Science.gov

Sample records for abrasive wear mechanism

  1. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  2. Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient

    NASA Astrophysics Data System (ADS)

    Mezlini, Salah; Zidi, M.; Arfa, H.; Ben Tkaya, Mohamed; Kapsa, Philippe

    2005-11-01

    The transport of granular material often generates severe damage. Understanding the correlation between the friction coefficient, particle geometry and wear mechanisms is of primary importance for materials undergoing abrasive wear. The aim of this study is to investigate the effect of particle geometry on wear mechanisms and the friction coefficient. Numerical and analytical simulations and experimental results have been compared. The process to be studied is the scratch made by a rigid cone with different attack angles on a 5xxx aluminium alloy (Al-Mg) flat surface. A scratch test was used and the wear mechanisms were observed for different attack angles. A numerical study with a finite element code was made in order to understand the effect of attack angle on the friction coefficient. The contact surface and the friction coefficient were also studied, and the results compared to the Bowden and Tabor model. The superposition of the numerical, analytical and experimental results showed a better correlation between the wear mechanisms and the friction coefficient. It also showed the importance of the model hypothesis used to simulate the scratch phenomenon. To cite this article: S. Mezlini et al., C. R. Mecanique 333 (2005).

  3. Two-body, dry abrasive wear of Fe/Cr/C experimental alloys - relationship between microstructure and mechanical properties

    SciTech Connect

    Kwok, C.K.S.

    1982-01-01

    A systematic study of abrasive wear resistance of Fe/Cr/Mn based alloys has been carried out using a two body pin-on-disc wear machine. Abrasives used were silicon carbide, alumina and quartz. The objective of this study was to evaluate the abrasive wear resistance and to investigate the relationships between microstructure, mechanical properties, and abrasive wear resistance for these experimental alloys. Several commercial alloys were also tested to provide a basis for comparison. The goal of this study was to develop information so as to improve wear resistance of these experimental alloys by means of thermal treatments. Grain-refinement by double heat treatment was carried out in this research.

  4. Abrasive wear of advanced structural materials

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Young

    Wear of advanced structural materials, namely composites and ceramics, in abrasion has been examined in the present study. A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of reinforcement is estimated by modeling three primary wear mechanisms, specifically plowing, cracking at the matrix/reinforcement interface or in the reinforcement, and particle removal. Critical variables describing the role of the reinforcement, such as the relative size, fracture toughness, and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on-drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy-matrix composite material. In addition, the effects of post heat-treatment on the wear behavior of toughened silicon carbide (ABC-SiC) are investigated by characterizing the role of the microstructures introduced during the post annealing processes. When the annealing temperature is above 1300°C, an aluminum rich secondary phase (nano-precipitate) forms and grows inside the SiC grains. This toughened silicon carbide (ABC-SiC), annealed at temperatures ranging from 0 to 1600°C, is subjected to two- and three-body abrasions with different sizes of abrasives (3˜70 mum). The test results exhibit that the effect of nano-precipitates on wear resistance of post-annealed ABC-SiC is restricted to the abrasion with fine abrasives (3 mum), since nano-precipitates, in the range from 4 nm at 1300°C to 25 nm at 1600°C, are comparable in dimension

  5. Predicting abrasive wear with coupled Lagrangian methods

    NASA Astrophysics Data System (ADS)

    Beck, Florian; Eberhard, Peter

    2015-05-01

    In this paper, a mesh-less approach for the simulation of a fluid with particle loading and the prediction of abrasive wear is presented. We are using the smoothed particle hydrodynamics (SPH) method for modeling the fluid and the discrete element method (DEM) for the solid particles, which represent the loading of the fluid. These Lagrangian methods are used to describe heavily sloshing fluids with their free surfaces as well as the interface between the fluid and the solid particles accurately. A Reynolds-averaged Navier-Stokes equations model is applied for handling turbulences. We are predicting abrasive wear on the boundary geometry with two different wear models taking cutting and deformation mechanisms into account. The boundary geometry is discretized with special DEM particles. In doing so, it is possible to use the same particle type for both the calculation of the boundary conditions for the SPH method as well as the DEM and for predicting the abrasive wear. After a brief introduction to the SPH method and the DEM, the handling of the boundary and the coupling of the fluid and the solid particles are discussed. Then, the applied wear models are presented and the simulation scenarios are described. The first numerical experiment is the simulation of a fluid with loading which is sloshing inside a tank. The second numerical experiment is the simulation of the impact of a free jet with loading to a simplified pelton bucket. We are especially investigating the wear patterns inside the tank and the bucket.

  6. A physically-based abrasive wear model for composite materials

    SciTech Connect

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  7. Abrasive Wear Study of NiCrFeSiB Flame Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2013-10-01

    In the present study, abrasive wear behavior of NiCrFeSiB alloy coating on carbon steel was investigated. The NiCrFeSiB coating powder was deposited by flame spraying process. The microstructure, porosity and hardness of the coatings were evaluated. Elemental mapping was carried out in order to study the distribution of various elements in the coating. The abrasive wear behavior of these coatings was investigated under three normal loads (5, 10 and 15 N) and two abrasive grit sizes (120 and 320 grit). The abrasive wear rate was found to increase with the increase of load and abrasive size. The abrasive wear resistance of coating was found to be 2-3 times as compared to the substrate. Analysis of the scanning electron microscope images revealed cutting and plowing as the material removal mechanisms in these coatings under abrasive wear conditions used in this investigation.

  8. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  9. Elucidation of wear mechanisms by ferrographic analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1981-01-01

    The use of ferrographic analysis in conjunction with light and scanning electron microscopy is described for the elucidation of wear mechanisms taking place in operating equipment. Example of adhesive wear, abrasive wear, corrosive wear, rolling element fatigue, lubricant breakdown, and other wear modes are illustrated. In addition, the use of magnetic solutions to precipitate nonmagnetic debris from aqueous and nonaqueous fluids is described.

  10. Improvement in high stress abrasive wear property of steel by hardfacing

    SciTech Connect

    Kumar, S.; Mondal, D.P.; Khaira, H.K.; Jha, A.K.

    1999-12-01

    High stress abrasive wear behavior of mild steel, medium carbon steel, and hardfacing alloy has been studied to ascertain the extent of improvement in the wear properties after hardfacing of steel. High stress abrasive wear tests were carried out by sliding the specimen against the abrasive media consisting of silicon carbide particles, rigidly bonded on paper base and mounted on disk. Maximum wear was found in the case of mild steel followed by a medium carbon alloy steel and a hardfacing alloy. Different compositions of steels and constituent phases present led to different wear rates of the specimen. The extent of improvement in wear performance of steel due to hardfacing is quite appreciable (twice compared to mild steel). Microstructural examination of the wear surface has been carried out to understand the wear mechanism.

  11. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  12. Influence of material characteristics on the abrasive wear response of some hardfacing alloys

    SciTech Connect

    Jha, A.K.; Prasad, B.K.; Dasgupta, R.; Modi, O.P.

    1999-04-01

    This study examines the abrasive wear behavior of two iron-base hardfacing materials with different combinations of carbon and chromium after deposition on a steel substrate. Effects of applied load and sliding distance on the wear behavior of the specimens were studied. Operating material removal mechanisms also were analyzed through the scanning electron microscopy (SEM) examination of typical wear surfaces, subsurface regions, and debris particles. The results suggest a significant improvement in the wear resistance of the hardfaced layers over that of the substrate. Further, the specimens overlaid with the material with low carbon and high chromium contents attained better wear resistance than the one consisting of more carbon but less chromium. The former specimens also attained superior hardness. Smoother abrasion grooves on the wear surfaces and finer debris formation during the abrasion of the hardfaced samples were consistent with wear resistance superior to that of the substrate.

  13. Wear and abrasion resistance selection maps of biological materials.

    PubMed

    Amini, Shahrouz; Miserez, Ali

    2013-08-01

    The mechanical design of biological materials has generated widespread interest in recent years, providing many insights into their intriguing structure-property relationships. A critical characteristic of load-bearing materials, which is central to the survival of many species, is their wear and abrasion tolerance. In order to be fully functional, protective armors, dentitious structures and dynamic appendages must be able to tolerate repetitive contact loads without significant loss of materials or internal damage. However, very little is known about this tribological performance. Using a contact mechanics framework, we have constructed materials selection charts that provide general predictions about the wear performance of biological materials as a function of their fundamental mechanical properties. One key assumption in constructing these selection charts is that abrasion tolerance is governed by the first irreversible damage at the contact point. The maps were generated using comprehensive data from the literature and encompass a wide range of materials, from heavily mineralized to fully organic materials. Our analysis shows that the tolerance of biological materials against abrasion depends on contact geometry, which is ultimately correlated to environmental and selective pressures. Comparisons with experimental data from nanoindentation experiments are also drawn in order to verify our predictions. With the increasing amount of data available for biological materials also comes the challenge of selecting relevant model systems for bioinspired materials engineering. We suggest that these maps will be able to guide this selection by providing an overview of biological materials that are predicted to exhibit the best abrasion tolerance, which is of fundamental interest for a wide range of applications, for instance in restorative implants and protective devices. PMID:23643608

  14. Microstructure and abrasive wear in silicon nitride ceramics

    SciTech Connect

    Dogan, Cynthia P.; Hawk, Jeffrey A.

    2001-10-01

    It is well known that abrasive wear resistance is not strictly a materials property, but also depends upon the specific conditions of the wear environment. Nonetheless, characteristics of the ceramic microstructure do influence its hardness and fracture toughness and must, therefore, play an active role in determining howa ceramic will respond to the specific stress states imposed upon it by the wear environment. In this study, the ways in which composition and microstructure influence the abrasive wear behavior of six commercially-produced silicon nitride based ceramics are examined. Results indicate that microstructural parameters, such as matrix grain size and orientation, porosity, and grain boundary microstructure, and thermal expansion mismatch stresses created as the result of second phase formation, influence the wear rate through their effect on wear sheet formation and subsurface fracture. It is also noted that the potential impact of these variables on the wear rate may not be reflected in conventional fracture toughness measurements.

  15. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  16. A review on nozzle wear in abrasive water jet machining application

    NASA Astrophysics Data System (ADS)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  17. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  18. Microfracture patterns of abrasive wear striations on teeth indicate directionality.

    PubMed

    Gordon, K R

    1984-03-01

    A method is described that will indicate the direction that an abrasive particle was traveling as it scored the surface of a brittle material. Light and scanning electron micrographs of glass, dentine, and enamel abraded by loose and, steel carbide, and diamond indicate that partial Hertzian fracture cones are formed at the margins of wear striations during abrasion. The bases of these fracture cones face in the direction of travel of the abrasive particle and, therefore, indicate directionality. Because this method is based only on the consistent geometry of fracturing of brittle materials, it is independent of the loading of the abrasive particle. The only other method available to determine directionality of striations is unreliable since it uses the width of striations, and, hence, is dependent upon a consistent loading regime of the abrasive particle. This new method has direct application for determining the direction of movement of the jaws during mastication in living or fossil animals. PMID:6731603

  19. Microstructural effects in abrasive wear. Quarterly progress report, June 1981-January 1982

    SciTech Connect

    Kosel, T.H.; Rao, C.M.; Fernandes, M.T.; Fiore, N.F.

    1982-02-24

    This report describes research aimed at establishing quantitative relationships between microstructure and wear resistance of highly alloyed materials, including high-Cr white irons and powder metallurgy (PM) alloys now used or potentially to be used in coal mining, handling, and gasification. The specific types of wear under study are low-stress abrasion and gouging wear encountered in mining, coal conversion, and transfer applications. Recent work has concentrated on analysis of results. The many detailed observations obtained in the work on scratch test simulations of abrasive wear mechanisms have been summarized in drafts of three papers. The first, a study of abrasive wear mechanisms using diamond and alumina scratch tests, was included as an appendix to Quarterly Report 16/17 and has been accepted for publication in the journal Wear. Revision of the other two papers is in progress. Two papers representing our analysis of results are included as appendices to this report. The first, abrasion in multiphase alloys, was presented at the NACE conference on corrosion-erosion-wear of materials at Berkeley, California in January 1982, and will be published in the proceedings. The second, on a deformation-induced phase transformation during abrasive wear of Co-base alloys, is being submitted for publication in Metallurgical Transactions. In addition, work on the gouging abrasion resistance of the previously tested high Cr-Mo white cast irons is completed. The abstract of a short paper on the results is included as an appendix. (Note: since the appendices are, or will be, available in the open literature they have been removed from the report.)

  20. Mechanical modelling of tooth wear.

    PubMed

    Karme, Aleksis; Rannikko, Janina; Kallonen, Aki; Clauss, Marcus; Fortelius, Mikael

    2016-07-01

    Different diets wear teeth in different ways and generate distinguishable wear and microwear patterns that have long been the basis of palaeodiet reconstructions. Little experimental research has been performed to study them together. Here, we show that an artificial mechanical masticator, a chewing machine, occluding real horse teeth in continuous simulated chewing (of 100 000 chewing cycles) is capable of replicating microscopic wear features and gross wear on teeth that resemble wear in specimens collected from nature. Simulating pure attrition (chewing without food) and four plant material diets of different abrasives content (at n = 5 tooth pairs per group), we detected differences in microscopic wear features by stereomicroscopy of the chewing surface in the number and quality of pits and scratches that were not always as expected. Using computed tomography scanning in one tooth per diet, absolute wear was quantified as the mean height change after the simulated chewing. Absolute wear increased with diet abrasiveness, originating from phytoliths and grit. In combination, our findings highlight that differences in actual dental tissue loss can occur at similar microwear patterns, cautioning against a direct transformation of microwear results into predictions about diet or tooth wear rate. PMID:27411727

  1. Wear of artificial denture teeth by use of toothbrushes. Part 1: Abrasive wear of anterior teeth.

    PubMed

    Satoh, Y; Ohtani, K; Maejima, K; Morikawa, M; Matsuzu, M; Nagai, E; Toyoma, H; Ohwa, M; Ohki, K; Kaketani, M

    1990-12-01

    High-strength denture teeth (HS teeth) were developed in order to improve the hardness and wear resistance of conventional plastic denture teeth (PL teeth), while retaining their feature of easy occlusal adjustment. The objective of this study was to evaluate the abrasive wear resistance of HS teeth. We conducted wear tests and measured surface roughness using six types of anterior artificial teeth, i.e., three types of HS teeth and three types of PL teeth, the latter serving as the control. The results of the toothbrush abrasion test revealed that the HS teeth had about 5 times greater wear resistance than the PL teeth. It was also found that the type of artificial teeth and the number of abrasive wear-testing strokes had a significant (P less than 0.05) influence on the surface roughness of artificial teeth. PMID:2074493

  2. Microstructural effects in abrasive wear. Quarterly progress report, January 1-June 1, 1980

    SciTech Connect

    Fiore, N.F.; Kosel, T.H.; Channagiri, M.; Desai, V.; Fulcher, J.; Shetty, H.R.

    1980-06-01

    Research aimed at establishing quantitative relationships between microstructure and wear resistance of highly alloyed materials is described including high-Cr white irons and experimental Co-base and Ni-base powder metallurgy (PM) alloys now used or potentially to be used in coal mining, handling and gasification. The specific types of wear under study are low-stress abrasion and gouging wear encountered in mining, coal conversion and transfer applications. Research has concentrated on the investigation of wear in Co-base PM alloys No. 19 and No. 6, which have been sintered to provide different carbide sizes at the same volume fraction in each respective alloy. Low-stress abrasion tests using Al/sub 2/O/sub 3/ abrasive have been completed on Alloy No. 19 and the results show a monotonic decrease in wear rate with increasing size. A series of single-point scratch test simulations of abrasive wear mechanisms has been initiated, and these tests provide valuable insights into material removal processes in the Co-base alloys.

  3. Sliding and Abrasive Wear Behavior of WC-CoCr Coatings with Different Carbide Sizes

    NASA Astrophysics Data System (ADS)

    Thakur, Lalit; Arora, Navneet

    2013-02-01

    This study examines the sliding and abrasive wear behaviors of high-velocity oxy-fuel (HVOF)-sprayed WC-CoCr coatings with different WC grain sizes. The HVOF coating deposition was assisted by in-flight particle temperature and velocity measurement system. The powder feedstocks and their corresponding coatings were characterized by means of XRD and Field Emission Scanning Electron Microscope analysis. Hardness, porosity, and indentation fracture toughness of these coatings were calculated and compared with each other. Sliding wear resistance of these coatings was calculated using pin-on-disk tribometer (ASTM G99-90). The two-body abrasion was quantified by sliding the samples over silicon carbide (SiC) abrasive paper bonded to a rotating flat disk of auto-polisher. The mechanism of materials' removal in both the sliding and abrasive wears was studied and discussed on microstructural investigations. It was observed that fine grain WC-CoCr cermet coating exhibits higher sliding and abrasive wear resistances as compared with conventional cermet coating.

  4. Abrasive Wear Behaviour of COPPER-SiC and COPPER-SiO2 Composites

    NASA Astrophysics Data System (ADS)

    Umale, Tejas; Singh, Amarjit; Reddy, Y.; Khatitrkar, R. K.; Sapate, S. G.

    The present paper reports abrasive wear behaviour of copper matrix composites reinforced with silicon carbide and silica particles. Copper - SiC (12%) and Copper-SiO2 (9%) composites were prepared by powder metallurgical technique. Metallography, image analysis and hardness studies were carried out on copper composites. The abrasive wear experiments were carried out using pin on disc apparatus. The effect of sliding distance and load was studied on Copper - SiC (12%) and Copper-SiO2 (9%) composites. The abrasive wear volume loss increased with sliding distance in both the composites although the magnitude of increase was different in each case. Copper - SiC (12%) composites exhibited relatively better abrasion resistance as compared to and Copper-SiO2 (9%) composites. The abraded surfaces were observed under scanning electron microscope to study the morphology of abraded surfaces and operating wear mechanism. The analysis of wear debris particles was also carried out to substantiate the findings of the investigation.

