    2001-10-01

    An improved discrete map for the mass-on-a-spring model for the dripping faucet is used to reproduce the evolution of experimental dripping spectra at low flow rates. If an inverse dependence of drop mass on flow rate is supposed, a repeated evolution from period 1 to chaos is obtained. A comparison between discrete relaxation oscillator attractors and dissipative type-web map attractors is carried out. It is found that a dissipative web map accounts for some characteristics of the relaxation oscillator map, thus giving further tools for investigation.

  14. Mass flow rate and pressure distribution of gas through three-dimensional micro-channels

    SciTech Connect

    Jiang, Jianzheng; Fan, Jing

    2014-12-09

    An effective method to predict the mass flow rate and pressure distribution of gas through three dimensional micro-channels with different cross-section shapes has been proposed. For rectangular cross sections often employed in experiment, the present solutions versus measured data of Zohar et al. (2002) show that the side walls significantly affect the mass flow rates as the aspect ratio is smaller than 10, whereas the non-dimensional pressure distributions, mainly determined by the inlet-to-outlet pressure ratio, are insensitive to the aspect ratio.

  15. Mass Transport and Shear Stress as Mediators of Flow Effects on Atherosclerotic Plaque Origin and Growth

    NASA Astrophysics Data System (ADS)

    Gorder, Riley; Aliseda, Alberto

    2009-11-01

    The carotid artery bifurcation (CAB) is one of the leading site for atherosclerosis, a major cause of mortality and morbidity in the developed world. The specific mechanisms by which perturbed flow at the bifurcation and in the carotid bulge promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered dominant factors. Shear stress causes restructuring of endothelial cells at the arterial wall which changes the wall's permeability. Long residence times are associated with enhanced mass transport through increased diffusion of lipids and white blood cells into the arterial wall. Although momentum and mass transfer are traditionally coupled by correlations similar to Reynolds Analogy, the complex flow patterns present in this region due to the pulsatile, transitional, detached flow associated with the complex geometry makes the validity of commonly accepted assumptions uncertain. We create solid models of the CAB from MRI or ultrasound medical images, build flow phantoms on clear polyester resin and use an IOR matching, blood mimicking, working fluid. Using PIV and dye injection techniques the shear stress and scalar transport are experimentally investigated. Our goal is to establish a quantitative relationship between momentum and mass transfer under a wide range of physiologically normal and pathological conditions.

  16. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  17. Defining an Abrasion Index for Lunar Surface Systems as a Function of Dust Interaction Modes and Variable Concentration Zones

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and subcategorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include: (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  18. A new two-phase erosion-deposition model for mass flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  19. A quantitative study on accumulation of age mass around stagnation points in nested flow systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Ge, Shemin; Cao, Guo-Liang; Hou, Guang-Cai; Hu, Fu-Sheng; Wang, Xu-Sheng; Li, Hailong; Liang, Si-Hai

    2012-12-01

    The stagnant zones in nested flow systems have been assumed to be critical to accumulation of transported matter, such as metallic ions and hydrocarbons in drainage basins. However, little quantitative research has been devoted to prove this assumption. In this paper, the transport of age mass is used as an example to demonstrate that transported matter could accumulate around stagnation points. The spatial distribution of model age is analyzed in a series of drainage basins of different depths. We found that groundwater age has a local or regional maximum value around each stagnation point, which proves the accumulation of age mass. In basins where local, intermediate and regional flow systems are all well developed, the regional maximum groundwater age occurs at the regional stagnation point below the basin valley. This can be attributed to the long travel distances of regional flow systems as well as stagnancy of the water. However, when local flow systems dominate, the maximum groundwater age in the basin can be located around the local stagnation points due to stagnancy, which are far away from the basin valley. A case study is presented to illustrate groundwater flow and age in the Ordos Plateau, northwestern China. The accumulation of age mass around stagnation points is confirmed by tracer age determined by 14C dating in two boreholes and simulated age near local stagnation points under different dispersivities. The results will help shed light on the relationship between groundwater flow and distributions of groundwater age, hydrochemistry, mineral resources, and hydrocarbons in drainage basins.

  20. Laboratory procedures and data reduction techniques to determine rheologic properties of mass flows

    USGS Publications Warehouse

    Holmes, R.R., Jr.; Huizinga, R.J.; Brown, S.M.; Jobson, H.E.

    1993-01-01

    Determining the rheologic properties of coarse- grained mass flows is an important step to mathematically simulate potential inundation zones. Using the vertically rotating flume designed and built by the U.S. Geological Survey, laboratory procedures and subsequent data reduction have been developed to estimate shear stresses and strain rates of various flow materials. Although direct measurement of shear stress and strain rate currently (1992) are not possible in the vertically rotating flume, methods were derived to estimate these values from measurements of flow geometry, surface velocity, and flume velocity.

  1. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    PubMed Central

    Ersöz, Gözde; Altiparmak, Ersin; Aşçı, F. Hülya

    2016-01-01

    The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI). 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differences in behavioral regulations, dispositional flow and social physique anxiety of exercise participants with regards to BMI. In summary, the findings demonstrate that normal weighted participants exercise for internal reasons while underweighted participants are amotivated for exercise participation. Additionally, participants who are underweight had higher dispositional flow and lower social physique anxiety scores than other BMI classification. Key points Normal weighted participants exercise for internal reasons. Underweighted participants are amotivated for exercise participation. Underweighted participants had higher dispositional flow. Underweighted participants have lower social physique anxiety scores than normal weighted, overweight and obese participants. PMID:27274667

  2. Study of mass consistency LES/FDF techniques for chemically reacting flows

    NASA Astrophysics Data System (ADS)

    Celis, Cesar; Figueira da Silva, Luís Fernando

    2015-07-01

    A hybrid large eddy simulation/filtered density function (LES/FDF) approach is used for studying chemically reacting flows with detailed chemistry. In particular, techniques utilised for ensuring a mass consistent coupling between LES and FDF are discussed. The purpose of these techniques is to maintain a correct spatial distribution of the computational particles representing specified amounts of fluid. A particular mass consistency technique due to Y.Z. Zhang and D.C. Haworth (A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, J. Comput. Phys. 194 (2004), pp. 156-193) and their associated algorithms are implemented in a pressure-based computational fluid dynamics code suitable for the simulation of variable density flows, representative of those encountered in actual combustion applications. To assess the effectiveness of the referenced technique for enforcing LES/FDF mass consistency, two- and three-dimensional simulations of a temporal mixing layer using detailed and reduced chemistry mechanisms are carried out. The parametric analysis performed focuses on determining the influence on the level of mass consistency errors of parameters such as the initial number of particles per cell and the initial density ratio of the mixing layers. Particular emphasis is put on the computational burden that represents the use of such a mass consistency technique. The results show the suitability of this type of technique for ensuring the mass consistency required when utilising hybrid LES/FDF approaches. The level of agreement of the computed results with experimental data is also illustrated.

  3. A review on nozzle wear in abrasive water jet machining application

    NASA Astrophysics Data System (ADS)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  4. Effect of virtual mass on the characteristics and the numerical stability in two-phase flows

    SciTech Connect

    No, H.C.; Kazimi, M.S.

    1981-04-01

    It is known that the typical six equation two-fluid model of the two-phase flow possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit and constitutes an ill-posed initial value problem. Among the suggestions to overcome these difficulties, one model for the virtual mass force terms were studied here, because the virtual mass represents real physical effects to accomplish the dissipation for numerical stability. It was found that the virtual mass has a profound effect upon the mathematical characteristic and numerical stability. Here a quantitative bound on the coefficient of the virtual mass terms was suggested for mathematical hyperbolicity and numerical stability. It was concluded that the finite difference scheme with the virtual mass model is restricted only by the convective stability conditions with the above suggested value.

  5. Mean Flow Velocities and Mass Transport for Equatorially-Trapped Water Waves with an Underlying Current

    NASA Astrophysics Data System (ADS)

    Henry, David; Sastre-Gomez, Silvia

    2016-04-01

    In this paper we present an analysis of the mean flow velocities, and related mass transport, which are induced by certain equatorially-trapped water waves. In particular, we examine a recently-derived exact and explicit solution to the geophysical governing equations in the {β} -plane approximation at the equator which incorporates a constant underlying current.

  6. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  7. Effects of orbit squeezing on poloidal mass flow and bootstrap current in tokamak plasmas

    SciTech Connect

    Shaing, K.C. ); Hsu, C.T. ); Hazeltine, R.D. )

    1994-10-01

    It is shown, by solving the drift kinetic equation, that the asymptotic values of the poloidal mass flow and the bootstrap current in the banana regime of large-aspect-ratio tokamak plasmas are not affected by orbit squeezing. However, because the definition of ion collisionality [upsilon][sub *[ital i

  8. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-09-08

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference.

  9. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  10. Differentiating organic from conventional peppermints using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...

  11. A new dimension to conservative dentistry: Air abrasion

    PubMed Central

    Hegde, Vivek S; Khatavkar, Roheet A

    2010-01-01

    Air abrasion dentistry has evolved over a period of time from a new concept of an alternative means of cavity preparation to an essential means of providing a truly conservative preparation for preservation of a maximal sound tooth structure. The development of bonded restorations in combination with air abrasion dentistry provides a truly minimal intervention dentistry. This article reviews the development of air abrasion, its clinical uses, and the essential accessories required for its use. PMID:20582212

  12. Predicting enhanced mass flow rates in gas microchannels using nonkinetic models.

    PubMed

    Dadzie, S Kokou; Brenner, Howard

    2012-09-01

    Different nonkinetic approaches are adopted in this paper towards theoretically predicting the experimentally observed phenomenon of enhanced mass flow rates accompanying pressure-driven rarefied gas flows through microchannels. Our analysis utilizes a full set of mechanically consistent volume-diffusion hydrodynamic equations, allowing complete, closed-form, analytical solutions to this class of problems. As an integral part of the analysis, existing experimental data pertaining to the subatmospheric pressure dependence of viscosity were analyzed. The several nonkinetic approaches investigated were (1) pressure-dependent viscosity exponent model, (2) slip-velocity models, and (3) volume diffusion model. We explored the ability to predict the gas's mass flow rate over the full range of Knudsen numbers, including furnishing a physically sound interpretation of the well-known Knudsen minimum observed in the mass flow rate. Matching of a pressure-dependent viscosity model, one that follows the standard temperature-viscosity power law and its supporting single momentum diffusion mechanism, did not allow an accurate interpretation of the data. Rather, matching of this model with the flow rate was found to mismatch the experimental pressure dependence of the viscosity. An additional transport mechanism model, one based on volume diffusion, offered a comprehensive understanding of the Knudsen minimum, while also resulting in excellent agreement with experimental data well into the transition regime (up to a Knudsen number of 5).

  13. Mass Conservative and Total Variation Diminishing Implementation of Various Hydrological Flow Routing Methods

    NASA Astrophysics Data System (ADS)

    Schwanenberg, Dirk; Alvarado Montero, Rodolfo

    2016-04-01

    Hydrological flow routing methods are widely used as components of distributed hydrological models and in operational flow forecasting systems, often in combination with data assimilation and predictive control techniques. The most popular ones such as the Muskingum-Cunge approach implement variable parameters to relate the storage to the topology of the river reach and numerical parameters of the schematization. Although this often increases the accuracy of the approach, it may also lead to mass errors and other numerical issues. Whereas fixes for the mass error has been previously discussed by several authors, the numerical robustness is still not properly addressed. We present a novel approach to reformulate hydrological routing schemes as a cascade of implicit pool routing models. Its numerical implementation is mass conservative and total variation diminishing, i.e. the solution does not oscillate or overshoot, for arbitrary time steps. It is shown that these numerical properties are achieved regardless of the accuracy of the scheme and its physical routing characteristics. Numerical experiments compare the computational performance and accuracy of the novel, reformulated approach with existing schemes including linear reservoir routing, nonlinear reservoir routing, and the original Muskingum-Cunge method. We show that the approach can reproduce the original schemes, if these are already mass conservative, otherwise fixes the mass conservation in the reformulated version and improves the solution at sharp gradients by suppressing numerical oscillations, overshooting or negative flows.

  14. A simulation of gas flow: The dependence of the tangential momentum accommodation coefficient on molecular mass

    NASA Astrophysics Data System (ADS)

    Lim, William W.; Suaning, Gregg J.; McKenzie, David R.

    2016-09-01

    The tangential momentum accommodation coefficient (TMAC) influences the rate of pressure driven flow of a gas in a channel. The manner in which TMAC depends on the molecular mass is of importance as it influences the extent to which gas flow rates are affected by their mass, but there are conflicting opinions in the literature concerning the extent and even the sign of this dependence. We simulate the flow of the noble gases He, Ne, Ar, Kr, and Xe using molecular dynamics with Lennard-Jones potentials. The interaction with the wall is made realistic by simulating five layers of mobile atoms and allowing for adsorbed gas on the wall. With increasing mass of the gas, the TMAC exhibits asymptotic behaviour in approaching the value assumed to apply for an entrapped atom. Either increasing or decreasing TMAC with respect to an increasing molecular mass is produced, depending on the assumed TMAC of an entrapped atom. This resolves a conflict in the literature, where both increasing and decreasing trends are observed with mass.

  15. Calibration of the NASA GRC 16 In. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2012-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 in. and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

  16. Calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2014-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

  17. Numerical Computation of Mass Transport in Low Reynolds Number Flows and the Concentration Boundary Layer

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Fuller, Nathaniel J.

    Understanding the physical mechanisms by which an individual cell interacts with its environment often requires detailed information about the fluid in which the cell is immersed. Mass transport between the interior of the cell and the external environment is influenced by the flow of the extracellular fluid and the molecular diffusivity. Analytical calculations of the flow field are challenging in simple geometries, and not generally available in more realistic cases with irregular domain boundaries. Motivated by these problems, we discuss the numerical solution of Stokes equation by implementing a Gauss-Seidel algorithm on a staggered computational grid. The computed velocity profile is used as input to numerically solve the advection-diffusion equation for mass transport. Special attention is paid to the case of two-dimensional flows at large Péclet number. The numerical results are compared with a perturbative analytical treatment of the concentration boundary layer.

  18. Low stress abrasive wear behavior of a hardfaced steel

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Prasad, B. K.; Jha, A. K.; Modi, O. P.; Das, S.; Yegneswaran, A. H.

    1998-04-01

    A plain carbon steel was overlayed with a wear-resistant hardfacing alloy by manual arc welding. Low stress abrasive wear tests were conducted with an ASTM rubber wheel abrasion tester using crushed silica and as the abrasive medium. The wear rate decreased with sliding distance, and there was an overall improvement in the abrasive wear resistance as a result of overlaying. The wear behavior of the samples has been discussed in terms of microstructural features while the examination of wear surface and subsurface regions provides insight into the wear mechanisms.

  19. Machining human dentin by abrasive water jet drilling.

    PubMed

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin.

  20. Machining human dentin by abrasive water jet drilling.

    PubMed

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin. PMID:24642975

  1. A chemical method for flow visualization and determination of local mass transfer

    NASA Astrophysics Data System (ADS)

    Kottke, V.

    A method for measuring local mass transfer is presented, and the physical and chemical concept behind the measuring technique for reaction gases, such as ammonia or methylamine, are discussed, based on absorption, chemical reactions, and coupled-color reactions. Flow visualization at surfaces of arbitrary shape is evident by the color intensity distribution, which corresponds to the locally transferred mass rate. The technique is characterized by its simple handling, good local accuracy, and high local resolution. As an example, the effects of turbulence intensity on the formation of longitudinal vortices in stagnation flows and on the length of separation bubbles for a flat plate with a semi-circular nose section are discussed. Finally the influence of concentration and the temperature boundary layer at separation on the maximum of mass or heat transfer is described.

  2. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  3. Analysis of hemodynamic fluid phase mass transport in a separated flow region.

    PubMed

    Lutostansky, Elizabeth M; Karner, Gerhard; Rappitsch, Gerhard; Ku, David N; Perktold, Karl

    2003-04-01

    The mass transfer behavior in the recirculation region downstream of an axisymmetric sudden expansion was examined. The Reynolds number, 500, and Schmidt number, 3200, were selected to model the mass transfer of molecules, such as ADP, in the arterial system. In a first step the transient mass transport applying zero diffusive flux at the wall was analyzed using experiments and two computational codes. The two codes were FLUENT, a commercially available finite volume method, and FTSP, a finite element code developed at Graz University of Technology. The comparison of the transient wall concentration values determined by the three methods was excellent and provides a measure of confidence for computational mass transfer calculations in convection dominated, separated flows. In a second step the effect of the flow separation on the stationary mass transport applying a permeability boundary condition at the water-permeable wall was analyzed using the finite element code FTSP. The results show an increase of luminal ADP surface concentration in the upstream and in the downstream tube of the sudden expansion geometry in the range of six and twelve percent of the bulk flow concentration. The effect of flow separation in the downstream tube on the wall concentration is a decrease of about ten percent of the difference between wall concentration and bulk concentration occurring at nearly fully developed flow at the downstream region at a distance of 66 downstream tube diameters from the expansion. The decrease of ADP flux into the wall is in the range of three percent of the flux at the downstream region. PMID:12751280

  4. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  5. Measuring mass flows in hermetically sealed MEMS and MOEMS to ensure device reliability

    NASA Astrophysics Data System (ADS)

    Kullberg, R. C.; Rossiter, D. J.

    2008-02-01

    Many MEMs and MOEMs devices require controlled ambient environments for successful operation. Controlled ambients are usually obtained via hermetic packaging. These controlled environments must first be obtained and then maintained to prevent their degradation over the device lifetime. Controlled ambients decay in quality over time due to various mechanisms including leaks, permeation, poor processing and outgassing of species like hydrogen, water and organics external and internal to the package. The key to controlling the process of degradation is to understand in a quantitative manner which species are present and their mass flow rates into the controlled ambient. The current work describes a new technique for determining these species and mass flow rates. This new technology provides tremendous sensitivity to package volumes < 0.01cc compared to standard quadrupole techniques, which are applicable to samples larger than 0.01 cc. The technology is based on a high speed, high mass resolution, and highly sensitive Time-Of-Flight (TOF) spectrometer to test the tiniest of devices with significant advancement in signal-to-noise ratios. Key operational parameters demonstrated include: - Spectra Acquisition speed: 1 full spectra every 20 μs. - Mass Range: mass 2 to 150 standard (2-500 capable) - Mass resolution: 0.1 AMU - Calibration Fixtures: 0.0001, 0.0005, 0.001, 0.005 and 0.01 cc - Sample temperature: 100°C standard (room temperature to 150°C capable).

  6. Fluid bed dryer efficient with abrasive copper concentrate

    SciTech Connect

    Marczeski, C.D.; Hodel, A.E.

    1985-11-01

    Thermally efficient dryers were needed to remove 11-12% moisture from very fine (70%, -325 mesh), copper concentrate at Asarco, Inc., in Hayden, AZ. More than 128 t/hr of the wet, dust-like material produced by the copper mine's grinders had to be made bone dry (0.1% moisture) before being fed to a flash smelting furnace. Two 12 ft diam fluidized bed dryers, each with a capacity of 64 wet t/hr, were installed to dry the copper concentrate. Each dryer's push/pull air system employs a 1250 hp fluidizing air fan to provide air at 80 in (wc) static pressure. A natural gas fired heater raises the air temperature to 600/sup 0/F to dry the dense (100 lb/cu ft bulk density) ore. The dense, wet copper concentrate is fed to the dryer from the top, countercurrent to the flow of the light, dry product. Drying begins when the wet feed reaches the fluidized bed of gravel rock. Lighter, dried material is conveyed by the air back to the top of the dryer and out through a duct to the baghouse. The throughput of the dryer is determined by the wetness of the concentrate and the temperature of the fluidizing air. Asarco, Inc. has found the fluid bed drying system simple and efficient to operate. Fuel gas consumption of the dryer is on the order of 1000 cu ft/ton of wet feed. The abrasion resistant lining provided in the dryer (a hard brick lining in the rock bed zone; castable refractory in the top and in the ducting) and ceramic tiles at the inlet of the dust collector have been effective in long term operation with the highly abrasive product.

  7. Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter

    NASA Astrophysics Data System (ADS)

    Sun, Zhiqiang

    2010-05-01

    Development of effective techniques for gas-liquid two-phase flow measurement is of interest to both academic research and industrial applications. This paper presents a novel approach to the measurement of the mass flow rate of homogeneous gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter. The Venturi tube and the vortex flowmeter were mounted in the same pipeline with a spacing interval of ten times the pipe's inner diameter. A measurement correlation was established based on the differential pressure generated across the Venturi tube and the frequency extracted from the vortex flowmeter signal. Experiments were conducted on a vertical upward gas-liquid two-phase flow rig under the bubble flow pattern, with the air mass flow rate from 0.2 × 10-3 to 3.2 × 10-3 kg s-1, the water mass flow rate from 3.3 to 5.2 kg s-1 and the volumetric void fraction from 0.004 to 0.246. The results show that the relative errors of the correlation for the mixture mass flow rate measurement were within ±5%, and the maximum standard deviation of the relative errors was 2.0%. This method provides a simple and practical solution to the mass flow measurement of homogeneous gas-liquid bubble flows.

  8. Evidence for enhanced dynamic flow in ionospheric holes from the Pioneer Venus Orbiter Neutral Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Niemann, H. B.

    1992-01-01

    Ion mode measurements made by the Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) for two ionospheric holes on orbit numbers 530 and 531 were used to find evidence for enhanced dynamic flow in ionospheric holes. The analysis of the spin modulation has provided measurements of one component of the ion drift in the hole regions. It was found that, inside the holes, the He(+)/O(+) ratio is enhanced relative to that occurring outside the holes. The in drift direction in the ecliptic plane for the hole regions was found to be consistent with downward ion flow (i.e., toward the planet) and, for one orbit examined without a hole, with upward ion flow at the approach of ionopause. The ONMS measurements in the hole and near the ionopause suggest that both areas are regions of enhanced dynamic flow.

  9. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  10. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  11. Results of the evaluation and preliminary validation of a primary LNG mass flow standard

    NASA Astrophysics Data System (ADS)

    van der Beek, Mijndert; Lucas, Peter; Kerkhof, Oswin; Mirzaei, Maria; Blom, Gerard

    2014-10-01

    LNG custody transfer measurements at large terminals have been based on ship tank level gauging for more than 50 years. Flow meter application has mainly been limited to process control in spite of the promise of simplified operations, potentially smaller uncertainties and better control over the measurements for buyers. The reason for this has been the lack of LNG flow calibration standards as well as written standards. In the framework of the EMRP1 ‘Metrology for LNG’ project, Van Swinden Laboratory (VSL) has developed a primary LNG mass flow standard. This standard is so far the only one in the world except for a liquid nitrogen flow standard at the National Institute of Standards and Technology (NIST). The VSL standard is based on weighing and holds a Calibration and Measurement Capability (CMC) of 0.12% to 0.15%. This paper discusses the measurement principle, results of the uncertainty validation with LNG and the differences between water and LNG calibration results of four Coriolis mass flow meters. Most of the calibrated meters do not comply with their respective accuracy claims. Recommendations for further improvement of the measurement uncertainty will also be discussed.

  12. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-06-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000-2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that

  13. Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.

    2009-01-01

    We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths

  14. MASS TRANSFER TO ROTATING DISKS AND ROTATING RINGS IN LAMINAR, TRANSITION, AND FULLY DEVELOPED TURBULENT FLOW

    SciTech Connect

    Law Jr., C.G.; Pierini, P.; Newman, J.

