Science.gov

Sample records for abrasive wear characteristics

  1. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    SciTech Connect

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  2. Tooth wear: attrition, erosion, and abrasion.

    PubMed

    Litonjua, Luis A; Andreana, Sebastiano; Bush, Peter J; Cohen, Robert E

    2003-06-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification acts through a distinct process that is associated with unique clinical characteristics. Accurate prevalence data for each classification are not available since indices do not necessarily measure one specific etiology, or the study populations may be too diverse in age and characteristics. The treatment of teeth in each classification will depend on identifying the factors associated with each etiology. Some cases may require specific restorative procedures, while others will not require treatment. A review of the literature points to the interaction of the three entities in the initiation and progression of lesions that may act synchronously or sequentially, synergistically or additively, or in conjunction with other entities to mask the true nature of tooth wear, which appears to be multifactorial.

  3. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  4. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    NASA Astrophysics Data System (ADS)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  5. The interactions between attrition, abrasion and erosion in tooth wear.

    PubMed

    Shellis, R Peter; Addy, Martin

    2014-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.

  6. Interaction between attrition,abrasion and erosion in tooth wear.

    PubMed

    Addy, M; Shellis, R P

    2006-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence seems insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear through formation of pellicle and by remineralisation but cannot prevent it.

  7. Wear resistance and mechanisms of composite hardfacings at abrasive impact erosion wear

    NASA Astrophysics Data System (ADS)

    Surzhenkov, A.; Viljus, M.; Simson, T.; Tarbe, R.; Saarna, M.; Casesnoves, F.

    2017-05-01

    Tungsten carbide based hardmetal containing sprayed and melted composite hardfacings are prospective for protection against abrasive wear. For selection of abrasive wear resistant hardfacings under intensive impact wear conditions, both mechanical properties (hardness, fracture toughness, etc.) and abrasive wear conditions (type of abrasive, impact velocity, etc.) should be considered. This study focuses on the wear (wear rate and mechanisms) of thick metal-matrix composite hardfacings with hardmetal (WC-Co) reinforcement produced by powder metallurgy technology. The influence of the hardmetal reinforcement type on the wear resistance at different abrasive impact erosion wear (AIEW) conditions was studied. An optimal reinforcement for various wear conditions is described. Based on wear mechanism studies, a mathematical model for wear prediction was drafted.

  8. Investigation of wear resistance of polyurethanes in abrasive soil mass

    NASA Astrophysics Data System (ADS)

    Napiórkowski, Jerzy; Ligier, Krzysztof

    2018-04-01

    This paper presents a comparative study of polyurethane wear in different abrasive soil masses. Two types of polyurethanes of various chemical compositions and untreated 38GSA steel were tested, the latter being used as a reference standard. The study was conducted in natural soil mass at a "rotating bowl" stand. Relative wear resistance was determined from measurements of mass wear for the materials under study. The condition of the surface of the materials under wear test was analysed.

  9. Abrasive wear of ceramic wear protection at ambient and high temperatures

    NASA Astrophysics Data System (ADS)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  10. Adhesive and abrasive wear mechanisms in ion implanted metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1985-03-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation.

  11. The role of erosion, abrasion and attrition in tooth wear.

    PubMed

    Barbour, Michele E; Rees, Gareth D

    2006-01-01

    There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.

  12. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  13. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  14. Wear model simulating clinical abrasion on composite filling materials.

    PubMed

    Johnsen, Gaute Floer; Taxt-Lamolle, Sébastien F; Haugen, Håvard J

    2011-01-01

    The aim of this study was to establish a wear model for testing composite filling materials with abrasion properties closer to a clinical situation. In addition, the model was used to evaluate the effect of filler volume and particle size on surface roughness and wear resistance. Each incisor tooth was prepared with nine identical standardized cavities with respect to depth, diameter, and angle. Generic composite of 3 different filler volumes and 3 different particle sizes held together with the same resin were randomly filled in respective cavities. A multidirectional wet-grinder with molar cusps as antagonist wore the surface of the incisors containing the composite fillings in a bath of human saliva at a constant temperature of 37°C. The present study suggests that the most wear resistant filling materials should consist of medium filling content (75%) and that particles size is not as critical as earlier reported.

  15. Abrasive wear of Hilong BoTN hardfacings

    NASA Astrophysics Data System (ADS)

    Fedorova, L.; Fedorov, S.; Sadovnikov, A.; Ivanova, Y.; Voronina, M.

    2018-02-01

    The spread of steels, which are used to produce locks of steel drill pipes, adversely affects their wear resistance, which, in combination with low hardness of HV 2400 ... 2800 MPa as well as of the thread of screw, results in low wear resistance and the need for their reconstruction at the pipe control shop. An efficient way of improving the quality of drill pipe jonts is to hard-face them by the outside diameter with wear-resistant materials (hardbanding). One of the companies engaged in the development of hardfacing materials and hardbanding is Hilong (China) with weld seams of the brand BoTn. According to the results of the studies the following conclusion can be made: hardfacing increases the durability of the hardware, contributing to an increase in wear resistance of locks of DP under the conditions of abrasive action of aggressive geological formations; the usage of DP without wear-resistant weld seams is impermissible, because their further operation, as part of the drill-stem, can lead to emergency consequences; application of the pipes with the hardfacing collars together with the collars without hardfacing, due to varying degree of wear of jonts in the drill-stem, is also impermissible.

  16. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  17. Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.

    2010-07-01

    Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.

  18. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear

    NASA Astrophysics Data System (ADS)

    Chen, Zhikai; Zhu, Qinghai; Wang, Jing; Yun, Xiao; He, Bing; Luo, Jingshuai

    2018-07-01

    In present work, laser quenching had been carried out to improve the impact abrasive wear resistance of 40Cr steel. The distinct microstructure between original and quenched region was demonstrated after laser quenching. Since the effect of temperature and cooling rate, the phase combinations were apparently different for quenched layer in depth. The impact abrasive wear resistance of sample was experimentally investigated and the improved level was assessed in light of the average mass loss of three repetitive tests. Worn surface was detected by means of SEM, OM and EDS, and results showed that three typical failure modes were performed during the processing of impact abrasive wear, including abrasive wear, impact effect and rolling contact fatigue. Basing on the different worn surface profile, the mainly failure mode was respectively pointed out for matrix and quenched sample, which was significantly in accordance with the result of impact abrasive wear.

  19. Study of Abrasive Wear Volume Map for PTFE and PTFE Composites

    NASA Astrophysics Data System (ADS)

    Unal, H.; Sen, U.; Mimaroglu, A.

    2007-11-01

    The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.

  20. Abrasive wear behavior of heat-treated ABC-silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  1. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  2. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    NASA Astrophysics Data System (ADS)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  3. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  4. Abrasive wear of resin composites as related to finishing and polishing procedures.

    PubMed

    Turssi, Cecilia P; Ferracane, Jack L; Serra, Mônica C

    2005-07-01

    Finishing and polishing procedures may cause topographical changes and introduce subsurface microcracks in dental composite restoratives. Since both of these effects may contribute toward the kinetics of wear, the purpose of this study was to assess and correlate the wear and surface roughness of minifilled and nanofilled composites finished and polished by different methods. Specimens (n=10) made of a minifilled and a nanofilled composite were finished and polished with one of the four sequences: (1) tungsten carbide burs plus Al(2)O(3)-impregnated brush (CbBr) or (2) tungsten carbide burs plus diamond-impregnated cup (CbCp), (3) diamond burs plus brush (DmBr) or (4) diamond burs plus cup (DmCp). As a control, abrasive papers were used. After surface roughness had been quantified, three-body abrasion was simulated using the OHSU wear machine. The wear facets were then scanned to measure wear depth and post-testing roughness. All sets of data were subjected to ANOVA and Tukey's tests (alpha=0.05). Pearson's correlation test was applied to check for the existence of a relationship between pre-testing roughness and wear. Significantly smoother surfaces were attained with the sequences CbBr and CbCp, whereas DmCp yielded the roughest surface. Regardless of the finishing/polishing technique, the nanofilled composite exhibited the lowest pre-testing roughness and wear. There was no correlation between the surface roughness achieved after finishing/polishing procedures and wear (p=0.3899). Nano-sized materials may have improved abrasive wear resistance over minifilled composites. The absence of correlation between wear and surface roughness produced by different finishing/polishing methods suggests that the latter negligibly influences material loss due to three-body abrasion.

  5. Abrasive wear behavior of in-situ RZ5-10wt%TiC composite

    NASA Astrophysics Data System (ADS)

    Mehra, Deepak; Mahapatra, M. M.; Harsha, S. P.

    2018-05-01

    RZ5 Magnesium alloys containing zinc, rare earth and zirconium are well-known to have high specific strength, good creep resistance widely used in aerospace components. The incorporation of hard ceramic strengthens RZ5 mg alloy. The RZ5-10wt%TiC composite has been fabricated in situ using RZ5 mg alloy as matrix and TiC as reinforcement by self propagating high temperature synthesis (SHS) technique. This paper investigates the abrasive wear behavior of RZ5-10wt%TiC. Tests were performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load. The results showed improvement in the wear resistance of testing composite as compared to the unreinforced RZ5 Mg alloy. The coefficient of friction and weight loss increased linearly as applied load and sliding distance increased. The field emission scanning electron microscopic (FESEM) showed dominate wear mechanisms: abrasion, ploughing grooves.

  6. Investigation into the mechanisms of closed three-body abrasive wear

    NASA Astrophysics Data System (ADS)

    Dwyer-Joyce, R. S.; Sayles, R. S.; Ioannides, E.

    1994-06-01

    Contacting components frequently fail by abrasion caused by solid contaminants in the lubricant. This process can be classified as a closed three-body abrasive wear process. The mechanisms by which trapped particles cause material removal are not fully understood. This paper describes tests using model elastohydrodynamic contacts to study these mechanisms. An optical elastohydrodynamic lubrication rig has been used to study the deformation and fracture of ductile and brittle lubricant-borne debris. A ball-on-disk machine was used to study the behavior of the particles in partially sliding contacts. Small diamond particles were used as abrasives since these were thought not to break down in the contact; wear could then be directly related to particles of a known size. The particles were found to embed in the softer surface and to scratch the harder. The mass of material worn from the ball surface was approximately proportional to the particle sliding distance and abrasive concentration. Small particles tumbled through the contact, while larger particles ploughed. Mass loss was found to increase with abrasive particle size. Individual abrasion scratches have been measured and related to the abrading particle. A simple model of the abrasive process has been developed and compared with experimental data. The discrepancies are thought to be the result of the uncertainty about the entrainment of particles into the contact.

  7. Dental Wear: Attrition, Erosion, and Abrasion-A Palaeo-Odontological Approach.

    PubMed

    Sperber, Geoffrey H

    2017-06-17

    This paper reviews the surface ablation of early hominin teeth by attrition, abrasion, and erosive dental wear. The occurrence of these lesions is explored in a sample of South African fossil australopithecine dentitions revealing excessive wear. Interpretation of the nature of the dietary components causing such wear in the absence of carious erosion provides insight into the ecology of the Plio-pleistocene epoch (1-2 million years ago). Fossil teeth inform much of the living past by their retained evidence after death. Tooth wear is the ultimate forensic dental evidence of lives lived.

  8. Effect of consolidation on adhesive and abrasive wear of ultra high molecular weight polyethylene.

    PubMed

    Gul, Rizwan M; McGarry, Frederick J; Bragdon, Charles R; Muratoglu, Orhun K; Harris, William H

    2003-08-01

    Total hip replacement (THR) is widely performed to recover hip joint functions lost by trauma or disease and to relieve pain. The major cause of failure in THR is the wear of the ultra high molecular weight polyethylene (UHMWPE) component. The dominant wear mechanism in THR occurs through adhesion and abrasion. While poor consolidation of UHMWPE is known to increase the incidence of a different damage mode, delamination, which is the dominant wear mechanism in tibial inserts but uncommon in THR, the effect of consolidation on adhesive and abrasive wear of UHMWPE is not clear. In this study UHMWPE resin was subjected to hot isostatic pressing under a pressure of 138MPa at different temperatures (210 degrees C, 250 degrees C, and 300 degrees C) to achieve varying degrees of consolidation. The extent of consolidation was determined by optical microscopy using thin sections, and by scanning electron microscopy using cryofractured and solvent etched specimens. Wear behavior of the samples with varying degree of consolidation was determined using a bi-directional pin-on-disc machine simulating conditions in a hip joint. Increasing the processing temperature decreased the incidence of fusion defects and particle boundaries reflecting the powder flakes of the virgin resin, improving the consolidation. However, the bi-directional pin-on-disc wear rate did not change with the processing temperature, indicating that adhesive and abrasive wear is independent of the extent of consolidation in the range of parameters studied here.

  9. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  10. Study of abrasive wear process of lining of grinding chamber of vortex-acoustic disperser

    NASA Astrophysics Data System (ADS)

    Perelygin, D. N.

    2018-03-01

    The theoretical and experimental studies of the process of gas-abrasive wear of the lining of a vortex-acoustic disperser made it possible to establish the conditions and patterns of their occurrence and also to develop proposals for its reduction.

  11. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.

    PubMed

    Naderizadeh, Sara; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-01

    Nanoparticle films are one of the most suitable platforms for obtaining sub-micrometer and nanometer dual-scale surface texture required for liquid repellency. The assembly of superhydrophobic nanoparticles into conformal and strongly adherent films having abrasion-induced wear resistance still poses a significant challenge. Various techniques have been developed over the years to render nanoparticle films with good liquid repellent properties and transparency. However, forming abrasion resistant superhydrophobic nanoparticle films on hard surfaces is challenging. One possibility is to partially embed or weld nanoparticles in thin thermoplastic primers applied over metals. Hexamethyldisilazane-functionalized fumed silica nanoparticle films spray deposited on aluminum surfaces were rendered abrasion resistant by thermally welding them into thermoplastic polyurethane (TPU) primer applied a priori over aluminum. Different solvents, nanoparticle concentrations and annealing temperatures were studied to optimize nanoparticle film morphology and hydrophobicity. Thermal annealing at 150 °C enhanced stability and wear resistance of nanoparticle films. A thin thermal interface layer of graphene nanoplatelets (GnPs) between the primer and the nanoparticle film significantly improved superhydrophobic wear resistance after annealing. As such, superhydrophobic nanocomposite films with the GnPs thermal interface layer displayed superior abrasion-induced wear resistance under 20 kPa compared to films having no GnPs-based thermal interface. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Attritional wear and abrasive surface alterations of composite resin materials in vitro.

    PubMed

    Göhring, T N; Besek, M J; Schmidlin, P R

    2002-01-01

    A laboratory study was performed with 232 specimens and 72 human enamel, 24 gold, 24 ceramic and 12 composite antagonists in 22 groups to test attritional and abrasive wear behavior of composite materials compared to wear behavior of human enamel. Belleglass HP, Concept Inlay/Onlay, Targis and Targis Upgrade 99 composite resin for lab-made restorations was tested as well as Tetric Ceram and FHC Merz light as resins for direct restorations. Natural human enamel specimens served as control. All specimens were subjected to long-term thermo-mechanical loading in a computer-controlled masticator, chemical degradation and toothbrush/toothpaste abrasion. Wear of specimen in occlusal contact area (OCA), contact-free occlusal area and wear of natural enamel cusps as well as antagonists made of gold, ceramic and composite in identical form was measured after 120,000, 240,000, 640,000 and 1200,000 load cycles. A qualitative SEM analysis was performed to support quantitative data. Belleglass HP and Targis Upgrade 99 restorative materials showed wear resistance comparable to human enamel when loaded with enamel cusps. Wear of Targis versus composite and gold antagonists was significantly higher (p<0.0001). Analysis of surface alterations showed hygroscopic expansion in all composite resins during the test. As a consequence of this study, necessity to further improve physical properties of composites for long lasting restorations was obvious. Beside of attritional wear in OCA, attention must be given to stable filler-matrix interfaces and prevention of water sorption.

  13. Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles.

    PubMed

    Mayworm, Camila D; Camargo, Sérgio S; Bastian, Fernando L

    2008-09-01

    The aim of this study is to compare the wear resistance and hardness of two dental nanohybrid composites and to evaluate the influence of artificial saliva storage on those properties. Specimens were made from two commercial nanohybrid dental composites (Esthet-X-Dentsply and Filtek Supreme-3M). Abrasion tests were carried out in a ball-cratering machine (three body abrasion) and microscopic analysis of the wear surfaces was made using optical and scanning electron microscopy; hardness was quantified by Vickers hardness test. Those tests were repeated on specimens stored in artificial saliva. Results show that the wear rate of the studied materials is within 10(-7)mm(3)/Nmm range, one of the composites presenting wear rate twice as large as the other. After storage in artificial saliva, the wear resistance increases for both materials. Microhardness of the composites is around 52 and 64HV, Esthet-X presents higher hardness values than Filtek Supreme. After storage in artificial saliva, the microhardness of both materials decreases. Data were analyzed using ANOVA test, p < or = 0.05. Artificial saliva storage increases the materials' wear resistance, suggesting that in both materials bulk post-cure takes place and saliva absorption occurs only on the surface of the composites. This effect was confirmed by comparing the Vickers hardness before and after artificial saliva treatment and FTIR analyses. Surface microhardness of the composites decreases after storage in artificial saliva whereas bulk microhardness of the materials increases.

  14. Heat treated twin wire arc spray AISI 420 coatings under dry and wet abrasive wear

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; González, M. A.; Monjardín, H. R.; Jimenez, O.; Flores, M.; Ibarra, J.

    2017-11-01

    The influence of applying two different heat treatments such as: deep cryogenic and tempering on dry/wet abrasive wear resistance of twin wire arc spray martensitic AISI 420 coatings was evaluated by using a modified rubber wheel type test apparatus. A load dependency was observed on the abrasive wear rate behavior of both; dry and wet tests. Three body (rolling) and two body (sliding) wear mechanisms were identified in dry conditions, prevailing rolling at lower and higher loads. However, at higher loads, more presence of grooving and pits formation was observed. Coatings tempered at 205 °C/1 h displayed better wear resistance than cryogenic treated ones. A change in wear mechanism between dry and wet conditions was observed; two body wear mechanism predominated respect to three body. In both; dry and wet conditions the microstructure (several inter-splat oxides) as well as strain and residual stress promotes brittle material removal which was more evident in cryogenic and as-sprayed samples during dry test and at higher loads in wet conditions.

  15. Assessment of thermal spray coatings for wear and abrasion resistance applications

    NASA Astrophysics Data System (ADS)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  16. A Study on 3-Body Abrasive Wear Behaviour of Aluminium 8011 / Graphite Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Patil, Rahul

    2016-09-01

    Metals and alloys have found their vital role in many applications like structural, corrosive, tribological, etc., in engineering environment. The alloys/composites having high strength to low weight ratio have gained attention of many researchers recently. In this work, graphite reinforced Aluminium 8011 metal matrix composite was prepared by conventional stir casting route, by varying the weight % of reinforcement. Uniform distribution of Graphite in matrix alloy was confirmed by optical micrographs. Prepared composite specimens were subjected to 3-body abrasive testing by varying applied load and time, the silica particles of 400 grit size were used as abrasive particles. It was observed that with the increase of weight% of Graphite the wear resistance of composite was also increasing and on comparison it was found that reinforced composite gives good wear resistance than base alloy.

  17. Impact of dentifrice abrasivity and remineralization time on erosive tooth wear in vitro.

    PubMed

    Buedel, Sarah; Lippert, Frank; Zero, Domenick T; Eckert, George J; Hara, Anderson T

    2018-02-01

    To investigate the in vitro effects of simulated dentifrice slurry abrasivity (L-low, M-medium and H-high) and remineralization time (0, 30, 60 and 120 minutes) on erosive tooth wear. Enamel and root dentin specimens were prepared from bovine incisors (n= 8) and submitted to a cycling protocol including erosion, remineralization at the test times, and brushing with each of the tested slurries, for 5 days. Dental surface loss (SL) was determined by optical profilometry. Data was analyzed using mixed-model ANOVA and Fisher's PLSD tests (alpha= 0.05). SL generally increased along with the increase in slurry abrasive level, with significance dependent upon the specific substrate and remineralization times. H showed the highest SL on both enamel and dentin; remineralization for 30 minutes reduced SL significantly (P< 0.05), but only for enamel. M showed intermediate SL values, with remineralization benefit clearly seen only after 120 minutes of remineralization (P< 0.05). L caused the least SL for both enamel and dentin, which was further reduced after remineralization for 120 and 30 minutes, respectively (both P< 0.05). Overall, root dentin had significantly higher SL than enamel. Less abrasive dentifrice slurries were able to reduce toothbrushing abrasion on both enamel and root dentin. This protection was enhanced by remineralization for all abrasive levels on enamel, but only for L on root dentin. High-risk erosion patients should avoid highly abrasive toothpastes, as remineralization can only partially compensate for their deleterious effects on eroded dental surfaces. Lower abrasive toothpastes are recommended. Copyright©American Journal of Dentistry.

  18. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    NASA Astrophysics Data System (ADS)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  19. The effect of fiber treatment on abrasive wear properties of palm fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Razak, Muhammad Firdaus Abdul; Bakar, Mimi Azlina Abu; Kasolang, Salmiah; Ahmad, Mohamad Ali

    2017-12-01

    Oil palm industries generate at least 30 million tons of lignocellulosic biomass annually in the form of oil palm trunks (OPT), empty fruit bunches (EFB), oil palm fronds (OPF) and palm pressed fibres (PPF). The palm fiber is one of the natural fibers used as reinforcement in composite materials in order to decrease environmental issues and promotes utilization of renewable resources. This paper presents a study on the effect of alkaline treatment on wear properties of palm fiber reinforced epoxy resin composite. Abrasive wear testing was deployed to investigate the wear profile of the composite surfaces. Testing was carried out which focused on the effect of alkaline treatment to the palm fiber under different amounts of fiber loading i.e. 1 wt%, 3 wt%, 5 wt% and 7 wt%. The palm fibers were soaked into 6 % of alkaline solution or natrium hydroxide (NaOH) for 12 hours. The fiber was treated in order to remove amorphous materials such as hemicelluloses, lignins and pectins of the fiber. The wear test samples were fabricated using hand lay-up technique and cured at room temperature for 24 hours. Surface roughness of the composite material was also measured using the surface measuring instrument. Dry sliding wear test was performed at room temperature at a constant velocity of 1.4 m/s with a constant load of 10 N by using the Abrasion Test Machine. Result shows that 5 wt% and 7 wt% treated palm fiber loadings have better specific wear rate compared to lower fiber loadings. The finding of this study contributes towards material development and utilization in promoting `waste into wealth' which is in line with national aspiration.

  20. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    NASA Astrophysics Data System (ADS)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  1. Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Dube, A.

    2017-03-01

    In this study, Taguchi design of experiment approach has been applied to assess wear behaviour of TiC composite coatings deposited on AISI 4340 steel substrates by novel powder preplacement and TIG torch melting processes. To study the abrasive wear behaviour of these coatings against alumina ball at 600° C, a Taguchi’s orthogonal array is used to acquire the wear test data for determining optimal parameters that lead to the minimization of wear rate. Composite coatings are developed based on Taguchi’s L-16 orthogonal array experiment with three process parameters (welding current, welding speed, welding voltage and shielding gas flow rate) at four levels. In this technique, mean response and signal-to-noise ratio are used to evaluate the influence of the TIG process parameters on the wear rate performance of the composite coated surfaces. The results reveal that welding voltage is the most significant control parameter for minimizing wear rate while the current presents the least contribution to the wear rate reduction. The study also shows the best optimal condition has been arrived at A3 (90 A), B4 (2.5 mm/s), C3 (30 V) and D3 (20 L/min), which gives minimum wear rate in TiC embedded coatings. Finally, a confirmatory experiment has been conducted to verify the optimized result and shows that the error between the predicted values and the experimental observation at the optimal condition lies within the limit of 4.7 %. Thus, the validity of the optimum condition for the coatings is established.

  2. Study of abrasive wear rate of silicon using n-alcohols

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1982-01-01

    The work carried out at the University of Illinois at Chicago for the Flat-Plate Solar Array Project under contract No. 956053 is summarized. The abrasion wear rate of silicon in a number of fluid environments and the parameters that influence the surface mechanical properties of silicon were determined. Three tests were carried out in this study: circular and linear multiple-scratch test, microhardness test and a three-point bend test. The pertinent parameters such as effect of surface orientation, dopant and fluid properties were sorted. A brief review and critique of previous work is presented.

  3. Microstructure and abrasive wear test of different composite layers formed by laser coating

    NASA Astrophysics Data System (ADS)

    Bartos, J.

    1994-09-01

    Layers containing different particles of different sizes (TiC: 2,7 micrometers and 31 micrometers mid size; TaC: 15 micrometers mid size) were formed on the surface of 90 MnCrV8 tool steel. A CO2-gas laser equipment was used to form these layers. The grain contents of the layers were between 35% - 55%. Some of the ready TiC layers were hardened by laser in order to reduce the retained amount. We compared the wear resistance of the layers employing abrasive wheel test. For reference purposes we carried out the test of traditionally hardened, traded TICALLOY II and TICALLOY W materials as well.

  4. Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW)

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Hao; Hsieh, Chih-Chun; Hua, Pei-Shing; Chang, Chia-Ming; Lin, Chi-Ming; Wu, Paxon Ti-Yuan; Wu, Weite

    2013-01-01

    A series of Fe-Cr-C hardfacing alloys is deposited by gas tungsten arc welding and subjected to abrasive wear testing. Pure Fe with various amounts of CrC (Cr:C=4:1) powders are mixed as the fillers and used to deposit hardfacing alloys on low carbon steel. Depending on the various CrC additions to the alloy fillers, the claddings mainly contain hypoeutectic, near eutectic, or hypereutectic microstructures of austenite γ-Fe phase and (Cr,Fe)7C3 carbides on hardfacing alloys, respectively. When 30% CrC is added to the filler, the finest microstructure is achieved, which corresponds to the γ-Fe+(Cr,Fe)7C3 eutectic structure. With the addition of 35% and 40% CrC to the fillers, the results show that the cladding consists of the massive primary (Cr,Fe)7C3 as the reinforcing phase and interdendritic γ-Fe+(Cr,Fe)7C3 eutectics as the matrix. The (Cr,Fe)7C3 carbide-reinforced claddings have high hardness and excellent wear resistance under abrasive wear test conditions. Concerning the abrasive wear feature observable on the worn surface, the formation and fraction of massive primary (Cr,Fe)7C3 carbides predominates the wear resistance of hardfacing alloys. Abrasive particles result in continuous plastic grooves when the cladding has primary γ-Fe phase in a hypoeutectic structure.

  5. An in situ/ex vivo comparison of the ability of regular and light colas to induce enamel wear when erosion is combined with abrasion.

    PubMed

    Rios, Daniela; Santos, Flávia Cardoso Zaidan; Honório, Heitor Marques; Magalhães, Ana Carolina; Wang, Linda; de Andrade Moreira Machado, Maria Aparecida; Buzalaf, Marilia Afonso Rabelo

    2011-03-01

    To evaluate whether the type of cola drink (regular or diet) could influence the wear of enamel subjected to erosion followed by brushing abrasion. Ten volunteers wore intraoral devices that each had eight bovine enamel blocks divided into four groups: ER, erosion with regular cola; EAR, erosion with regular cola plus abrasion; EL, erosion with light cola; and EAL, erosion with light cola plus abrasion. Each day for 1 week, half of each device was immersed in regular cola for 5 minutes. Then, two blocks were brushed using a fluoridated toothpaste and electric toothbrush for 30 seconds four times daily. Immediately after, the other half of the device was subjected to the same procedure using a light cola. The pH, calcium, phosphorus, and fluoride concentrations of the colas were analyzed using standard procedures. Enamel alterations were measured by profilometry. Data were tested using two-way ANOVA and Bonferroni test (P<.05). Regarding chemical characteristics, light cola presented pH 3.0, 13.7 mg Ca/L, 15.5 mg P/L, and 0.31 mg F/L, while regular cola had pH 2.6, 32.1 mg Ca/L, 18.1 mg P/L, and 0.26 mg F/L. The light cola promoted less enamel loss (EL, 0.36 Μm; EAL, 0.39 Μm) than its regular counterpart (ER, 0.72 Μm; EAR, 0.95 Μm) for both conditions. There was not a significant difference (P>.05) between erosion and erosion plus abrasion for light cola. However, for regular cola, erosion plus abrasion resulted in higher enamel loss than erosion alone. The data suggest that light cola promoted less enamel wear even when erosion was followed by brushing abrasion.

  6. Effect of Experimental Variables of Abrasive Wear on 3D Surface Roughness and Wear Rate of Al-4.5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashis; Mallik, Manab; Mandal, Nilrudra; Dutta, Samik; Roy, Himadri; Lohar, Aditya Kumar

    2017-04-01

    This investigation was primarily carried out to examine the abrasive wear behavior of as cast Al-4.5 % Cu alloy. Wear tests have been carried out using an abrasive wear machine with emery paper embedded with SiC particles acting as abrasive medium. The experiments were planned using central composite design, with, load, cycle and grit size as input variables, whereas wear rate and 3D roughness were considered as output variable. Analysis of variance was applied to check the adequacy of the mathematical model and their respective parameters. Microstructural investigations of the worn surfaces have been carried out to explain the observed results and to understand the wear micro-mechanisms as per the planned experiments. Desirability function optimization technique was finally employed to optimize the controlling factors. The observed results revealed that, grit size plays a significant role in the variation of wear rate and 3D roughness as compared to load and cycles. Based on the significance of interactions, the regression equations were derived and verified further with a number of confirmation runs to assess the adequacy of the model. A close agreement (±10 %) between the predicted and experimentally measured results was obtained from this investigation.

  7. Wear Characteristics of Metallic Biomaterials: A Review

    PubMed Central

    Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser

    2015-01-01

    Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  8. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  9. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    PubMed

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  10. Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants

    PubMed Central

    Guzmán, Pablo; Yate, Luis; Sandoval, Mercy; Caballero, Jose

    2017-01-01

    The object of this work was the deposition of a Ta-Hf-C thin film with a gold interlayer on stainless steel, via the physical vapor deposition (PVD) technique, in order to evaluate the properties of different systems subjected to micro-abrasive wear phenomena generated by alumina particles in Ringer's solution. The surface characterization was performed using a scanning electron microscope (SEM) and atomic force microscope (AFM). The crystallographic phases exhibited for each coating were obtained by X-ray diffraction (XRD). As a consequence of modifying the composition of Ta-Hf there was evidence of an improvement in the micro-abrasive wear resistance and, for each system, the wear constants that confirm the enhancement of the surface were calculated. Likewise, these surfaces can be bioactive, generating an alternative to improve the biological fixation of the implants, therefore, the coatings of TaC-HfC/Au contribute in the development of the new generation of orthopedic implants. PMID:28773207

  11. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  12. Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices

    DTIC Science & Technology

    2013-06-01

    after an acidic challenge . Enamel loss was significantly greater when erosive and abrasive effects were combined. They concluded that acid-softened...surrounding soft tissues. Another benefit of restoration is the elimination of a challenging area for the patient and hygienist to clean. These areas...abrasion challenge ; the resin cement with the smallest sized filler particles had the smallest weight loss and maintained the smoothest surface of all the

  13. Investigation on wear characteristic of biopolymer gear

    NASA Astrophysics Data System (ADS)

    Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir

    2017-10-01

    Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.

  14. Protective Effect of Adhesive Systems associated with Neodymium-doped Yttrium Aluminum Garnet Laser on Enamel Erosive/Abrasive Wear.

    PubMed

    Crastechini, Erica; Borges, Alessandra B; Becker, Klaus; Attin, Thomas; Torres, Carlos Rg

    2017-10-01

    This study evaluated the efficacy of self-etching adhesive systems associated or not associated with the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser on the protection against enamel erosive/abrasive wear. Bovine enamel specimens were demineralized with 0.3% citric acid (5 minutes). The samples were randomly assigned to eight groups (n = 20): SB - Single Bond Universal (3M/ESPE); SB+L - Single Bond Universal + laser (80 mJ/10 Hz); FB - Futurabond U (Voco); FB+L -Futurabond U + laser; GEN - G-aenial bond (GC); GEN+L -G-aenial bond + laser; L - laser irradiation; and C - no treatment. The laser was applied before light curing. The samples were subjected to erosive/abrasive challenges (0.3% citric acid - 2 minutes and tooth brushing four times daily for 5 days). Enamel surface loss was recovered profilometrically by comparison of baseline and final profiles. The adhesive layer thickness, retention percentage of the protective layer, and microhardness of cured adhesive were measured. Data were analyzed using one-way analysis of variance and Tukey's test (5%). There were significant differences for all parameters (p = 0.0001). Mean values ± SD and results of the Tukey's test were: Surface wear: GEN - 4.88 (±1.09)a, L - 5.04 ± 0.99)a, FB - 5.32 (±0.93)ab, GEN + L - 5.46 (±1.27)abc, SB + L - 5.78 (±1.12)abc, FB + L - 6.23 (±1.25)bc, SB - 6.35 (±1.11)c, and C - 6.46 (±0.61)c; layer thickness: GEN - 15.2 (±8.63)c, FB - 5.06 (±1.96)a, GEN + L - 13.96 (±7.07)bc, SB + L - 4.24 (±2.68)a, FB + L - 9.03 (±13.02)abc, and SB - 7.49 (±2.80)ab; retention: GEN - 68.89 (±20.62)c, FB - 54.53 (±24.80)abc, GEN + L - 59.90 (±19.79)abc, SB + L - 63.37 (±19.30)bc, FB + L - 42.23 (±17.68) a, and SB - 47.78 (±18.29)ab; microhardness: GEN - 9.27 (±1.75)c; FB - 6.99 (±0.89)b; GEN + L - 6.22 (±0.87)ab; SB + L - 15.48 (±2.51)d; FB + L - 10.67 (±1.58)c; SB - 5.00 (±1.60)a. The application of Futurabond U and G-aenial bond on enamel surface, as well as the Nd

  15. Comparative abrasive wear resistance and surface analysis of dental resin-based materials

    PubMed Central

    Nayyer, Maleeha; Zahid, Shahreen; Hassan, Syed Hammad; Mian, Salman Aziz; Mehmood, Sana; Khan, Haroon Ahmed; Kaleem, Muhammad; Zafar, Muhammad Sohail; Khan, Abdul Samad

    2018-01-01

    Objective: The objective of this study was to assess the surface properties (microhardness and wear resistance) of various composites and compomer materials. In addition, the methodologies used for assessing wear resistance were compared. Materials and Methods: This study was conducted using restorative material (Filtek Z250, Filtek Z350, QuiXfil, SureFil SDR, and Dyract XP) to assess wear resistance. A custom-made toothbrush simulator was employed for wear testing. Before and after wear resistance, structural, surface, and physical properties were assessed using various techniques. Results: Structural changes and mass loss were observed after treatment, whereas no significant difference in terms of microhardness was observed. The correlation between atomic force microscopy (AFM) and profilometer and between wear resistance and filler volume was highly significant. The correlation between wear resistance and microhardness were insignificant. Conclusions: The AFM presented higher precision compared to optical profilometers at a nanoscale level, but both methods can be used in tandem for a more detailed and precise roughness analysis. PMID:29657526

  16. The study of microstructure of wear-resistant coatings applied for protection from abrasive wear of horizontal and tilt drilling drill bits

    NASA Astrophysics Data System (ADS)

    Markova, I. Yu; Zakharova, E. S.; Maslov, A. L.; Polushin, N. I.; Laptev, A. I.; SOvchinnikova, M.

    2017-05-01

    Drill bits of the cutting type over the period of their existence have undergone significant changes - from the use of carbide cutters to diamond composite PDC elements, in which the diamond layer is applied to a hardmetal substrate. Using such elements, it was possible to significantly increase the service life of the drill bits, however, during work, there is a significant abrasive deterioration of the bit body, which does not fully realize the advantages of PDC elements. Therefore, to protect the body from wear use special wear-resistant coatings. This work is devoted to research of microstructural coatings, namely coatings brands WokaDur NiA, HR-6750, HR-6750 with sublayer Rock Dur 47 on various steel substrates which applied by the gas-thermal spraying in Ltd “Oerlikon Metko Rus”. They were examined with the use of scanning electron microscopy, X-ray phase analysis and a Vickers micro-hardness tester. It was established that the microhardness of the coating matrix is 590-660 HV, and the microhardness of tungsten carbide particles reinforcing the coating, is 2145-2455 HV.

  17. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  18. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    PubMed Central

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-01-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967

  19. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  20. Abrasive Endoprosthetic Wear Particles Inhibit IFN-γ Secretion in Human Monocytes Via Upregulating TNF-α-Induced miR-29b.

    PubMed

    Bu, Yan-Min; Zheng, De-Zhi; Wang, Lei; Liu, Jun

    2017-02-01

    The adverse biological responses to prostheses wear particles commonly led to the failure of total hip arthroplasty. Among the released cytokines, interferon-γ (IFN-γ) has been found to be a critical functional factor during osteoclast differentiation. However, the molecular mechanism underlying the regulation of IFN-γ in wear particles-induced cells still needs to be determined. Four kinds of abrasive endoprosthetic wear particle were used to treat THP-1 cells, including polymethylmethacrylate (PMMA), zirconiumoxide (ZrO 2 ), commercially pure titanium (cpTi), and titanium alloy (Ti-6Al-7Nb), with a concentration of 0.01, 0.05, 0.1, or 0.2 mg/ml for 48 h. The expression of IFN-γ and miR-29b was detected by real-time RT-PCR or ELISA. Luciferase reporter assay was performed to determine the regulation of miR-29b on IFN-γ. The effect of miR-29b inhibitor on the expression of wear particle-induced IFN-γ was detected. The expression of miR-29b was examined in THP-1 cells treated with tumor necrosis factor-alpha (TNF-α). The expression of IFN-γ was downregulated and the level of miR-29b was increased in THP-1 cells pretreated with wear particles. IFN-γ was a target of miR-29b. Wear particles inhibited the expression of IFN-γ through miR-29b. The expression of miR-29b was significantly reduced in THP-1 cells treated with TNF-α neutralizing antibody and particles comparing to that in the cells treated with particles alone. Wear particles inhibit the IFN-γ secretion in human monocytes, which was associated with the upregulating TNF-α-induced miR-29b.

  1. Fractal characteristic in the wearing of cutting tool

    NASA Astrophysics Data System (ADS)

    Mei, Anhua; Wang, Jinghui

    1995-11-01

    This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.

  2. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  3. Relating the physical properties of volcanic rocks to the characteristics of ash generated by experimental abrasion

    NASA Astrophysics Data System (ADS)

    Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.

    2018-01-01

    Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of

  4. Friction and wear characteristics of wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1979-01-01

    The testing technique consisted of towing the skids with a ground test vehicle over asphalt and concrete surfaces at ground speeds up to 80 km/hr (50 mph) and bearing pressures up to 689 kPa (100 psi) over sliding distances up to 1585 m (5200 ft). Results indicate that the friction coefficient developed by wire brush skids is essentially independent of ground speed, is slightly increased with increasing bearing pressure, is noticeably affected by surface texture, and is not degraded by surface wetness. Skid wear is shown to increase with increasing bearing pressure and with increasing ground speed and is dependent on the nature of the surface. Runway surface damage caused by the skids was in the form of an abrasive scrubbing action rather than physical damage.

  5. Wear and related characteristics of an aircraft tire during braking

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.

    1972-01-01

    Wear and related characteristics of friction and temperature developed during braking of size 22 x 5.5, type aircraft tires are studied. The testing technique involved gearing the tire to a driving wheel of a ground vehicle to provide operations at constant slip ratios on asphalt, concrete, and slurry-seal surfaces. Data were obtained over the range of slip ratios generally attributed to an aircraft braking system during dry runway operations. The results show that the cumulative tire wear varies linearly with distance traveled and the wear rate increases with increasing slip ratio and is influenced by the runway-surface character. Differences in the wear rates associated with the various surfaces suggest that runways can be rated on the basis of tire wear. The results also show that the friction coefficients developed during fixed-slip-ratio operations are in good agreement with those obtained by other investigators during cyclic braking, in that the dry friction is insensitive to the tire tread temperature is shown to increase with increasing slip ratio and, at the higher ratios, to be greater during braking on asphalt and slurry seal than on concrete.

  6. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems

    PubMed Central

    Kuo, Chien-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system. PMID:29230411

  7. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems.

    PubMed

    Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.

  8. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes

    PubMed Central

    Zhou, Xiaowei

    2017-01-01

    The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C) were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe)7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C. PMID:29359005

  9. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness.

    PubMed

    Mörmann, Werner H; Stawarczyk, Bogna; Ender, Andreas; Sener, Beatrice; Attin, Thomas; Mehl, Albert

    2013-04-01

    This study determined the two-body wear and toothbrushing wear parameters, including gloss and roughness measurements and additionally Martens hardness, of nine aesthetic CAD/CAM materials, one direct resin-based nanocomposite plus that of human enamel as a control group. Two-body wear was investigated in a computer-controlled chewing simulator (1.2 million loadings, 49N at 1.7Hz; 3000 thermocycles 5/50°C). Each of the 11 groups consisted of 12 specimens and 12 enamel antagonists. Quantitative analysis of wear was carried out with a 3D-surface analyser. Gloss and roughness measurements were evaluated using a glossmeter and an inductive surface profilometer before and after abrasive toothbrushing of machine-polished specimens. Additionally Martens hardness was measured. Statistically significant differences were calculated with one-way ANOVA (analysis of variance). Statistically significant differences were found for two-body wear, gloss, surface roughness and hardness. Zirconium dioxide ceramics showed no material wear and low wear of the enamel antagonist. Two-body wear of CAD/CAM-silicate and -lithium disilicate ceramics, -hybrid ceramics and -nanocomposite as well as direct nanocomposite did not differ significantly from that of human enamel. Temporary polymers showed significantly higher material wear than permanent materials. Abrasive toothbrushing significantly reduced gloss and increased roughness of all materials except zirconium dioxide ceramics. Gloss retention was highest with zirconium dioxide ceramics, silicate ceramics, hybrid ceramics and nanocomposites. Temporary polymers showed least gloss retention. Martens hardness differed significantly among ceramics, between ceramics and composites, and between resin composites and acrylic block materials as well. All permanent aesthetic CAD/CAM block materials tested behave similarly or better with respect to two-body wear and toothbrushing wear than human enamel, which is not true for temporary polymer CAD

  10. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  11. Wear Characteristics and Mechanisms of H13 Steel with Various Tempered Structures

    NASA Astrophysics Data System (ADS)

    Cui, X. H.; Wang, S. Q.; Wei, M. X.; Yang, Z. R.