  5. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications.

    PubMed

    Sampaio, M; Buciumeanu, M; Henriques, B; Silva, F S; Souza, J C M; Gomes, J R

    2016-07-01

    In the oral cavity, abrasive wear is predictable at exposed tooth or restorative surfaces, during mastication and tooth brushing. Also, wear can occur at contacting surfaces between the Ti-based prosthetic structures and implants in presence of abrasive compounds from food or toothpaste. Thus, the aim of this work was to compare the abrasive wear resistance of PEEK and Ti6Al4V on three-body abrasion related to different hydrated silica content and loads. Surfaces of Ti6Al4V or PEEK cylinders (8mm diameter and 4mm height) were wet ground on SiC papers and then polished with 1µm diamond paste. After that, surfaces were ultrasonically cleaned in propyl alcohol for 15min and then in distilled water for 10min. Micro-scale abrasion tests were performed at 60rpm and on different normal loads (0.4, 0.8 or 1.2N) after 600 ball revolutions using suspensions with different weight contents of hydrated silica. After abrasive tests, wear scars on flat samples were measured to quantify the wear volume and characterized by scanning electron microscope (SEM) to identify the dominant wear mechanisms. Results showed a higher volume loss rate on PEEK than that recorded on Ti6Al4V,, when subjected to three-body abrasion tests involving hydrated silica suspensions. An increase in volume loss was noted on both tested materials when the abrasive content or load was increased. PEEK was characterized by less wear resistance than that on Ti6Al4V after micro-scale abrasion wear in contact with hydrated silica particles, as commonly found in toothpastes. PMID:26849309

  6. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  7. Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Zafar, Sunny; Sharma, Apurbba Kumar

    2015-10-01

    In the present work, Ni-WC powder was deposited on mild steel substrate to develop clads through microwave hybrid heating technique. The cladding trials were carried out in an industrial microwave applicator at 1.1 kW for 540 s. The Ni-WC composite clads were characterized for microstructure and abrasive wear performance through combination of x-ray diffraction, electron and optical microscopy, microhardness, and wear tests. Phase analysis of the Ni-WC clad indicated the presence of stable carbides such as WC, W2C, Ni2W4C, and Fe6W6C. The microstructure study of the clad layer revealed the presence of a uniformly distributed interlocked WC-based reinforcement embedded in the Ni-based matrix. The average Vicker's microhardness in the clad layer was observed to be 1028 ± 90 HV, which was approximately three times the microhardness of the substrate. Abrasive wear resistance of the microwave clads was superior to the MS substrate. Abrasion was the main wear mechanism in the Ni-WC clads and the substrate samples. However, the presence of WC-based reinforcement in the composite clads reduced microcutting, resulting in enhanced wear resistance.

  8. Characterization of High-Temperature Abrasive Wear of Cold-Sprayed FeAl Intermetallic Compound Coating

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Wang, Hong-Tao; Yang, Guan-Jun; Bao, Chong-Gao

    2011-01-01

    FeAl intermetallic compound coating was prepared by cold spraying using a mechanically alloyed Fe(Al) alloy powder followed by post-spray annealing at 950 °C. The high-temperature abrasive wear test was carried out for the FeAl coating at a temperature range from room temperature to 800 °C. The high-temperature abrasive wear of a heat-resistant stainless steel 2520 was performed for comparison. It was observed that the abrasive wear weight loss of FeAl coating was proportional to wear cycles in terms of sample revolutions at the tested temperatures. It was found that with the increase of the test temperature higher than 400 °C, the wear rate of cold-sprayed FeAl coating decreased with the increase of test temperature, while the wear rate of the heat-resistant steel increased significantly. The results indicate that the high-temperature abrasive wear resistance of the cold-sprayed FeAl intermetallic coating increased with the increase of the wear temperature in a temperature range from 400 to 800 °C. The wear resistance of cold-sprayed FeAl coating was higher than that of heat-resistant 2520 stainless steel under 800 °C by a factor of 3.

  9. Comparison of the abrasive wear resistance between amalgams, hybrid composite material and different dental cements.

    PubMed

    Gil, F J; Espias, A; Sánchez, L A; Planell, J A

    1999-12-01

    This paper reports on the abrasion wear of various restorative dental materials (three amalgams and two dental cements and a hybrid composite material) commonly used in dentistry. The mechanical properties, surface roughness and the volume loss by abrasion were determined for the different materials studied. The results showed a better profile for the amalgams versus the composite materials due to the failure of the polymeric matrix of the latter materials. However, the amalgams exhibited corrosion observed by means of Scanning Electron Microscopy. PMID:10907431

  10. Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.

    2010-07-01

    Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.

  11. Abrasive wear by coal-fueled diesel engine and related particles

    SciTech Connect

    Ives, L.K.

    1992-09-01

    The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

  12. Effect of Experimental Variables of Abrasive Wear on 3D Surface Roughness and Wear Rate of Al-4.5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashis; Mallik, Manab; Mandal, Nilrudra; Dutta, Samik; Roy, Himadri; Lohar, Aditya Kumar

    2016-05-01

    This investigation was primarily carried out to examine the abrasive wear behavior of as cast Al-4.5 % Cu alloy. Wear tests have been carried out using an abrasive wear machine with emery paper embedded with SiC particles acting as abrasive medium. The experiments were planned using central composite design, with, load, cycle and grit size as input variables, whereas wear rate and 3D roughness were considered as output variable. Analysis of variance was applied to check the adequacy of the mathematical model and their respective parameters. Microstructural investigations of the worn surfaces have been carried out to explain the observed results and to understand the wear micro-mechanisms as per the planned experiments. Desirability function optimization technique was finally employed to optimize the controlling factors. The observed results revealed that, grit size plays a significant role in the variation of wear rate and 3D roughness as compared to load and cycles. Based on the significance of interactions, the regression equations were derived and verified further with a number of confirmation runs to assess the adequacy of the model. A close agreement (±10 %) between the predicted and experimentally measured results was obtained from this investigation.

  13. Computer Simulation of Stress-Strain State of Pipeline Section Affected by Abrasion Due to Mechanical Impurities

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Afanas’ev, R. G.; Burkova, S. P.

    2016-04-01

    The paper presents the effect of abrasive wear of the pipeline section occurred due to mechanical impurities in the transported gas flow. The approaches to the detection of the maximum specific wear of the pipeline wall and the geometry of abrasion are the main problems of computer simulation described in this paper.

  14. Study of abrasive wear rate of silicon using n-alcohols

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1982-01-01

    The work carried out at the University of Illinois at Chicago for the Flat-Plate Solar Array Project under contract No. 956053 is summarized. The abrasion wear rate of silicon in a number of fluid environments and the parameters that influence the surface mechanical properties of silicon were determined. Three tests were carried out in this study: circular and linear multiple-scratch test, microhardness test and a three-point bend test. The pertinent parameters such as effect of surface orientation, dopant and fluid properties were sorted. A brief review and critique of previous work is presented.

  15. Relationship between abrasive wear and microstructure of composite resins.

    PubMed

    Draughn, R A; Harrison, A

    1978-08-01

    The in vitro abrasion resistance of seven commercial composite resin restorative materials has been measured. Analysis of the composite microstructures shows that abrasion rates are dependent upon the size, hardness, and volume fraction of particles in the material. The most abrasion-resistant composites contain a high volume fraction of large, hard particles. PMID:278840

  16. Microstructural effects in abrasive wear. Quarterly progress report, December 1980-1 June 1981. [Alloys for use in coal mining, handling, and gasification

    SciTech Connect

    Kosel, T.H.; Rao, M.C.; Shetty, H.R.; Fernandes, M.T.; Fiore, N.F.

    1981-10-29

    This report describes research aimed at establishing quantitative relationships between microstructure and wear resistance of highly alloyed materials, including high-Cr white irons and experimental Co-base and Ni-base powder metallurgy (PM) alloys now used or potentially to be used in coal mining, handling, and gasification. The specific types of wear under study are low-stress abrasion and gouging wear encountered in mining, coal conversion, and transfer applications. During this period, work was concentrated on analysis of results. The many detailed observations obtained in the work on scratch test simulations of abrasive wear mechanisms have been summarized in drafts of three papers. The first, A Study of Abrasive Wear Mechanisms Using Diamond and Alumina Scratch Tests, is included as an appendix to this report and is being submitted for publication. Revision of the other papers is in progress.

  17. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    PubMed

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. PMID:25063112

  18. An energetic approach to abrasive wear of a martensitic stainless steel

    SciTech Connect

    Pamuk, U.; Baydogan, M.; Niluefer, B.; Cimenoglu, H.

    2000-04-01

    Abrasive wear is the most common type of wear that causes failure of machine elements. Examinations of abraded surfaces revealed presence of embedded particles and grooves elongated along the sliding direction. This indicates that, there are two sequential stages of an abrasion process. In the first stage, asperities on the hard surface and/or hard abrasive grains penetrate into the soft material surface and then in the second stage, they grind the surface in the sliding direction. Therefore, indentation and scratching of an indenter, which can be realized by hardness and scratch tests, can simulate the damage produced on the abraded surface. On the basis of this simulation, an energetic model is proposed for abrasive wear in the present study. In this study, abrasive wear behavior of a martensitic stainless steel is examined by hardness and scratch tests. The results of tests were evaluated to estimate the work done during abrasion and to find out the dimensional wear coefficient according to the model proposed above.

  19. Abrasive wear behavior of heat-treated ABC-silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  20. Review of scratch test studies of abrasion mechanisms

    SciTech Connect

    Kosel, T.H.

    1986-01-01

    The use of scratch tests to simulate the material removal mechanisms which occur during abrasion is reviewed. Although useful studies of the effect of the rake angle on material removal have been carried out using diamond tools, closer simulation of the mechanisms of material removal can be obtained using actual irregular individual abrasive particles as scratch tools. Previous studies are reviewed in which scratch tests have been performed with both conventional scratch test instruments and a specially designed system used for )ital in situ) scratch tests in the scanning electron microscope (SEM). Multiple-pass scratch tests over the same scratch path have been shown to create surface features and wear debris particles which are very similar to those produced by low-stress abrasion. Alumina (Al/sub 2/O/sub 3/) particles have been shown to produce continuous micromachining chips from the hard, brittle carbide phase of Stellite alloys, establishing direct cutting as the important mechanism of material removal for this type of abrasive. An )ital in situ) study of material removal from white cast irons by quartz particles has provided conclusive evidence that carbide removal does not occur by direct cutting but rather always involves microfracture. Previously unpublished work which has compared scratch tests with crushed quartz and alumina particles is included. Also described is a new scratch test system which controls the depth of cut rather than the scratch load in order to simulate high-stress abrasion, in which abrasive particles are constrained to a fixed depth of cut. Preliminary new results show substantially different carbide fracture behavior under fixed-depth conditions. 8 figs., 20 refs.

  1. Biodegradation and abrasive wear of nano restorative materials.

    PubMed

    de Paula, A B; Fucio, S B P; Ambrosano, G M B; Alonso, R C B; Sardi, J C O; Puppin-Rontani, R M

    2011-01-01

    The purpose of this study was to evaluate the biomechanical degradation of two nanofilled restorative materials (a resin-modified glass ionomer, Ketac N100 and a composite, Filtek Z350), compared with conventional materials (Vitremer and TPH Spectrum). Twenty specimens obtained from each material were divided into two storage groups (n=10): relative humidity (control) and Streptococcus mutans biofilm (biodegradation). After 7 days of storage, roughness values (Ra) and micrographs by scanning electron microscopy (SEM) were obtained. In a second experimental phase, the specimens previously subjected to biodegradation were fixed to the tooth-brushing device and abraded via toothbrushes, using dentifrice slurry (mechanical degradation). Next, these specimens were washed, dried, and reassessed by roughness and SEM. The data were submitted to repeated measures three-way analysis of variance (ANOVA) and Tukey tests (p<0.05). There was statistically significant interaction among factors: material, storage (humidity/biofilm), and abrasion (before/after). After biodegradation (S mutans biofilm storage), Ketac N100 presented the highest Ra values. Concerning bio plus mechanical challenge, TPH Spectrum, Ketac N100, and Vitremer presented the undesirable roughening of their surfaces, while the nano composite Filtek Z350 exhibited the best resistance to cumulative challenges proposed. The degraded aspect after biodegradation and the exposure of fillers after mechanical degradation were visualized in micrographs. This study demonstrated that the nanotechnology incorporated in restorative materials, as in composite resin and resin-modified glass ionomer, was important for the superior resistance to biomechanical degradation. PMID:21913859

  2. Abrasive wear behavior of a brittle matrix (MoSi2) composite reinforced with a ductile phase (Nb)

    SciTech Connect

    Alman, David E.; Hawk, Jeffrey A.

    2001-10-01

    The toughness of a variety of brittle ceramic and intermetallic matrices has been improved through the incorporation of ductile metallic reinforcements. In these composites resistance to catastrophic failure of the matrix is derived through a combination of mechanisms, including matrix crack bridging, matrix crack defection and rupturing of the ductile phase. The degree to which these mechanisms operate is a function of composite microstructure. In general, the ductile phase is softer than the matrix phase. This may have unique implications when the materials are subjected to a wear environment, whether intentional or not. Hence, it is important to understand the wear behavior of these new materials. MoSi2–Nb was selected as a model composite system, in part because of the wide body of open literature regarding this system. The influences of abrasive wear environment and the composite microstructure (Nb reinforcement size, shape and volume fraction) on the wear resistance of the composites are reported.

  3. Wear and Tear - Mechanical

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore

    2008-01-01

    The focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have some component that moves at least once, in response to some type of passive or active control system. For the structure, aging may proceed as a gradual degradation of mechanical properties and/or function, possibly leading to complete structural failure over an extended period of time. However, over the 50 years of the Space Age such failures appear to be unusual. In contrast, failures for mechanisms are much more frequent and may have a very serious effect on mission performance. Just as on Earth, all moving devices are subject to normal (and possibly accelerated) degradation from mechanical wear due to loss or breakdown of lubricant, misalignment, temperature cycling effects, improper design/selection of materials, fatigue, and a variety of other effects. In space, such environmental factors as severe temperature swings (possibly 100's of degrees C while going in and out of direct solar exposure), hard vacuum, micrometeoroids, wear from operation in a dusty or contaminated environment, and materials degradation from radiation can be much worse. In addition, there are some ground handling issues such as humidity, long term storage, and ground transport which may be of concern. This chapter addresses the elements of the mechanical subsystem subject to wear, and identifies possible causes. The potential impact of such degradation is addressed, albeit with the recognition that the impact of such wear often depends on when it occurs and on what specific components. Most structural elements of the mechanical system typically are conservatively designed (often to a safety factor of greater than approximately 1.25 on yield for

  4. The abrasion-wear resistance of arc sprayed stainless steel and composite stainless steel coatings

    SciTech Connect

    Dallaire, S.; Legoux, J.G.; Levert, H.

    1994-12-31

    Stainless steels are often used to palliate wear problems in various industries. Though they are not wear resistant, they have been used to a limited extent in applications involving both corrosive and abrasive/erosive environments. The protection of industrial components by arc sprayed stainless steel composite coatings could be considered very attractive provided these coatings offer a better wear protection than bulk stainless steel. The wear resistance of stainless steel and composite stainless steel-titanium boride coatings arc sprayed with air and argon was evaluated following the ASTM G-65 Abrasion Wear Test procedures. Wear volume loss measurements show that stainless steel coatings arc sprayed with air were slightly more resistant than bulk stainless steel while those sprayed with argon were slightly less resistant. The abrasion wear resistance of composite stainless steel-titanium diboride coatings is by two or four times beyond the wear resistance of bulk stainless steel depending upon the core wire constitution and the type of gas used for spraying. Microstructural analysis of coatings, microhardness measurements of sprayed lamellae and optical profilometry were used to characterize coatings and wear damages. Spraying with air instead of argon produced much more small particles. These particles, being removed from the metal sheath surface, are individually sprayed without diluting the concentration hard phases within cores. It results in coatings that contain large lamellae with hardnesses sufficient to withstand abrasion. By considering both the wire constitution and the spraying conditions, it was found possible to fabricate composite stainless steel coatings that show a 400% increase in wear resistance over bulk stainless steel.

  5. Parametric Study to Correlate the Applied Factors and Abrasive Wear Resistance of HVOF Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2012-12-01

    Co-Ni-base powder was modified with the addition of CeO2 to study the effect of CeO2 addition on microstructure, hardness, and abrasive wear behavior of the unmodified (without CeO2) and modified (with CeO2) HVOF sprayed coatings. To investigate the abrasive wear behavior of coatings statistical response surface methodology (RSM) with four factors such as load, abrasive size, sliding distance, and temperature with three levels of each factor were used. Analysis of variance (ANOVA) was carried out to determine the significant factors and their interactions. Thus abrasive wear model was developed in terms of main factors and their significant interactions. The validity of the model was evaluated by conducting experiments under different wear conditions. A comparison of modeled and experimental results showed 2-8% error. The wear resistance of coatings increased with the addition of CeO2. This is due to increase in hardness with the addition of CeO2 in Co-Ni-base coatings.