    1980-07-01

    Experimental data and theoretical calculations are presented for the mass-transfer rate to rotating disks and rotating rings when laminar, transition, and fully developed turbulent flow exist upon different portions of the surface. Good agreement of data and the model is obtained for rotating disks and relatively thick rotating rings. Results of the calculations for thin rings generally exceed the experimental data measured in transition and turbulent flow. A y{sup +{sup 3}} form for the eddy diffusivity is used to fit the data. No improvement is noticed with a form involving both y{sup +{sup 3}} and y{sup +{sup 3}}.

  15. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    SciTech Connect

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-02-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas (N/sub 2/O/sub 4/).

  16. Using stream sediment lithology to explore the roles of abrasion and channel network structure in shaping downstream sediment yields

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Smith, M. E.; Pitlick, J.

    2012-12-01

    Both the flux and characteristics of stream sediment evolve downstream in response to variations in sediment supply, abrasion rate, and channel network structure. We use a simple erosion-abrasion mass balance to model the downstream evolution of sediment flux in two adjacent watersheds draining differing mixtures of soft and resistant rock types in the northern Rocky Mountains. Measurements of bed sediment grain size and lithology are used in conjunction with measured bed load and suspended load sediment fluxes to constrain the model. The results show that the downstream evolution in bed load flux and composition can be strongly influenced by subtle differences in underlying geology, which shapes both the abrasion characteristics and travel path lengths of individual rock types. In the Big Wood basin, abrasion rapidly reduces the size of soft sedimentary and volcanic rocks exposed in headwater areas, concentrating resistant granitic rocks in the stream bed and depressing bed load in favor of suspended load. Alternatively, in the North Fork Big Lost basin, volcanic and sedimentary lithologies are exposed throughout the catchment, and the bed material becomes dominated by erodible but resistant quartzitic sandstones. The result is a much higher bed load flux best modeled with modest abrasion rates. In both cases, the best-fit model can reproduce within 5% the composition of the stream bed substrate using realistic erosion and abrasion parameters. The results also demonstrate a strong linkage between modern hillslopes and channel systems even in these formerly glaciated landscapes, as the sediment signature of the primary streams reflects the systematic tapping of distinct source areas. While this work shows promise, measurement of the spatial patterns in the size and composition of bed and suspended load fluxes at locations throughout a channel network would better elucidate that relative importance of supply, sorting, and abrasion processes.

  17. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a) General requirements—(1) Machine guarding. Abrasive wheels shall be used only on machines provided with... omitted; and (ii) The spindle end, nut, and outer flange may be exposed on machines designed as...

  18. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy

    PubMed Central

    PASCARETTI-GRIZON, Florence; MABILLEAU, Guillaume; CHAPPARD, Daniel

    2013-01-01

    Objectives The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Material and Methods Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Results Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Conclusion Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials. PMID:24212995

  19. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the... 29 Labor 8 2012-07-01 2012-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303...

  20. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the... 29 Labor 8 2013-07-01 2013-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303...

  1. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the... 29 Labor 8 2011-07-01 2011-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303...

  2. Soybean seedlings tolerate abrasion from air-propelled grit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New tools for controlling weeds would be useful for soybean production in organic systems. Air-propelled abrasive grit is one such tool that performs well for in-row weed control in corn, but crop safety in soybean is unknown. We examined responses to abrasion by corn-cob grit of soybean seedlings a...

  3. Magnetic scavengers as carriers of analytes for flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS).

    PubMed

    Cegłowski, Michał; Kurczewska, Joanna; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2015-09-01

    In this paper, a procedure for the preconcentration and transport of mixtures of acids, bases, and drug components to a mass spectrometer using magnetic scavengers is presented. Flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS) was used as an analytical method for identification of the compounds by thermal desorption from the scavengers. The proposed procedure is fast and cheap, and does not involve time-consuming purification steps. The developed methodology can be applied for trapping harmful substances in minute quantities, to transport them to specialized, remotely located laboratories.

  4. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  5. Studies on parametric optimization for abrasive water jet machining of Al7075-TiB2 in-situ composite

    NASA Astrophysics Data System (ADS)

    Kavya, J. T.; Keshavamurthy, R.; Pradeep Kumar, G. S.

    2016-09-01

    The study focuses on optimization and determination of significant process parameter for Abrasive Water Jet Machining of Al7075-TiB2metal matrix composite. Al-TiB2 metal matrix composite is synthesized by stir casting using in-situ technique. Optimization of machining parameters is done using Taguchi's L25orthogonal array for the experimental trials, with cutting speed, stand-off distance and Abrasive Flow rate as input parameters at five different levels. Analysis Of Variance (ANOVA) method is used for identifying the effect of machining parameters on volumetric material removal rate, surface roughness and dimensional accuracy. Then the results are validated by conducting verification experiments.

  6. Sintering Concepts - Atomistic Mass Flow, Microstructure Evolution, and Macroscopic Property Changes

    NASA Astrophysics Data System (ADS)

    German, R. M.

    2002-12-01

    Sintering is the process for bonding contacting particles by the application of thermal energy. At the atomistic level, mass flow is random, yet biased by subtle surface curvature gradients. During sintering microstructure changes become noticable and eventually bulk macroscopic property changes, such as strength increases and pore elimination, can be observed. Computer modeling of sintering has evolved to help understand and link the atomistic and macroscopic aspects. The recent emphasis in sintering models has forced theory to face up to some basic problems. From a perdictive view, the computer models are still behind observations, largely because of errors in our understanding of material property changes and the interactions between the evolving microstructure and kinetics of mass flow. New trends in sintering models will be introduced to show how accurate models require a firm grasp of these issues to predict bulk property changes. The identification of such problems sets in place an agenda for the sintering research community.

  7. Using the speed of sound for in situ calibration of mass flow controllers

    NASA Astrophysics Data System (ADS)

    Wajid, Abdul

    2000-09-01

    Mass flow controllers (MFCs) are widely used for precise delivery of process gases, particularly in semiconductor industry. Often a specific MFC is factory calibrated with an inert gas. In order to estimate the actual delivery of process gases, which may be corrosive and hazardous, a multiplier called the gas calibration factor is used. Moreover, a single MFC may be used to deliver multiple gases and its thermal characteristics do change over time. We describe here a very simple method of calibrating thermal mass flow controllers, in situ, with actual process gases, utilizing the speed of sound. We have used a commercially available instrument that uses acoustic resonance technique for determining the composition of a binary gas mixture.

  8. (Questions)n on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling.

    PubMed

    van Bel, Aart J E; Furch, Alexandra C U; Hafke, Jens B; Knoblauch, Michael; Patrick, John W

    2011-10-01

    This review speculates on correlations between mass flow in sieve tubes and the distribution of photoassimilates and macromolecular signals. Since micro- (low-molecular compounds) and macromolecules are withdrawn from, and released into, the sieve-tube sap at various rates, distribution patterns of these compounds do not strictly obey mass-flow predictions. Due to serial release and retrieval transport steps executed by sieve tube plasma membranes, micromolecules are proposed to "hop" between sieve element/companion cell complexes and phloem parenchyma cells under source-limiting conditions (apoplasmic hopping). Under sink-limiting conditions, micromolecules escape from sieve tubes via pore-plasmodesma units and are temporarily stored. It is speculated that macromolecules "hop" between sieve elements and companion cells using plasmodesmal trafficking mechanisms (symplasmic hopping). We explore how differential tagging may influence distribution patterns of macromolecules and how their bidirectional movement could arise. Effects of exudation techniques on the macromolecular composition of sieve-tube sap are discussed. PMID:21889037

  9. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    NASA Astrophysics Data System (ADS)

    Ford, C. L.; Winroth, M.; Alfredsson, P. H.

    2016-08-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method.

  10. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    SciTech Connect

    Not Available

    1980-09-01

    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed.

  11. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  12. A cautionary note on the use of some mass flow controllers

    NASA Astrophysics Data System (ADS)

    Weinheimer, Andrew J.; Ridley, Brian A.

    1990-06-01

    Commercial mass flow controllers are widely used in atmospheric research where precise and constant gas flows are required. We have determined, however, that some commonly used controllers are far more sensitive to ambient pressure than is acknowledged in the literature of the manufacturers. Since a flow error can lead directly to a measurement error of the same magnitude, this is a matter of great concern. Indeed, in our particular application, were we not aware of this problem, our measurements would be subject to a systematic error that increased with altitude (i.e., a drift), up to a factor of 2 at the highest altitudes (˜37 km). In this note we present laboratory measurements of the errors of two brands of flow controllers when operated at pressures down to a few millibars. The errors are as large as a factor of 2 to 3 and depend not simply on the ambient pressure at a given time, but also on the pressure history. In addition there is a large dependence on flow setting. In light of these flow errors, some past measurements of chemical species in the stratosphere will need to be revised.

  13. Theoretical and experimental investigations of flow pulsation effects in Coriolis mass flowmeters

    NASA Astrophysics Data System (ADS)

    Svete, A.; Kutin, J.; Bobovnik, G.; Bajsić, I.

    2015-09-01

    An understanding of the effects of flow pulsations on the dynamic behavior of Coriolis flowmeters is very important for their further development. In order to determine the phase difference between the vibrational signals, which represents the basic measurement effect of Coriolis flowmeters, there are many methods that include the proper filtering of all the signal components, except those with frequencies close to the drive frequency. Therefore, an understanding of the phenomenon of exciting the meter at its first natural frequency is very important. The results of a simple, linear, two-degree-of-freedom, lumped-parameter, dynamic model of a flowmeter show that the flow pulsations can degrade the accuracy of such a flowmeter as a result of indirect excitations of the measuring tube at the first natural frequency through the second-order perturbations by means of the Coriolis forces induced in pulsating flow conditions. In order to experimentally investigate these flow pulsation effects, a prototype of a straight-tube Coriolis mass flowmeter was developed to enable the processing of the response signals logged directly from the flow tube's sensors with the dual quadrature demodulation method, and therefore to provide the information available within the phase-difference data. The experimental results show that the flow pulsations upset the meter at its first natural frequency indirectly, as well as directly at the frequency of the pulsations due to the geometric imperfections of the measuring tube.

  14. Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation

    NASA Astrophysics Data System (ADS)

    Hong, Difeng; Tang, Jiali; Ren, Gexue

    2011-11-01

    In this paper, a dynamic model of a linear medium with mass flow, such as traveling strings, cables, belts, beams or pipes conveying fluids, is proposed, in the framework of Arbitrary-Lagrange-Euler (ALE) description. The material coordinate is introduced to characterize the mass-flow of the medium, and the Absolute Nodal Coordinate Formulation (ANCF) is employed to capture geometric nonlinearity of the linear media under large displacement and rotation. The governing equations are derived in terms of d'Alembert's principle. When using an ALE description, complex mass-flowing boundary conditions can be easily enforced. Numerical examples are presented to validate the proposed method by comparison with analytical results of simplified models. The computed critical fluid velocity for the stability of a cantilevered pipe conveying fluid is correlated with the available theory in literature. The large amplitude limit-cycle oscillations of flexible pipes conveying fluid are presented, and the effect of the velocity of the fluid on the static equilibrium of the pipe under gravity is investigated.

  15. Evidence for Mass Flow in Flowering Individuals of the Submersed Vascular Plant Myriophyllum heterophyllum.

    PubMed Central

    Schuette, J. L.; Klug, M. J.

    1995-01-01

    Myriophyllum heterophyllum Michx. is a rhizomatous submersed aquatic plant that produces a short, emergent floral spike. We hypothesized that lacunar pressures in emergent spikes should be at or near atmospheric pressure and that a mass flow of gases from submersed stems through the rhizome to emergent stems may occur as lacunar O2 concentrations and pressures in submersed stems increase during photosynthesis. We examined the potential for a pressure gradient ([delta]P) to develop along this pathway by measuring diurnal changes in lacunar gas composition and pressure in submersed stems of nonflowering plants and emergent stems of flowering individuals. Methane release from emergent spikes was also monitored during three diurnal cycles to evaluate the hypothesis that the [delta]P is maintained by the release of lacunar gases to the atmosphere. Lacunar O2 concentrations and pressures in submersed stems increased at sunrise and reached maximum levels by midday. Although O2 fluctuated similarly in emergent stems, lacunar pressures remained at or near atmospheric pressure, indicating that a [delta]P is generated between submersed and emergent stems during photosynthesis. Methane release from emergent spikes increased as lacunar pressures increased, indicating that rhizome gases are transported through emergent stems by mass flow and the [delta]P is maintained by venting lacunar gases from emergent spikes. The potential for mass flow in both flowering and nonflowering individuals is discussed. PMID:12228542

  16. Occurrence and Mass Flows of Fluorochemicals in the Glatt Valley Watershed, Switzerland

    PubMed Central

    HUSET, CARIN A.; CHIAIA, AUREA C.; BAROFSKY, DOUGLAS F.; JONKERS, NIELS; KOHLER, HANS - PETER E.; ORT, CHRISTOPH; GIGER, WALTER; FIELD, JENNIFER A.

    2011-01-01

    Fluorochemicals are persistent contaminants that are globally distributed in air, water, sediments, and biota. Wastewater treatment plants (WWTPs) play an important role in mitigating pollutant releases from municipalities to aquatic and terrestrial environments. However, because WWTPs are point sources of fluorochemicals, it is important to understand their contribution to fluorochemical burdens in the greater context of watersheds. To this end, over a 1 week period, the mass flows of 11 fluorochemicals from seven WWTPs that discharge effluent into the Glatt River in Switzerland were measured and compared to the measured mass flows within the Glatt River. Overall, the fluorochemicals were not removed efficiently during wastewater treatment. Effluents from WWTPs and Glatt River water were dominated by perfluorooctane sulfonate, which was detected in all samples, followed by perfluorohexane sulfonate and perfluorooctanoate. The mass flows of fluorochemicals emanating from WWTPs were found to be conserved within the 35 km Glatt River, which indicates that input from the WWTPs is additive and that removal within the Glatt River is not significant. Per capita discharges of fluorochemicals were calculated from the populations served by the WWTPs studied; the values determined also account for the fluorochemical content of Lake Greifen (Greifensee), which is a lake at the headwaters of the Glatt River that also receives treated wastewater. PMID:18800503

  17. Detector and front-end electronics of a fissile mass flow monitoring system

    SciTech Connect

    Paulus, M.J.; Uckan, T.; Lenarduzzi, R.; Mullens, J.A.; Castleberry, K.N.; McMillan, D.E.; Mihalczo, J.T.

    1997-07-20

    A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described.

  18. Occurrence and mass flows of fluorochemicals in the Glatt Valley watershed, Switzerland.

    PubMed

    Huset, Carin A; Chiaia, Aurea C; Barofsky, Douglas F; Jonkers, Niels; Kohler, Hans-Peter E; Ort, Christoph; Giger, D Walter; Field, Jennifer A

    2008-09-01

    Fluorochemicals are persistent contaminants that are globally distributed in air, water, sediments, and biota. Wastewater treatment plants (WWTPs) play an important role in mitigating pollutant releases from municipalities to aquatic and terrestrial environments. However, because WWTPs are point sources of fluorochemicals, it is important to understand their contribution to fluorochemical burdens in the greater context of watersheds. To this end, over a 1 week period, the mass flows of 11 fluorochemicals from seven WWTPs that discharge effluent into the Glatt River in Switzerland were measured and compared to the measured mass flows within the Glatt River. Overall, the fluorochemicals were not removed efficiently during wastewater treatment. Effluents from WWTPs and Glatt River water were dominated by perfluorooctane sulfonate, which was detected in all samples, followed by perfluorohexane sulfonate and perfluorooctanoate. The mass flows of fluorochemicals emanating from WWTPs were found to be conserved within the 35 km Glatt River, which indicates that input from the WWTPs is additive and that removal within the Glatt River is not significant. Per capita discharges of fluorochemicals were calculated from the populations served by the WWTPs studied; the values determined also account for the fluorochemical content of Lake Greifen (Greifensee), which is a lake at the headwaters of the Glatt River that also receives treated wastewater. PMID:18800503

  19. Experiment Investigation on Concentration and Mass Flow Measurement of Pulverized Coal Using Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Liu, J.; Sun, M.; Wang, X. Y.; Liu, S.

    2010-03-01

    Accurate measurement of the concentration of pulverized coal in various pipes plays a key role in assuring safe and economic operation in a pulverized coal-fired boiler in the process of combustion. In this paper, experimental studies are implemented on the measurement of a lean mass flow in a pneumatic conveying pipeline using electrical capacitance tomography (ECT). In this system, a cyclone separator is employed, where the sensors are placed, in order to compensate the inhomogeneity of the sensor sensitivity. The mass flow rate is determined from the solids velocity and the volumetric concentration. The former is measured by cross-correlating the capacitance fluctuations caused by the conveyed solids, and the latter by an image reconstruction method, and then this two parameters are combined to give the solids mass flow rate. The distribution of void fraction in radial direction, the average void fraction and the wavy characteristics are analyzed. The feasibility and reliability of the method are verified by the experimental results.

  20. Mass ordering of differential elliptic flow and its violation for {phi} mesons

    SciTech Connect

    Hirano, Tetsufumi; Heinz, Ulrich; Kharzeev, Dmitri; Lacey, Roy; Nara, Yasushi

    2008-04-15

    We simulate the dynamics of Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) with a hybrid model that treats the dense early quark-gluon plasma (QGP) stage macroscopically as an ideal fluid but models the dilute late hadron resonance gas (HG) microscopically using a hadronic cascade. By comparing with a pure hydrodynamic approach we identify effects of hadronic viscosity on the transverse momentum spectra and differential elliptic flow v{sub 2}(p{sub T}). We investigate the dynamical origins of the observed mass ordering of v{sub 2}(p{sub T}) for identified hadrons, focusing on dissipative effects during the late hadronic stage. Within our approach, we find that, at RHIC energies, much of the finally observed mass splitting is generated during the hadronic stage, due to buildup of additional radial flow. The {phi} meson, having a small interaction cross section, does not fully participate in this additional flow. As a result, it violates the mass-ordering pattern for v{sub 2}(p{sub T}) that is observed for other hadron species. We also show that the early decoupling of the {phi} meson from the hadronic rescattering dynamics leads to interesting and unambiguous features in the p{sub T} dependence of the nuclear suppression factor R{sub AA} and of the {phi}/p ratio.

  1. Surface Time-Variable Gravity Signals and Possible Sources Including Core Mass Flow

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Kuang, Weijia

    2003-01-01

    Over two decades of geodetic satellite-laser-ranging (SLR) data show that the variation of the Earth's oblateness parameter J2 has a clear seasonal signal of amplitude of about 3e-10 and a secular decrease of about -2.8e-11/year, superimposed on some interesting interannual fluctuations. Physically, any change in mass distribution or/inside the Earth will be reflected in the time-variable gravity signal obtained outside the Earth, according to Newton s gravitational law. Therefore, such signal contains contributions from all geophysical sources that redistribute mass, on all temporal and spatial scales, including those from the core. Besides Earth rotation and geomagnetic field variations, the time-variable gravity also contains information linking Earth surface observations with internal core dynamical processes. The time scales of the gravity signal are critical in helping differentiate different contributions. The atmosphere and hydrosphere are responsible for the seasonal and much of the interannual and intraseasoanl fluctuations, while the secular trend is due mainly to the post-glacial rebound but possibly core mass flow. To estimate the latter effect, we use our MoSST (Modular, Scalable, Self-consistent, Three-dimensional) core dynamics model to forward simulate the core flow, and density variation due to the core convection. Our results suggest that, when upward continued to the surface, the J2 component of the core mass redistribution can reach an overall amplitude of e-11/year, approaching the SLR detectability and significant in geophysical terms. We also find a general westward drift of the mass flow, with a speed comparable to that of the geomagnetic westward drift.

  2. Design of an impact abrasion testing machine

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Beeley, P. R.; Baker, A. J.

    1994-04-01

    By using a cam-flat follower-impact shaft with a crank-flat rotating anvil system, the machine to be described can create various impact abrasion conditions to simulate a large range of industrial situations encountered in this field. The main features of the machine are the long working life of the flat rotating anvil, which works in the same way as that of the disk in a pin-on-disk wear tester, and the accurate control of both the impact energy delivered to the specimen and the total sliding distance of the specimen on the anvil. Statistical analysis of test results on the machine with EN24 steel and cast high manganese steel shows that the uncertainty of the population mean is within +/- 4.7% of the sample mean under a 95% confidence level of student distribution, which indicates a very good accuracy of test.

  3. The Montesbelos mass-flow (southern Amazonian craton, Brazil): a Paleoproterozoic volcanic debris avalanche deposit?

    NASA Astrophysics Data System (ADS)

    Roverato, M.

    2016-07-01

    The present contribution documents the extremely well-preserved Paleoproterozoic architecture of the Montesbelos breccia (named here for the first time), which is interpreted as a rare example of a subaerial paleoproterozoic (>1.85 Ga) granular-dominated mass-flow deposit, few of which are recorded in the literature. Montesbelos deposit is part of the andesitic Sobreiro Formation located in the São Felix do Xingu region, southern Amazonian craton, northern Brazil. The large volume, high variability of textural features, presence of broken clasts, angular low sphericity fragments, mono- to heterolithic character, and the size of the outcrops point to a volcanic debris avalanche flow. Fluviatile sandy material and debris flows are associated with the deposit as a result of post-depositional reworking processes.

  4. Reciprocal theorem for convective heat and mass transfer from a particle in Stokes and potential flows

    NASA Astrophysics Data System (ADS)

    Vandadi, Vahid; Jafari Kang, Saeed; Masoud, Hassan

    2016-06-01

    In the study of convective heat and mass transfer from a particle, key quantities of interest are usually the average rate of transfer and the mean distribution of the scalar (i.e., temperature or concentration) at the particle surface. Calculating these quantities using conventional equations requires detailed knowledge of the scalar field, which is available predominantly for problems involving uniform scalar and flux boundary conditions. Here we derive a reciprocal relation between two diffusing scalars that are advected by oppositely driven Stokes or potential flows whose streamline configurations are identical. This relation leads to alternative expressions for the aforementioned average quantities based on the solution of the scalar field for uniform surface conditions. We exemplify our results via two applications: (i) heat transfer from a sphere with nonuniform boundary conditions in Stokes flow at small Péclet numbers and (ii) extension of Brenner's theorem for the invariance of heat transfer rate to flow reversal.

  5. MHD boundary layer flow of a power-law nanofluid with new mass flux condition

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Khan, Waqar Azeem

    2016-02-01

    An analysis is carried out to study the magnetohydrodynamic (" separators=" MHD ) boundary layer flow of power-law nanofluid over a non-linear stretching sheet. In the presence of a transverse magnetic field, the flow is generated due to non-linear stretching sheet. By using similarity transformations, the governing boundary layer equations are reduced into a system of ordinary differential equations. A recently proposed boundary condition requiring zero nanoparticle mass flux is employed in the flow analysis of power-law fluid. The reduced coupled differential equations are then solved numerically by the shooting method. The variations of dimensionless temperature and nanoparticle concentration with various parameters are graphed and discussed in detail. Numerical values of physical quantities such as the skin-friction coefficient and the reduced local Nusselt number are computed in tabular form.

  6. Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong

    2016-09-01

    In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.

  7. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    SciTech Connect

    Uckan, Taner; March-Leuba, Jose A; Powell, Danny H; Nelson, Dennis; Radev, Radoslav

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  8. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  9. Hydro-abrasive erosion: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Winkler, K.