    2011-08-01

    Wear tests of H13 steel with various tempering microstructures were performed under atmospheric conditions at room temperature (RT), 200 °C, and 400 °C. The wear characteristics and wear mechanisms of various tempered microstructures of the steel were focused by investigating the structure, morphology, and composition of the worn surfaces. Under atmospheric conditions at RT, 200 °C, and 400 °C, adhesive wear, mild oxidation wear, and oxidation wear prevailed, respectively. The wear rate at 200 °C was substantially lower than those at RT and 400 °C due to the protection of tribo-oxides. In mild oxidation wear, the tempered microstructures of the steel presented almost no obvious influence on the wear resistance. However, in adhesive wear and oxidation wear, the wear resistance strongly depended on the tempered microstructures of the steel. The steel tempered at 600-650 °C presented pronouncedly lower wear rates than the one tempered at 200-550 or 700 °C. It can be suggested that the wear resistance of the steel was closely related with its fracture resistance.

  12. Anti-wear Mechanism Analysis of Nano-CaCO3 Additives

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Sun, Junfeng

    2018-06-01

    In this paper, the wear test was carried on with cylinder piston by the wear test device, receiving the results of the piston ring wear and abrasive characteristics by monitoring the wear process, the thesis analysis and put forward the nano-CaCO3 lubricating oil additive anti wear mechanism by the ferrography analysis technology, and provide the technical reference for the relevant measures to reduce wear and the friction, and provide reference value for further study on the related theories of reducing wear and reducing friction.

  13. Abrasion of acrylic veneers by simulated toothbrushing.

    PubMed

    Xu, H C; Söremark, R; Wiktorsson, G; Wang, T; Liu, W Y

    1984-12-01

    The abrasion responses were tested on four acrylic veneer materials, K + B Plus, K + B 75, Isosit, and Ivocron. The studies were performed in two independent research laboratories. Two different brushing machines were used with an abrasive slurry. The results were used for comparing the degree of abrasion for the resin materials. Three analytical methods of measuring the degree of abrasive wear were used: surface profile measurement, microscopic evaluation, and measurement of loss of volume. Isosit showed the best abrasion resistance of the four materials tested.

  14. Abrasion of eroded and sound enamel by a dentifrice containing diamond abrasive particles

    PubMed

    Wegehaupt, Florian J.; Hoegger, Vanessa G. M.; Attin, Thomas

    2017-07-24

    Eroded enamel is more susceptible to abrasive wear than sound enamel. New toothpastes utilizing diamond particles as abrasives have been developed. The present study investigated the abrasive wear of eroded enamel by three commercially available toothpastes (one containing diamond particles) and compared it to the respective wear of sound enamel caused by these toothpastes. Seventy-two bovine enamel samples were randomly allocated to six groups (S1–S3 and E1–E3; n=12). Samples were submitted to an abrasive (S1–S3) or erosion plus abrasion (E1–E3) cycling. Per cycle, all samples were brushed (abrasion; 20 brushing stokes) with the following toothpastes: S1/E1: Signal WHITE SYSTEM, S2/E2: elmex KARIESSCHUTZ and S3-E3: Candida WHITE DIAMOND (diamond particles). Groups E1–E3 were additionally eroded with HCl (pH 3.0) for 2 min before each brushing procedure. After 30, 60 and 90 cycles enamel wear was measured by surface profilometry. Within the same toothpaste and same number of cycles, enamel wear due to erosion plus abrasion was significantly higher than due to mere abrasion. After 30, 60 and 90 cycles, no significant difference in the wear in groups S1 and S2 was observed while the wear in group E1 was significantly (p<0.05, ANOVA, Scheffecyc) lower than that in group E2. After 90 cycles, wear in group S3 was about 5 times higher than that in group S2, while wear in group E3 was about 1.3 times higher than that in group E2. As compared to the other two investigated toothpastes, the dentifrice containing diamond particles caused slightly higher abrasive wear of eroded enamel and distinctly higher wear of sound enamel compared to the conventional toothpastes under investigation.

  15. Wear, friction, and temperature characteristics of an aircraft tire undergoing braking and cornering

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.; Yager, T. J.; Riccitiello, S. R.

    1979-01-01

    An investigation to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from different elastomers is presented. The braking and cornering tests performed on aircraft tires retreaded with currently employed and experimental elastomers are described. The tread wear rate is discussed in relation to the slip ratio during braking and yaw angle during cornering. The extent of wear in either operational mode is examined in relation to the runway surface.

  16. The wearing characteristics of mineral aggregates in highway pavements.

    DOT National Transportation Integrated Search

    1970-01-01

    Fifteen asphaltic concrete and seventeen portland cement concrete pavements located in Virginia were chosen for studies of aggregate wear and related wet pavement friction. Coarse aggregates from thirteen different geologic formations and quarry sour...

  17. Wear characteristics of UHMW polyethylene by twist method

    NASA Astrophysics Data System (ADS)

    Chișiu, G.; Popescu, A. M.; Tudor, A.; Petrescu, A. M.; Stoica, G. F.; Subhi, K. A.

    2018-01-01

    A wear test of the twist movement was performed as a new method to estimate the in vivo wear behavior of an acetabular cup material for total knee replacements. A series of UHMWPE samples was used to evaluate the dynamic coefficient of friction in twist movement in contact with steel. The experimental data were conducted to validate the related theoretical model developed in the present study.

  18. Clinical measurement of tooth wear: Tooth wear indices

    PubMed Central

    López-Frías, Francisco J.; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Llamas-Carreras, José M.

    2012-01-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification corresponds to a different process with specific clinical features. Classifications made so far have no accurate prevalence data because the indexes do not necessarily measure a specific etiology, or because the study populations can be diverse in age and characteristics. Tooth wears (attrition, erosion and abrasion) is perceived internationally as a growing problem. However, the interpretation and comparison of clinical and epidemiological studies, it is increasingly difficult because of differences in terminology and the large number of indicators/indices that have been developed for the diagnosis, classification and monitoring of the loss of dental hard tissue. These indices have been designed to identify increasing severity and are usually numerical, none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. A literature review is conducted with the aim of analyzing the evolution of the indices used today and discuss whether they meet the clinical needs and research in dentistry. Key words:Tooth wear, tooth wear indices, attrition, erosion, abrasion, abfraction. PMID:24558525

  19. Corneal Abrasions

    MedlinePlus

    ... the doctor looks at the eye under a light that is filtered cobalt blue. The fluorescein causes the abrasion to glow bright green under the light. The doctor also might do a standard ophthalmic ...

  20. [Influence of multiple sintering on wear behavior of Cercon veneering ceramic].

    PubMed

    Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng

    2010-04-01

    To investigate the influence of multiple sintering on wear behavior of Cercon veneering ceramic. Samples were fabricated according to the manufacture's requirement for different sintering times (1, 3, 5, 7 times). The wear test was operated with a modified MM-200 friction and wear machine in vitro. The wear scars were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). With the sintering times increasing, the wear scar width became larger. The correlation was significant at the 0.01 level. Significant difference was observed in wear scar width among different samples (P < 0.05). SEM and AFM results showed that veneering ceramic wear facets demonstrated grooves characteristic of abrasive wear. Multiple sintering can decrease the wear ability of Cercon veneer, and the wear pattern has the tendency to severe wear.

  1. Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt

    NASA Astrophysics Data System (ADS)

    Lee, J. E.; Kim, Y. S.; Kim, T. W.

    Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.

  2. Wear Characteristics and Volume Loss of CAD/CAM Ceramic Materials.

    PubMed

    Zurek, Alec D; Alfaro, Maria F; Wee, Alvin G; Yuan, Judy Chia-Chun; Barao, Valentim A; Mathew, Mathew T; Sukotjo, Cortino

    2018-03-06

    higher volume loss than ZR (p < 0.001). For both glazed and polished finished, LD-G and LD-GP had significantly higher volume loss than ZR-G (p = 0.028), and ZR-GP (p < 0.001), respectively. SEM analysis indicated particle build-up and a grooving mechanism of wear for the LD-GP specimens. This suggested a three-body wear phenomenon occurring for LD-GP specimens, which was not visible in SEM imaging for other specimen types. This study demonstrated the resistance to wear and low abrasiveness of ZR when compared to LD in a simulated masticatory environment. This can be best explained by the increased strength of ZR, and the introduction of three-body wear to LD specimens from the accumulation of embedded wear debris onto its surface. Wear data and comparison of SEM images following wear simulation confirmed this interpretation. © 2018 by the American College of Prosthodontists.

  3. Cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Vogler, William A.

    1989-01-01

    Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0 deg to 12 deg. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0 deg to 4 deg under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.

  4. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V., E-mail: svp@ispms.tsc.ru; Kornienko, L. A.; Poltaranin, M. A.

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  5. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  6. Studies of friction and wear characteristics of various wires for wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1977-01-01

    The friction and wear characteristics of 22 types and sizes of wires for potential use in wire-brush skids were studied. These characteristics were determined by placing brushes made from candidate wires on a belt sander whose moving belt simulated landing roll-out distance. At the same time, the drag force and wear behavior were monitored. Data were obtained over distances up to 3048 m (10,000 ft) at preselected bearing pressures of 172 to 1034 kPa (25 to 150 psi). In general, the friction coefficient developed by the candidate wires was found to be independent of bearing pressure and ranged between 0.4 and 0.6 under the test conditions of this investigation. The friction coefficient was not degraded when the surface was wetted and appears to be independent of wire diameter except perhaps when wire size is relatively large compared with the surface asperities. Generally, the high friction demonstrated by the soft materials was accompanied by high wear rates; conversely, the hard materials provided greater wear resistance but offered lower friction. For all test wires, the wear was shown to increase with increasing bearing pressure, in general, for the same bearing pressure, wear increased with increasing wire diameter and decreased when the surface was wetted.

  7. Elucidation of wear mechanisms by ferrographic analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1981-01-01

    The use of ferrographic analysis in conjunction with light and scanning electron microscopy is described for the elucidation of wear mechanisms taking place in operating equipment. Example of adhesive wear, abrasive wear, corrosive wear, rolling element fatigue, lubricant breakdown, and other wear modes are illustrated. In addition, the use of magnetic solutions to precipitate nonmagnetic debris from aqueous and nonaqueous fluids is described.

  8. Volatility and Wear Characteristics of a Variety of Liquid Lubricants for Space Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Jones, William R., Jr.

    2001-01-01

    The vapor pressures and wear characteristics are critical properties for liquid lubricants to assure long-term reliability and performance in space applications. Vapor pressures, obtained using a Knudsen cell technique, and wear properties, obtained using a vacuum four-ball apparatus, were measured for a series of unformulated liquid lubricants. These included two multiply alkylated cyclopentanes (MACs) (X-1000 and X2000), two linear perfluoropolyalkylethers (PFPAEs) (Z-25 and 815Z), and four silahydrocarbons (a tri, a tetra, and two pentas). Vapor pressures were measured at three elevated temperatures (423, 448, and 498 K) and extrapolated to room temperature 298 K. The lowest 298 K vapor pressure of 5.7 x 10(exp -14) Pa was obtained with the PFPAE fluid (815Z) and the highest value with the low molecular weight MAC (X-1000) at 3.6 x 10(exp -7) Pa. In addition, vacuum wear rates were determined for some of the lubricants. The lowest wear rates (approximately 3 x 10(exp -11) cubic mm/mm) were observed for three of the silahydrocarbons while the highest wear rates (approximately 2 x 10(exp -9) cubic mm/mm) were observed with the two PFPAE fluids (Z-25 and 815Z). The MAC (X-2000) yielded a wear rate of about 10(exp -10) cubic mm/mm. The results indicated that the silahydrocarbon class of liquid lubricants offers the better potential for space applications.

  9. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  10. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh and W) in contact with single crystal silicon carbide riders. Results indicate that the friction force in the plowing of metal and the groove height (corresponding to the wear volume of the groove) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease, and the contact pressure increases with an increase in solute content of binary alloys. There appears to be very good correlation of the solute to iron atomic ratio with the decreasing rate of change of coefficient of friction, the decreasing rate of change of groove height and the increasing rate of change of contact pressure with increasing solute content. These rates of change increase as the solute to iron atomic radius ratio increases or decreases from unity.

  11. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    NASA Astrophysics Data System (ADS)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  12. Understanding wear in dentistry.

    PubMed

    Mair, L H

    1999-01-01

    Tooth wear is an increasing problem in dentistry. Traditionally, it has been divided into three categories: abrasion, attrition, and erosion. However, most clinical cases of tooth wear involve more than one of these processes. It is often easier to make a diagnosis by looking for the signs of the fundamental wear processes rather than trying to categorize the individual case. Wear can be caused by direct surface-to-surface wear, an intervening slurry, or a corrosive environment. Wear occurs during mastication, but also at other times, often at night. Although it may be possible to institute a preventive regimen, this will not always help the patient if his or her prime concern is esthetics. The same processes that cause tooth wear will cause wear to restorative materials. To diagnose and prevent wear, its processes must be understood.

  13. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    PubMed

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  14. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  15. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  16. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    PubMed

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

  17. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  18. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  19. An Additive to Improve the Wear Characteristics of Perfluoropolyether Based Greases

    NASA Technical Reports Server (NTRS)

    Jones, David G. V.; Fowzy, Mahmoud A.; Landry, James F.; Jones, William R., Jr.; Shogrin, Bradley A.; Nguyen, QuynhGiao

    1999-01-01

    The friction and wear characteristics of two formulated perfluoropolyether based greases were compared to their non-additive base greases. One grease was developed for the electronics industry (designated as GXL-296A) while the other is for space applications (designated as GXL-320A). The formulated greases (GXL-296B and GXL-320B) contained a proprietary antiwear additive at an optimized concentration. Tests were conducted using a vacuum four-ball tribometer. AISI 52100 steel specimens were used for all GXL-296 tests. Both AISI 52100 steel and 440C stainless steel were tested with the GXL-320 greases. Test conditions included: a pressure less than 6.7 x 10(exp )-4 Pa, a 200N load, a sliding velocity of 28.8 mm/sec (100 rpm) and room temperature (approximately equal to 23 C). Wear rates for each grease were determined from the slope of the wear volume as a function of sliding distance. Both non-additive base greases yielded relatively high wear rates on the order of 10(exp -8) cu mm using AISI 52100 steel specimens. Formulated grease GXL-296B yielded a reduction in wear rate by a factor of approximately 21, while grease GXL-320B had a reduction of approximately 12 times. Lower wear rates (-50%) were observed with both GXL-320 greases using 440C stainless steel. Mean friction coefficients were slightly higher for both formulated greases compared to their base greases. The GXL-296 series (higher base oil viscosity) yielded much higher friction coefficients compared to their GXL-320 series (lower base oil viscosity) counterparts.

  20. Mechanical and wear characteristics of epoxy composites filled with industrial wastes: A comparative study

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Satapathy, A.

    2017-02-01

    Use of industrial wastes, such as slag and sludge particles, as filler in polymers is not very common in the field of composite research. Therefore in this paper, a comparison of mechanical characteristics of epoxy based composites filled with LD sludge, BF slag and LD slag (wastes generated in iron and steel industries) were presented. A comparative study among these composites in regard to their dry sliding wear characteristics under similar test conditions was also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt.%) of LD sludge were fabricated by solution casting technique. Mechanical properties were evaluated as per ASTM test standards and sliding wear test was performed following a design of experiment approach based on Taguchi’s orthogonal array. The test results for epoxy-LD sludge composites were compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and wear characteristics among the three types of composites considered in this study.

  1. Assessment of variations in wear test methodology.

    PubMed

    Gouvêa, Cresus V D; Weig, Karin; Filho, Thales R M; Barros, Renata N

    2010-01-01

    The properties of composite resin for dental fillings were improved by development, but its weakness continues to be its wear strength. Several tests have been proposed to evaluate wear in composite resin materials. The aim of this study was to verify how polishing and the type of abrasive can influence the wear rate of composite resin. The test was carried out on two groups. In one group we employed an ormocer and a hybrid composite that was polished group the composite was polished with the same abrasive paper plus a 1 microm and 0.25 microm grit diamond paste. A three-body wear test was performed using the metal sphere of the wear test machine, the composite and an abrasive. A diamond paste and aluminum oxide dispersion were used as abrasive. Analysis of the results showed that there was no difference between polishing techniques, but revealed a difference between abrasives.

  2. Wear of enamel and veneering ceramics after laboratory and chairside finishing procedures.

    PubMed

    Magne, P; Oh, W S; Pintado, M R; DeLong, R

    1999-12-01

    This in vitro study compared the wear of enamel against 3 types of ceramics with high esthetic potential (designed for layering techniques): feldspathic porcelain (Creation), aluminous porcelain (Vitadur alpha), and low-fusing glass (Duceram-LFC). Laboratory finishing (glazing/polishing) and chairside polishing with a Dialite kit were simulated to compare their respective effects on wear. Tooth-material specimen pairs were placed in an artificial mouth using closed-loop servohydraulics. Constant masticatory parameters (13.5 N occlusal force, 0.62 mm lateral excursion; 0.23 second cuspal contact time) were maintained for 300, 000 cycles at a rate of 4 Hz. The occlusal surface of each pair was mapped and digitally recorded before and after each masticatory test. Quantitative changes were measured in terms of depth and volume of wear. Quantitative wear characteristics were assessed by SEM. Significant differences were observed (2-factor ANOVA, P <.05). Duceram-LFC generated increased volume loss of enamel (0.197 mm(3)) compared with Creation (0.135 mm(3)) and Vitadur alpha (0.153 mm(3)). Creation exhibited the lowest ceramic wear and lowest combined volume loss (0.260 mm(3); the sum of the data for enamel and the opposing material) compared with Duceram-LFC (0.363 mm(3)) and Vitadur alpha (0.333 mm(3)). The most significant differences among materials were observed in volume loss, not in depth of wear. For all 3 ceramic systems, qualitative SEM evaluation revealed an abrasive type of wear. Wear characteristics of chairside polished specimens were similar to those of laboratory finished specimens (glazed and polished). Duceram-LFC was the most abrasive ceramic for the antagonistic tooth. Creation ceramic was the least abrasive material and most resistant to wear. Defects, brittleness, and the possibly insufficient toughness of LFC may explain its increased abrasiveness. Laboratory and chairside finishing procedures generated similar results.

  3. [Wear behavior of enamel and veneering ceramics].

    PubMed

    Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng; Meng, Yu-kun

    2007-10-01

    To compare the wear between the enamel and two types of dental decoration porcelains for all-ceramic restorations (Vita-alpha, Vintage AL). Friction coefficients, wear scar width, element concentrations and wear surface evolution were considered relatively to the tribology of that in vivo situation. The wear scars of the samples were characterized by means of dynamic atomic force microscopy (DFM). The different element concentrations of the surface before/after the wear test were determined with energy dispersion spectrometry (EDS). The friction coefficient varied from time in each kind of material. The statistical differences between materials were observed in wear scar width and properties of materials (P<0.05). DFM results showed wear surface of natural tooth full of abrasive particles and denaturation of dental texture. Wear surface of veneering ceramics consisted mainly of abrasive particles, plough and microcracking. EDS results showed that the element concentration of Fe was obviously found on the samples after wear. The main underlying mechanisms of natural teeth wear are abrasive, and denaturation of dental texture. Abrasive wear, adhesion and fatigue of veneering ceramics characterize the wear patterns which plays different role in Vita-alpha and Vintage AL. The wear patterns of veneering ceramics can be described as mild wear.

  4. Friction and Wear Characteristics of a Modified Composite Solid Lubricant Plasma Spray Coating

    NASA Technical Reports Server (NTRS)

    Stanford, M. K.; DellaCorte, C.

    2004-01-01

    LCR304 is a solid lubricant coating composed of Ni-10Cr, Cr2O3, BaF2-CaF2 and Ag and developed for dimensional stability in high temperature air. This coating is a modification of PS304, which differs in that the Ni-Cr constituent contains 20wt% Cr. The tribological characteristics of LCR304 were evaluated by pin-on-disk and foil air bearing rig testing from 25 to 650 C and compared to previous test results with PS304. For both tests, the friction coefficient decreased as temperature increased from 25 to 650 C. Wear generally decreased with increasing temperature for all pin-on-disk tests. LCR304 coated components produced the least wear of Inconel X-750 counterface materials at 427 and 650 C. These results indicate that the LCR304 coating has potential as a replacement for PS304 in, for example, low cycle (minimum wear) applications where dimensional stability is imperative.

  5. Volatility and Wear Characteristics of a Variety of Liquid Lubricants for Space Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Quynhgiao N.; Jones, William R., Jr.

    2001-01-01

    The vapor pressures and near characteristics are critical properties for liquid lubricants to assure long-term reliability and performance in space applications. Vapor pressures, obtained using a Knudsen cell technique, and near properties, obtained using a vacuum four-ball apparatus, were measured for a series of unformulated liquid lubricants. These include: two multiple alkylated cyclopentanes (MACs) (X-1000 and X-2000), two linear perfluoropolyalkylethers (PFPAEs) (Z-25 and 815Z), and four silahydrocarbons (a tri-, a tetra-, and two pentas). Vapor pressures were measured at three elevated temperatures (423, 448, and 498 K) and extrapolated to room temperature 298 K. The lowest 298 K vapor pressure of 5.7 x 10(exp -14) Pa, was obtained with the PFPAE fluid (815Z) and the highest value with the low molecular weight MAC (X-1000) at 3.6 x 10(exp -7) Pa. In addition, vacuum near rates were determined for some of the lubricants. The lowest wear rates (approximately 3 x 10(exp -11) cubic mm/mm) were observed for three of the silahydrocarbons while the highest wear rate (approximately 2 x 10(exp-9) cubic mm/mm) were observed with the two PFPAE fluids (Z-25 and 815Z). The MAC (X-2000) yielded a wear rate of about 10(exp -10) cubic mm/mm. The results indicated that the silahydrocarbon class of liquid lubricants offers the better potential for space applications.

  6. Wear characteristics of bonded solid film lubricant under high load condition

    NASA Technical Reports Server (NTRS)

    Hiraoka, Naofumi; Sasaki, Akira; Kawashima, Noritsugu; Honda, Toshio

    1991-01-01

    Wear properties of phenolic resin bonded molybdenum disulfide film lubricant were studied. In-vacuo journal bearing tests were performed to evaluate the wear-life of this film lubricant. The wear-life depends on substrate materials and on sliding velocity. Pretreated substrate surfaces were examined to reveal the reasons for these results. Additionally, investigations on film wear mechanisms were made.

  7. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  8. An evaluation of the effects of handpiece speed, abrasive characteristics, and polishing load on the flexural strength of polished ceramics.

    PubMed

    Ahmad, Rohana; Morgano, Steven M; Wu, Benjamin M; Giordano, Russell A

    2005-11-01

    Many studies on the strengthening effects of grinding and polishing, as well as heat treatment on ceramics, are not well standardized or use commercially available industrial polishing systems. The reported effectiveness of these strengthening mechanisms on ceramics may not be applicable to clinical dentistry. The purpose of this study was to evaluate the effects of controlled polishing on the flexural strength of dental ceramics by using a custom-made machine that applied standardized loads and speeds that coincided with the mean loads and speeds used by experienced prosthodontists. A total of 140 aluminous dental ceramic bar-shaped specimens (Vitadur Alpha Enamel) measuring 1.5 x 2.0 x 25 mm were fabricated and divided into 12 groups (for most groups, n=10). Specimens were untreated, polished with different polishing systems, polished at different speeds, ground and autoglazed, polished and autoglazed, autoglazed and polished, polished with loose (paste) and bonded abrasives, or overglazed. Simulated clinical polishing was performed on the ceramic specimens by using a customized polishing apparatus that allowed independent control over the relevant polishing parameters (abrasive hardness, applied load, linear speed, rotational velocity, and wheel stiffness). Flexural strength (MPa) was measured with a 4-point bending test, and subjective surface roughness was assessed with scanning electron microscopy. Autoglazing was performed at various stages of the polishing sequence to determine the effects of polishing on surface stresses. Mean values, standard deviations, independent-sample t tests, 1-way and 2-way analyses of variance, Dunnett t tests and Kruskal-Wallis tests were applied to the data (alpha=.05). Under a clinical load of 0.6 N for a coarse polishing wheel, 1.0 N for a medium polishing wheel, and 1.3 N for a fine polishing wheel, a linear speed of 499 mm/min, and a rotational velocity of 10,000 rpm, the use of clinical polishing instruments did not affect

  9. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  10. Mars Pathfinder: The Wheel Abrasion Experiment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Wheel Abrasion Experiment (WAE) will measure the amount of wear on wheel surfaces of the Mars Pathfinder rover. WAE uses thin films of Al, Ni, and Pt (ranging in thickness from 200 to 1000 angstroms) deposited on black, anodized Al strips attached to the rover wheel. As the wheel moves across the martian surface, changes in film reflectivity will be monitored by reflected sunlight. These changes, measured as output from a special photodetector mounted on the rover chassis, will be due to abrasion of the metal films by martian surface sand, dust, and clay.

  11. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  12. Friction and fretting wear characteristics of different diamond-like carbon coatings against alumina in water-lubricated fretting conditions.

    PubMed

    Watabe, Tsukasa; Amanov, Auezhan; Tsuboi, Ryo; Sasaki, Shinya

    2013-12-01

    Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.

  13. The in vitro wear behavior of experimental resin-based composites derived from a commercial formulation.

    PubMed

    Finlay, Nessa; Hahnel, Sebastian; Dowling, Adam H; Fleming, Garry J P

    2013-04-01

    To investigate the short- and long-term in vitro wear resistance of experimental resin-based composites (RBCs) derived from a commercial formulation. Six experimental RBCs were manufactured by manipulating the monomeric resin composition and the filler characteristics of Grandio (Voco GmbH, Cuxhaven, Germany). The Oregon Health Sciences University (OHSU) oral wear simulator was used in the presence of a food-like slurry to simulate three-body abrasion and attrition wear for 50,000, 150,000 and 300,000 cycles. A three-dimensional image of each wear facet was created and the total volumetric wear (mm(3)) and maximum wear depth (μm) were quantified for the RBC and antagonist. Statistical analyses of the total volumetric wear and maximum wear depth data (two- and one-way analyses of variance (ANOVA), with Tukey's post hoc tests where required) and regression analyses, were conducted at p=0.05. Two-way ANOVAs identified a significant effect of RBC material×wear cycles, RBC material and wear cycles (all p<0.0001). Regression analyses showed significant increases in the total volumetric wear (p≤0.001) and maximum wear depth data (p≤0.004) for all RBCs with increasing wear cycles. Differences between all RBC materials were evident after ≥150,000 wear cycles and antagonist wear provided valuable information to support the experimental findings. Wear simulating machines can provide an indication of the clinical performance but clinical performance is multi-factorial and wear is only a single facet. Employing experimental RBCs provided by a dental manufacturer rather than using self-manufactured RBCs or dental products provides increased experimental control by limiting the variables involved. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Risk Assessment for Tooth Wear.

    PubMed

    Kontaxopoulou, Isavella; Alam, Sonia

    2015-08-01

    Tooth wear has an increasing prevalence in the UK population. The aetiology is commonly multifactorial, and the aetiopathology is through a combination of erosion, attrition, abrasion and abfraction. Erosion is associated with intrinsic or extrinsic acids, and therefore subjects with reflux disease and eating disorders are at increased risk. Fruit juice, fruits and carbonated drink consumption, frequency of consumption and specific habits are also risk factors. Attrition is more prevalent in bruxists. Other habits need to be considered when defining the risk of tooth wear. Abrasion is usually associated with toothbrushing and toothpastes, especially in an already acidic environment. Patients with extensive lesions that affect dentin may be at higher risk, as well as those presenting with unstained lesions. Monitoring of the progress of tooth wear is recommended to identify those with active tooth wear. Indices for tooth wear are a helpful aid.

  15. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. II--Wear patterns.

    PubMed

    Berradja, Abdenacer; Willems, Guy; Celis, Jean-Pierre

    2006-05-01

    To evaluate the wear patterns of orthodontic archwires in dry and wet conditions in-vitro. The patterns of wear of stainless steel and NiTi orthodontic archwires were investigated with a fretting wear tribometer fitted with an alumina ball. The tribometer was operated at 23 degrees C in three different environments: ambient air with 50 per cent relative humidity (RH), 0.9 wt. per cent sodium chloride solution and deionised water. Differences in the wear characteristics of the archwires were investigated by scanning electron microscopy. Energy Dispersive X-ray Analysis and Inductively Coupled Plasma Analysis were used to investigate the surface composition of the wires, the wear debris generated during fretting and the corrosion products in the test solutions. Both archwire materials were degraded by oxidational wear in ambient air. The NiTi wires were more resistant to wear than the stainless steel wires. In the aqueous media the stainless steel wires were degraded by abrasive wear, while the NiTi wires were degraded by adhesive wear. In ambient air with 50 per cent RH, NiTi wires were more resistant to wear than stainless steel wires. Both archwire materials exhibited higher wear rates in the solutions than in air, indicating some synergism between the wear and corrosion processes. In the solutions the stainless steel archwires had a much lower corrosion-wear resistance than the NiTi archwires.

  16. The worn dentition--pathognomonic patterns of abrasion and erosion.

    PubMed

    Abrahamsen, Thomas C

    2005-01-01

    Historically, the dental literature has revealed various causes of tooth wear, yet it has failed to provide a conclusive method of differentiation and diagnosis of the condition. The categories of tooth wear encountered most commonly in dental practice are abrasion and erosion. The major causes of wear from abrasion are bruxism and toothpaste abuse, and the major causes of wear from erosion are regurgitation, coke-swishing and fruit-mulling. Through in-depth clinical study of these causes, this paper provides a diagnostic system that will enable dental professionals to determine and differentiate the exact aetiology of the worn dentition simply by the recognition of the pathognomonic wear patterns on diagnostic casts, which are based upon the position and quantity of the non-carious loss of tooth structure.

  17. Study of Dominant Factors Affecting Cerchar Abrasivity Index

    NASA Astrophysics Data System (ADS)

    Rostami, Jamal; Ghasemi, Amireza; Alavi Gharahbagh, Ehsan; Dogruoz, Cihan; Dahl, Filip

    2014-09-01

    The Cerchar abrasion index is commonly used to represent rock abrasion for estimation of bit life and wear in various mining and tunneling applications. Although the test is simple and fast, there are some discrepancies in the test results related to the equipment used, condition of the rock surface, operator skills, and procedures used in conducting and measuring the wear surface. This paper focuses on the background of the test and examines the influence of various parameters on Cerchar testing including pin hardness, surface condition of specimens, petrographical and geomechanical properties, test speed, applied load, and method of measuring wear surface. Results of Cerchar tests on a set of rock specimens performed at different laboratories are presented to examine repeatability of the tests. In addition, the preliminary results of testing with a new device as a potential alternative testing system for rock abrasivity measurement are discussed.

  18. Diagnosis and management of dental wear.

    PubMed

    Harpenau, Lisa A; Noble, Warden H; Kao, Richard T

    2011-04-01

    Dental wear is loss of tooth structure resulting from erosion, attrition, abrasion, and, possibly, abfraction. Clinical/experimental data suggest no single damaging mechanism but rather simultaneous interaction of these destructive processes. The most important interaction is abrasion/attrition potentiated by dental erosion. Awareness of this pathosis is not well-appreciated by the public and dental professionals because the signs may be subtle. This article focuses on the recognition, diagnosis, and management of dental wear.

  19. Investigations of Novel Surface Modification Techniques for Wear Resistant Al and Mg Based Materials

    DTIC Science & Technology

    1994-01-01

    microhardness to resist the abrasive wear. Moreover it is required to form dense or fine-porous uniform layers to provide the antifriction characteristics...technological regimes for production of OCC having maximum of thickness, microhardness and uniformity is expediently to carry on using the silicate-alkali...includes at the same time both the index of the process effectiveness and the strength and geometrical characteristics of the product . In connection

  20. Molecular relaxations, molecular orientation, and the friction characteristics of polyimide films. [wear characteristics of polymeric lubricant

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    The friction characteristics of polyimide films bonded to metallic substrates were studied from 25 to 500 C. These results were interpreted in terms of molecular orientation and thermomechanical data obtained by torsional braid analysis (TBA). A large friction transition was found to occur at 40 + or - 10 C in a dry argon atmosphere (10 ppm H2O). It was postulated that the mechanical stresses of sliding transform or reorder the molecules on the surface into a configuration conducive to easy shear, such as an extended chain. The molecular relaxation which occurs in this temperature region appears to give the molecules the necessary freedom for this reordering process to occur. The effects of velocity, reversibility, and thermal prehistory on the friction properties of polyimide were also studied.

  1. Temperature effect of friction and wear characteristics for solid lubricating graphite

    NASA Astrophysics Data System (ADS)

    Kim, Yeonwook; Kim, Jaehoon

    2015-03-01

    Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.

  2. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions.

    PubMed

    Sumino, Natsu; Tsubota, Keishi; Takamizawa, Toshiki; Shiratsuchi, Koji; Miyazaki, Masashi; Latta, Mark A

    2013-01-01

    To determine the localized wear and flexural properties of flowable resin composites for posterior lesions compared with universal resin composites produced by the same manufacturers. Ten specimens of each of three flowable resins, G-ænial Universal Flo, G-ænial Flo and Clearfil Majesty Flow, and the corresponding resin composite materials, Kalore and Clearfil Majesty Esthetics, were prepared in custom fixtures and subjected to 400,000 wear machine cycles to simulate localized wear. The total maximum depth and volume loss of the wear facets was calculated for each specimen using a profilometer. A three-point bending test was performed to determine the flexural strength, modulus of elasticity and resilience. Values were statistically compared using one-way analysis of variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) test. The wear depth ranged from 58.3-126.9 m and the volumetric loss ranged from 0.019-0.049 mm(3), with significant differences observed between restorative materials. The wear depth of G-ænial Universal Flo was significantly smaller than those of the other resin composites tested. The flexural strengths and elastic modulus ranged from 90.5-135.1 MPa and from 4.7-7.6 GPa, respectively. A significantly greater flexural strength and higher elastic modulus was found for G-ænial Universal Flo than the other composites. The wear and mechanical properties of the flowable resin composites tested suggested improved performance compared with universal resin composites.

  3. Evaluation of composite wear with a new multi-mode oral wear simulator.

    PubMed

    Condon, J R; Ferracane, J L

    1996-07-01

    The goals of this study were to develop a machine which simultaneously produces wear through the two main oral wear mechanisms of abrasion and attrition by the action of an enamel antagonist and to compare the results obtained for dental composites using this machine to those obtained from clinical studies and other in vitro studies. The accuracy of this new wear tester was determined by examining 11 commercial composite filling materials and 1 amalgam. Specimens were subjected to three-body abrasion and attrition wear for 50,000 cycles. Profilometry was used to quantitate wear of the composites. Linear regression analysis was used to correlate the results to those obtained from clinical studies, as well as from other in vitro wear testers. The area of enamel wear was also determined by image analysis. The SEM was used to evaluate the wear surfaces. The lowest abrasion wear was recorded for the amalgam and for the microfill and smaller-particle composites. Attrition wear was enhanced for the microfill composites and one small-particle hybrid. There was a strong correlation between the results obtained with the new wear tester and those obtained in the clinical trials cited in the literature. Wear of the enamel antagonist was the greatest for the composites with the largest particle sizes. The wear tester showed a reasonable correlation with other wear-producing machines. A new wear tester developed to evaluate and discriminate abrasion and attrition wear provided results similar to those reported in the literature for a variety of commercial composites. The new machine is capable of characterizing the behavior of a material in multiple wear modes simultaneously with one simple, realistic test.

  4. Characteristics of highly cross-linked polyethylene wear debris in vivo

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2014-01-01

    Despite the widespread implementation of highly cross-linked polyethylene (HXLPE) liners to reduce the clinical incidence of osteolysis, it is not known if the improved wear resistance will outweigh the inflammatory potential of HXLPE wear debris generated in vivo. Thus, we asked: What are the differences in size, shape, number, and biological activity of polyethylene wear particles obtained from primary total hip arthroplasty revision surgery of conventional polyethylene (CPE) versus remelted or annealed HXLPE liners? Pseudocapsular tissue samples were collected from revision surgery of CPE and HXLPE (annealed and remelted) liners, and digested using nitric acid. The isolated polyethylene wear particles were evaluated using scanning electron microscopy. Tissues from both HXLPE cohorts contained an increased percentage of submicron particles compared to the CPE cohort. However, the total number of particles was lower for both HXLPE cohorts, as a result there was no significant difference in the volume fraction distribution and specific biological activity (SBA; the relative biological activity per unit volume) between cohorts. In contrast, based on the decreased size and number of HXLPE wear debris there was a significant decrease in total particle volume (mm3/g of tissue). Accordingly, when the SBA was normalized by total particle volume (mm3/gm tissue) or by component wear volume rate (mm3/year), functional biological activity of the HXLPE wear debris was significantly decreased compared to the CPE cohort. Indications for this study are that the osteolytic potential of wear debris generated by HXLPE liners in vivo is significantly reduced by improvements in polyethylene wear resistance. PMID:23436587

  5. Development of a two-body wet abrasion test method with attention to the effects of reused abradant

    SciTech Connect

    Blau, Peter Julian; Dehoff, Ryan R

    2012-01-01

    Abrasive wear is among the most common and costliest causes for material wastage, and it occurs in many forms. A simple method has been developed to quantify the response of metals and alloys to two-body wet abrasion. A metallographic polishing machine was modified to create a disk-on-flat sliding test rig. Adhesive-backed SiC grinding papers were used under fixed load and speed to rank the abrasive wear of seven alloy steels, some of which are candidates for drill cones for geothermal drilling. Standardized two-body abrasion tests, like those described in ASTM G132, feed unused abrasive into the contact; however, the currentmore » work investigated whether useful rankings could still be obtained with a simpler testing configuration in which specimens repeatedly slide on the same wear path under water-lubricated conditions. Tests using abrasive grit sizes of 120 and 180 resulted in the same relative ranking of the alloys although the coarser grit produced more total wear. Wear decreased when the same abrasive disk was re-used for up to five runs, but the relative rankings of the steels remained the same. This procedure was presented to ASTM Committee G2 on Wear and Erosion as a potential standard test for wet two-body abrasive wear.« less

  6. Friction and Wear

    NASA Technical Reports Server (NTRS)

    Pomey, Jacques

    1952-01-01

    From the practical point of view, this analysis shows that each problem of friction or wear requires its particular solution. There is no universal solution; one or other of the factors predominates and defines the choice of the solution. In certain cases, copper alloys of great thermal conductivity are preferred; in others, plastics abundantly supplied with water. Sometimes, soft antifriction metals are desirable to distribute the load; at other times, hard metals with high resistance to abrasion or heat.

  7. Mechanical modelling of tooth wear

    PubMed Central

    Kallonen, Aki

    2016-01-01

    Different diets wear teeth in different ways and generate distinguishable wear and microwear patterns that have long been the basis of palaeodiet reconstructions. Little experimental research has been performed to study them together. Here, we show that an artificial mechanical masticator, a chewing machine, occluding real horse teeth in continuous simulated chewing (of 100 000 chewing cycles) is capable of replicating microscopic wear features and gross wear on teeth that resemble wear in specimens collected from nature. Simulating pure attrition (chewing without food) and four plant material diets of different abrasives content (at n = 5 tooth pairs per group), we detected differences in microscopic wear features by stereomicroscopy of the chewing surface in the number and quality of pits and scratches that were not always as expected. Using computed tomography scanning in one tooth per diet, absolute wear was quantified as the mean height change after the simulated chewing. Absolute wear increased with diet abrasiveness, originating from phytoliths and grit. In combination, our findings highlight that differences in actual dental tissue loss can occur at similar microwear patterns, cautioning against a direct transformation of microwear results into predictions about diet or tooth wear rate. PMID:27411727

  8. Effect of Reduced Graphene Oxide Reinforcement on the Wear Characteristics of Electroless Ni-P Coatings

    NASA Astrophysics Data System (ADS)

    Tamilarasan, T. R.; Sanjith, U.; Rajendran, R.; Rajagopal, G.; Sudagar, J.

    2018-03-01

    Electroless composite coatings with various concentrations of reduced graphene oxide (rGO) particles were deposited onto mild steel substrate. The effects of adding rGO particles by varying their concentration from 0 to 100 mg/L on morphology, composition, microhardness, adhesion, wear and friction of the electroless composite coatings were investigated. Among the various parameters that influence the tribological behavior, sliding velocity was varied within a specific range for definite concentrations of rGO to obtain enhanced wear resistance in this study. The micrographs of the worn surfaces and indented spots were examined for the nature of wear mechanism and interfacial adhesion. The wear rate increased with increasing sliding velocity but was relatively stable for coatings with lower concentrations of rGO.

  9. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    DOT National Transportation Integrated Search

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  10. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

  11. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique

    PubMed Central

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-01-01

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system’s lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system’s ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection. PMID:29543733

  12. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique.

    PubMed

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-03-15

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.

  13. Influence on grip of knife handle surface characteristics and wearing protective gloves.

    PubMed

    Claudon, Laurent

    2006-11-01

    Ten subjects were asked to apply maximum torques on knife handles with either their bare hand or their hand wearing a Kevlar fibre protective glove. Four knife handles (2 roughnesses, 2 hardnesses) were tested. Surface electromyograms of 6 upper limb and shoulder muscles were recorded and subject opinions on both knife handle hardness and friction in the hand were also assessed. The results revealed the significant influence of wearing gloves (p<0.0001), knife type (p<0.0005) and handle hardness (p<0.005) on the applied torque. Wearing Kevlar fibre gloves greatly increased the torque independently of the other two parameters. Under the bare hand condition, a 90 degrees ShA slightly rough handle provided the greatest torque. Subject opinion agreed with the observed effects on recorded torque values except for the hardness factor, for which a preference for the 70 degrees ShA value over the 90 degrees ShA value emerged.

  14. Wear Behavior of an Ultra-High-Strength Eutectoid Steel

    NASA Astrophysics Data System (ADS)

    Mishra, Alok; Maity, Joydeep

    2018-02-01

    Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.

  15. Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Laskowski, J. A.

    1996-01-01

    The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.

  16. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Moroz, A.; Alrbaey, K.

    2014-02-01

    Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.

  17. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  18. Recording and wear characteristics of 4 and 8 mm helical scan tapes

    NASA Technical Reports Server (NTRS)

    Peter, Klaus J.; Speliotis, Dennis E.

    1993-01-01

    Performance data of media on helical scan tape systems (4 and 8 mm) is presented and various types of media are compared. All measurements were performed on a standard MediaLogic model ML4500 Tape Evaluator System with a Flash Converter option for time based measurements. The 8 mm tapes are tested on an Exabyte 8200 drive and 4 mm tapes on an Archive Python drive; in both cases, the head transformer is directly connected to a Media Logic Read/Write circuit and test electronics. The drive functions only as a tape transport and its data recover circuits are not used. Signal to Noise, PW 50, Peak Shift and Wear Test data is used to compare the performance of MP (metal particle), BaFe, and metal evaporate (ME). ME tape is the clear winner in magnetic performance but its susceptibility to wear and corrosion, make it less than ideal for data storage.