  6. Wear of combinations of acrylic resin and porcelain, on an abrasion testing machine.

    PubMed

    Harrison, A

    1978-04-01

    Wear tests of various combinations of acrylic resin and porcelain were made using a machine which was designed to test materials under conditions similar to those of masticatory function by simulating the loads, sliding distances, and contact times encountered in the human masticatory cycle. The results showed that the amount of wear of the two materials worn in combination depended on the nature of the surrounding medium and on the surface roughness of the opposing material. Acrylic resin showed good wear resistance provided no third party abrasive or opposing hard, rough surface was present. When a mild abrasive was incorporated in the system, the acrylic resin vs acrylic resin combination wore almost seven times more than porcelain vs porcelain. Clinical experience would suggest that this is a reasonably sound order of wear. PMID:213546

  7. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  8. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    NASA Astrophysics Data System (ADS)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-07-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  9. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    NASA Astrophysics Data System (ADS)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  10. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  11. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention

    SciTech Connect

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  12. Analysis of wear mechanism and influence factors of drum segment of hot rolling coiler

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Peng, Yan; Liu, Hongmin; Liu, Yunfei

    2013-03-01

    Because the work environment of segment is complex, and the wear failures usually happen, the wear mechanism corresponding to the load is a key factor for the solution of this problem. At present, many researchers have investigated the failure of segment, but have not taken into account the compositive influences of matching and coiling process. To investigate the wear failure of the drum segment of the hot rolling coiler, the MMU-5G abrasion tester is applied to simulate the wear behavior under different temperatures, different loads and different stages, and the friction coefficients and wear rates are acquired. Scanning electron microscopy(SEM) is used to observe the micro-morphology of worn surface, X-ray energy dispersive spectroscopy(EDS) is used to analyze the chemical composition of worn surface, finally the wear mechanism of segment in working process is judged and the influence regulars of the environmental factors on the material wear behaviors are found. The test and analysis results show that under certain load, the wear of the segment changes into oxidation wear from abrasive wear step by step with the temperature increases, and the wear degree reduces; under certain temperature, the main wear mechanism of segment changes into spalling wear from abrasive wear with the load increases, and the wear degree slightly increases. The proposed research provides a theoretical foundation and a practical reference for optimizing the wear behavior and extending the working life of segment.

  13. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    SciTech Connect

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b) a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.

  14. Abrasive wear behavior of P/M titanium metal-matrix composites

    SciTech Connect

    Alman, D.E.; Hawk, J.A.; Simmons, J.W.

    1997-01-01

    The abrasive wear behavior of titanium metal-matrix composites produced by powder metallurgical techniques was studied. Ti powder was mixed with 0, 20, or 40 volume percent (v%) TiB2, TiC, TiN, SiC, an B4C powder to produce a composite powder blend. The blends were consolidated by hot-pressing at 1200° C and 20 MPa for 2 hours. Also a series of Ti-TiB2 composites was consolidated by press and sinter techniques. Two-body abrasive wear resistance, of the composites worn against either SiC or garnet particles, was evaluated using a pin-on-drum apparatus. The wear behavior of the composites was correlated to the physical properties (e.g., microstructure, sintered density, hardness, strength) of the composites, and compared to the behavior of conventional cast adn wrought Ti and other alloys.

  15. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  16. Adhesion and wear behaviour of NCD coatings on Si3N4 by micro-abrasion tests.

    PubMed

    Silva, F G; Neto, M A; Fernandes, A J S; Costa, F M; Oliveira, F J; Silva, R F

    2009-06-01

    Nanocrystalline diamond (NCD) coatings offer an excellent alternative for tribological applications, preserving most of the intrinsic mechanical properties of polycrystalline CVD diamond and adding to it an extreme surface smoothness. Silicon nitride (Si3N4) ceramics are reported to guarantee high adhesion levels to CVD microcrystalline diamond coatings, but the NCD adhesion to Si3N4 is not yet well established. Micro-abrasion tests are appropriate for evaluating the abrasive wear resistance of a given surface, but they also provide information on thin film/substrate interfacial resistance, i.e., film adhesion. In this study, a comparison is made between the behaviour of NCD films deposited by hot-filament chemical vapour deposition (HFCVD) and microwave plasma assisted chemical vapour deposition (MPCVD) techniques. Silicon nitride (Si3N4) ceramic discs were selected as substrates. The NCD depositions by HFCVD and MPCVD were carried out using H2-CH4 and H2-CH4-N2 gas mixtures, respectively. An adequate set of growth parameters was chosen for each CVD technique, resulting in NCD films having a final thickness of 5 microm. A micro-abrasion tribometer was used, with 3 microm diamond grit as the abrasive slurry element. Experiments were carried out at a constant rotational speed (80 r.p.m.) and by varying the applied load in the range of 0.25-0.75 N. The wear rate for MPCVD NCD (3.7 +/- 0.8 x 10(-5) mm3 N(-1) m(-1)) is compatible with those reported for microcrystalline CVD diamond. The HFCVD films displayed poorer adhesion to the Si3N4 ceramic substrates than the MPCVD ones. However, the HFCVD films show better wear resistance as a result of their higher crystallinity according to the UV Raman data, despite evidencing premature adhesion failure. PMID:19504945

  17. Wear mechanism based on adhesion

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    Various concepts concerning wear mechanisms and deformation behavior observed in the sliding wear track are surveyed. The mechanisms for wear fragment formation is discussed on the basis of adhesion. The wear process under unlubricated sliding conditions is explained in relation to the concept of adhesion at the interface during the sliding process. The mechanism for tearing away the surface layer from the contact area and forming the sliding track contour is explained by assuming the simplified process of material removal based on the adhesion theory.

  18. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  19. Wear mechanism and wear prevention in coal-fueled diesel engines. Final report

    SciTech Connect

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  20. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  1. Microstructural effects in abrasive wear. Third annual progress report, August 12, 1983-August 14, 1984

    SciTech Connect

    Kosel, T.H.

    1984-08-14

    The two major goals of the project are to improve our understanding of the mechanisms of carbide removal and of the role of matrix properties in abrasion. In the area of carbide removal mechanisms, progress this year has included completion of the fixed-depth scratch test apparatus and its use to demonstrate the occurrence of gross carbide cracking under fixed-depth conditions; comparable cracking does not occur under fixed-load conditions at a similar mean load. A high-stress abrasion system has been constructed and tested which will facilitate studies of abrasion under conditions similar to those produced by the fixed-depth scratch test system. Analysis of the work on the size effect in abrasion of dual-phase alloys has been completed. The largest single item in this year's proposed work in a study of the abrasion resistance and mechanisms of material removal in model alloys having second-phase particles (SPP's) with varying fracture properties. In the area of the effects of matrix properties on abrasion, the majority of the effort this year has centered on transmission electron microscopy of the subsurface deformation microstructures developed during abrasion.

  2. The abrasive wear of plasma sprayed nanoscale tungsten carbide-cobalt (WC-Co)

    NASA Astrophysics Data System (ADS)

    Tewksbury, Graham Alfred

    Thermal spray coatings composed of a variety of carbide sizes and cobalt contents were sprayed with a high energy plasma spray system. The size of the carbides used fell into three rough groupings, micrometer scale carbides (1--2 mum), submicrometer (700--300 nm), and nanoscale (≈100 nm). The feedstock powder was evaluated in terms of their size distribution, external morphology, internal morphology, and initial carbide size. Two different fixtures were used in spraying to evaluate the effect of cooling rate on the wear resistance of the coatings. The microstructures of the sprayed coatings were examined using optical metallography, SEM, FESEM, TEM, XRD and chemical analysis. The coatings were evaluated in low stress abrasive wear by the ASTM G-65 Dry Sand Rubber Wheel test. Furthermore, the porosity and hardness of the coatings were evaluated. The cobalt content was found to be the predominant influence on the wear rate of the coatings. The decrease in the carbide size was not found to effect the wear rate of the coatings. Coatings sprayed on the 'hot' fixture were found to have slightly improved wear resistance as compared to coatings sprayed on the 'cold' fixture. The wear rates of the coatings were found to be a function of the WC/Co volume ratio.

  3. Sliding and abrasive wear resistance of thermal-sprayed WC-CO coatings

    NASA Astrophysics Data System (ADS)

    Qiao, Yunfei; Liu, Yourong; Fischer, Traugott E.

    2001-03-01

    We studied the resistance of the coatings to abrasive and unlubricated sliding wear of 40 WC/Co coatings applied by high velocity oxygen fuel (HVOF), high-energy plasma spray (HEPS), and high velocity plasma spray (HVPS), using commercial and nanostructured experimental powders. The hardness of the coatings varies from 3 to 13 GPA, which is much lower than that of sintered samples (10 to 23 GPA) because of the porosity of the coatings. Phase analysis by x-ray diffraction revealed various amounts of decarburization in the coatings, some of which contain WC, W2C, W, and η phase. The abrasive and sliding wear resistance is limited by the hardness of the samples. For a given hardness, the wear resistance is lowered by decarburization, which produces a hard but brittle phase. Nanocarb powders have the shape of thin-walled hollow spheres that heat up rapidly in the gun and are more prone to decarburization than commercial materials. The work shows that, in order to obtain the performance of nanostructured coatings, the powder and spray techniques must be modified.

  4. Wear Modalities and Mechanisms of the Mining Non-asbestos Composite Brake Material

    NASA Astrophysics Data System (ADS)

    Bao, Jiusheng; Yin, Yan; Zhu, Zhencai; Tong, Minming; Lu, Yuhao; Peng, Yuxing

    2013-08-01

    The mining brake material is generally made of composite materials and its wear has important influences on the braking performance of disc brakes. In order to improve the braking reliability of mine hoisters, this paper did some tribological investigations on the mining brake material to reveal its wear modalities and mechanisms. The mining non-asbestos brake shoe and 16Mn steel were selected as braking pairs and tested on a pad-on-disc friction tester. And a SEM was used to observe the worn surface of the brake shoe. It is shown that the non-asbestos brake material has mainly five wear modalities: adhesive wear, abrasive wear, cutting wear, fatigue wear and high heat wear. At the front period of a single braking the wear modality is mainly composed of some light mechanical wear such as abrasive, cutting and point adhesive. With the temperature rising at the back period it transforms to some heavy mechanical wear such as piece adhesive and fatigue. While in several repeated brakings once the surface temperature rises beyond the thermal-decomposition point of the bonding material, the strong destructive high heat wear takes leading roles on the surface. And a phenomenon called friction catastrophe (FC) occurs easily, which as a result causes a braking failure. It is considered that the friction heat has important influences on the wear modalities of the brake material. And the reduction of friction heat must be an effective technical method for decreasing wear and avoiding braking failures.

  5. The effect of daily fluoride mouth rinsing on enamel erosive/abrasive wear in situ.

    PubMed

    Stenhagen, K R; Hove, L H; Holme, B; Tveit, A B

    2013-01-01

    It is not known whether application of fluoride agents on enamel results in lasting resistance to erosive/abrasive wear. We investigated if one daily mouth rinse with sodium fluoride (NaF), stannous fluoride (SnF(2)) or titanium tetrafluoride (TiF(4)) solutions protected enamel against erosive/abrasive wear in situ (a paired, randomised and blind study). Sixteen molars were cut into 4 specimens, each with one amalgam filling (measurement reference surface). Two teeth (2 × 4 specimens) were mounted bilaterally (buccal aspects) on acrylic mandibular appliances and worn for 9 days by 8 volunteers. Every morning, the specimens were brushed manually with water (30 s) extra-orally. Then fluoride solutions (0.4% SnF(2) pH 2.5; 0.15% TiF(4) pH 2.1; 0.2% NaF pH 6.5, all 0.05 M F) were applied (2 min). Three of the specimens from each tooth got different treatment, and the fourth served as control. At midday, the specimens were etched for 2 min in 300 ml fresh 0.01 M hydrochloric acid and rinsed in tap water. This etch procedure was repeated in the afternoon. Topographic measurements were performed by a white-light interferometer. Mean surface loss (±SD) for 16 teeth after 9 days was: SnF(2) 1.8 ± 1.9 µm, TiF(4) 3.1 ± 4.8 µm, NaF 26.3 ± 4.7 µm, control 32.3 ± 4.4 µm. Daily rinse with SnF(2), TiF(4) and NaF resulted in 94, 90 and 18% reduction in enamel erosive/abrasive wear, respectively, compared with control (p < 0.05). The superior protective effect of daily rinse with either stannous or titanium tetrafluoride solutions on erosive/abrasive enamel wear is promising. PMID:23006823

  6. Mechanics, kinematics and geometry of pebble abrasion from binary collisions

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Jerolmack, D. J.

    2014-12-01

    As sediment is transported downstream as bedload, it collides with the bed causing sharp edges to chip and wear away, rounding the rock through the process of abrasion. Previous work has linked abrasion to downstream fining and rounding of grains, however, there has been little attempt to understand the underlying kinematics of abrasion. Furthermore, most studies neglect the fine particle produced during the abrasion process, as the initial grain gets smaller and rounder. In this research, we preform well-controlled laboratory experiments to determine the functional dependence between impact energy and mass lost from abrasion. We use a double-pendulum "Newton's Cradle" set-up to examine the abrasion between two grains and with a high-speed camera, we can quantify the impact energies during collision. Results from experiments verify that mass loss is proportional to kinetic energy. We define a material parameter that incorporates material density, Young's modulus, and tensile stress and show that this parameter is directly related to the proportionality between mass loss and energy. We identify an initial region of the mass loss curves in which abrasion is independent of energy and material properties; results suggest this region is determined by shape. We show that grain size distributions of daughter products are universal and independent of material; they follow a Weibull distribution, which is expected distribution from brittle fracture theory. Finally, scanning electron microscope (SEM) images show a thin damage zone near the surface, suggesting that collision energy is attenuated over some small skin depth. Overall, we find that pebble abrasion by collision can be characterized by two universal scaling relations - the mass loss versus energy curves and the size distribution of daughter products. Results will be useful for estimating expected abrasion rates in the field, and additionally demonstrate that low-energy collisions produce large quantities of sand

  7. Effect of Intercritical Heat Treatment on the Abrasive Wear Behaviour of Plain Carbon Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Manoj, M. K.; Pancholi, V.; Nath, S. K.

    Dual phase (DP) steels have been prepared from low carbon steel (0.14% C) at intercritical temperature 740°C and time is varied from 1 minute to 30 minutes followed by water quenching. These steels have been characterized by optical microscopy, FE-SEM, hardness measurements, tensile properties and electron backscattered diffraction (EBSD) studies. Tensile properties of a typical dual phase steel are found to be 805 MPa ultimate tensile strength with 18% total elongation. Martensite volume fraction of D P steel (determined by EBSD technique) prepared at 740°C for 6 minutes is found to be 10.2% and the grain size of ferrite and martensite found to be 14.39 micron and 1.05 microns respectively. Abrasive wear resistance of dual phase steels has been determined by pin on drum wear testing machine. DP steels have been found to be 25% more wear resistant than that of normalized steel. Short intercritical heating time followed by water quenching gives higher wear resistance by virtue of smaller and well dispersed martensite island in the matrix of ferrite.

  8. Abrasive wear by diesel engine coal-fuel and related particles

    SciTech Connect

    Ives, L.K.

    1994-09-01

    The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

  9. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion.

    PubMed

    Bartlett, D W; Shah, P

    2006-04-01

    The terms 'abfraction' and 'abrasion' describe the cause of lesions found along the cervical margins of teeth. Erosion, abrasion, and attrition have all been associated with their formation. Early research suggested that the cause of the V-shaped lesion was excessive horizontal toothbrushing. Abfraction is another possible etiology and involves occlusal stress, producing cervical cracks that predispose the surface to erosion and abrasion. This article critically reviews the literature on abrasion, erosion, and abrasion, and abfraction. The references were obtained by a MEDLINE search in March, 2005, and from this, hand searches were undertaken. From the literature, there is little evidence, apart from laboratory studies, to indicate that abfraction exists other than as a hypothetical component of cervical wear. PMID:16567549

  10. Wear and wear mechanism simulation of heavy-duty engine intake valve and seat inserts

    SciTech Connect

    Wang, Y.S.; Narasimhan, S.; Larson, J.M.; Schaefer, S.K.

    1998-02-01

    A silicon-chromium alloy frequently used for heavy-duty diesel engine intake valves was tested against eight different insert materials with a valve seat wear simulator. Wear resistance of these combinations was ranked. For each test, the valve seat temperature was controlled at approximately 510 C, the number of cycles was 864,000 (or 24 h), and the test load was 17,640 N. The combination of the silicon-chromium valve against a cast iron insert produced in the least valve seat wear, whereas a cobalt-base alloy insert produced the highest valve seat wear. In the overall valve seat recession ranking, however, the combination of the silicon-chromium valve and an iron-base chromium-nickel alloy insert had the least total seat recession, whereas the silicon-chromium valve against cobalt-base alloy, cast iron, and nickel-base alloy inserts had significant seat recession. Hardness and microstructure compatibility of valve and insert materials are believed to be significant factors in reducing valve and insert wear. The test results indicate that the mechanisms of valve seat and insert wear are a complex combination of adhesion and plastic deformation. Adhesion was confirmed by material transfer, while plastic deformation was verified by shear strain (or radial flow) and abrasion. The oxide films formed during testing also played a significant role. The prevented direct metal-to-metal contact and reduced the coefficient of friction on seat surfaces, thereby reducing adhesive and deformation-controlled wear.

  11. Assessment of Abrasive Wear of Nanostructured WC-Co and Fe-Based Coatings Applied by HP-HVOF, Flame, and Wire Arc Spray

    NASA Astrophysics Data System (ADS)

    Lima, C. R. C.; Libardi, R.; Camargo, F.; Fals, H. C.; Ferraresi, V. A.