    2014-03-01

    The number of hydro power plants with hydro-abrasive erosion is increasing worldwide. An overall approach is needed to minimize the impact of this phenomenon. Already at the start of the planning phase an evaluation should be done to quantify the erosion and the impact on the operation. For this, the influencing parameters and their impact on the erosion have to be known. The necessary information for the evaluation comprises among others the future design, the particle parameters of the water, which will pass the turbine, and the power plant owner's framework for the future operation like availability or maximum allowable efficiency loss, before an overhaul needs to be done. Based on this evaluation of the erosion, an optimised solution can then be found, by analysing all measures in relation to investments, energy production and maintenance costs as decision parameters. Often a more erosion-resistant design, instead of choosing the turbine design with the highest efficiency, will lead to higher revenue. The paper will discuss the influencing parameters on hydro-abrasive erosion and the problems to acquire this information. There are different optimisation possibilities, which will be shown in different case studies. One key aspect to reduce the erosion and prolong the operation time of the components is to coat all relevant parts. But it is very important that this decision is taken early in the design stage, as the design has to be adapted to the requirements of the coating process. The quality of coatings and their impact on the operation will be discussed in detail in the paper as due to the non-availability of standards many questions arise in projects.

  10. Coupled effect of flow variability and mass transfer on contaminant transport and attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir; Fiori, Aldo; Dagan, Gedeon

    2016-04-01

    The driving mechanism of contaminant transport in aquifers is groundwater flow, which is controlled by boundary conditions and heterogeneity of hydraulic properties. In this work we show how hydrodynamics and mass transfer can be combined in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of contaminant residence time are illustrated assuming a log-normal hydraulic conductivity distribution and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity. The derived physically-based residence time distribution for solute transport in heterogeneous aquifers is particularly useful for studying natural attenuation of contaminants. We illustrate the relative impacts of high heterogeneity and a generalised (non-Fickian) multi-rate mass transfer on natural attenuation defined as contaminant mass loss from injection to a downstream compliance boundary.

  11. Kerf modelling in abrasive waterjet milling using evolutionary computation and ANOVA techniques

    NASA Astrophysics Data System (ADS)

    Alberdi, A.; Rivero, A.; Carrascal, A.; Lamikiz, A.

    2012-04-01

    Many researchers demonstrated the capability of Abrasive Waterjet (AWJ) technology for precision milling operations. However, the concurrence of several input parameters along with the stochastic nature of this technology leads to a complex process control, which requires a work focused in process modelling. This research work introduces a model to predict the kerf shape in AWJ slot milling in Aluminium 7075-T651 in terms of four important process parameters: the pressure, the abrasive flow rate, the stand-off distance and the traverse feed rate. A hybrid evolutionary approach was employed for kerf shape modelling. This technique allowed characterizing the profile through two parameters: the maximum cutting depth and the full width at half maximum. On the other hand, based on ANOVA and regression techniques, these two parameters were also modelled as a function of process parameters. Combination of both models resulted in an adequate strategy to predict the kerf shape for different machining conditions.

  12. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOEpatents

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  13. Modeling highly transient flow, mass, and heat transport in the Chattahoochee River near Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.; Keefer, Thomas N.

    1979-01-01

    A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. The linear, implicit finite-difference flow model was calibrated by use of a depth profile obtained at steady low flow and unsteady flow data obtained in March 1976. During the calibration period, the model was generally able to reproduce observed stages to within 0.15 m and discharges at less than 100 m 3 /s, to within 5 percent. Peak discharges of about 200 m 3 /s were under-estimated by about 20 percent. During the verification period, October 1975, the flow model reproduced observed stage changes to within about 0.15 m, and its timing and over-all performance was considered to be very good. Dye was added to the upstream end of the river reach at a constant rate while the river flow was highly unsteady. The numerical solution of either the conservative or nonconservative form of the mass-transport equation did an excellent job of simulating the observed concentrations of dye in the river. The temperature model was capable of predicting temperature changes through this reach of as large as 5.8?C with a RMS (root-mean-square) error of 0.32?C in October 1975 and 0.20?C in March 1976. Hydropulsation has a significant effect on the water temperature below Buford Dam. These effects are very complicated because they are quite dependent on the timing of the release with respect to both the time of day and past releases.

  14. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries

    NASA Astrophysics Data System (ADS)

    Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D.

    2014-06-01

    In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P (x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P =1), fluid cell (pure fluid occupation, P =0), and boundary cell (partial solid and partial fluid, 0flow; (2) streaming accompanying a volumetric bounce-back procedure in boundary cells; and (3) boundary-induced volumetric fluid migration moving the residual fluid particles into the flow domain when the boundary swipes over a boundary cell toward a solid cell. The MCVLBM strictly satisfies mass conservation and can handle irregular boundary orientation and motion with respect to the mesh. Validation studies are carried out in four cases. The first is to simulate fluid dynamics in syringes focusing on how MCVLBM captures the underlying physics of flow driven by a willfully moving piston. The second and third cases are two-dimensional (2D) peristaltic flow and three-dimensional (3D) pipe flow, respectively. In each case, we compare the MCVLBM simulation result with the analytical solution and achieve quantitatively good agreements. The fourth case is to simulate blood flow in human aortic arteries with a very complicated irregular boundary. We study steady flow in two dimensions and unsteady flow via the pulsation of the cardiac cycle in three dimensions. In the 2D case, both vector (velocity) and

  15. Simulation of rarefied gas flows in atmospheric pressure interfaces for mass spectrometry systems.

    PubMed

    Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

    2013-12-01

    The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (<10(-3) Torr) stages are relatively well understood and could be modeled using continuum and molecular flows, respectively, the theoretical modeling or numeric simulation of gas flow through the transition pressure stage (1 to 10(-3) Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

  16. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    PubMed

    Ersöz, Gözde; Altiparmak, Ersin; Aşçı, F Hülya

    2016-06-01

    The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI). 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differences in behavioral regulations, dispositional flow and social physique anxiety of exercise participants with regards to BMI. In summary, the findings demonstrate that normal weighted participants exercise for internal reasons while underweighted participants are amotivated for exercise participation. Additionally, participants who are underweight had higher dispositional flow and lower social physique anxiety scores than other BMI classification. Key pointsNormal weighted participants exercise for internal reasons.Underweighted participants are amotivated for exercise participation.Underweighted participants had higher dispositional flow.Underweighted participants have lower social physique anxiety scores than normal weighted, overweight and obese participants. PMID:27274667

  17. Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer

    NASA Technical Reports Server (NTRS)

    Bhat, M. K.; Vakili, A. D.; Wu, J. M.

    1990-01-01

    The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.

  18. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  19. Effects of nebulizing and drying gas flow on capillary electrophoresis/mass spectrometry.

    PubMed

    Huikko, Katri; Kotiaho, Tapio; Kostiainen, Risto

    2002-01-01

    This study was focused on examining the influence of gas flow parameters on capillary electrophoresis/mass spectrometry (CE /MS) performance using sheath-liquid CE /MS interfaces. The effects of nebulizing and drying gas velocity and drying gas temperature on CE separation and MS detection sensitivity were systematically determined. Nebulizing gas velocity was observed to be a critical parameter in the optimization of CE /MS method, since it affected both MS detection sensitivity, and also CE separation efficiency for one interface design tested. Better detection sensitivity was obtained when the nebulizing gas velocity was increased. However, high velocity of the nebulizing gas flow can cause a hydrodynamic bulk flow inside the CE capillary, thus clearly increasing the apparent mobility and decreasing the resolution obtained for the compounds studied. Increasing the drying gas velocity or temperature did not affect the apparent mobility or the separation efficiency and the temperature could be increased to achieve the optimal detection sensitivity in the CE /MS analysis. For comparison, the effects of nebulizing gas flow were studied using a different design of the coaxial sheath-liquid CE /MS interface, and in this case better detection sensitivity but no effect on CE separation efficiency was observed with increased nebulizing gas velocity. These different effects of nebulizing gas flow on the CE bulk flow were concluded to result from pressure differences at the tip of the CE capillaries for the different CE /MS interface arrangements. It is therefore recommended that the cross-sectional dimensions of the fused-silica and steel capillaries, and the gas streamlines, should be optimized when CE /MS interfaces are built. Moreover, the effect of gas flow on CE separation should be studied when optimizing the CE /MS operation parameters.

  20. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  1. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  2. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  3. Combination of CFD and DOE to analyze and improve the mass flow rate in urinary catheters.

    PubMed

    Frawley, Patrick; Geron, Marco

    2009-08-01

    The urinary catheter is a thin plastic tube that has been designed to empty the bladder artificially, effortlessly, and with minimum discomfort. The current CH14 male catheter design was examined with a view to optimizing the mass flow rate. The literature imposed constraints to the analysis of the urinary catheter to ensure that a compromise between optimal flow, patient comfort, and everyday practicality from manufacture to use was achieved in the new design. As a result a total of six design characteristics were examined. The input variables in question were the length and width of eyelets 1 and 2 (four variables), the distance between the eyelets, and the angle of rotation between the eyelets. Due to the high number of possible input combinations a structured approach to the analysis of data was necessary. A combination of computational fluid dynamics (CFD) and design of experiments (DOE) has been used to evaluate the "optimal configuration." The use of CFD couple with DOE is a novel concept, which harnesses the computational power of CFD in the most efficient manner for prediction of the mass flow rate in the catheter. PMID:19604024

  4. Fine Magnetic Structure and Origin of Counter-streaming Mass Flows in a Quiescent Solar Prominence

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Liu, Yu; Liu, Ying D.; Chen, P. F.; Su, Jiangtao; Xu, Zhi; Liu, Zhong

    2015-11-01

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

  5. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    SciTech Connect

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao

    2015-11-20

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

  6. Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities

    NASA Technical Reports Server (NTRS)

    Marziale, M. L.; Mayle, R. E.

    1984-01-01

    Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions.

  7. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    NASA Astrophysics Data System (ADS)

    Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-01

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilized linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.

  8. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  9. A Model of Heat and Mass Transfer in a Porous Cometary Nucleus Based on a Kinetic Treatment of Mass Flow

    NASA Astrophysics Data System (ADS)

    Skorov, Yu. V.; Kömle, N. I.; Keller, H. U.; Kargl, G.; Markiewicz, W. J.

    2001-09-01

    The main aspect of this paper is to provide a synthesis between two major lines of development in the understanding of mass and heat transfer in a volatile porous medium. The first one is a macroscopic approach, where the medium is considered as a continuum, and heat and mass transfer equations are solved under appropriate boundary conditions for temperature and gas pressure (G. Steiner and N. I. Kömle 1991, Planet. Space Sci.39, 507-513; Y. Mekler et al. 1990, Astrophys. J.356, 682-686; S. J. Espinasse et al. 1991, Icarus92, 350-365), while the second one is a kinetic model, calculating gas flow in tubes under the assumption of a known temperature distribution (N. I. Kömle and G. Dettleff 1991, Icarus89, 73-84; Yu. V. Skorov et al. 1999, Icarus140, 173-188). We review briefly the main aspects of this previous work, and subsequently present a combined consistent model, which uses a macroscopic heat transfer equation, but kinetic solutions for the gas flow. This new model was implemented as a numerical code and its performance is demonstrated by a couple of example calculations. The main advantage of the new model in comparison to the macroscopic approach is the fact that it avoids specifying a boundary condition for gas pressure at the surface, because the emitted gas flux is found at any time with the aid of the kinetic calculation. The local balance of sublimation and condensation in the interior of the porous ice can be calculated more consistently than is possible by macroscopic models only, because surface pressure and density develop in a "natural" way and no external boundary condition for the pressure must be imposed. We consider the development of temperature distribution and gas flux in ice samples in response to surface irradiation. Both pure ice and ice covered by a dust mantle are studied. The results are compared with corresponding solutions obtained on the basis of a macroscopic model, and differences are discussed in detail. Finally, experimental

  10. Model development and verification for mass transport to Escherichia coli cells in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Hondzo, Miki; Al-Homoud, Amer

    2007-08-01

    Theoretical studies imply that fluid motion does not significantly increase the molecular diffusive mass flux toward and away from microscopic organisms. This study presents experimental and theoretical evidence that small-scale turbulence modulates enhanced mass transport to Escherichia coli cells in a turbulent flow. Using the technique of inner region and outer region expansions, a model for dissolved oxygen and glucose uptake by E. coli was developed. The mass transport to the E. coli was modeled by the Sherwood (Sh)-Péclet (Pe) number relationship with redefined characteristic length and velocity scales. The model Sh = (1 + Pe1/2 + Pe) agreed with the laboratory measurements well. The Péclet number that quantifies the role and function of small-scale turbulence on E. coli metabolism is defined by Pe = (?) where Ezz is the root mean square of fluid extension in the direction of local vorticity, ηK is the Kolmogorov length scale, Lc is the length scale of E. coli, and D is the molecular diffusion coefficient. An alternative formulation for the redefined Pe is given by Pe = (?) where ? = 0.5(ɛν)1/4 is the Kolmogorov velocity averaged over the Kolmogorov length scale, ɛ is dissipation of turbulent kinetic energy, and ν is the kinematic viscosity of fluid. The dissipation of turbulent kinetic energy was estimated directly from measured velocity gradients and was within the reported range in engineered and natural aquatic ecosytems. The specific growth of E. coli was up to 5 times larger in a turbulent flow in comparison to the still water controls. Dissolved oxygen and glucose uptake were enhanced with increased ɛ in the turbulent flow.

  11. Inverse model of fully coupled fluid flow and stress in fractured rock masses

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Rutqvist, J.

    2008-12-01

    In order to reflect the real behavior of the seepage field and deformation field during the environment change and construction process£¬the basic equations and FEM methods for fully coupled analysis of fluid flow and stress are developed£¬based on the assumptions of small deformation and incompressible water flow in complicated fractured rock masses. Both the equivalent continuum media model and the discrete media model are adopted. And the modified initial flow method is used to deal with the free surface of unconfined seepage. Due to the difficulty in determining the parameters of water flow field, stress field and their coupling relations, an inverse model is presented for the fully coupled problem in which both the data of water head and displacement are taken into consideration. Objective function is defined based on sensitivity analysis of parameters, and the relative values of water head, displacement on parameters are adopted in the establishment of objective function. A hybrid genetic algorithm is proposed as optimization method. The probability of crossover and mutation is determined according to chromosome fitness and a concept of self- adaptive probability is given. In addition, simplex method is also applied to increase the ability of local search, the operation of accelerated cycle is used in order to decrease optimization time.

  12. Mass flow meter using the triboelectric effect for measurement in cryogenics

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve

    1987-01-01

    The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.

  13. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, L.B.; Antweiler, R.C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, H.E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  14. Mass-transfer enhancement via chaotic laminar flow within a droplet

    NASA Astrophysics Data System (ADS)

    Bryden, Michelle D.; Brenner, Howard

    1999-01-01

    The Stokes flow occurring within a non-neutrally buoyant spherical droplet translating by buoyancy through an immiscible liquid which is undergoing simple shear is shown to be chaotic under many circumstances for which the droplet translates by buoyancy through the entraining fluid. This flow is easily produced, for example, when the droplet rises (or falls) through the annular space of a vertical concentric-cylinder Couette viscometer or through a vertical Poiseuille flow. The parameters studied include: (i) droplet/bulk fluid viscosity ratio; (ii) shear strength/bubble rise velocity ratio; and (iii) the angle between the translational bubble velocity vector and the vorticity vector characterizing the undisturbed shear. Streamlines existing within a droplet that translates perpendicular to this vorticity vector are shown to be non-chaotic for all choices of physical parameters. Other relative orientations frequently contain chaotic trajectories. When solute initially dissolved within the droplet is extracted into the bulk fluid, the resulting overall mass-transfer coefficient (calculated via generalized Taylor dispersion theory) quantifying the extraction rate at asymptotically long times is shown to be significantly higher in the chaotic flow case.

  15. Submarine mass-flow conglomerates of the Tarentaise Zone, Western Alps: sedimentation processes and depositional setting

    NASA Astrophysics Data System (ADS)

    Lomas, Simon

    1992-12-01

    This paper reports a field-based sedimentological appraisal of a deformed conglomeratic formation in the Tarentaise Zone (western Valaisan Zone) of the Western Alps. The Aroley Formation comprises a 150 m thick upward fining sequence of subaqueous mass-flow deposits containing Late Cretaceous marine faunas. Deposition occurred primarily from complex high-concentration turbidity currents and cohesionless debris flows. Diverse sedimentological evidence (clast composition, grain-shape characteristics, palaeocurrent indicators, vertical and lateral facies trends) suggests a depositional system in which debris shed by a rapidly eroding source area to the west was conveyed directly into relatively deep water. The sequence becomes finer grained and more thinly bedded upwards, indicating that both the availability of coarse sediment and the volumetric magnitude of depositional events, diminished over time. This vertical fining and thinning trend is paralleled by a progressive shift in the dominant facies types: evidence for highly concentrated, non-turbulent flows decreasing upwards while the deposits of fully turbulent flows become more important. It is proposed that the development of this depositional system through time can be explained simply in terms of a progressive decline in overall relief: effected by denudation of the source region coupled with depositional reduction of slope inclinations in the basin.

  16. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams.

    PubMed

    Barber, Larry B; Antweiler, Ronald C; Flynn, Jennifer L; Keefe, Steffanie H; Kolpin, Dana W; Roth, David A; Schnoebelen, Douglas J; Taylor, Howard E; Verplanck, Philip L

    2011-04-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes.

  17. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  18. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  19. Gusev crater: direction of active winds derived from the Mars Exploration Rover Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Gorevan, S.; Thompson, S. D.; Whelley, P.; Squyres, S.; Arvidson, R.

    2004-05-01

    The Mars Exploration Rovers (MERs) are not instrumented to measure winds directly, but might be able to give insight into wind directions using other techniques. The Rock Abrasion Tool (RAT) on the Instrument Deployment Device (IDD) on the Mars rover, Spirit, was used to remove dust and cut into a basaltic rock named Adirondack in Gusev crater on Sol 34 of mission operations. The rock abrasion operation occurred between about 1223 hr and 1518 hr in the afternoon (local solar time) and left a cavity 2.68 mm deep. An image taken after the abrasion operation showed that the rock cuttings were asymmetrically distributed around the cavity and over the rock in a direction suggesting that the cuttings were transported away from the cavity by winds. The distribution pattern (and the inferred wind) is being compared with results from wind tunnel simulations conducted prior to the mission to assess the wind-flow patterns as a function of rock, rover, and IDD positions with respect to the wind. The wind direction inferred from the RAT cuttings are also being compared with wind directions suggested by aeolian bedforms and albedo patterns seen from MER and from orbit, and with directions predicted by a model of the atmosphere for winds at mid-day in Gusev crater.

  20. Thermally driven mass flows in the convection zone of the sun

    NASA Technical Reports Server (NTRS)

    Dijkhuis, G. C.

    1973-01-01

    A formulation of the fluid dynamics of convective regions is developed which leads to an analytical description of the solar rotation, the Evershed flow, and the supergranulation. The starting point of the present formulation is the mixing length picture of convective equilibrium, but the earlier point mass model for convective molecules is replaced here by a model with both inertia and intrinsic moment of inertia. This extension introduces three rotational degrees of freedom into the dynamics of individual convective molecules, which enter into the dynamical equations for a mixing length fluid in the form of a separate vector field which we term the spin field. It is shown that for convective molecules having a spherically symmetric mass distribution, the spin field is proportional to the local vorticity.

  1. Flowing gas in mass spectrometer: method for characterization and impact on ion processing.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-10-21

    Mass spectrometers are complex instrumentation systems where ions are transferred though different pressure regions and mass-analyzed under high vacuum. In this work, we have investigated the impact of the gas flows that exit almost universally in all pressure regions. We developed a method that incorporates the dynamic gas field with the electric field in the simulation of ion trajectories. The scope of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems at atmospheric pressure interfaces. With experimental validation, the trapping of the externally injected ions in a linear ion trap at low pressure was also studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and the study of ion energetics. PMID:25121805

  2. Acoustic geometry through perturbation of mass accretion rate: radial flow in static spacetimes

    NASA Astrophysics Data System (ADS)

    Ananda, Deepika B.; Bhattacharya, Sourav; Das, Tapas K.

    2015-09-01

    In this work we present an alternative derivation of the general relativistic acoustic analogue geometry by perturbing the mass accretion rate or flux of an ideal fluid flowing radially in a general static and spherically symmetric spacetime. To the best of our knowledge, this has so far been done in non-relativistic scenario. The resulting causal structure of the two dimensional acoustic geometry is qualitatively similar to that one derives via the perturbation of the velocity potential. Using this, we then briefly discuss the stability issues by studying the wave configurations generated by the perturbation of the mass accretion rate, and formally demonstrate the stability of the accretion process. This is in qualitative agreement with earlier results on stability, established via study of wave configurations generated by the perturbation of velocity potential, by using the acoustic geometry associated with it. We further discuss explicit examples of the Schwarzschild and Rindler spacetimes.

  3. Flowing Gas in Mass Spectrometer: Method for Characterization and Impact on Ion Processing

    PubMed Central

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-01-01

    Mass spectrometers are complex instrumentation systems with ions transferred though different pressure regions and mass analyzed at high vacuum. In this work, we have investigated the impacts of the gas flows that exit almost universally in all pressure regions and developed a method incorporating the dynamic gas field with the electric (E) field in the simulation of ion trajectories. The capability of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems in atmospheric pressure interfaces. With experimental validation, the trapping of the externally-injected ions in a linear ion trap at low pressure has also been studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and study of ion energetics. PMID:25121805

  4. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    SciTech Connect

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

  5. Development of density and mass flow rate measurement technologies for slush hydrogen

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide

    2004-01-01

    Slush hydrogen is a two-phase solid-liquid cryogenic fluid consisting of solid hydrogen particles in liquid hydrogen. Compared to liquid hydrogen, the density is about 16% greater at a solid mass ratio (solid fraction) of 50%, and the cryogenic heat capacity (enthalpy) is about 18% higher. Various applications are anticipated, including fuel for reusable space shuttles, coolant for cold neutron generation, as well as the transport and storage of hydrogen as a clean energy source. At a solid fraction of within 50%, piped transport can be conducted in the same way as for normal fluids. This paper reports on the slush hydrogen technology in terms of the measurement of the density and the mass flow rate.

  6. Viscosity parameter in dissipative accretion flows with mass outflow around black holes

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-10-01

    Numerical hydrodynamic simulation of inviscid and viscous flows have shown that significant outflows could be produced from the CENtrifugal pressure-supported BOundary Layer or CENBOL of an advective disc. However, this barrier is weakened in presence of viscosity, more so, if there are explicit energy dissipations at the boundary layer itself. We study effects of viscosity and energy dissipation theoretically on the outflow rate and show that, as the viscosity or energy dissipation (or both) rises, the prospect of formation of outflows is greatly reduced, thereby verifying results obtained through observations and numerical simulations. Indeed, we find that in a dissipative viscous flow, shocks in presence of outflows can be produced only if the Shakura-Sunyaev viscosity parameter α is less than 0.2. This is a direct consequence of modification of the Rankine-Hugoniot relation across the shock in a viscous flow, when the energy dissipation and mass-loss in the form of outflows from the post-shock region are included. If we ignore the effects of mass-loss altogether, the standing dissipative shocks in viscous flows may occur only if α < 0.27. These limits are tighter than the absolute limit of α = 0.3 valid for a situation when the shock itself neither dissipates energy nor any outflow is formed. We compute typical viscosity parameters required to understand spectral and temporal properties of several black hole candidates such as GX399-4, MAXI J1659-152 and MAXI J1836-194 and find that required α are indeed well within our prescribed limit.