  19. Wear behavior of austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  20. A new methodology for predictive tool wear

    NASA Astrophysics Data System (ADS)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  1. Wear and friction characteristics of electroless Ni-B-W coatings at different operating temperatures

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta

    2018-02-01

    Sodium borohydride reduced electroless nickel alloy coatings have high wear resistance and low coefficient of friction. The present work investigates the deposition and tribological behavior of a ternary variant of the borohydride reduced coating i.e. Ni-B-W. Electroless Ni-B-W coatings were deposited on AISI 1040 steel substrates. In order to improve the mechanical properties of the deposits, they were heat treated at 350 °C for 1 h. The coatings in their as-deposited and heat treated conditions were characterized by scanning electron microscope, energy dispersive x-ray analysis and x-ray diffraction techniques. Ni-B-W coatings are amorphous in their as-deposited state while they become crystalline on heat treatment. In fact a high microhardness of Ni-B-W coatings is also observed in as-deposited condition. The microhardness further improves on heat treatment. Tribological behavior of the heat treated coatings with varying load (10-50 N), sliding speed (0.25-0.42 m s-1) and operating temperature (25 °C-500 °C) were evaluated on a pin-on-disc type test setup while the wear mechanisms were also studied. Tribological behavior of Ni-B-W coatings is enhanced at 500 °C operating temperature in comparison with 100 or 300 °C due to formation of protective oxide scales and microstructural changes due to in-situ heat treatment effect.

  2. Nanoclay-Reinforced Glass-Ionomer Cements: In Vitro Wear Evaluation and Comparison by Two Wear-Test Methods

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2017-01-01

    Glass ionomer cement (GIC) represents a major transformation in restorative dentistry. Wear of dental restoratives is a common phenomenon and the determination of the wear resistance of direct-restorative materials is a challenging task. The aim of this paper was to evaluate the wear resistance of novel glass ionomer cement by two wear-test methods and to compare the two wear methods.The wear resistance of a conventional glass ionomer cement (HiFi Advanced Health Care Kent, UK) and cements modified by including various percentages of nanoclays (1, 2 and 4 wt %) was measured by a reciprocating wear test (ball-on-flat) and Oregon Health and Sciences University’s (OHSU) wear simulator. The OHSU wear simulation subjected the cement specimens to three wear mechanisms, namely abrasion, three-body abrasion and attrition using a steatite antagonist. The abrasion wear resulted in material loss from GIC specimen as the steatite antagonist forced through the exposed glass particles when it travelled along the sliding path.The hardness of specimens was measured by the Vickers hardness test. The results of reciprocation wear test showed that HiFi-1 resulted in the lowest wear volume 4.90 (0.60) mm3 (p < 0.05), but there was no significant difference (p > 0.05) in the wear volume in comparison to HiFi, HiFi-2 and HiFi-4. Similarly, the results of OHSU wear simulator showed that the total wear volume of HiFi-4 1.49 (0.24) was higher than HiFi-1 and HiFi-2. However, no significant difference (p > 0.05) was found in the OHSU total wear volume in GICs after nanoclay incorporation. The Vickers hardness (HV) of the nanoclay-reinforced cements was measured between 62 and 89 HV. Nanoclay addition at a higher concentration (4%) resulted in higher wear volume and wear depth. The total wear volumes were less dependent upon abrasion volume and attrition volume. The total wear depths were strongly influenced by attrition depth and to some extent by abrasion depth. The addition of nanoclay

  3. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions.

  4. In vitro wear of new indirect resin composites.

    PubMed

    Jain, V; Platt, J A; Moore, B K; Borges, G A

    2009-01-01

    This in vitro study evaluated the toothbrush abrasion wear, three-body Alabama wear and two-body pin-on-disc wear of four commercial indirect resin composites. Enamel shades of Radica (R), Sculpture Plus (S), Belleglass-NG (B) and Gradia Indirect (G) were used. For measuring wear due to toothbrush abrasion, six specimens of each group were fabricated, then brushed in a toothbrush abrasion machine for 20,000 cycles. Material loss was determined by weighing and conversion to volume loss. Three-body wear was measured on six samples for each group using an Alabama-type wear testing machine for 400,000 cycles. Wear depth was measured with a contact profilometer. For two-body wear, five disc specimens were prepared and tested in a two-body wear-testing machine against hydroxypatite sliders for 25,000 cycles. Data were analyzed with one-way analysis of variance (ANOVA) and Tukey test (alpha=0.05). Wear was the highest in Sculpture Plus by all three methods tested and the lowest wear was observed in Belleglass-NG. No statistical difference in wear was noted from Radica.

  5. Fissure sealant materials: Wear resistance of flowable composite resins

    PubMed Central

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  6. Fissure sealant materials: Wear resistance of flowable composite resins.

    PubMed

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  7. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  8. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  9. Etude de la degradation des refractaires aluminosiliceux par abrasion, chocs thermiques et corrosion par l'aluminium: Correlation et interaction des mecanismes

    NASA Astrophysics Data System (ADS)

    Ntakaburimvo, Nicodeme

    Aluminosilicate refractories used for melting and holding furnaces on which the present work was focused are submitted to mechanical abuse such as abrasion, mechanical impact and erosion, on one hand; and to chemical degradation by corrosion, as well as to thermal stresses, mostly due to thermal shocks; on the other hand. This thesis is focused on four main objectives. The first one is related to the designing of an experimental set-up allowing abrasion testing of refractories. The second deals with the separate study of the deterioration of aluminosilicate refractories by abrasion, thermal shock and corrosion. The third is the correlation between these three mechanisms while the fourth is related to the interaction between thermal shock and corrosion. One of the contributions of this thesis is the realisation of the above mentioned experimental set-up, which permits to carry out refractories abrasion testing, as well as at room and high temperature, in the absence or in the presence of molten metal. The fact of testing refractory resistance when it is submitted separately and simultaneously to the action of dynamic corrosion, erosion and abrasion leads to the studying of the influence of each of these three mechanisms on the other. One of the characteristics of the designed set-up is the fact that it allows to adjust the seventy testing conditions according to the mechanical resistance of the test material. The other important point is related to the fact the abrasion tests were carried out in such manner to permit degradation quantification, otherwise than by the traditional method of loss of weight measurement; particularly by measuring the wear depth and the residual material properties, such as the rupture force and the strength. A perfect correlation was observed between the wear depth and the loss of weight, both being negatively correlated with the residual rupture force. The abrasion resistance was found to be globally positively correlated with the

  10. Abrasion resistant composition

    SciTech Connect

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to themore » metal matrix.« less

  11. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    NASA Astrophysics Data System (ADS)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  12. High-temperature Friction and Wear Resistance of Ni-Co-SiC Composite Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Sun, Wan-chang; Jia, Zong-wei; Liu, Xiao-jia; Dong, Ya-ru

    2018-05-01

    Ni-Co alloy and SiC micro-particles were co-deposited on 45 steel by electrodeposition for high temperature performance. The high temperature tribological characteristics were studied by use of a ball-on-disk method. The micrographs and phase structure of the Ni-Co-SiC composite coatings after high-temperature friction were observed by using a field emission scanning electron microscope(FESEM). The results reveal that the Ni-Co-SiC composite coating presents better wear resistance and lower friction coefficient at high temperature in comparison with that of Ni-Co coating and 45 steel substrate. The embedded SiC particles could strengthen the alloy coating by dispersion strengthening effect and changing the friction mechanism from adhesive wear to abrasive wear.

  13. Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations.

    PubMed

    Hara, Anderson T; Turssi, Cecilia P

    2017-11-01

    Toothpastes can be formulated with different abrasive systems, depending on their intended clinical application. This formulation potentially affects their effectiveness and safety and, therefore, requires proper understanding. In this article, the authors focused on abrasive aspects of toothpastes containing sodium bicarbonate (baking soda), which have gained considerable attention because of their low abrasivity and good compatibility, while providing clinical effectiveness (further detailed in the other articles of this special issue). The authors first appraised the role of toothpaste abrasivity on tooth wear, exploring some underlying processes and the existing methods to determine toothpaste abrasivity. The authors reviewed the available data on the abrasivity of toothpastes containing baking soda and reported a summary of findings highlighting the clinical implications. On the basis of the collected evidence, baking soda has an intrinsic low-abrasive nature because of its comparatively lower hardness in relation to enamel and dentin. Baking soda toothpastes also may contain other ingredients, which can increase their stain removal effectiveness and, consequently, abrasivity. Even those formulations have abrasivity well within the safety limit regulatory agencies have established and, therefore, can be considered safe. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  14. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  15. Study on design of light-weight super-abrasive wheel

    NASA Astrophysics Data System (ADS)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  16. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    PubMed

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among

  17. Backside wear in modern total knee designs.

    PubMed

    Jayabalan, Prakash; Furman, Bridgette D; Cottrell, Jocelyn M; Wright, Timothy M

    2007-02-01

    Although modularity affords various options to the orthopedic surgeon, these benefits come at a price. The unintended bearing surface between the back surface of the tibial insert and the metallic tray results in micromotion leading to polyethylene wear debris. The objective of this study was to examine the backside wear of tibial inserts from three modern total knee designs with very different locking mechanisms: Insall-Burstein II (IB II), Optetrak, and Advance. A random sample of 71 inserts were obtained from our institution's retrieval collection and examined to assess the extent of wear, depth of wear, and wear damage modes. Patient records were also obtained to determine patient age, body mass index, length of implantation, and reason for revision. Modes of wear damage (abrasion, burnishing, scratching, delamination, third body debris, surface deformation, and pitting) were then scored in each zone from 0 to 3 (0 = 0%, 1 = 0-10%, 2 = 10-50%, and 3 = >50%). The depth of wear was subjectively identified as removal of manufacturing identification markings stamped onto the inferior surface of the polyethylene. Both Advance and IB II polyethylene inserts showed significantly higher scores for backside wear than the Optetrak inserts. All IB II and Advance implants showed evidence of backside wear, whereas 17% (5 out of 30) of the retrieved Optetrak implants had no observable wear. There were no significant differences when comparing the depth of wear score between designs. The locking mechanism greatly affects the propensity for wear and should be considered when choosing a knee implant system.

  18. Concrete wear study.

    DOT National Transportation Integrated Search

    1968-06-01

    This report primarily investigates the wear characteristics of concrete using various cement contents and three different sources of aggregates. Compressive strength and dynamic modulus of elasticity data was also obtained to assist in the evaluation...

  19. The abrasive effect of commercial whitening toothpastes on eroded enamel.

    PubMed

    Mosquim, Victor; Martines Souza, Beatriz; Foratori Junior, Gerson Aparecido; Wang, Linda; Magalhães, Ana Carolina

    2017-06-01

    To evaluate the in vitro abrasive effect of commercial whitening toothpastes on eroded bovine enamel samples in respect to erosive tooth wear. 72 bovine crowns were embedded, polished and subjected to the baseline profile analysis. The samples were then protected in 2/3 of the enamel surface and were randomly assigned to six groups (n= 12/group): G1: Oral-B 3D White, G2: Close-up Diamond Attraction Power White, G3: Sorriso Xtreme White 4D, G4: Colgate Luminous White, G5: Crest (conventional toothpaste), G6:erosion only (control). All samples were submitted to an erosive pH cycling (4 x 90 seconds in 0.1% citric acid, pH 2.5, per day) and abrasive challenges (2 x 15 seconds, per day) for 7 days. After the first and the last daily cycles, the samples were subjected to abrasive challenges, using a toothbrushing machine, soft toothbrushes and slurry of the tested toothpastes (1.5 N). Between the challenges, the samples were immersed in artificial saliva. The final profile was obtained and overlaid to the baseline profile for the calculation of the erosive tooth wear (μm). The data were subjected to Kruskal-Wallis/Dunn tests (P< 0.05). G1 promoted the highest enamel wear (3.68±1.06 μm), similarly to G3 (3.17± 0.80 μm) and G4 (3.44± 1.29 μm). G3 and G4 performed similarly between them and compared with G5 (2.35± 1.44 μm). G2 (1.51± 0.95 μm) and G6 (0.85± 0.36 μm) showed the lowest enamel wear, which did not differ between them and from G5. Oral-B 3D White showed the highest abrasive potential while Close-up Diamond Attraction Power White showed the lowest abrasive potential on eroded enamel in vitro. This study showed that some commercial whitening toothpastes, especially those containing pyrophosphate associated with hydrated silica, enhanced enamel erosive wear.

  20. Localized and generalized simulated wear of resin composites.

    PubMed

    Barkmeier, W W; Takamizawa, T; Erickson, R L; Tsujimoto, A; Latta, M; Miyazaki, M

    2015-01-01

    A laboratory study was conducted to examine the wear of resin composite materials using both a localized and generalized wear simulation model. Twenty specimens each of seven resin composites (Esthet•X HD [HD], Filtek Supreme Ultra [SU], Herculite Ultra [HU], SonicFill [SF], Tetric EvoCeram Bulk Fill [TB], Venus Diamond [VD], and Z100 Restorative [Z]) were subjected to a wear challenge of 400,000 cycles for both localized and generalized wear in a Leinfelder-Suzuki wear simulator (Alabama machine). The materials were placed in custom cylinder-shaped stainless steel fixtures. A stainless steel ball bearing (r=2.387 mm) was used as the antagonist for localized wear, and a stainless steel, cylindrical antagonist with a flat tip was used for generalized wear. A water slurry of polymethylmethacrylate (PMMA) beads was used as the abrasive media. A noncontact profilometer (Proscan 2100) with Proscan software was used to digitize the surface contours of the pretest and posttest specimens. AnSur 3D software was used for wear assessment. For localized testing, maximum facet depth (μm) and volume loss (mm(3)) were used to compare the materials. The mean depth of the facet surface (μm) and volume loss (mm(3)) were used for comparison of the generalized wear specimens. A one-way analysis of variance (ANOVA) and Tukey post hoc test were used for data analysis of volume loss for both localized and generalized wear, maximum facet depth for localized wear, and mean depth of the facet for generalized wear. The results for localized wear simulation were as follows [mean (standard deviation)]: maximum facet depth (μm)--Z, 59.5 (14.7); HU, 99.3 (16.3); SU, 102.8 (13.8); HD, 110.2 (13.3); VD, 114.0 (10.3); TB, 125.5 (12.1); SF, 195.9 (16.9); volume loss (mm(3))--Z, 0.013 (0.002); SU, 0.026 (0.006); HU, 0.043 (0.008); VD, 0.057 (0.009); HD, 0.058 (0.014); TB, 0.061 (0.010); SF, 0.135 (0.024). Generalized wear simulation results were as follows: mean depth of facet (μm)--Z, 9.3 (3

  1. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  2. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.

  3. Impact of metal matrix composite on the evolution and erosion performance characteristics of non lubricated-dry abrasive degradation of ternary composite coating for refineries system

    NASA Astrophysics Data System (ADS)

    Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac

    2018-06-01

    The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.

  4. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  5. Gear Tooth Wear Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.

    2015-01-01

    Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.

  6. Conduit Coating Abrasion Testing

    NASA Technical Reports Server (NTRS)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  7. Control of brushing variables for the in vitro assessment of toothpaste abrasivity using a novel laboratory model.

    PubMed

    Parry, Jason; Harrington, Edward; Rees, Gareth D; McNab, Rod; Smith, Anthony J

    2008-02-01

    Design and construct a tooth-brushing simulator incorporating control of brushing variables including brushing force, speed and temperature, thereby facilitating greater understanding of their importance in toothpaste abrasion testing methodologies. A thermostable orbital shaker was selected as a base unit and 16- and 24-specimen brushing rigs were constructed to fit inside, consisting of: a square bath partitioned horizontally to provide brushing channels, specimen holders for 25 mm diameter mounted specimens to fit the brushing channels and individually weighted brushing arms, able to support four toothbrush holders suspended over the brushing channels. Brush head holders consisted of individually weighted blocks of Delrin, or PTFE onto which toothbrush heads were fixed. Investigating effects of key design criteria involved measuring abrasion depths of polished human enamel and dentine. The brushing simulator demonstrated good reproducibility of abrasion on enamel and dentine across consecutive brushing procedures. Varying brushing parameters had a significant impact on wear results: increased brushing force demonstrated a trend towards increased wear, with increased reproducibility for greater abrasion levels, highlighting the importance of achieving sufficient wear to optimise accuracy; increasing brushing temperature demonstrated increased enamel abrasion for silica and calcium carbonate systems, which may be related to slurry viscosities and particle suspension; varying brushing speed showed a small effect on abrasion of enamel at lower brushing speed, which may indicate the importance of maintenance of the abrasive in suspension. Adjusting key brushing variables significantly affected wear behaviour. The brushing simulator design provides a valuable model system for in vitro assessment of toothpaste abrasivity and the influence of variables in a controlled manner. Control of these variables will allow more reproducible study of in vitro tooth wear processes.

  8. Wear characteristics of an unconstrained lumbar total disc replacement under a range of in vitro test conditions

    PubMed Central

    Fisher, John; Hall, Richard M.

    2015-01-01

    Abstract The effect of kinematics, loading and centre of rotation on the wear of an unconstrained total disc replacement have been investigated using the ISO 18192‐1 standard test as a baseline. Mean volumetric wear rate and surface morphological effects were reported. Changing the phasing of the flexions to create a low (but finite) amount of crossing path motion at the bearing surfaces resulted in a significant fall in wear volume. However, the rate of wear was still much larger than previously reported values under zero cross shear conditions. Reducing the load did not result in a significant change in wear rate. Moving the centre of rotation of the disc inferiorly did significantly increase wear rate. A phenomenon of debris re‐attachment on the UHMWPE surface was observed and hypothesised to be due to a relatively harsh tribological operating regime in which lubricant replenishment and particle migration out of the bearing contact zone were limited. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 46–52, 2017. PMID:26411540

  9. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.

    PubMed

    Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  10. Physics of loose abrasive microgrinding.

    PubMed

    Golini, D; Jacobs, S D

    1991-07-01

    This study examined the physics of loose abrasive microgrinding (grinding with micron and submicron sized abrasives). More specifically, it focused on the transition from brittle to ductile mode grinding which occurs in this region of abrasive sizes. Process dependency on slurry chemistry was the primary area of emphasis and was studied for diamond abrasives varying in size from 3.0 to 0.75 microm on both ULE and Zerodur, with emphasis on ULE. Ductile mode grinding was achieved with smaller abrasives, as expected, however two significant discoveries were made. The first observation was that by simply changing slurry chemistry, it was possible to induce the transition from brittle fracture to ductile mode grinding in ULE. This transition point could be intentionally moved about for diamonds 3.0-0.75 microm in diameter. For any given abrasive size within these limits, either brittle fracture or ductile removal may be achieved, depending on the slurry used to suspend the diamonds. Several slurries were studied, including water, a series of homologous n-alcohols, and other solvents chosen for properties varying from molecular size to dielectric constant and zeta potential. The study revealed that this slurry dependency is primarily a Rebinder effect. The second finding was that a tremendous amount of surface stress is introduced in loose abrasive ductile mode grinding. This stress was observed when the Twyman Effect in ULE plates increased by a factor of 4 in the transition from the brittle to the ductile mode. An assessment of the cause of this stress is discussed.

  11. 3D FEM Simulation of Flank Wear in Turning

    NASA Astrophysics Data System (ADS)

    Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio

    2011-05-01

    This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.

  12. [Tooth wear, a proposal for an evaluation system].

    PubMed

    Wetselaar, P; van der Zaag, J; Lobbezoo, F

    2011-06-01

    The present-day terminology and definitions of tooth wear are not unambiguous. For diagnosing tooth wear, however, it is essential that they are unambiguous. In this article a proposal is presented for a tooth wear evaluation system with simplified definitions. This system consists ofa number of modules and can be used for various aspects of the diagnostic procedure. It can be used for the quantification of tooth wear, both for periodic screening and for the monitoring of tooth wear in individual patients. The scoring of occlusal/incisal tooth wear as well as of non-occlusal/non-incisal tooth wear is possible. The evaluative system is also suitable for determining which type of tooth wear, such as attrition, abrasion and erosion, is most likely to have caused any observed loss of hard tooth tissue.

  13. The microstructural dependence of wear resistance in austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  14. Mechanical Properties and Wear Characteristics Al-ZrO2-SiCp and Graphite Hybrid Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Nayak, S. K.; Mahanta, T.; Sahoo, J. K.; Mishra, A.

    2018-03-01

    Development of Aluminum Metal Matrix Co mposites (AMMCs) has been one of the major requirements in engineering applicat ions due to their excellent mechanical properties, light weight and high strength. In the present investigation, Stir casting technique has been used for fabrication of co mposites, taking Alu miniu m as parent metal, Silicon Carbide (SiCp) of 7 vol. % of 220 mesh size and 1.75 vol. % of graphite as reinforcements. The Zirconia content was varied as 2.75, 4.5 and 6 vol. % to fabricate three d ifferent types of hybrid composites. The tensile strength and hardness were measured in UTM and Vickers hardness tester respectively and the wear characteristics were studied in a pin on disc friction monitor under dry sliding condition against steel counter face. The tensile strength was found to be 90 MPa, 120 MPa, 130 MPa and hardness 80.25 VHN, 103.22 VHN, 103.77 VHN for 2.75, 4.5 and 6vol. % of Zirconia respectively. Fro m the above investigation, it is recommended that composition with Al, 7 %-SiCp, 1.75 % -Gr and 6 vol %-ZrO2 showed better mechanical p roperties i.e . h igh tensile strength (130MPa) and reasonably good hardness (103.77 VHN) . The co mposite with Al, 7 % - SiCp, 1.75 % -Gr and 6 %-ZrO2 is good for short run frictional applicat ion and the composite with Al, 7 %- SiCp, 1.75 % -Gr and 4.5 %- ZrO2 may be used for long run frictional applicat ions after testing.

  15. The efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion.

    PubMed

    Rios, Daniela; Magalhães, Ana Carolina; Polo, Renata Ocon Braga; Wiegand, Annette; Attin, Thomas; Buzalaf, Marilia Afonso Rabelo

    2008-12-01

    Researchers have proposed the use of fluoride for the prevention of enamel wear; however, only limited information is available about the impact of fluoridated dentifrices. Because tooth wear is a well-recognized dental problem, the authors conducted an in situ, ex vivo study to assess the efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion. The authors conducted a double-blind, crossover in situ study consisting of three phases (seven days each). In each phase, the authors tested one of the dentifrices (5,000 parts per million fluoride [F]; 1,100 ppm F; no F). They performed erosive challenges with the use of cola drink (60 seconds, four times per day) and abrasive challenges via toothbrushing (30 seconds, four times per day). The authors determined the enamel loss via profilometry. The authors tested the data by using two-way analysis of variance (P < .05). For the erosion-plus-abrasion condition, the study results showed that enamel wear was significantly higher than that with erosion alone. The findings showed no significant differences between the dentifrices regarding enamel wear. Within the in situ, ex vivo conditions of this study, the authors concluded that the highly concentrated fluoride dentifrice did not have a protective effect on enamel against erosion and erosion plus toothbrushing abrasion. Patients at risk of developing enamel erosion should benefit from preventive measures other than fluoride dentifrice, because even a highly concentrated fluoride dentifrice does not appear to prevent enamel erosion.

  16. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator.

    PubMed

    Raabe, D; Harrison, A; Ireland, A; Alemzadeh, K; Sandy, J; Dogramadzi, S; Melhuish, C; Burgess, S

    2012-03-01

    This paper presents a new in vitro wear simulator based on spatial parallel kinematics and a biologically inspired implicit force/position hybrid controller to replicate chewing movements and dental wear formations on dental components, such as crowns, bridges or a full set of teeth. The human mandible, guided by passive structures such as posterior teeth and the two temporomandibular joints, moves with up to 6 degrees of freedom (DOF) in Cartesian space. The currently available wear simulators lack the ability to perform these chewing movements. In many cases, their lack of sufficient DOF enables them only to replicate the sliding motion of a single occlusal contact point by neglecting rotational movements and the motion along one Cartesian axis. The motion and forces of more than one occlusal contact points cannot accurately be replicated by these instruments. Furthermore, the majority of wear simulators are unable to control simultaneously the main wear-affecting parameters, considering abrasive mechanical wear, which are the occlusal sliding motion and bite forces in the constraint contact phase of the human chewing cycle. It has been shown that such discrepancies between the true in vivo and the simulated in vitro condition influence the outcome and the quality of wear studies. This can be improved by implementing biological features of the human masticatory system such as tooth compliance realized through the passive action of the periodontal ligament and active bite force control realized though the central nervous system using feedback from periodontal preceptors. The simulator described in this paper can be used for single- and multi-occlusal contact testing due to its kinematics and ability to exactly replicate human translational and rotational mandibular movements with up to 6 DOF without neglecting movements along or around the three Cartesian axes. Recorded human mandibular motion and occlusal force data are the reference inputs of the simulator

  17. Abrasive Particle Trajectories and Material Removal Non-Uniformity during CMP and Filtration Characteristics of CMP Slurries - A Simulation and Experimental Study

    NASA Astrophysics Data System (ADS)

    Rastegar, Vahid

    Nanoscale finishing and planarization are integral process steps in multilevel metallization designs for integrated circuit (IC) manufacturing since it is necessary to ensure local and global surface planarization at each metal layer before depositing the next layer. Chemical mechanical planarization (CMP) has been widely recognized as the most promising technology to eliminate topographic variation and has allowed the construction of multilevel interconnection structures with a more regularly stacked sequence, resulting in better device performance [1]. Understanding fundamental of the CMP mechanisms can offer guidance to the control and optimization of the polishing processes. CMP kinematics based on slurry distribution and particle trajectories have a significant impact on MRR profiles. In this work a mathematical model to describe particle trajectories during chemical mechanical polishing was developed and extended to account for the effect of larger particles, particle location changes due to slurry dispensing and in-situ conditioning. Material removal rate (MRR) and within wafer non-uniformity (WIWNU) were determined based on the calculated particle trajectory densities. Rotary dynamics and reciprocating motion were optimized to obtain best MRR uniformity. Edge-fast MRR profile was discussed based on mechanical aspect of CMP. Using the model, we also investigated the effect of variable rotational speeds of wafer and pad, and of large particles on WIWNU and scratch growth. It was shown that the presence of even a small portion of large particles can deteriorate the WIWNU significantly and also lead to more scratches. Furthermore, it was shown that the in-situ conditioning improves the uniformity of the polished wafers. Furthermore, a combined experimental and computational study of fibrous filters for removal of larger abrasive particles from aqueous dispersions, essential to minimize defects during chemical mechanical polishing, was performed. Dilute aqueous

  18. [Polyethylene abrasion: cause or consequence of an endoprosthesis loosening? Investigations of firm and loosened hip implants].

    PubMed

    Busse, B; Niecke, M; Püschel, K; Delling, G; Katzer, A; Hahn, M

    2007-01-01

    Periprosthetic tissue was analysed by the combination of different investigation techniques without destruction. The localisation and geometry of polyethylene abrasion particles were determined quantitatively to differentiate between abrasion due to function and abrasion due to implant loosening. Non-polyethylene particles from implant components which contaminate the tissue were micro-analytically measured. The results will help us to understand loosening mechanisms and thus lead to implant optimisations. A non-destructive particle analysis using highly sensitive proton-induced X-ray emission (PIXE) was developed to achieve a better histological allocation. Five autopsy cases with firmly fitting hip endoprosthesis (2 x Endo-Modell Mark III, 1 x St. Georg Mark II, LINK, Germany; 2 x Spongiosa Metal II, ESKA, Germany) were prepared as ground tissue specimens. Wear investigations were accomplished with a combined application of different microscopic techniques and microanalysis. The abrasion due to implant loosening was histologically evaluated on 293 loosened cup implants (St. Georg Mark II, LINK, Germany). Wear particles are heterogeneously distributed in the soft tissue. In cases of cemented prostheses, cement particles are dominating whereas metal particles could rarely be detected. The concentration of the alloy constituent cobalt (Co) is increased in the mineralised bone tissue. The measured co-depositions depend on the localisation and/or lifetime of an implant. Functional polyethylene (PE) abrasion needs to be differentiated from PE abrasion of another genesis (loosening, impingement) morphologically and by different tissue reactions. In the past a reduction of abrasion was targeted primarily by the optimisation of the bearing surfaces and tribology. The interpretation of our findings indicates that different mechanisms of origin in terms of tissue contamination with wear debris and the alloy should be included in the improvement of implants or implantation

  19. Effect of dried sunflower seeds on incisal edge abrasion: A rare case report.

    PubMed

    Rath, Avita; Ramamurthy, Priyadarshini H; Fernandes, Bennete Aloysius; Sidhu, Preena

    2017-01-01

    Tooth surface loss (TSL) is a complex phenomenon characterized by the loss of hard tooth structure at various locations of the teeth, usually due to more than one factor. TSL due to abrasion can be significant in patients consuming coarse, abrasive diet. The present case reports an interesting incisal edge abrasion in a female patient, attributed to a particular dietary behavior of long-term consumption of sunflower seeds. All her family members and most of the people from her native place were also reported to have similar lesions by the patient. Larger epidemiological studies to assess the prevalence and severity of such abrasive lesions in geographic areas with this particular dietary habit need to be carried out so that people may be made aware and educated about alternative ways of eating sunflower seeds that will not cause any form of tooth wear.

  20. Wear behavior of pressable lithium disilicate glass ceramic.

    PubMed

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  1. Effects of working gas pressure on zirconium dioxide thin film prepared by pulsed plasma deposition: roughness, wettability, friction and wear characteristics.

    PubMed

    Berni, M; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Russo, A; Visani, A; Marcacci, M; Pavan, P G; Lopomo, N F

    2017-08-01

    In joint arthroplasty one of the main issues related to the failure of prosthetic implants is due to the wear of the ultra-high molecular weight polyethylene (UHMWPE) component. Surface treatments and coatings have been recognized as enhancing methods, able to improve the tribological properties of the implants. Therefore, the main objective of this work was to investigate the possibility to fabricate yttria-stabilized zirconia (YSZ) coatings on a metal (AISI 316-L) substrate by means of Pulsed Electron Deposition, in order to improve the tribological behavior of the polymer-metal coupling, by reducing the initial wear of the UHMWPE component. In order to optimize the coating characteristics, the effects of working gas pressure on both its morphological and tribological properties were analyzed. Morphological characterization of the films was evaluated by Atomic Force Microscopy (AFM). Coating wettability was also estimated by contact angle (CA) measurement. Tribological performance (coupling friction and wear of UHMWPE) was evaluated by using a ball-on-disc tribometer during highly-stressing tests in dry and lubricated (i.e. NaCl and serum) conditions; friction and wear were specifically evaluated at the initial sliding distances - to highlight the main effect of coating morphology - and after 100m - where the influence of the intrinsic materials properties prevails. AFM analysis highlighted that the working pressure heavily affected the morphological characteristics of the realized films. The wettability of the coating at the highest and lowest deposition pressures (CA ~ 60°, closed to substrate value) decreased for intermediate pressures, reaching a maximum CA of ~ 90°. Regarding tribological tests, a strong correlation was found in the initial steps between friction coefficient and wettability, which decreased as the distance increased. Concerning UHMWPE wear associated to coated counterpart, at 100m a reduction rate of about 7% in dry, 12% in NaCl and 5% in

  2. Pathogenic characteristics of Candida albicans isolated from oral cavities of denture wearers and cancer patients wearing oral prostheses.

    PubMed

    Mothibe, J V; Patel, M

    2017-09-01

    Candida albicans cause opportunistic infections including oral candidiasis in immunocompromised patients. It has an ability to cause infection due to its virulence factors. This study investigated the pathogenic characteristics of C. albicans isolated from the oral cavities of healthy subjects and two vulnerable groups, denture wearers and cancer patients wearing oral prostheses. Oral rinse samples were collected and cultured for the quantitative and qualitative analysis of Candida. Twenty strains of C. albicans isolated from the healthy individuals and denture wearers and, 14 strains isolated from the cancer patients were selected and their pathogenic characteristics were measured. The results of the study groups were compared using a Scheffe test for pairwise comparison and a chi square test. Denture wearer and cancer patients with prostheses carried significantly higher number (p < 0.01) and a variety of Candida than the normal individuals. Denture wearer and cancer patients carried several Candida species. The adherence abilities (p = 0.01) as well as phospholipase (p < 0.01) and proteinase (p = 0.03) production were significantly higher in the strains from denture wearers. In addition, high number of isolates from the denture wearers produced phospholipase and proteinase (85% and 80% respectively) compared to the strains from normal subjects (25% and 60% respectively). Only the germ tube formation and adherence ability were significantly higher in the strains from the cancer patients with prostheses (p = 0.05 and p < 0.01 respectively). In conclusion, during the commensal state, the increased expression of virulence factors in the denture wearers suggests the readiness of these strains to cause infection in this group. The high number of C. albicans and their increased adherence ability in the two study groups suggest that hygiene of oral cavity and prostheses is important in the prevention of colonization of Candida and the development of oral

  3. A comparison of the tribological behaviour of Y-TZP in tea and coffee under micro-abrasion conditions

    NASA Astrophysics Data System (ADS)

    Sharifi, S.; Stack, M. M.

    2013-10-01

    The micro-abrasion of Y-TZP, a candidate dental restorative material, was investigated in a range of caffeine-containing solutions which included tea and coffee. Additions of sugar and milk were used to test the effects of viscosity and pH on the wear rate. The results indicated a significant increase in wear rate in the various solutions, with some correlation between wear rate and increases in viscosity and this was linked to enhance particle entrainment in the more viscous solutions. The generally lower wear rate in tea compared to coffee was associated with a longer ageing period in this solution before uniform wear was observed. Micro-abrasion maps were used to characterize the differences in performance for the material in the environments studied.

  4. Wearing gloves in the hospital

    MedlinePlus

    Infection control - wearing gloves; Patient safety - wearing gloves; Personal protective equipment - wearing gloves; PPE - wearing gloves; Nosocomial infection - wearing gloves; Hospital acquired infection - wearing gloves

  5. Wear resistance of ductile irons

    NASA Astrophysics Data System (ADS)

    Lerner, Y. S.

    1994-06-01

    This study was undertaken to evaluate the wear resistance of different grades of ductile iron as alterna-tives to high- tensile- strength alloyed and inoculated gray irons and bronzes for machine- tool and high-pressure hydraulic components. Special test methods were employed to simulate typical conditions of reciprocating sliding wear with and without abrasive- contaminated lubricant for machine and press guideways. Quantitative relationships were established among wear rate, microstructure and micro-hardness of structural constituents, and nodule size of ductile iron. The frictional wear resistance of duc-tile iron as a bearing material was tested with hardened steel shafts using standard test techniques under continuous rotating movement with lubricant. Lubricated sliding wear tests on specimens and compo-nents for hydraulic equipment and apparatus were carried out on a special rig with reciprocating motion, simulating the working conditions in a piston/cylinder unit in a pressure range from 5 to 32 MPa. Rig and field tests on machine- tool components and units and on hydraulic parts have confirmed the test data.

  6. The Wear Behavior of HVOF Sprayed Near-Nanostructured WC-17%Ni(80/20)Cr Coatings in Dry and Slurry Wear Conditions

    NASA Astrophysics Data System (ADS)

    Ben Mahmud, Tarek A.; Atieh, Anas M.; Khan, Tahir I.

    2017-07-01

    The ability to deposit nanostructured feedstock by using high-velocity oxygen-fuel (HVOF) spray offers potential improvements in coating hardness, wear resistance and toughness for applications in the oil sands industry. In this study, the wear behavior of a near-nanostructured coating was compared under dry and slurry abrasive wear test using an uncoated AISI-1018 low-carbon steel substrate as a reference. The coating microstructures were analyzed in the as-sprayed, dry and slurry test conditions using scanning electron microscopy, x-ray diffraction and microhardness measurements. Wear behavior of the steel and coating surfaces were assessed using a pin-on-plate wear test under various loads. The results showed that a coating could be successfully deposited using the HVOF spraying technique and with retention of the near-nanosized WC dispersion within the coating structure. The wear rate under dry test conditions was greater for the steel and coating compared to tests performed under slurry conditions. Examination of the wear tracks revealed that the wear mechanism was different for the two test conditions. Wear in the dry test condition resulted from 2-body abrasion, while 3-body abrasion dominated wear in slurry conditions. The latter showed lower wear rates due to a lubricating effect of the oil.

  7. Optimization of Profile and Material of Abrasive Water Jet Nozzle

    NASA Astrophysics Data System (ADS)

    Anand Bala Selwin, K. P.; Ramachandran, S.

    2017-05-01

    The objective of this work is to study the behaviour of the abrasive water jet nozzle with different profiles and materials. Taguchi-Grey relational analysis optimization technique is used to optimize the value with different material and different profiles. Initially the 3D models of the nozzle are modelled with different profiles by changing the tapered inlet angle of the nozzle. The different profile models are analysed with different materials and the results are optimized. The optimized results would give the better result taking wear and machining behaviour of the nozzle.

  8. Investigation of machinability characteristics on EN47 steel for cutting force and tool wear using optimization technique

    NASA Astrophysics Data System (ADS)

    M, Vasu; Shivananda Nayaka, H.

    2018-06-01

    In this experimental work dry turning process carried out on EN47 spring steel with coated tungsten carbide tool insert with 0.8 mm nose radius are optimized by using statistical technique. Experiments were conducted at three different cutting speeds (625, 796 and 1250 rpm) with three different feed rates (0.046, 0.062 and 0.093 mm/rev) and depth of cuts (0.2, 0.3 and 0.4 mm). Experiments are conducted based on full factorial design (FFD) 33 three factors and three levels. Analysis of variance is used to identify significant factor for each output response. The result reveals that feed rate is the most significant factor influencing on cutting force followed by depth of cut and cutting speed having less significance. Optimum machining condition for cutting force obtained from the statistical technique. Tool wear measurements are performed with optimum condition of Vc = 796 rpm, ap = 0.2 mm, f = 0.046 mm/rev. The minimum tool wear observed as 0.086 mm with 5 min machining. Analysis of tool wear was done by confocal microscope it was observed that tool wear increases with increasing cutting time.

  9. Study on biocompatibility, tribological property and wear debris characterization of ultra-low-wear polyethylene as artificial joint materials.

    PubMed

    Bian, Yan-Yan; Zhou, Lei; Zhou, Gang; Jin, Zhong-Min; Xin, Shi-Xuan; Hua, Zi-Kai; Weng, Xi-Sheng

    2018-06-01

    Ultra-low-wear polyethylene (ULWPE) is a new type polyethylene made by experts who are from China petrochemical research institute, which is easy to process and implant. Preliminary test showed it was more resistant to wear than that of Ultra-high-molecular weight polyethylene (UHMWPE). The purpose of the research is to study biocompatibility, bio-tribological properties and debris characterization of ULWPE. Cytotoxicity test, hemolysis test, acute/chronic toxicity and muscular implantation test were conducted according to national standard GB/T-16886/ISO-10993 for evaluation requirements of medical surgical implants. We obtained that this novel material had good biocompatibility and biological safety. The wear performance of ULWPE and UHMWPE was evaluated in a pin-on-disc (POD) wear tester within two million cycles and a knee wear simulator within six million cycles. We found that the ULWPE was higher abrasion resistance than the UHMWPE, the wear rate of ULWPE by POD test and knee wear simulator was 0.4 mg/10 6 cycles and (16.9 ± 1.8)mg/10 6 cycles respectively, while that of UHMWPE was 1.8 mg/10 6 cycles and (24.6 ± 2.4)mg/10 6 cycles. The morphology of wear debris is also an important factor to evaluate artificial joint materials, this study showed that the ULWPE wear debris gotten from the simulator had various different shapes, including spherical, block, tear, etc. The morphology of worn surface and wear debris analysis showed that wear mechanisms of ULWPE were adhesion wear, abrasive wear and fatigue wear and other wear forms, which were consistent with that of UHMWPE. Thus we conclude that ULWPE is expected to be a lifetime implantation of artificial joint. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    NASA Astrophysics Data System (ADS)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  11. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    PubMed

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  12. Neural network approximation of tip-abrasion effects in AFM imaging

    NASA Astrophysics Data System (ADS)

    Bakucz, Peter; Yacoot, Andrew; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf

    2008-06-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods.

  13. Influence of different toothpaste abrasives on the bristle end-rounding quality of toothbrushes.

    PubMed

    de Oliveira, G J P L; de Aveiro, J M; Pavone, C; Marcantonio, R A C

    2015-02-01

    To evaluate the influence of different toothpaste abrasives on the bristle wear and bristle tip morphology of toothbrushes with different degrees of hardness. Ninety samples of bovine incisor teeth were used in this study. The samples were randomly divided into three groups according to the bristle hardness of the toothbrush used: soft bristles (S); extra-soft bristles (ES); hard bristles (H). The toothbrushes of each group were randomly divided into six subgroups with five toothbrushes each, according to the abrasive of the toothpaste used in the simulation: Negative control (distilled water); toothpaste 1 (silica); toothpaste 2 (hydrated silica); toothpaste 3 (calcium carbonate, calcium bicarbonate and silica); toothpaste 4 (tetrapotassium pyrophosphate, silica and titanium dioxide); toothpaste 5 (calcium carbonate). The samples were placed in a toothbrushing simulating machine that simulating three months of brushing. The toothbrush bristles were evaluated by the bristle wear index, and the bristle tips morphology was evaluated by the bristle tip morphology index. The ES brush presented the highest bristle wear among the toothbrushes. Additionally, the S brushes showed better morphology of the bristles followed by ES and H brushes. The type of abrasive only influenced the bristle tip morphology of the ES brushes. The toothpaste 3 induced the worse bristle tip morphology than all the other toothpastes. Different abrasives have influence only on the bristle tip morphology of the ES brushes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Mobile-bearing knees reduce rotational asymmetric wear.

    PubMed

    Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung

    2007-09-01

    Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees.

  15. Dental wear, wear rate, and dental disease in the African apes.

    PubMed

    Elgart, Alison A

    2010-06-01

    The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin-enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin-enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin-enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample.

  16. Wear and microhardness of different resin composite materials.

    PubMed

    Say, Esra Can; Civelek, Arzu; Nobecourt, Alain; Ersoy, Mustafa; Guleryuz, Canan

    2003-01-01

    This study determined the three-body abrasive wear resistance of two packable composites (P-60; Solitaire 2), an ion-releasing composite (Ariston AT), a hybrid composite (Tetric Ceram) and an ormocer (Admira). The study also looked at the correlation between wear resistance and hardness of the composites. Three-body wear testing was performed using an ACTA wear machine with 15 N contact force using millet seed as the third body. Wear depth (microm) was measured by profilometry after 200,000 cycles. The hardness test was performed using a digital microhardness tester (load: 500 g; dwell time: 15 seconds). The data were analyzed by using Kruskal Wallis (p < 0.05). There were statistically significant differences among the three body abrasive wear of the composites. The ranking from least to most were as follows: Filtek P-60 < Solitaire 2 < Ariston AT < Tetric Ceram < Admira. Filtek P-60 showed the highest microhardness value. No other significant differences in hardness were observed among the different resin composites (P-60 > AristonAT = Tetric Ceram = Solitaire 2 = Admira). The results of this study indicate that there are significant differences in the wear resistance of the resin composites. The correlation between hardness and wear was significant with a correlation coefficient of r:-0.91. A significant negative correlation exists between hardness and three-body wear of resin composites.