    2014-10-01

    Thermal spray processes have been widely used to minimize losses caused by wear mechanisms. Sprayed deposits using conventional wire and powder materials have been long solving tribological problems in engineering equipment. More recently, the option for new different technologies and consumables like nanostructured powder materials and nanocomposite cored wires have expanded the possibilities for technical solutions. Cored wire technology allows the use of compositions that cannot be drawn into wire form like carbides in metallic matrix and high-temperature materials, thus, intensifying the use of spraying processes with low operating cost to demanding wear and corrosion applications. The objective of this work was to study the mechanical characteristics and wear performance of coatings obtained by Flame, Wire Arc, and HVOF spraying using selected nanostructured WC10Co4Cr, WC12Co, and Fe-based 140 MXC powder and wire materials. Abrasive wear performance of the coatings was determinate following the ASTM G-65 standard. Based on the results, a higher abrasive wear resistance was found for the HVOF-sprayed WC10Co4Cr nanostructured coating.

  12. Tooth length and incisal wear and growth in guinea pigs (Cavia porcellus) fed diets of different abrasiveness.

    PubMed

    Müller, J; Clauss, M; Codron, D; Schulz, E; Hummel, J; Kircher, P; Hatt, J-M

    2015-06-01

    Dental diseases are among the most important reasons for presenting guinea pigs (Cavia porcellus) and other rodents to veterinary clinics, but the aetiopathology of this disease complex is unclear. Clinicians tend to believe that the ever-growing teeth of rabbits and rodents have a constant growth that needs to be worn down by the mastication of an appropriate diet. In this study, we tested the effect of four different pelleted diets of increasing abrasiveness [due to both internal (phytoliths) and external abrasives (sand)] or whole grass hay fed for 2 weeks each in random order to 16 guinea pigs on incisor growth and wear, and tooth length of incisors and cheek teeth. There was a positive correlation between wear and growth of incisors. Tooth lengths depended both on internal and external abrasives, but only upper incisors were additionally affected by the feeding of whole hay. Diet effects were most prominent in anterior cheek teeth, in particular M1 and m1. Cheek tooth angle did not become shallower with decreasing diet abrasiveness, suggesting that a lack of dietary abrasiveness does not cause the typical 'bridge formation' of anterior cheek teeth frequently observed in guinea pigs. The findings suggest that other factors than diet abrasiveness, such as mineral imbalances and in particular hereditary malocclusion, are more likely causes for dental problems observed in this species. PMID:25041439

  13. Borosiliciding of Fe Ni alloys and evaluation of their resistance to abrasive wear

    NASA Astrophysics Data System (ADS)

    Sambogna, G.; Palombarini, G.; Carbucicchio, M.; Ciprian, R.

    2008-11-01

    X-ray diffraction analysis, Mössbauer measurements and metallographic observations were performed on borosilicide coatings grown at 850°C on Armco iron and the Fe64Ni36 binary alloy using a KBF4-activated powder mixture of B4C and Si3N4. The phase composition of the coatings was determined, a result allowing to show that the thermochemical treatment gives rise to iron boriding and iron siliciding reactions of different strength, depending on the treated material. The presence of Ni in the base metal allows iron-free nickel silicides to form as important components of the coating. The resistance of borosilicide coatings to abrasive wear is evaluated and discussed.

  14. Critical length scale controls adhesive wear mechanisms

    PubMed Central

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  15. Critical length scale controls adhesive wear mechanisms.

    PubMed

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  16. Critical length scale controls adhesive wear mechanisms

    NASA Astrophysics Data System (ADS)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  17. Particle size effects on the abrasive wear of 20 vol% SiC{sub p}/7075Al composites

    SciTech Connect

    Sheu, C.Y.; Lin, S.J.

    1996-12-01

    Discontinuously reinforced aluminum (DRA) composites have many advantages over the unreinforced aluminum alloys and have found increasing applications in the automotive industry. The wear behavior plays a very important role in DRA composites for such applications. The commonly used apparatus for studying the DRA abrasive wear include pin-on-disk, block-on-ring, and pin-on-drum. The pins or blocks are the composites and the abrasive papers are bonded onto the counter parts. The main drawback of the block-on-ring and pin-on-drum techniques is that the contact area does not remain a constant during the initial testing period. In the pin-on-disk method, the abrasive testing conditions are not easily kept identical either. The abrasive particles are prone to be blunted and smeared by composites when running a single-track test and the sliding speed is not constant when running a spiral-track test. In this study, a modified pin-on-disk apparatus was developed. During the entire testing period, the contact area remains unchanged, and the composite pin can be always abraded y fresh abrasive particles. An aluminum alloy, AA 7075 was reinforced with 20 vol% SiC{sub p} at various particle sizes (82, 59, 37, 16, and 12 {micro}m).

  18. The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Balaji; Hodgson, Peter; Timokhina, Ilana; Beladi, Hossein

    2016-08-01

    In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the

  19. The abrasion and impact-abrasion behavior of austempered ductile irons

    SciTech Connect

    Hawk, Jeffrey A.; Dogan, Omer N.; Lerner, Y.S.

    1998-01-01

    Austempering of ductile irons has led to a new class of irons, Austempered Ductile Irons (ADIs), with improved mechanical strength and fracture toughness lacking in gray cast irons. Laboratory wear tests have been used to evaluate the abrasive and impact-abrasive wear behavior of a suite of ADIs. The use of high-stress, two-body abrasion, low-stress, three-body abrasion, and impact-abrasion tests provides a clear picture of the abrasive wear behavior of the ADIs and the mechanisms of material removal. When combined with hardness measurements, fracture toughness and a knowledge of the microstructure of the ADIs, the overall performance can be assessed relative to more wear resistant materials such as martensitic steels and high-chromium white cast irons

  20. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains

    PubMed Central

    Min, Jie; Zhang, Qianqian; Qiu, Xiaoli; Zhu, Minhao; Yu, Haiyang; Gao, Shanshan

    2015-01-01

    Objectives The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains. Methods Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated. Results The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes. Significance Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings. PMID:26368532

  1. New Mechanisms of rock-bit wear in geothermal wells

    SciTech Connect

    Macini, Paolo

    1996-01-24

    This paper presents recent results of an investigation on failure mode and wear of rock-bits used to drill geothermal wells located in the area of Larderello (Italy). A new wear mechanism, conceived from drilling records and dull bit evaluation analysis, has been identified and a particular configuration of rock-bit has been developed and tested in order to reduce drilling costs. The role of high Bottom Hole Temperature (BHT) on rock-bit performances seems not yet very well understood: so far, only drillability and formation abrasiveness are generally considered to account for poor drilling performances. In this paper, the detrimental effects of high BHT on sealing and reservoir system of Friction Bearing Rock-bits (FBR) have been investigated, and a new bearing wear pattern for FBR's run in high BHT holes has been identified and further verified via laboratory inspections on dull bits. A novel interpretation of flat worn cutting structure has been derived from the above wear pattern, suggesting the design of a particular bit configuration. Test bits, designed in the light of the above criteria, have been prepared and field tested successfully. The paper reports the results of these tests, which yielded a new rock-bit application, today considered as a standad practice in Italian geothermal fields. This application suggests that the correct evaluation of rock-bit wear can help to improve the overall drilling performances and to minimize drilling problems through a better interpretation of the relationships amongst rock-bits, formation properties and downhole temperature.

  2. Critical Analysis of Wear Mechanisms in Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Dewangan, Saurabh; Chattopadhyaya, Somnath

    2015-07-01

    Wear phenomena of cemented carbide (94 wt.% WC, 6 wt.% Co) tip of conical picks have been observed by field emission scanning electron microscopy, energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction analysis (XRD). The conical pick is one type of the cutters which are used to excavate soft structure like coal. It has a cone-shaped abrasive part made of cemented carbide (CC). The picks, under study, have been used for coal mining in an underground mine through a continuous miner machine. During the critical analysis of four picks, wear mechanisms are categorized into four parts, such as, cracks, cavity formation in WC grains, grinding effect, and roughness of WC surface. Through a careful examination, the cracking mechanism has been further divided into three parts. They are cracks with overlapping surfaces, crack on a large surface of CC, and cracks in WC grains. In addition, the severe crushing and tearing of WC grains have also been clearly examined. The possible causes of each wear phenomenon have been explained comprehensively. Crushing and corrosion are the two wearing processes which have severely deteriorated the condition of the CC. Corrosion has been easily identified by observing a number of pores and triangular notches in the WC surface. The oxidation of WC grains due to corrosion has been established by EDS and XRD.

  3. Effect of experimental parameters on the high-stress abrasive wear behavior of steels and a software package for its prediction

    SciTech Connect

    Dasgupta, R.; Roy, A.; Prasad, B.K.; Yegneswaran, A.H.

    1999-06-01

    The effect of different experimental factors on the high-stress abrasive wear properties of steels has been studied. A correlation among the factors has been established by linear regression analysis. A computer software in Microsoft Basic language utilizing linear regression analysis has been developed with the capability of predicting the wear response of steels from the experimental factors.

  4. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    SciTech Connect

    Alsem, Daniel Henricus

    2006-12-01

    regions. No dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of {approx}0.20{+-}0.05 after a short time at an initial value of {approx}0.11{+-}0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.

  5. Mechanisms for fatigue and wear of polysilicon structural thin films

    NASA Astrophysics Data System (ADS)

    Alsem, Daniel Henricus

    dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a steady-state value of ˜0.20+/-0.05 after a short time at an initial value of ˜0.11+/-0.01. Plowing tracks are found before the steady-state value of the COF is reached, suggesting only a short adhesive wear regime. This suggests a predominantly abrasive wear mechanism, controlled by fracture, which commences by the first particles created by adhesive wear.

  6. Rod Control Assemblies Wear Mechanisms

    SciTech Connect

    Kaczorowski, Damien; Georges, Jean-Mary; Bec, Sandrine; Vannes, Andre-Bernard; Tonck, Andre; Vernot, Jean-Philippe

    2002-07-01

    In nuclear power plants, slender tubular components are subjected to vibrations in a PHTW environment. As a result, the two contacting surfaces, tubes and their guides undergo impact at low contact pressures. The components are usually made of stainless steel and it was found that the influence of the PHTW, combined with other actions (such as corrosion, erosion, squeeze film effect, third body effect and cavitation) leads to a particular wear of the material. Therefore, this paper aims to show that the colloidal oxides, formed on the steel surfaces in PHTW, play a principal role in the wear of the surfaces. Actually, due to the specific kinematic conditions of the contact, the flow of compacted oxides abrades the surfaces. (authors)

  7. Effect of ion nitriding on the abrasive wear resistance of ultrahigh-strength steels with different silicon contents

    NASA Astrophysics Data System (ADS)

    Riofano, R. M. Muñoz; Casteletti, L. C.; Nascente, P. A. P.

    2005-02-01

    This article studies the effect of silicon (Si) on ultrahigh-strength AISI 4340 steels in connection with the thermal treatment, as well as the influence of this element on nitriding and, consequently, abrasive wear. Four alloys with different Si contents were nitrided at 350 °C (4 and 8 h) and 500 and 550 °C (2 and 4 h) in a gas mixture of 80 vol.% H2 and 20 vol.% N2. The nitrided layers were characterized by microhardness and pin-on-disk tests, optical microscopy, scanning electron microscopy with energy-dispersive x-ray spectrometry, and x-ray diffraction (XRD). The increase in Si enhanced the tempering resistance of the steels and also improved considerably the hardness of the nitrided layers. The increase in Si produced thinner compound layers with better hardness quality and high abrasive wear resistance. XRD analysis detected a mixture of nitrides in the layers γ‧-Fe4N, ɛ-Fe2 3N, CrN, MoN, and Si3N4 with their proportions varying with the nitriding conditions.

  8. The nature of surfaces and their influence in wear mechanisms

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    The wear of materials is strongly dependent upon the nature of the solid surfaces in contact, their properties and the nature of their films. Oxide films, orientation, crystal transformations, adhesive binding, crystal structure, hardness, and the presence of alloying agents are all shown to affect one or more of the forms of wear. The three most common forms of wear, adhesive, abrasive, and corrosive, are discussed in terms of the way each is affected by various material properties. Results presented indicate how wear can be optimized by concern for properties of materials.

  9. Wear mechanisms and improvements of wear resistance in cobalt-chromium alloy femoral components in artificial total knee joints

    NASA Astrophysics Data System (ADS)

    Que, Like

    CrMo alloy surface roughness was higher than 0.022 mum Ra (surface roughness average), UHMWPE wear increased with increasing CoCrMo alloy surface roughness. Bone and poly(methyl methacrylate) (PMMA) bone cement abrasive particles created scratches on the alloy via a ploughing mechanism, and resulted in significantly rougher surfaces than controls without particles (P < 0.01). Solution treatments at 1230sp°C and 1245sp°C reduced the hardness and wear resistance of the as-cast F75 CoCrMo alloy. Aging at 700sp°C caused recrystallization of the forged F799 alloy and improved wear resistance. Thermo-mechanical treatments have the potential to increase the lifetime of artificial joints by increasing the wear resistance of CoCrMo components.

  10. Characterization of Wear Mechanisms in Distorted Conical Picks After Coal Cutting

    NASA Astrophysics Data System (ADS)

    Dewangan, Saurabh; Chattopadhyaya, Somnath

    2016-01-01

    The interest in understanding the wear mechanisms of cemented carbide (CC) is not a new development. For a long time, there have been studies on different wear mechanisms under different coal/rock cutting conditions. These studies have helped improving the quality of CC, thereby preventing such wearing of tools. Due to highly unpredictable character of coal/rock, the wearing phenomena cannot be attributed to one single domain of conditions. However, one conclusion that can be drawn in this context is that, under similar working conditions, similar types of CC undergo similar nature of wearing process. An optimum combination of high wear resistance, strength and hardness has facilitated widespread application of CC in the field of mining engineering. The abrasive parts of the mining tools are made of CC materials. The current study is focussed on a detailed characterization of the wear mechanisms of conical picks, which are used for coal mining. Conical picks consist of a steel body with an inserted cone-shaped CC tip. After being used for a certain period of time, both, the CC tip and the steel body get distorted. In this study, selection of appropriate samples was followed by critical observation of them through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). In the previous study, we explained the distortion process of both, the tip as well as the body, using the SEM images. For the present study, two samples were taken from our previous investigation for further analysis. Three other samples were also included in the present study. Seven different types of wear mechanisms, such as, cracking and crushing, cavity formation, coal intermixing, chemical degradation along with abrasion, long and deep cracks, heating effect and body deformation were observed in the five tool samples.

  11. Effect of microstructure on the abrasive wear properties of infiltrated tungsten alloys

    SciTech Connect

    Caceres, Pablo G

    2002-08-15

    Tungsten-based metal matrix composites (MMCs) were produced by compacting tungsten powder followed by infiltration with liquid 56Cu-43Zn-1Sn and 60Cu-40Ag. It was found that higher tungsten contents were associated with improved wear resistance. This effect, however, is small compared to the effect of different infiltrant alloys. An infiltrated species of higher ductility caused a significant improvement on the wear resistance of the composite. A small amount of harder particles in the microstructure, such as WC, SiC or SiO{sub 2}, changed the wear properties of the composite beyond the changes expected by their volume fraction.

  12. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  13. In-flight friction and wear mechanism

    NASA Technical Reports Server (NTRS)

    Devine, E. J.; Evans, H. E.

    1975-01-01

    A unique mechanism developed for conducting friction and wear experiments in orbit is described. The device is capable of testing twelve material samples simultaneously. Parameters considered critical include: power, weight, volume, mounting, cleanliness, and thermal designs. The device performed flawlessly in orbit over an eighteen month period and demonstrated the usefulness of this design for future unmanned spacecraft or shuttle applications.

  14. Investigation of the Effect of Tungsten Substitution on Microstructure and Abrasive Wear Performance of In Situ VC-Reinforced High-Manganese Austenitic Steel Matrix Composite

    NASA Astrophysics Data System (ADS)

    Moghaddam, Emad Galin; Karimzadeh, Neda; Varahram, Naser; Davami, Parviz

    2013-08-01

    Particulate VC-reinforced high-manganese austenitic steel matrix composites with different vanadium and tungsten contents were synthesized by conventional alloying and casting route. Microstructural characterizations showed that the composites processed by in situ precipitation of the reinforcements were composed of V8C7 particulates distributed in an austenitic matrix. It was observed that addition of tungsten to austenite increases work-hardening rate of subsurface layer during pin-on disk wear test. The maximum abrasive wear resistance was achieved at tungsten content equal to 2 wt pct. However, excessive addition of tungsten promoted the formation of W3C phase and reduced the abrasive wear resistance because of decrease in distribution homogeneity and volume fraction of the reinforcing VC particles.

  15. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis

    PubMed Central

    Jones, C.A.; Padula, N.L.; Setlow, P.

    2005-01-01

    Aims To elucidate the factors influencing the sensitivity of Bacillus subtilis spores to killing and disruption by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. Methods and Results Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. Conclusions Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore’s cortex-lytic enzymes. Significance and Importance This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion. PMID:16313421

  16. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  17. Anisotropic mechanical amorphization drives wear in diamond

    NASA Astrophysics Data System (ADS)

    Pastewka, Lars; Moser, Stefan; Gumbsch, Peter; Moseler, Michael

    2011-01-01

    Diamond is the hardest material on Earth. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations. This anisotropy is not fully understood and impedes diamond’s widespread use in applications that require planar polycrystalline films, ranging from cutting tools to confinement fusion. Here, we use molecular dynamics to show that polished diamond undergoes an sp3-sp2 order-disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates. This anisotropy originates in mechanically steered dissociation of individual crystal bonds. Similarly to other planarization processes, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen.