  7. Apparatus for establishing flow of a fluid mass having a known velocity

    NASA Technical Reports Server (NTRS)

    Price, P.; Veikins, O.; Bate, E. R., Jr.; Jones, R. H. (Inventor)

    1974-01-01

    An apparatus for establishing a flow of fluid mass, such as gas, having a known velocity is introduced. The apparatus is characterized by an hermetically sealed chamber conforming to a closed-loop configuration and including a throat and a plurality of axially displaceable pistons for sweeping through the throat a stream of gas including a core and an unsheared boundary layer. Within the throat there is a cylindrical coring body concentrically related to the throat for receiving the core, and a chamber surrounding the cylindrical body for drawing off the boundary layer, whereby the velocity of the core is liberated from the effects of the velocity of the boundary layer.

  8. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    PubMed

    Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  9. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  10. Three-dimensional flow of Powell–Eyring nanofluid with heat and mass flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Tasawar, Hayat; Ikram, Ullah; Taseer, Muhammad; Ahmed, Alsaedi; Sabir, Ali Shehzad

    2016-07-01

    This article investigates the three-dimensional flow of Powell–Eyring nanofluid with thermophoresis and Brownian motion effects. The energy equation is considered in the presence of thermal radiation. The heat and mass flux conditions are taken into account. Mathematical formulation is carried out through the boundary layer approach. The governing partial differential equations are transformed into the nonlinear ordinary differential equations through suitable variables. The resulting nonlinear ordinary differential equations have been solved for the series solutions. Effects of emerging physical parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt and Sherwood numbers are computed and examined.

  11. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    SciTech Connect

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar

    2009-01-15

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)

  12. Estimating Rock Strength Parameters from Rock Abrasion Tool (RAT) Grinds

    NASA Astrophysics Data System (ADS)

    Thomson, B. J.; Bridges, N. T.; Cohen, J.; Hurowitz, J.; Lennon, A.

    2011-03-01

    We have developed an empirical correlation between rock abrasion tool (RAT) grind energy and compressive strength. This correlation can be used to infer the physical properties of rocks ground by the MER rovers on Mars.

  13. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... excessive restorative materials, such as gold, and to smooth rough surfaces from oral restorations, such...

  14. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... excessive restorative materials, such as gold, and to smooth rough surfaces from oral restorations, such...

  15. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... excessive restorative materials, such as gold, and to smooth rough surfaces from oral restorations, such...

  16. Computed tomography to quantify tooth abrasion

    NASA Astrophysics Data System (ADS)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  17. [Dependence of the dentinal abrasion of human teeth on their microhardness].

    PubMed

    Remizov, S M; Pruzhanskiĭ, L Iu

    1989-01-01

    The dentin resistance against abrasion was studied as related to its microhardness. Sections of 15 intact teeth were investigated (central upper incisors). Water suspensions (40% weight-to weight) of dicalcium phosphate (DCP, FRG; and DKF-1 and DKF-2, USSR) were used as abrasives. Dentin microhardness was measured with a PMT-3 device, and abrasion assessed with profilographic technique. Dentin abrasion was related to its microhardness and to the kind of abrasive used. Dentin abrasion increased as its microhardness decreased. DCF showed minimal abrasive effect, DKF-2 had maximal effect with DKF-1 keeping the intermediate position.

  18. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations.

  19. Understanding litter decomposition in drylands: Is litter abrasion an important abiotic factor?

    NASA Astrophysics Data System (ADS)

    Peterson, M.; Bravo-Garza, M. R.; Throop, H. L.; Duarte, L. C.

    2012-12-01

    agree with a significant higher mass loss of lab abraded litter after one week of incubation, 4.6% and 4.8% higher than field abraded (P= 0.0005) and unabraded (P= 0.0004) litter, respectively. Results from litter mass loss showed an exponential decrease in all treatments during the first 4 weeks of incubation, where abraded treatments had higher decomposition decay constants than the unabraded leaves: 0.187, 0.170, and 0.164 for the lab abraded, field abraded and unabraded treatments, respectively. Interestingly, differences in the process of litter decomposition among treatments were pronounced during the first weeks of incubation and disappeared by the end of the incubation period where a similar rate of litter mineralization and a ca. 50% mass loss was reported by all litter treatments. Our results suggest that abrasion of leaf litter enhances early stages of decomposition perhaps by creating an exposed outer tissue suitable for microbial colonization. This is reflected by a higher initial accumulation of CO2-C and losses of litter mass in lab abraded litter. Influence of abrasion in litter decomposition was more evident on lab abraded leaves perhaps due to the faster and easier microbial colonization of recently abraded surfaces. Work is in progress to evaluate the amount of C transferred to the soil and the implications of our results on longer-term decomposition.

  20. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

  1. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This

  2. Determining Solubility and Diffusivity by Using a Flow Cell Coupled to a Mass Spectrometer.

    PubMed

    Khodayari, Mehdi; Reinsberg, Philip; Abd-El-Latif, Abd-El-Aziz A; Merdon, Christian; Fuhrmann, Juergen; Baltruschat, Helmut

    2016-06-01

    One of the main challenges in metal-air batteries is the selection of a suitable electrolyte that is characterized by high oxygen solubility, low viscosity, a liquid state and low vapor pressure across a wide temperature range, and stability across a wide potential window. Herein, a new method based on a thin layer flow through cell coupled to a mass spectrometer through a porous Teflon membrane is described that allows the determination of the solubility of volatile species and their diffusion coefficients in aqueous and nonaqueous solutions. The method makes use of the fact that at low flow rates the rate of species entering the vacuum system, and thus the ion current, is proportional to the concentration times the flow rate (c⋅u) and independent of the diffusion coefficient. The limit at high flow rates is proportional to D2/3·c·u1/3 . Oxygen concentrations and diffusion coefficients in aqueous electrolytes that contain Li(+) and K(+) and organic solvents that contain Li(+) , K(+) , and Mg(2+) , such as propylene carbonate, dimethyl sulfoxide tetraglyme, and N-methyl-2-pyrrolidone, have been determined by using different flow rates in the range of 0.1 to 80 μL s(-1) . This method appears to be quite reliable, as can be seen by a comparison of the results obtained herein with available literature data. The solubility and diffusion coefficient values of O2 decrease as the concentration of salt in the electrolyte was increased due to a "salting out" effect. PMID:27017297

  3. ULTRAVIOLET SPECTROSCOPIC ANALYSIS OF TRANSIENT MASS FLOW OUTBURST IN U CEPHEI

    SciTech Connect

    Tupa, Peter R.; DeLeo, Gary G.; McCluskey, George E.; Kondo, Yoji; Sahade, Jorge

    2013-09-20

    Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s{sup –1}, and a number density of (3 ± 2) × 10{sup 10} cm{sup –3}. The validity of C IV 1548 and 1550 and Si IV 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10{sup –9} M{sub ☉} yr{sup –1} is calculated as an approximate upper limit, and a model system is presented.

  4. Poiseuille flow-induced vibrations of two tandem circular cylinders with different mass ratios

    NASA Astrophysics Data System (ADS)

    Jiang, Ren-Jie; Lin, Jian-Zhong

    2016-06-01

    Flow-induced vibrations of two tandem circular cylinders with different mass ratios confined between two parallel walls are numerically studied via a lattice Boltzmann method. With fixed Reynolds number Re = 100 and blockage ratio β = 1/4, the effects of mass ratio m* = [0.0625, 16] and streamwise separation between two cylinders S/D = [1.125, 10] on the cylinder motions and vortex wake modes are investigated. A variety of distinct cylinder motion regimes involving the symmetric periodic vibration, biased quasi-periodic vibration, beating vibration, and steady regimes, with the corresponding wake structures, e.g., two rows of alternately rotating vortices, a single row of same-sign vortices, and steady wake, are observed. For each current case, the cylinder motion type is exclusive and in the binary oscillation regime, both cylinders always vibrate at a common primary frequency. The lighter cylinder usually oscillates at a larger amplitude than the heavier one, while the heavier cylinder undergoes larger lift force than the lighter one. The lift force and cylinder displacement always behave as an out-of-phase state. In the gap-interference region, large-amplitude oscillations could be produced extensively and in the wake-interference region, the cylinder motions and fluid flows are mainly dependent on the upstream cylinder. When the separation is large enough, both cylinders behave as two isolated ones. The mechanisms for the excitations of cylinder vibrations have also been analysed.

  5. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.

    PubMed

    Poda, A R; Bednar, A J; Kennedy, A J; Harmon, A; Hull, M; Mitrano, D M; Ranville, J F; Steevens, J

    2011-07-01

    The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.

  6. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability

  7. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry.

    PubMed

    Forbes, Thomas P; Brewer, Tim M; Gillen, Greg

    2013-10-01

    Desorption electro-flow focusing ionization (DEFFI), a desorption-based ambient ion source, was developed, characterized, and evaluated as a possible source for field deployable ambient pressure mass spectrometry (APMS). DEFFI, based on an electro-flow focusing system, provides a unique configuration for the generation of highly charged energetic droplets for sample analysis and ionization. A concentrically flowing carrier gas focuses the liquid emanating from a capillary through a small orifice, generating a steady fluid jet. An electric field is applied across this jet formation region, producing high velocity charged droplets that impinge on an analyte laden surface. This configuration separates the jet charging region from the external environment, eliminating detrimental effects from droplet space charge or target surface charging. The sample desorption and ionization processes operate similar to desorption electrospray ionization (DESI). DEFFI demonstrated strong signal intensities and improved signal-to-noise ratios in both positive and negative mode mass spectrometry for narcotics, i.e., cocaine, and explosives, i.e., cyclotrimethylenetrinitramine (RDX), respectively. A characterization of DEFFI ionization mechanisms identified operation regimes of both electrospray and corona discharge based analyte ionization, as well as limitations in overall signal. In addition, the DEFFI response was directly compared to DESI-MS under similar operating conditions. This comparison established a wider and more stable optimal operating range, while requiring an order of magnitude lower applied gas pressure and applied potential for DEFFI than DESI. These reductions are due to the physical mode of jet formation and geometric configuration differences between DEFFI and DESI, pointing to a potential benefit of DEFFI-MS for field implementation.

  8. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  9. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M.; Vrsnak, Bojan; Odstrcil, Dusan

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  10. Lattice Boltzmann modeling for fluid flow and heat and mass transport applied to geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramadan; Sussumu Komori, Fabio

    2015-04-01

    Recently, Lattice Boltzmann Modelling (LBM) techniques attract many scientists in various fields of research. This work shows the capability for LBM to simulate the fluid flow and solute transport in porous and fracture media, additionally, how to study behavior of nanofluids submitted to a temperature gradient, which it is an important process in natural aquatic environments, water treatment, and other water related technologies. LBSim is used in this work as Lattice Boltzmann Model simulator software. In this article, a series of cases using the lattice Boltzmann method are presented, showing the capability of the method in simulating phenomena with fluid flow and heat transfer in porous media. Results show that the lattice Boltzmann method delivers reliable and helpful simulations for the analyses of processes in water related technologies. Thus, LBSim is a recommended tool for simulating fluid flow at laminar and turbulent condition, and heat and mass transport under complex geometry and boundary condition. parameter values. Keywords: Lattice Boltzmann Model, LBSim, Fractures Media, Porous Media, nanofluids

  11. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  12. Investigation of technology for monitoring UF/sub 6/ mass flow

    SciTech Connect

    Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

    1987-06-01

    The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF/sub 6/ concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF/sub 6/ and H/sub 2/, a mass flow measurement in conjunction with a measurement of the uranium (or UF/sub 6/) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF/sub 6/ streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF/sub 6/ concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs.

  13. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  14. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015

    NASA Astrophysics Data System (ADS)

    Li, Xin; Rignot, Eric; Mouginot, Jeremie; Scheuchl, Bernd

    2016-06-01

    Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic-aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989-1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature.

  15. Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium

    NASA Astrophysics Data System (ADS)

    Zubair Akbar, Muhammad; Ashraf, Muhammad; Farooq Iqbal, Muhammad; Ali, Kashif

    2016-04-01

    The paper presents the numerical study of heat and mass transfer analysis in a viscous unsteady MHD nanofluid flow through a channel with porous walls and medium in the presence of metallic nanoparticles. The two cases for effective thermal conductivity are discussed in the analysis through H-C model. The impacts of the governing parameters on the flow, heat and mass transfer aspects of the issue are talked about. Under the patronage of small values of permeable Reynolds number and relaxation/contraction parameter, we locate that, when wall contraction is together with suction, flow turning is encouraged close to the wall where the boundary layer is shaped. On the other hand, when the wall relaxation is coupled with injection, the flow adjacent to the porous walls decreased. The outcome of the exploration may be beneficial for applications of biotechnology. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analyzed.

  16. Experimental Study of Bedrock Incision Processes by Both Suspended Load and Bedload Abrasions

    NASA Astrophysics Data System (ADS)

    Chatanantavet, P.; Whipple, K. X.; Adams, M. A.

    2010-12-01

    Channel incision into bedrock by both suspended load and bedload abrasions plays an important role in mountain landscape evolution. The study of erosion processes in both sediment transport regimes and their competition is therefore critical. Here we explored the dependence of experimental bedrock erosion rate on channel bed slope, water discharge, sediment flux, grain size, alluvial bed cover, and evolving channel morphology by slowly abrading weak concrete “bedrock.” In our flume, we are able to independently control bedload, suspended load, and water fluxes as well as channel slope. In the case of bedload, we also used a high-speed camera to track the saltation trajectories of coarse gravels on a smooth bed in another set of experiments and proposed new scaling relationships by including bed roughness and channel slope (separately from shear stress) for grain saltation velocity, height and length. In the case of bedload abrasion, we found that (1) all else held constant, erosion rate can (but not always) increase with channel slope in both smooth and rough bed conditions, (2) erosion rate increases with increasing grain size, and (3) erosion rate is insensitive to increasing water discharge. Thus shear stress is an inadequate metric for saltation dynamics and abrasion. In the case of suspended load abrasion, we found that (1) all else held constant, erosion occurred more in the planar bed condition than in the rough bed condition (deep grooves/slot canyons) because the erosion rate is strongly dependent on the near-bed flow (particle) velocity, (2) erosion rate increases with increasing sediment flux, and (3) perturbations (e.g., boulders) to the flow (thus creating turbulence/eddy) can greatly enhance the erosional efficiency. All else held constant (including bed morphology), the erosion rates by suspended load can account for 1.0 - 20 % (excluding the effect of flow perturbations) of those found in bedload erosion for the same sediment flux. Furthermore

  17. A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Shao, J. Y.; Wu, J.; Niu, X. D.

    2015-06-01

    In this work a mass-conserved diffuse interface method is proposed for simulating incompressible flows of binary fluids with large density ratio. In the method, a mass correction term is introduced into the Cahn-Hilliard equation to compensate the mass losses or offset the mass increases caused by the numerical and modeling diffusion. Since the mass losses or increases are through the phase interfaces and at each time step, their values are very small, to keep mass conservation, mass sources or sinks are introduced and uniformly distributed in the volume of diffuse layer. With the uniform distribution, the mass correction term representing mass sources or sinks is derived analytically by applying mass conservation principle. By including the mass correction, the modified Cahn-Hilliard equation is solved by the fifth-order upwind scheme to capture the phase field of the bindery fluids. The flow field is simulated by the newly-developed multiphase lattice Boltzmann flux solver [20]. The proposed approach is validated by simulating the Laplace law, the merging of two bubbles, Rayleigh-Taylor instability and bubble rising under gravity with density ratio of 1000 and viscosity ratio of 100. Numerical results of interface shapes and flow properties agree well with both analytical solutions and benchmark data in the literature. Numerical results also show that the mass is well-conserved in all cases considered. In addition, it is demonstrated that the mass correction term at each time step is in the order of 10-4 ∼10-5, which is a small number compared with the magnitude of order parameter.

  18. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  19. In vitro effect of air-abrasion operating parameters on dynamic cutting characteristics of alumina and bio-active glass powders.

    PubMed

    Milly, H; Austin, R S; Thompson, I; Banerjee, A

    2014-01-01

    Minimally invasive dentistry advocates the maintenance of all repairable tooth structures during operative caries management in combination with remineralization strategies. This study evaluated the effect of air-abrasion operating parameters on its cutting efficiency/pattern using bio-active glass (BAG) powder and alumina powder as a control in order to develop its use as a minimally invasive operative technique. The cutting efficiency/pattern assessment on an enamel analogue, Macor, was preceded by studying the powder flow rate (PFR) of two different commercial intraoral air-abrasion units with differing powder-air admix systems. The parameters tested included air pressure, powder flow rate, nozzle-substrate distance, nozzle angle, shrouding the air stream with a curtain of water, and the chemistry of abrasive powder. The abraded troughs were scanned and analyzed using confocal white light profilometry and MountainsMap surface analysis software. Data were analyzed statistically using one-way and repeated-measures analysis of variance tests (p=0.05). The air-abrasion unit using a vibration mechanism to admix the abrasive powder with the air stream exhibited a constant PFR regardless of the set air pressure. Significant differences in cutting efficiency were observed according to the tested parameters (p<0.05). Alumina powder removed significantly more material than did BAG powder. Using low air pressure and suitable consideration of the effect of air-abrasion parameters on cutting efficiency/patterns can improve the ultraconservative cutting characteristics of BAG air-abrasion, thereby allowing an introduction of this technology for the controlled cleaning/removal of enamel, where it is indicated clinically.

  20. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahigh-pressure rocks: An ion microprobe and chemical abrasion study

    USGS Publications Warehouse

    Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.

    2004-01-01

    Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.

  1. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  2. A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection

    NASA Astrophysics Data System (ADS)

    Apte, S. V.; Yang, V.

    2003-02-01

    The unsteady flow evolution in a porous chamber with surface mass injection simulating propellant burning in a nozzleless solid rocket motor has been investigated by means of a large-eddy simulation (LES) technique. Of particular importance is the turbulence-transition mechanism in injection-driven compressible flows with high injection rates in a chamber closed at one end and connected to a divergent nozzle at the exit. The spatially filtered and Favre-averaged conservation equations of mass, momentum and energy are solved for resolved scales. The effect of unresolved subgrid scales is treated by using a dynamic Smagorinsky model extended to compressible flows. Three successive regimes of flow development are observed: laminar, transitional, and fully developed turbulent flow. Surface transpiration facilitates the formation of roller-like vortical structures close to the injection surface. The flow is essentially two-dimensional up to the mid-section of the chamber, with the dominant frequencies of vortex shedding governed by two-dimensional hydrodynamic instability waves. These two-dimensional structures are convected downstream and break into complex three-dimensional eddies. Transition to turbulence occurs further away from the wall than in standard channel flows without mass injection. The peak in turbulence intensity moves closer to the wall in the downstream direction until the surface injection prohibits further penetration of turbulence. The temporal and spatial evolution of the vorticity field obtained herein is significantly different from that of channel flow without transpiration.

  3. Optical Measurement of Mass Flow of a Two-Phase Fluid

    NASA Technical Reports Server (NTRS)

    Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don

    2008-01-01

    An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical

  4. Perfluorinated compounds in surface waters and WWTPs in Shenyang, China: mass flows and source analysis.

    PubMed

    Sun, Hongwen; Li, Fasong; Zhang, Tao; Zhang, Xianzhong; He, Na; Song, Qi; Zhao, Lijie; Sun, Lina; Sun, Tieheng

    2011-10-01

    Concentrations of 10 perfluorinated chemicals (PFCs) were investigated in the Hun River (HR), four canals, ten lakes, and influents and effluents from four main municipal wastewater treatment plants (WWTPs) in Shenyang, China. Mass flows of four main PFCs were calculated to elucidate the contribution from different sections of the HR. Overall, perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the major PFCs in the HR, with ranges of 2.68-9.13 ng/L, and 2.12-11.3 ng/L, respectively, while perfluorooctane sulfonate (PFOS) was detected at lower levels, ranging from 0.40 to 3.32 ng/L. The PFC concentrations in the HR increased after the river passes through two cities (Shenyang and Fushun), indicating cities are an important contributor for PFCs. Mass flow analysis in the HR revealed that PFC mass flows from Fushun are 1.65-5.50 kg/year for C6-C8 perfluorinated acids (PFCAs) and 1.29 kg/year for PFOS, while Shenyang contributed 2.83-5.18 kg C6-C8 PFCAs/year, and 3.65 kg PFOS/year. The concentrations of PFCs in four urban canals were higher than those in the HR, with the maximum total PFCs of 240 ng/L. PFOA and PFOS showed different trends along these canals, suggesting different sources for the two PFCs. Total PFCs in ten lakes from Shenyang were at low levels, with the greatest concentration (56.2 ng/L) detected in a heavily industrialized area. The PFC levels in WWTP effluents were higher than those in surface waters with concentrations ranging from 18.4 to 41.1 ng/L for PFOA, and 1.69-3.85 ng/L for PFOS. Similar PFC profiles between effluents from WWTPs and urban surface waters were found. These results indicate that WWTPs are an important PFC source in surface water. Finally, we found that the composition profiles of PFCs in surface waters were similar to those in tap water, but not consistent with those in adult blood from Shenyang. The calculation on total daily intake of PFOS by adults from Shenyang showed that the contribution of

  5. Abrasive Wear Behavior of WC Reinforced Ni-BASED Composite Coating Sprayed and Fused by Oxy-Acetylene Flame

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Chen, Zhenhua; Ding, Zhang Xiong; Chen, Ding

    Microstructure of WC reinforced Ni-based self-fluxing alloy composite coating sprayed and fused by oxy-acetylene flame was investigated by scanning electron microscopy and energy dispersive X-ray Spectrometry, X-ray diffraction, and transmission electron microscopy. The wear performance of the coating was studied by a MLS-225 wet sand rubber wheel abrasive wear tester at various loads and sizes of abrasive particles. Also, the wear resistance of the coating was compared with uncoated ASTM1020 steel. The results indicated that the coating is bonded metallurgically to the substrate and has a homogeneous microstructure composed of both coarse WC and fine carbide and boride grains such as Cr7C3, Cr23C6, and Ni2B which disperse uniformly in the matrix of γ-Ni solid solution and Ni3B. The worn mass loss of the coating and ASTM1020 steel both increased with the load and size of abrasive particles, also, the coating has exhibited excellent abrasive wear resistance compared with ASTM1020 steel.