  17. Inspection of wear particles in oils by using a fuzzy classifier

    NASA Astrophysics Data System (ADS)

    Hamalainen, Jari J.; Enwald, Petri

    1994-11-01

    The reliability of stand-alone machines and larger production units can be improved by automated condition monitoring. Analysis of wear particles in lubricating or hydraulic oils helps diagnosing the wear states of machine parts. This paper presents a computer vision system for automated classification of wear particles. Digitized images from experiments with a bearing test bench, a hydraulic system with an industrial company, and oil samples from different industrial sources were used for algorithm development and testing. The wear particles were divided into four classes indicating different wear mechanisms: cutting wear, fatigue wear, adhesive wear, and abrasive wear. The results showed that the fuzzy K-nearest neighbor classifier utilized gave the same distribution of wear particles as the classification by a human expert.

  18. Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application

    PubMed Central

    Ganapathy, Perumal; Manivasagam, Geetha; Rajamanickam, Asokamani; Natarajan, Alagumurthi

    2015-01-01

    This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface methodology to obtain dense coating. The tribological behaviors of the coated and uncoated substrates were evaluated using a ball-on-plate sliding wear tester at 37°C in simulated body-fluid conditions. The microstructure of both the titanium alloy and coated specimen were examined using an optical microscope and scanning electron microscope. The hardness of the plasma-sprayed alumina–zirconia composite coatings was 2.5 times higher than that of the Ti-6Al-4V alloy, while the wear rate of Ti-6Al-4V alloy was 253 times higher than that of the composite-coated Ti-6Al-4V alloy. The superior wear resistance of the alumina–zirconia coated alloy is attributed to its enhanced hardness and intersplat bonding strength. Wear-track examination showed that the predominant wear mechanism of Ti-6Al-4V alloy was abrasive and adhesive wear, whereas, in the case of alumina–zirconia composite coated alloy, the wear was dominated by microchipping and microcracking. PMID:26491323

  19. Research on operation mode of abrasive grain during grinding

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Dement’ev, V. B.; Nikitina, O. V.

    2018-03-01

    The processing of materials by cutting with an abrasive tool is carried out by means of thousands of grains bonded together as a single whole. The quality of the abrasive tool is defined by cutting properties of abrasive grains and depends on features of spreading the temperature field in time and in the abrasive grain volume. Grains are exposed to heating and cooling during work. It leads to undesired effects such as a decrease of durability of grain retention in the binder, hardness, intensification of diffusion and oxidation processes between the binder and the grain, the occurrence of considerable temperature stresses in the grain itself. The obtained equation which allows calculation of temperature field of grain for one rotation of grinding wheel shows that the temperature of the wheel depends on grinding modes and thermophysical properties of abrasive material. Thus, as the time of contact of grain with processed material increases, the temperature in the cutting area rises. As thermophysical properties increase, the temperature in cutting area decreases. Thermal working conditions are determined to be different from each other depending on contact time of the grain and the material. For example, in case of creep-feed grinding, the peak value of temperature is higher than during multistep grinding; the depth of expansion is greater. While the speed of the thermal process in creep-feed grinding is 2-3 times lower than in multistep grinding, the gradient reduces 3-4 times. The analysis of machining methods shows that creep-feed grinding ensures greater depth of grain heating, a smaller heating rate and a reduced velocity gradient. It causes a decrease of probable allotropic modifications and prevents from occurring of heat strokes - cracking of grains due to high temperature falls. Consequently, it is necessary to employ creep-feed grinding to increase the efficiency of abrasive tool employing. Three operation modes of grinding wheel including blunting, full

  20. The lexicon of polyethylene wear in artificial joints.

    PubMed

    McKellop, Harry A

    2007-12-01

    The analysis of wear on polyethylene components that have been retrieved after use in patients has provided invaluable understanding of how wear occurs in vivo, and how it may be minimized through improved materials and implant design. The great number of such studies that have been published over the past three decades has lead to an extensive vocabulary to describe the tribology of prosthetic joints. However, these also have led to some confusion, due to the occasional misuse of terms from classical tribology, along with the use of multiple terms to describe the same wear phenomenon, and vice versa. The author has proposed that our understanding of wear in artificial joints may be enhanced by recognizing that there are four general subject areas: Modes, Mechanisms, Damage and Debris. Wear Mode 1 occurs when the two bearing surfaces are articulating against each other in the manner intended by the implant designer. Mode 2 occurs when a bearing surface articulates against a non-bearing surface. Mode 3 occurs when third-body abrasive particles have become entrapped between the two bearing surfaces, and Mode 4 occurs when two non-bearing surfaces are wearing against each other. The least wear occurs in Mode 1, whereas severe wear typically occurs in Modes 2, 3 and 4. The classical wear mechanisms that apply to prosthetic joints include adhesion, abrasion and fatigue. These can occur in varying amounts in either of the four wear modes. As used in the literature for the past three decades, wear "damage" can best be defined as the change surface texture or morphology that is caused by the action of the wear mechanisms. Although a wide variety of terms have been used, an overview of the literature indicates that about eight terms have been sufficient to describe the types of damage that occur on retrieved polyethylene components, i.e., burnishing, abrasion, scratches, plastic deformation, cracks, pits, delamination, and embedded third bodies. The author suggests that, as

  1. Wear of dental tissues and materials.

    PubMed

    Craig, R G; Powers, J M

    1976-06-01

    Wear may result from physiological or pathological conditions and may be desirable, as in the reduction of an overcontoured restoration, or undesirable as in the production of cervical abrasion cavities. A variety of methods, including clinical testing, the use of wear machines and the measurement of related properties such as hardness or coefficient of friction have been used to investigate wear of tooth tissue and of dental materials. Because these methods may not reveal the nature of the wear process recent work has been directed to the study of surface failure resulting from a single sliding contact. Many clinical studies have been conducted but they are time consuming and difficult to quantify, nor do they allow of evaluation of different parameters contributing to the wear. Laboratory simulation of wear has been shown to be valuable in comparing materials of the same group but between-group comparisons may give anomalous results. The most rewarding studies have been those using a single or small number of passes of a suitable abrading point over the material since these permit determination of the actual process by which wear is produced.

  2. Multi technical analysis of wear mechanisms in axial piston pumps

    NASA Astrophysics Data System (ADS)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  3. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    PubMed

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different

  4. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites

    PubMed Central

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-01-01

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece

  5. Solidification/stabilization of spent abrasives and use as nonstructural concrete

    SciTech Connect

    Brabrand, D.J.; Loehr, R.C.

    1993-01-01

    Tons of spent abrasives result each year from the removal of old paint from bridges. Because the spent abrasives contain metals from the paint, some spent abrasives may be considered hazardous by the Toxicity Characteristic (TC) criteria. Incorporation of the spent blasting abrasives in nonstructural concrete (rip-rap, dolphins) offers an opportunity to recycle the spent abrasives while immobilizing potentially leachable metals. This study focused on the Portland Cement Solidification/Stabilization (S/S) of spent blasting abrasives taken from a bridge located in Southeast Texas. The study examined (a) the cadmium, chromium, and lead concentrations in extracts obtained by using the Toxicity Characteristicmore » Leaching Procedure (TCLP) and (b) the compressive strengths of Portland Cement mixes that contained different amounts of the spent abrasives. Performance was measured by meeting the TC criteria as well as the requirements for compressive strength. Study results indicated that considerable quantities of these spent abrasives can be solidified/stabilized while reducing the leachability of cadmium, chromium, and lead and producing compressive strengths over 6,895 kN/m[sup 2] (1,000 psi).« less

  6. Pre-polishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffer, Adrienne E.

    2003-05-01

    Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  7. Wear simulation of resin composites and the relationship to clinical wear.

    PubMed

    Barkmeier, Wayne W; Latta, Mark A; Erickson, Robert L; Wilwerding, Terry M

    2008-01-01

    This study used a new generalized wear model to examine the relationship between wear simulation and the clinical wear of two resin composites. Ten specimens each of P50 and Z100, were subjected to 100,000, 400,000 and 800,000 cycles in a spring-loaded piston-type wear simulator. Wear was generated using flat, cylindrically-shaped stainless steel antagonists on the resin composites, which were placed in custom stainless steel fixtures. A slurry of polymethyl methacrylate beads was used as the abrasive media. Wear was determined using profilometry, and the parameters examined included volume loss (mm3), maximum depth (microm), mean maximum depth (microm) and mean depth (microm). Statistical analysis of the laboratory wear data using ANOVA and Tukey's post hoc test showed a significant difference (p<0.05) for wear between the two materials and the number of cycles. Mean maximum wear (microm) values (100K--P50--11.5 +/- 1.8; Z100--4.9 +/- 1.0; 400K--P50--17.2 +/- 2.7; Z100--6.0 +/- 1.7; 800K--P50--20.5 +/- 4.6; Z100--9.6 +/- 2.5) were used for comparisons with clinical data. Previous clinical studies of P50 and Z100 were used to examine the relationship between laboratory and clinical wear. Linear regression analysis was used to predict laboratory and clinical wear rates. The laboratory wear rate for P50 was 1.3 microm/100K cycles and the rate for Z100 was 0.7 microm/100K cycles. The clinical wear rates for P50 and Z100 were 8.3 microm/year and 4.0 microm/year, respectively. The ratio of wear rates of P50 to Z100 for wear simulation was 1.9 and the ratio of P50 to Z100 for clinical rates was 2.1. These ratios showed good agreement between the relative wear rates of laboratory and clinical wear. For the two composite materials examined, this new simulation model appears to be effective for evaluating the relative wear of resin composites.

  8. Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.

    2006-12-01

    The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.

  9. Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.

    PubMed

    Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas

    2013-04-01

    This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.

  10. NASA interdisciplinary collaboration in tribology. A review of oxidational wear

    NASA Technical Reports Server (NTRS)

    Quinn, T. F. J.

    1983-01-01

    An in-depth review of oxidational wear of metals is presented. Special emphasis is given to a description of the concept of oxidational wear and the formulation of an Oxidational Wear Theory. The parallelism between the formation of an oxide film for dry contact conditions and the formation of other surface films for a lubricated contact is discussed. The description of oxidational wear is prefaced with a unification of wear modes into two major classes of mild and severe wear including both lubricated and dry contacts. Oxidational wear of metals is a class of mild wear where protective oxide films are formed at real areas of contact and during the time of contact at temperataure T sub c. When the oxide reaches a critical thickness, frequently in the range of 1 to 3 microns, the oxide breaks up and eventually appears as a wear particle. These oxides are preferentially formed on plateaux which alternately carry the load as they reach their critical thickness and are removed. If the system is operated at elevated temperatures, thick oxides can form both out of contact and between the plateaux. Temperature is important in determining the structure of the oxide film present. Spinel oxide (Fe3O4) which forms above 300 C is more protective than the lower temperature rhomobohedral (alpha-Fe2O3) oxide which is abrasive. An Oxidational Wear Theory is derived using a modified Archard wear law expressed in terms of activation energy (Qp) and Arrhenius constant (Ap).

  11. Damage tolerant functionally graded materials for advanced wear and friction applications

    NASA Astrophysics Data System (ADS)

    Prchlik, Lubos

    The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to

  12. A fundamental review of the friction and wear behavior of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The basic concepts associated with the friction and wear of materials are discussed as they relate to ceramics. Properties of ceramics such as crystal structure, crystallographic orientation, mechanical deformation, and surface chemistry are reviewed as they influence friction and wear. Both adhesive and abrasive wear of ceramics are discussed. The friction and wear of ceramics are examined in contact with themselves and when in contact with metals. The influences of environmental constituents such as water and hydrocarbons on friction and wear are reviewed. Materials discussed, by way of example, include aluminum oxide, rutile, calcium fluoride, and lithium fluoride.

  13. The prevalence, aetiology and clinical appearance of tooth wear: the Nigerian experience.

    PubMed

    Oginni, O; Olusile, A O

    2002-08-01

    To establish the prevalence and severity of tooth wear among Nigerians and to compare the pattern and aetiology with findings of earlier studies in Western populations. Clinical examinations for tooth wear using the tooth wear index (TWI). The Federal Republic of Nigeria. Patients attending the Dental Hospital, Obafemi Awolowo University Teaching Hospital's Complex Ile-Ife. Attrition, abrasion and erosion. Of the 126 patients with tooth wear 81 had attrition, 20 had abrasion, 9 had erosion and 16 had attrition and abrasion combined. A total of 15,480 tooth surfaces were examined. 2,229 (14.4%) surfaces had tooth wear out of which 1,007 (6.5%) were pathologically worn down. The frequency of tooth wear increased with the age of patients. Most of the pathologically worn surfaces were just one point above maximum acceptable value. The aetiological factors associated with tooth wear are not different from those encountered in Western cultures but the pattern of wear differs. Pathological tooth wear presents as an age related phenomenon and is probably more severe in Nigerians.

  14. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continuemore » to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and

  15. Friction and wear behavior of aluminum and composite airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1984-01-01

    Friction and wear behavior was determined for small skin specimens under abrasive loading conditions typical of those occurring on the underside of a transport airplane during emergency belly landing. A test apparatus consisting of a standard belt sander provided the sliding surface. Small test specimens constructed of aluminum, standard graphite-epoxy composite, aramid-epoxy composite, and toughened-resin composites were tested undar a range of pressures, belt velocities, and belt-surface textures. The effects of these test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. The effect of fiber orientation in the composite materials on wear rate was also investigated. In addition, tests were performed in which thermocouples were imbedded into the various test specimens to obtain temperature-time histories during abrasion.

  16. Application of surface analysis to solve problems of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1981-01-01

    Results are presented for the use of surface analytical tools including field ion microscopy, Auger emission spectroscopy analysis (AES), cylindrical mirror Auger analysis and X-ray photoelectron spectroscopy (XPS). Data from the field ion microscope reveal adhesive transfer (wear) at the atomic level with the formation of surface compounds not found in the bulk, and AES reveals that this transfer will occur even in the presence of surface oxides. Both AES and XPS reveal that in abrasive wear with silicon carbide and diamond contacting the transition metals, the surface and the abrasive undergo a chemical or structural change which effects wear. With silicon carbide, silicon volatilizes leaving behind a pseudo-graphitic surface and the surface of diamond is observed to graphitize.

  17. Study of Two-Body Wear Performance of Dental Materials.

    PubMed

    Hu, Xin; Zhang, Qian; Ning, Jia; Wu, Wenmeng; Li, Changyi

    2018-06-01

    The purpose of this study was to evaluate the two-body wear resistances of natural enamel and four dental materials in vitro. The testing machine was modified to form a type of pin-on-disk wear test apparatus. Four dental material specimens (Au-Pd alloy, Ag-Pd alloy, FiltekTMP60 and FiltekTMZ350 composite resins) and enamel were used as the pins, and a steatite ceramic grinding wheel was used as the abrasive counter face. The wear volume loss and the rigidity value was measured. The worn surface and the element analysis of the debris were analyzed. The wear volume loss of Au-Pd alloy and its steatite antagonists were the nearest to those of the dental enamel. SEM microphotographs showed that, the main wear mechanism of the dental materials was abrasive and adhesive wear. Au-Pd alloy had good wear resistance and was more suitable for dental applications than other three dental materials. Copyright © 2017 National Medical Association. Published by Elsevier Inc. All rights reserved.

  18. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  19. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  20. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  1. Toothbrushing abrasion susceptibility of enamel and dentin bleached with calcium-supplemented hydrogen peroxide gel.

    PubMed

    Borges, A B; Santos, L F T F; Augusto, M G; Bonfiette, D; Hara, A T; Torres, C R G

    2016-06-01

    The objective of this study was to evaluate enamel and dentin susceptibility to toothbrushing abrasion, after bleaching with 7.5% hydrogen peroxide (HP) gel supplemented or not with 0.5% calcium gluconate (Ca). Toothbrushing was performed immediately and 1h after bleaching, with two suspensions (high and low abrasivity). Bovine enamel and dentin specimens were divided into 12 groups (n=10) according to the bleaching gel (with and without Ca), slurry abrasivity (high or low) and elapsed time after bleaching (immediately and after 1h). As control, a group was not bleached, but abraded. The treatment cycle (7 d) consisted of bleaching (1h) and toothbrushing (135 strokes/day) immediatelly or after 1h of artificial saliva exposure. Surface roughness and surface loss (μm) were measured by profilometry and analysed by three-way ANOVA (5%). Surface roughness means were significantly influenced by slurry abrasivity (p<0.0001). For enamel loss, significant triple interaction was observed (p<0.0001). HP-bleached groups and immediately brushed with high-abrasive slurry exhibited increased loss (1.41±0.14) compared to other groups (μm). Control and HP+Ca-bleached groups brushed after 1h with low abrasive slurry presented the lowest loss (0.21±0.03/0.27±0.02). For dentin loss, significant interaction was observed for bleaching and interval factors (p<0.001). 7.5%HP-bleached groups and immediately brushed showed significantly higher loss (8.71±2.45) than the other groups. It was concluded that surface roughness increased when high abrasive was used, independently of bleaching. 7.5%HP increased enamel and dentin loss, mainly with high abrasive slurries. Calcium supplementation of bleaching gel reduced surface loss. Additionally, in order to minimize tooth wear susceptibility, it is recommended to delay brushing after bleaching. After bleaching gel application, postponing toothbrushing is recommended, as well as brushing with low abrasive dentifrices. Additionally

  2. Selection criteria for wear resistant powder coatings under extreme erosive wear conditions

    NASA Astrophysics Data System (ADS)

    Kulu, P.; Pihl, T.

    2002-12-01

    Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.

  3. Abrasion resistant coating and method of making the same

    DOEpatents

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  4. NEXT Long-Duration Test Plume and Wear Characteristics after 16,550 h of Operation and 337 kg of Xenon Processed

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2009-01-01

    diagnostic results for the NEXT LDT to date with emphasis on the change in thruster operating condition and resulting impact on wear characteristics. Ion optics grid-gap data, both cold and operating, are presented. Performance and wear predictions for the LDT throttle profile are presented.

  5. Detecting Inter-Cusp and Inter-Tooth Wear Patterns in Rhinocerotids

    PubMed Central

    Taylor, Lucy A.; Kaiser, Thomas M.; Schwitzer, Christoph; Müller, Dennis W. H.; Codron, Daryl; Clauss, Marcus; Schulz, Ellen

    2013-01-01

    Extant rhinos are the largest extant herbivores exhibiting dietary specialisations for both browse and grass. However, the adaptive value of the wear-induced tooth morphology in rhinos has not been widely studied, and data on individual cusp and tooth positions have rarely been published. We evaluated upper cheek dentition of browsing Diceros bicornis and Rhinoceros sondaicus, mixed-feeding R. unicornis and grazing Ceratotherium simum using an extended mesowear method adapted for rhinos. We included single cusp scoring (EM(R)-S) to investigate inter-cusp and inter-tooth wear patterns. In accordance with previous reports, general mesowear patterns in D. bicornis and R. sondaicus were attrition-dominated and C. simum abrasion-dominated, reflecting their respective diets. Mesowear patterns for R. unicornis were more attrition-dominated than anticipated by the grass-dominated diet, which may indicate a low intake of environmental abrasives. EM(R)-S increased differentiation power compared to classical mesowear, with significant inter-cusp and inter-tooth differences detected. In D. bicornis, the anterior cusp was consistently more abrasion-dominated than the posterior. Wear differences in cusp position may relate to morphological adaptations to dietary regimes. Heterogeneous occlusal surfaces may facilitate the comminution of heterogeneous browse, whereas uniform, broad grinding surfaces may enhance the comminution of physically more homogeneous grass. A negative tooth wear gradient was found in D. bicornis, R. sondaicus and R. unicornis, with wear patterns becoming less abrasion-dominated from premolars to molars. No such gradients were evident in C. simum which displayed a uniform wear pattern. In browsers, premolars may be exposed to higher relative grit loads, which may result in the development of wear gradients. The second premolar may also have a role in food cropping. In grazers, high absolute amounts of ingested abrasives may override other signals, leading to

  6. Detecting inter-cusp and inter-tooth wear patterns in rhinocerotids.

    PubMed

    Taylor, Lucy A; Kaiser, Thomas M; Schwitzer, Christoph; Müller, Dennis W H; Codron, Daryl; Clauss, Marcus; Schulz, Ellen

    2013-01-01

    Extant rhinos are the largest extant herbivores exhibiting dietary specialisations for both browse and grass. However, the adaptive value of the wear-induced tooth morphology in rhinos has not been widely studied, and data on individual cusp and tooth positions have rarely been published. We evaluated upper cheek dentition of browsing Diceros bicornis and Rhinoceros sondaicus, mixed-feeding R. unicornis and grazing Ceratotherium simum using an extended mesowear method adapted for rhinos. We included single cusp scoring (EM(R)-S) to investigate inter-cusp and inter-tooth wear patterns. In accordance with previous reports, general mesowear patterns in D. bicornis and R. sondaicus were attrition-dominated and C. simum abrasion-dominated, reflecting their respective diets. Mesowear patterns for R. unicornis were more attrition-dominated than anticipated by the grass-dominated diet, which may indicate a low intake of environmental abrasives. EM(R)-S increased differentiation power compared to classical mesowear, with significant inter-cusp and inter-tooth differences detected. In D. bicornis, the anterior cusp was consistently more abrasion-dominated than the posterior. Wear differences in cusp position may relate to morphological adaptations to dietary regimes. Heterogeneous occlusal surfaces may facilitate the comminution of heterogeneous browse, whereas uniform, broad grinding surfaces may enhance the comminution of physically more homogeneous grass. A negative tooth wear gradient was found in D. bicornis, R. sondaicus and R. unicornis, with wear patterns becoming less abrasion-dominated from premolars to molars. No such gradients were evident in C. simum which displayed a uniform wear pattern. In browsers, premolars may be exposed to higher relative grit loads, which may result in the development of wear gradients. The second premolar may also have a role in food cropping. In grazers, high absolute amounts of ingested abrasives may override other signals, leading to

  7. Abrasion resistance of direct and indirect resins as a function of a sealant veneer.

    PubMed

    Ferraz Caneppele, Taciana Marco; Rocha, Daniel Maranha; Màximo Araujo, Maria Amelia; Valera, Màrcia Carneiro; Salazar Marocho, Susana MarIa

    2014-01-01

    Abrasive wear is one of the most common type of wear that not only affect teeth, as also dental restorations. Thus to investigate one of the etiological factors as tooth brushing procedure is clinical relevant in order to select the best material combination that may prevent damage of resin dental restoration's abrasion. This study evaluated the influence of tooth brushing on mass loss and surface roughness of direct Venus (Vs) and indirect Signum (Sg) resin composites, with and without a surface sealant, Fortify (F). Twenty-four specimens were prepared with each resin composite, using their proprietary curing units, according to manufacturer's instructions. All the specimens were polished and ultrasonically cleaned in distilled water for 5 minutes. Half of the specimens of each resin (n = 12) were covered with F (Vs F and Sg F ), except for the control (C) specimens (Vs C and Sg C ), which were not sealed. Mass loss (ML) as well as surface roughness (Ra ) was measured for all the specimens. Then, the specimens were subjected to toothbrush-dentifrice abrasion, using a testing machine for 67.000 brushing strokes, in an abrasive slurry. After brushing simulation, the specimens were removed from the holder, rinsed thoroughly and blot dried with soft absorbent paper. The abrasion of the material was quantitatively determined with final measurements of ML and surface roughness, using the method described above. ML data were analyzed by two-way analysis of variance (ANOVA) and the analysis indicated that resin composites were not statistically different; however, the specimens sealed with F showed higher ML. Ra mean values of the groups Vs F and Sg F significantly increased. Tooth brushing affects mainly the roughness of the direct and indirect resin composites veneered with a sealant.

  8. Toothbrush abrasion, simulated tongue friction and attrition of eroded bovine enamel in vitro.

    PubMed

    Vieira, A; Overweg, E; Ruben, J L; Huysmans, M C D N J M

    2006-05-01

    Enamel erosion results in the formation of a softened layer that is susceptible to disruption by mechanical factors such as brushing abrasion, tongue friction and attrition. The aim of this study was to investigate the individual contribution of those mechanical insults to the enamel loss caused by dental erosion. Forty two bovine enamel samples were randomly divided into seven groups (n=6 per group) that were submitted to 3cycles of one of the following regimes: erosion and remineralization (er/remin); toothbrush abrasion and remineralization (abr/remin); erosion, toothbrush abrasion and remineralization (er/abr/remin); attrition and remineralization (at/remin); erosion, attrition and remineralization (er/at/remin); simulated tongue friction and remineralization (tg/remin); erosion, simulated tongue friction and remineralization (er/tg/remin). Erosion took place in a demineralization solution (50mM citric acid, pH 3) for 10min under agitation. Brushing abrasion, tongue friction and attrition were simulated for 1min using a home-made wear device. Remineralization was carried out in artificial saliva for 2h. Enamel loss was quantified using optical profilometry. One-way ANOVA indicated a significant difference between the amounts of enamel lost due to the different wear regimes (pwear depths found for the er/at/remin (p

  9. Abrasion resistant track shoe grouser

    DOEpatents

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  10. Dental Wear: A Scanning Electron Microscope Study

    PubMed Central

    Levrini, Luca; Di Benedetto, Giulia

    2014-01-01

    Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction) studied by scanning electron microscopy (SEM). The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp), to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders). It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction. PMID:25548769

  11. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  12. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    NASA Astrophysics Data System (ADS)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  13. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    NASA Astrophysics Data System (ADS)

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  14. Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-10-01

    Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.

  15. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  16. Influence of the antagonist material on the wear of different composites using two different wear simulation methods.

    PubMed

    Heintze, S D; Zellweger, G; Cavalleri, A; Ferracane, J

    2006-02-01

    The aim of the study was to evaluate two ceramic materials as possible substitutes for enamel using two wear simulation methods, and to compare both methods with regard to the wear results for different materials. Flat specimens (OHSU n=6, Ivoclar n=8) of one compomer and three composite materials (Dyract AP, Tetric Ceram, Z250, experimental composite) were fabricated and subjected to wear using two different wear testing methods and two pressable ceramic materials as stylus (Empress, experimental ceramic). For the OHSU method, enamel styli of the same dimensions as the ceramic stylus were fabricated additionally. Both wear testing methods differ with regard to loading force, lateral movement of stylus, stylus dimension, number of cycles, thermocycling and abrasive medium. In the OHSU method, the wear facets (mean vertical loss) were measured using a contact profilometer, while in the Ivoclar method (maximal vertical loss) a laser scanner was used for this purpose. Additionally, the vertical loss of the ceramic stylus was quantified for the Ivoclar method. The results obtained from each method were compared by ANOVA and Tukey's test (p<0.05). To compare both wear methods, the log-transformed data were used to establish relative ranks between material/stylus combinations and assessed by applying the Pearson correlation coefficient. The experimental ceramic material generated significantly less wear in Tetric Ceram and Z250 specimens compared to the Empress stylus in the Ivoclar method, whereas with the OHSU method, no difference between the two ceramic antagonists was found with regard to abrasion or attrition. The wear generated by the enamel stylus was not statistically different from that generated by the other two ceramic materials in the OHSU method. With the Ivoclar method, wear of the ceramic stylus was only statistically different when in contact with Tetric Ceram. There was a close correlation between the attrition wear of the OHSU and the wear of the

  17. Dental Wear: Attrition, Erosion, and Abrasion—A Palaeo-Odontological Approach

    PubMed Central

    Sperber, Geoffrey H.

    2017-01-01

    This paper reviews the surface ablation of early hominin teeth by attrition, abrasion, and erosive dental wear. The occurrence of these lesions is explored in a sample of South African fossil australopithecine dentitions revealing excessive wear. Interpretation of the nature of the dietary components causing such wear in the absence of carious erosion provides insight into the ecology of the Plio-pleistocene epoch (1–2 million years ago). Fossil teeth inform much of the living past by their retained evidence after death. Tooth wear is the ultimate forensic dental evidence of lives lived. PMID:29563425

  18. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  19. An analysis of the physiologic parameters of intraoral wear: a review

    NASA Astrophysics Data System (ADS)

    Lawson, Nathaniel C.; Janyavula, Sridhar; Cakir, Deniz; Burgess, John O.

    2013-10-01

    This paper reviews the conditions of in vivo mastication and describes a novel method of measuring in vitro wear. Methods: parameters of intraoral wear are reviewed in this analysis, including chewing force, tooth sliding distance, food abrasivity, saliva lubrication, and antagonist properties. Results: clinical measurement of mastication forces indicates a range of normal forces between 20 and 140 N for a single molar. During the sliding phase of mastication, horizontal movement has been measured between 0.9 and 2.86 mm. In vivo wear occurs by three-body abrasion when food particles are interposed between teeth and by two-body abrasion after food clearance. Analysis of food particles used in wear testing reveals that food particles are softer than enamel and large enough to separate enamel and restoration surfaces and act as a solid lubricant. In two-body wear, saliva acts as a boundary lubricant with a viscosity of 3 cP. Enamel is the most relevant antagonist material for wear testing. The shape of a palatal cusp has been estimated as a 0.6 mm diameter ball and the hardest region of a tooth is its enamel surface. pH values and temperatures have been shown to range between 2-7 and 5-55 °C in intraoral fluids, respectively. These intraoral parameters have been used to modify the Alabama wear testing method.

  20. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  1. Degradation of experimental composite materials and in vitro wear simulation

    NASA Astrophysics Data System (ADS)

    Givan, Daniel Allen

    2001-12-01

    The material, mechanical, and clinical aspects of surface degradation of resin composite dental restorative materials by in vitro wear simulation continues to be an area of active research. To investigate wear mechanisms, a series of experimental resin composites with variable and controlled filler particle shape and loading were studied by in vitro wear simulation. The current investigation utilized a simulation that isolated the wear environment, entrapped high and low modulus debris, and evaluated the process including machine and fluid flow dynamics. The degradation was significantly affected by filler particle shape and less by particle loading. The spherical particle composites demonstrated wear loss profiles suggesting an optimized filler loading may exist. This was also demonstrated by the trends in the mechanical properties. Very little difference in magnitude was noted for the wear of irregular particle composites as a function of particulate size; and as a group they were more wear resistant than spherical particle composites. This was the result of different mechanisms of wear that were correlated with the three-dimensional particle shape. The abrasive effects of the aggregate particles and the polymeric stabilization of the irregular shape versus the destabilization and "plucking" of the spherical particles resulted in an unprotected matrix that accounted for significantly greater wear of spherical composite. A model and analysis was developed to explain the events associated with the progressive material wear loss. The initial phase was explained by fatigue-assisted microcracking and loss of material segments in a zone of high stress immediately beneath a point of high stress contact. The early phase was characterized by the development of a small facet primarily by fatigue-assisted microcracking. Although the translation effects were minimal, some three-body and initial two-body wear events were also present. In the late phases, the abrasive effects

  2. An investigation on dry sliding wear behaviour of AA6061-AlNp composite

    NASA Astrophysics Data System (ADS)

    Mahesh Naidu, K.; Mohan Reddy, Chandra

    2018-03-01

    This paper studies the effect of load, sliding distance, reinforcement percentage and temperature on dry sliding wear behaviour of Al-AlNp composites by using pin on disc machine. The wear test was conducted at different loads (1,2,3 & 4 Kg), temperatures (30°C, 100°C, 170°C & 240°C) and sliding distances (500m,1000m,1500m and 2000m). Increase in wear rate has been observed by increasing the load and sliding distance, at the same time it has been decreased by increasing the reinforcement percentage and temperature. At the higher loads, temperatures and sliding distances adhesive wear, abrasive wear and oxidation wear are observed to be dominant modes of wear mechanisms in the composite.

  3. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens.

    PubMed

    Nickla, Debora L; Sharda, Vandhana; Troilo, David

    2005-04-01

    In chicks, the temporal response characteristics to form deprivation and to spectacle lens wear (myopic and hyperopic defocus) show essential differences, suggesting that the emmetropization system "weights" the visual signals differently. To further explore how the eye integrates opposing visual signals, we examined the responses to myopic defocus induced by prior form deprivation vs. that induced by positive spectacle lenses, in both cases alternating with form deprivation. Three experimental paradigms were used: 1) Form deprivation was induced by monocular occluders for 7 days. Over the subsequent 7 days, the occluders were removed daily for 12 hours (n = 13), 4 hours (n = 7), 2 hours (n = 7), or 0 hours (n = 6). 2) Birds were form-deprived on day 12. Over the subsequent 7 days, occluders were replaced with a +10 D lens for 2 hours per day (n = 13). 3) Starting at day 11, a +10 D lens was placed over one eye for 2 hours (n = 13), 3 hours (n = 5), or 6 hours (n = 10) per day and were otherwise untreated. Ocular dimensions were measured with high-frequency A-scan ultrasonography; refractive errors were measured by streak retinoscopy at various intervals. In recovering eyes, 2 hours per day of myopic defocus was as effective as 12 hours at inducing refractive and axial recovery (change in refractive error: +10 D vs. +13 D, respectively). By contrast, 2 hours of lens-induced defocus (alternating with form deprivation) was not sufficient to induce refractive or axial compensation (change in refractive error: -1.7 D). When myopic defocus alternated with unrestricted vision, 6 hours per day were sufficient to induce nearly full compensation (2 hours vs. 6 hours: 4.4 D vs. 8.2 D; p < 0.0005). Choroids showed rapid increases in thickness to the daily episodes of myopic defocus; these resulted in "long-term" thickness changes in recovering eyes and eyes wearing lenses for 3 or 6 hours per day. The response to myopic defocus induced by prior form deprivation is more robust

  4. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  5. Scratching technique for the study and analysis of soil surface abrasion mechanism

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan

    2007-11-01

    Aeolian abrasion is the most fundamental and active surface process that takes place in arid and semi-arid environments. Its nature is a wear process for wind blown grains impinging on a soil or sediment surface, which causes particles and aggregates to fracture from the soil surface through a series of plastic and brittle cracking deformation such as cutting, ploughing and brittle fracturing. Using a Universal Micro-Tribometer (UMT), a scratching test was carried out on six soil surfaces (sandy soil, sand loam, silt loam, loam, silt clay loam, and silt clay). The results indicate that traces of normal and tangential force vs. time show a jagged curve, which can reflect the plastic deformation and brittle fracturing of aggregates and particles of various sizes fractured from the soil surfaces. The jagged curve peaks, and the area enclosed underneath, may represent the bonding forces and bonding energies of some aggregates and grains on the soil surface, respectively. Connecting the scratching test with an impact abrasion experiment furthermore demonstrates that soil surface abrasion rates are proportional to the square of speeds of impacting particles and to the 2.6 power of mean soil grain size, and inversely proportional to the 1.5 power of specific surface abrasive energy or to the 1.7 power of specific surface hardness.

  6. Sustainable and long-time 'rejuvenation' of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion.

    PubMed

    Rosu, Cornelia; Lin, Haisheng; Jiang, Lu; Breedveld, Victor; Hess, Dennis W

    2018-04-15

    The economical use of water-repellent coatings on polymeric materials in commercial and industrial applications is limited by their mechanical wear robustness and long-term durability. In this study, we demonstrate that polyethylene terephthalate (PET) fabric modified with inorganic, methyltrimethoxysilane (MTMS)-based coatings shows excellent resistance against various types of wear damage, thereby mimicking superhydrophobic biological materials. These features were facilitated by the rational design of coating processing that also enabled tunable hierarchical surface structure. A series of custom and standard testing protocols revealed that coating-to-substrate adhesion was remarkably high, as was the resistance to various mechanical abradents. The most intriguing characteristic observed during aging and abrasion cycles was the enhancement in non-wettability or 'rejuvenation' reflected by water droplet roll-off behavior, a characteristic of self-cleaning materials. Water-repellent properties of coated polyester were also enhanced by prolonged thermal annealing and were maintained after custom laundry. The developed technology offers opportunities to design low cost, durable and functional textiles for both indoor and outdoor applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Wear Behavior and Microstructure of Mg-Sn Alloy Processed by Equal Channel Angular Extrusion

    PubMed Central

    Chen, Jung-Hsuan; Shen, Yen-Chen; Chao, Chuen-Guang; Liu, Tzeng-Feng

    2017-01-01

    Mg-5wt.% Sn alloy is often used in portable electronic devices and automobiles. In this study, mechanical properties of Mg-5wt.% Sn alloy processed by Equal Channel Angular Extrusion (ECAE) were characterized. More precisely, its hardness and wear behavior were measured using Vickers hardness test and a pin-on-disc wear test. The microstructures of ECAE-processed Mg-Sn alloys were investigated by scanning electron microscope and X-ray diffraction. ECAE process refined the grain sizes of the Mg-Sn alloy from 117.6 μm (as-cast) to 88.0 μm (one pass), 49.5 μm (two passes) and 24.4 μm (four passes), respectively. Meanwhile, the hardness of the alloy improved significantly. The maximum wear resistance achieved in the present work was around 73.77 m/mm3, which was obtained from the Mg-Sn alloy treated with a one-pass ECAE process with a grain size of 88.0 μm. The wear resistance improvement was caused by the grain size refinement and the precipitate of the second phase, Mg2Sn against the oxidation of the processed alloy. The as-cast Mg-Sn alloy with the larger grain size, i.e., 117.6 μm, underwent wear mechanisms, mainly adhesive wear and abrasive wear. In ECAE-processed Mg-Sn alloy, high internal energy occurred due to the high dislocation density and the stress field produced by the plastic deformation, which led to an increased oxidation rate of the processed alloy during sliding. Therefore, the oxidative wear and a three-body abrasive wear in which the oxide debris acted as the three-body abrasive components became the dominant factors in the wear behavior, and as a result, reduced the wear resistance in the multi-pass ECAE-processed alloy. PMID:29144414

  8. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion

  9. Tooth wear in captive giraffes (Giraffa camelopardalis): mesowear analysis classifies free-ranging specimens as browsers but captive ones as grazers.

    PubMed

    Clauss, Marcus; Franz-Odendaal, Tamara A; Brasch, Juliane; Castell, Johanna C; Kaiser, Thomas

    2007-09-01

    Captive giraffe (Giraffa camelopardalis) mostly do not attain the longevity possible for this species and frequently have problems associated with low energy intake and fat storage mobilization. Abnormal tooth wear has been among the causes suggested as an underlying problem. This study utilizes a tooth wear scoring method ("mesowear") primarily used in paleobiology. This scoring method was applied to museum specimens of free-ranging (n=20) and captive (n=41) giraffes. The scoring system allows for the differentiation between attrition--(typical for browsers, as browse contains little abrasive silica) and abrasion--(typical for grazers, as grass contains abrasive silica) dominated tooth wear. The dental wear pattern of the free-ranging population is dominated by attrition, resembles that previously published for free-ranging giraffe, and clusters within browsing herbivores in comparative analysis. In contrast, the wear pattern of the captive population is dominated by abrasion and clusters among grazing herbivores in comparative analyses. A potential explanation for this difference in tooth wear is likely related to the content of abrasive elements in zoo diets. Silica content (measured as acid insoluble ash) is low in browse and alfalfa. However, grass hay and the majority of pelleted compound feeds contain higher amounts of silica. It can be speculated that the abnormal wear pattern in captivity compromises tooth function in captive giraffe, with deleterious long-term consequences.

  10. Tooth wear and wear investigations in dentistry.

    PubMed

    Lee, A; He, L H; Lyons, K; Swain, M V

    2012-03-01

    Tooth wear has been recognised as a major problem in dentistry. Epidemiological studies have reported an increasing prevalence of tooth wear and general dental practitioners see a greater number of patients seeking treatment with worn dentition. Although the dental literature contains numerous publications related to management and rehabilitation of tooth wear of varying aetiologies, our understanding of the aetiology and pathogenesis of tooth wear is still limited. The wear behaviour of dental biomaterials has also been extensively researched to improve our understanding of the underlying mechanisms and for the development of restorative materials with good wear resistance. The complex nature of tooth wear indicates challenges for conducting in vitro and in vivo wear investigations and a clear correlation between in vitro and in vivo data has not been established. The objective was to critically review the peer reviewed English-language literature pertaining to prevalence and aetiology of tooth wear and wear investigations in dentistry identified through a Medline search engine combined with hand-searching of the relevant literature, covering the period between 1960 and 2011. © 2011 Blackwell Publishing Ltd.

  11. Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel

    NASA Astrophysics Data System (ADS)

    Yin, Cun-hong; Liang, Yi-long; Jiang, Yun; Yang, Ming; Long, Shao-lei

    2017-11-01

    The microstructures of 20CrNi2Mo steel underneath the contact surface were examined after dry sliding. Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and an ultra-micro-hardness tester were used to characterize the worn surface and dry sliding wear-induced layer. Martensite laths were ultra-refined due to cumulative strains and a large strain gradient that occurred during cyclic loading in wear near the surface. The microstructure evolution in dominant abrasive wear differs from that in adhesive wear. In dominant abrasive wear, only bent martensite laths with high-density deformation dislocations were observed. In contrast, in dominant adhesive wear, gradient structures were formed along the depth from the wear surface. Cross-sectional TEM foils were prepared in a focused ion beam (FIB) to observe the gradient structures in a dry sliding wear-induced layer at depths of approximately 1-5 μm and 5-20 μm. The gradient structures contained nano-laminated structures with an average thickness of 30-50 nm and bent martensite laths. We found that the original martensite laths coordinated with the strain energy and provided origin boundaries for the formation of gradient structures. Geometrically necessary boundaries (GNBs) and isolated dislocation boundaries (IDBs) play important roles in forming the nano-laminated structures.

  12. Wear Properties of ECAP-Processed AM80 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gopi, K. R.; Shivananda Nayaka, H.; Sahu, Sandeep

    2017-07-01

    AM80 magnesium alloy was subjected to equal-channel angular pressing (ECAP), and microstructural evolution was studied using scanning electron microscope (SEM). Grain size was found to decrease up to 3 µm after four passes. An increase in number of ECAP passes led to a corresponding increase in hardness of the processed samples. Unprocessed and ECAP-processed samples were subjected to wear test using pin-on-disk wear test machine to study the wear behavior. Effects of varying loads (30 and 40 N) with sliding distances (2500 and 5000 m) were studied. The results showed reduction in wear mass loss for the ECAP-processed samples in comparison with unprocessed condition. Coefficient of friction (COF) was studied for different loads, and improvement in COF values was observed for ECAP-processed samples compared to unprocessed condition. Worn surfaces were studied using SEM and energy-dispersive x-ray spectrometer, and they exhibited plastic deformation, delamination, plowing, wear debris and oxidation in the sliding direction. X-ray diffraction analysis was conducted on the worn surfaces to identify the phases. It revealed the presence of magnesium oxide and magnesium aluminum oxide which led to oxidation wear in the sliding direction. Wear mechanism was found to be abrasive and oxidation wear.