  18. Interface abrasion between rough surface femoral stems and PMMA cement results in extreme wear volumes--a retrieval study and failure analysis.

    PubMed

    Buchhorn, Gottfried Hans; Bersebach, Petra; Stauch, Tilo; Schultz, Wolfgang; Köster, Georg

    2015-01-01

    During the loosening cascade of cemented rough femoral stems, the destruction of the mantle and the production of cement and metal wear debris occur after the loss of constraint at the interface. Two-dimensional (2D) measurements (light microscopy based morphometry on fragments of mantles and vertical scanning interferometry of femoral stems) permitted mathematical 3D-extrapolations to estimate the wear volumes. Fragments of the cement mantles available lost volumes from 0.85 mm(3) to 494.10 mm(3) (median amount of bone cement wear = 178,426 mg). The harder metal surfaces lost between 1.459 mm(3) and 5.688 mm(3) of material (the median amount of metal wear per surface = 1.504 mg/100 mm(2)). Compared to the loss of material due to the fretting of stems, the abrasion of metal, and cement in defective cement mantles produced wear volumes sufficiently high to induce osteolysis. Though the design of the femoral stem and the handling of bone cement do not represent contemporary design and clinical practice, respectively, an extremely high number of joint replacements still in daily use may be impacted by this study because of possible predicted failures. Once the processes of fragmentation, abrasion, and osteolysis have been realized, the time until revision surgery should not be unduly prolonged. PMID:24820132

  19. Wear resistant alloys for coal handling equipment. Final technical report, October 1, 1977-March 31, 1981

    SciTech Connect

    Garrison, W.M.; Parker, E.R.; Misra, A.; Finnie, I.

    1981-01-01

    In the progress report for 1977-1979, an extensive literature survey was completed in the areas of abrasive wear mechanisms, wear testing and microstructural effects on abrasive wear. Definitions of the various abrasive wear processes were clarified. A laboratory wear tester capable of simulating high stress two-body abrasive wear and low stress three-body wear was designed, constructed and calibrated. Experiments were run on some standard metals and alloys in the annealed, work hardened, and heat treated conditions under both two-body and three-body wear. In the 1979 to 1980 period, a detailed analysis of the abrasive size effect was performed based on the observations made on two- and three-body abrasion and erosion. It was concluded that the size effect was due to a shallow surface layer exhibiting higher flow stress than the bulk material when the material is abraded or eroded. The effect of certain variables on the wear resistance of different pure metals was compared for two-body abrasion, three-body abrasion and erosion. The variables studied are annealed hardness of the worn metal, the increase in hardness of the worn metal before the wear process due to work hardening and heat treatment, applied load, distance travelled, the abrasive particle size and abrasive hardness. The effect of most of these variables is similar for the three different wear processes. The existing low-stress, open three-body abrasive wear tester was modified and calibrated for testing abrasive wear up to 600/sup 0/C. Some standard materials were tested and in the case of pure aluminum it was found that the wear rate decreased with increase in temperature.

  20. A rheological mechanism of penetrative wear

    NASA Technical Reports Server (NTRS)

    Bates, T. R., Jr.; Ludema, K. C.; Brainard, W. A.

    1974-01-01

    A model is proposed which explains the penetrative wear of a soft material by a harder one. Three distinct modes of penetration are present depending on the applied load. During the most severe penetration plate-like wear debris is ejected at the leading edge of the slider. A series of slip line fields is presented to approximate this debris formation process. Plastic constraint is seen to be an important factor in wear particle formation.

  1. Wear of hard materials by hard particles

    SciTech Connect

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  2. Abrasion and erosion wear resistance of Cr{sub 3}C{sub 2}-NiCr coatings prepared by plasma, detonation and high-velocity oxyfuel spraying

    SciTech Connect

    Vuoristo, P.; Niemi, K.; Maekelae, A.; Maentylae, T.

    1994-12-31

    Chromium carbide based cermet coatings (Cr{sub 3}C{sub 2}-NiCr) deposited by atmospheric plasma spraying (APS), detonation gun spraying (DGS), and high-velocity oxyfuel flame spraying (HVOF) methods were evaluated with the microstructure, microhardness, phase structure, room temperature abrasion wear and particle erosion wear resistance. The influence of some spray parameters, e.g, the use of different plasma gases (Ar-H{sub 2}, Ar-He) in plasma spraying, and fuel gas-to-oxygen ratio (C{sub 2}H{sub 2}/O{sub 2}) and diluent gas content in detonation gun spraying, were studied in order to optimize the wear resistance of the coatings. The results showed that Cr{sub 3}C{sub 2}-NiCr coatings had different wear properties depending on the spray parameters and spray methods used. Highest wear resistance was obtained with coatings prepared by the high-velocity combustion processes, i.e. by HVOF and detonation gun spraying.

  3. Influence of a corrosive-abrasive medium on the wear resistance of 12Kh18N10T steel with surface hardening

    SciTech Connect

    Golubets, V.M.; Kozub, V.V.; Shchuiko, Ya.V.; Pashechko, M.I.

    1987-11-01

    The authors study the wear and corrosion resistance of 12Kh18N10T steel after diffusion boriding, electrospark alloying, and combined hardening in a corrosive abrasive medium consisting of 50 percent sand and 3 percent NaCl with hydrochloric acid added to obtain a pH of 1. Metallographic analysis revealed a 40-micrometer-deep case with a microhardness of 6-8.5 GPa on the surface. X-ray diffraction established that the boride case consists of an FeB phase alloyed with chromium and nickel. Results are graphed.

  4. Mechanical and wear properties of Al-Al3Mg2 nanocomposites prepared by mechanical milling and hot pressing

    NASA Astrophysics Data System (ADS)

    Zolriasatein, A.; Khosroshahi, R. A.; Emamy, M.; Nemati, N.

    2013-03-01

    β-Al3Mg2 intermetallic was used as a reinforcing agent to improve the mechanical properties of an aluminum matrix. Different amounts of Al3Mg2 nanoparticles (ranging from 0wt% to 20wt%) were milled with aluminum powders in a planetary ball mill for 10 h. Consolidation was conducted by uniaxial pressing at 400°C under a pressure of 600 MPa for 2 h. Microstructural characterization confirms the uniform distribution of Al3Mg2 nanoparticles within the matrix. The effects of nano-sized Al3Mg2 content on the wear and mechanical properties of the composites were also investigated. The results show that as the Al3Mg2 content increases to higher levels, the hardness, compressive strength, and wear resistance of the nanocomposites increase significantly, whereas the relative density and ductility decrease. Scanning electron microscopy (SEM) analysis of worn surfaces reveals that a transition in wear mechanisms occurs from delamination to abrasive wear by the addition of Al3Mg2 nanoparticles to the matrix.

  5. [Abrasion resistance of dental materials. 3. Surface quality study of Evicrol by wear measurements at different layer depths].

    PubMed

    Tappe, A; Eichhorn, T

    1980-04-01

    Abrasion determinations in various layer depths showed that the layer of the filling material Evicrol directly under the matrix-hardened surface is more abrasion-resistant than the matrix- hardened surface. From this it is concluded that it is good practice to overfill in making restorations of Evicrol and to remove a certain layer of material (approximately 0.25 mm, according to Fraunhofer). PMID:6935842

  6. Effects of a Destabilization Heat Treatment on the Microstructure and Abrasive Wear Behavior of High-Chromium White Cast Iron Investigated Using Different Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Gasan, Hakan; Erturk, Fatih

    2013-11-01

    The hypoeutectic white cast iron was subjected to various destabilization heat treatment temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C) for 2 hours. The as-cast and destabilized specimens were characterized by optical metallography, classical direct comparison, and the Rietveld method. The volume fractions of carbides were measured by optical metallography. Moreover, the volume fractions of retained austenite and martensite were measured by the classical direct comparison method. Despite the limitations of optical metallography and the classical direct comparison method, the Rietveld method was successively and accurately applied to determine the volume fractions of all phases. In addition, the Rietveld analysis yielded certain results, such as the crystallographic properties of the phases that can be used to explain the relationship between the microstructural parameters and the wear behavior. Abrasive wear tests with different sliding speeds were carried out on the as-cast and destabilized alloys to identify the effect of microstructural parameters on the wear behavior. The results indicated that the morphologies of secondary carbides, the crystallographic properties of the phases, and the proper combination of the amount of martensite, retained austenite, and carbides were the principle parameters that affect the hardness and wear behavior of the alloy.

  7. Research on the Friction and Wear Behavior at Elevated Temperature of Plasma-Sprayed Nanostructured WC-Co Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Gou, Guoqing; Tu, Mingjing; Liu, Yan

    2010-02-01

    Nanostructured and ultra-fine WC-Co coatings were prepared by plasma spray. The friction and wear behavior at elevated temperature and failure mechanism were investigated. The results indicated that the sliding wear resistance of nanostructured coating is better than that of ultra-fine coating at high temperature. The wear mechanism is different between ultra-fine coating and nanostructured coating. Brittle fracture and adhesive wear dominate in ultra-fine coating followed with abrasive wear. Toughness fracture and abrasive wear dominate in nanostructured coating followed with adhesive wear.

  8. Mechanisms and causes of wear in tooth enamel: implications for hominin diets

    PubMed Central

    Lucas, Peter W.; Omar, Ridwaan; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S.; Henry, Amanda G.; Michael, Shaji; Thai, Lidia Arockia; Watzke, Jörg; Strait, David S.; Atkins, Anthony G.

    2013-01-01

    The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating hard foods, most do not exhibit microwear signals indicative of this diet. However, no experiments have yet demonstrated the fundamental mechanisms and causes of this wear. Here, we report nanowear experiments where individual dust particles, phytoliths and enamel chips were slid across a flat enamel surface. Microwear features produced were influenced strongly by interacting mechanical properties and particle geometry. Quartz dust was a rigid abrasive, capable of fracturing and removing enamel pieces. By contrast, phytoliths and enamel chips deformed during sliding, forming U-shaped grooves or flat troughs in enamel, without tissue loss. Other plant tissues seem too soft to mark enamel, acting as particle transporters. We conclude that dust has overwhelming importance as a wear agent and that dietary signals preserved in dental microwear are indirect. Nanowear studies should resolve controversies over adaptive trends in mammals like enamel thickening or hypsodonty that delay functional dental loss. PMID:23303220

  9. Effect of processing, sterilization and crosslinking on UHMWPE fatigue fracture and fatigue wear mechanisms in joint arthroplasty.

    PubMed

    Ansari, Farzana; Ries, Michael D; Pruitt, Lisa

    2016-01-01

    Ultra high molecular weight polyethylene (UHMWPE) has been used as a bearing surface in total joint replacements (TJR) for nearly five decades. This semi-crystalline polymer has extraordinary energetic toughness owing to its high molecular weight and entanglement density. However, it is challenged by a need to offer a combined resistance to fatigue, wear and oxidation in vivo. The processing, sterilization treatment, and microstructural tailoring of UHMWPE has evolved considerably in the past 50 years but an optimized microstructure remains elusive. This review seeks to provide an overview of this processing history to address two primary questions: First, how does microstructure affect fatigue fracture and fatigue wear mechanisms in UHMWPE? And second, can microstructure be optimized to provide resistance to fatigue, oxidation and wear in vivo? Previous literature demonstrates that while crosslinking improves resistance to adhesive/abrasive wear, it also reduces resistance to fatigue crack propagation and fatigue wear by restricting molecular mobility and rendering the polymer more brittle. Crystallinity improves fatigue resistance but generally increases elastic modulus and concomitant contact stresses in vivo. The presence of fusion defects or oxidation reduces further fatigue resistance and enhances fatigue wear. Thus, UHMWPE microstructural evolution comes with trade-offs. Currently there is no singular formulation of UHMWPE that is ideal for all TJR applications. PMID:26386167

  10. Abrasive wear of nitrogen-implanted boron-coated Ti-6Al-4V and temperature effect on microhardness and sliding friction coefficient

    NASA Astrophysics Data System (ADS)

    Baazi, Tandjaoui; Knystautas, Emile J.; Fiset, Michel

    1993-02-01

    Boron was electron-gun evaporated onto manually polished surfaces of Ti-6Al-4V and bombarded with 100 keV nitrogen ions for different doses. The highest increase in Knoop microhardness was observed for the highest dose considered in this work, i.e., 10 17ions cm -2, which was maintained for subsequent abrasive wear investigation by optical and scanning electron microscopies. Relative changes of Knoop microhardness and sliding friction coefficient as a function of implantation temperature (room temperature, 150, 300, 450 and 600°C) were measured. The optimal improvements obtained for the 450°C implantation correlate with the higher nitrogen retention as evidenced by XPS depth-concentration analysis.

  11. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear experiments were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  12. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  13. A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms.

    PubMed

    Dupriez, Nataliya Deyneka; von Koeckritz, Ann-Kristin; Kunzelmann, Karl-Heinz

    2015-05-01

    The purpose of this study is to investigate the in vitro tribological behavior of modern nonmetallic restorative materials. Specimen prepared of IPS e.max Press lithium disilicate glass ceramic, IPS Empress Esthetic leucite-reinforced glass ceramic, Everest ZS Blanks yttria-stabilized zirconia and Lava Ultimate composite were subjected to wear using a wear machine designed to simulate occlusal loads. The wear of the investigated materials and antagonists were evaluated by a three-dimensional surface scanner. The quantitative wear test results were used to compare and rank the materials. Specimens were divided into two groups with steatite and alumina antagonists. For each antagonist material an analysis of variance was applied. As a post hoc test of the significant differences, Tukey's honest significant difference test was used. With steatite antagonist: wear of zirconia < wear of leucite-reinforced ceramic < wear of lithium disilicate ceramic < wear of Lava Ultimate composite. No significant wear difference was found for steatite antagonist. The wear of IPS e.max Press and Lava Ultimate against hard alumina was found to be twice lower as compared to their wear when opposing to steatite. The differences were associated with materials mechanical properties (hardness and fracture toughness) and with materials microstructure. Wear mechanisms are discussed. PMID:25303041

  14. Preparation of Fe-doped colloidal SiO(2) abrasives and their chemical mechanical polishing behavior on sapphire substrates.

    PubMed

    Lei, Hong; Gu, Qian; Chen, Ruling; Wang, Zhanyong

    2015-08-20

    Abrasives are one of key influencing factors on surface quality during chemical mechanical polishing (CMP). Silica sol, a widely used abrasive in CMP slurries for sapphire substrates, often causes lower material removal rate (MRRs). In the present paper, Fe-doped colloidal SiO2 composite abrasives were prepared by a seed-induced growth method in order to improve the MRR of sapphire substrates. The CMP performance of Fe-doped colloidal SiO2 abrasives on sapphire substrates was investigated using UNIPOL-1502 CMP equipment. Experimental results indicate that the Fe-doped colloidal SiO2 composite abrasives exhibit lower surface roughness and higher MRR than pure colloidal SiO2 abrasives for sapphire substrates under the same testing conditions. Furthermore, the acting mechanism of Fe-doped colloidal SiO2 composite abrasives in sapphire CMP was analyzed by x-ray photoelectron spectroscopy. Analytical results show that the Fe in the composite abrasives can react with the sapphire substrates to form aluminum ferrite (AlFeO3) during CMP, which promotes the chemical effect in CMP and leads to improvement of MRR. PMID:26368752

  15. Wear Behavior of a Novel Aluminum-Based Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Show, Bijay Kumar; Mondal, Dipak Kumar; Maity, Joydeep

    2014-02-01

    In the current research, the dry sliding wear behaviors of 6351 Al alloy and its composite with hybrid reinforcement ( ex situ SiC and in situ Al4SiC4) were investigated at low sliding speed (1 m s-1) against a hardened EN 31 disk at different loads. The wear mechanism involved adhesion and microcutting-abrasion at lower load. On the other hand, at higher load, abrasive wear involving microcutting and microplowing along with adherent oxide formation was observed. Initially, under higher load, the abrasive wear mechanism caused rapid wear loss up to a certain sliding distance. Afterward, by virtue of frictional heat generation and associated temperature rise, an adherent oxide layer was developed at the pin surface which drastically reduced the wear loss. The overall wear rate increased with load in alloy as well as in composite. Moreover, the overall wear rate of the composite was found lower than that of the 6351 Al alloy at all applied loads. The ex situ SiC particles were found to resist abrasive wear, while, in situ Al4SiC4 particles offered resistance to adhesive wear. Accordingly, the 6351 Al (SiC + Al4SiC4) hybrid composite exhibited superior wear resistance relative to the 6351 Al alloy.

  16. WC-Co and Cr3C2-NiCr Coatings in Low- and High-Stress Abrasive Conditions

    NASA Astrophysics Data System (ADS)

    Kašparová, Michaela; Zahálka, František; Houdková, Šárka

    2011-03-01

    The article deals with the evaluation of abrasive wear resistance and adhesive strength of thermally sprayed coatings. The main attention was paid to differences between low- and high-stress abrasive conditions of the measuring. Conclusions include the evaluation of specific properties of the WC-Co and the Cr3C2-NiCr High Velocity Oxygen Fuel coatings and the evaluation of the changes in the behavior of the abrasive media. Mainly, the relationship between the low- and high-stress abrasion conditions and the wear mechanism in the tested materials was described. For the wear test, the abrasive media of Al2O3 and SiO2 sands were chosen. During wear tests, the volume loss of the tested materials and the surface roughness of the wear tracks were measured. The wear tracks on the tested materials and abrasive sands' morphologies were observed using Scanning Electron Microscopy. It was found that high-stress abrasive conditions change the coatings' behavior very significantly, particularly that of the Cr3C2-NiCr coating. Adhesive-cohesive properties of the coatings and relationships among individual structure particles were evaluated using tensile testing. It was found that the weak bond strength among the individual splats, structure particles, and phases plays a role in the poor wear resistance of the coatings.