  6. Microstructure-based analysis and simulation of flow and mass transfer in chromatographic stationary phases

    NASA Astrophysics Data System (ADS)

    Koku, Harun

    Limitations of mass transfer in chromatographic bioseparations employing traditional packed particles have fuelled the inception and development of alternative stationary phases with improved performance characteristics. This work investigates case studies in two categories of these alternative media, namely polymer-modified packed particles and continuous monolithic phases, for insight into their enhanced properties. Specifically, high-resolution microscopy techniques and image-based analysis algorithms were implemented to extract morphology information for these materials, in an attempt to elucidate the relation between microstructure and performance. For the monolith, mesoscopic simulation methods were also employed for a more rigorous analysis of the flow and dispersion behavior. Scanning and transmission electron microscopy images of the commercial polymer-modified, agarose-based particle Sepharose XL were compared to those for its unmodified counterpart, Sepharose FF. Local regions in the composite dextran-agarose Sepharose XL particles were noted to exhibit a denser network of fibers and smaller pore sizes overall, compared to those in the traditional Sepharose FF particles. Images of particles equilibrated with high concentrations of protein revealed a significant difference in protein localization patterns, with the stained protein in XL occupying a markedly higher area fraction of the images. This suggests a higher volume available for adsorption and provides visual clues into how the consistently higher static capacity of these polymer-modified particles is manifested. Treatment of the XL particles with dextranase, an enzyme that breaks down dextran, resulted in a reduction of protein coverage, providing evidence that it is indeed the dextran that is responsible for the improved static capacity in this polymer-modified stationary phase. Imaging and image analysis techniques were also used to analyze the commercial CIM(TM) disk monolith. Two- and three

  7. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  8. System for pressure letdown of abrasive slurries

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  9. OMFP: An Approach for Online Mass Flow Prediction in CFB Boilers

    NASA Astrophysics Data System (ADS)

    Žliobaitė, Indrė; Bakker, Jorn; Pechenizkiy, Mykola

    Fuel feeding and inhomogeneity of fuel typically cause process fluctuations in the circulating fluidized bed (CFB) boilers. If control systems fail to compensate the fluctuations, the whole plant will suffer from fluctuations that are reinforced by the closed-loop controls. Accurate estimates of fuel consumption among other factors are needed for control systems operation. In this paper we address a problem of online mass flow prediction. Particularly, we consider the problems of (1) constructing the ground truth, (2) handling noise and abrupt concept drift, and (3) learning an accurate predictor. Last but not least we emphasize the importance of having the domain knowledge concerning the considered case. We demonstrate the performance of OMPF using real data sets collected from the experimental CFB boiler.

  10. Abrasive tip treatment for use on compressor blades

    NASA Technical Reports Server (NTRS)

    Pedersen, H. C.

    1984-01-01

    A co-spray process was used which simultaneously but separately introduces abrasive grits and metal matrix powder into the plasma stream and entraps the abrasive grits within a molten matrix to form an abrasive coating as the matrix material solidifies on test specimen surfaces. Spray trials were conducted to optimize spray parameter settings for the various matrix/grit combinations before actual spraying of the test specimens. Rub, erosion, and bond adhesion tests were conducted on the coated specimens in the as-sprayed condition as well as on coated specimens that were aged for 100 hours at a temperature of 866K (1100 F). Microscopic examinations were performed to determine the coating abrasive-particle content, the size and shape of the adhesive particles in the coating, and the extent of compositional or morphological changes resulting from the aging process. A nickel chromium/aluminum composite with No. 150 size (0.002 to 0.005 inch) silicon carbide grits was selected as the best matrix/abrasive combination of the candidates surveyed for coating compressor blade tips.

  11. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy.

    Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.

  12. Online monitoring of particle mass flow rate in bottom spray fluid bed coating--development and application.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2010-08-16

    The primary purpose of this study is to develop a visiometric process analyzer for online monitoring of particle mass flow rate in the bottom spray fluid bed coating process. The secondary purpose is to investigate the influences of partition gap and air accelerator insert size on particle mass flow rate using the developed visiometric process analyzer. Particle movement in the region between the product chamber and partition column was captured using a high speed camera. Mean particle velocity and number of particles in the images were determined by particle image velocimetry and morphological image processing method respectively. Mass flow rate was calculated using particle velocity, number of particles in the images, particle density and size information. Particle velocity and number findings were validated using image tracking and manual particle counting techniques respectively. Validation experiments showed that the proposed method was accurate. Partition gap was found to influence particle mass flow rate by limiting the rate of solids flux into the partition column; the air accelerator insert was found to influence particle mass flow rate by a Venturi effect. Partition gap and air accelerator insert diameter needed to be adjusted accordingly in relation to the other variability sources and diameter of coating cores respectively. The potential, challenges and possible solutions of the proposed visiometric process analyzer were further discussed.

  13. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  14. Quantitative Assessment of Mass Flow Boundaries in Continuous Twin-screw Granulation.

    PubMed

    Schmidt, Adrian; de Waard, Hans; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2016-01-01

    In pharmaceutical manufacturing, there is an increasing interest in continuous manufacturing. As an example for fast continuous processes in general of considerable complexity, this study was focussed on improving the understanding of twin-screw wet granulation. The impact of the liquid-to-solid (L/S) mass flow ratio on product quality (granules) as well as on downstream process operations (tableting) was investigated in detail. Initially two methods were used to define L/S ratio boundaries for the granulation regime in twin-screw wet granulation. It was shown that the first method, which is based on measuring the wet granule mass flow variation, can be used to define the upper L/S ratio boundary of the granulation regime. The second method, based on measuring the granule size distribution, can be used to define the lower L/S ratio boundary of the regime. Using these methods, the granulation regime for different formulations could be established. This information was then used to show that the formulation could be optimised such that the process is more robust (i.e. wider L/S ratio boundaries for the granulation regime). Also it could be used to optimise the formulation considering further downstream processing such as drying (using as little water as possible to reduce drying efforts) or tableting (obtain granules with optimised tableting properties). Preferably, the process should be performed close to the lower L/S ratio boundary of the granulation regime. In summary, these tools enabled the quantitative establishment of granulation regime boundaries in a twin-screw wet granulation process and can be used to optimise formulation and to create a robust process. Analogies to other continuous processes in completely different applications can be conceived. PMID:27646540

  15. A pressure gradient facilitates mass flow in the oomycete Achlya bisexualis.

    PubMed

    Muralidhar, Abishek; Swadel, Emma; Spiekerman, Marjolein; Suei, Sandy; Fraser, Miranda; Ingerfeld, Manfred; Tayagui, Ayelen B; Garrill, Ashley

    2016-02-01

    We have used a single cell pressure probe and observed movement of microinjected oil droplets to investigate mass flow in the oomycete Achlya bisexualis. To facilitate these experiments, split Petri dishes that had media containing different sorbitol concentrations (and hence a different osmotic potential) on each side of the dish were inoculated with a single zoospore. An initial germ tube grew out from this and formed a mycelium that extended over both sides of the Petri dish. Hyphae growing on the 0 M sorbitol side of the dish had a mean turgor ( ± sem) of 0.53 ± 0.03 MPa (n = 13) and on the 0.3 M sorbitol side had a mean turgor ( ± sem) of 0.3 ± 0.027 MPa (n = 9). Oil droplets that had been microinjected into the hyphae moved towards the lower turgor area of the mycelia (i.e. retrograde movement when microinjected into hyphae on the 0 M sorbitol side of the split Petri dish and anterograde movement when microinjected into hyphae on the 0.3 M sorbitol side of the Petri dish). In contrast, the movement of small refractile vesicles occurred in both directions irrespective of the pressure gradient. Experiments with neutral red indicate that the dye is able to move through the mycelia from one side of a split Petri dish to the other, suggesting that there is no compartmentation. This study shows that hyphae that are part of the same mycelia can have different turgor pressures and that this pressure gradient can drive mass flow.

  16. A simple, mass balance model of carbon flow in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1989-01-01

    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.

  17. Pinsker estimators for local helioseismology: inversion of travel times for mass-conserving flows

    NASA Astrophysics Data System (ADS)

    Fournier, Damien; Gizon, Laurent; Holzke, Martin; Hohage, Thorsten

    2016-10-01

    A major goal of helioseismology is the three-dimensional reconstruction of the three velocity components of convective flows in the solar interior from sets of wave travel-time measurements. For small amplitude flows, the forward problem is described in good approximation by a large system of convolution equations. The input observations are highly noisy random vectors with a known dense covariance matrix. This leads to a large statistical linear inverse problem. Whereas for deterministic linear inverse problems several computationally efficient minimax optimal regularization methods exist, only one minimax-optimal linear estimator exists for statistical linear inverse problems: the Pinsker estimator. However, it is often computationally inefficient because it requires a singular value decomposition of the forward operator or it is not applicable because of an unknown noise covariance matrix, so it is rarely used for real-world problems. These limitations do not apply in helioseismology. We present a simplified proof of the optimality properties of the Pinsker estimator and show that it yields significantly better reconstructions than traditional inversion methods used in helioseismology, i.e. regularized least squares (Tikhonov regularization) and SOLA (approximate inverse) methods. Moreover, we discuss the incorporation of the mass conservation constraint in the Pinsker scheme using staggered grids. With this improvement we can reconstruct not only horizontal, but also vertical velocity components that are much smaller in amplitude.

  18. Discharge flow tube with LIF and mass spectrometry detection. A method to study atmospherically important reactions

    NASA Astrophysics Data System (ADS)

    Cabañas, B.; Baeza, M. T.; Martín, P.; Salgado, S.; Villanueva, F.; Monedero, E.; Martínez, E.

    The Atmospheric Chemistry is determined mainly by some degradation processes, such as photolysis or oxidation reactions. In the last case, three speceies play a key role in atmospheric processes: nitrate radical (NO3), hydroxil radical (OH) and ozone (O3). In this way, the most of organic compounds emitted to the Atmosphere are chemically removed by day-time reaction with OH and by reaction with NO3 radical at night-time [1]. The experimental techniques used in order to study atmospheric processes, characterised y their fastness, could be classified in absolute and relative ones [2]. Among absolute techniques flow tube is one of the most used in the study of NO3 reactions. The discharge flow system consists of a tube connected to a pump, through which reactant gases are introduced using a movable injector working in general at pressure near to one torr. The nitrate radial generated by the reaction between flourine atoms and nitric acid is monitoring by laser induced fluorescence (L.I.F.), exciting the (0-0) 2Egets2A'2 transition pumping with λ=662 nm radiation from a dye laser. The products generated in the studied reactions are detected and identified by a mass spectrometer with electronic ionisation. Up to now, in this laboratory the reactions of the nitrate radical with different atmospheric pollutants: alquens, terpens, aldehydes and heterocyclic compounds have been studied in the system described below. However, both laser induced fluorescence spectroscopy and flow tube are techniques have been shown useful in astrophysical studies [3,4,5].

  19. Method for (236)U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Steier, Peter; Nielsen, Sven; Golser, Robin

    2015-07-21

    An automated analytical method implemented in a flow injection (FI) system was developed for rapid determination of (236)U in 10 L seawater samples. (238)U was used as a chemical yield tracer for the whole procedure, in which extraction chromatography (UTEVA) was exploited to purify uranium, after an effective iron hydroxide coprecipitation. Accelerator mass spectrometry (AMS) was applied for quantifying the (236)U/(238)U ratio, and inductively coupled plasma mass spectrometry (ICPMS) was used to determine the absolute concentration of (238)U; thus, the concentration of (236)U can be calculated. The key experimental parameters affecting the analytical effectiveness were investigated and optimized in order to achieve high chemical yields and simple and rapid analysis as well as low procedure background. Besides, the operational conditions for the target preparation prior to the AMS measurement were optimized, on the basis of studying the coprecipitation behavior of uranium with iron hydroxide. The analytical results indicate that the developed method is simple and robust, providing satisfactory chemical yields (80-100%) and high analysis speed (4 h/sample), which could be an appealing alternative to conventional manual methods for (236)U determination in its tracer application. PMID:26105019

  20. Slug-flow microextraction coupled with paper spray mass spectrometry for rapid analysis of complex samples.

    PubMed

    Deng, Jiewei; Wang, Wenwen; Yang, Yunyun; Wang, Xiaowei; Chen, Baowei; Yao, Zhong-Ping; Luan, Tiangang

    2016-10-12

    Analysis of trace compounds in small-volume complex samples is of importance for forensic, clinical, pharmaceutical, environmental, and life science investigation. In this study, we reported the coupling of slug-flow microextraction with paper spray mass spectrometry for rapid analysis of trace analytes in small volume of complicated biological samples such as whole blood, milk, and body fluid, etc. The method is performed by applying a disposable glass capillary for rapid extraction of a small amount of complex samples using a small amount of organic solvent; the loaded organic solvent was then spotted onto a paper triangle and dried out; subsequently, a high voltage and some spray solvent were applied onto the paper triangle for mass spectrometric analysis. By using the proposed method, high sensitivity and satisfactory precision for quantitative analysis of trace macrolide antibiotics in whole bloods and milks as well as perfluorinated compounds in individual small organisms have been successfully achieved. In addition, investigation of bioaccumulation of perfluorinated compounds in individual small organisms has been reached.

  1. A mass balance study on nitrification and deammonification in vertical flow constructed wetlands treating landfill leachate.

    PubMed

    Sun, G; Austin, D

    2007-01-01

    A laboratory-scale, mass-balance study was carried out on the transformation of nitrogenous pollutants in four vertical flow wetland columns. Landfill leachate containing low organic matter, but a high concentration of ammoniacal-nitrogen, was treated under dissolved oxygen concentrations close to saturation. Influent total nitrogen (TN) comprised ammoniacal-nitrogen with less than 1% nitrate and nitrite, negligible organic nitrogen, and very low BOD. Nitrification occurred in three of the four columns. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (< 12%). Nitrogen loss under study conditions was unexpected. Two hypotheses are proposed to account for it: (1) either the loss of TN is attributed to nitrogen transformation into a form (provisionally termed alpha-nitrogen) that is undetectable by the analytical methods used; or (2) the loss is caused by microbial denitrification or deammonification. By elimination and stoichiometric mass balance calculations, completely autotrophic nitrogen-removal over nitrite (CANON) deammonification is confirmed as responsible for nitrogen loss in one column. This result reveals that CANON can be native to aerobic engineered wetland systems treating high ammonia, low organic content wastewater.

  2. Slug-flow microextraction coupled with paper spray mass spectrometry for rapid analysis of complex samples.

    PubMed

    Deng, Jiewei; Wang, Wenwen; Yang, Yunyun; Wang, Xiaowei; Chen, Baowei; Yao, Zhong-Ping; Luan, Tiangang

    2016-10-12

    Analysis of trace compounds in small-volume complex samples is of importance for forensic, clinical, pharmaceutical, environmental, and life science investigation. In this study, we reported the coupling of slug-flow microextraction with paper spray mass spectrometry for rapid analysis of trace analytes in small volume of complicated biological samples such as whole blood, milk, and body fluid, etc. The method is performed by applying a disposable glass capillary for rapid extraction of a small amount of complex samples using a small amount of organic solvent; the loaded organic solvent was then spotted onto a paper triangle and dried out; subsequently, a high voltage and some spray solvent were applied onto the paper triangle for mass spectrometric analysis. By using the proposed method, high sensitivity and satisfactory precision for quantitative analysis of trace macrolide antibiotics in whole bloods and milks as well as perfluorinated compounds in individual small organisms have been successfully achieved. In addition, investigation of bioaccumulation of perfluorinated compounds in individual small organisms has been reached. PMID:27662769

  3. Determination of olive oil oxidative status by selected ion flow tube mass spectrometry.

    PubMed

    Davis, Brett M; McEwan, Murray J

    2007-05-01

    The emergence of primary and secondary oxidation products in New Zealand extra virgin olive oil during accelerated thermal oxidation was measured and correlated with the concentrations of 13 headspace volatile compounds measured by selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS is a mass spectrometric technique that permits qualitative and absolute quantitative measurements to be made from whole air, headspace, or breath samples in real-time down to several parts per billion (ppb). It is well-suited to high-throughput analysis of headspace samples. Propanal, hexanal, and acetone were found at high concentrations in a rancid standard oil, while propanal, acetone, and acetic acid showed marked increases with oxidation time for the oils used in this study. A partial least-squares (PLS) regression model was constructed, which allowed the prediction of peroxide values (PV) for three separate oxidized oils. Sensory rancidity was also measured, although the correlations of headspace volatile compounds with sensory rancidity score were less satisfactory, and too few results were available for the construction of a PLS regression model. A fast (approximately 1 min), reliable method for prediction of olive oil PVs by SIFT-MS was developed.

  4. Selenium removal and mass balance in a constructed flow-through wetland system.

    PubMed

    Gao, S; Tanji, K K; Lin, Z Q; Terry, N; Peters, D W

    2003-01-01

    A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. Löve & D. Löve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the

  5. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis.

    PubMed

    Nanita, Sergio C; Kaldon, Laura G

    2016-01-01

    Where does flow injection analysis mass spectrometry (FIA-MS) stand relative to ambient mass spectrometry (MS) and chromatography-MS? Improvements in FIA-MS methods have resulted in fast-expanding uses of this technique. Key advantages of FIA-MS over chromatography-MS are fast analysis (typical run time <60 s) and method simplicity, and FIA-MS offers high-throughput without compromising sensitivity, precision and accuracy as much as ambient MS techniques. Consequently, FIA-MS is increasingly becoming recognized as a suitable technique for applications where quantitative screening of chemicals needs to be performed rapidly and reliably. The FIA-MS methods discussed herein have demonstrated quantitation of diverse analytes, including pharmaceuticals, pesticides, environmental contaminants, and endogenous compounds, at levels ranging from parts-per-billion (ppb) to parts-per-million (ppm) in very complex matrices (such as blood, urine, and a variety of foods of plant and animal origin), allowing successful applications of the technique in clinical diagnostics, metabolomics, environmental sciences, toxicology, and detection of adulterated/counterfeited goods. The recent boom in applications of FIA-MS for high-throughput quantitative analysis has been driven in part by (1) the continuous improvements in sensitivity and selectivity of MS instrumentation, (2) the introduction of novel sample preparation procedures compatible with standalone mass spectrometric analysis such as salting out assisted liquid-liquid extraction (SALLE) with volatile solutes and NH4(+) QuEChERS, and (3) the need to improve efficiency of laboratories to satisfy increasing analytical demand while lowering operational cost. The advantages and drawbacks of quantitative analysis by FIA-MS are discussed in comparison to chromatography-MS and ambient MS (e.g., DESI, LAESI, DART). Generally, FIA-MS sits 'in the middle' between ambient MS and chromatography-MS, offering a balance between analytical

  6. Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering.

    PubMed

    Hardison, Donald W; Ma, Lena Q; Luongo, Thomas; Harris, Willie G

    2004-07-26

    Contamination of shooting range soils from the use of Pb bullets is under increasing scrutiny. Past research on Pb contamination of shooting ranges has focused on weathering reactions of Pb bullets in soil. The objective of this study was to determine the significance of abrasion of Pb bullets in contributing to soil Pb contamination. This was accomplished by firing a known mass of bullets into sand and analyzing for total Pb after removing bullets, through field sampling of a newly opened shooting range, and a laboratory weathering study. Forty-one mg of Pb were abraded per bullet as it passed through the sand, which accounted for 1.5% of the bullet mass being physically removed. At a shooting range that had been open for 3 months, the highest Pb concentration from the pistol range berm soil was 193 mg/kg at 0.5 m height, and from the rifle range berm soil was 1142 mg/kg at 1.0 m height. Most soils from the field abrasion experiment as well as soil collected from the rifle range had SPLP-Pb >15 microg/l (Synthetic Precipitation Leaching Procedure). Typically, Pb concentration in the rifle range was greater than that of the pistol range. Based on a laboratory weathering study, virtually all metallic Pb was converted to hydrocerussite (Pb3(CO3)2(OH)2), as well as to a lesser extent cerussite (PbCO3) and massicot (PbO) within one week. Our study demonstrated that abrasion of lead bullets and their subsequent weathering can be a significant source of lead contamination in soils of a newly opened shooting range.

  7. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  8. Abrasive wear and surface roughness of contemporary dental composite resin.

    PubMed

    Han, Jian-min; Zhang, Hongyu; Choe, Hyo-Sun; Lin, Hong; Zheng, Gang; Hong, Guang

    2014-01-01

    The purpose of this study was to evaluate the abrasive wear and surface roughness of 20 currently available commercial dental composite resins, including nanofilled, supra-nanofilled, nanohybrid and microhybrid composite resins. The volume loss, maximum vertical loss, surface roughness (R(a)) and surface morphology [Scanning electron microscopy (SEM)] were determined after wear. The inorganic filler content was determined by thermogravimetric analysis. The result showed that the volume loss and vertical loss varied among the materials. The coefficients of determination (R(2)) of wear volume loss and filler content (wt%) was 0.283. SEM micrographs revealed nanofilled composites displayed a relatively uniform wear surfaces with nanoclusters protrusion, while the performance of nanohybrid composites varied. The abrasive wear resistance of contemporary dental composite resins is material-dependent and cannot be deduced from its category, filler loading and composite matrix; The abrasive wear resistance of some flowable composites is comparable to the universal/posterior composite resins.

  9. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  10. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.

    PubMed

    Seeger, Eva M; Maier, Uli; Grathwohl, Peter; Kuschk, Peter; Kaestner, Matthias

    2013-02-01

    For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference.

  11. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo.

  12. Water flow in fractured rock masses: numerical modeling for tunnel inflow assessment

    NASA Astrophysics Data System (ADS)

    Gattinoni, P.; Scesi, L.; Terrana, S.

    2009-04-01

    Water circulation in rocks represents a very important element to solve many problems linked with civil, environmental and mining engineering. In particular, the interaction of tunnelling with groundwater has become a very relevant problem not only due to the need to safeguard water resources from impoverishment and from the pollution risk, but also to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems. The evaluation of the hydrogeological risk linked to the underground excavation is very complex, either for the large number of variables involved or for the lack of data available during the planning stage. The study is aimed to quantify the influence of some geo-structural parameters (i.e. discontinuities dip and dip direction) on the tunnel drainage process, comparing the traditional analytical method to the modeling approach, with specific reference to the case of anisotropic rock masses. To forecast the tunnel inflows, a few Authors suggest analytic formulations (Goodman et al., 1965; Knutsson et al., 1996; Ribacchi et al., 2002; Park et al., 2008; Perrochet et al., 2007; Cesano et al., 2003; Hwang et al., 2007), valid for infinite, homogeneous and isotropic aquifer, in which the permeability value is given as a modulus of equivalent hydraulic conductivity Keq. On the contrary, in discontinuous rock masses the water flow is strongly controlled by joints orientation, by their hydraulic characteristics and by rocks fracturing conditions. The analytic equations found in the technical literature could be very useful, but often they don't reflect the real phenomena of the tunnel inflow in rock masses. Actually, these equations are based on the hypothesis of homogeneous aquifer, and then they don't give good agreement for an heterogeneous fractured medium. In this latter case, the numerical modelling could provide the best results, but only with a detailed conceptual model of the water circulation, high costs and long

  13. The effect of water temperature and flow on respiration in barnacles: patterns of mass transfer versus kinetic limitation.

    PubMed

    Nishizaki, Michael T; Carrington, Emily

    2014-06-15

    In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (<7.5 cm (-1)) and high temperature (20-25°C). In contrast, limitation by uptake reaction kinetics, when the biotic capacity of barnacles to absorb and process oxygen is slower than its physical delivery by mass transport, prevailed at high flows (40-150 cm s(-1)) and low temperatures (5-15°C). Moreover, there are intermediate flow-temperature conditions where both mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance.

  14. Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2016-05-01

    In this paper, we discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Viscous dissipation and Joule heating are also taken into consideration. Mathematical model is presented by using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are highly nonlinear and thus perturbation solution for small Weissenberg number (We < 1) is presented. Effects of the heat and mass transfer on the longitudinal velocity, temperature and concentration are studied in detail. Main observations are presented in the concluding section. The streamlines pattern is also given due attention.