  13. Investigation of wear land and rate of locally made HSS cutting tool

    NASA Astrophysics Data System (ADS)

    Afolalu, S. A.; Abioye, A. A.; Dirisu, J. O.; Okokpujie, I. P.; Ajayi, O. O.; Adetunji, O. R.

    2018-04-01

    Production technology and machining are inseparable with cutting operation playing important roles. Investigation of wear land and rate of cutting tool developed locally (C=0.56%) with an HSS cutting tool (C=0.65%) as a control was carried out. Wear rate test was carried out using Rotopol -V and Impact tester. The samples (12) of locally made cutting tools and one (1) sample of a control HSS cutting tool were weighed to get the initial weight and grit was fixed at a point for the sample to revolve at a specific time of 10 mins interval. Approach of macro transfer particles that involved mechanism of abrasion and adhesion which was termed as mechanical wear to handle abrasion adhesion processes was used in developing equation for growth wear at flank. It was observed from the wear test that best minimum wear rate of 1.09 × 10-8 and 2.053 × 10-8 for the tools developed and control were measured. MATLAB was used to simulate the wear land and rate under different conditions. Validated results of both the experimental and modeling showed that cutting speed has effect on wear rate while cutting time has predicted measure on wear land. Both experimental and modeling result showed best performances of tools developed over the control.

  14. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  15. Tooth wear: the view of the anthropologist

    PubMed Central

    2007-01-01

    Anthropologists have for many years considered human tooth wear a normal physiological phenomenon where teeth, although worn, remain functional throughout life. Wear was considered pathological only if pulpal exposure or premature tooth loss occurred. In addition, adaptive changes to the stomatognathic system in response to wear have been reported including continual eruption, the widening of the masticatory cycle, remodelling of the temporomandibular joint and the shortening of the dental arches from tooth migration. Comparative studies of many different species have also documented these physiological processes supporting the idea of perpetual change over time. In particular, differential wear between enamel and dentine was considered a physiological process relating to the evolution of the form and function of teeth. Although evidence of attrition and abrasion has been known to exist among hunter-gatherer populations for many thousands of years, the prevalence of erosion in such early populations seems insignificant. In particular, non-carious cervical lesions to date have not been observed within these populations and therefore should be viewed as ‘modern-day’ pathology. Extrapolating this anthropological perspective to the clinical setting has merits, particularly in the prevention of pre-mature unnecessary treatment. PMID:17938977

  16. Tooth wear: the view of the anthropologist.

    PubMed

    Kaidonis, John A

    2008-03-01

    Anthropologists have for many years considered human tooth wear a normal physiological phenomenon where teeth, although worn, remain functional throughout life. Wear was considered pathological only if pulpal exposure or premature tooth loss occurred. In addition, adaptive changes to the stomatognathic system in response to wear have been reported including continual eruption, the widening of the masticatory cycle, remodelling of the temporomandibular joint and the shortening of the dental arches from tooth migration. Comparative studies of many different species have also documented these physiological processes supporting the idea of perpetual change over time. In particular, differential wear between enamel and dentine was considered a physiological process relating to the evolution of the form and function of teeth. Although evidence of attrition and abrasion has been known to exist among hunter-gatherer populations for many thousands of years, the prevalence of erosion in such early populations seems insignificant. In particular, non-carious cervical lesions to date have not been observed within these populations and therefore should be viewed as 'modern-day' pathology. Extrapolating this anthropological perspective to the clinical setting has merits, particularly in the prevention of pre-mature unnecessary treatment.

  17. Study of abrasive resistance of foundries models obtained with use of additive technology

    NASA Astrophysics Data System (ADS)

    Ol'khovik, Evgeniy

    2017-10-01

    A problem of determination of resistance of the foundry models and patterns from ABS (PLA) plastic, obtained by the method of 3D printing with using FDM additive technology, to abrasive wear and resistance in the environment of foundry sand mould is considered in the present study. The description of a technique and equipment for tests of castings models and patterns for wear is provided in the article. The manufacturing techniques of models with the use of the 3D printer (additive technology) are described. The scheme with vibration load was applied to samples tests. For the most qualitative research of influence of sandy mix on plastic, models in real conditions of abrasive wear have been organized. The results also examined the application of acrylic paintwork to the plastic model and a two-component coating. The practical offers and recommendation on production of master models with the use of FDM technology allowing one to reach indicators of durability, exceeding 2000 cycles of moulding in foundry sand mix, are described.

  18. Comparison between different interdental stripping methods and evaluation of abrasive strips: SEM analysis.

    PubMed

    Grippaudo, Cristina; Cancellieri, Daniela; Grecolini, Maria E; Deli, Roberto

    2010-01-01

    The aim of this study was to evaluate the morphological effects and the surface irregularities produced by different methods of mechanical stripping (abrasive strips and burs) and chemical stripping (37% orthophosphoric acid) and the surface changes following the finishing procedures (polishing strips) or the subsequent application of sealants, in order to establish the right stripping method that can guarantee the smoothest surface. We have also analysed the level of wear on the different abrasive strips employed, according to their structure. 160 proximal surfaces of 80 sound molar teeth extracted for orthodontic and periodontal reasons, were divided into: 1 control group with non-treated enamel proximal surfaces and 5 different groups according to the stripping method used, were observed with scanning electron microscopy (SEM). Each one of the 5 treated groups was also divided into 3 different subgroups according to the finishing procedures or the subsequent application of sealants. The finishing stage following the manual reduction proves to be fundamental in reducing the number and depth of grooves created by the stripping. After the air rotor stripping method, the use of sealants is advised in order to obtain a smoother surface. The analysis of the combinations of mechanical and chemical stripping showed unsatisfactory results. Concerning the wear of the strips, we have highlighted a different abrasion degree for the different types of strips analysed with SEM. The enamel damages are limited only if the finishing procedure is applied, independently of the type of abrasive strip employed. It would be advisable, though clinically seldom possible, the use of sealants after the air rotor stripping technique. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  19. Mars rover rock abrasion tool performance enhanced by ultrasonic technology.

    NASA Astrophysics Data System (ADS)

    Macartney, A.; Li, X.; Harkness, P.

    2016-12-01

    The Mars exploration Athena science goal is to explore areas where water may have been present on the early surface of Mars, and investigate the palaeo-environmental conditions of these areas in relation to the existence of life. The Rock Abrasion Tool (RAT) designed by Honeybee Robotics has been one of four key Athena science payload instruments mounted on the mechanical arm of the Spirit, Opportunity and Curiosity Mars Exploration Rovers. Exposed rock surfaces weather and chemically alter over time. Although such weathered rock can present geological interest in itself, there is a limit to what can be learned. If the geological history of a landing site is to be constructed, then it is important to analyse the unweathered rock interior as clearly as possible. The rock abrasion tool's role is to substitute for a geologist's hammer, removing the weathered and chemically altered outer surface of rocks in order to view the pristine interior. The RAT uses a diamond resin standard common grinding technique, producing a 5mm depth grind with a relatively high surface roughness, achieved over a number of hours per grind and consumes approximately 11 watts of energy. This study assesses the benefits of using ultrasonic assisted grinding to improve surface smoothness. A prototype Micro-Optic UltraSonic Exfoliator (MOUSE) is tested on a range of rock types and demonstrates a number of advantages over the RAT. In addition to a smoother grind finish, these advantages include a lower rate of tool tip wear when using a tungsten carbide tip as opposed to diamond resin, less moving parts, a grind speed of minutes instead of hours, and a power consumption of only 1-5 Watts.

  20. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  1. High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Song, Xiu

    2017-02-01

    Al2O3-Cr2O3/NiCoCrAlYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase composition of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microscopy (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500°C in static air was investigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approximately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhesive wear.

  2. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part II: Comparison of RDA-PE and Radiotracer RDA Measures.

    PubMed

    Schneiderman, Eva; Colón, Ellen; White, Donald J; St John, Samuel

    2015-01-01

    The purpose of this study was to compare the abrasivity of commercial dentifrices by two techniques: the conventional gold standard radiotracer-based Radioactive Dentin Abrasivity (RDA) method; and a newly validated technique based on V8 brushing that included a profilometry-based evaluation of dentin wear. This profilometry-based method is referred to as RDA-Profilometry Equivalent, or RDA-PE. A total of 36 dentifrices were sourced from four global dentifrice markets (Asia Pacific [including China], Europe, Latin America, and North America) and tested blindly using both the standard radiotracer (RDA) method and the new profilometry method (RDA-PE), taking care to follow specific details related to specimen preparation and treatment. Commercial dentifrices tested exhibited a wide range of abrasivity, with virtually all falling well under the industry accepted upper limit of 250; that is, 2.5 times the level of abrasion measured using an ISO 11609 abrasivity reference calcium pyrophosphate as the reference control. RDA and RDA-PE comparisons were linear across the entire range of abrasivity (r2 = 0.7102) and both measures exhibited similar reproducibility with replicate assessments. RDA-PE assessments were not just linearly correlated, but were also proportional to conventional RDA measures. The linearity and proportionality of the results of the current study support that both methods (RDA or RDA-PE) provide similar results and justify a rationale for making the upper abrasivity limit of 250 apply to both RDA and RDA-PE.

  3. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains

    PubMed Central

    Min, Jie; Zhang, Qianqian; Qiu, Xiaoli; Zhu, Minhao; Yu, Haiyang; Gao, Shanshan

    2015-01-01

    Objectives The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains. Methods Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated. Results The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes. Significance Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings. PMID:26368532

  4. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  5. An in situ investigation into the abrasion of eroded dental hard tissues by a whitening dentifrice.

    PubMed

    Turssi, C P; Faraoni, J J; Rodrigues, A L; Serra, M C

    2004-01-01

    This crossover study aimed to investigate abrasion of previously eroded hard dental tissues by a whitening dentifrice compared to a regular dentifrice. After a 3-day lead-in period, 14 volunteers were randomly assigned to use one of the toothpastes while wearing a removable appliance, containing 3 enamel and 3 root dentine slabs on each side. On the first day salivary pellicle was allowed to form. Twice daily for the following 3 days, one side of each appliance was immersed in an acidic carbonated drink ex vivo while the other side remained unexposed. Specimens were then brushed with the allocated dentifrice. After a 3-day washout period, new sets of enamel and dentine slabs were mounted in the appliances and the participants commenced period 2 using the alternative toothpaste. Acid-treated specimens always showed more wear than untreated specimens. The whitening dentifrice did not significantly increase the wear of softened enamel compared with the regular dentifrice. Brushing with the whitening toothpaste led to significantly greater wear of sound enamel and of both eroded and sound dentine than the regular dentifrice. The results suggest that whitening dentifrices may not increase the wear of acid-softened enamel but may have a more deleterious effect on dentine than regular toothpastes.

  6. Scanning electron microscopy of dentition: methodology and ultrastructural morphology of tooth wear.

    PubMed

    Shkurkin, G V; Almquist, A J; Pfeihofer, A A; Stoddard, E L

    1975-01-01

    Scanning electron micrographs were taken of sets of human molars-those of paleo-Indians used in mastication of, ostensibly, a highly abrasive diet, and those of contemporary Americans. Different ultrastructural patterns of enamel wear were observed between the groups.

  7. [Clinical study on the distribution of tooth wear of the adult population].

    PubMed

    Curcă, Magdalena; Dănilă, I

    2010-01-01

    Tooth wear is becoming increasingly significant in the developed societies, because the etiological factors are frequently present in the daily life. The aim of this study was to assess the distribution of the tooth wear of the adult population in a private practice of dentistry. The group of study had 614 patients, structured on the following subgroups of age: 18- 30 years, 31-40, 41-50, 51-65 and more than 65 years old. Each patient had a clinical exam and a questionnaire for the diet and the lifestyle, spotlighting the etiology of tooth wear. attrition was the most frequent (55.7%), followed by abrasion (32.7%), erosion affected 7.5% of the patients and abfractions are the least frequent (4.1%). Erosions (9.7%) and attritions (59.9%) are more frequent at the feminine gender, and abrasions (40.4%) at the masculine gender. More than half of the abfractions (56%) were found at the youth patients (18-30 years old). Erosions were found in the 31-40 years subgroup at almost 40% of the patients; in the 41-50 years subgroup, abrasion and erosion were found in equal proportions. Abrasion prevails at the 51-65 years subgroup (30.8%). 72% of the consumers of acidic fruits had dental erosions. Tooth wear is under the influence of the diet and the age factor.

  8. Comparative study of the wear behavior of composites for posterior restorations.

    PubMed

    Turssi, Cecilia P; Faraoni-Romano, Juliana J; de Menezes, Márcio; Serra, Mônica C

    2007-01-01

    This investigation sought to compare the abrasive wear rates of resin composites designed for posterior applications. Seventy-five specimens were fabricated with conventional hybrid (Charisma and Filtek Z250) or packable composites (Filtek P60, Solitaire II and Tetric Ceram HB), according to a randomized complete block design (n = 15). Specimens were finished and polished metallographically and subjected to abrasive wear which was performed under a normal load of 13N at a frequency of 2 Hz using a pneumatic device (MSM/Elquip) in the presence of a mucin-containing artificial saliva. Wear was quantified profilometrically in five different locations of each specimen after 1,000, 5,000, 10,000, 50,000 and after every each 50,000 through 250,000 cycles. A split-plot ANOVA showed a significant difference between the wear resistance of composites (alpha = 0.05). Tukey's test ascertained that while the composites Filtek Z250 and Charisma wore significantly less than any other of the materials tested, Tetric Ceram HB experienced the greatest wear rates. Filtek P60 and Solitaire II showed intermediate rates of material removal. The wear pattern of composites proved to be biphasic with the primary phase having the faster wear rate. In conclusion, packable resin composites may not have superior wear compared to conventional hybrid composites.

  9. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    NASA Astrophysics Data System (ADS)

    Franco, P.; Estrems, M.; Faura, F.

    2007-04-01

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.

  10. Spectroscopic wear detector

    NASA Technical Reports Server (NTRS)

    Madzsar, George C. (Inventor)

    1993-01-01

    The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.

  11. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  12. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  13. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  14. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  15. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  16. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  17. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  18. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  19. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  20. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  1. An epidemiologic approach to toothbrushing and dental abrasion.

    PubMed

    Bergström, J; Lavstedt, S

    1979-02-01

    Abrasion lesions were recorded in 818 individuals representing the adult population of 430,000 residents of the Stockholm region, Sweden. The subjects were asked about toothbrushing habits, toothbrush quality and dentifrice usage; these factors were related to abrasion criteria. Abrasion was prevalent in 30% and wedge-like or deep depressions were observed in 12%. The relationship between abrasion and toothbrushing was evident, the prevalence and severity of abrasion being correlated to toothbrushing consumption. The importance of the toothbrushing technique for the development of abrasion lesions was elucidated. Horizontal brushing technique was strongly correlated to abrasion. It was demonstrated by treating the data with the statistical AID analysis that toothbrushing factors related to the individual (brushing frequency and brushing technique) exert a greater influence than material-oriented toothbrushing factor such as dentifrice abrasivity and bristle stiffness.

  2. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    NASA Astrophysics Data System (ADS)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  3. Robotic edge machining using elastic abrasive tool

    NASA Astrophysics Data System (ADS)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  4. Effect of power toothbrushing on simulated wear of dental cement margins.

    PubMed

    Black, Marsha A; Bayne, Stephen C; Peterson, Charlotte A

    2007-01-01

    Power toothbrushes (PTBs), in combination with abrasive dentifrices, may encourage wear of dental cements at crown margins. The objective of this in vitro simulation was to control the clinical variables associated with PTB use and measure the potential side effects of PTBs with mild and abrasive dentifrices. Four PTBs ( Braun-Oral-B-Professional Care at 150 g brushing force, Sonicare-Elite at 90 g, Colgate-Actibrush at 200 g and Crest-Spinbrush-Pro at 250 g) and 2 dentifrices mixed 1:1 with tap water (Mild= Colgate-Total, Colgate-Palmolive; Abrasive= Close-up, Chesebrough-Ponds) versus tap water alone (control) were used to abrade 2 cements (Fleck's Mizzy Zinc Phosphate [ZP]; 3M-ESPE Unicem universal cement [UC]) using cement-filled slots (160 m wide) cut into wear-resistant ceramic blocks. A custom fixture controlled PTB/block alignment, PTB loads, and other testing variables. Wear was measured (3 profilometer traces/slot, 5 slots/block/group, baseline to 5-year differences) and analyzed (3-way ANOVA, p < or = 0.05, Bonferroni). Wear for ZP was much greater than UC (p<0.05) for all 4 PTBs and both dentifrices. Brushing with water showed no effects (p<0.05). Cement-PTB-dentifrice interactions did occur. Only minor differences occurred among PTBs. Pooled 5y-wear levels for ZP for both dentifrices approximately 21 microm /5y) were similar to values for current-day posterior composite materials. Combinations of PTBs with mild and abrasive dentifrices produced significant wear with ZP but not UC; thus, resin-composite cements seem to represent a better choice for wear resistance.

  5. Friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes

    NASA Astrophysics Data System (ADS)

    Deng, Jianxin; Yan, Pei; Wu, Ze

    2012-11-01

    MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.

  6. Wear Behavior and Mechanism of a Cr-Mo-V Cast Hot-Working Die Steel

    NASA Astrophysics Data System (ADS)

    Wei, M. X.; Wang, S. Q.; Zhao, Y. T.; Chen, K. M.; Cui, X. H.

    2011-06-01

    The wear behavior and mechanisms of a Cr-Mo-V cast hot-working die steel with three microstructures (tempered martensite, troostite, and sorbite) were studied systematically through the dry-sliding wear tests within a normal load range of 50 to 300 N and an ambient temperature range of 298 K to 673 K (25 °C to 400 °C) by a pin-on-disk high-temperature wear machine. Five different mechanisms were observed in the experiments, namely adhesive, abrasive, mild oxidative, oxidative, and extrusive wear; one or more of those mechanisms would be dominant within particular ranges of load and temperature. The transition of wear mechanisms depended on the formation of tribo-oxides, which was related closely to load and temperature, and their delamination, which was mainly influenced by the matrix. By increasing the load and ambient temperature, the protective effect of tribo-oxides first strengthened, then decreased, and in some cases disappeared. Under a load ranging 50 to 300 N at 298 K (25 °C) and a load of 50 N at 473 K (200 °C), adhesive wear was the dominant wear mechanism, and abrasive wear appeared simultaneously. The wear was of mild oxidative type under a load ranging 100 to 300 N at 473 K (200 °C) and a load ranging 50 to 150 N at 673 K (400 °C) for tempered martensite and tempered troostite as well as under a load of 100 N at 473 K (200 °C) and a load ranging 50 to 100 N at 673 K (400 °C) for tempered sorbite. At the load of 200 N or greater, or the temperatures above 673 K (400 °C), oxidative wear (beyond mild oxidative wear) prevailed. When the highest load of 300 N at 673 K (400 °C) was applied, extrusive wear started to dominate for the tempered sorbite.

  7. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    NASA Astrophysics Data System (ADS)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  8. Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds

    NASA Astrophysics Data System (ADS)

    Jung, Jeki; Oak, Jeong-Jung; Kim, Yong-Hwan; Cho, Yi Je; Park, Yong Ho

    2017-11-01

    The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.

  9. Fractographic and three body abrasion behaviour of Al-Garnet-C hybrid chill cast composites

    NASA Astrophysics Data System (ADS)

    Bandekar, Nityanand; Prasad, M. G. Anantha

    2017-08-01

    Fractographic and tribological behaviour of hybrid composite of aluminum alloy LM13 matrix with garnet and carbon was investigated. Conventional stir casting technique was used to fabricate the composites with chill cast technique. Various chill materials like Copper, Steel, Iron and Silicon carbide were used to improve the directional solidification. The garnet being added ranges from 3 to 12 wt-% in steps of 3wt-% and constant 3wt-% of carbon. The experiment evaluates the mechanical, fractographic and three body abrasion behaviour of the hybrid composites for various parameters of load, garnet and chills. Microstructural characterization of the composite samples revealed a uniform distribution of reinforcements with minimum clustering. SEM was used for examine worn surfaces. The addition of garnet and carbon reinforcement decreases the wear rate of hybrid composites. Fracture behaviour showed the changes from ductile mode to brittle mode of failure. Further, directional chilling with copper chill improves the wear resistance of the composites.

  10. Effects of toothbrush hardness on in vitro wear and roughness of composite resins.

    PubMed

    Kyoizumi, Hideaki; Yamada, Junji; Suzuki, Toshimitsu; Kanehira, Masafumi; Finger, Werner J; Sasaki, Keiichi

    2013-11-01

    To investigate and compare the effects of toothbrushes with different hardness on abrasion and surface roughness of composite resins. Toothbrushes (DENT. EX Slimhead II 33, Lion Dental Products Co. Ltd., Tokyo, Japan) marked as soft, medium and hard, were used to brush 10 beam-shaped specimens of each of three composites resins (Venus [VEN], Venus Diamond [VED] and Venus Pearl [VEP]; HeraeusKulzer) with standardized calcium carbonate slurry in a multistation testing machine (2N load, 60 Hz). After each of five cycles with 10k brushing strokes the wear depth and surface roughness of the specimens were determined. After completion of 50k strokes representative samples were inspected by SEM. Data were treated with ANOVA and regression analyses (p < 0.05). Abrasion of the composite resins increased linearly with increasing number of brushing cycles (r² > 0.9). Highest wear was recorded for VEN, lowest for VED. Hard brushes produced significantly higher wear on VEN and VEP, whereas no difference in wear by toothbrush type was detected for VED. Significantly highest surface roughness was found on VED specimens (Ra > 1.5 µm), the lowest one on VEN (Ra < 0.3 µm). VEN specimens showed increased numbers of pinhole defects when brushed with hard toothbrushes, surfaces of VEP were uniformly abraded without level differences between the prepolymerized fillers and the glass filler-loaded matrix, VED showed large glass fillers protruding over the main filler-loaded matrix portion under each condition. Abrasion and surface roughness of composite resins produced by toothbrushing with dentifrice depend mainly on the type of restorative resin. Hardness grades of toothbrushes have minor effects only on abrasion and surface roughness of composite resins. No relationship was found between abrasion and surface roughness. The grade of the toothbrush used has minor effect on wear, texture and roughness of the composite resin.

  11. Wear Resistance of Austempered Ductile Iron with Nanosized Additives

    NASA Astrophysics Data System (ADS)

    Kaleicheva, J. K.; Mishev, V.

    2018-01-01

    The wear resistance, microstructure and mechanical properties of austempered ductile iron (ADI) with nanosized additives of cubic boron nitride cBN are investigated. Samples of ductile iron are put under austhempering at the following conditions: heating at 900°С, 1 h and isothermal retention at 280оС, 2 h and 380°С, 2 h with the aim to achieve a lower bainitic structure and an upper bainitic structure. The experimental wear testing of austempered ductile irons is performed in friction conditions of a fixed abrasive by a cinematic scheme „pin - disc” using an accelerated testing method and device. The microstructure of the ADI is investigated by metallographic and X-Ray analyses. The Vickers hardness testing and impact strength examination are carried out. The influence of the nanosized additives of cBN on the wear resistance, microstructure, impact strength and hardness of the ADI is investigated.

  12. Wear resistance of a metal surface modified with minerals

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Balasch, P. V.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2016-02-01

    The article describes the advantages of the new technology of mineral coating of metal products for the friction pair of mechanical systems. It presents the research results of the wear rate of the samples made of 12X13 steel (X12Cr13) with mineral layers, in the experiments with a piston ring sliding inside a cylinder liner with grease. The wear rate of the samples with mineral layers is lower almost by two factors than that of the samples made of grey foundry iron and untreated samples. As the result of slip/rolling abrasion tests of parts with mineral layers under conditions of high contact pressure, a suggestion was made concerning probable mechanics of surface wear.

  13. Photodetector Development for the Wheel Abrasion Experiment on the Sojourner Microrover of the Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Jenkins, Phillip P.; Scheiman, David A.

    1997-01-01

    On-board the Mars Pathfinder spacecraft, launched in December of 1996, is a small roving vehicle named Sojourner. On Sojourner is an experiment to determine the abrasive characteristics of the Martian surface, called the Wheel Abrasion Experiment (WAE). The experiment works as follows: one of the wheels of the rover has a strip of black anodized aluminum bonded to the tread. The aluminum strip has thin coatings of aluminum, nickel and platinum deposited in patches. There are five (5) patches or samples of each metal, and the patches range in thickness from 200 A to 1000 A. The different metals were chosen for their differing hardness and their environmental stability. As the wheel is spun in the Martian soil, the thin patches of metal are abraded away, exposing the black anodization. The abrasion is monitored by measuring the amount of light reflected off of the samples. A photodetector was developed for this purpose, and that is the subject of this paper.

  14. Tooth brush abrasion of paint-on resins for shade modification of crown and bridge resins.

    PubMed

    Fujii, Koichi; Ban, Seiji; McCabe, John F

    2003-09-01

    The purpose of this study was to evaluate the surface roughness and resistance to toothbrush abrasion of three experimental paint-on composite resins developed for the shade modification of crown and bridge resins. The paint-on resins had less filler volume fraction than restorative composites or the crown and bridge resins and consequently were of low viscosity. The maximum surface roughness (Rmax) and the maximum depth loss by abrasion for the paint-on resins following 40,000 cycles of brushing ranged from 2.45 to 4.07 microm and 8.63 to 13.67 microm, respectively. Rmax values were 37.7-67.5% lower than that for the crown and bridge resin subjected to the same test. Wear depth was 19.9-49.4% lower than for the crown and bridge resin. These results suggest that the paint-on resins are expected to have adequate resistance to toothbrush abrasion and may therefore be suitable for clinical use.

  15. Wear Calculation Approach for Sliding - Friction Pairs

    NASA Astrophysics Data System (ADS)

    Springis, G.; Rudzitis, J.; Lungevics, J.; Berzins, K.

    2017-05-01

    One of the most important things how to predict the service life of different products is always connected with the choice of adequate method. With the development of production technologies and measuring devices and with ever increasing precision one can get the appropriate data to be used in analytic calculations. Historically one can find several theoretical wear calculation methods but still there are no exact wear calculation model that could be applied to all cases of wear processes because of difficulties connected with a variety of parameters that are involved in wear process of two or several surfaces. Analysing the wear prediction theories that could be classified into definite groups one can state that each of them has shortcomings that might impact the results thus making unnecessary theoretical calculations. The offered wear calculation method is based on the theories of different branches of science. It includes the description of 3D surface micro-topography using standardized roughness parameters, explains the regularities of particle separation from the material in the wear process using fatigue theory and takes into account material’s physical and mechanical characteristics and definite conditions of product’s working time. The proposed wear calculation model could be of value for prediction of the exploitation time for sliding friction pairs thus allowing the best technologies to be chosen for many mechanical details.

  16. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  17. Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale.

    PubMed

    Eder, S J; Feldbauer, G; Bianchi, D; Cihak-Bayr, U; Betz, G; Vernes, A

    2015-07-10

    Using molecular dynamics, we simulate the abrasion process of an atomically rough Fe surface with multiple hard abrasive particles. By quantifying the nanoscopic wear depth in a time-resolved fashion, we show that Barwell's macroscopic wear law can be applied at the atomic scale. We find that in this multiasperity contact system, the Bowden-Tabor term, which describes the friction force as a function of the real nanoscopic contact area, can predict the kinetic friction even when wear is involved. From this the Derjaguin-Amontons-Coulomb friction law can be recovered, since we observe a linear dependence of the contact area on the applied load in accordance with Greenwood-Williamson contact mechanics.

  18. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    PubMed Central

    Li, Zhengyang; Wu, Yanping; Meng, Xiandong; Zhang, Dongxu

    2018-01-01

    A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2), and O2) and vacuum conditions (1.05 and 1 × 10−4 Pa). Evolution of friction was assessed by coefficient of friction (COF) and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles. PMID:29659484

  19. Toothbrushing after an erosive attack: will waiting avoid tooth wear?

    PubMed

    Lussi, Adrian; Lussi, Jonas; Carvalho, Thiago S; Cvikl, Barbara

    2014-10-01

    The purpose of this study was to determine if storage for up to 4 h in human saliva results in a decrease of erosive tooth wear (ETW) and in an increase of surface microhardness (SMH) of enamel samples after an erosive attack with subsequent abrasion. Furthermore, we determined the impact of individual salivary parameters on ETW and SMH. Enamel samples were distributed into five groups: group 1 had neither erosion nor saliva treatment; groups 2-5 were treated with erosion, then group 2 was placed in a humid chamber and groups 3-5 were incubated in saliva for 30 min, 2 h, and 4 h, respectively. After erosion and saliva treatments, all groups were treated with abrasion. Surface microhardness and ETW were measured before and after erosion, incubation in saliva, and abrasion. Surface microhardness and ETW showed significant changes throughout the experiment: SMH decreased and ETW increased in groups 2-5, regardless of the length of incubation in saliva. The results of groups 3-5 (exposed to saliva) were not significantly different from those of group 2 (not exposed to saliva). Exposure of eroded enamel to saliva for up to 4 h was not able to increase SMH or reduce ETW. However, additional experiments with artificial saliva without proteins showed protection from erosive tooth wear. The recommendation to postpone toothbrushing of enamel after an erosive attack should be reconsidered. © 2014 Eur J Oral Sci.

  20. A new methodology for hydro-abrasive erosion tests simulating penstock erosive flow

    NASA Astrophysics Data System (ADS)

    Aumelas, V.; Maj, G.; Le Calvé, P.; Smith, M.; Gambiez, B.; Mourrat, X.

    2016-11-01

    Hydro-abrasive resistance is an important property requirement for hydroelectric power plant penstock coating systems used by EDF. The selection of durable coating systems requires an experimental characterization of coating performance. This can be achieved by performing accelerated and representative laboratory tests. In case of severe erosion induced by a penstock flow, there is no suitable method or standard representative of real erosive flow conditions. The presented study aims at developing a new methodology and an associated laboratory experimental device. The objective of the laboratory apparatus is to subject coated test specimens to wear conditions similar to the ones generated at the penstock lower generatrix in actual flow conditions. Thirteen preselected coating solutions were first been tested during a 45 hours erosion test. A ranking of the thirteen coating solutions was then determined after characterisation. To complete this first evaluation and to determine the wear kinetic of the four best coating solutions, additional erosion tests were conducted with a longer duration of 216 hours. A comparison of this new method with standardized tests and with real service operating flow conditions is also discussed. To complete the final ranking based on hydro-abrasive erosion tests, some trial tests were carried out on penstock samples to check the application method of selected coating systems. The paper gives some perspectives related to erosion test methodologies for materials and coating solutions for hydraulic applications. The developed test method can also be applied in other fields.

  1. Theoretical study on removal rate and surface roughness in grinding a RB-SiC mirror with a fixed abrasive.

    PubMed

    Wang, Xu; Zhang, Xuejun

    2009-02-10

    This paper is based on a microinteraction principle of fabricating a RB-SiC material with a fixed abrasive. The influence of the depth formed on a RB-SiC workpiece by a diamond abrasive on the material removal rate and the surface roughness of an optical component are quantitatively discussed. A mathematical model of the material removal rate and the simulation results of the surface roughness are achieved. In spite of some small difference between the experimental results and the theoretical anticipation, which is predictable, the actual removal rate matches the theoretical prediction very well. The fixed abrasive technology's characteristic of easy prediction is of great significance in the optical fabrication industry, so this brand-new fixed abrasive technology has wide application possibilities.

  2. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  3. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  4. Explosibility and Ignitability of Plastic Abrasive Media.

    DTIC Science & Technology

    1987-06-01

    Polyplus Is an alpha cellulose filled urea formaldehyde with a hardness or 3.5. Type III is a urea melamine formaldehyde with a hardness of 4. A fourth...is a thermoplastic acrylic media and the Kopper’s media are thermoset formaldehydes . o The greatest potential for dust explosions is in the baghouss...type or plastio media trom E. I. Du Pont de Nemours and Company was also tested. This Type L Solidstrip plastic stripping abrasive is an acrylic resin

  5. Erosion and abrasion-inhibiting in situ effect of the Euclea natalensis plant of African regions.

    PubMed

    Sales-Peres, Silvia Helena de Carvalho; Xavier, Cheila Nilza Hamina; Mapengo, Marta Artemisa Abel; Forim, Moacir Rossi; Silva, Maria de Fatima; Sales-Peres, Arsenio

    2016-06-14

    This study evaluated the effect of Euclea natalensis gel on the reduction of erosive wear with or without abrasion, in enamel and dentin. During two five-day experimental crossover phases, volunteers (n = 10) wore palatal devices containing human enamel and dentin blocks (E = 8 and D = 8). The gel was applied in a thin layer in the experimental group, and was not applied in the control group. In the intraoral phase, volunteers used the palatal appliance for 12 h before the gel treatment, and were instructed to start the erosive challenges 6 h after the gel application. Erosion was performed with Coca-Cola® (for 5 min) 4 times/day. The appliance was then put back into the mouth and was brushed after 30 minutes. After intraoral exposure, the appliances were removed and the specimens were analyzed using profilometry (mean ± SD, μm). The Euclea natalensis gel caused less wear in enamel in the experimental group (EROS = 12.86 ± 1.75 µm; EROS + ABRAS = 12.13 ± 2.12 µm) than in the control group (EROS = 14.12 ± 7.66 µm; EROS + ABRAS = 16.29 ± 10.72 µm); however, the groups did not differ from each other significantly. A statistically significant value was found for erosion and eros + abrasion in dentin (p = 0.001). Euclea natalensis may play a role in the prevention of dentin loss under mild erosive and abrasive conditions. A clinical trial is required to confirm these promising results in a clinical situation.

  6. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  7. Dentin abrasivity of various desensitizing toothpastes.

    PubMed

    Arnold, W H; Gröger, Ch; Bizhang, M; Naumova, E A

    2016-04-02

    The aim of this study was to compare the abrasivity of various commercially available toothpastes that claim to reduce dentin hypersensitivity. Dentin discs were prepared from 70 human extracted molars. The discs were etched with lemon juice for 5 min, and one half of the discs were covered with aluminum tape. Following this, they were brushed with 6 different toothpastes, simulating a total brushing time of 6 months. As a negative control, discs were brushed with tap water only. The toothpastes contained pro-arginine and calcium carbonate, strontium acetate, stannous fluoride, zinc carbonate and hydroxyapatite, new silica, or tetrapotassium pyrophosphate and hydroxyapatite. After brushing, the height differences between the control halves and the brushed halves were determined with a profilometer and statistically compared using a Mann-Whitney U test for independent variables. A significant difference (p < 0.001) in height difference between the controls and the toothpaste-treated samples was found in all cases, except for the stannous fluoride-containing toothpaste (p = 0.583). The highest abrasion was found in the toothpaste containing zinc carbonate and hydroxyapatite, and the lowest was found in the toothpaste containing pro-arginine and calcium carbonate. Desensitizing toothpastes with different desensitizing ingredients have different levels of abrasivity, which may have a negative effect on their desensitizing abilities over a long period of time.

  8. Dental abrasion as a cutting process.

    PubMed

    Lucas, Peter W; Wagner, Mark; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Michael, Shaji; Thai, Lidia A; Strait, David S; Swain, Michael V; van Casteren, Adam; Renno, Waleed M; Shekeban, Ali; Philip, Swapna M; Saji, Sreeja; Atkins, Anthony G

    2016-06-06

    A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential.

  9. Finger wear detection for production line battery tester

    DOEpatents

    Depiante, E.V.

    1997-11-18

    A method is described for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change. 9 figs.

  10. Finger wear detection for production line battery tester

    DOEpatents

    Depiante, Eduardo V.

    1997-01-01

    A method for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change.

  11. Qualitative Assessment of Wear Resistance and Surface Hardness of Different Commercially Available Dental Porcelain: An in vitro Study.

    PubMed

    Singh, Abhishek; Nagpal, Abhishek; Pawah, Salil; Pathak, Chetan; Issar, Gaurav; Sharma, Pankaj

    2016-09-01

    In an attempt to minimize wear damage to the enamel of antagonist teeth, new low and medium fusing ceramic materials have been developed. Manufacturers usually claim that these ceramics are wear-friendly because of their lower hardness, lower concentrations of crystal phase, and smaller crystal sizes. This study aimed to quantitatively analyze the wear strength of various commercially available dental porcelain with tooth enamel as well as the surface hardness of these dental porcelain. The basic model was designed as a pin on plate arrangement. The tooth specimens were mounted on the stylus which was centered on the ceramic specimen in a wear testing machine. The dental ceramic specimen was centered in the metal die. A load of 40 N was applied at a rate of 80 cycles/minute for 15 minutes. In the current study, mean wear depth (Ra) value, volumetric loss, and surface hardness were obtained by standard quantification method and were statistically evaluated. Ceramco-3 was reported to be most abrasive for enamel; however, Duceram love significantly more abraded itself than the other two, Ceramco-3 and Vita Alpha, and generated the lowest loss of enamel. Also, same abrasive type of wear was revealed for all three variants of tested ceramics. Ceramco-3 was the most abrasive for enamel, while surface roughness (mean wear depth) of Duceram love was maximum and for Ceramco-3 it was minimum. The value of surface roughness for Vita Alpha was in between Duceram love and Ceramco-3. Nonetheless, the mean surface hardness of Duceram love was found to be least and maximum for Vita Alpha. In situations of dental wear and wasting tooth disease (Attrition/Abrasion), Duceram can be applied in lieu of Ceramco-3 so as to prevent worsening of existing dentition. However, in younger patients Vita Alpha would offer maximum durability due to its greater surface hardness.

  12. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. Copyright © 2013 The Authors

  13. Do Abrasives Play a Role in Toothpaste Efficacy against Erosion/Abrasion?

    PubMed

    Ganss, Carolina; Möllers, Maike; Schlueter, Nadine

    2017-01-01

    Abrasives may counteract the efficacy of anti-erosion toothpastes either due to physical effects or due to interaction with active agents. This study aimed to investigate whether the amount of abrasives is a determinant for the efficacy of Sn2+-containing toothpastes with or without chitosan additive. Enamel samples were eroded (0.50 wt% citric acid, pH 2.5; 6 × 2 min/day) on a shaking desk - 30/min in experiment 1 (E1) and 35/min in experiments 2 (E2) and 3 (E3) - and immersed in toothpaste slurries (2 × 2 min). Half of the samples were additionally brushed (15 s, load 200 g) within the immersion time. The toothpastes contained 0, 5, 10, 15, and 20% silica. In E1 and E2 the active ingredients were F- (700 ppm as amine fluoride, 700 ppm as NaF) and Sn2+ (3,500 ppm as SnCl2); in E3 chitosan (0.5%) was additionally added. The placebo contained 20% silica. Tissue loss was determined profilometrically. In E1, slurries completely inhibited tissue loss; distinct surface deposits occurred. With brushing, tissue loss significantly increased up to an abrasive content of 10%, but decreased significantly with higher amounts; 20% silica revealed similar values as the abrasive-free formulation. In E2, all slurries inhibited tissue loss distinctly irrespective of the amounts of abrasives. With brushing, a similar trend as in E1 was observed but with much less efficacy. The chitosan-containing formulations in E3 were much more effective; similar results as in E1 were found. In conclusion, the amount of abrasives had no effect when toothpastes were applied as slurries, but played an important role with brushing. © 2016 S. Karger AG, Basel.

  14. Wear resistance of metals and alloys; Proceedings of the Conference, Chicago, IL, Sept. 24-30, 1988

    SciTech Connect

    Kingsbury, G.R.

    1988-01-01

    Techniques for characterizing and improving the wear properties of metals and composites are discussed in reviews and reports. Topics addressed include the use of interatomic potentials to study the relationship between abrasive wear and other mechanical properties, gas-detonation powder spraying of diamond coatings, a fluidized-bed test method for erosion resistance, the wear behavior of Al and Al-Si-Cu alloys, and abrasive wear of bronze and ZA alloys with and without lubrication. Consideration is given to continuously cast vs sand-cast Zn-Al alloys for bearings, sintered 6061 Al-alloy-based particulate composites with dry lubricants, Cu-based particulate composites, high-temperature friction and wear of X-750 andmore » X-188 superalloys for low-heat-rejection engines, a new metallurgical conception of wear-resistant steels, and the effect of matrix microstructure on the abrasion resistance of high-Cr white cast irons. Extensive graphs and micrographs are provided.« less

  15. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  16. Structures and Properties of Polymers Important to Their Wear Behavior

    NASA Technical Reports Server (NTRS)

    Tanaka, K.

    1984-01-01

    The wear and transfer of various semicrystalline polymers sliding against smooth steel or glass surfaces were examined. The effects of structures, and properties of polymers on their wear behavior are discussed. It is found that the high wear characteristics of PTFE is due to the easy destruction of the banded structure of PTFE. The size of spherulites and the molecular profile are closely related to the magnitude of wear rates of typical semicrystalline polymers. The effects of these factors on the wear rate on the basis of the destruction or melting of spherulites at the frictional surface are discussed. Although the fatigue theory of wear indicates that some mechanical properties are important to wear behavior, it is shown that the theory does not always explain the experimental result obtained on a smooth surface.

  17. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    NASA Astrophysics Data System (ADS)

    Weili, L.; Jinling, L.; Xingqi, L.; Yuan, L.

    2010-08-01

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  18. Study on the potential inhibition of root dentine wear adjacent to fluoride-containing restorations.

    PubMed

    Turssi, Cecilia Pedroso; Hara, Anderson Takeo; Domiciano, Silvia Jorge; Serra, Mônica Campos

    2008-01-01

    The purpose of this in vitro study was to determine whether the vicinity of root dentine that had been restored with fluoride-releasing materials was at reduced risk for erosive/abrasive wear compared to root dentine restored with a non-fluoride-containing material. According to a randomized complete block design, standardized cavities prepared on the surface of 150 bovine root dentine slabs were restored with glass-ionomer cement, resin-modified glass ionomer, polyacid-modified resin composite, fluoride-containing or conventional composite. Specimens were coated with two layers of an acid-resistant nail varnish exposing half of the dentine surface and half of the restoration. Subsequently, specimens were either eroded in an acidic drink or left uneroded, then exposed to artificial saliva and abraded in a toothbrushing machine. Wear depth in the vicinity of restorations was quantified by a stylus profilometer, based on the nonabraded areas surrounding the erosion/abrasion region. Two-way ANOVA did not demonstrate significant interaction between restoratives and eroded-uneroded dentine (p=0.5549) nor significant difference among restorative materials (p=0.8639). Tukey's test ascertained that the wear depth was higher for eroded than for uneroded groups. Fluoride-releasing materials seemed to negligibly inhibit wear in the vicinity of restored root dentine subjected to erosive/abrasive challenges.