  17. Mechanisms of microhole formation on glasses by an abrasive slurry jet

    SciTech Connect

    Wang, J.; Nguyen, T.; Pang, K. L.

    2009-02-15

    Abrasive jet micromachining is considered as a promising precision processing technology for brittle materials such as silicon substrates and glasses that are increasingly used in various applications. In this paper, the mechanisms of microhole formation on brittle glasses by an abrasive slurry jet are studied based on the viscous flow and erosion theories. It is shown that the hole cross section is characterized by a ''W'' shape and can be classified into three zones caused, respectively, by jet direct impact, viscous flow, and turbulent flow induced erosion. An analysis of the surface morphology shows that ductile-mode erosion is dominant. The effect of process parameters on material removal is studied which shows that increasing the pressure and erosion time increases the hole depth, but has little effect on the hole diameter.

  18. Mechanics and mechanisms of surface damage in Al-Si alloys under ultra-mild wear conditions

    NASA Astrophysics Data System (ADS)

    Chen, Ming

    Al-Si alloys intended for use in engine components must operate under ultra-mild wear (UMW) conditions to fit an acceptable amount of wear during a typical vehicle life. This study simulated surface damage in a UMW regime on five chemically etched Al-Si alloy surfaces using a pin-on-disc tribometer at low loads (0.5-2.0 N) under boundary lubricated conditions. The five alloys contained 11 to 25 wt.% Si and differed in matrix hardness, silicon particle morphology, and size. The mechanisms leading to the UMW damage and the role that the matrix hardness and microstructure play on said mechanisms were studied. Quantitative measurement methods based on statistical analysis of particle height changes and material loss from elevated aluminum using a profilometer technique were developed and used to assess UMW. The Greenwood and Tripp's numerical model was adapted to analyze the contact that occurred between Al-Si alloys with silicon particles protruding above the aluminum and steel balls. The estimation of the real contact pressure applied to the silicon particles was used to rationalize the damage mechanisms. The UMW mechanisms consisted of (i) abrasive wear on the top of the silicon particle surfaces; (ii) sinking-in of the silicon particles; (iii) piling-up of the aluminium around sunken-in particles and (vi) wear of the aluminium by the counterface, which eventually led to the initiation of UMW-II. Increasing the size or areal density of silicon particles with small aspect ratios delayed the onset of UMW-II by providing resistance against the silicon particles sinking-in and the aluminum piling-up. The UMW wear rates, however, began to decrease after long sliding cycles once an oil residue layer supported by hardened ultra-fine subsurface grains formed on the deformed aluminium matrix. The layer formation depended on the microstructure and applied load. Overall experimental observations suggested that Al-11% Si with small silicon particles exhibited optimal long

  19. Fretting Wear Mechanisms in A216 Plain Carbon Steel

    NASA Astrophysics Data System (ADS)

    Maich, Alyssa Anne

    The subsurface and surface microstructures during pin-on-disk fretting wear of A216 steel disks under various loading conditions and times are investigated. The corresponding pins are fabricated from 410 stainless steel to simulate in-service conditions found in such engineering components as the Siemens W501FD engine row-2 diaphragm of a Siemens turbine engine, which is known to be prone to failure by fretting wear. Loading conditions range from 2N to 15N and times from 1 hour to a maximum of 69 hours, when steady state is confirmed. Wear track depth is quantitatively determined by optical profilometry, and found to range from 3 to 11 microns dependent upon load. Wear depth increases from 2N to 10N load, but decreases when increased to 15N load, due to heavier transfer of pin material to disk, as can be seen by EDS images of chromium transfer on A216 disk. Microstructures are evaluated by transmission electron microscopy of samples prepared by focused ion beam machining to pinpoint wear tracks and expose them in cross-section. EDS is used, in conjunction with TEM, to elucidate primary wear mechanisms at each stage of fretting wear. Microstructures in the subsurface of wear tracks are found to be heavily dislocated and layered, features that vary with both applied load and time. The microstructure eventually evolves into stable dislocation cells with cell walls aligned parallel to the surface. Penetration depth of the damaged layers increases with applied load, associated with a non-uniform maximum shear stress distribution that varies with depth. Primary oxide appears to evolve from Fe2O3 to Fe3O4, with increasing fretting time, leading to a uniform oxide on the surface of the A216 disk. Oxidation rate may be increased with the evolution of this subsurface dislocation cell structure. It is concluded that fretting wear failure is likely associated with a synergy between oxidative wear and crack initiation and propagation along dislocation cell walls under high

  20. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    SciTech Connect

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-17

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  1. Wear Independent Similarity.

    PubMed

    Steele, Adam; Davis, Alexander; Kim, Joohyung; Loth, Eric; Bayer, Ilker S

    2015-06-17

    This study presents a new factor that can be used to design materials where desired surface properties must be retained under in-system wear and abrasion. To demonstrate this factor, a synthetic nonwetting coating is presented that retains chemical and geometric performance as material is removed under multiple wear conditions: a coarse vitrified abradant (similar to sanding), a smooth abradant (similar to rubbing), and a mild abradant (a blend of sanding and rubbing). With this approach, such a nonwetting material displays unprecedented mechanical durability while maintaining desired performance under a range of demanding conditions. This performance, herein termed wear independent similarity performance (WISP), is critical because multiple mechanisms and/or modes of wear can be expected to occur in many typical applications, e.g., combinations of abrasion, rubbing, contact fatigue, weathering, particle impact, etc. Furthermore, these multiple wear mechanisms tend to quickly degrade a novel surface's unique performance, and thus many promising surfaces and materials never scale out of research laboratories. Dynamic goniometry and scanning electron microscopy results presented herein provide insight into these underlying mechanisms, which may also be applied to other coatings and materials. PMID:26018058

  2. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  3. Intelligent identification of wear mechanism via on-line ferrograph images

    NASA Astrophysics Data System (ADS)

    Wu, Tonghai; Peng, Yeping; Sheng, Chenxing; Wu, Jiaoyi

    2014-03-01

    Condition based maintenance(CBM) issues a new challenge of real-time monitoring for machine health maintenance. Wear state monitoring becomes the bottle-neck of CBM due to the lack of on-line information acquiring means. The wear mechanism judgment with characteristic wear debris has been widely adopted in off-line wear analysis; however, on-line wear mechanism characterization remains a big problem. In this paper, the wear mechanism identification via on-line ferrograph images is studied. To obtain isolated wear debris in an on-line ferrograph image, the deposition mechanism of wear debris in on-line ferrograph sensor is studied. The study result shows wear debris chain is the main morphology due to local magnetic field around the deposited wear debris. Accordingly, an improved sampling route for on-line wear debris deposition is designed with focus on the self-adjustment deposition time. As a result, isolated wear debris can be obtained in an on-line image, which facilitates the feature extraction of characteristic wear debris. By referring to the knowledge of analytical ferrograph, four dimensionless morphological features, including equivalent dimension, length-width ratio, shape factor, and contour fractal dimension of characteristic wear debris are extracted for distinguishing four typical wear mechanisms including normal, cutting, fatigue, and severe sliding wear. Furthermore, a feed-forward neural network is adopted to construct an automatic wear mechanism identification model. By training with the samples from analytical ferrograph, the model might identify some typical characteristic wear debris in an on-line ferrograph image. This paper performs a meaningful exploratory for on-line wear mechanism analysis, and the obtained results will provide a feasible way for on-line wear state monitoring.

  4. Detailed study of oxidation/wear mechanism in lox turbopump bearings

    NASA Technical Reports Server (NTRS)

    Chase, T. J.; Mccarty, J. P.

    1993-01-01

    Wear of 440C angular contact ball bearings of the phase 2 high pressure oxygen turbopump (HPOTP) of the space shuttle main engine (SSME) has been studied by means of various advanced nondestructive techniques (NDT) and modeled with reference to all known material, design, and operation variables. Three modes dominating the wear scenario were found to be the adhesive/sheer peeling (ASP), oxidation, and abrasion. Bearing wear was modeled in terms of the three modes. Lacking a comprehensive theory of rolling contact wear to date, each mode is modeled after well-established theories of sliding wear, while sliding velocity and distance are related to microsliding in ball-to-ring contacts. Microsliding, stress, temperature, and other contact variables are evaluated with analytical software packages of SHABERTH(TM)/SINDA(TM) and ADORE(TM). Empirical constants for the models are derived from NIST experiments by applying the models to the NIST wear data. The bearing wear model so established precisely predicts quite well the average ball wear rate for the HPOTP bearings. The wear rate has been statistically determined for the entire population of flight and development bearings based on Rocketdyne records to date. Numerous illustrations are given.

  5. A new methodology for predictive tool wear

    NASA Astrophysics Data System (ADS)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  6. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  7. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect

    Not Available

    1990-06-20

    The overall objective of this program is to develop the diesel engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: Definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; Definition of the specific effect of each coal-related lube oil contaminant; Determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; Evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and Presentation of the engine/lubricant system design determined to have the most potential.

  8. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing

    NASA Astrophysics Data System (ADS)

    Steele, Adam; Nayak, Barada K.; Davis, Alexander; Gupta, Mool C.; Loth, Eric

    2013-11-01

    A novel method of fabricating titanium superhydrophobic surfaces by ultrafast laser irradiation is reported. The ultrafast laser irradiation creates self-organized microstructure superimposed with nano-scale roughness, after which a fluoropolymer coating is applied to lower the surface energy of the textured surface and achieve superhydrophobicity. The focus of this study is to investigate abrasion effects on this mechanically durable superhydrophobic surface. The mechanical durability is analyzed with linear abrasion testing and microscopy imaging. Linear abrasion tests indicate that these surfaces can resist complete microstructure failure up to 200 abrasion cycles and avoid droplet pinning up to ten abrasion cycles at 108.4 kPa applied pressure, which roughly corresponds to moderate to heavy sanding or rubbing in the presence of abrasive particles. The wear mechanisms are also investigated and the primary mechanism for this system is shown to be abrasive wear with fatigue by repeated plowing. Although these results demonstrate an advancement in mechanical durability over the majority of existing superhydrophobic surfaces, it exemplifies the challenge in creating superhydrophobic surfaces with suitable mechanical durability for harsh applications, even when using titanium.

  9. Wear Characteristics and Mechanisms of H13 Steel with Various Tempered Structures

    NASA Astrophysics Data System (ADS)

    Cui, X. H.; Wang, S. Q.; Wei, M. X.; Yang, Z. R.

    2011-08-01

    Wear tests of H13 steel with various tempering microstructures were performed under atmospheric conditions at room temperature (RT), 200 °C, and 400 °C. The wear characteristics and wear mechanisms of various tempered microstructures of the steel were focused by investigating the structure, morphology, and composition of the worn surfaces. Under atmospheric conditions at RT, 200 °C, and 400 °C, adhesive wear, mild oxidation wear, and oxidation wear prevailed, respectively. The wear rate at 200 °C was substantially lower than those at RT and 400 °C due to the protection of tribo-oxides. In mild oxidation wear, the tempered microstructures of the steel presented almost no obvious influence on the wear resistance. However, in adhesive wear and oxidation wear, the wear resistance strongly depended on the tempered microstructures of the steel. The steel tempered at 600-650 °C presented pronouncedly lower wear rates than the one tempered at 200-550 or 700 °C. It can be suggested that the wear resistance of the steel was closely related with its fracture resistance.

  10. Friction, wear, transfer and wear surface morphology of ultra-high-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1983-01-01

    Tribological studies at 25 C in a 50-percent-relative-humidity air atmosphere were conducted using hemispherically tipped 440 C HT (high temperature) stainless steel pins sliding against ultra-high-molecular-weight polyethylene (UHMWPE) disks. The results indicate that sliding speed, sliding distance, contact stress and specimen geometry can markedly affect friction, UHMWPE wear, UHMWPE transfer and the type of wear mechanisms that occur. Adhesion appears to be the predominant wear mechanism; but after long sliding distances at slow speeds, heavy ridges of transfer result which can induce fatigue-like wear on the UHMWPE disk wear track. In one instance, abrasive wear to the metallic pin was observed. This was caused by a hard particle embedded in the UHMWPE disk wear track.

  11. Friction, wear, transfer, and wear surface morphology of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1985-01-01

    Tribological studies at 25 C in a 50-percent-relative-humidity air atmosphere were conducted using hemispherically tipped 440 C HT (high temperature) stainless steel pins sliding against ultra-high-molecular-weight polyethylene (UHMWPE) disks. The results indicate that sliding speed, sliding distance, contact stress and specimen geometry can markedly affect friction, UHMWPE wear, UHMWPE transfer and the type of wear mechanisms that occur. Adhesion appears to be the predominant wear mechanism; but after long sliding distances at slow speeds, heavy ridges of transfer result which can induce fatigue-like wear on the UHMWPE disk wear track. In one instance, abrasive wear to the metallic pin was observed. This was caused by a hard particle embedded in the UHMWPE disk wear track.

  12. Tool wear mechanisms in the machining of Nickel based super-alloys: A review

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sun, Jianfei; Sun, Pengfei; Chen, Wuyi; Saleem, Zawar

    2014-06-01

    Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

  13. Friction and wear behaviors of compacted graphite iron with different biomimetic units fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Sun, Na; Shan, Hongyu; Zhou, Hong; Chen, Darong; Li, Xiaoyan; Xia, Wen; Ren, Luquan

    2012-07-01

    Mimicking the biological characters on the cuticles of pangolin scales, biomimetic units were fabricated on the surfaces of compacted graphite cast iron (CGI) with different unit materials using laser cladding process. The influences of various unit materials including TiC, WC, B4C and Al2O3 powders on the friction and wear behaviors of CGI were investigated. The wear resistance mechanism of biomimetic specimens was discussed. The results indicated that the wear resistance of biomimetic specimens cladding TiC was the best; the specimens cladding WC or B4C were in the middle; and the specimens cladding Al2O3 was the worst. The sequence of friction coefficient values of biomimetic specimens cladding different ceramic powders from high to low was B4C, TiC, WC and Al2O3. The wear mechanism of untreated specimen was mainly adhesion wear, abrasive wear as well as the oxidation wear, whereas the adhesive wear and abrasive wear was the main wear mechanism of the regions of substrate in biomimetic specimens and slight adhesion, abrasive wear and fatigue wear on the regions of biomimetic units.

  14. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-02-01

    Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  15. Wear mechanisms maps of Si3N4/carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Koncsik, Zs; Maros, MB; Kuzsella, L.; Kovacs, A.

    2016-04-01

    Silicon nitride-based nanocomposites with different amount (0, 1, 2 wt%) of multiwall carbon nanotubes (MWCNT) have been prepared by hot isostatic pressing. Tribological tests were carried out at room temperature, in dry sliding condition using pin-on-disc test apparatus, applying different normal loads and sliding speeds. Wear phenomena was analysed by scanning electron microscopic investigations of the wear tracks. Based on the controlling wear mechanisms and wear types two-dimensional wear mechanisms maps were created for all composition of the investigated ceramic nanocomposites.

  16. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    NASA Astrophysics Data System (ADS)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2014-12-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  17. Friction and Wear Behavior of 30CrMnSiA Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Qu, Sheng-guan; Lai, Fu-qiang; Wang, Guang-hong; Yuan, Zhi-min; Li, Xiao-qiang; Guo, Hui

    2016-04-01

    The friction and wear properties of 30CrMnSiA steel were investigated at elevated temperature from 100 to 600 °C. Thereafter, the wear debris and worn surfaces were examined to understand the wear mechanisms. The remained debris with relatively high hardness created three-body abrasion at lower temperatures (100-300 °C). Abrasive wear prevailed at the conditions with high friction coefficients and wear rates. A significant change in friction and wear behavior occurred at 400 °C. At the temperature of 400 °C, oxidation induced mild wear was found because of the formation of load-bearing oxide film. Both the friction coefficients and wear rates of the steel were lowest at 400 °C. At the temperatures of 500-600 °C, a mild-to-severe wear transition occurred which resulted in an increase in the friction coefficients and wear rates of the steel. This is related to the decrease in the strength of matrix and hardness of worn surfaces and subsurfaces. The predominant wear mechanism is considered to be severe abrasive, adhesive wear and a fatigue delamination of the oxide film.

  18. Mechanical and wear properties of PMMA/PVDF microfilled systems

    SciTech Connect

    Garcia, J.L.; Koelling, K.W.; Seghi, R.R.

    1996-12-31

    There is a clinical need in fixed prosthodontics for aesthetic materials that are biologically compatible. Polymethylmethacrylate (PMMA) has been used extensively in dental applications. Blends of PMMA and polyvinylidene fluoride (PVDF) are a new class of materials that might perform as aesthetic restorative materials. The fracture properties of PMMA have been intensively studied because it is an amorphous glass below 110{degrees}C, thus exhibiting brittle fracture under normal testing conditions below about 85{degrees}C. However, this brittle behavior leads to poor wear resistance. The properties of the matrix can be tailored by blending with PVDF. The blends are composed of homogeneous mixtures of the two polymers at the molecular level. Polyvinylidene fluoride molecules do not contribute to the mechanical yield behavior of the blend but do act as plasticizers. Improvements in the mechanical properties may be achieved by incorporating a filler into the polymer matrix.