  15. A two-dimensional coupled flow-mass transport model based on an improved unstructured finite volume algorithm.

    PubMed

    Zhou, Jianzhong; Song, Lixiang; Kursan, Suncana; Liu, Yi

    2015-05-01

    A two-dimensional coupled water quality model is developed for modeling the flow-mass transport in shallow water. To simulate shallow flows on complex topography with wetting and drying, an unstructured grid, well-balanced, finite volume algorithm is proposed for numerical resolution of a modified formulation of two-dimensional shallow water equations. The slope-limited linear reconstruction method is used to achieve second-order accuracy in space. The algorithm adopts a HLLC-based integrated solver to compute the flow and mass transport fluxes simultaneously, and uses Hancock's predictor-corrector scheme for efficient time stepping as well as second-order temporal accuracy. The continuity and momentum equations are updated in both wet and dry cells. A new hybrid method, which can preserve the well-balanced property of the algorithm for simulations involving flooding and recession, is proposed for bed slope terms approximation. The effectiveness and robustness of the proposed algorithm are validated by the reasonable good agreement between numerical and reference results of several benchmark test cases. Results show that the proposed coupled flow-mass transport model can simulate complex flows and mass transport in shallow water.

  16. A two-dimensional coupled flow-mass transport model based on an improved unstructured finite volume algorithm.

    PubMed

    Zhou, Jianzhong; Song, Lixiang; Kursan, Suncana; Liu, Yi

    2015-05-01

    A two-dimensional coupled water quality model is developed for modeling the flow-mass transport in shallow water. To simulate shallow flows on complex topography with wetting and drying, an unstructured grid, well-balanced, finite volume algorithm is proposed for numerical resolution of a modified formulation of two-dimensional shallow water equations. The slope-limited linear reconstruction method is used to achieve second-order accuracy in space. The algorithm adopts a HLLC-based integrated solver to compute the flow and mass transport fluxes simultaneously, and uses Hancock's predictor-corrector scheme for efficient time stepping as well as second-order temporal accuracy. The continuity and momentum equations are updated in both wet and dry cells. A new hybrid method, which can preserve the well-balanced property of the algorithm for simulations involving flooding and recession, is proposed for bed slope terms approximation. The effectiveness and robustness of the proposed algorithm are validated by the reasonable good agreement between numerical and reference results of several benchmark test cases. Results show that the proposed coupled flow-mass transport model can simulate complex flows and mass transport in shallow water. PMID:25686488

  17. Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Cabot, William H.; Thornber, Ben

    2016-05-01

    Rayleigh-Taylor instability (RTI) and Richtmyer-Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixed mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Ψ) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass Ψ is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Ψ is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Ξ and Θ.

  18. Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland

    USGS Publications Warehouse

    Waythomas, C.F.; Wallace, K.L.

    2002-01-01

    An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated

  19. Mass Transfer in a Rigid Tube With Pulsatile Flow and Constant Wall Concentration

    PubMed Central

    Moschandreou, T. E.; Ellis, C. G.; Goldman, D.

    2011-01-01

    An approximate-analytical solution method is presented for the problem of mass transfer in a rigid tube with pulsatile flow. For the case of constant wall concentration, it is shown that the generalized integral transform (GIT) method can be used to obtain a solution in terms of a perturbation expansion, where the coefficients of each term are given by a system of coupled ordinary differential equations. Truncating the system at some large value of the parameter N, an approximate solution for the system is obtained for the first term in the perturbation expansion, and the GIT-based solution is verified by comparison to a numerical solution. The GIT approximate-analytical solution indicates that for small to moderate nondimensional frequencies for any distance from the inlet of the tube, there is a positive peak in the bulk concentration C1b due to pulsation, thereby, producing a higher mass transfer mixing efficiency in the tube. As we further increase the frequency, the positive peak is followed by a negative peak in the time-averaged bulk concentration and then the bulk concentration C1b oscillates and dampens to zero. Initially, for small frequencies the relative Sherwood number is negative indicating that the effect of pulsation tends to reduce mass transfer. There is a band of frequencies, where the relative Sherwood number is positive indicating that the effect of pulsation tends to increase mass transfer. The positive peak in bulk concentration corresponds to a matching of the phase of the pulsatile velocity and the concentration, respectively, where the unique maximum of both occur for certain time in the cycle. The oscillatory component of concentration is also determined radially in the tube where the concentration develops first near the wall of the tube, and the lobes of the concentration curves increase with increasing distance downstream until the concentration becomes fully developed. The GIT method proves to be a working approach to solve the first

  20. Analysis of silt abrasion of the impeller ring in a centrifugal pump with J-grooves

    NASA Astrophysics Data System (ADS)

    Qian, Z. D.; Wang, Z. Y.; Guo, Z. W.; Dong, J.; Lu, J.

    2016-05-01

    The water flow and movement of silt in a prototype double-suction centrifugal pump was simulated using an Euler-Lagrange multiphase flow model. J-Grooves were adopted to protect the impeller ring from silt abrasion. The influence of J-grooves on the silt concentration and pump efficiency was analyzed. The results show that the radial component of the relative velocity around the impeller ring is too low to move the silt out of the spacing between the impeller plate and the casing. The high silt concentration around the impeller ring is the major contributor to silt abrasion of the impeller ring. The J-grooves induce two strong vortices, which increase the radial component of the relative velocity of water and reduce the silt concentration around the impeller ring, but additional friction losses are introduced and the pump efficiency is decreased. Optimization of the number and shape of J-grooves decreases losses in the efficiency of the pump, and effectively protects the impeller ring. Case 4 was found the most effective configuration in this study.

  1. Determination of local values of gas and liquid mass flux in highly loaded two-phase flow

    NASA Technical Reports Server (NTRS)

    Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.

    1974-01-01

    A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.

  2. Visco-elastic effects with simultaneous thermal and mass diffusion in MHD free convection flow near an oscillating plate in the slip flow regime

    NASA Astrophysics Data System (ADS)

    Das, Bandita; Choudhury, Rita

    2016-06-01

    The present study analyzes the influence of visco-elastic flow of fluid through a porous medium bounded by an oscillating porous plate with heat source in the slip flow regime. Effects of heat transfer, mass transfer and chemical reaction are also taken into account. The porous plate is subjected to a transverse suction velocity. The dimensionless governing equations of the problem are solved by regular perturbation technique. The analytical expressions for the velocity, temperature, concentration, and Shearing stress have been obtained and illustrated graphically for different values of physical parameters involved in the problem. The investigation reveals that the visco-elastic fluid has significant effects on the considered flow field in comparison with Newtonian fluid flow phenomenon.

  3. First-order control of surface roughness at three scales: boundary layer dynamics, tracer dispersion and pebble abrasion

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Litwin, K. L.; Phillips, C. B.; Martin, R. L.

    2012-12-01

    In many situations it may be appropriate to treat surfaces as smooth and particles as spherical, however here we focus on scenarios in which the roughness of the surface exerts a first-order control on flow and transport dynamics. We describe three vignettes at three different scales: (1) roughness transitions and resulting sediment transport dynamics over ~10-km distance in a desert dune field; (2) reach-scale river bed roughness and its influence on dispersion of tracer particles in bed load; and (3) the control of particle surface roughness on the nature and rate of pebble abrasion. For (1), we show how the abrupt transition from a flat surface to a dune field may be treated as a step increase in the aerodynamic roughness parameter - so long as the spatial scale considered is significantly larger than that of an individual dune. This increase causes a spatial decline in the boundary stress downwind that may be understood using simple boundary layer theory, resulting in a factor of three decrease in the sand flux over a distance of kilometers. For (2), laboratory and field studies of tracer particles in bed load indicate that they undergo short flights separated by long rest periods having a power-law tail - even in steady flows. We hypothesize that for near-threshold transport - which predominates is coarse-grained rivers - particles become trapped in 'wells' produced by surface roughness, and their rest time is controlled by the time for the surface to scour down and release them. Laboratory observations support this hypothesis, while comparison to non-geophysical 'flows' indicates that these dynamics are generic to transport in disordered systems. Finally, for (3) we report laboratory experiments by our group and others showing how abrasion rate decreases with decreasing particle roughness. Geometric models quantitatively support the intuition that locations of high positive curvature on pebble surfaces are more susceptible to abrasion; as they are

  4. Characterization of hydrogen storage materials by means of pressure concentration isotherms based on the mass flow method

    NASA Astrophysics Data System (ADS)

    Bielmann, Michael; Kato, Shunsuke; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2009-08-01

    The determination of the equilibrium thermodynamic parameters of hydrogen storage materials from quasiequilibrium pressure data using the mass flow pressure concentration isotherm (pcI) method is presented. The method bases on the acquisition of pcI curves at different flow rates using a thermal mass flow controller to determine the amount of ad/desorbed hydrogen. These measurements provide a set of corresponding quasiequilibrium pressure functions from, which the true equilibrium pressure of the hydride is calculated by extrapolation to zero flow. The governing thermodynamic parameters can then be determined to characterize the material by the construction of a van't Hoff plot, extracting enthalpy of reaction ΔHr and entropy of reaction ΔSr from the equilibrium pressure peq as a function of temperature. Naturally, true equilibrium can never be reached and therefore can only be approximated by measurement--a drawback that all experimental techniques share. This complication is alleviated by the flow-pcI approach at different flow rates. The compilation of the peq(T ) data from pcI-measurements can be performed by different methods, whereas the so called Sieverts apparatus is most commonly used. In this paper, we elaborate the differences and advantages of the mass flow-pcI over the Sieverts Apparatus and present measurements and results on LaNi5 as a benchmark. Measurements at different flow rates are presented and equilibrium pressures at zero flow are achieved by extrapolation. The obtained results of ΔHd=32.5 kJ mol-1 H2 and ΔSd=115 J K-1 mol-1 H2 (desorption process) perfectly match literature values, emphasizing the excellent quality of the measurements and the performance of this measurement apparatus.

  5. Comprehensive theory of the Deans' switch as a variable flow splitter: fluid mechanics, mass balance, and system behavior.

    PubMed

    Boeker, Peter; Leppert, Jan; Mysliwietz, Bodo; Lammers, Peter Schulze

    2013-10-01

    The Deans' switch is an effluent switching device based on controlling flows of carrier gas instead of mechanical valves in the analytical flow path. This technique offers high inertness and a wear-free operation. Recently new monolithic microfluidic devices have become available. In these devices the whole flow system is integrated into a small metal device with low thermal mass and leak-tight connections. In contrast to a mechanical valve-based system, a flow-controlled system is more difficult to calculate. Usually the Deans' switch is used to switch one inlet to one of two outlets, by means of two auxiliary flows. However, the Deans' switch can also be used to deliver the GC effluent with a specific split ratio to both outlets. The calculation of the split ratio of the inlet flow to the two outlets is challenging because of the asymmetries of the flow resistances. This is especially the case, if one of the outlets is a vacuum device, such as a mass spectrometer, and the other an atmospheric detector, e.g. a flame ionization detector (FID) or an olfactory (sniffing) port. The capillary flows in gas chromatography are calculated with the Hagen-Poiseuille equation of the laminar, isothermal and compressible flow in circular tubes. The flow resistances in the new microfluidic devices have to be calculated with the corresponding equation for rectangular cross-section microchannels. The Hagen-Poiseuille equation underestimates the flow to a vacuum outlet. A corrected equation originating from the theory of rarefied flows is presented. The calculation of pressures and flows of a Deans' switch based chromatographic system is done by the solution of mass balances. A specific challenge is the consideration of the antidiffusion resistor between the two auxiliary gas lines of the Deans' switch. A full solution for the calculation of the Deans' switch including this restrictor is presented. Results from validation measurements are in good accordance with the developed

  6. Comprehensive theory of the Deans' switch as a variable flow splitter: fluid mechanics, mass balance, and system behavior.

    PubMed

    Boeker, Peter; Leppert, Jan; Mysliwietz, Bodo; Lammers, Peter Schulze

    2013-10-01

    The Deans' switch is an effluent switching device based on controlling flows of carrier gas instead of mechanical valves in the analytical flow path. This technique offers high inertness and a wear-free operation. Recently new monolithic microfluidic devices have become available. In these devices the whole flow system is integrated into a small metal device with low thermal mass and leak-tight connections. In contrast to a mechanical valve-based system, a flow-controlled system is more difficult to calculate. Usually the Deans' switch is used to switch one inlet to one of two outlets, by means of two auxiliary flows. However, the Deans' switch can also be used to deliver the GC effluent with a specific split ratio to both outlets. The calculation of the split ratio of the inlet flow to the two outlets is challenging because of the asymmetries of the flow resistances. This is especially the case, if one of the outlets is a vacuum device, such as a mass spectrometer, and the other an atmospheric detector, e.g. a flame ionization detector (FID) or an olfactory (sniffing) port. The capillary flows in gas chromatography are calculated with the Hagen-Poiseuille equation of the laminar, isothermal and compressible flow in circular tubes. The flow resistances in the new microfluidic devices have to be calculated with the corresponding equation for rectangular cross-section microchannels. The Hagen-Poiseuille equation underestimates the flow to a vacuum outlet. A corrected equation originating from the theory of rarefied flows is presented. The calculation of pressures and flows of a Deans' switch based chromatographic system is done by the solution of mass balances. A specific challenge is the consideration of the antidiffusion resistor between the two auxiliary gas lines of the Deans' switch. A full solution for the calculation of the Deans' switch including this restrictor is presented. Results from validation measurements are in good accordance with the developed

  7. Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device.

    PubMed

    Wilson, Derek J; Konermann, Lars

    2005-11-01

    The adverse effects of nonvolatile salts on the electrospray (ESI) mass spectra of proteins and other biological analytes are a major obstacle for a wide range of applications. Numerous sample cleanup approaches have been devised to facilitate ESI-MS analyses. Recently developed microdialysis techniques can shorten desalting times down to several minutes, the bottleneck being diffusion of the contaminant through a semipermeable membrane. This work introduces an approach that allows the on-line desalting of macromolecule solutions within tens of milliseconds. The device does not employ a membrane; instead, it uses a two-layered laminar flow geometry that exploits the differential diffusion of macromolecular analytes and low molecular weight contaminants. To maximize desalting efficiency, diffusive exchange between the flow layers is permitted only for such a time as to allow full exchange of salt, while incurring minimal macromolecule exchange. Computer simulations and optical studies show that the device can reduce the salt concentration by roughly 1 order of magnitude, while retaining approximately 70% of the original protein concentration. Application of this approach to the on-line purification of salt-contaminated protein solutions in ESI-MS results in dramatic improvements of both the signal-to-noise ratio and the absolute signal intensity. However, efficient desalting requires the diffusion coefficients of salt and analyte to differ by roughly 1 order of magnitude or more. This technique has potential to facilitate high-throughput analyses of biological macromolecules directly from complex matrixes. In addition, it may become a valuable tool for process monitoring and for on-line kinetic studies on biological systems.

  8. Friability and crushing strength of micrometer-size diamond abrasives used in microgrinding of optical glass

    NASA Astrophysics Data System (ADS)

    Zhou, Yiyang; Takahashi, Toshio; Quesnel, David J.; Funkenbusch, Paul D.

    1996-04-01

    In abrasive grinding, the properties of the abrasives and their response to impact loading play a significant role in determining the results achievable. For micrometer-size diamond abrasives used for bound-abrasive microgrinding of optical glass, friability testing is used to estimate the related particle properties. Friability and crushing strength of diamond abrasives are estimated based on the data from comminution of sample powders on a commercial SPEX mixer/mill. Different diamond abrasives as well as a CBN abrasive are tested. Evolution of powder size and size distribution with comminution time is characterized with a HORIBA laser scattering analyzer. Correlation is established for the impact stress and the probability of fracture during comminution. This study demonstrates how to combine the ease of data acquisition found in a conventional friability test with the capability of predicting specific mechanical properties normally found only by crushing individual abrasive particles.

  9. In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study

    PubMed Central

    2009-01-01

    Background Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA). The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange. Results The in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions. Conclusion The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an unacceptable computational

  10. Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species

    NASA Astrophysics Data System (ADS)

    Huang, Huilian; Sun, Jianghao; McCoy, Joe-Ann; Zhong, Haiyan; Fletcher, Edward J.; Harnly, James; Chen, Pei

    2015-03-01

    Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC-MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica.

  11. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  12. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    NASA Astrophysics Data System (ADS)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2016-08-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube (d t ), diameter of the coil (D c ), diameter of the particle (d p ), pitch difference (p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  13. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain...

  14. 9 CFR 311.14 - Abrasions, bruises, abscesses, pus, etc.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Abrasions, bruises, abscesses, pus, etc. 311.14 Section 311.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... excised, leaving only sound, normal tissue, which may be passed for human food. Any organ or other part...

  15. PROTECTIVE EFFECT OF GREEN TEA ON DENTIN EROSION AND ABRASION

    PubMed Central

    Kato, Melissa Thiemi; Magalhães, Ana Carolina; Rios, Daniela; Hannas, Angélica Reis; Attin, Thomas; Buzalaf, Marília Afonso Rabelo

    2009-01-01

    Objective: This in situ study evaluated the protective effect of green tea on dentin erosion (ERO) and erosion-abrasion (ABR). Material and methods: Ten volunteers wore intraoral palatal appliances with bovine dentin specimens subjected to ERO or ERO + toothbrushing abrasion performed immediately (ERO+I-ABR) or 30 min after erosion (ERO+30-min-ABR). During 2 experimental 5-day crossover phases, the volunteers rinsed with green tea or water (control, 1 min) between each erosive (5 min, cola drink) and abrasive challenge (30 s, toothbrushing), 4x/day. Dentin wear was measured by profilometry. Results: The green tea reduced the dentin wear significantly for all conditions compared to control. ERO+I-ABR led to significantly higher wear than ERO, but it was not significantly different from ERO+30-min-ABR. ERO+30-min-ABR provoked significant higher wear than ERO, only for the placebo treatment. Conclusions: From the results of the present study, it may be concluded that green tea reduces the dentin wear under erosive/abrasive conditions. PMID:20027426

  16. Development of a thermal reclamation system for spent blasting abrasive

    SciTech Connect

    Bryan, B.B.; Mensinger, M.C.; Rehmat, A.G.

    1991-01-01

    Abrasive blasting is the most economical method for paint removal from large surface areas such as the hulls and tanks of oceangoing vessels. Tens of thousands of tons of spent abrasive are generated annually by blasting operations in private and US Navy shipyards. Some of this material is classified as hazardous waste, and nearly all of it is currently being either stockpiled or disposed in landfills. The rapid decline in available landfill space and corresponding rise in landfill tipping fees pose a severe problem for shipyard operators throughout the US. This paper discusses the results of a research and development program initiated by the Institute of Gas Technology and supported by the US Navy to develop and test a fluidized-bed thermal reclamation system for spent abrasive waste minimization. Bench- and pilot-scale reclaimer tests and reclaimed abrasive performance tests are described along with the current status of a program to build and test a 5-ton/hour prototype reclaimer at a US Navy shipyard.

  17. Potential of Air-Propelled Abrasives for Selective Weed Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel forms of selective weed control are needed by many types of growers, but especially organic growers who are restricted from using synthetic herbicides. Abrasive grit made from corn cobs was expelled from a sand blaster at 517 kPa pressure and aimed at seedlings of common lambsquarters and corn...

  18. Understanding the distribution, degradation and fate of organophosphate esters in an advanced municipal sewage treatment plant based on mass flow and mass balance analysis.

    PubMed

    Liang, Kang; Liu, Jingfu

    2016-02-15

    Although organophosphate esters (OPEs) in the ambient environment are from sewage treatment plants due to the discharge of effluent and application of sludge, the distribution, degradation and fate of OPEs in advanced municipal sewage treatment plants remain unclear. This work focused on the use of mass flow and mass balance analysis to understand the behaviors and fate of 14 OPEs in an advanced municipal sewage treatment plant. OPEs were detected in all sewage water and sludge samples with total OPEs (ΣOPEs) concentrations of 1399 ± 263 ng/L in raw sewage aqueous phase, 833 ± 175 ng/L in tertiary effluent aqueous phase, and 315 ± 89 ng/g dry weight in dewatered sludge. The dissolved concentrations of ΣOPEs significantly decreased during biological treatment, whereas negligible decrease was observed in mechanical and physical-chemical treatments. For individual OPE, the chlorinated tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP) did not decrease but increased during both biological treatment and physical-chemical treatment. Mass flow analysis indicated the total removal efficiency of ΣOPEs in aqueous phase was 40.5%, and the polarity-specific removal efficiencies for individual OPE were positively related to their solid-water partition coefficients (Kd). Furthermore, mass balance results showed that 53.1% and 6.3% of the initial OPE mass flow were eventually transferred to the effluents and dewatered sludge, respectively, while the remaining 39.9% and 0.7% were lost due to biodegradation and physical-chemical treatment, respectively. It was indicated that the activated sludge treatment system with anaerobic/anoxic/aerobic bioreactors was a major factor in the removal of OPEs from the raw sewage, while transfer to dewatered sludge governed by hydrophobic interactions was limited during the sewage treatment. Meanwhile, the degradation difference of OPEs in activated sludge treatment was more related with their molecular

  19. Understanding the distribution, degradation and fate of organophosphate esters in an advanced municipal sewage treatment plant based on mass flow and mass balance analysis.

    PubMed

    Liang, Kang; Liu, Jingfu

    2016-02-15

    Although organophosphate esters (OPEs) in the ambient environment are from sewage treatment plants due to the discharge of effluent and application of sludge, the distribution, degradation and fate of OPEs in advanced municipal sewage treatment plants remain unclear. This work focused on the use of mass flow and mass balance analysis to understand the behaviors and fate of 14 OPEs in an advanced municipal sewage treatment plant. OPEs were detected in all sewage water and sludge samples with total OPEs (ΣOPEs) concentrations of 1399 ± 263 ng/L in raw sewage aqueous phase, 833 ± 175 ng/L in tertiary effluent aqueous phase, and 315 ± 89 ng/g dry weight in dewatered sludge. The dissolved concentrations of ΣOPEs significantly decreased during biological treatment, whereas negligible decrease was observed in mechanical and physical-chemical treatments. For individual OPE, the chlorinated tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP) did not decrease but increased during both biological treatment and physical-chemical treatment. Mass flow analysis indicated the total removal efficiency of ΣOPEs in aqueous phase was 40.5%, and the polarity-specific removal efficiencies for individual OPE were positively related to their solid-water partition coefficients (Kd). Furthermore, mass balance results showed that 53.1% and 6.3% of the initial OPE mass flow were eventually transferred to the effluents and dewatered sludge, respectively, while the remaining 39.9% and 0.7% were lost due to biodegradation and physical-chemical treatment, respectively. It was indicated that the activated sludge treatment system with anaerobic/anoxic/aerobic bioreactors was a major factor in the removal of OPEs from the raw sewage, while transfer to dewatered sludge governed by hydrophobic interactions was limited during the sewage treatment. Meanwhile, the degradation difference of OPEs in activated sludge treatment was more related with their molecular

  20. New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.

    PubMed

    Wu, Qingru; Wang, Shuxiao; Hui, Mulin; Wang, Fengyang; Zhang, Lei; Duan, Lei; Luo, Yao

    2015-03-17

    The mercury (Hg) flow paths from three zinc (Zn) smelters indicated that a large quantity of Hg, approximately 38.0-57.0% of the total Hg input, was stored as acid slag in the landfill sites. Approximately 15.0-27.1% of the Hg input was emitted into water or stored as open-dumped slags, and 3.3-14.5% of the Hg input ended in sulfuric acid. Atmospheric Hg emissions, accounting for 1.4-9.6% of the total Hg input, were from both the Zn production and waste disposal processes. Atmospheric Hg emissions from the waste disposal processes accounted for 40.6, 89.6, and 94.6% of the total atmospheric Hg emissions of the three studied smelters, respectively. The Zn production process mainly contributed to oxidized Hg (Hg2+) emissions, whereas the waste disposal process generated mostly elemental Hg (Hg0) emissions. When the emissions from these two processes are considered together, the emission proportion of the Hg2+ mass was 51, 46, and 29% in smelters A, B, and C, respectively. These results indicated that approximately 10.8±5.8 t of atmospheric Hg emissions from the waste disposal process were ignored in recent inventories. Therefore, the total atmospheric Hg emissions from the Zn industry of China should be approximately 50 t.