  19. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  20. Abrasion-Resistant Coating for Flexible Insulation

    NASA Technical Reports Server (NTRS)

    Mui, D.; Headding, R. E.

    1986-01-01

    Ceramic coating increases durability and heat resistance of flexible high-temperature insulation. Coating compatible with quartz-fabric insulation allowing it to remain flexible during and after repeated exposures to temperatures of 1,800 degree F (982 degree C). Prevents fabric from becoming brittle while increasing resistance to aerodynamic abrasion and loading. Coating consists of penetrating precoat and topcoat. Major ingredients high-purity colloidal silica binder and ground silica filler, which ensure stability and compatibility with fabric at high temperatures. Both precoat and topcoat cured at room temperature.

  1. Modeling and Tool Wear in Routing of CFRP

    SciTech Connect

    Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.

    2011-01-17

    This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the toolmore » wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.« less

  2. Detailed study of oxidation/wear mechanism in lox turbopump bearings

    NASA Technical Reports Server (NTRS)

    Chase, T. J.; Mccarty, J. P.

    1993-01-01

    Wear of 440C angular contact ball bearings of the phase 2 high pressure oxygen turbopump (HPOTP) of the space shuttle main engine (SSME) has been studied by means of various advanced nondestructive techniques (NDT) and modeled with reference to all known material, design, and operation variables. Three modes dominating the wear scenario were found to be the adhesive/sheer peeling (ASP), oxidation, and abrasion. Bearing wear was modeled in terms of the three modes. Lacking a comprehensive theory of rolling contact wear to date, each mode is modeled after well-established theories of sliding wear, while sliding velocity and distance are related to microsliding in ball-to-ring contacts. Microsliding, stress, temperature, and other contact variables are evaluated with analytical software packages of SHABERTH(TM)/SINDA(TM) and ADORE(TM). Empirical constants for the models are derived from NIST experiments by applying the models to the NIST wear data. The bearing wear model so established precisely predicts quite well the average ball wear rate for the HPOTP bearings. The wear rate has been statistically determined for the entire population of flight and development bearings based on Rocketdyne records to date. Numerous illustrations are given.

  3. Martian and Terrestrial Rock Abrasion from Wind Tunnel and Field Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Greeley, R.; Eddlemon, E.; Laity, J. E.; Meyer, C.; Phoreman, J.; White, B. R.

    2003-01-01

    Earth and Mars exhibit ventifacts, rocks that have been abraded by saltating sand. Previous theoretical and laboratory studies have determined abrasion susceptibilities of rocks as a function of sand type and impact angle and rock material strengths. For the last two years we have been engaged in wind tunnel and field studies to better understand the fundamental factors which control and influence rock abrasion and ventifact formation on Earth and Mars. In particular, we are examining: 1) What types of rocks (composition, texture, and shape) preferentially erode and what are the relative rates of one type vs. another? 2) What are the controlling factors of the aeolian sand cloud (flux, particle speed, surface roughness, etc) which favor rock abrasion?, 3) How do specific ventifact characteristics tie into their mode of formation and rock properties? We find several important factors: 1) Initial rock shape controls the rate of abrasion, with steeper faces abrading faster than shallower ones. The relationship is partly dependent on angle-dependent flux (proportional to sin[theta]) but exhibits additional non-linear effects from momentum transfer efficiency and rebound effects that vary with incidence angle. 2) Irregular targets with pits or grooves abrade at greater rates than targets with smooth surfaces, with indentations generally enlarging with time. Surfaces become rougher with time. 3) Targets also abrade via slope retreat, which is roughly dependent on the slope of the front face. The formation of basal sills is common, as observed on terrestrial and Martian ventifacts.

  4. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics.

    PubMed

    Borges, Gilberto Antonio; Sophr, Ana Maria; de Goes, Mario Fernando; Sobrinho, Lourenço Correr; Chan, Daniel C N

    2003-05-01

    The ceramic composition and microstructure surface of all-ceramic restorations are important components of an effective bonding substrate. Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding. Although surface treatments of feldspathic and leucite porcelains have been studied previously, the high alumina-containing and lithium disilicate ceramics have not been fully investigated. The purpose of this study was to assess the surface topography of 6 different ceramics after treatment with either hydrofluoric acid etching or airborne aluminum oxide particle abrasion. Five copings each of IPS Empress, IPS Empress 2 (0.8 mm thick), Cergogold (0.7 mm thick), In-Ceram Alumina, In-Ceram Zirconia, and Procera (0.8 mm thick) were fabricated following the manufacturer's instructions. Each coping was longitudinally sectioned into 4 equal parts by a diamond disk. The resulting sections were then randomly divided into 3 groups depending on subsequent surface treatments: Group 1, specimens without additional surface treatments, as received from the laboratory (control); Group 2, specimens treated by use of airborne particle abrasion with 50-microm aluminum oxide; and Group 3, specimens treated with 10% hydrofluoric acid etching (20 seconds for IPS Empress 2; 60 seconds for IPS Empress and Cergogold; and 2 minutes for In-Ceram Alumina, In-Ceram Zirconia, and Procera). Airborne particle abrasion changed the morphologic surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. The surface topography of these ceramics exhibited shallow irregularities not evident in the control group. For Procera, the 50-microm aluminum oxide airborne particle abrasion produced a flattened surface. Airborne particle abrasion of In-Ceram Alumina and In-Ceram Zirconia did not change the morphologic characteristics and the same shallows pits found in the control group remained. For IPS Empress 2, 10% hydrofluoric

  5. Tribology in mineral extraction: War on wear

    SciTech Connect

    Not Available

    1984-01-01

    Mineral extraction, whether coal or ores, and the machinery employed are subjected to very hostile conditions of operation. These conditions cause great damage to interacting surfaces in relative motion. Much valuable time is lost because of abrasion and wear and further, often unnecessary, costs are incurred through avoidable maintenance and repair. Yet tribological solution to this pointless waste of resources, energy and production are often already well known in universities, research laboratories and in pockets within the industry. The papers presented at the IMechE conference identify the problems and demonstrate solutions. This book compiles the papers presented in this conference.more » The contents of this book include: Some practical examples of reducing the effect of tribological phenomena produced in transporting solids; wear of digger teeth; factors influencing the choice of lubricants for draglines; filtration of oils; tribology and slipper pad braking of rail mounted vehicles in coal mines; and failure analysis aided by fracture mechanics.« less

  6. Wear mechanisms and improvements of wear resistance in cobalt-chromium alloy femoral components in artificial total knee joints

    NASA Astrophysics Data System (ADS)

    Que, Like

    CrMo alloy surface roughness was higher than 0.022 mum Ra (surface roughness average), UHMWPE wear increased with increasing CoCrMo alloy surface roughness. Bone and poly(methyl methacrylate) (PMMA) bone cement abrasive particles created scratches on the alloy via a ploughing mechanism, and resulted in significantly rougher surfaces than controls without particles (P < 0.01). Solution treatments at 1230sp°C and 1245sp°C reduced the hardness and wear resistance of the as-cast F75 CoCrMo alloy. Aging at 700sp°C caused recrystallization of the forged F799 alloy and improved wear resistance. Thermo-mechanical treatments have the potential to increase the lifetime of artificial joints by increasing the wear resistance of CoCrMo components.

  7. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  8. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  9. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  10. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  11. Evaluation of abrasion resistance of pipe and pipe lining materials.

    DOT National Transportation Integrated Search

    2007-09-01

    This project summarizes an evaluation of pipe material resistance to abrasion over a 5-year period (2001-2006) at a site known to be abrasive. : The key focus of the project was to gather more information to compare against existing guidance to desig...

  12. Peripheral corneal infiltrates associated with contact lens wear.

    PubMed Central

    Donshik, P C; Suchecki, J K; Ehlers, W H

    1995-01-01

    PURPOSE: A retrospective study was performed to review the clinical characteristics of peripheral corneal infiltrates in contact lens wearers. METHODS: The charts of all contact lens patients with peripheral corneal infiltrates 1.5 mm or less in size who presented to the office from 1987 to 1994 were reviewed. RESULTS: The epidemiological and clinical characteristics of peripheral corneal infiltrates associated with contact lens wear were reviewed in 52 patients (64 infiltrates). Forty-four patients presented with a single infiltrate, while the remaining 8 patients had multiple infiltrates. While there was no predilection for a specific quadrant of the cornea, when a subgroup of patients who wore extended wear lenses was analyzed, 19 of the 40 infiltrates were located in the superior quadrant. Forty percent of the patients were wearing disposable extended wear contact lenses, 21% were wearing conventional extended wear lenses, 33% were wearing conventional or frequent replacement/disposable daily wear contact lenses and 6% were wearing rigid gas permeable lenses. The majority of patients had minimal conjunctival inflammation, an anterior stromal cellular reaction and minimal anterior chamber activity. A subgroup of 16 patients had corneal cultures of their infiltrates. In this group, 8 of the 16 had positive cultures. All patients had a resolution of the infiltrates without complications and the majority were refitted to daily wear soft or rigid contact lenses. CONCLUSION: Peripheral corneal infiltrates in contact lens wearers appears to be more common in patients wearing extended wear soft contact lenses. While often considered "sterile" in the literature, a significant number have been shown to be culture-positive. The organisms that have been associated with peripheral infiltrates appear to be less "pathogenic" than those that have been reported to be associated with central corneal ulcer. However, it is probably advisable that patients with peripheral corneal

  13. Acoustic emission from single point machining: Part 2, Signal changes with tool wear

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-01-01

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  14. Acoustic emission from single point machining: Part 2, Signal changes with tool wear. Revised

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-12-31

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  15. Tribological tests of wear-resistant coatings used in the production of drill bits of horizontal and inclined drilling

    NASA Astrophysics Data System (ADS)

    Maslov, A. L.; Markova, I. Yu; Zakharova, E. S.; Polushin, N. I.; Laptev, A. I.

    2017-05-01

    It is known that modern drilling bit body undergoes significant abrasive wear in the contact area with the solid and the retracted cuttings. For protection of the body rationally use wear-resistant coating, which is welded directly to the body of bit. Before mass use of the developed coverings they need to be investigated by various methods that it was possible to characterize coatings and on the basis of the obtained data to perform optimization of both composition of coatings and technology. Such methods include microstructural studies tribological tests, crack resistance and others. This work is devoted to the tribological tests of imported brand of coatings WokaDur NiA and and domestic brand of coating HR-6750 (both brands manufactured by Ltd “Oerlikon Metco Rus”), used to protect the bit body from abrasive wear.

  16. Friction and wear behavior of aluminum and composite I-beam stiffened airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    Friction and wear behavior was determined for I-beam stiffened skins constructed of aluminum, graphite-epoxy composite, and glass hybrid composite under abrasive loading conditions typical of those occurring on the underside of a transport airplane during an emergency belly landing. A test apparatus was developed to abrade the test specimens on actual runway surface under a range of pressures (2-5 psi) and velocities (16-50 mph). These parameters were chosen to fall within the range of conditions typical of an airframe sliding on a runway surface. The effects of the test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. In addition, the test apparatus was equipped to monitor the temperature variations on the backside of the skins during abrasion and these results are presented.

  17. Microstructure and wear property of Fe-Cr13-C hardfacing alloy reinforced by WC particles

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Li, Jiaqi; Bao, Yefeng; Jiang, Yongfeng

    2017-07-01

    Tungsten as the most effective carbide-forming element was added in the Fe-Cr13-C hardfacing alloy to precipitate WC particles. Optical microscope (OM), scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS) were used to investigate the microstructures of the hardfacing alloy. The wear resistance was tested through a slurry rubber wheel abrasion test machine, and the wear behavior was also studied. The results indicate that the microstructures of the hardfacing alloy consist of lath martensite, residual austenite and WC particles. The wear resistance can be significantly improved through the addition of tungsten element being provided by the precipitation of WC particles. And the predominant wear mechanism was microcutting with shallow grooves and spalling.

  18. A personal perspective and update on erosive tooth wear - 10 years on: Part 2 - Restorative management.

    PubMed

    Bartlett, D

    2016-08-26

    The management challenge with erosive tooth wear is that the condition involves erosion and contributions from attrition and abrasion, both of which impact on the longevity of restorations. Severe erosive tooth wear results in visibly shorter teeth, exposure of dentine and adaptive changes which complicate restorative management. There is increasing evidence to suggest if the risk factors, such as reducing the frequency of acidic foods and drinks, are reduced the progression of tooth wear slows and follows a normal pattern of wear. But once teeth become shorter patients often seek advice from dentists on restorative intervention. Composite restorations are successful in some patients but they often involve regular maintenance with repairs and rebuilds, which for some patients is unacceptable. Full coverage crowns, although destructive of tooth tissue, remain an option for restorations.

  19. Study of wear mechanism of chopped fiber reinforced epoxy composite filled with graphite and bronze

    NASA Astrophysics Data System (ADS)

    Patil, Nitinchand; Prasad, Krishna

    2018-04-01

    The combined effect of graphite and sintered bronze with a short glass fiber reinforced epoxy composites was investigated in this work. A pin on disc wear test was carried out to study the wear behaviour and mechanism of the composites. The objective of this work is to develop an alternate friction resistance material for the application of sliding bearing. It was observed that the addition of sintered bronze improved mechanical and thermal stability of the composites as bronze has low contact resistance with graphite and has high thermal conductivity. It was observed from the test results that increased volume percentage of graphite and presence of bronze are play significant role in wear mechanism of the composites. It was observed from the scanning electronic microscopes (SEM) that the abrasive and adhesive wear mechanism was prominent in this study. It was also evident from the result that the frictional force remains stable irrespective of the applied normal load.

  20. Characterization of Microstructure and Wear Resistance of PEO Coatings Containing Various Microparticles on Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Dong, Chaofang; Zhao, Qing; Pang, Yu; Cheng, Fasong; Wang, Shuaixing

    2018-02-01

    Titania-based composite coatings were prepared by plasma electrolytic oxidation (PEO) treatment of Ti6Al4V alloy in electrolyte with α-Al2O3, Cr2O3 or h-BN microparticles in suspension. The microstructure, composition of PEO composite coatings were analyzed by SEM, EDS and XRD. The wear resistance of composite ceramic coatings was studied by ball-on-disk wear test at ambient temperature and 300 °C. The results showed that the addition of microparticles accelerated the growth rate of PEO coating and changed the microstructure and composition of PEO coating. PEO coating was porous and mainly composed of rutile-TiO2, anatase-TiO2 and Al2TiO5. PEO/α-Al2O3 (Cr2O3 or h-BN) composite coating only had small micropores and appeared some α-Al2O3 (Cr2O3 or h-BN) phase. Besides, the addition of α-Al2O3 (Cr2O3 or h-BN) microparticles greatly improved the wear resistance of PEO coating. At ambient temperature, abrasive wear dominated the wear behavior of PEO coating, but abrasive wear and adhesive peel simultaneously happened at 300 °C. Whether at ambient temperature or 300 °C, PEO composite coating had better wear resistance than PEO coating. Besides, PEO/h-BN composite coating outperformed other composite coatings regardless of the temperature.

  1. Casing window milling with abrasive fluid jet

    SciTech Connect

    Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.

    1995-12-31

    Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less

  2. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  3. Corrosion Damage and Wear Mechanisms in Long-Term Retrieved CoCr Femoral Components for Total Knee Arthroplasty.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Malkani, Arthur L; Klein, Gregg R; Rimnac, Clare M; Kurtz, Steven M; Kocagoz, Sevi B; Gilbert, Jeremy L

    2016-12-01

    Metal debris and ion release has raised concerns in joint arthroplasty. The purpose of this study was to characterize the sources of metallic ions and particulate debris released from long-term (in vivo >15 years) total knee arthroplasty femoral components. A total of 52 CoCr femoral condyles were identified as having been implanted for more than 15 years. The femoral components were examined for incidence of 5 types of damage (metal-on-metal wear due to historical polyethylene insert failure, mechanically assisted crevice corrosion at taper interfaces, cement interface corrosion, third-body abrasive wear, and inflammatory cell-induced corrosion [ICIC]). Third-body abrasive wear was evaluated using the Hood method for polyethylene components and a similar method quantifying surface damage of the femoral condyle was used. The total area damaged by ICIC was quantified using digital photogrammetry. Surface damage associated with corrosion and/or CoCr debris release was identified in 51 (98%) CoCr femoral components. Five types of damage were identified: 98% of femoral components exhibited third-body abrasive wear (mostly observed as scratching, n = 51/52), 29% of femoral components exhibited ICIC damage (n = 15/52), 41% exhibited cement interface damage (n = 11/27), 17% exhibited metal-on-metal wear after wear-through of the polyethylene insert (n = 9/52), and 50% of the modular femoral components exhibited mechanically assisted crevice corrosion taper damage (n = 2/4). The total ICIC-damaged area was an average of 0.11 ± 0.12 mm 2 (range: 0.01-0.46 mm 2 ). Although implant damage in total knee arthroplasty is typically reported with regard to the polyethylene insert, the results of this study demonstrate that abrasive and corrosive damage occurs on the CoCr femoral condyle in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of alloying elements on friction and wear of copper

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.

  5. Wear and corrosion behaviour of tungsten carbide based coatings with different metallic binder

    NASA Astrophysics Data System (ADS)

    Kamdi, Z.; Apandi, M. N. M.; Ibrahim, M. D.

    2017-12-01

    Tungsten carbide based coating has been well known as wear and corrosion resistance materials. However, less study is done on comparing the coating with different binder. Thus, in this work the wear and corrosion behaviour of high velocity oxy-fuel (HVOF) coatings, namely (i) tungsten carbide cobalt and (ii) tungsten carbide nickel will be evaluated. Both coatings were characterised using X-ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The wear behaviour has been examined using the modified grinder machine by weight loss measurement. Two types of abrasive have been used that include 3 g by weight alumina and silica. While for the corrosion behaviour, it is monitored by three electrodes of electrochemical test and immersion test for 30 days in an acidic environment. The electrolyte used was 0.5 M sulphuric acids (H2SO4). It was found that the cobalt binder shows higher wear resistance compares to the nickel binder for both slurry types. The harder alumina compared to silica results in higher wear rate with removal of carbide and binder is about the same rate. For silica abrasive, due to slightly lower hardness compared to the carbide, the wear is dominated by binder removal followed by carbide detachment. For corrosion, the nickel binder shows four times higher wear resistance compared to the cobalt binder as expected due to its natural behaviour. These finding demonstrate that the selection of coating to be used in different application in this case, wear and corrosion shall be chosen carefully to maximize the usage of the coating.

  6. An evaluation of wear when enamel is opposed by various ceramic materials and gold.

    PubMed

    Elmaria, Asmaa; Goldstein, Gary; Vijayaraghavan, Therizhandur; Legeros, Raquel Z; Hittelman, Eugene L

    2006-11-01

    Ceramic restorations have been known to cause wear of opposing enamel. The purpose of this study was to evaluate enamel wear caused by 3 ceramic substrates in the glazed and polished conditions. Sixty ceramic discs (10 x 2 mm)-20 each of Finesse, All-Ceram, and IPS-Empress-were prepared and glazed. Each group of 20 was divided into 2 groups of 10. The surfaces of one group were ground and polished using a porcelain polishing kit (Dialite). The remaining 10 were left as glazed. Ten specimens of a type III gold alloy were cast into rectangular shapes of 10 x 12 x 2 mm and polished. Seventy human cusps were prepared from sound, caries-free, extracted teeth and abraded against the substrates in a wear machine for a total of 10,000 cycles. The cusp height loss was traced before and after the wear test using a profile projector. Mean surface roughness (R(a)) values for the substrates were also recorded with a profilometer before testing. Differences in R(a) were evaluated using 1- and 2-way ANOVA and the Scheffe post hoc test (alpha = .05). One-way ANOVA indicated that enamel height loss was significantly different by material (P < .001) and surface condition (glazed and polished or glazed; P < .05). Gold, polished Finesse, and polished All-Ceram were the least abrasive, whereas glazed IPS-Empress was the most abrasive. There was no significant interaction effect between substrate type and surface condition. Significant differences were found when R(a) of the substrate condition was compared with enamel wear (P < .01). Gold, polished Finesse, and polished All-Ceram caused the least enamel wear, whereas IPS-Empress caused the most wear. Cast gold was significantly different than glazed IPS-Empress (P < .05), whereas other groups overlapped. There was significant correlation between R(a) and enamel wear (P < .01).

  7. Wear studies made of slip rings and gas bearing components

    NASA Technical Reports Server (NTRS)

    Furr, A. K.

    1967-01-01

    Neutron activation analysis techniques were employed for the study of the wear and performance characteristics of slip ring and rotor assemblies and of the problems arising from environmental conditions with special reference to surface contamination. Results showed that the techniques could be successfully applied to measurement of wear parameters.

  8. Examining the prevalence and characteristics of abfractionlike cervical lesions in a population of U.S. veterans.

    PubMed

    Piotrowski, B T; Gillette, W B; Hancock, E B

    2001-12-01

    Abfraction is believed to be caused by biomechanical loading forces. It may be due to flexure and ultimate fatigue of tooth tissues that occur away from the point of occlusal loading. Other possible causes of cervical lesions include toothbrush abrasion and erosion. The purpose of this study was to investigate the characteristics and prevalence of abfraction-like lesions in a population of U.S. veterans. The authors evaluated 103 teeth with noncarious cervical lesions in 32 subjects and characterized them based on the surface on which the lesion was located, history of toothbrush abrasion, size of the lesion, presence of plaque, surface texture, and presence and size of occlusal wear facets. Clinical examination revealed that adjacent control teeth had a significantly lower percentage of surfaces with plaque than did teeth with cervical lesions. Control teeth also had significantly less gingival recession than did affected teeth. Seventy-five percent of subjects reported a history of using a firm toothbrush, and 78.1 percent reported using a brushing technique that is known to cause toothbrush abrasion in the affected area. Affected teeth had neither significantly different occlusal wear facets nor occlusal contacts than control teeth. No significant correlations were found between cervical lesion dimensions and facet area. Toothbrush abrasion is strongly suspected as contributing to the formation of the majority of wedge-shaped lesions in this group of subjects. A small subset of lesions is thought to have resulted from some other phenomenon. Although the presence or contribution of occlusal stresses in the direct formation of these lesions could not be measured directly, the possibility of abfraction could not be eliminated. Because the existence of abfraction could not be ruled out in about 15 percent of the cases, teeth with noncarious, wedge-shaped lesions warrant careful occlusal evaluation, with the possible need for occlusal adjustment or bitesplint therapy

  9. The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant Sika deer populations.

    PubMed

    Kubo, Mugino Ozaki; Yamada, Eisuke

    2014-01-01

    In reference to the evolutionary trend of increasing cheek tooth height in herbivorous ungulates, the causes of dental abrasion have long been debated. Interspecific comparisons of extant ungulates have revealed that both phytoliths in grass and external abrasive matter may play important roles. Using analysis of extant sika deer living in various environments and showing continuous latitudinal variation in food habits from northern grazing to southern browsing, we quantitatively evaluated the influence of dietary and environmental properties on three dental variables: mesowear score (MS), molar wear rate, and M3 hypsodonty index. We used 547 skulls and 740 mandibles from 16 populations of sika deer to obtain the dental measurements. We found that only graminoid proportion in diet correlated with MS and the molar wear rate, implying that phytoliths in grass abrade dental tissues. In contrast, annual precipitation in habitat was not correlated with any of the dental variables. We also found a significant correlation between the molar wear rate (selective pressure for high-crowned molars) and the M3 hypsodonty index of extant sika deer, implying an evolutionary increment in molar height corresponding to the molar wear rate. Our intraspecific comparative analyses provide further support for use of mesowear analysis as a paleodiet estimation method; it not only reveals staple food types (graminoids or dicots) but also implies regional or seasonal variation in the diet of the species.

  10. The Inter-Relationship between Dietary and Environmental Properties and Tooth Wear: Comparisons of Mesowear, Molar Wear Rate, and Hypsodonty Index of Extant Sika Deer Populations

    PubMed Central

    Kubo, Mugino Ozaki; Yamada, Eisuke

    2014-01-01

    In reference to the evolutionary trend of increasing cheek tooth height in herbivorous ungulates, the causes of dental abrasion have long been debated. Interspecific comparisons of extant ungulates have revealed that both phytoliths in grass and external abrasive matter may play important roles. Using analysis of extant sika deer living in various environments and showing continuous latitudinal variation in food habits from northern grazing to southern browsing, we quantitatively evaluated the influence of dietary and environmental properties on three dental variables: mesowear score (MS), molar wear rate, and M3 hypsodonty index. We used 547 skulls and 740 mandibles from 16 populations of sika deer to obtain the dental measurements. We found that only graminoid proportion in diet correlated with MS and the molar wear rate, implying that phytoliths in grass abrade dental tissues. In contrast, annual precipitation in habitat was not correlated with any of the dental variables. We also found a significant correlation between the molar wear rate (selective pressure for high-crowned molars) and the M3 hypsodonty index of extant sika deer, implying an evolutionary increment in molar height corresponding to the molar wear rate. Our intraspecific comparative analyses provide further support for use of mesowear analysis as a paleodiet estimation method; it not only reveals staple food types (graminoids or dicots) but also implies regional or seasonal variation in the diet of the species. PMID:24603896

  11. Wear-reducing Surface Functionalization of Implant Materials Using Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Oldorf, P.; Peters, R.; Reichel, S.; Schulz, A.-P.; Wendlandt, R.

    The aim of the project called "EndoLas" is the development of a reproducible and reliable method for a functionalization of articulating surfaces on hip joint endoprostheses due to a reduction of abrasion and wear by the generation of micro structures using ultrashort laser pulses. On the one hand, the microstructures shall ensure the capture of abraded particles, which cause third-body wear and thereby increase aseptic loosening. On the other hand, the structures shall improve or maintain the tribologically important lubricating film. Thereby, the cavities serve as a reservoir for the body's own synovial fluid. The dry friction, which promotes abrasion and is a part of the mixed friction in the joint, shall therefore be reduced. In experimental setups it was shown, that the abrasive wear can be reduced significantly due to micro-structuring the articulating implant surfaces. To shape the fine and deterministic cavities on the surfaces, an ultra-short pulsed laser, which is integrated in a high-precision, 5-axes micro-machining system, was used. The laser system, based on an Yb:YAG thin-disk regenerative amplifier, has an average output power of 50 W at the fundamental wavelength of 1030 nm, a maximum repetition rate of 400 kHz and a pulse duration of 6 ps. Due to this, a maximum pulse energy of 125 μJ is achievable. Furthermore external second and third harmonic generation enables the usage of wavelengths in the green and violet spectral range.

  12. Characterization of fine abrasive particles for optical fabrication

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Zhou, Y. Y.; Takahashi, Toshio; Quesnel, David J.; Lambropoulos, John C.

    1995-08-01

    Material removal during fine grinding operations is accomplished primarily by the action of individual abrasive particles on the glass surface. The mechanical properties of the abrasive are therefore important. Unfortunately it is difficult to directly measure the mechanical response of abrasives once they reach the scale of approximately 10 microns. As a result mechanical properties of fine abrasives are sometimes characterized in terms of an empirical `friability', based on the response of the abrasive to crushing by a metal ball in a vial. In this paper we report on modeling/experiments designed to more precisely quantify the mechanical properties of fine abrasives and ultimately to relate them to the conditions experienced by bound particles during grinding. Experiments have been performed on various types and sizes of diamond abrasives. The response of the particles is a strong function of the loading conditions and can be tracked by changing the testing parameters. Diamond size is also found to play a critical role, with finer diamonds less susceptible to fracture. A micromechanical model from the literature is employed estimate the forces likely to be seen during testing. We are also developing dynamic models to better predict the forces experienced during `friability' testing as a function of the testing parameters.

  13. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  14. Effect of different concentrations of fluoride in dentifrices on dentin erosion subjected or not to abrasion in situ/ex vivo.

    PubMed

    Magalhães, A C; Rios, D; Moino, A L; Wiegand, A; Attin, T; Buzalaf, M A R

    2008-01-01

    This in situ/ex vivo study assessed the effect of different concentrations of fluoride in dentifrices on dentin subjected to erosion or to erosion plus abrasion. Ten volunteers took part in this crossover and double-blind study performed in 3 phases (7 days). They wore acrylic palatal appliances containing 4 bovine dentin blocks divided in two rows: erosion and erosion plus abrasion. The blocks were subjected to erosion by immersion ex vivo in a cola drink (60 s, pH 2.6) 4 times daily. During this step, the volunteers brushed their teeth with one of three dentifrices D (5,000 ppm F, NaF, silica); C (1,100 ppm F, NaF, silica) and placebo (22 ppm F, silica). Then, the respective dentifrice slurry (1:3) was dripped on dentin surfaces. While no further treatment was performed in one row, the other row was brushed using an electric toothbrush for 30 s ex vivo. The appliances were replaced in the mouth and the volunteers rinsed with water. Dentin loss was determined by profilometry and analyzed by 2-way ANOVA/Bonferroni test (a = 0.05). Dentin loss after erosive-abrasive wear was significantly greater than after erosion alone. Wear was significantly higher for the placebo than for the D and C dentifrices, which were not significantly different from each other. It can be concluded that the presence of fluoride concentrations around 1,100 ppm in dentifrices is important to reduce dentin wear by erosion and erosion + abrasion, but the protective effect does not increase with fluoride concentration. (c) 2008 S. Karger AG, Basel

  15. Three-body wear of resin denture teeth with and without nanofillers.

    PubMed

    Stober, Thomas; Henninger, Moritz; Schmitter, Marc; Pritsch, Maria; Rammelsberg, Peter

    2010-02-01

    The wear behavior of newly developed denture teeth with nanofillers may be different from teeth with other chemical formulations. The purpose of this study was to examine the 3-body wear resistance of 11 different commercially available resin denture teeth. The materials tested were conventional (SR Orthotyp PE, Orthognath) and cross-linked acrylic resin teeth without inorganic fillers (Premium 8, SR Postaris DCL, Trubyte Portrait, Artiplus), composite resin teeth with inorganic fillers (SR Orthosit PE, Vitapan), and composite resin teeth (experimental materials) with inorganic nanofillers (NC Veracia Posterior, e-Ha, Mondial). Human enamel and a ceramic denture tooth (Lumin Vacuum) were used as reference materials. The 3-body wear test was performed in a wear machine developed by the Academic Center for Dentistry Amsterdam (ACTA), with millet suspension acting as an abrasive medium (n=10, test load: 15 N, slip rate: 20%, number of cycles: 100,000). Wear was determined with the aid of a profilometer. Data were analyzed with the Kruskal-Wallis test and Mann-Whitney U test using the closed testing approach (significance level for familywise error rate, alpha=.05). None of the acrylic and composite resin materials tested in this study demonstrated the 3-body wear resistance of ceramic teeth or human enamel. Teeth with inorganic fillers demonstrated significantly lower wear values than conventional or cross-linked acrylic resin teeth without fillers. Composite resin teeth with traditional fillers showed significantly lower wear than composite resin teeth with nanofillers. Denture teeth with and without inorganic fillers differed significantly with regard to the degree of wear generated in the ACTA wear simulator. The incorporation of nanofillers did not improve the wear resistance compared to teeth with traditional fillers.

  16. Time series analysis of tool wear in sheet metal stamping using acoustic emission

    NASA Astrophysics Data System (ADS)

    Vignesh Shanbhag, V.; Pereira, P. Michael; Rolfe, F. Bernard; Arunachalam, N.

    2017-09-01

    Galling is an adhesive wear mode that often affects the lifespan of stamping tools. Since stamping tools represent significant economic cost, even a slight improvement in maintenance cost is of high importance for the stamping industry. In other manufacturing industries, online tool condition monitoring has been used to prevent tool wear-related failure. However, monitoring the acoustic emission signal from a stamping process is a non-trivial task since the acoustic emission signal is non-stationary and non-transient. There have been numerous studies examining acoustic emissions in sheet metal stamping. However, very few have focused in detail on how the signals change as wear on the tool surface progresses prior to failure. In this study, time domain analysis was applied to the acoustic emission signals to extract features related to tool wear. To understand the wear progression, accelerated stamping tests were performed using a semi-industrial stamping setup which can perform clamping, piercing, stamping in a single cycle. The time domain features related to stamping were computed for the acoustic emissions signal of each part. The sidewalls of the stamped parts were scanned using an optical profilometer to obtain profiles of the worn part, and they were qualitatively correlated to that of the acoustic emissions signal. Based on the wear behaviour, the wear data can be divided into three stages: - In the first stage, no wear is observed, in the second stage, adhesive wear is likely to occur, and in the third stage severe abrasive plus adhesive wear is likely to occur. Scanning electron microscopy showed the formation of lumps on the stamping tool, which represents galling behavior. Correlation between the time domain features of the acoustic emissions signal and the wear progression identified in this study lays the basis for tool diagnostics in stamping industry.

  17. [Research progress of polyethylene inserts wear measurement and evaluation in total knee arthroplasty].

    PubMed

    Zhao, Feng; Wang, Chuan; Fan, Yubo

    2015-01-01

    Wear of polyethylene (PE) tibial inserts is a significant cause of implant failure of total knee arthroplasty (TKA). PE inserts wear measurement and evaluation is the key in TKA researches. There are many methods to measure insert wear. Qualitative methods such as observation are used to determine the wear and its type. Quantitative methods such as gravimetric analysis, coordinate measuring machines (CMM) and micro-computed tomography (micro-CT) are used to measure the mass, volume and geometry of wear. In this paper, the principle, characteristics and research progress of main insert wear evaluation method were introduced and the problems and disadvantages were analyzed.

  18. The Evolutionary Paradox of Tooth Wear: Simply Destruction or Inevitable Adaptation?

    PubMed Central

    Benazzi, Stefano; Nguyen, Huynh Nhu; Schulz, Dieter; Grosse, Ian R.; Gruppioni, Giorgio; Hublin, Jean-Jacques; Kullmer, Ottmar

    2013-01-01

    Over the last century, humans from industrialized societies have witnessed a radical increase in some dental diseases. A severe problem concerns the loss of dental materials (enamel and dentine) at the buccal cervical region of the tooth. This “modern-day” pathology, called non-carious cervical lesions (NCCLs), is ubiquitous and worldwide spread, but is very sporadic in modern humans from pre-industrialized societies. Scholars believe that several factors are involved, but the real dynamics behind this pathology are far from being understood. Here we use an engineering approach, finite element analysis (FEA), to suggest that the lack of dental wear, characteristic of industrialized societies, might be a major factor leading to NCCLs. Occlusal loads were applied to high resolution finite element models of lower second premolars (P2) to demonstrate that slightly worn P2s envisage high tensile stresses in the buccal cervical region, but when worn down artificially in the laboratory the pattern of stress distribution changes and the tensile stresses decrease, matching the results obtained in naturally worn P2s. In the modern industrialized world, individuals at advanced ages show very moderate dental wear when compared to past societies, and teeth are exposed to high tensile stresses at the buccal cervical region for decades longer. This is the most likely mechanism explaining enamel loss in the cervical region, and may favor the activity of other disruptive processes such as biocorrosion. Because of the lack of dental abrasion, our masticatory apparatus faces new challenges that can only be understood in an evolutionary perspective. PMID:23638020

  19. A study on practical use of underwater abrasive water jet cutting

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hitoshi; Demura, Kenji

    1993-09-01

    The practicality of underwater abrasive water jet cutting technology was studied in experiments. A study of abrasives in slurried form showed that optimum polymer concentration can be selected to suit underwater conditions. For the long-distance transport of slurry from the ocean surface to the ocean floor, a direct supply system by hose proved to be practical. This system takes advantage of the insolubility of the slurry in water due to a difference in specific gravity. For cutting thick steel plate at great ocean depths, a simulation with a pressurized container revealed the requirements for actual cutting. Confirmation of remote cutting operations will become the most important technology in field applications. Underwater sound vibration characteristics were found to change significantly in direct response to modifications in cutting conditions. This will be important basic data to develop an effective sensoring method.

  20. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  1. Magnetic Fluid Friction and Wear Behavior

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1998-01-01

    The friction and wear properties of two groups of magnetic fluids, one developed at NASA Lewis Research Center and a commercial fluid, were evaluated for boundary lubrication. Friction and wear measurements were made using a pin-on-disk apparatus. Three different ball materials were evaluated, (1) 440C, (2) Al2O3, and (3) Si3N4 against 440C disks. The first class of magnetic fluids have a low vapor pressure hydrocarbon base oil and are suitable for space application. Four variations of this fluid were evaluated: (1) the base oil, (2) base oil with anti-wear additives, (3) a 100 Gauss strength magnetic fluid, and (4) a 400 gauss magnetic fluid. The commercial fluid base oil and four different magnetic particle concentration levels have been evaluated. A space qualified fluorinated lubricant was tested for base line comparison. Hardness, optical microscopy, surface profilometry, and surface analysis were used to characterize the test specimens. Friction was unaffected by the concentration of magnetic particles. Wear rates for magnetic fluids were slightly higher than the base oil. The low vapor pressure magnetic fluid has better wear characteristics than the space qualified fluorinated lubricant.

  2. Employees Wearing Religious Attire

    ERIC Educational Resources Information Center

    Zirkel, Perry

    2004-01-01

    While adherents to many religions can be identified by distinctive clothing or accessories, the wearing of such garb by teachers is not necessarily related to evangelism in the classroom. The following case and the accompanying question-and-answer discussion illustrate the problem of the principal caught between the rock of First Amendment…

  3. Wear-Out Sensitivity Analysis Project Abstract

    NASA Technical Reports Server (NTRS)

    Harris, Adam

    2015-01-01

    During the course of the Summer 2015 internship session, I worked in the Reliability and Maintainability group of the ISS Safety and Mission Assurance department. My project was a statistical analysis of how sensitive ORU's (Orbital Replacement Units) are to a reliability parameter called the wear-out characteristic. The intended goal of this was to determine a worst case scenario of how many spares would be needed if multiple systems started exhibiting wear-out characteristics simultaneously. The goal was also to determine which parts would be most likely to do so. In order to do this, my duties were to take historical data of operational times and failure times of these ORU's and use them to build predictive models of failure using probability distribution functions, mainly the Weibull distribution. Then, I ran Monte Carlo Simulations to see how an entire population of these components would perform. From here, my final duty was to vary the wear-out characteristic from the intrinsic value, to extremely high wear-out values and determine how much the probability of sufficiency of the population would shift. This was done for around 30 different ORU populations on board the ISS.

  4. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    PubMed Central

    Reinders, Jörn; Kretzer, Jan Philippe

    2014-01-01

    Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P ≤ 0.001) were observed for the unstable knee (14.58 ± 0.56 mg/106 cycles) compared to the stable knee (7.97 ± 0.87 mg/106 cycles). A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P ≤ 0.01). This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study. PMID:25276820

  5. Potential countersample materials for in vitro simulation wear testing.

    PubMed

    Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M

    2002-05-01

    Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.

  6. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    NASA Astrophysics Data System (ADS)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  7. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  8. Wear Resistance Increase by Friction Stir Processing for Partial Magnesium Replacement in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Balos, Sebastian; Labus Zlatanovic, Danka; Janjatovic, Petar; Dramicanin, Miroslav; Rajnovic, Dragan; Sidjanin, Leposava

    2018-03-01

    In this paper, the influence of friction stir processing (FSP) was evaluated as a way of increasing mechanical properties and a way of replacing the magnesium content in aluminium alloys. FSP was done on AA5754 H111 aluminium alloy, containing 3 % Mg, by using various types of tools and different welding speeds, rotational speeds and tilt angles. Wear test was done against SiC abrasive papers. SiC was used to simulate extreme abrasive wear conditions. The wear test was done on untreated AA5754 specimens, processed AA5754 specimens and untreated AA5083 H111 specimens, the latter containing 4.5 % Mg. AA5083 was chosen as an alternative to AA5754, but with a significantly higher Mg content. Base material microhardness was 60 HV1 and 80 HV1 for AA5754 and AA5083 alloys respectively. To find the effect of FSP on AA5754 alloy, microstructures were studied, mainly grain size in the stir zone. It was found, that an elevated processing and rotational speed, without tilt angle and the tool without a reservoir resulted in an increase in hardness of the AA5754 to 70 HV1, but with the occurrence of tunneling defect and the wear rate of 79.3 mg. Lower FSP parameters and a tilted tool with a reservoir resulted in microhardness of 68 HV1 and wear rate of 68.2 mg without tunneling. These wear values are lower than those obtained with unmodified Al-alloys: AA5754 97.2 mg and AA5083 86.3 mg. An increased wear resistance can be attributed to the combined effect of grain boundary strengthening mechanism and solid solution strengthening, versus only the latter in untreated alloys.

  9. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings

    NASA Astrophysics Data System (ADS)

    Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A.; Poursalehi, R.

    2017-09-01

    Zn-Ni and Zn-Ni-Al2O3 multilayer coatings with 32, 128, and 512 layers were electroplated on a low carbon steel substrate by pulse electrodeposition under alternative changes in the duty cycle between 20% and 90% and a constant frequency of 250 Hz. Corrosion behavior was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) and wear behavior of the coatings was evaluated by a pin on disk test. The results showed that the corrosion resistance of coatings was improved by increasing the number of layers (the decrease in layer thickness) as well as the presence of alumina nanoparticles. The lowest corrosion current density corresponds to Zn-Ni-Al2O3 with 512 layers equal to 3.74 µA cm-2. Increasing the number of layers in the same total thickness and the presence of alumina nanoparticles within the coating also leads to the improvement in wear resistance of the samples. The coefficient of friction decreased with increasing number of layers and the lowest coefficient of friction (0.517) corresponds to Zn-Ni-Al2O3 coating with 512 layers. Wear mechanism of Zn-Ni coatings with a different number of layers is adhesive while in the Zn-Ni-Al2O3 coatings wear mechanism is a combination of adhesive and abrasive wear, where by increasing the number of the layers to 512 abrasive wear mechanism becomes dominant.

  10. Surface Abrasive Torsion for Improved Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Moon, Ji Hyun; Baek, Seung Mi; Lee, Seok Gyu; Yoon, Jae Ik; Lee, Sunghak; Kim, Hyoung Seop

    2018-05-01

    A novel process of discrete surface abrasion during simple torsion (ST), named "surface abrasive torsion (SAT)," is proposed to overcome the limitation of ST, i.e., insufficient strain for severe plastic deformation (SPD) due to cracks initiated on the surface, by removing the roughened surface region. The effect of SAT on delayed crack initiation was explained using finite element simulations. Larger shear deformation applicable to the specimen in SAT than ST was demonstrated experimentally.

  11. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    PubMed

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  12. The High performance of nanocrystalline CVD diamond coated hip joints in wear simulator test.