  19. Investigation of abrasion in Al–MgO metal matrix composites

    SciTech Connect

    Muharr em Pul; Çalin, Recep; Gül, Ferhat

    2014-12-15

    In this study, the effects of reinforcement volume fractions on abrasive wear behavior were examined in Al–MgO reinforced metal matrix composites of 5%, 10% and 15% reinforcement – volume ratios produced by melt-stirring. Abrasive wear tests were carried out by 60, 80 and 100 mesh sized Al{sub 2}O{sub 3} abrasive papers and pin-on-disc wear test apparatus under 10, 20 and 30 N loads at 0.2 m/s sliding speed. The mechanical properties such as hardness and fracture strength were determined. Subsequent to the wear tests, the microstructures of worn surfaces were examined by scanning electron microscope analyses. While increased MgO reinforcement volume fraction in the composite resulted increased hardness, fracture strength was determined to decrease. Additionally, it was found that increased MgO reinforcement volume fraction in the composite was accompanied with increased wear loss and porosity as well as reinforcement – volume ratio was identified to be significant determinants of abrasive wear behavior.

  20. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  1. Anti-wear properties of Cr C and Ni Co alloy coatings as substitutes for conventional nanocrystalline Cr coatings

    NASA Astrophysics Data System (ADS)

    Zeng, Zhixiang; Zhang, Junyan

    2008-09-01

    Nanocrystalline Ni-Co, amorphous Cr-C alloy and nanocrystalline Cr-C coatings were electrodeposited from 'environmentally acceptable' electrolytes as potential substitutes for conventional nanocrystalline Cr coatings electrodeposited from noxious hexavalent chromium. The structure, morphology and hardness of coatings are investigated using a transmission electron microscope, a scanning electronic microscope and a Vickers hardness tester, respectively. Anti-wear properties are tested on a pin-on-plate vibrant wear tester. The correlation between the wear resistance, hardness, brittleness and the lubricated state is investigated. The results show that the wear behaviour of specimens significantly depends on their lubricated state, hardness and brittleness. Under the lubricated sliding condition, abrasive wear is the primary wear mechanism for all specimens. With respect to the abrasive wear mechanism, both the elastic and plastic deformations play important roles during the lubricated sliding process. Thus, the amorphous and nanocrystalline Cr-C alloy coatings, with both high brittleness and high hardness, exhibit a lower wear rate than the conventional Cr and Ni-Co coatings. On the other hand, under the dry sliding condition, the annealed Ni-Co coating, with an excellent compromise between high hardness and toughness, exhibits an abrasive wear mechanism and a relatively low wear rate; in contrast, the brittle Cr-matrix coatings exhibit a severe fatigue/delamination wear mechanism and high wear rate.

  2. Abrasion of restorative materials by toothaste.

    PubMed

    Heath, J R; Wilson, H J

    1976-04-01

    The procedure developed in this investigation is suitable for determining the abrasion resistance of restorative materials to toothbrush/dentifrice abrasion. Ideally, a restoration should have an abrasion resistance similar to that of enamel. Of the materials tested, gold was the only one that wore slightly less than enamel, whilst amalgam wore almost twice as quickly. The silicate material and composites (excluding TD.71) wear away 2-4 times faster than enamel. TD.71 and especially the unfilled resin exhibited very high rates of abrasion. After prolonged toothbrush/dentifrice abrasion, the surfaces of gold and amalgam were considerably smoother than those of the silicate and composite materials. PMID:1066445

  3. Wear Behavior and Mechanism of H13 Steel in Different Environmental Media

    NASA Astrophysics Data System (ADS)

    Li, Xinxing; Zhou, Yin; Cao, Huan; Li, Yixian; Wang, Lan; Wang, Shuqi

    2016-08-01

    Sliding wear tests were performed for H13 steel in atmosphere, distilled water, 3.5% NaCl, and 5% NaOH water solutions under various loads on a pin-on-disk wear tester. The results showed that for different environmental media, the wear rate of H13 steel in atmosphere was the maximum and that in 3.5% NaCl solution was the minimum. The maximum wear rate in atmosphere was caused by a larger quantity of heat produced in the friction process. In this case, the adhesive wear prevailed. In three wet environments, the mild wear prevailed due to the good lubrication and cooling capacity of media as well as corrosion product film on worn surface. In distilled water, the wear mechanism was a typical fatigue wear. On the other hand, in 3.5% NaCl and 5% NaOH solutions, corrosive wear prevailed. The minimum wear rate in 3.5% NaCl solution was attributed to the protective function of corrosion product film. On the contrary, noncompact corrosion product film in 5% NaOH solution resulted in higher wear rate.

  4. Wheel Abrasion Experiment Conducted on Mars

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1998-01-01

    Sojourner rover showing Lewis' wheel abrasion experiment. The Mars Pathfinder spacecraft soft-landed on Mars on July 4, 1997. Among the many experiments on its small Sojourner rover are three technology experiments from the NASA Lewis Research Center, including the Wheel Abrasion Experiment (WAE). The WAE was designed, built, delivered, and operated on Mars by a team of engineers and scientists from Lewis' Photovoltaics and Space Environments Branch. This experiment collected data to assess wheel surface wear on the Sojourner. It used a specially designed rover wheel, with thin films (200 to 1000 angstroms) of aluminum, nickel, and platinum deposited on black, anodized aluminum strips attached to the rover's right center wheel. As the wheel spun in the Martian soil, a photovoltaic sensor monitored changes in film reflectivity. These changes indicated abrasion of the metal films by Martian surface material. Rolling wear data were accumulated by the WAE. Also, at frequent intervals, all the rover wheels, except the WAE test wheel, were locked to hold the rover stationary while the test wheel alone was spun and dug into the Martian regolith. These tests created wear conditions more severe than simple rolling. The WAE will contribute substantially to our knowledge of Martian surface characteristics. Marked abrasion would indicate a surface composed of hard, possibly sharply edged grains, whereas lack of abrasion would suggest a somewhat softer surface. WAE results will be correlated with ground simulations to determine which terrestrial materials behave most like those on Mars. This knowledge will enable a deeper understanding of erosion processes on Mars and the role they play in Martian surface evolution. Preliminary results show that electrostatic charging of the rover wheels sometimes caused dust to accumulate on the WAE wheel, making interpretation of the reflectance data problematic. If electrostatic charging is the mechanism for dust attraction, this indicates

  5. Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.

    2006-12-01

    The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.

  6. 3D FEM Simulation of Flank Wear in Turning

    NASA Astrophysics Data System (ADS)

    Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio

    2011-05-01

    This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.

  7. Study on the wear mechanism and tool life of coated gun drill

    NASA Astrophysics Data System (ADS)

    Wang, Yongguo; Yan, Xiangping; Chen, Xiaoguang; Sun, Changyu; Zhang, Xi

    2010-12-01

    A comprehensive investigation of the wear progress for solid carbide gun drill coated with TiAlN by machining steel S48CSiV at a cutting speed of 12.66m/s has been performed. Cutting torque was recorded and tool wear mechanism was studied. The surface morphology of the tool and the chip have been studied by using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Results show that cutting torque fluctuates between 3% and 5% when machining less than 130 pieces of crankshaft, but it will sharply increased to nearly 18% while machining 150 pieces of crankshaft because the coating is damaged and the wear becoming severity. The dominant wear mechanisms are adhesive wear and chemical dissolution wear.

  8. Study on the wear mechanism and tool life of coated gun drill

    NASA Astrophysics Data System (ADS)

    Wang, Yongguo; Yan, Xiangping; Chen, Xiaoguang; Sun, Changyu; Zhang, Xi

    2011-05-01

    A comprehensive investigation of the wear progress for solid carbide gun drill coated with TiAlN by machining steel S48CSiV at a cutting speed of 12.66m/s has been performed. Cutting torque was recorded and tool wear mechanism was studied. The surface morphology of the tool and the chip have been studied by using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Results show that cutting torque fluctuates between 3% and 5% when machining less than 130 pieces of crankshaft, but it will sharply increased to nearly 18% while machining 150 pieces of crankshaft because the coating is damaged and the wear becoming severity. The dominant wear mechanisms are adhesive wear and chemical dissolution wear.

  9. Mechanical and wear properties of aluminum coating prepared by cold spraying

    SciTech Connect

    Yusof, Siti Nurul Akmal Manap, Abreeza Afandi, Nurfanizan Mohd; Salim, Musdalilah; Misran, Halina

    2015-07-22

    In this study, aluminum (Al) powders were deposited onto Al substrates using cold spray to form a coating. The main objective is to investigate and compare the microstructure, mechanical and wear properties of Al coating to that of the Al substrate. The microstructure of the coating and substrate were observed using Scanning Electron Microscope (SEM). Hardness was evaluated using the Vickers Hardness test and wear properties were investigated using a pin-on-disk wear test machine. The elemental composition of the coating and substrate was determined using Energy-dispersive X-ray spectroscopy (EDX). Results showed that the friction coefficient and specific wear rate decreased while wear rate increased linearly with increasing load. It was found that the coating exhibit slightly better mechanical and wear properties compared to the substrate.

  10. Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Haibo; Zhang, Zefang; Qin, Fei; Liu, Weili; Song, Zhitang

    2011-11-01

    Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.

  11. Subsurface mechanical damage during bound abrasive grinding of fused silica glass

    NASA Astrophysics Data System (ADS)

    Blaineau, P.; André, D.; Laheurte, R.; Darnis, P.; Darbois, N.; Cahuc, O.; Neauport, J.

    2015-10-01

    The subsurface damage (SSD) introduced during bound abrasive grinding of fused silica glass was measured using a wet etch technique. Various process parameters and grinding configurations were studied. The relation between the SSD depth, the process parameters and forces applied by the grinding wheel on the sample was investigated and compared to a simulation using a discrete element method to model the grinding interface. The results reveal a relation between the SSD depth and the grinding forces normalized by the abrasive concentration. Regarding the creation of the SSD, numerical simulations indicate that only a small fraction of the largest particles in the diamond wheel are responsible for the depth of the damaged layer.

  12. Erosive tooth wear in children.

    PubMed

    Carvalho, Thiago S; Lussi, Adrian; Jaeggi, Thomas; Gambon, Dein L

    2014-01-01

    Erosive tooth wear in children is a common condition. Besides the anatomical differences between deciduous and permanent teeth, additional histological differences may influence their susceptibility to dissolution. Considering laboratory studies alone, it is not clear whether deciduous teeth are more liable to erosive wear than permanent teeth. However, results from epidemiological studies imply that the primary dentition is less wear resistant than permanent teeth, possibly due to the overlapping of erosion with mechanical forces (like attrition or abrasion). Although low severity of tooth wear in children does not cause a significant impact on their quality of life, early erosive damage to their permanent teeth may compromise their dentition for their entire lifetime and require extensive restorative procedures. Therefore, early diagnosis of erosive wear and adequate preventive measures are important. Knowledge on the aetiological factors of erosive wear is a prerequisite for preventive strategies. Like in adults, extrinsic and intrinsic factors, or a combination of them, are possible reasons for erosive tooth wear in children and adolescents. Several factors directly related to erosive tooth wear in children are presently discussed, such as socio-economic aspects, gastroesophageal reflux or vomiting, and intake of some medicaments, as well as behavioural factors such as unusual eating and drinking habits. Additionally, frequent and excessive consumption of erosive foodstuffs and drinks are of importance. PMID:24993274

  13. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites

    SciTech Connect

    Akhtar, F. Guo, S.J.

    2008-01-15

    This study deals with the processing, microstructure, and wear behavior of TiC-reinforced stainless steel matrix composites, containing 50 to 70 wt.% TiC. Powder technology was used to successfully fabricate the composites. The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the TiC particles were distributed uniformly in the steel matrix phase. Interface debonding and microcracks were not observed in the composite. The composite hardness increased with TiC content. The fretting wear resistance of the composites was studied against high speed steel. The wear mechanisms are discussed by means of microscopical observations on the worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microplowing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microplowing and rapid removal of material from the wear surface was observed at high wear load. The variation of wear loss with volume fraction and mean free path of the binder phase is also reported.

  14. The microstructure and wear mechanisms of wire-arc sprayed Inconel 625 coatings on 319 aluminum

    SciTech Connect

    Wang, X.; Popoola, O.; McCune, R.C.

    1995-12-31

    The direct formation of valve seats on aluminum cylinder heads provides enhanced conductive cooling of the valves and the opportunity to redesign the head for larger valves and improved engine performance. A two-wire arc-spray process was used to deposit coatings from Inconel 625 feedstock wire onto 319 cast aluminum test pieces, simulating the situation in an engine head. The microstructure and apparent wear mechanisms in dry sliding against a 4620 steel counterpiece were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray energy-dispersive microanalysis. Wear tests were conducted using the ASTM G66-77 block-on-ring test with wear volume measured using 3D laser probe profilometer. The wear mechanisms of this tribosystem are principally adhesive and delamination wear.

  15. A fundamental review of the friction and wear behavior of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The basic concepts associated with the friction and wear of materials are discussed as they relate to ceramics. Properties of ceramics such as crystal structure, crystallographic orientation, mechanical deformation, and surface chemistry are reviewed as they influence friction and wear. Both adhesive and abrasive wear of ceramics are discussed. The friction and wear of ceramics are examined in contact with themselves and when in contact with metals. The influences of environmental constituents such as water and hydrocarbons on friction and wear are reviewed. Materials discussed, by way of example, include aluminum oxide, rutile, calcium fluoride, and lithium fluoride.

  16. Effect of Surface Chemistry on the Mechanisms and Governing Laws of Friction and Wear.

    PubMed

    Dai, Ling; Sorkin, Viacheslav; Zhang, Yong-Wei

    2016-04-01

    Recent studies have shown that interface chemistry, that is, the formation and breaking of chemical bonds across contacting interfaces, is closely related to the wear and friction behavior at the nanoscale. In reality, the dangling bond density (DBD) at contacting surfaces can vary greatly. Currently, it remains unclear how friction and wear mechanisms depend on DBDs and whether the Archard's law for wear and Amonton's law for friction are still applicable for contacting surfaces with different DBDs. In this work, we address these issues by studying the wear and friction behavior between two sliding diamond-like carbon surfaces by controlling DBDs via hydrogenation using molecular dynamics simulations. It is found that the chemical bond breaking and remaking across the contacting interface play the key role in determining the friction and wear behavior. During the sliding, a higher DBD leads to more chemical bond formations across the interface, causing stronger wear via either atom or cluster detachments. With the same DBD, a mechanism transition from an atom-by-atom to cluster detachments is observed by increasing the normal load. Remarkably, a fully saturated surface can exhibit a wearless friction. We further show that after necessary modifications, the Archard's law for wear and the Amonton's law for friction may be applicable at the nanoscale. The present work reveals insights into the effect of interface chemistry on the friction and wear, and it provides guidelines for effective antiwear design. PMID:27004415

  17. Dry Sliding Wear Behavior of a Novel 6351 Al-(Al4SiC4 + SiC) Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Show, Bijay Kumar; Mondal, Dipak Kumar; Maity, Joydeep

    2014-03-01

    In this research study, the dry sliding wear behaviors of 6351 Al alloy and its composites with single and hybrid reinforcements (ex situ SiC and in situ Al4SiC4) were investigated at low sliding speed (1 ms-1) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion (coupled with subsurface cracking) and microcutting-abrasion at lower loads. With higher loads, abrasive wear involving microcutting and microplowing along with adherent oxide formation was observed. At higher loads, the abrasive wear mechanism caused rapid wear loss initially up to a certain sliding distance beyond which, by virtue of frictional heat generation and associated temperature rise, an adherent oxide layer was developed at the pin surface, which drastically reduced the wear loss. Moreover, the overall wear rates of all the composites (either single or hybrid reinforcement) were found to be lower than that of the 6351 Al alloy at all applied loads. The ex situ SiC particles were found to resist abrasive wear; while, in situ Al4SiC4 particles offered resistance to adhesive wear. Accordingly, the 6351 Al-(SiC + Al4SiC4) hybrid composite exhibited the best wear resistance among all composites.

  18. The lexicon of polyethylene wear in artificial joints.

    PubMed

    McKellop, Harry A

    2007-12-01

    The analysis of wear on polyethylene components that have been retrieved after use in patients has provided invaluable understanding of how wear occurs in vivo, and how it may be minimized through improved materials and implant design. The great number of such studies that have been published over the past three decades has lead to an extensive vocabulary to describe the tribology of prosthetic joints. However, these also have led to some confusion, due to the occasional misuse of terms from classical tribology, along with the use of multiple terms to describe the same wear phenomenon, and vice versa. The author has proposed that our understanding of wear in artificial joints may be enhanced by recognizing that there are four general subject areas: Modes, Mechanisms, Damage and Debris. Wear Mode 1 occurs when the two bearing surfaces are articulating against each other in the manner intended by the implant designer. Mode 2 occurs when a bearing surface articulates against a non-bearing surface. Mode 3 occurs when third-body abrasive particles have become entrapped between the two bearing surfaces, and Mode 4 occurs when two non-bearing surfaces are wearing against each other. The least wear occurs in Mode 1, whereas severe wear typically occurs in Modes 2, 3 and 4. The classical wear mechanisms that apply to prosthetic joints include adhesion, abrasion and fatigue. These can occur in varying amounts in either of the four wear modes. As used in the literature for the past three decades, wear "damage" can best be defined as the change surface texture or morphology that is caused by the action of the wear mechanisms. Although a wide variety of terms have been used, an overview of the literature indicates that about eight terms have been sufficient to describe the types of damage that occur on retrieved polyethylene components, i.e., burnishing, abrasion, scratches, plastic deformation, cracks, pits, delamination, and embedded third bodies. The author suggests that, as

  19. Investigations of mechanical and wear properties of alumina/titania/fire-clay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Chauhan, Shivani; Sharma, Aarushi

    2016-05-01

    In this work, the effect of various particulates (alumina, titania, fire clay) reinforcements on mechanical and wear properties of epoxy composites have been studied with a prime motive of replacing the costly alumina and titania by much economical fire clay for high mechanical strength and/or wear resistant materials. Fire clay based epoxy composites delivered better mechanical (both tensile and impact) properties than the alumina filled or neat epoxy composites and slightly lower than titania reinforced composites, which qualified the fire clay a very suitable cost effective alternatives of both alumina and titania for high mechanical strength based applications. However, the poor wear behavior of fire clay reinforced composites revealed its poor candidacy for wear and tear applications.