  1. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air.

  2. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  3. On the features, successes and challenges of selected ion flow tube mass spectrometry.

    PubMed

    Spanel, Patrik; Smith, David

    2013-01-01

    The major features of the selected ion flow tube mass spectrometry (SIFT-MS) analytical method that was conceived and designed for the analysis, in real time, of air obviating sample collections into bags or extraction by pre-concentration of trace compounds onto surfaces are reviewed. The unique analytical capabilities of SIFT-MS for ambient analysis are stressed that allow quantification of volatile organic and inorganic compounds directly from the measurement of physical parameters without the need for regular instrumental calibration using internal or external standards. Then, emphasis is placed on the challenging real-time accurate analysis of single exhalations of humid breath, which is now achieved and readily facilitates wider applications of SIFT-MS in other fields where trace gas analysis has value. The quality of the data obtained by SIFT-MS is illustrated by the quantification of some exhaled breath metabolites that are of immediate relevance to physiology and medicine, including that of hydrogen cyanide in the breath of patients with cystic fibrosis. The current status of SIFT-MS is revealed by a form of a strengths, weakness, opportunities and threats (SWOT) analysis intended to present an objective view of this analytical technique and the likely way forward towards its further development and application. PMID:24575622

  4. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. PMID:27155436

  5. Crystallization of 4He in aerogel via mass flow from surrounding solid 4He

    NASA Astrophysics Data System (ADS)

    Matsuda, H.; Ochi, A.; Isozaki, R.; Minami, S.; Nomura, R.; Pollanen, J.; Halperin, W. P.; Okuda, Y.

    2016-07-01

    The phase boundary between the quantum solid and the liquid phases of 4He is strongly modified in a porous material. However the phase diagram at very low temperatures remains unexplored. We have used a variable-volume experimental cell with optical access to visualize the crystallization of 4He in silica aerogels with independent control of the pressure and temperature. The onset of crystallization was investigated in two aerogel samples with differing porosity both by pressurization at constant temperature and by cooling at constant pressure. With isothermal pressurization we have established a low-temperature phase diagram for each aerogel, and we find that the equilibrium crystallization pressure is reduced with increasing aerogel porosity. Crystals also began to grow in the aerogel on cooling at fixed pressure below an onset temperature Tgrow. We found that below this temperature the crystallization rate increased with decreasing temperature. The aerogel in our cell was surrounded by bulk crystals of 4He , and surprisingly Tgrow was found to be widely distributed when the surrounding bulk crystals were repressurized. In this experimental arrangement, crystallization within the aerogel on cooling requires mass flow from these exterior bulk crystals and is strongly influenced by the disordered structure at the interface between the bulk solid and the helium within the aerogel.

  6. Fully automated screening of veterinary drugs in milk by turbulent flow chromatography and tandem mass spectrometry

    PubMed Central

    Stolker, Alida A. M.; Peters, Ruud J. B.; Zuiderent, Richard; DiBussolo, Joseph M.

    2010-01-01

    There is an increasing interest in screening methods for quick and sensitive analysis of various classes of veterinary drugs with limited sample pre-treatment. Turbulent flow chromatography in combination with tandem mass spectrometry has been applied for the first time as an efficient screening method in routine analysis of milk samples. Eight veterinary drugs, belonging to seven different classes were selected for this study. After developing and optimising the method, parameters such as linearity, repeatability, matrix effects and carry-over were studied. The screening method was then tested in the routine analysis of 12 raw milk samples. Even without internal standards, the linearity of the method was found to be good in the concentration range of 50 to 500 µg/L. Regarding repeatability, RSDs below 12% were obtained for all analytes, with only a few exceptions. The limits of detection were between 0.1 and 5.2 µg/L, far below the maximum residue levels for milk set by the EU regulations. While matrix effects—ion suppression or enhancement—are obtained for all the analytes the method has proved to be useful for screening purposes because of its sensitivity, linearity and repeatability. Furthermore, when performing the routine analysis of the raw milk samples, no false positive or negative results were obtained. PMID:20379812

  7. Effect of diffusional mass transfer on the performance of horizontal subsurface flow constructed wetlands in tropical climate conditions.

    PubMed

    Njau, K N; Gastory, L; Eshton, B; Katima, J H Y; Minja, R J A; Kimwaga, R; Shaaban, M

    2011-01-01

    The effect of mass transfer on the removal rate constants of BOD5, NH3, NO3 and TKN has been investigated in a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) planted with Phragmites mauritianus. The plug flow model was assumed and the inlet and outlet concentrations were used to determine the observed removal rate constants. Mass transfer effects were studied by assessing the influence of interstitial velocity on pollutant removal rates in CW cells of different widths. The flow velocities varied between 3-46 m/d. Results indicate that the observed removal rate constants are highly influenced by the flow velocity. Correlation of dimensionless groups namely Reynolds Number (Re), Sherwood Number (Sh) and Schmidt Number (Sc) were applied and log-log plots of rate constants against velocity yielded straight lines with values beta = 0.87 for BOD5, 1.88 for NH3, 1.20 for NO3 and 0.94 for TKN. The correlation matched the expected for packed beds although the constant beta was higher than expected for low Reynolds numbers. These results indicate that the design values of rate constants used to size wetlands are influenced by flow velocity. This paper suggests the incorporation of mass transfer into CW design procedures in order to improve the performance of CW systems and reduce land requirements.

  8. Brushing abrasion of luting cements under neutral and acidic conditions.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    2000-01-01

    Four resin based materials (Compolute Aplicap, ESPE; Variolink Ultra, Vivadent; C&B Metabond, Parkell and Panavia 21, Kuraray), two carboxylate cements (Poly-F Plus, Dentsply DeTrey and Durelon Maxicap, ESPE), two glass-ionomer cements (Fuji I, GC and Ketac-Cem Aplicap, ESPE), one resin-modified glass ionomer cement (Vitremer, 3M) one polyacid-modified resin composite (Dyract Cem, Dentsply DeTrey) and one zinc phosphate cement (Harvard, Richter & Hoffmann) were investigated according to their brushing resistance after storage in neutral and acidic buffer solutions. For this purpose 24 cylindrical acrylic molds were each filled with the materials. After hardening, the samples were stored for seven days in 100% relative humidity and at 37 degrees C. Subsequently, they were ground flat and polished. Then each specimen was covered with an adhesive tape leaving a 4 mm wide window on the cement surface. Twelve samples of each material were stored for 24 hours in a buffer solution with a pH of 6.8. The remaining 12 samples were placed in a buffer with a pH of 3.0. All specimens were then subjected to a three media brushing abrasion (2,000 strokes) in an automatic brushing machine. Storage and brushing were performed three times. After 6,000 brushing strokes per specimen, the tape was removed. Brushing abrasion was measured with a computerized laser profilometer and statistically analyzed with ANOVA and Tukey's Standardized Range Test (p < or = 0.05). The highest brushing abrasion was found for the two carboxylate cements. The lowest brushing abrasion was found for one resin based material, Compolute Aplicap. With the exception of three resin-based materials, a lower pH led to a higher brushing abrasion.

  9. A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate.

    PubMed

    Shahid, N

    2015-01-01

    Exact expressions of velocity, temperature and mass concentration have been calculated for free convective flow of fractional MHD viscous fluid over an oscillating plate. Expressions of velocity have been obtained both for sine and cosine oscillations of plate. Corresponding fractional differential equations have been solved by using Laplace transform and inverse Laplace transform. The expression of temperature and mass concentration have been presented in the form of Fox-H function and in the form of general Wright function, respectively and velocity is presented in the form of integral solutions using Generalized function. Some limiting cases of fluid and fractional parameters have been discussed to retrieve some solutions present in literature. The influence of thermal radiation, mass diffusion and fractional parameters on fluid flow has been analyzed through graphical illustrations. PMID:26543774

  10. Effect of flow pulsation on mass transport in a cathode channel of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Han, Hun Sik; Kim, Yun Ho; Kim, Seo Young; Hyun, Jae Min

    2012-09-01

    An experimental and theoretical study on the cathode flow pulsation in a polymer electrolyte membrane (PEM) fuel cell is performed. A 10-cell PEM fuel cell stack with open-air cathode channels is employed to investigate the effects of the cathode flow pulsation on the overall performance. The polarization and corresponding power curves obtained show that both the limiting current density and the maximum power density are substantially enhanced when the pulsating component is added to the cathode mainstream flow. The flow pulsation at Re = 77 provides the maximum increment of 40% and 35.5% in the limiting current density and in the maximum power density, respectively. The enhancement of the overall performance is more pronounced at low Reynolds numbers. Also, the theoretical mass transport analysis in the pulsating cathode flow channel is carried out to verify the present experimental results. The momentum and species conservation equations are analytically solved, and the effective time-averaged dispersion coefficient is defined to account for the enhanced mass transport by the flow pulsation. Comprehensive analytical solutions show that the effect of the relevant parameters is in well accordance with the experimental results.

  11. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  12. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  13. The Effect of Thoracoscopic Pleurodesis in Primary Spontaneous Pneumothorax: Apical Parietal Pleurectomy versus Pleural Abrasion

    PubMed Central

    Huh, Up; Cho, Jeong Su; I, Hoseok; Lee, Jon Geun; Lee, Jun Ho

    2012-01-01

    Background The standard operative treatment of primary spontaneous pneumothorax (PSP) is thoracoscopic wedge resection, but necessity of pleurodesis still remains controversial. Nevertheless, pleural procedure after wedge resection such as pleurodesis has been performed in some patients who need an extremely low recurrence rate. Materials and Methods From January 2000 to July 2010, 207 patients who had undergone thoracoscopic wedge resection and pleurodesis were enrolled in this study. All patients were divided into two groups according to the methods of pleurodesis; apical parietal pleurectomy (group A) and pleural abrasion (group B). The recurrence after surgery had been checked by reviewing medical record through follow-up in ambulatory care clinic or calling to the patients, directly until January 2011. Results Of the 207 patients, the recurrence rate of group A and B was 9.1% and 12.8%, respectively and there was a significant difference (p=0.01, Cox's proportional hazard model). There was no significant difference in age, gender, smoking status, and body mass index between two groups. Conclusion This study suggests that the risk of recurrence after surgery in PSP is significantly low in patients who underwent thoracoscopic wedge resection with parietal pleurectomy than pleural abrasion. PMID:23130305

  14. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  15. Multi-rate mass transfer modeling of two-phase flow in highly heterogeneous fractured and porous media

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco

    2016-05-01

    We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.

  16. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  17. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    USGS Publications Warehouse

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  18. Methodology of evaluation of abrasive tool wear with the use of laser scanning microscopy.

    PubMed

    Lipiński, Dariusz; Kacalak, Wojciech; Tomkowski, Robert

    2014-01-01

    Grinding is one of the basic precise material removal methods. Abrasive and shape wear, as well as smearing of the tools' active surface handicap the processing results. The loss of cutting capacity in abrasive tools or alteration of their shape influences the surface quality and precision of the workpiece dimensions and its shape. Evaluation of the abrasive tool surface is the basic criterion of forecasting the tools' durability and the process results. The applied method of laser scanning made determination of the surface coordinates and subsequently of its geometric features with micrometric accuracy possible. Using the information on the abrasive tool surface geometric structure, a methodology of evaluation of the level of changes in geometric features of the tool during the grinding process was developed. Criteria for evaluation of the level of abrasive grains attritious wear, the degree of smearing of the abrasive tool surface and evaluation of the cutting capability of the abrasive tools were determined. The developed method allowed for evaluation of the level of abrasive tools' wear, and subsequently formed foundations for assessment of the influence of the grinding parameters on the durability of abrasive tools, evaluation of the influence of the parameters of the process of shaping the abrasive tools' active surfaces on their geometric characteristics and evaluation of the level of correlation between the monitored process parameters and the degree of the abrasive tools' wear.

  19. Acquisition and correlation of cryogenic nitrogen mass flow data through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Saiyed, Naseem H.; Nyland, Ted W.

    1990-01-01

    Liquid nitrogen mass flow rate, pressure drop, and temperature drop data were obtained for a series of multiple orifice Joule-Thomson devices, known as Visco Jets, over a wide range of flow resistance. The test rig used to acquire the data was designed to minimize heat transfer so that fluid expansion through the Visco Jets would be isenthalpic. The data include a range of fluid inlet pressures from 30 to 60 psia, fluid inlet temperatures from 118 to 164 R, outlet pressures from 2.8 to 55.8 psia, outlet temperatures from 117 to 162 R and flow rate from 0.04 to 4.0 lbm/hr of nitrogen. A flow rate equation supplied by the manufacturer was found to accurately predict single-phase (noncavitating) liquid nitrogen flow through the Visco Jets. For cavitating flow, the manufacturer's equation was found to be inaccurate. Greatly improved results were achieved with a modified version of the single-phase equation. The modification consists of a multiplication factor to the manufacturer's equation equal to one minus the downstream quality on an isenthalpic expansion of the fluid across the Visco Jet. For a range of flow resistances represented by Visco Jet Lohm ratings between 17,600 and 80,000, 100 percent of the single-phase data and 85 percent of the two-phase data fall within + or - 10 percent of predicted values.

  20. Abrasive Wear Study of NiCrFeSiB Flame Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2013-10-01

    In the present study, abrasive wear behavior of NiCrFeSiB alloy coating on carbon steel was investigated. The NiCrFeSiB coating powder was deposited by flame spraying process. The microstructure, porosity and hardness of the coatings were evaluated. Elemental mapping was carried out in order to study the distribution of various elements in the coating. The abrasive wear behavior of these coatings was investigated under three normal loads (5, 10 and 15 N) and two abrasive grit sizes (120 and 320 grit). The abrasive wear rate was found to increase with the increase of load and abrasive size. The abrasive wear resistance of coating was found to be 2-3 times as compared to the substrate. Analysis of the scanning electron microscope images revealed cutting and plowing as the material removal mechanisms in these coatings under abrasive wear conditions used in this investigation.

  1. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain

    NASA Astrophysics Data System (ADS)

    Ouyang, Chaojun; He, Siming; Xu, Qiang; Luo, Yu; Zhang, Wencheng

    2013-03-01

    A two-dimensional mountainous mass flow dynamic procedure solver (Massflow-2D) using the MacCormack-TVD finite difference scheme is proposed. The solver is implemented in Matlab on structured meshes with variable computational domain. To verify the model, a variety of numerical test scenarios, namely, the classical one-dimensional and two-dimensional dam break, the landslide in Hong Kong in 1993 and the Nora debris flow in the Italian Alps in 2000, are executed, and the model outputs are compared with published results. It is established that the model predictions agree well with both the analytical solution as well as the field observations.

  2. Metal-complex formation in continuous-flow ligand-exchange reactors studied by electrospray mass spectrometry.

    PubMed

    Krabbe, J G; de Boer, A R; van der Zwan, G; Lingeman, H; Niessen, W M A; Irth, H

    2007-04-01

    Electrospray ionization mass spectrometry was used to investigate complex formation of different metal complexes in a continuous-flow ligand-exchange reactor. A computer program was developed based on normal equilibrium calculations to predict the formation of various metal-ligand complexes. Corresponding to these calculations, infusion electrospray mass spectrometric experiments were performed to investigate the actual complex formation in solution. The data clearly show good correlation between the theoretically calculated formation of metal-ligand complexes and the experimental mass spectrometric data. Moreover, the approach demonstrates that the influence of the pH can be investigated using a similar approach. Indirectly, these infusion experiments provide information on relative binding constants of different ligands towards a metal-ion. To demonstrate this, a continuous-flow ligand-exchange detection system with mass spectrometric detection was developed. Injection of ligands, with different affinity for the metal-ion, into the reactor shows good correlation between binding constants and the response in the ligand-exchange detection system. Additional information on the introduced ligand, and the complexes formed after introduction of the ligand, can be obtained from interpretation of the mass spectra.

  3. High-precision measurements of mercury vapor in air: Design of a six-port-manifold mass flow controller system and evaluation of mass flow errors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Lindberg, Steven E.

    1994-03-01

    We constructed an atmospheric sampling system for Hg vapor that utilizes a single vacuum pump connected via a manifold to six separate mass flow controllers (MFC). The manifold system reduces the size and power requirements for collection of replicate samples, is ideally suited for use on meteorological towers, and achieves the precise control of air-sampling volumes required for computing air/surface exchange rates from concentration gradients of Hg vapor. In testing our air sampling systems, we found consistent calibration errors between the manufacturer's calibrations and a standard bubble flow meter. Errors as high as 30% decreased systematically with increasing flow rate to values of 3-5% at near-maximum flow. The relative error patterns established between adjacent MFC units in each system were found to be relatively stable over time. Using gold-coated sand amalgamation traps for Hg vapor and the flow correction factors computed from our calibrations, we routinely achieve precision for replicate measurements of Hg vapor in background air of 0.5-2% (expressed as relative standard errors of mean concentrations of 1.5-3.5 ng/m3). Application of the flow correction factors measurably decreases the level of bias between mean concentrations of Hg vapor measured with adjacent sampling systems and is necessary to reduce uncertainty associated with quantifying gradients in atmospheric concentrations.

  4. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  5. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  6. A physically-based abrasive wear model for composite materials

    SciTech Connect

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  7. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  8. Controlling abrasion in coal prep plants

    SciTech Connect

    Schumacher, W.

    1996-12-31

    Maintenance departments in many industries are continually battling the daily fires that run costs up and productivity down. Many plants have equipment that must operate under wet sliding conditions which can lead to accelerated wear of the equipment. Electric power generating plants, for example, have ongoing maintenance concerns for piping, chutes, hoppers, heat exchangers, and valves. Pulp and paper plants have heavy maintenance on: plate screens, conical bottoms of blow tanks, chutes, and augers. Coal handling equipment is often subjected to wet sliding conditions. Utility and coal prep plants can have serious flow problems if an improper structural or wear material is selected. Vibrating screens, chutes, surge bin feeders, conical distributors, screw conveyors, and cyclones are some of the components that must resist the ravages of corrosion and wear. This paper will address many of the issues that affect the life of plant components under wet sliding conditions. Environmental effects and material effects will be examined. Since the material of construction is most times the easier to change, the paper will concentrate on this subject. Such factors as: hardness, surface roughness, corrodent, and material of construction will be explored. Both controlled laboratory studies and real world service evaluations will be presented.

  9. Occlusive Dressings and the Healing of Standardized Abrasions

    PubMed Central

    Beam, Joel W

    2008-01-01

    Context: Acute skin trauma during sport participation, resulting in partial-thickness abrasions, is common. The limited investigations focusing on the acute wound environment and dressing techniques and the subsequent lack of evidence-based standards complicate clinical wound care decisions. Objective: To examine the effects of occlusive dressings on healing of standardized, partial-thickness abrasions. Design: Controlled, counterbalanced, repeated-measures design. Setting: University laboratory. Patients or Other Participants: Sixteen healthy women (n  =  10) and men (n  =  6). Intervention(s): Four standardized, partial-thickness abrasions were inflicted. Film, hydrogel, and hydrocolloid occlusive dressings and no dressing (control) were applied. Participants returned on postwound days 1, 3, 5, 7, 10, and 14 for digital imaging. Wound healing time was measured by change in wound contraction (cm2) and change in wound color (chromatic red) and luminance in red, green, and blue color values. Main Outcome Measure(s): Wound contraction, color (chromatic red), and luminance. Results: A day-by-dressing interaction was found for wound contraction, color, and luminance. Post hoc testing indicated that the film and hydrocolloid dressings produced greater wound contraction than the hydrogel and no dressing on days 7 and 10. Film, hydrogel, and hydrocolloid dressings also resulted in greater wound contraction than the control on day 14. Hydrocolloid dressings produced smaller measures of color and greater measures of luminance than no dressing on day 7. Film, hydrogel, and hydrocolloid dressings also resulted in smaller measures of color and greater measures of luminance compared with no dressing on days 10 and 14. Conclusions: When compared with the control (no dressing), the film, hydrogel, and hydrocolloid occlusive dressings were associated with a faster healing rate of partial-thickness abrasions across time measured by wound contraction, color, and luminance

  10. Trajectories and energy transfer of saltating particles onto rock surfaces : application to abrasion and ventifact formation on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.; Phoreman, James; White, Bruce R.; Greeley, Ronald; Eddlemon, Eric E.; Wilson, Gregory R.; Meyer, Christine J.

    2005-01-01

    The interaction between saltating sand grains and rock surfaces is assessed to gauge relative abrasion potential as a function of rock shape, wind speed, grain size, and planetary environment. Many kinetic energy height profiles for impacts exhibit a distinctive increase, or kink, a few centimeters above the surface, consistent with previous field, wind tunnel, and theoretical investigations. The height of the kink observed in natural and wind tunnel settings is greater than predictions by a factor of 2 or more, probably because of enhanced bouncing off hard ground surfaces. Rebounded grains increase the effective flux and relative kinetic energy for intermediate slope angles. Whether abrasion occurs, as opposed to simple grain impact with little or no mass lost from the rock, depends on whether the grain kinetic energy (EG) exceeds a critical value (EC), as well as the flux of grains with energies above EC. The magnitude of abrasion and the shape change of the rock over time depends on this flux and the value of EG > EC. Considering the potential range of particle sizes and wind speeds, the predicted kinetic energies of saltating sand hitting rocks overlap on Earth and Mars. However, when limited to the most likely grain sizes and threshold conditions, our results agree with previous work and show that kinetic energies are about an order of magnitude greater on Mars.

  11. An ion-drag air mass-flow sensor for automotive applications

    SciTech Connect

    Malaczynski, G.W.; Schroeder, T. )

    1992-04-01

    An air-flow meter, developed primarily for the measurement of intake air flow into an internal combustion engine, is described. The well-known process of corona ion deflection in a gas flow together with proper electrode geometry and a detection scheme provides the conceptual basis for a humidity-insensitive ionic air-flow sensor. Output characteristics of the sensor, such as response time and range of operation, are discussed and compared with those of a production hot-wore meter for the type that is currently used with electronic fuel injection systems.

  12. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid

    SciTech Connect

    Abbasi, F. M.; Shehzad, S. A.; Hayat, T.; Alsaedi, A.; Obid, Mustafa A.

    2015-03-15

    This article explores the hydromagnetic steady flow of Jeffrey fluid in the presence of thermal radiation. The chosen nanofluid model takes into account the Brownian motion and thermophoresis effects. Flow and heat transfer characteristics are determined by a stretching surface with flux conditions. The nonlinear boundary layer flow through partial differential systems is converted into the ordinary differential systems. The resulting reduced systems are computed for the convergent solutions of velocity, temperature and nanoparticle concentration. Graphs of dimensionless temperature and nanoparticle concentration profiles are presented for different values of emerging parameters. Skin-friction coefficient are computed and analyzed in both hydrodynamic and hydromagnetic flow situations.