    PubMed

    Maru, M M; Amaral, M; Rodrigues, S P; Santos, R; Gouvea, C P; Archanjo, B S; Trommer, R M; Oliveira, F J; Silva, R F; Achete, C A

    2015-09-01

    The superior biotribological performance of nanocrystalline diamond (NCD) coatings grown by a chemical vapor deposition (CVD) method was already shown to demonstrate high wear resistance in ball on plate experiments under physiological liquid lubrication. However, tests with a close-to-real approach were missing and this constitutes the aim of the present work. Hip joint wear simulator tests were performed with cups and heads made of silicon nitride coated with NCD of ~10 μm in thickness. Five million testing cycles (Mc) were run, which represent nearly five years of hip joint implant activity in a patient. For the wear analysis, gravimetry, profilometry, scanning electron microscopy and Raman spectroscopy techniques were used. After 0.5 Mc of wear test, truncation of the protruded regions of the NCD film happened as a result of a fine-scale abrasive wear mechanism, evolving to extensive plateau regions and highly polished surface condition (Ra<10nm). Such surface modification took place without any catastrophic features as cracking, grain pullouts or delamination of the coatings. A steady state volumetric wear rate of 0.02 mm(3)/Mc, equivalent to a linear wear of 0.27 μm/Mc favorably compares with the best performance reported in the literature for the fourth generation alumina ceramic (0.05 mm(3)/Mc). Also, squeaking, quite common phenomenon in hard-on-hard systems, was absent in the present all-NCD system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    SciTech Connect

    Rojacz, H., E-mail: rojacz@ac2t.at

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocitymore » leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.« less

  14. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less

  15. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  16. Physico-mechanical and wear properties of novel sustainable sour-weed fiber reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Chauhan, Shivani; Katiyar, Jitendra Kumar

    2018-04-01

    In this study, a novel natural fiber i.e. Sour-weed botanically known as ‘Rumex acetosella’ has been first time introduced as natural reinforcements to polyester matrix. The natural fiber based polyester composites were fabricated by hand lay-up technique using different sizes and different weight percentages. In Sour-weed/Polyester composites, physical (density, water absorption and hardness), mechanical properties (tensile and impact properties) and wear properties (sand abrasion and sliding wear) were investigated for different sizes of sour weed of 0.6 mm, 5 mm, 10 mm, 15 mm and 20 mm at 3, 6 and 9 weight percent loading, respectively in polyester matrix. Furthermore, on average value of results, the multi-criteria optimization technique i.e. TOPSIS was employed to decide the ranking of the composites. From the optimized results, it was observed that Sour-weed composite reinforced with fiber’s size of 15 mm at 6 wt% loading demonstrated the best ranked composite exhibiting best overall properties as average tensile strength of 34.33 MPa, average impact strength of 10 Joule, average hardness of 12 Hv, average specific sand abrasion wear rate of 0.0607 mm3 N‑1m‑1, average specific sliding wear rate of 0.002 90 mm3 N‑1m‑1, average percentage of water absorption of 3.446% and average density of 1.013 among all fabricated composites.

  17. Property-process relations in simulated clinical abrasive adjusting of dental ceramics.

    PubMed

    Yin, Ling

    2012-12-01

    This paper reports on property-process correlations in simulated clinical abrasive adjusting of a wide range of dental restorative ceramics using a dental handpiece and diamond burs. The seven materials studied included four mica-containing glass ceramics, a feldspathic porcelain, a glass-infiltrated alumina, and a yttria-stabilized tetragonal zirconia. The abrasive adjusting process was conducted under simulated clinical conditions using diamond burs and a clinical dental handpiece. An attempt was made to establish correlations between process characteristics in terms of removal rate, chipping damage, and surface finish and material mechanical properties of hardness, fracture toughness and Young's modulus. The results show that the removal rate is mainly a function of hardness, which decreases nonlinearly with hardness. No correlations were noted between the removal rates and the complex relations of hardness, Young's modulus and fracture toughness. Surface roughness was primarily a linear function of diamond grit size and was relatively independent of materials. Chipping damage in terms of the average chipping width decreased with fracture toughness except for glass-infiltrated alumina. It also had higher linear correlations with critical strain energy release rates (R²=0.66) and brittleness (R²=0.62) and a lower linear correlation with indices of brittleness (R²=0.32). Implications of these results can provide guidance for the microstructural design of dental ceramics, optimize performance, and guide the proper selection of technical parameters in clinical abrasive adjusting conducted by dental practitioners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Preventive effect of toothpastes with MMP inhibitors on human dentine erosion and abrasion in vitro

    PubMed Central

    Hannas, Angelica Reis; Kato, Melissa Thiemi; Cardoso, Cristiane de Almeida Baldini; Magalhães, Ana Carolina; Pereira, José Carlos; Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo

    2016-01-01

    ABSTRACT The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract) was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. Material and Methods Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3) containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste). Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05). Results The mean wear values (μm) were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. Conclusion The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion. PMID:27008258

  19. Preventive effect of toothpastes with MMP inhibitors on human dentine erosion and abrasion in vitro.

    PubMed

    Hannas, Angelica Reis; Kato, Melissa Thiemi; Cardoso, Cristiane de Almeida Baldini; Magalhães, Ana Carolina; Pereira, José Carlos; Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo

    2016-01-01

    The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract) was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3) containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste). Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05). The mean wear values (μm) were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion.

  20. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    SciTech Connect

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5more » M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.« less

  1. Wear Particle Atlas. Revised

    DTIC Science & Technology

    1982-06-28

    known to be generated by cavitation erosion and more importantly by welding or grinding processes. Spheres produced in fatigue cracks may be...generated by welding , grinding, and erosion are frequently over 10/vm. Lubricating oils, as supplied by manufacturers, frequently contain metal...coefficient of friction in nonlubricated contacts If a test is conducted in vacuum, adhesive wear (metal-to-metal welding ) will occur much more rapidly

  2. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Iijima, Akihiro; Sato, Keiichi; Yano, Kiyoko; Tago, Hiroshi; Kato, Masahiko; Kimura, Hirokazu; Furuta, Naoki

    Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters ( Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.

  3. Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles

    NASA Astrophysics Data System (ADS)

    Liu, Aiguo; Guo, Mianhuan; Hu, Hailong

    2010-08-01

    Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.

  4. Wear and Tear - Mechanical

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore

    2008-01-01

    The focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have some component that moves at least once, in response to some type of passive or active control system. For the structure, aging may proceed as a gradual degradation of mechanical properties and/or function, possibly leading to complete structural failure over an extended period of time. However, over the 50 years of the Space Age such failures appear to be unusual. In contrast, failures for mechanisms are much more frequent and may have a very serious effect on mission performance. Just as on Earth, all moving devices are subject to normal (and possibly accelerated) degradation from mechanical wear due to loss or breakdown of lubricant, misalignment, temperature cycling effects, improper design/selection of materials, fatigue, and a variety of other effects. In space, such environmental factors as severe temperature swings (possibly 100's of degrees C while going in and out of direct solar exposure), hard vacuum, micrometeoroids, wear from operation in a dusty or contaminated environment, and materials degradation from radiation can be much worse. In addition, there are some ground handling issues such as humidity, long term storage, and ground transport which may be of concern. This chapter addresses the elements of the mechanical subsystem subject to wear, and identifies possible causes. The potential impact of such degradation is addressed, albeit with the recognition that the impact of such wear often depends on when it occurs and on what specific components. Most structural elements of the mechanical system typically are conservatively designed (often to a safety factor of greater than approximately 1.25 on yield for

  5. Longitudinal study of gastroesophageal reflux and erosive tooth wear.

    PubMed

    Wilder-Smith, Clive H; Materna, Andrea; Martig, Lukas; Lussi, Adrian

    2017-10-25

    Approximately 60% of patients presenting to dentists with erosive tooth wear have significant gastroesophageal reflux (GERD), despite minor reflux symptoms. No longitudinal studies of reflux-associated erosive tooth wear and of reflux characteristics have been reported to date. The aim of this study was to characterize the longitudinal course of GERD and of associated erosive tooth wear, as well as factors predictive of its progression, in a large group of patients. Seventy-two patients presenting to dentists with clinically significant erosive tooth wear and increased esophageal acid exposure by 24-h multichannel intraluminal pH-impedance measurement (MII-pH) were re-assessed clinically and by MII-pH after 1 year treatment with esomeprazole 20 mg twice-daily. Predictive factors for erosive tooth wear were assessed by logistic regression. At follow-up, no further progression in erosive tooth wear was observed in 53 (74%) of patients. The percentage of time with a pH < 4, the number of acid reflux episodes and the percentage of proximal esophageal reflux off-PPI did not change significantly after one year, but the number of weakly acidic reflux episodes decreased significantly in the large subgroup without progression. None of the baseline demographic, clinical, endoscopic or esophageal acid exposure characteristics were significantly associated with progression of erosive tooth wear at follow-up. In this longitudinal study in patients with erosive tooth wear and oligosymptomatic GERD receiving esomeprazole for one year, erosive tooth wear did not progress further in the majority of patients. Background acidic esophageal reflux exposure appeared stable over time, whereas weakly acidic exposure decreased significantly in patients without erosion progression. MII-pH measurements on-PPI and with healthy controls will be useful in the further elucidation of the causal role of reflux in erosive tooth wear. ClinicalTrials.gov , retrospectively registered: NCT02087345 .

  6. Erosive and Mechanical Tooth Wear in Viking Age Icelanders.

    PubMed

    Richter, Svend; Eliasson, Sigfus Thor

    2017-08-29

    (1) Background: The importance of the Icelandic Sagas as a source of information about diet habits in medieval Iceland, and possibly other Nordic countries, is obvious. Extensive tooth wear in archaeological material worldwide has revealed that the main cause of this wear is believed to have been a coarse diet. Near the volcano Hekla, 66 skeletons dated from before 1104 were excavated, and 49 skulls could be evaluated for tooth wear. The purpose of this study was to determine the main causes of tooth wear in light of diet and beverage consumption described in the Sagas; (2) Materials and methods: Two methods were used to evaluate tooth wear and seven for age estimation; (3) Results: Extensive tooth wear was seen in all of the groups, increasing with age. The first molars had the highest score, with no difference between sexes. These had all the similarities seen in wear from a coarse diet, but also presented with characteristics that are seen in erosion in modern Icelanders, through consuming excessive amounts of soft drinks. According to the Sagas, acidic whey was a daily drink and was used for the preservation of food in Iceland, until fairly recently; (4) Conclusions: It is postulated that the consumption of acidic drinks and food, in addition to a coarse and rough diet, played a significant role in the dental wear seen in ancient Icelanders.

  7. Erosive and Mechanical Tooth Wear in Viking Age Icelanders

    PubMed Central

    Eliasson, Sigfus Thor

    2017-01-01

    (1) Background: The importance of the Icelandic Sagas as a source of information about diet habits in medieval Iceland, and possibly other Nordic countries, is obvious. Extensive tooth wear in archaeological material worldwide has revealed that the main cause of this wear is believed to have been a coarse diet. Near the volcano Hekla, 66 skeletons dated from before 1104 were excavated, and 49 skulls could be evaluated for tooth wear. The purpose of this study was to determine the main causes of tooth wear in light of diet and beverage consumption described in the Sagas; (2) Materials and methods: Two methods were used to evaluate tooth wear and seven for age estimation; (3) Results: Extensive tooth wear was seen in all of the groups, increasing with age. The first molars had the highest score, with no difference between sexes. These had all the similarities seen in wear from a coarse diet, but also presented with characteristics that are seen in erosion in modern Icelanders, through consuming excessive amounts of soft drinks. According to the Sagas, acidic whey was a daily drink and was used for the preservation of food in Iceland, until fairly recently; (4) Conclusions: It is postulated that the consumption of acidic drinks and food, in addition to a coarse and rough diet, played a significant role in the dental wear seen in ancient Icelanders. PMID:29563430

  8. Wear of human enamel: a quantitative in vitro assessment.

    PubMed

    Kaidonis, J A; Richards, L C; Townsend, G C; Tansley, G D

    1998-12-01

    Many factors influence the extent and rate at which enamel wears. Clinical studies in humans are limited by difficulties in the accurate quantification of intra-oral wear and by a lack of control over the oral environment. The purpose of this study was to determine the wear characteristics of human dental enamel under controlled experimental conditions. An electro-mechanical tooth wear machine, in which opposing enamel surfaces of sectioned, extracted teeth were worn under various conditions, was used to simulate tooth grinding or bruxism. Enamel surface wear was quantified by weight to an accuracy of 0.1 mg, with water uptake and loss controlled. The variables considered included the structure and hardness of enamel, facet area, duration of tooth contact, relative speed of opposing surfaces, temperature, load, pH, and the nature of the lubricant. Enamel wear under non-lubricated conditions increased with increasing load over the range of 1.7 to 16.2 kg. The addition of a liquid lubricant (pH = 7) reduced enamel wear up to 6.7 kg, but when the load increased above this threshold, the rate of wear increased dramatically. With the viscosity of the lubricant constant and pH = 3, the rate of wear was further reduced to less than 10% of the non-lubricated rate at 9.95 kg, after which the rate again increased substantially. Under more extreme conditions (pH = 1.2, simulating gastric acids), the wear was excessive under all experimental loads. When saliva was used as a lubricant, the amount of wear was relatively low at 9.95 kg, but rapid wear occurred at 14.2 kg and above. These results indicate that under non-lubricated conditions, enamel wear remains low at high loads due to the dry-lubricating capabilities of fine enamel powder. Under lubricated conditions, low loads with an acidic lubricant lead to little enamel wear, whereas very low pH results in a high rate of wear under all loads.

  9. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    PubMed

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  10. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy.

    Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.

  11. Morphology of powders of tungsten carbide used in wear-resistant coatings and deposition on the PDC drill bits

    NASA Astrophysics Data System (ADS)

    Zakharova, E. S.; Markova, I. Yu; Maslov, A. L.; Polushin, N. I.; Laptev, A. I.

    2017-05-01

    Modern drill bits have high abrasive wear in the area of contact with the rock and removed sludge. Currently, these bits have a protective layer on the bit body, which consists of a metal matrix with inclusions of carbide particles. The research matrix of this coating and the wear-resistant particles is a prerequisite in the design and production of drill bits. In this work, complex investigation was made for various carbide powders of the grades Relit (tungsten carbide produced by Ltd “ROSNAMIS”) which are used as wear-resistant particles in the coating of the drill bit body. The morphology and phase composition of the chosen powders as well as the influence of a particle shape on prospects of their application in wear-resistance coating presented in this work.

  12. Structure and properties of corrosion and wear resistant Cr-Mn-N steels

    NASA Astrophysics Data System (ADS)

    Lenel, U. R.; Knott, B. R.

    1987-06-01

    Steels containing about 12 pct Cr, 10 pct Mn, and 0.2 pct N have been shown to have an unstable austenitic microstructure and have good ductility, extreme work hardening, high fracture strength, excellent toughness, good wear resistance, and moderate corrosion resistance. A series of alloys containing 9.5 to 12.8 pct Cr, 5.0 to 10.4 pct Mn, 0.16 to 0.32 pct N, 0.05 pct C, and residual elements typical of stainless steels was investigated by microstructural examination and mechanical, abrasion, and corrosion testing. Microstructures ranged from martensite to unstable austenite. The unstable austenitic steels transformed to α martensite on deformation and displayed very high work hardening, exceeding that of Hadfield’s manganese steels. Fracture strengths similar to high carbon martensitic stainless steels were obtained while ductility and toughness values were high, similar to austenitic stainless steels. Resistance to abrasive wear exceeded that of commercial abrasion resistant steels and other stainless steels. Corrosion resistance was similar to that of other 12 pct Cr steels. Properties were not much affected by minor compositional variations or rolled-in nitrogen porosity. In 12 pct Cr-10 pct Mn alloys, ingot porosity was avoided when nitrogen levels were below 0.19 pet, and austenitic microstructures were obtained when nitrogen levels exceeded 0.14 pct.

  13. Preventive Effect of CPP-ACPF Paste and Fluoride Toothpastes Against Erosion and Erosion Plus Abrasion 
In Vitro - A 3D Profilometric Analysis.

    PubMed

    Soares, Genaina Guimarães; Magalhães, Pâmela Amorim; Fonseca, Ana Beatriz Monteiro; Tostes, Monica Almeida; Silva, Eduardo Moreira da; Coutinho, Thereza Christina Lopes

    To evaluate the effect of CPP-ACPF paste and fluoride toothpastes on enamel subjected to erosion and erosion plus abrasion in vitro. A total of 220 human enamel blocks were divided into eleven groups (n = 20): CPP-ACPF paste (MPP), potassium nitrate/sodium fluoride toothpaste (PE), sodium fluoride toothpaste (FD), fluoride-free toothpaste (SO) and control (erosion only with no paste or toothpastes; CO) according to the experimental design: erosion or erosion plus abrasion immediately after erosion (ERO+I-ABR) or 30 min after erosion (ERO+30min-ABR). For 5 days, the specimens were subjected to: (1) erosive challenge (EC) (cola drink, 4 x 5 min/day), topical application of the undiluted paste or diluted toothpastes (1:2 w/w) (4 x 1 min/ day) plus 1 h in artificial saliva (AS) between cycles and overnight; or (2) EC plus abrasion (4 x /60 s/day) performed with the diluted toothpastes (no MMP) plus 1 h in AS between cycles and overnight. Erosion depth was quantified through a 3D profilometer. Data were analysed using Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (p = 0.05). CPP-ACPF paste and NaF toothpaste showed lowest enamel wear among groups and reduced tissue loss by 89% in erosion challenge. Abrasion led to higher enamel wear than erosion only (p = 0.030). ERO+30min-ABR had no protective effect when compared to ERO+I-ABR (p > 0.05). A high frequency of CPP-ACPF paste application (4x daily) is effective in reducing the effects of erosion. A waiting period before performing toothbrushing does not protect enamel against erosion regardless the composition of the toothpastes.

  14. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    PubMed Central

    Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Tao, Kai

    2018-01-01

    In this study, the effects of cerium (Ce) addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism. PMID:29415492

  15. Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings

    NASA Astrophysics Data System (ADS)

    Viswanathan, S.; Mohan, L.; Bera, Parthasarathi; Kumar, V. Praveen; Barshilia, Harish C.; Anandan, C.

    2017-08-01

    A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D / I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/ sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.

  16. Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers

    NASA Astrophysics Data System (ADS)

    Attal, Mikaël; Lavé, Jérôme

    2009-12-01

    In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.

  17. Clinical pulmonary function and industrial respirator wear

    SciTech Connect

    Raven, P.B.; Moss, R.F.; Page, K.

    1981-12-01

    This investigation was the initial step in determining a clinical pulmonary test which could be used to evaluate workers as to their suitability to industrial respirator wear. Sixty subjects, 12 superior, 37 normal, and 11 moderately impaired with respect to lung function tests were evaluated with a battery of clinical pulmonary tests while wearing an industrial respirator. The respirator was a full-face mask (MSA-Ultravue) demand breathing type equipped with an inspiratory resistance of 85mm H/sub 2/O at 85 L/min air flow and an expiratory resistance of 25mm H/sub 2/O at 85 L/min air flow. Comparisons of these tests were mademore » between the three groups of subjects both with and without a respirator. It appears that those lung tests which measure the flow characteristics of the lung especially those that are effort dependant are more susceptible to change as a result of respirator wear. Hence, the respirator affects the person with superior lung function to a greater degree than the moderately impaired person. It was suggested that the clinical test of 15 second maximum voluntary ventilations (MVV./sub 25/) may be the test of choice for determining worker capability in wearing an industrial respirator.« less

  18. Quantification of in vitro produced wear sites on composite resins using contact profilometry and CCD microscopy: a methodological investigation.

    PubMed

    Koottathape, Natthavoot; Takahashi, Hidekazu; Finger, Wernerj; Kanehira, Masafumi; Iwasaki, Naohiko; Aoyagi, Yujin

    2012-06-01

    Although attritive and abrasive wear of recent composite resins has been substantially reduced, in vitro wear testing with reasonably simulating devices and quantitative determination of resulting wear is still needed. Three-dimensional scanning methods are frequently used for this purpose. The aim of this trial was to compare maximum depth of wear and volume loss of composite samples, evaluated with a contact profilometer and a non-contact CCD camera imaging system, respectively. Twenty-three random composite specimens with wear traces produced in a ball-on-disc sliding device, using poppy seed slurry and PMMA suspension as third-body media, were evaluated with the contact profilometer (TalyScan 150, Taylor Hobson LTD, Leicester, UK) and with the digital CCD microscope (VHX1000, KEYENCE, Osaka, Japan). The target parameters were maximum depth of the wear and volume loss.Results - The individual time of measurement needed with the non-contact CCD method was almost three hours less than that with the contact method. Both, maximum depth of wear and volume loss data, recorded with the two methods were linearly correlated (r(2) > 0.97; p < 0.01). The contact scanning method and the non-contact CCD method are equally suitable for determination of maximum depth of wear and volume loss of abraded composite resins.

  19. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    NASA Astrophysics Data System (ADS)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  20. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  1. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  2. Friction and wear behavior of graphite fiber reinforced polymide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Sliney, H. E.

    1977-01-01

    The friction and wear rate characteristics of 50/50 (weight percent) graphite fiber polyimide composites were studied by sliding metallic hemispherically tipped riders against disks made from the composites. Two different polyimides and two different graphite fibers were evaluated. Also studied were such variables as the effect of moisture in an air atmosphere; the effect of temperature; and the effect of different sliding speeds. In general, wear to the the metallic riders was negligible, and composite wear increased at a constant rate as a function of number of sliding cycles.

  3. Abrasion behavior of aluminum and composite skin coupons, stiffened skins and stiffened panels representative of transport airplane structures

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    A three-phase investigation was conducted to compare the friction and wear response of aluminum and graphite-epoxy composite materials when subjected to loading conditions similar to those experienced by the skin panels on the underside of a transport airplane during an emergency belly landing on a runway surface. The first phase involved a laboratory test which used a standard belt sander to provide the sliding abrasive surface. Small skin-coupon test specimens were abraded over a range of pressures and velocities to determine the effects of these variables on the coefficient of friction and wear rate. The second phase involved abrading I-beam stiffened skins on actual runway surface over the same range of pressures and velocities used in the first phase. In the third phase, large stiffened panels which most closely resembled transport fuelage skin construction were abraded on a runway surface. This report presents results from each phase of the investigation and shows comparisons between the friction and wear behavior of the aluminum and graphite-epoxy composite materials.

  4. Pleurectomy versus pleural abrasion for primary spontaneous pneumothorax in children.

    PubMed

    Joharifard, Shahrzad; Coakley, Brian A; Butterworth, Sonia A

    2017-05-01

    Primary spontaneous pneumothorax (PSP) represents a common indication for urgent surgical intervention in children. First episodes are often managed with thoracostomy tube, whereas recurrent episodes typically prompt surgery involving apical bleb resection and pleurodesis, either via pleurectomy or pleural abrasion. The purpose of this study was to assess whether pleurectomy or pleural abrasion was associated with lower postoperative recurrence. The records of patients undergoing surgery for PSP between February 2005 and December 2015 were retrospectively reviewed. Recurrence was defined as an ipsilateral pneumothorax requiring surgical intervention. Bivariate logistic regressions were used to identify factors associated with recurrence. Fifty-two patients underwent 64 index operations for PSP (12 patients had surgery for contralateral pneumothorax, and each instance was analyzed separately). The mean age was 15.7±1.2years, and 79.7% (n=51) of patients were male. In addition to apical wedge resection, 53.1% (n=34) of patients underwent pleurectomy, 39.1% (n=25) underwent pleural abrasion, and 7.8% (n=5) had no pleural treatment. The overall recurrence rate was 23.4% (n=15). Recurrence was significantly lower in patients who underwent pleurectomy rather than pleural abrasion (8.8% vs. 40%, p<0.01). In patients who underwent pleural abrasion without pleurectomy, the relative risk of recurrence was 2.36 [1.41-3.92, p<0.01]. Recurrence of PSP is significantly reduced in patients undergoing pleurectomy compared to pleural abrasion. Level III, retrospective comparative therapeutic study. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of NaF, SnF(2), and TiF(4) Toothpastes on Bovine Enamel and Dentin Erosion-Abrasion In Vitro.

    PubMed

    Comar, Lívia Picchi; Gomes, Marina Franciscon; Ito, Naiana; Salomão, Priscila Aranda; Grizzo, Larissa Tercília; Magalhães, Ana Carolina

    2012-01-01

    The aim of this study was to compare the effect of toothpastes containing TiF(4), NaF, and SnF(2) on tooth erosion-abrasion. Bovine enamel and dentin specimens were distributed into 10 groups (n = 12): experimental placebo toothpaste (no F); NaF (1450 ppm F); TiF(4) (1450 ppm F); SnF(2) (1450 ppm F); SnF(2) (1100 ppm F) + NaF (350 ppm F); TiF(4) (1100 ppm F) + NaF (350 ppm F); commercial toothpaste Pro-Health (SnF(2)-1100 ppm F + NaF-350 ppm F, Oral B); commercial toothpaste Crest (NaF-1.500 ppm F, Procter & Gamble); abrasion without toothpaste and only erosion. The erosion was performed 4 × 90 s/day (Sprite Zero). The toothpastes' slurries were applied and the specimens abraded using an electric toothbrush 2 × 15 s/day. Between the erosive and abrasive challenges, the specimens remained in artificial saliva. After 7 days, the tooth wear was evaluated using contact profilometry (μm). The experimental toothpastes with NaF, TiF(4), SnF(2), and Pro-Health showed a significant reduction in enamel wear (between 42% and 54%). Pro-Health also significantly reduced the dentin wear. The toothpastes with SnF(2)/NaF and TiF(4)/NaF showed the best results in the reduction of enamel wear (62-70%) as well as TiF(4), SnF(2), SnF(2)/NaF, and TiF(4)/NaF for dentin wear (64-79%) (P < 0.05). Therefore, the experimental toothpastes containing both conventional and metal fluoride seem to be promising in reducing tooth wear.

  6. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    SciTech Connect

    Alsem, Daniel Henricus

    2006-01-01

    or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of ~0.20±0.05 after a short time at an initial value of ~0.11±0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.« less

  7. Mechanisms for fatigue and wear of polysilicon structural thin films

    NASA Astrophysics Data System (ADS)

    Alsem, Daniel Henricus

    dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of ˜0.20+/-0.05 after a short time at an initial value of ˜0.11+/-0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.

  8. Effect of carbon content on friction and wear of cast irons

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  9. Field evidence of two-phase abrasion process

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Szabo, T.; Jerolmack, D. J.; Domokos, G.

    2013-12-01

    The rounded shape of river rocks is clear evidence that abrasion due to bed load transport is a significant agent for mass loss. Its contribution to downstream fining, however, is typically assumed to be negligible - as diminution trends may be explained solely by size-selective transport. A recent theory has predicted that pebble abrasion occurs in two well separated phases: in Phase 1, an intially-polyhedral pebble rounds to the shape of an inscribed ellipsoid without any change in axis dimensions; in Phase II, axis dimensions are slowly reduced. Importantly, Phase I abrasion means that an initially-blocky pebble may lose up to half its mass without any apparent change in 'size', which is only measured as the length of a single pebble axis by most field researchers. We hypothesize that field studies have significantly underestimated the importance of abrasion because they do not quantify pebble shape, and we set out to demonstrate that two-phase abrasion occurs in a natural stream. Our study examines downstream trends in pebble size and shape along a 10-km stretch of the Rio Mameyes within the Luquillo Critical Zone observatory, where volcaniclastic cobbles and boulders are transported by bed load at slopes up to 10%. The upper reaches of the stream consist of alluviated bedrock valleys that preclude sediment storage and thus minimize size-selective transport, which allows us to isolate the effects of abrasion. The lower 5 km is an alluvial river in which size-selective transport becomes operative. We quantified the shape and size of thousands of pebbles along the profile using hand and image-based techniques. The data provide the first field validation of two-phase abrasion; in the bedrock reaches, pebbles clearly evolve toward ellipsoids without any significant change in axis dimensions (rounding), while in the lower reaches pebbles slowly reduce their axis dimensions with little or no change in roundness. Results also show that shape metrics determined from

  10. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  11. The measurement of enamel wear of two toothpastes.

    PubMed

    Joiner, Andrew; Weader, Elizabeth; Cox, Trevor F

    2004-01-01

    The aim of this study was to compare the enamel abrasivity of a whitening toothpaste with a standard silica toothpaste. Polished human enamel blocks (4 x 4 mm) were indented with a Knoop diamond. The enamel blocks were attached to the posterior buccal surfaces of full dentures and worn by adult volunteers for 24 hours per day. The blocks were brushed ex vivo for 30 seconds, twice per day with the randomly assigned toothpaste (n = 10 per treatment). The products used were either a whitening toothpaste containing Perlite or a standard silica toothpaste. After four, eight and twelve weeks, one block per subject was removed and the geometry of each Knoop indent was re-measured. From the baseline and post-treatment values of indent length, the amount of enamel wear was calculated from the change in the indent depth. The mean enamel wear (sd) for the whitening toothpaste and the standard silica toothpaste after four weeks was 0.20 (0.11) and 0.14 (0.10); after 8 weeks was 0.44 (0.33) and 0.18 (0.17), and after 12 weeks was 0.60 (0.72) and 0.67 (0.77) microns respectively. After four, eight and twelve weeks, the difference in enamel wear between the two toothpastes was not of statistical significance (p > 0.05, 2 sample t-test) at any time point. The whitening toothpaste did not give a statistically significantly greater level of enamel wear as compared to a standard silica toothpaste over a 4-, 8- and 12-weeks period.

  12. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  13. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following

  14. Compact friction and wear machine

    NASA Astrophysics Data System (ADS)

    Hannigan, James W.; Schwarz, Ricardo B.

    1988-08-01

    We have developed a compact ring-on-ring wear machine that measures the friction coefficient between large area surfaces as a function of time, normal stress, and sliding velocity. The machine measures the temperature of the sliding surfaces and collects the wear debris.

  15. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  16. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  17. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  18. Propelled abrasive grit for weed control in organic silage corn

    USDA-ARS?s Scientific Manuscript database

    Weed management in organic farming requires many strategies to accomplish acceptable control and maintain crop yields. This two-year field study used air propelled abrasive grit for in-row weed control in a silage corn system. Corncob grit was applied as a single application at corn vegetative growt...

  19. Review of Artificial Abrasion Test Methods for PV Module Technology

    SciTech Connect

    Miller, David C.; Muller, Matt T.; Simpson, Lin J.

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended tomore » provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.« less

  20. Effect of air abrasion and polishing on primary molar fissures.

    PubMed

    Lenzi, T L; Menezes, L B R; Soares, F Z M; Rocha, R O

    2013-04-01

    To evaluate the effect of air abrasion and polishing on primary molar fissures under light microscopy. 15 exfoliated primary second molars were longitudinally sectioned and photographed under a stereomicroscope (40×; baseline evaluation). Sections were then randomly allocated into one of the two groups (n = 15) and treated by either air abrasion (aluminium oxide jet) or air polishing (sodium bicarbonate jet) for 30 s. After treatment, sections were washed with an air/water spray, dried with absorbent paper, and photographed as previously described (final evaluation). Baseline and final morphology were compared by two blinded examiners who evaluated changes in the width and depth of fissures. The percentage of changed fissures was analysed, and the two treatments were compared using the Mann-Whitney test (α = 0.01). Both air systems resulted in fissure changes in most (93.3 %) of the sections. No significant differences in fissure width changes were found between treatments, but when changes in fissure depth were evaluated, air polishing was found to be less damaging than air abrasion (p < 0.01). Air abrasion and polishing cause changes to the anatomical configuration of occlusal fissures of primary molars.

  1. Assessment of Rail Seat Abrasion Patterns and Environment

    DOT National Transportation Integrated Search

    2012-05-01

    Rail seat abrasion (RSA) of concrete ties is manifested by the loss of material under the rail seat area and, in extreme cases, results in loss of rail clip holding power, reverse rail cant, and gauge widening. RSA was measured in several curves on t...

  2. 9 CFR 311.14 - Abrasions, bruises, abscesses, pus, etc.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Abrasions, bruises, abscesses, pus, etc. 311.14 Section 311.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... AND VOLUNTARY INSPECTION AND CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND...

  3. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Image and Video Library

    2006-07-21

    This image shows the round, metallic working end of the rock abrasion tool at the end of a metallic cylinder. The flat grinding face, attached brush, and much of the smooth, metallic exterior of cylinder are covered with a deep reddish-brown layer of dust

  4. Switch wear leveling

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  5. Using stamping punch force variation for the identification of changes in lubrication and wear mechanism

    NASA Astrophysics Data System (ADS)

    Voss, B. M.; Pereira, M. P.; Rolfe, B. F.; Doolan, M. C.

    2017-09-01

    The growth in use of Advanced High Strength Steels in the automotive industry for light-weighting and safety has increased the rates of tool wear in sheet metal stamping. This is an issue that adds significant costs to production in terms of manual inspection and part refinishing. To reduce these costs, a tool condition monitoring system is required and a firm understanding of process signal variation must form the foundation for any such monitoring system. Punch force is a stamping process signal that is widely collected by industrial presses and has been linked closely to part quality and tool condition, making it an ideal candidate as a tool condition monitoring signal. In this preliminary investigation, the variation of punch force due to different lubrication conditions and progressive wear are examined. Linking specific punch force signature changes to developing lubrication and wear events is valuable for die wear and stamping condition monitoring. A series of semi-industrial channel forming trials were conducted under different lubrication regimes and progressive die wear. Punch force signatures were captured for each part and Principal Component Analysis (PCA) was applied to determine the key Principal Components of the signature data sets. These Principal Components were linked to the evolution of friction conditions over the course of the stroke for the different lubrication regimes and mechanism of galling wear. As a result, variation in punch force signatures were correlated to the current mechanism of wear dominant on the formed part; either abrasion or adhesion, and to changes in lubrication mechanism. The outcomes of this study provide important insights into punch force signature variation, that will provide a foundation for future work into the development of die wear and lubrication monitoring systems for sheet metal stamping.

  6. Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films

    NASA Astrophysics Data System (ADS)

    Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A.

    2018-02-01

    The control of residual stresses has been seldom investigated in multilayer coatings dedicated to improvement of wear behavior. Here, we report the preparation and characterization of superposed structures composed of Cr, CrN and CrAlN layers. Nano-multilayers CrN/CrAlN and Cr/CrN/CrAlN were deposited by Physical Vapor Deposition (PVD) onto Si (100) and AISI4140 steel substrates. The Cr, CrN and CrAlN monolayers were developed with an innovative approach in PVD coatings technologies corresponding to deposition with different residual stresses levels. Composition and wear tracks morphologies of the coatings were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and 3D-surface analyzer. The mechanical properties (hardness, residual stresses and wear) were investigated by nanoindentation, interferometry and micro-tribometry (fretting-wear tests). Observations suggest that multilayer coatings are composed mostly of nanocrystalline. The residual stresses level in the films has practically affected all the physicochemical and mechanical properties as well as the wear behavior. Consequently, it is demonstrated that the coating containing moderate stresses has a better wear behavior compared to the coating developed with higher residual stresses. The friction contact between coated samples and alumina balls shows also a large variety of wear mechanisms. In particular, the abrasive wear of the coatings was a combination of plastic deformation, fine microcracking and microspallation. The application of these multilayers will be wood machining of green wood.

  7. [Brushing abrasion of the enamel surface after erosion].

    PubMed

    Lipei, Chen; Xiangke, Ci; Xiaoyan, Ou

    2017-08-01

    Objective A study was conducted to compare the effect of different enamel remineralization periods after erosion on the depth of brushing abrasion. Methods Ten volunteers were selected for a 4-day experiment. A total of 60 enamels were randomly assigned into six groups (A-F) and placed in intraoral palatal devices. On the first day, the palatal devices were placed in oral cavity (24 h) . On the following three days, brushing experiments were performed extraorally, two times per day. The specific experimental method of brushing follows these next steps. First, the group F specimens were covered with a film of wax, and then acid etched for 2 min. Subsequently, the film of wax was detached. The groups from A to D were brushed after remineralization at the following time intervals: group A, 0 min; group B, 20 min; group C, 40 min; group D, 60 min. Erosion and remineralization were performed on group E, but without brushing. Remineralization was performed on group F, but without acid etching and brushing. The depth of enamel abrasion was determined by a mechanical profilometer. The surface morphology of the enamel blocks was observed using a scanning electron microscope. Results 1) The depth of abrasion was different in varied enamel remineralization time after acid etching. The statistical significant differences between groups were as follows. 2) When the time of enamel remineralization after acid etching was short, the surface depression in the electron microscope was deep, and the surface morphology was rough. Conclusion Brushing immediately after acid etching would cause much serious abrasion to the enamel surface. Brushing after 60 min can effectively reduce the abrasion of acid etching enamel.

  8. Research on Oxidation Wear Behavior of a New Hot Forging Die Steel

    NASA Astrophysics Data System (ADS)

    Shi, Yuanji; Wu, Xiaochun

    2018-01-01

    Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.

  9. Low friction wear resistant graphene films

    SciTech Connect

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  10. The tooth wear evaluation system: a modular clinical guideline for the diagnosis and management planning of worn dentitions.

    PubMed

    Wetselaar, P; Lobbezoo, F

    2016-01-01

    Tooth wear is a multifactorial condition, leading to the loss of dental hard tissues, viz. enamel and dentine. Tooth wear can be divided into the subtypes mechanical wear (attrition and abrasion) and chemical wear (erosion). Because of its multifactorial aetiology, tooth wear can manifest itself in many different representations, and therefore, it can be difficult to diagnose and manage the condition. A systematic approach is a sine qua non. In the below-described tooth wear evaluation system (TWES), all necessary tools for a clinical guideline are present in different modules. This allows the dental clinician, in a general practitioner setting as well as in a referral practice setting, to perform a state-of-the-art diagnostic process. To avoid the risk of a too cumbersome usage, the dental clinician can select only those modules that are appropriate for a given setting. The modules match with each other, which is indispensable and essential when different modules of the TWES are compared. With the TWES, it is possible to recognise the problem (qualifying), to grade its severity (quantifying), to diagnose the likely causes and to monitor (the progress of) the condition. In addition, a proposal for the classification of tooth wear is made. Further, it is possible to determine when to start a treatment, to make the decision which kind of treatment to apply and to estimate the level of difficulty of a restorative treatment. © 2015 John Wiley & Sons Ltd.

  11. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.

    PubMed

    Yang, Xueyuan; Hutchinson, Christopher R

    2016-09-15

    Titanium alloys are popular metallic implant materials for use in total hip replacements. Although, α+β titanium alloys such as Ti-6Al-4V have been the most commonly used alloys, the high Young's modulus (∼110GPa) leads to an undesirable stress shielding effect. An alternative is to use β titanium alloys that exhibit a significantly lower Young's modulus (∼70GPa). Femoral stems made of a β titanium alloy known as TMZF (Ti-12Mo-6Zr-2Fe (wt.%)) have been used as part of modular hip replacements since the early 2000's but these were recalled in 2011 by the US Food & Drug Administration (FDA) due to unacceptable levels of 'wear debris'. The wear was caused by small relative movement of the stem and neck at the junction where they fit together in the modular hip replacement design. In this study, the corrosion and wear properties of the TMZF alloy were investigated in simulated body fluid to identify the reason for the wear debris generation. Ti64 was used as a control for comparison. It is shown that the interaction between the surfaces of Ti64 and TMZF with simulated body fluid is very similar, both from the point of view of the products formed and the kinetics of the reaction. The dry wear behaviour of TMZF is also close to that of Ti64 and consistent with expectations based on Archard's law for abrasive wear. However, wear of Ti64 and TMZF in simulated body fluid show contrasting behaviours. A type of time-dependent wear test is used to examine the synergy between corrosion and wear of TMZF and Ti64. It is shown that the wear of TMZF accelerated rapidly in SBF whereas that of Ti64 is reduced. The critical role of the strain hardening capacity of the two materials and its role in helping the surface resist abrasion by hydroxyapatite particles formed as a result of the reaction with the SBF is discussed and recommendations are made for modifications that could be made to the TMZF alloy to improve the corrosion-wear response. TMZF is a low modulus β-Ti alloy

  12. Filler features and their effects on wear and degree of conversion of particulate dental resin composites.

    PubMed

    Turssi, C P; Ferracane, J L; Vogel, K

    2005-08-01

    Based on the incomplete understanding on how filler features influence the wear resistance and monomer conversion of resin composites, this study sought to evaluate whether materials containing different shapes and combinations of size of filler particles would perform similarly in terms of three-body abrasion and degree of conversion. Twelve experimental monomodal, bimodal or trimodal composites containing either spherical or irregular shaped fillers ranging from 100 to 1500 nm were examined. Wear testings were conducted in the OHSU wear machine (n = 6) and quantified after 10(5) cycles using a profilometer. Degree of conversion (DC) was measured by FTIR spectrometry at the surface of the composites (n = 6). Data sets were analyzed using one-way Anova and Tukey's test at a significance level of 0.05. Filler size and geometry was found to have a significant effect on wear resistance and DC of composites. At specific sizes and combinations, the presence of small filler particles, either spherical or irregular, may aid in enhancing the wear resistance of composites, without compromising the percentage of reacted carbon double bonds.

  13. Wear rate quantifying in real-time using the charged particle surface activation

    NASA Astrophysics Data System (ADS)

    Alexandreanu, B.; Popa-Simil, L.; Voiculescu, D.; Racolta, P. M.

    1997-02-01

    Surface activation, commonly known as Thin Layer Activation (TLA), is currently employed in over 30 accelerator laboratories around the world for wear and/or corrosion monitoring in industrial plants [1-6]. TLA was primarily designed and developed to meet requirements of potential industrial partners, in order to transfer this technique from research to industry. The method consists of accelerated ion bombardment of a surface of interest, e.g., a machine part subjected to wear. Loss of material owing to wear, erosive corrosion or abrasion is characterized by monitoring the resultant changes in radioactivity. In principle, depending upon the case at hand, one may choose to measure either the remnant activity of the component of interest or to monitor the activity of the debris. For applications of the second type, especially when a lubricating agent is involved, dedicated installations have been constructed and adapted to an engine or a tribological testing stand in order to assure oil circulation around an externally placed detection gauge. This way, the wear particles suspended in the lubricant can be detected and the material loss rates quantified in real time. Moreover, in specific cases, such as the one presented in this paper, remnant activity measurements prove to be useful tools for complementary results. This paper provides a detailed presentation of such a case: in situ resistance-to-wear testing of two types of piston rings.