  13. Abrasion of eroded root dentine brushed with different toothpastes.

    PubMed

    De Menezes, Márcio; Turssi, Cecilia Pedroso; Hara, Anderson Takeo; Messias, Danielle Cristine Furtado; Serra, Mônica Campos

    2004-09-01

    This study evaluated the surface roughness change and wear provided by different dentifrices on root dentine previously exposed to erosive challenges. According to a randomized complete block design, 150 slabs of bovine root dentine (6 x 3 x 2 mm) were ground flat and polished. In an area of 4 x 3 mm on the dentine surface, specimens were submitted to five erosive/abrasive events, each one composed by: exposure to Sprite Diet or distilled water for 5 min, then to a remineralizing solution for 1 min, and simulation of 5,000 brushing strokes. Four dentifrices--regular (RE), baking soda (BS), whitening (WT) and tartar control (TC)--and distilled water (CO), used as control, were compared. Final texture and the wear depth were evaluated using a profilometer. ANOVA did not show significant interaction, indicating that the effect of dentifrices on both surface roughness change and wear did not depend on whether or not the dentine was eroded ( p>0.05). There was no difference between abrasion of eroded and sound dentine. The Tukey's test revealed that WT, BS and TC provided the highest increase in surface roughness differing from RE and CO. TC yielded the deepest wear of root dentine, whereas RE and CO, the shallowest. No significant difference in wear among BS, TC and WT were observed. Within the limitations of this study, the data showed that abrasion of both eroded and sound root dentine was dependent on the dentifrice used. PMID:15146320

  14. Shotcup petal abrasions in close range .410-caliber shotgun injuries.

    PubMed

    Dowling, G P; Dickinson, J A; Cooke, C T

    1988-01-01

    Shotcup petal abrasions centered around a shotgun wound of entrance are generally thought to occur at a range of 30 to 90 cm. A suicidal .410-caliber shotgun injury of the right eye is described in which typical petal abrasions were noted around the entrance wound. However, significant soot deposition around the wound suggested that the range of fire was less than 30 cm and perhaps closer to 15 cm. Test-firing of the weapon and ammunition used by the decedent showed some spread of the shotcup petals at a range of 7.5 cm, progressing to maximum spread at 30 to 52.5 cm. Further testing with other .410 ammunition, containing shotcups, confirmed the spread of shotcup petals at ranges less than 30 cm, irrespective of manufacturer, shotshell length, and birdshot size. When a variety of shotguns were tested, it was found that one weapon with a very short barrel and cylinder bore did not exhibit petal spread until a range of 30 cm was reached. The remaining shotguns, with longer barrels and full choke, all demonstrated definite petal spread at a range of 12.5 cm. The long, narrow configuration of .410 shotcup petals may explain their early spread and the production of petal abrasions at ranges of less than 30 cm.

  15. Dressing methods for grinding wheels made of superhard abrasive materials

    NASA Astrophysics Data System (ADS)

    Spur, G.

    As a result of the increase in the use of difficult-to-machine materials more and more machining tasks are falling within the sphere of grinding. Since the requirements that must be met by the working accuracy under conditions of high productivity of the working cycle are becoming ever more stringent, high-capacity grinding tools are essential. The development of new, superhard abrasives has provided the necessary conditions for achieving technological and economic advantages in the machining of high-alloy materials. In this context cubic crystalline boron nitride (CBN) is used as an abrasive in a number of new fields. After diamond, CBN is the hardest abrasive. While the machining of hard metals is still the field in which diamond grinding wheels are used, the use of CBN grinding wheels in the machining of high alloy, heated treated high-speed steel offers technological and economic advantages. The principal reasons for this are to be found in the fact that CBN does not have a chemical affinity to the alloying elements of the steel, but has a greater thermal stability than diamond.

  16. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar(Registered TradeMark), Vectran(Registered TradeMark), Orthofabric, and Tyvek(Registered TradeMark)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran(Registered TradeMark)) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar(Registered TradeMark) and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek , the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek(Registered TradeMark). This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran(Registered TradeMark) and Kevlar(Registered TradeMark) suffering considerably more extensive filament breakage.

  17. Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Storer, Malina K; Hibbard-Melles, Kim; Davis, Brett; Scotter, Jenny

    2011-10-01

    Selected ion flow tube-mass spectrometry has been used to measure the volatile compounds occurring in the headspace of urine samples inoculated with common urinary tract infection (UTI)-causing microbes Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterococcus faecalis, or Candida albicans. This technique has the potential to offer rapid and simple diagnosis of the causative agent of UTIs.

  18. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  19. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise.

    PubMed

    Broxterman, R M; Craig, J C; Smith, J R; Wilcox, S L; Jia, C; Warren, S; Barstow, T J

    2015-09-01

    Critical power represents an important threshold for neuromuscular fatigue development and may, therefore, dictate intensities for which exercise tolerance is determined by the magnitude of fatigue accrued. Peripheral fatigue appears to be constant across O2 delivery conditions for large muscle mass exercise, but this consistency is equivocal for smaller muscle mass exercise. We sought to determine the influence of blood flow occlusion during handgrip exercise on neuromuscular fatigue development and to examine the relationship between neuromuscular fatigue development and W '. Blood flow occlusion influenced the development of both peripheral and central fatigue, thus providing further evidence that the magnitude of peripheral fatigue is not constant across O2 delivery conditions for small muscle mass exercise. W ' appears to be related to the magnitude of fatigue accrued during exercise, which may explain the reported consistency of intramuscular metabolic perturbations and work performed for severe-intensity exercise. The influence of the muscle metabolic milieu on peripheral and central fatigue is currently unclear. Moreover, the relationships between peripheral and central fatigue and the curvature constant (W ') have not been investigated. Six men (age: 25 ± 4 years, body mass: 82 ± 10 kg, height: 179 ± 4 cm) completed four constant power handgrip tests to exhaustion under conditions of control exercise (Con), blood flow occlusion exercise (Occ), Con with 5 min post-exercise blood flow occlusion (Con + Occ), and Occ with 5 min post-exercise blood flow occlusion (Occ + Occ). Neuromuscular fatigue measurements and W ' were obtained for each subject. Each trial resulted in significant peripheral and central fatigue. Significantly greater peripheral (79.7 ± 5.1% vs. 22.7 ± 6.0%) and central (42.6 ± 3.9% vs. 4.9 ± 2.0%) fatigue occurred for Occ than for Con. In addition, significantly greater peripheral (83.0 ± 4.2% vs. 69.0 ± 6.2%) and central

  20. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    NASA Astrophysics Data System (ADS)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  1. Grain-size segregation and levee formation in geophysical mass flows

    USGS Publications Warehouse

    Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ~80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ~2 m s-1 during most of the runout. Segregation was measured by placing ~600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ~6–7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  2. Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.

    PubMed

    Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam

    2016-02-01

    Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.

  3. Rate-limited mass transfer of octane, decane, and dodecane into nonionic surfactants solutions under laminar flow conditions.

    PubMed

    Prak, Dianne J Luning

    2008-05-01

    A key component to predicting the success of utilizing surfactants to enhance the removal of organic liquids from soil system is quantifying micellar solubilization kinetics. In this study, a flow reactor was employed to investigate the influence of surfactant ethoxylate chain length on the rates of solubilization of octane, decane, and dodecane in micellar solutions of a homologous series of purified dodecyl alcohol ethoxylates. Effluent concentration data were fit using a finite element model utilizing a linear-driving-force model to represent mass transfer at the interface. For flow rates between 0.1 and 2 ml min(-1), mass transfer coefficients ranged from 5 x 10(-8) to 7 x 10(-7)m s(-1) and did not vary in a systematic way with either solute structure or surfactant ethoxylate chain length and were lower than those found in pure water. Correlations developed for the Sherwood number based on diffusion coefficients of surfactant micelles containing organic material (organic-laden micelle) exhibit a velocity dependence similar to that found for systems based on aqueous diffusion. These results suggest that under gentle flowing conditions, the mass transfer is limited by diffusion of the organic-laden micelle. Although these trends are specific for this experimental system, the results demonstrate the importance of selecting the proper diffusion coefficient when modeling surfactant solubilization processes.

  4. Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.

    PubMed

    Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam

    2016-02-01

    Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models. PMID:26986411

  5. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study.

    PubMed

    Tan, Melissa H X; Hill, Robert G; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38-80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  6. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study

    PubMed Central

    Tan, Melissa H. X.; Hill, Robert G.; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38–80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  7. The simplicity of fractal-like flow networks for effective heat and mass transport

    SciTech Connect

    Pence, Deborah

    2010-05-15

    A variety of applications using disk-shaped fractal-like flow networks and the status of one and two-dimensional predictive models for these applications are summarized. Applications discussed include single-phase and two-phase heat sinks and heat exchangers, two-phase flow separators, desorbers, and passive micromixers. Advantages of using these fractal-like flow networks versus parallel-flow networks include lower pressure drop, lower maximum wall temperature, inlet plenum symmetry, alternate flow paths, and pressure recovery at the bifurcation. The compact nature of microscale fractal-like branching heat exchangers makes them ideal for modularity. Differences between fractal-like and constructal approaches applied to disk-shaped heat sink designs are highlighted, and the importance of including geometric constraints, including fabrication constraints, in flow network design optimization is discussed. Finally, a simple pencil and paper procedure for designing single-phase heat sinks with fractal-like flow networks based solely on geometric constraints is outlined. Benefit-to-cost ratios resulting from geometric-based designs are compared with those from flow networks determined using multivariable optimization. Results from the two network designs are within 11%. (author)

  8. Flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry using ≈4 mL min(-1) gas flows.

    PubMed

    Franchina, Flavio A; Maimone, Mariarosa; Tranchida, Peter Q; Mondello, Luigi

    2016-04-01

    The main objective of the herein described research was focused on performing satisfactory flow modulation (FM), in comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS), using an MS-compatible second-dimension gas flow of approx. 4 mL min(-1). The FM model used was based on that initially proposed by Seeley et al. [3]. The use of limited gas flows was enabled through fine tuning of the FM parameters, in particular the duration of the re-injection (or flushing) process. Specifically, the application of a long re-injection period (i.e., 700 ms) enabled efficient accumulation-loop flushing with gas flows of about 4 mL min(-1). It was possible to apply such extended re-injection periods by using different restrictor lengths in the connections linking the modulator to the auxiliary pressure source. FM GC×GC-MS applications were performed on a mixture containing C9-10 alkanes, and on a sample of essential oil. GC×GC-MS sensitivity was compared with that attained by using conventional GC-MS analysis, in essential oil applications. It was observed that signal intensities were, in general, considerably higher in the FM GC×GC-MS experiments.

  9. Basic research needs and opportunities at the solid-solid interface - Adhesion, abrasion and polymer coatings

    NASA Astrophysics Data System (ADS)

    Fowkes, F. M.; Butler, B. L.; Schissel, P.; Butler, G. B.; Hartman, J. S.; Hoffman, R. W.; Inal, O. T.; Miller, W. G.; Tompkins, H. G.; Delollis, N. J.

    1982-04-01

    Solid-solid interfaces in solar technologies such as photovoltaics, mirrored surfaces, and absorbers in flate plate collectors are examined theoretically along with degradation and protective measures. The energetics of adhesion are modeled in terms of intermolecular forces such as covalent and electrostatic bonds. Finite element analyses are noted to be useful for calculating the stress fields in layered solar cells, although inclusion of plastic flow and relaxation processes is not yet possible. The effects of physical degradation of protective coatings and front surfaces of reflectors are outlined, and research in abrasion-erosion resistance, particulate deposition resistance, and detergents for washing solar surfaces is indicated. Finally, polymeric coatings are discussed for solar cells and for wind turbine blades for providing environmental protection.

  10. The influence of mass movements on flow dynamics in carbonatic conglomerates in the Western Sattnitz, Carinthia (Austria)

    NASA Astrophysics Data System (ADS)

    Winkler, Gerfried; Thalheim, Felix

    2016-04-01

    The Turiawald plateau (about 6 km²) in the Western Sattnitz (Carinthia, Austria) is built up by massive carbonatic conglomerates with a thickness up to 200 m which are underlain by Miocene fine clastic sediments that act as an aquiclude and slightly incline towards NW. Nearly no overland flow occurs and most of the infiltrating water flows towards three captured major springs, the Roach spring, Pleier spring, and Hojoutz spring. Their catchments are characterized by highly differing in the occurrence of mass movements. The Roach spring drains about 75% of the plateau and is located in the west of the plateau and is influenced by a large-scale mass movement. The Pleier spring drains an area situated at the northern escarpment of the plateau influenced by smaller mass movements and rockfalls. The Hojoutz spring is supposed to be unaffected by mass movements as the water is collected in a gallery with a length of 110 m. This gallery was driven below the Turiawald plateau at the contact between the conglomerates and the aquiclude. Discharge (water level), water temperature and electrical conductivity data were continuously measured at these springs over a period of approximately three years. Additionally, air temperature and precipitation measurements are provided by a weather station located on top of the plateau. The recession analyses result three drainage components for each spring (first runoff, middle flow, and base flow). The Roach spring shows high discharge variability and the highest recession coefficients with a base flow coefficient of about 0.01 1/d. That is almost as high as the fast flow component of the other two springs. In addition, the discharge responses to groundwater recharge after several days. The water temperature seasonally ranges between 7.9 and 8.2 °C with a time shift of 4 to 6 months to the air temperature. The Pleier spring is characterized by a response to precipitation events after a few hours which can be extended up to nearly one

  11. Continuum modelling of the collapse of a granular mass and its subsequent flow

    NASA Astrophysics Data System (ADS)

    Lagrée, P.; Staron, L.; Popinet, S.

    2011-12-01

    The continuum modelling of transient granular flows is of primary importance in the context of prediction and risk mitigation in relation with rock avalanches and dry debris flows. In this perspective, the granular column collapse experiment provides an interesting benchmark, due to both its relevance to natural granular flows and its challenging complexity (Lube 2004 et al, Lajeunesse et al 2006). In this contribution, we present 2D continuum simulations of granular column collapse using the Navier-Stokes solver Gerris (Popinet 2003), solving the full Navier-Stokes equations. The rheology implemented to model the granular media is the so-called μ (I) rheology, relating the frictional properties and the viscosity of the material to the pressure and shear rate (Jop et al 2006). In addition, discrete simulations using the Contact Dynamics method are performed for systematic comparison between the granular flow dynamics and its continuum counterpart (Staron & Hinch 2005). We find a good agreement, recovering the shape of the flow in the course of time, the internal flow structure, as well as experimental scaling laws for the run-out. A systematic underestimation of the latter is nevertheless observed, and discussed in terms of physical and numerical modeling. This work opens important new prospect for the simulation of more complex situations relevant to geophysical granular flows.

  12. Mass flow and reaction analysis of the growth of GaN by HVPE

    NASA Astrophysics Data System (ADS)

    Kempisty, P.; Grzegory, I.; Bokowski, M.; Krukowski, S.; Ucznik, B.; Pastuszka, B.; Porowski, S.

    2006-01-01

    HVPE growth in horizontal flow reactor has been analysed using finite element calculations and molecular estimates of the reaction rates. Finite element code FIDAP (commercially available from Fluent Inc.) has been used to calculate the flow pattern in the reactor. In the first approximation it was assumed that the flow pattern is weekly dependent on the temperature distribution in the reactor. It was also assumed that the volume reaction rates can be approximated by temperature independent reaction constants. The HCl + Ga(l) reaction rate has been estimated using ideal gas approximation for HCl vapour.The degree of HCl to GaCl conversion was obtained in function of the pressure, flow velocity and geometry of the reactor. The conversion dependence on the sticking coefficient of HCl on liquid Ga surface was analysed. It is shown that for the typical design of the reactor, high conversion rates were observed, even for the sticking coefficient as low as 0.001.

  13. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  14. Modeling highly transient flow, mass, and heat transport in the Chattahoochee River near Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.; Keefer, Thomas N.

    1979-01-01

    A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. A linear, implicit finite-difference flow model was coupled with implicit, finite-difference transport and temperature models. Both the conservative and nonconservative forms of the transport equation were solved, and the difference in the predicted concentrations of dye were found to be insignificant. The temperature model, therefore, was based on the simpler nonconservative form of the transport equation. (Woodard-USGS)

  15. Microfluidic Flow through Polyaniline Supported by Lamellar-Structured Graphene for Mass-Transfer-Enhanced Electrocatalytic Reduction of Hexavalent Chromium.

    PubMed

    Ji, Qinghua; Yu, Dawei; Zhang, Gong; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2015-11-17

    Owing to its high efficiency and environmental compatibility, electroreduction holds great promise for the detoxification of aqueous Cr(VI). However, the typical electroreduction system often shows poor mass transfer, which results in slow reduction kinetics and hence higher energy consumption. Here, we demonstrate a flow-through electrode of polyaniline supported on lamellar-structured graphene (LGS-PANI) for electrocatalytic reduction of Cr(VI). The reaction kinetics of the LGS-PANI flow-through electrodes are 6.4 times (at acidic condition) and 17.3 times (at neutral condition) faster than traditional immersed parallel-plate electrodes. Computational fluid dynamics simulation suggests that the flow-through mode greatly enhances the mass transfer and that the nanoscale convection induced by the PANI nanodots increases the nanoscale mass transport in the interfacial region of the electrode/solution. In situ Raman spectroscopy shows that the PANI-Cr(VI) redox reactions are dominated by the leucoemeraldine/emeraldine transition at 1.5 V cell voltage, which also remarkably contributes to the fast reaction kinetics. Using single-pass flow-through mode, the LGS-PANI electrode reaches an average reduction efficiency of 99.8% with residual Cr(VI) concentration of 22.3 ppb (initial [Cr(VI)] = 10 ppm, flux = 20 L h(-1) m(-2)). A long-term stability test shows that the LGS-PANI maintains stable performance over 40 days of operation and achieves >98% reduction efficiency, with average current efficiency of as high as 99.1% (initial [Cr(VI)] = 10 ppm, flux = 50 L h(-1) m(-2)).

  16. Microfluidic Flow through Polyaniline Supported by Lamellar-Structured Graphene for Mass-Transfer-Enhanced Electrocatalytic Reduction of Hexavalent Chromium.

    PubMed

    Ji, Qinghua; Yu, Dawei; Zhang, Gong; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2015-11-17

    Owing to its high efficiency and environmental compatibility, electroreduction holds great promise for the detoxification of aqueous Cr(VI). However, the typical electroreduction system often shows poor mass transfer, which results in slow reduction kinetics and hence higher energy consumption. Here, we demonstrate a flow-through electrode of polyaniline supported on lamellar-structured graphene (LGS-PANI) for electrocatalytic reduction of Cr(VI). The reaction kinetics of the LGS-PANI flow-through electrodes are 6.4 times (at acidic condition) and 17.3 times (at neutral condition) faster than traditional immersed parallel-plate electrodes. Computational fluid dynamics simulation suggests that the flow-through mode greatly enhances the mass transfer and that the nanoscale convection induced by the PANI nanodots increases the nanoscale mass transport in the interfacial region of the electrode/solution. In situ Raman spectroscopy shows that the PANI-Cr(VI) redox reactions are dominated by the leucoemeraldine/emeraldine transition at 1.5 V cell voltage, which also remarkably contributes to the fast reaction kinetics. Using single-pass flow-through mode, the LGS-PANI electrode reaches an average reduction efficiency of 99.8% with residual Cr(VI) concentration of 22.3 ppb (initial [Cr(VI)] = 10 ppm, flux = 20 L h(-1) m(-2)). A long-term stability test shows that the LGS-PANI maintains stable performance over 40 days of operation and achieves >98% reduction efficiency, with average current efficiency of as high as 99.1% (initial [Cr(VI)] = 10 ppm, flux = 50 L h(-1) m(-2)). PMID:26506080

  17. Relationships of dispersive mass transport and stochastic convective flow through hydrologic systems

    SciTech Connect

    Simmons, C.S.

    1981-01-01

    Uncertainty in water flow velocity appears to be a major factor in determining the magnitude of contaminant dispersion expected in a ground water system. This report discusses some concepts and mathematical methods relating dispersive contaminant transport to stochastic aspects of ground water flow. The theory developed should not be construed as absolutely rigorous mathematics, but is presented with the intention of clarifying the physical concepts.

  18. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    NASA Astrophysics Data System (ADS)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  19. Photon spectra and radiative properties of supercritical accretion flows with Comptonizing outflows around stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Ohsuga, Ken; Mineshige, Shin; Heinzeller, Dominikus; Matsumoto, Ryoji

    Ultraluminous X-ray sources (ULXs) have recently been found in the off-center region of nearby external galaxies. The typical photon luminosities of ULXs range 1039.5-41 [erg/s], which ex-ceeds the Eddington luminosity for neutron stars and stellar-mass black holes. There are two possible models considered to account for such large photon luminosities: subcritical accretion (i.e., accretion below the Eddington accretion rate) onto an intermediate-mass black hole and supercritical accretion (i.e., accretion exceeding the Eddington accretion rate) onto a stellar-mass black hole. Since the black hole masses of ULXs are poorly known at present, we cannot discriminate between these two models. The study of radiation spectra of supercritical accre-tion flows may give a clue to resolve this issue. We calculated X-ray spectra of supercritical accretion flows with mildly hot outflows by Monte-Carlo techniques using two-dimensional ra-diation hydrodynamic simulation data of Kawashima et al. (2009). Our method is based on Pozdnyakov et al. (1977), and we incorporated radiative processes such as the modified black-body radiation with special relativistic effects (i.e., the Doppler shift and the aberration) at the photosphere, the free-free absorption, the photon trapping effect, the thermal Comptoniza-tion, and the bulk Comptonization. We found that the thermal inverse Compton scattering by electrons of the outflow affects the spectral energy distribution (SED) of the supercritical accretion flow. The fraction of the hard emission increases as the mass accretion rate increases (i.e., the photon luminosity increases). When the isotropic X-ray luminosity is below about 10 Eddington luminosity, the SED is similar to that of the slim disk state (i.e., the one-dimensional model of the supercritical accretion flow). By contrast, when the isotropic X-ray luminosity is larger than about 10 Eddington luminosity, the SED becomes harder at high energy region and deviates from the slim

  20. Positive-column plasma studied by fast-flow glow discharge mass spectrometry: Could it be a ``Rydberg gas?''

    NASA Astrophysics Data System (ADS)

    Mason, Rod; Miller, Pat; Mortimer, Ifor; Mitchell, David; Dash, Neil

    2003-07-01

    Ions created from the fast-flowing positive column plasma of a glow discharge were monitored using a high voltage magnetic sector mass spectrometer. Since the field gradient and sheath potentials created by the plasma inside the source opposed cation transfer, it is inferred that the ions detected were the field-ionized Rydberg species. This is supported by the mass spectral changes which occurred when a negative bias was applied to the sampling aperture and by the contrasting behavior when attached to a quadrupole analyzer. Reaction with H2 (titrated into the flowing plasma) quenched not only the ionization of discharge gas Rydberg atoms but also the passage of electric current through the plasma, without significant changes to the field and sheath potentials. Few “free” ions were present and the lifetimes of the Rydberg atoms detected were much longer than seen in lower pressure experiments, indicating additional stabilization in the plasma environment. The observations support the model of the flowing plasma, given previously [R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997)] as mainly a neutral Rydberg atom gas, rather than a conventional ion-electron plasma.