  14. AIBA as Free Radical Initiator for Abrasive-Free Polishing of Hard Disk Substrate

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Ren, Xiaoyan

    2015-04-01

    In order to optimize the existing slurry for abrasive-free polishing (AFP) of a hard disk substrate, a water-soluble free radical initiator, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was introduced into H2O2-based slurry in the present work. Polishing experiment results with AIBA in the H2O2 slurry indicate that the material removal rate (MRR) increases and the polished surface has a lower surface roughness. The mechanism of AIBA in AFP was investigated using electron spin-resonance spectroscopy and UV-Visible analysis, which showed that the concentration of hydroxyl radical (a stronger oxidizer than H2O2) in the slurry was enhanced in the present of AIBA. The structure of the film formed on the substrate surface was investigated by scanning electron microscopy, auger electron spectroscopy and electrochemical impedance spectroscopy technology, showing that a looser and porous oxide film was found on the hard disk substrate surface when treated with the H2O2-AIBA slurry. Furthermore, potentiodynamic polarization tests show that the H2O2-AIBA slurry has a higher corrosion current density, implying that a fast dissolution reaction can occur on the substrate surface. Therefore, we can conclude that the stronger oxidation ability, loose oxide film on the substrate surface, and the higher corrosion-wear rate of the H2O2-AIBA slurry lead to the higher MRR.

  15. Analysis of the Material Removal Rate in Magnetic Abrasive Finishing of Thin Film Coated Pyrex Glass

    NASA Astrophysics Data System (ADS)

    Lee, Hee Hwan; Lee, Seoung Hwan

    The material removal rate (MRR) during precision finishing/polishing is a key factor, which dictates the process performance. Moreover, the MRR or wear rate is closely related to the material/part reliability. For nanoscale patterning and/or planarization on nano-order thickness coatings, the prediction and in-process monitoring of the MRR is necessary, because the process is not characterizable due to size effects and material property/process condition variations as a result of the coating/substrate interactions. The purpose of this research was to develop a practical methodology for the prediction and in-process monitoring of MRR during nanoscale finishing of coated surfaces. Using a specially designed magnetic abrasive finishing (MAF) and acoustic emission (AE) monitoring setup, experiments were carried out on indium-zinc-oxide (IZO) coated Pyrex glasses. After a given polishing time interval, AFM indentation was conducted for each workpiece sample to measure the adhesion force variations of the coating layers (IZO), which are directly related to the MRR changes. The force variation and AE monitoring data were compared to the MRR calculated form the surface measurement (Nanoview) results. The experimental results demonstrate strong correlations between AFM indentation and MRR measurement data. In addition, the monitored AE signals show sensitivity of the material structure variations of the coating layer, as the polishing progresses.

  16. Dry Sliding Wear Behavior and Subsurface Microstructure Evolution of Mg97Zn1Y2 Alloy in a Wide Sliding Speed Range

    NASA Astrophysics Data System (ADS)

    An, J.; Xuan, X. H.; Zhao, J.; Sun, W.; Liang, C.

    2016-12-01

    The wear properties of Mg97Zn1Y2 alloy were investigated using the pin-on-disk wear machine within a load range of 20-380 N and a sliding speed range of 0.2-4.0 m/s. Analysis of worn surfaces using scanning electron microscope and energy-dispersive x-ray spectrometer revealed that wear mechanisms including abrasion + oxidation, delamination accompanied by heavy surface oxidation and delamination operated in mild wear regime, while wear mechanisms such as severe plastic deformation, severe plastic deformation accompanied by spallation of oxidation layer and surface melting prevailed in severe wear regime. The microstructural evolution and hardness change in subsurfaces were examined by optical microscopy and hardness tester. The transformation of surface material from the deformed into dynamic recrystallization (DRX) microstructure was observed before and after mild-to-severe transition. The reason for mild-to-severe wear transition was identified as the transformation of strain hardening to DRX softening in subsurface. Mg97Zn1Y2 alloy has a superior mild-to-severe wear transition resistance to AZ alloys because of its higher recrystallization temperature. A novel model for evaluating the critical surface temperature of mild-to-severe wear transition was established using DRX kinetics.

  17. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  18. The effects of dental wear on third molar eruption and on the curve of Spee in human archaeological dentitions.

    PubMed

    Sengupta, A; Whittaker, D K; Barber, G; Rogers, J; Musgrave, J H

    1999-11-01

    The abrasiveness of food is a key determinant in the rate of physiological attrition (dental wear) in humans. With increasing food processing through time, the rate of physiological dental wear in human teeth has decreased markedly. Many consider such wear to be beneficial to oral health and that insufficient wear may result in impaction of the third molars. If enhanced extraoral food processing provides an evolutionary advantage, then it is possible that agenesis of the redundant third molar may follow. One of the aims here was to examine impaction and agenesis of the third molars in four populations of varying antiquity and hence varying dental-wear rates. Paradoxically, whilst there is a decrease in the rate of dental wear with modernity, there is also an increasing prevalence of advanced dental wear due to prolongation of the lifespan of the human dentition. As the effect of dental wear on the curve of Spee was unknown, a second aim was to examine it in an archaeological population with a high rate of dental wear. The results showed an increase in non-eruption and impaction of the third molars with modernity, but did not demonstrate a significant increase in the rate of agenesis. The time period over which impaction and agenesis could be discerned was of the order of 600 years and this may not be sufficient to observe adaptive changes at the genetic level in humans. In molar teeth there was no clear indication of maintenance of the curve of Spee with dental wear. This has potential implications on the design of prostheses for the worn dentition.

  19. Dust in the wind: How climate variables and volcanic dust affect rates of tooth wear in Central American howling monkeys.

    PubMed

    Spradley, Jackson P; Glander, Kenneth E; Kay, Richard F

    2016-02-01

    Two factors have been considered important contributors to tooth wear: dietary abrasives in plant foods themselves and mineral particles adhering to ingested food. Each factor limits the functional life of teeth. Cross-population studies of wear rates in a single species living in different habitats may point to the relative contributions of each factor. We examine macroscopic dental wear in populations of Alouatta palliata (Gray, 1849) from Costa Rica (115 specimens), Panama (19), and Nicaragua (56). The sites differ in mean annual precipitation, with the Panamanian sites receiving more than twice the precipitation of those in Costa Rica or Nicaragua (∼3,500 mm vs. ∼1,500 mm). Additionally, many of the Nicaraguan specimens were collected downwind of active plinian volcanoes. Molar wear is expressed as the ratio of exposed dentin area to tooth area; premolar wear was scored using a ranking system. Despite substantial variation in environmental variables and the added presence of ash in some environments, molar wear rates do not differ significantly among the populations. Premolar wear, however, is greater in individuals collected downwind from active volcanoes compared with those living in environments that did not experience ash-fall. Volcanic ash seems to be an important contributor to anterior tooth wear but less so in molar wear. That wear is not found uniformly across the tooth row may be related to malformation in the premolars due to fluorosis. A surge of fluoride accompanying the volcanic ash may differentially affect the premolars as the molars fully mineralize early in the life of Alouatta. © 2015 Wiley Periodicals, Inc.

  20. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  1. Mechanistic Studies in Friction and Wear of Bulk Materials

    NASA Astrophysics Data System (ADS)

    Sawyer, W. Gregory; Argibay, Nicolas; Burris, David L.; Krick, Brandon A.

    2014-07-01

    From the context of a contemporary understanding of the phenomenological origins of friction and wear of materials, we review insightful contributions from recent experimental investigations of three classes of materials that exhibit uniquely contrasting tribological behaviors: metals, polymers, and ionic solids. We focus on the past decade of research by the community to better understand the correlations between environment parameters, materials properties, and tribological behavior in systems of increasingly greater complexity utilizing novel synthesis and in situ experimental techniques. In addition to such review, and a half-century after seminal publications on the subject, we present recently acquired evidence linking anisotropy in friction response with anisotropy in wear behavior of crystalline ionic solids as a function of crystallographic orientation. Although the tribological behaviors of metals, polymers, and ionic solids differ widely, it is increasingly more evident that the mechanistic origins (such as fatigue, corrosion, abrasion, and adhesion) are essentially the same. However, we hope to present a clear and compelling argument favoring the prominent and irreplaceable role of in situ experimental techniques as a bridge between fundamental atomistic and molecular processes and emergent behaviors governing tribological contacts.

  2. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

    NASA Astrophysics Data System (ADS)

    Fares, M. L.; Athmani, M.; Khelfaoui, Y.; Khettache, A.

    2012-02-01

    The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M23C6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

  3. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  4. Design of a new abrasive slurry jet generator

    NASA Astrophysics Data System (ADS)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  5. Abrasion resistance of muscovite in aeolian and subaqueous transport experiments

    NASA Astrophysics Data System (ADS)

    Anderson, Calvin J.; Struble, Alexander; Whitmore, John H.

    2017-02-01

    Complementary aeolian and subaqueous transport experiments showed a trend in muscovite abrasion that may be useful for identifying ancient sandstones as aeolian or subaqueous in origin. We found that our experimental aeolian processes pulverized the micas quickly, while our subaqueous processes did not. In a pair of abrasion resistance experiments conducted with micaceous quartz sand, it was found that large muscovite grains were (1) reduced by aeolian processes to less than 500 μm in just 4 days, and (2) preserved by subaqueous processes to 610 ± 90 μm even after 356 days. At 20 days of aeolian transport no loose micas could be found even under the microscope, but after a year of subaqueous transport loose muscovite grains could still be seen with the naked eye. Thus, the occurrence and character of micas in a sandstone, particularly muscovite, may be helpful in determining the ancient depositional process.

  6. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  7. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2017-04-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  8. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid.

    PubMed

    Singh, Raghuvir; Kurella, A; Dahotre, Narendra B

    2006-07-01

    Laser surface melting (LSM) of Ti-6Al-4V is performed in argon to improve its properties, such as microstructure, corrosion, and wear for biomedical applications. Corrosion behavior is investigated by conducting electrochemical polarization experiments in simulated body fluid (Ringer's solution) at 37 C. Wear properties are evaluated in Ringer's solution using pin-on-disc apparatus at a slow speed. Untreated Ti-6Al-4V contains alpha+beta phase. After laser surface melting, it transforms to acicular alpha embedded in the prior beta matrix. Grain growth in the range of 65-89 microm with increase in laser power from 800 to 1500 W due to increase in associated temperature is observed. The hardness of as-laserprocessed Ti-6Al-4V alloy is more (275-297 HV) than that of the untreated alloy (254 HV). Passivation currents are significantly reduced to < 4.3 microA/cm2 after laser treatment compared to untreated Ti-6Al-4V (approximately 12 microA/cm2). The wear resistance of laser-treated Ti-6Al-4V in simulated body fluid is enhanced compared to that of the untreated one. It is the highest for the one that is processed at a laser power of 800 W. Typical micro-cutting features of abrasive wear is the prominent mechanism of wear in both untreated and as-laser-treated Ti-6Al-4V. Fragmentation of wear debris assisted by microcracking was responsible for mass loss during the wear of untreated Ti-6Al-4V in Ringer's solution.

  9. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications

    PubMed Central

    Kim, Dong-Woo; Cho, Myeong-Woo; Seo, Tae-Il; Shin, Young-Jae

    2008-01-01

    Recently, the magnetorheological (MR) polishing process has been examined as a new ultra-precision polishing technology for micro parts in MEMS applications. In the MR polishing process, the magnetic force plays a dominant role. This method uses MR fluids which contains micro abrasives as a polishing media. The objective of the present research is to shed light onto the material removal mechanism under various slurry conditions for polishing and to investigate surface characteristics, including shape analysis and surface roughness measurement, of spots obtained from the MR polishing process using alumina abrasives. A series of basic experiments were first performed to determine the optimum polishing conditions for BK7 glass using prepared slurries by changing the process parameters, such as wheel rotating speed and electric current. Using the obtained results, groove polishing was then performed and the results are investigated. Outstanding surface roughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present results highlight the possibility of applying this polishing method to ultra-precision micro parts production, especially in MEMS applications. PMID:27879705

  10. Influence of deep cryogenic treatment on structure and wear resistance of materials of hydraulic breaker chisels

    NASA Astrophysics Data System (ADS)

    Bolobov, V. I.; BinhLe, Thanh

    2018-03-01

    It is shown that shallow cryogenic treatment at -75°C (SCT) of the materials of hydraulic breaker chisels - P20, 1080 and D2 steels leads to a decrease (44 ÷ 82%) in the amount of retained austenite and an increase (26 ÷ 99%) in the amount of carbides in the structure of hardened steel, which is accompanied by an increase in its hardness (1.4 ÷ 2.1%) and abrasive wear resistance (10 ÷ 31%) with a simultaneous decrease in impact toughness (19 ÷ 24%). Deep cryogenic treatment at -196°C (DCT) and subsequent low-temperature tempering of D2 steel leads to a significant increase in its wear resistance (98%) and impact toughness (32%).

  11. Development of reinforced in-situ anti-corrosion and wear Zn-TiO2/ZnTiB2 coatings on mild steel

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Popoola, A. P. I.; Kanyane, L. R.; Monyai, T.

    The development of reinforced composite coating has resulted into advanced engineering application because of the exceptional properties and increase service life. In this study, we investigated the effect of Solanum tuberosum (ST) as additive to Zn-TiO2/Zn-TiB2 sulphate bath coating by co-deposition route on mild steel. The structural characteristics and surface profile of the produced coating were examined using scanning electron microscope coupled with energy dispersive spectroscopy (SEM/EDS) and PosiTector (SPG) respectively. The anti-corrosion resistance activities of the deposited coatings were evaluated on a 101 AUTOLAB potentiostat/galvanostat device in a 3.65 wt% NaCl. The wear characteristics of the Zn-TiO2/TiB2 composite coatings were examined on a dry abrasive MTR-300 test rig. The thermal stability of the produced coatings was studied in an isothermal furnace at 600 °C and further characterized using a high tech optical microscope. From the results, it was found that Zn-TiO2/Zn-TiB2 were compassed with needle like pattern and perhaps a compact and distinctive structure was found with Zn-TiO2/Zn-TiB2/ST coatings. The microhardness deposited coatings increased with TiO2 and TiB2 interference in the plating bath, more significant improvement was noticed in the presence of natural bath-additive and the addition of ST lead to changes in the morphologies of the composite coatings. A massive decrease in corrosion and wear rate in all coatings produced as against the control sample was noticed. This was attributed to the dispersive strengthening activities of the embedded TiO2/TiB2/ST additive on the bath formed.

  12. Surface characterization of current composites after toothbrush abrasion.

    PubMed

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (p<0.05). Simple regression analysis showed that there was not an association between the surface roughness and the gloss (R(2)=0.191, p<0.001).

  13. Development of underwater cutting system by abrasive water-jet

    NASA Astrophysics Data System (ADS)

    Demura, Kenji; Yamaguchi, Hitoshi

    1993-09-01

    The technology to cut objects in the ocean's depths with abrasive water jets was examined for possible application in view of the greater water depths and sophistication involved in work on the ocean floor today. A test model was developed to study this technology's safety and practicability. The test model was designed for use at great water depths and has functions and a configuration that are unlike equipment used on land. A continuous, stable supply of abrasive is a distinctive design feature. In land applications, there had been problems with plugged tubes and an uneven supply. For this reason, the abrasive was converted to slurry form, and a continuous pressurized tube pump system was adopted for supply to the nozzle head. Also, a hydraulic motor that does not employ oil or electric power was used to provide an underwater drive that is environment-friendly. The report outlines the technology's general design concept including its distinctive functions and its configuration for use at great depths, and the report provides great detail on the equipment.

  14. The wear of cross-linked polyethylene against itself.

    PubMed

    Joyce, T J; Ash, H E; Unsworth, A

    1996-01-01

    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.

  15. Dry sliding wear of heat treated hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  16. Friction and wear behaviour of plasma sprayed Cr2O3-TiO2 coating

    NASA Astrophysics Data System (ADS)

    Bagde, Pranay; Sapate, S. G.; Khatirkar, R. K.; Vashishtha, Nitesh; Tailor, Satish

    2018-02-01

    Cr2O3-25TiO2 coating was deposited by atmospheric plasma spray (APS) coating technique. Effect of load (5-30 N) and sliding velocity (0.25, 0.75 m s-1) on friction coefficient and abrasive wear behaviour of the Cr2O3-25TiO2 coating was studied. Mechanical and microstructural characterization of the Cr2O3-25TiO2 coating was carried out. With an increase in sliding velocity, abrasive wear rate and friction coefficient (COF) decreased while wear rate and friction coefficient showed an increasing trend with the load. The worn out surfaces were analyzed by SEM, EDS and XRD. At lower sliding velocity, XRD analysis revealed peaks of Ti2O3, Ti3O5, CrO2 and CrO3. In addition, peak of Ti4O7 was also detected at higher sliding velocity and at 30 N load. At higher sliding velocity medium to severe tribo oxidation was observed. XPS analysis of worn surfaces at both the sliding velocities, showed surface film of oxides of titanium and chromium along with Cr(OH)3. Magneli phase titanium oxides with sub stoichiometric composition, along with surface films of chromium oxides and hydroxides altered the friction and wear behaviour of the coating. The decrease in friction coefficient with an increase in sliding velocity was attributed to tribo oxides and tribochemical reaction films having lower shear strength with good lubricating properties. The mechanism of material removal involved plastic deformation at lower load whereas inter-granular and trans-granular fracture, delamination cracking and splat fracture was observed with an increase load from 10 N to 30 N.

  17. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part III: Multi-Laboratory Validation Testing of RDA-PE.

    PubMed

    Schneiderman, Eva; Colón, Ellen L; White, Donald J; Schemehorn, Bruce; Ganovsky, Tara; Haider, Amir; Garcia-Godoy, Franklin; Morrow, Brian R; Srimaneepong, Viritpon; Chumprasert, Sujin

    2017-09-01

    We have previously reported on progress toward the refinement of profilometry-based abrasivity testing of dentifrices using a V8 brushing machine and tactile or optical measurement of dentin wear. The general application of this technique may be advanced by demonstration of successful inter-laboratory confirmation of the method. The objective of this study was to explore the capability of different laboratories in the assessment of dentifrice abrasivity using a profilometry-based evaluation technique developed in our Mason laboratories. In addition, we wanted to assess the interchangeability of human and bovine specimens. Participating laboratories were instructed in methods associated with Radioactive Dentin Abrasivity-Profilometry Equivalent (RDA-PE) evaluation, including site visits to discuss critical elements of specimen preparation, masking, profilometry scanning, and procedures. Laboratories were likewise instructed on the requirement for demonstration of proportional linearity as a key condition for validation of the technique. Laboratories were provided with four test dentifrices, blinded for testing, with a broad range of abrasivity. In each laboratory, a calibration curve was developed for varying V8 brushing strokes (0, 4,000, and 10,000 strokes) with the ISO abrasive standard. Proportional linearity was determined as the ratio of standard abrasion mean depths created with 4,000 and 10,000 strokes (2.5 fold differences). Criteria for successful calibration within the method (established in our Mason laboratory) was set at proportional linearity = 2.5 ± 0.3. RDA-PE was compared to Radiotracer RDA for the four test dentifrices, with the latter obtained by averages from three independent Radiotracer RDA sites. Individual laboratories and their results were compared by 1) proportional linearity and 2) acquired RDA-PE values for test pastes. Five sites participated in the study. One site did not pass proportional linearity objectives. Data for this site are

  18. Tribological Properties of CrAlN and TiN Coatings Tested in Nano- and Micro-scale Laboratory Wear Tests

    NASA Astrophysics Data System (ADS)

    Hong, Ling; Bian, Guangdong; Hu, Shugen; Wang, Linlin; Dacosta, Herbert

    2015-07-01

    We investigated the tribological properties of CrAlN and TiN coatings produced by electron beam plasma-assisted physical vapor deposition by nano- and micro-scale wear tests. For comparison, we also conducted nano-indentation, nano-scanning wear tests, and pin-on-disk tribotests on uncoated M2 steel. The results indicate that, after nano-scale sliding tests against diamond indenter and pin-on-disk tests against ceramic alumina counterface pins, the CrAlN coating presents superior abrasive wear resistance compared to the TiN-coated and uncoated M2 steel samples. Against aluminum counterface, aluminum is more prone to attach on the CrAlN coating surface compared to TiN coating, but no apparent adhesive wear was observed, which has occurred on the TiN coating.

  19. Controls on wind abrasion patterns through a fractured bedrock landscape

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  20. The protective effect of SnF2 containing toothpastes and solution on enamel surfaces subjected to erosion and abrasion in situ.

    PubMed

    Hove, L H; Stenhagen, K R; Holme, B; Tveit, A B

    2014-08-01

    Stannous fluoride solutions have shown promising protective effect against erosion/abrasion, but the effect of SnF2 toothpastes is uncertain. The aim of the study was to test the inhibiting effect of two SnF2 toothpastes and a SnF2 solution against erosive/abrasive wear in a single-blind, randomised in situ study, using a white light interferometer. Sixteen human molars were each divided into four specimens, mounted on mouth appliances and worn by 8 volunteers for 9 days. Specimens were brushed with toothpaste twice each day for 30 s either with fluoride-free toothpaste or toothpastes including SnF2. Toothpaste was left on the surface for 90 additional seconds. Group 1, fluoride-free toothpaste; Group 2, toothpaste A (0.4% SnF2, Solidox); Group 3, toothpaste B (0.454 % SnF2, Oral-B(®)); Group 4, brushed with fluoride-free toothpaste (30 s) and treated for 2 min with a 0.4 % SnF2 solution (1,000 ppm F). To mimic gastric reflux/vomit, specimens were etched for 2 min twice a day (0.01 M HCl). Procedures were performed extra-orally. The mean enamel wear (in μm) for the control specimens was: -29.2 ± SD 10.5; for group 2 -14.5 SD ± 9.3; for group 3 -33.3 SD ± 7.4, and for group 4 +0.4 SD ± 1.3. The specimens treated with SnF2 solution and toothpaste A showed significantly lower enamel wear than the control group. Toothpaste B gave no significant reduction in enamel wear. The SnF2 solution fully protected the enamel surface against erosive and abrasive challenges. The SnF2 toothpaste A (Solidox) showed less, but significant protection of the enamel, while no statistically significant protection was demonstrated by SnF2 toothpaste B (Oral-B(®) Pro-Expert).

  1. Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.

    PubMed

    Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter

    2013-12-01

    Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  2. CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities

    PubMed Central

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M.

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods. PMID:25506594

  3. CR TKA UHMWPE wear tested after artificial aging of the vitamin E treated gliding component by simulating daily patient activities.

    PubMed

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  4. Friction and wear properties of novel HDPE--HAp--Al2O3 biocomposites against alumina counterface.

    PubMed

    Bodhak, Subhadip; Nath, Shekhar; Basu, Bikramjit

    2009-03-01

    In an effort to enhance physical properties of biopolymers (high-density polyethylene, HDPE) in terms of elastic modulus and hardness, various ceramic fillers, like alumina (Al2O3) and hydroxyapatite (HAp) are added, and therefore it is essential to assess the friction and wear resistance properties of HDPE biocomposites. In this perspective, HDPE composites with varying ceramic filler content (upto 40 vol%) were fabricated under the optimal compression molding conditions and their friction and wear properties were evaluated against Al2O3 at fretting contacts. All the experiments were conducted at a load of 10 N for duration of 100,000 cycles in both dry as well as simulated body fluid (SBF). Such planned set of experiments has been designed to address three important issues: (a) whether the improvement in physical properties (hardness, E-modulus) will lead to corresponding improvement in friction and wear properties; (b) whether the fretting in SBF will provide sufficient lubrication in order to considerably enhance the tribological properties, as compared to that in ambient conditions; and (c) whether the generation of wear debris particles be reduced for various compositionally modified polymer composites, in comparison to unreinforced HDPE. The experimental results indicate the possibility of achieving extremely low coefficient of friction (COF approximately 0.047) as well as higher wear resistance (wear rate in the order of approximately 10(-7) mm3 N(-1) m(-1)) with the newly developed composites in SBF. A low wear depth of 3.5-4 microm is recorded, irrespective of fretting environment. Much effort has been put forward to correlate the friction and wear mechanisms with abrasion, adhesion, and wear debris formation.

  5. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    NASA Astrophysics Data System (ADS)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-01

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  6. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes).

    PubMed

    Klein, Marie-Christin G; Gorb, Stanislav N

    2014-10-01

    Snakes are limbless tetrapods highly specialized for sliding locomotion. This locomotion leads to the skin being exposed to friction loads, especially on the ventral body side, which leads to wear. It is presumed that snakes therefore have specific optimizations for minimizing abrasion. Scales from snakes with habitat, locomotor and/or behavior specializations have specific gradients in material properties that may be due to different epidermal architecture. To approach this issue we examined the skin of Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal), and Gongylophis colubrinus (burrowing) with a focus on (i) the ultrastructure of the ventral epidermis and (ii) the qualitative abrasion pattern of the ventral scales. Scanning and transmission electron microscopy revealed variations in the structure, thickness, layering, and material composition of the epidermis between the species. Furthermore, SEM and white light interferometer images of the scale surface showed that the abrasion patterns differed, even when the snakes were reared on the same substrate. These data support the idea that (i) a specific gradient in material properties may be due to a variation in epidermis architecture (thickness/ultrastructure) and (ii) this variation may be an optimization of material properties for specific ways of life. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Modelling detrital coral grain-size and age: Insights from sediment abrasion process of Yongle Atoll of South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zou, X.; Ge, C.; Tan, M.; Wang, C.

    2017-12-01

    Reef islands situated on the rims of atolls are composed almost exclusively of bioclastic materials locally supplied from adjacent coral reefs. Major skeletal component of these islands include coral, coralline algae, mollusks and foraminifera, produced in adjacent reefs. As the island builder, the bioclastic material is the sedimentary products, which also is the point of penetration to decipher the process. The bioclast of coral islands decrease in size with the transportation process. The grain-size provides a proxy record for the abrasion history of the unconsolidated sediment. The 230Th age of coral record the abrasion time. We hereby present a model to calculate the abrasion rate based on the data of 230Th age and grain-size of Yongle Atoll of Xisha Island, South China Sea. The grain size pattern in Yongle Atoll environment have confirm that the coral article diminution behave exponentially. The sediment composition of Yongle Atoll is identified, coral is dominant sediment constituent and the Th230 age is shown to exert an age distribution characteristics of coral detritus. We illustrate this approach by calculate the coral debris age of Xude Atoll, which located near the Yongle Atoll and then by comparing actual measured age and calculated age and to explore the dependence of the model. Observed 230 Th ages are well matched by predicted ages for medium age sediment. A poorer match for young and old sediment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the atoll. Such mismatches emphasize the need for more accurate kinematic models and for sampling strategies that are adapted to atoll-specific geologic and geomorphic conditions. Results presented constitute important new insights into regional sediment abrasion processed and on the evolution of coral atoll islands.

  8. Impact of Sn/F Pre-Treatments on the Durability of Protective Coatings against Dentine Erosion/Abrasion

    PubMed Central

    Ganss, Carolina; Lussi, Adrian; Peutzfeldt, Anne; Naguib Attia, Nader; Schlueter, Nadine

    2015-01-01

    For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn2+ increases bond strength of the adhesive Clearfil SE (Kuraray), the aim of the present study was to investigate whether pre-treatment with different Sn2+/F− solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group) were freed of smear layer (0.5% citric acid, 10 s), treated (15 s) either with no solution (control), aminefluoride (AmF, 500 ppm F−, pH 4.5), SnCl2 (800/1600 ppm Sn2+; pH 1.5), SnCl2/AmF (500 ppm F−, 800 ppm Sn2+, pH 1.5/3.0/4.5), or Elmex Erosion Protection Rinse (EP, 500 ppm F−, 800 ppm Sn2+, pH 4.5; GABA International), then rinsed with water (15 s) and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5°C/55°C; 2 min) and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80). As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle) were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn2+/F− solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine. PMID:26075906

  9. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    PubMed

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (P<.001). The Ra of enamel specimens increased significantly after wear tests with monolithic zirconia, glass ceramic, and enamel (P<.05); however, no difference was found among these materials. Within the limitations of this in vitro study, monolithic zirconia and composite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel

  10. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    NASA Astrophysics Data System (ADS)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  11. Wear behavior of electroless Ni-P-W coating under lubricated condition - a Taguchi based approach

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta

    2016-09-01

    The present study aims to investigate the tribological behavior of electroless Ni-P-W coating under engine oil lubricated condition to ascertain its suitability in automotive applications. Coating is deposited onto mild steel specimens by the electroless method. The experiments are carried out on a pin - on - disc type tribo tester under lubrication. Three tribotesting parameters namely the applied normal load, sliding speed and sliding duration are varied at their three levels and their effects on the wear depth of the deposits are studied. The experiments are carried out based on the combinations available in Taguchi's L27 orthogonal array (OA). Optimization of the tribo-testing parameters is carried out using Taguchi's S/N ratio method to minimize the wear depth. Analysis of variance carried out at a confidence level of 99% indicates that the sliding speed is the most significant parameter in controlling the wear behavior of the deposits. Coating characterization is done using scanning electron microscope, energy dispersive X-ray analysis and X-ray diffraction techniques. It is seen that the wear mechanism under lubricated condition is abrasive in nature.

  12. Structure characterization and wear performance of NiTi thermal sprayed coatings

    NASA Astrophysics Data System (ADS)

    Cinca, N.; Isalgué, A.; Fernández, J.; Guilemany, J. M.

    2010-08-01

    NiTi shape memory alloy (SMA) has been studied for many years for its shape memory and pseudoelastic properties, as well as its biocompatibility, which make it suitable for many biomedical applications. However, SMA NiTi is also interesting for relevant wear resistance near the transition temperature which, along with its high oxidation and corrosion resistance, suggests its use as a coating to increase the lifetime of some components. Also, whereas bulk material properties have been characterized in respect of the nominal composition, manufacturing methods and thermo-mechanical treatments, NiTi overlays have been investigated much less. Most existent works in this field specifically deal with magnetron sputtering technology for thin films and its use in micro-devices (micro-electro-mechanical systems, MEMS), just some works refer to vacuum plasma spraying (VPS) for thicker coatings. The present paper explores and compares the microstructure and wear-related properties of coatings obtained from atomized NiTi powders, by VPS as well as by atmospheric plasma spraying (APS) and high velocity oxygen fuel (HVOF) techniques. In the present case, the wear behaviour of the NiTi deposits has been studied by rubber-wheel equipment and ball-on-disk tests. The results obtained at room temperature show that the APS-quenched coatings exhibit a preferential dry sliding wear mechanism, while the VPS and HVOF coatings show an abrasive mechanism.

  13. [Destructive and protective factors in the development of tooth-wear].

    PubMed

    Jász, Máté; Varga, Gábor; Tóth, Zsuzsanna

    2006-12-01

    The experience of the past decade proves that tooth wear occurs in an increasing number of cases in general dental practice. Tooth wear may have physical (abrasion and attrition) and/or chemical (erosion) origin. The primary physical causes are inadequate dental hygienic activities, bad oral habits or occupational harm. As for dental erosion, it is accelerated by the highly erosive foods and drinks produced and sold in the past decades, and the number of cases is also boosted by the fact that bulimia, anorexia nervosa and gastro-oesophageal reflux disease prevalence have become more common. The most important defensive factor against tooth wear is saliva, which protects teeth from the effect of acids. Tertiary dentin formation plays an important role in the protection of the pulp. Ideally, destructive and protective factors are in balance. Both an increase in the destructive forces, and the insufficiency of defense factors result in the disturbance of the equilibrium. This results in tooth-wear, which means an irreversible loss of dental hard tissue. The rehabilitation of the lost tooth material is often very difficult, irrespectively of whether it is needed because of functional or esthetic causes. For that reason, the dentist should carry out primary and secondary dental care and prevention more often, i.e. dental recall is indispensable every 4-6 months.

  14. Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhang, Gong-zhen; Cui, Wei; Ren, Shu-bin; Wang, Qian-jin; Qu, Xuan-hui

    2018-03-01

    Aluminum (Al) 2024 matrix composites reinforced with alumina short fibers (Al2O3sf) and silicon carbide particles (SiCp) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al2O3sf on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al2O3sf, characterized by the ratio of Al2O3sf to SiCp, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al2O3sf to SiCp was increased from 0 to 1, the rate of wear mass loss ( K m) and coefficients of friction (COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K m increased rapidly and the wear mechanism became adhesive wear.

  15. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    Rocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that

  16. Control technology for crystalline silica exposures in construction: wet abrasive blasting.

    PubMed

    Golla, Vijay; Heitbrink, William

    2004-03-01

    This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting.

  17. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-01

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  18. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    PubMed

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  19. New Perspectives on Tooth Wear

    PubMed Central

    Lucas, Peter W.; Omar, Ridwaan

    2012-01-01

    Some of the efforts that have been made to document tooth wear are reviewed here with an emphasis on nonhuman mammals, literature with which dentists may not be very familiar. We project a change in research strategy from the description of wear at various scales of measurement towards investigation of the mechanical mechanisms that actually create the texture of a worn surface. These studies should reveal exactly how tooth tissue is lost and what aspects of the structure of dental tissues affect this. The most important aspects of the interaction between the tooth surface and wear particles would appear to be particle size, particle shape, their mechanical properties with respect to those of tooth tissues, and the influence of saliva. PMID:22536239

  20. Abrasive blast cleaning method for the renewal of worn-out acceleration tubes

    NASA Astrophysics Data System (ADS)

    Bartha, L.; Koltay, E.; Mórik, Gy.

    1996-04-01

    The degradation of the electrical properties of acceleration tubes emerging with performance time is known to be assigned mainly to impurities and surface breakdown tracks appearing on the inner surface of the insulators. Consequently, a radical treatment for removing the surface layer may result in a renewal of the tube. An abrasive blast cleaning procedure has been used on a set of worn-out acceleration tube units. The cleaned tube exhibited its original electrical characteristics and it has been used for more than 4000 h of operation up to the maximum rated voltage of our 5 MV electrostatic accelerator without any observable degradation. XRF and PIXE analytical measurements performed on used and blast-treated insulators as well as on electrode and pump oil samples reveal the contribution of elementary processes in the acceleration tube to the ageing of the tube and indicate the effectness of the blasting process used for the re-establishment of clean surface conditions.

  1. A Multidirectional Tribo-System: Wear of UHMWPE under Sliding, Rolling, and Rotation

    NASA Astrophysics Data System (ADS)

    Patten, Elias Wolfgang

    perpendicular to the primary sliding directions. These are consistent with abrasive wear, plastic flow and adhesive wear, and fatigue wear mechanisms reported in other in vitro and in vivo wear studies. The orientations of the lamellae at the wear surfaces were not discernibly different from the lamellae of an unworn section of the disk surface. Similarly, the near-surface regions of the disk cross-section were not discernibly different from the subsurface regions. Previous studies have demonstrated orientation of the microstructure during wear using transmission electron microscopy, X-ray scattering, and Fourier transform infrared spectroscopy techniques, and such methods may be necessary for texture characterization. These results demonstrate that knee kinematics have a significant effect on the cross-shear and wear of UHMWPE and should not be neglected when designing TKR. A better theoretical understanding of how kinematics contribute to wear can lead to better UHMWPE formulations, improved computer simulations of wear, and optimized TKR designs with longer life-spans.

  2. Wear Resistant Coatings for Titanium.

    DTIC Science & Technology

    1980-07-01

    FISHTER NOOO1978-C-0889 UNCLASSIFIED PWA-FR-12303 NLlmhhhEEEEI, 111w .06 11112 1.1 4 Q MICROCOP AESOLUPON TEST CHART NATIONAL. BUREAU Of STANDARDS 1963... Compound ," ~ 113 g/22.7 kg (4 oz/50 Ib) Corrosion Inhibitor" ~ 4 mI/I (15 mI/gal) I. Fill tank to about of operating level with water 2. Add abrasive...slowly while circulating pump is on :. Add antisolidifying compound 4. Add corrosion inhibitor 5. F~ill to operating level. Etch Solution Hydrofluoric

  3. Investigation of material improvements to mitigate the abrasive wear mechanism of concrete crosstie rail seat deterioration (RSD).

    DOT National Transportation Integrated Search

    2014-11-01

    To meet the increasingly stringent design and performance requirements due to increasing cumulative : gross tonnages from heavy-haul freight operations, along with increased high-speed inter-city passenger : rail development, improvements in concrete...

  4. Synthesis and wear behavior of aluminum 6061 alloy reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khalil, Abdullah

    In the present work, Al6061 alloy was uniformly reinforced with 0.5, 0.75, 1 and 2 wt. % Carbon Nanotubes (CNTs) using two way dispersion method. For consolidation, Spark Plasma Sintering (SPS) was used which resulted in very high densification for the matrix as well as composite. Results showed that addition of CNTs lead to increased hardness of the material and maximum hardness was found for 1 wt. % CNTs. So this composition was selected for detailed wear analysis. Pin-on-disk wear tests were conducted for the monolithic Al6061 and the composite at a constant speed of 0.5 m/s with varying load from 5 N to 30 N under dry sliding conditions using AISI 4140 steel disk as a counterface. The composite displayed lower wear rate and friction coefficient at lower levels of applied stress (0.175 to 0.525 MPa). Under higher stresses (0.700 to 1.050 MPa), the increased brittleness and porosity of the composite caused severe fracturing and delamination resulting in excessive wear rate and friction coefficient for the composite as compared to monolithic Al6061. The transition from mild to severe wear regime in composite occurred also at lower stress as compared to monolith. Analysis of the worn surfaces revealed abrasion as the dominant wear mechanism for both the materials at lower stresses. At higher stress levels, adhesion was found to be dominant in monolithic Al6061 whereas in composite, excessive sub-surface fracturing and delamination was mainly observed.

  5. Wear, strength, modulus and hardness of CAD/CAM restorative materials.

    PubMed

    Lawson, Nathaniel C; Bansal, Ritika; Burgess, John O

    2016-11-01

    To measure the mechanical properties of several CAD/CAM materials, including lithium disilicate (e.max CAD), lithium silicate/zirconia (Celtra Duo), 3 resin composites (Cerasmart, Lava Ultimate, Paradigm MZ100), and a polymer infiltrated ceramic (Enamic). CAD/CAM blocks were sectioned into 2.5mm×2.5mm×16mm bars for flexural strength and elastic modulus testing and 4mm thick blocks for hardness and wear testing. E.max CAD and half the Celtra Duo specimens were treated in a furnace. Flexural strength specimens (n=10) were tested in a three-point bending fixture. Vickers microhardness (n=2, 5 readings per specimen) was measured with a 1kg load and 15s dwell time. The CAD/CAM materials as well as labial surfaces of human incisors were mounted in the UAB wear device. Cusps of human premolars were mounted as antagonists. Specimens were tested for 400,000 cycles at 20N force, 2mm sliding distance, 1Hz frequency, 24°C, and 33% glycerin lubrication. Volumetric wear and opposing enamel wear were measured with non-contact profilometry. Data were analyzed with 1-way ANOVA and Tukey post-hoc analysis (alpha=0.05). Specimens were observed with SEM. Properties were different for each material (p<0.01). E.max CAD and Celtra Duo were generally stronger, stiffer, and harder than the other materials. E.max CAD, Celtra Duo, Enamic, and enamel demonstrated signs of abrasive wear, whereas Cerasmart, Lava Ultimate, Paradigm MZ100 demonstrated signs of fatigue. Resin composite and resin infiltrated ceramic materials have demonstrated adequate wear resistance for load bearing restorations, however, they will require at least similar material thickness as lithium disilicate restorations due to their strength. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Tooth wear and feeding ecology in mountain gorillas from Volcanoes National Park, Rwanda.

    PubMed

    Galbany, Jordi; Imanizabayo, Olive; Romero, Alejandro; Vecellio, Veronica; Glowacka, Halszka; Cranfield, Michael R; Bromage, Timothy G; Mudakikwa, Antoine; Stoinski, Tara S; McFarlin, Shannon C

    2016-03-01

    Ecological factors have a dramatic effect on tooth wear in primates, although it remains unclear how individual age contributes to functional crown morphology. The aim of this study is to determine how age and individual diet are related to tooth wear in wild mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda. We calculated the percent of dentine exposure (PDE) for all permanent molars (M1-M3) of known-age mountain gorillas (N = 23), to test whether PDE varied with age using regression analysis. For each molar position, we also performed stepwise multiple linear regression to test the effects of age and percentage of time spent feeding on different food categories on PDE, for individuals subject to long-term observational studies by the Dian Fossey Gorilla Fund International's Karisoke Research Center. PDE increased significantly with age for both sexes in all molars. Moreover, a significant effect of gritty plant root consumption on PDE was found among individuals. Our results support prior reports indicating reduced tooth wear in mountain gorillas compared to western gorillas, and compared to other known-aged samples of primate taxa from forest and savanna habitats. Our findings corroborate that mountain gorillas present very low molar wear, and support the hypothesis that age and the consumption of particular food types, namely roots, are significant determinants of tooth wear variation in mountain gorillas. Future research should characterize the mineral composition of the soil in the Virunga habitat, to test the hypothesis that the physical and abrasive properties of gritty foods such as roots influence intra- and interspecific patterns of tooth wear. © 2015 Wiley Periodicals, Inc.

  7. Tire-wear particles as a source of zinc to the environment

    USGS Publications Warehouse

    Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E.

    2004-01-01

    Tire-tread material has a zinc (Zn) content of about 1 wt %. The quantity of tread material lost to road surfaces by abrasion has not been well characterized. Two approaches were used to assess the magnitude of this nonpoint source of Zn in the U.S. for the period 1936-1999. In the first approach, tread-wear rates from the automotive engineering literature were used in conjunction with vehicle distance-driven data from the U.S. Department of Transportation to determine Zn releases. A second approach calculated this source term from the volume of tread lost during lifetime tire wear. These analyses showed that the quantity of Zn released by tire wear in the mid-1990s was of the same magnitude as that released from waste incineration. For 1999, the quantity of Zn released by tire wear in the U.S. is estimated to be 10 000-11 000 metric tons. A specific case study focused on Zn sources and sinks in an urban-suburban watershed (Lake Anne) in the Washington, DC, metropolitan area for a time period of the late 1990s. The atmospheric flux of total Zn (wet deposition) to the watershed was 2 ??g/cm2/yr. The flux of Zn to the watershed estimated from tire wear was 42 ??g/cm2/yr. The measured accumulation rate of total Zn in age-dated sediment cores from Lake Anne was 27 ??g/cm2/yr. These data suggest that tire-wear Zn inputs to urban-suburban watersheds can be significantly greater than atmospheric inputs, although the watershed appears to retain appreciable quantities of vehicular Zn inputs.

  8. Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits.

    PubMed

    Baumfeld, Daniel; Raduan, Fernando C; Macedo, Benjamim; Silva, Thiago Alexandre Alves; Baumfeld, Tiago; Favato, Danilo Fabrino; de Andrade, Marco Antonio Percope; Nery, Caio

    2015-11-19

    Excessive shoe heel abrasion is of concern to patients and shoe manufacturers, but little scientific information is available about this feature and its possible causes. The purpose of this study was to relate this phenomenon with biomechanical factors that could predispose to shoe heel abrasion. Ninety-seven recruits (median age 25) were enrolled in this study. Shoe abrasion was assessed manually with a metric plastic tape on the posterior part of the heel that comes in contact with the ground. The number of sprains, foot a