  20. Mechanical Properties and Simulated Wear of Provisional Resin Materials.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins-1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)-and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of nonplasticized PMMA beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (α=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (μm) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6

  1. Lubricating and wear mechanisms for a hemisphere sliding on polyimide-bonded graphite fluoride film

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1979-01-01

    Friction, wear life, rider wear, and film wear for a 440 C high-temperature-stainless-steel, hemispherically tipped rider sliding against polyimide-bonded graphite fluoride films were evaluated in a moist-air atmosphere at 25 C. Optical microscope and surface profilometry observations were made at various sliding intervals to determine how film thickness affected the lubricating and failure mechanisms of the films. Two lubrication regimes operated for the same load. In the first, the film supported the load and the lubricating mechanism consisted of the shear (plastic flow) of a thin layer of the lubricant between the metallic rider and the film surface. In the second, the film did not support the load (it was worn away) and the lubricating mechanism consisted of the shear of very thin lubricant films between flat areas generated on the rider and on sandblasted metallic asperities in the film wear track. Lubricant was supplied from the valleys between the asperities or from the sides of the wear track. With thicker films, wear life increased since a greater lubricant supply was available from the sides of the wear track.

  2. Tribological behavior and wear mechanisms of TiN/TiCN/TiN multilayer coatings

    SciTech Connect

    Su, Y.L.; Kao, W.H.

    1998-10-01

    This work employs the PVD process to deposit coatings of single layer TiN, binary layer TiN/TiCN, multilayer TiN/Ti/TiN, and sequenced TiN/TiCN/TiN multilayer coatings with variable individual TiN-layer and TiCN-layer thicknesses on tungsten carbide disks and inserts. Also investigated are the fracture mechanisms and the influence of sequence and thickness of these coatings on cylinder-on-disk, line-contact wear mode and ball-on-disk, point-contact wear mode through SRV reciprocating wear tests. Actual milling tests identify wear performance. Experimental results indicate that the coating with a total thickness of 7 {micro}m and layer sequence TiN/TiCN/TiN exhibits good wear resistance on SRV wear test and milling test. The thickest multilayer TiN/Ti/TiN coating, although having the highest hardness, has the worst wear resistance for all tests. Notably zero-wear performance was observed for all coating disks under cutting fluid lubricated condition due to the transferred layers formed between the contact interface.

  3. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles

    PubMed Central

    Jonitz-Heincke, Anika; Lochner, Katrin; Schulze, Christoph; Pohle, Diana; Pustlauk, Wera; Hansmann, Doris; Bader, Rainer

    2016-01-01

    One of the major reasons for failure after total joint arthroplasty is aseptic loosening of the implant. At articulating surfaces, defined as the interface between implant and surrounding bone cement, wear particles can be generated and released into the periprosthetic tissue, resulting in inflammation and osteolysis. The aim of the present study was to evaluate the extent to which osteoblasts and macrophages are responsible for the osteolytic and inflammatory reactions following contact with generated wear particles from Ti-6Al-7Nb and Co-28Cr-6Mo hip stems. To this end, human osteoblasts and THP-1 monocytic cells were incubated with the experimentally generated wear particles as well as reference particles (0.01 and 0.1 mg/ml) for 48 h under standard culture conditions. To evaluate the impact of these particles on the two cell types, the release of different bone matrix degrading matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and relevant cytokines were determined by multiplex enzyme-linked immunosorbent assays. Following incubation with wear particles, human osteoblasts showed a significant upregulation of MMP1 and MMP8, whereas macrophages reacted with enhanced MMP3, MMP8 and MMP10 production. Moreover, the synthesis of TIMPs 1 and 2 was inhibited. The osteoblasts and macrophages also responded with modified expression of the inflammatory mediators interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1 and vascular endothelial growth factor. These results demonstrate that the release of wear particles affects the release of proinflammatory cytokines and has a negative impact on bone matrix formation during the first 48 h of particle exposure. Human osteoblasts are directly involved in the proinflammatory cascade of bone matrix degradation. The simultaneous activation and recruitment of monocytes/macrophages boosted osteolytic processes in the periprosthetic tissue. By the downregulation of TIMP production and the concomitant

  4. Effects of the Ambient Temperature and Load on the Wear Performances and Mechanisms of H13 Steel

    NASA Astrophysics Data System (ADS)

    Wei, M. X.; Wang, S. Q.; Zhao, Y. T.; Wang, F.

    2011-10-01

    The dry sliding wear tests of H13 steel were performed under atmospheric conditions under various ambient temperatures and loads; the wear performances and the wear mechanisms were studied. At room temperature (RT), the wear loss of the steel gradually increased with increasing the load. An adhesive wear prevailed with little tribo-oxides on the worn surfaces. Under the atmospheric conditions at 473 K (200 °C) and a load of 100 N or above, a mild oxidation wear prevailed with about 20- μm thickness of tribo-oxide layer forming on the asperities of worn surfaces. The wear loss first reduced and then slightly increased with increasing the load. Compared with the other ambient temperatures, the wear at 473 K (200 °C) retained the lowest wear loss due to the protection of the tribo-oxide layer. As the ambient temperature reached 673 K (400 °C), the wear loss increased with increasing load, leading to higher wear than those observed at RT and at 473 K (200 °C). The predominant wear mechanism at 673 K (400 °C) was oxidation wear, unlike mild oxidation wear, which dominated at 473 K (200 °C).

  5. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    PubMed

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

  6. Development and validation of an alternative disturbed skin model by mechanical abrasion to study drug penetration

    PubMed Central

    Schlupp, P.; Weber, M.; Schmidts, T.; Geiger, K.; Runkel, F.

    2014-01-01

    Pharmaceuticals and cosmetics for dermal application are usually tested on healthy skin, although the primary permeation barrier, the stratum corneum, is often impaired by skin diseases or small skin lesions, especially on the hands. These skin conditions can considerably influence the permeation of chemicals and drugs. Furthermore, risk assessment for example of nanoparticles should be performed under various skin conditions to reflect the true circumstances. Therefore, an alternative and reproducible method for a high throughput of skin samples with impaired skin barrier was developed and verified by skin permeation studies (25 h) of caffeine, sorbic acid and testosterone compared to healthy (untreated) and tape-stripped skin. Skin barrier disruption was controlled by TEWL measurement. Skin permeation of the three substances was increased in tape-stripped and abraded skin compared to untreated skin due to the reduced barrier integrity. Enhancement of drug uptake was highest for the most hydrophilic substance, caffeine, followed by sorbic acid and lipophilic testosterone. No significant difference in drug uptake studies was observed between the new abrasion method with an aluminum-coated sponge and the tape-stripping method. The obtained results demonstrate that this abrasion method is an alternative way to achieve a disturbed skin barrier for drug and chemical uptake studies. PMID:25756004

  7. Tribopolymerization as an anti-wear mechanism. Quarterly progress report

    SciTech Connect

    Furey, M.J.

    1996-04-01

    The primary objective of this activity is to obtain the necessary data which would enhance, promote, and encourage the introduction of advanced lubrication technology into the marketplace. This includes (a) defining specific but different applications, (b) establishing the limits or ranges of applied loads, speeds, and temperatures over which the concept of tribopolymerization would work in reducing wear and/or friction, (c) continuing in efforts to understand the film-forming process (this rates to (b) above), using this knowledge to develop new and even more effective additives, and (d) exploring possible connections with private and investment companies for the licensing and marketing of products which will reduce friction and wear in a variety of applications. Progress was made in several different but connected areas. These included (a) establishing of load/velocity limits of selected monomers for ceramic lubrication, (b) the discovery of new and effective monomers designed for higher temperature anti-wear applications, (c) improvements and modifications of the high load/high speed pin-on-disk machine, (d) the initiation of related or spin-off projects designed to get their advanced technology into the marketplace, (e) the filing of three new patent applications, and (f) collaborative research with Dr. Kajdas--the co-inventor with Dr. Furey--on tribopolymerization as a novel and effective approach to the boundary lubrication of ceramics and steel. These and other elements of progress made during the first Quarter of 1996 are discussed briefly.

  8. Wear mechanisms in thermally-sprayed Mo-based coatings

    NASA Astrophysics Data System (ADS)

    Wayne, S. F.; Sampath, S.; Anand, V.

    1994-07-01

    The successful development of advanced diesel engines relies heavily on piston ring coating materials which can withstand elevated temperatures and reduce friction. Traditional hard chrome plating and flame-sprayed Mo-wire materials have reached their potential in the diesel engine environment, and alternatives are needed. Thermally-sprayed Mo-based alloys and composites are being evaluated for applications as next-generation ring-face coatings. The alloy development task of producing complex Mo-based alloy powders for use as thermally-sprayed coating materials requires an understanding of their wear resistance under contact stress conditions. In this paper, the wear behavior of Mo and Mo + NiCrBSi thermally sprayed coatings is exmined by pin-on-disc and single-point scratch-test methods. Microstructural analysis beneath worn regions have revealed that fracture of splats and their decohesion constitute the mode of failure. Improved wear resistance and stability of low friction coefficient was obtained by prealloying Mo with NiCrBSi prior to thermal spraying.

  9. On the mechanism of running-in during wear tests of a babbitt B83

    NASA Astrophysics Data System (ADS)

    Valeeva, A. Kh.; Valeev, I. Sh.; Fazlyakhmetov, R. F.; Pshenichnyuk, A. I.

    2015-05-01

    Based on an analysis of changes in the structure of cast babbitt of grade B83 in the process of wear tests and on a comparison of the wear curves of cast babbitt and electroplated coating of the same phase composition, there is proposed a wear mechanism at the running-in stage of B83, which is reduced to the spalling-off of coarse particles of the intermetallic β phase, pressing-in of the cleaved particles into the soft plastic matrix, and the formation of a fairly homogeneous coating uniformly paved by small, hard particles.

  10. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  11. Wear mechanisms found in angular contact ball bearings of the SSME's LOX turbopump

    NASA Technical Reports Server (NTRS)

    Chase, T. J.

    1992-01-01

    Extensive experimental investigations were carried out on used flight bearings of the Phase 2 high-pressure oxygen turbopump (HPOTP) of the Space Shuttle Main Engine (SSME) in order to determine the wear mechanisms, dominant wear modes, and their extent and causes. The report shows methodology, surface analysis techniques used, result, and discussion. The mode largely responsible for heavy bearing wear in LOX was identified as adhesive/shear peeling of the upper layers of bearing balls and rings. The mode relies on the mechanisms of scale formation, breakdown, and removal, all of which are greatly enhanced by the heavy oxidation environment of the HPOTP. Major causes of the high wear in bearings appear to be lubrication and cooling, both inadequate for the imposed conditions of operation. Numerous illustrations and evidence are given.

  12. Wear mechanisms found in angular contact ball bearings of the SSME's LOX turbopump

    NASA Astrophysics Data System (ADS)

    Chase, T. J.

    1992-07-01

    Extensive experimental investigations were carried out on used flight bearings of the Phase 2 high-pressure oxygen turbopump (HPOTP) of the Space Shuttle Main Engine (SSME) in order to determine the wear mechanisms, dominant wear modes, and their extent and causes. The report shows methodology, surface analysis techniques used, result, and discussion. The mode largely responsible for heavy bearing wear in LOX was identified as adhesive/shear peeling of the upper layers of bearing balls and rings. The mode relies on the mechanisms of scale formation, breakdown, and removal, all of which are greatly enhanced by the heavy oxidation environment of the HPOTP. Major causes of the high wear in bearings appear to be lubrication and cooling, both inadequate for the imposed conditions of operation. Numerous illustrations and evidence are given.

  13. Influence of the microstructure of ceramic materials on their wear behavior in mechanical seals

    SciTech Connect

    Wallis, R.

    1994-10-01

    Ceramic materials such as aluminium oxide and silicon carbide are regularly used as one of the counterfaces to oppose carbon graphite in a mechanical seal. Under nominally identical test conditions, the same carbon graphite face can show high wear rates against a material from one supplier but a significantly lower wear rate on a similar material from another. The general descriptions of aluminium oxide and silicon carbide can cover significant differences in properties between materials from various suppliers. Ceramic counterfaces from several manufacturers have been examined, after testing under similar conditions, in order to understand the microstructural factors that influence the wear of the carbon graphite and hence the lift of the mechanical seal. There is evidence to suggest that the wear resistance of the system depends on the grain size distribution, the integrity of the grain bonding and the presence of additional phases. 13 refs., 15 figs., 1 tab.

  14. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles.

    PubMed

    Jonitz-Heincke, Anika; Lochner, Katrin; Schulze, Christoph; Pohle, Diana; Pustlauk, Wera; Hansmann, Doris; Bader, Rainer

    2016-08-01

    One of the major reasons for failure after total joint arthroplasty is aseptic loosening of the implant. At articulating surfaces, defined as the interface between implant and surrounding bone cement, wear particles can be generated and released into the periprosthetic tissue, resulting in inflammation and osteolysis. The aim of the present study was to evaluate the extent to which osteoblasts and macrophages are responsible for the osteolytic and inflammatory reactions following contact with generated wear particles from Ti‑6Al‑7Nb and Co‑28Cr‑6Mo hip stems. To this end, human osteoblasts and THP‑1 monocytic cells were incubated with the experimentally generated wear particles as well as reference particles (0.01 and 0.1 mg/ml) for 48 h under standard culture conditions. To evaluate the impact of these particles on the two cell types, the release of different bone matrix degrading matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and relevant cytokines were determined by multiplex enzyme‑linked immunosorbent assays. Following incubation with wear particles, human osteoblasts showed a significant upregulation of MMP1 and MMP8, whereas macrophages reacted with enhanced MMP3, MMP8 and MMP10 production. Moreover, the synthesis of TIMPs 1 and 2 was inhibited. The osteoblasts and macrophages also responded with modified expression of the inflammatory mediators interleukin (IL)‑6, IL‑8, monocyte chemoattractant protein‑1 and vascular endothelial growth factor. These results demonstrate that the release of wear particles affects the release of proinflammatory cytokines and has a negative impact on bone matrix formation during the first 48 h of particle exposure. Human osteoblasts are directly involved in the proinflammatory cascade of bone matrix degradation. The simultaneous activation and recruitment of monocytes/macrophages boosted osteolytic processes in the periprosthetic tissue. By the downregulation of TIMP production and the

  15. Solidification Structure and Abrasion Resistance of High Chromium White Irons

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Laird, George, II

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  16. Solidification structure and abrasion resistance of high chromium white irons

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Laird, G. II

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  17. In Situ Wear Test on Thermal Spray Coatings in a Large Chamber Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Luo, Weifeng; Tillmann, Wolfgang; Selvadurai, Ursula

    2015-01-01

    Currently, the determination of the mass loss is usually used for a quantitative evaluation of wear tests, while the analysis of wear tracks is utilized for a qualitative evaluation of wear. Both evaluation methods can only be used after the wear testing process and their results only present the final outcome of the wear test. However, the changes during the wear test and the time-dependent wear mechanisms are of great interest as well. A running wear test in a large chamber scanning electron microscope (SEM) offers the first opportunity to observe the wear process in situ. Different wear mechanisms, such as the adhesive, abrasive wear, surface fatigue and tribochemical reaction, can be recorded with high magnification. Within this research, a special pin-on-disk testing device is designed for a vacuum environment. Using this device, arc-sprayed NiCrBSi coatings and high-velocity-oxygen-fuel-sprayed WC-12Co coatings were tested in a large chamber SEM with Al2O3 ceramic balls as wear counterparts. During the wear testing, different wear mechanisms were determined and the processes were recorded in short video streams.

  18. Backside wear in modern total knee designs.

    PubMed

    Jayabalan, Prakash; Furman, Bridgette D; Cottrell, Jocelyn M; Wright, Timothy M

    2007-02-01

    Although modularity affords various options to the orthopedic surgeon, these benefits come at a price. The unintended bearing surface between the back surface of the tibial insert and the metallic tray results in micromotion leading to polyethylene wear debris. The objective of this study was to examine the backside wear of tibial inserts from three modern total knee designs with very different locking mechanisms: Insall-Burstein II (IB II), Optetrak, and Advance. A random sample of 71 inserts were obtained from our institution's retrieval collection and examined to assess the extent of wear, depth of wear, and wear damage modes. Patient records were also obtained to determine patient age, body mass index, length of implantation, and reason for revision. Modes of wear damage (abrasion, burnishing, scratching, delamination, third body debris, surface deformation, and pitting) were then scored in each zone from 0 to 3 (0 = 0%, 1 = 0-10%, 2 = 10-50%, and 3 = >50%). The depth of wear was subjectively identified as removal of manufacturing identification markings stamped onto the inferior surface of the polyethylene. Both Advance and IB II polyethylene inserts showed significantly higher scores for backside wear than the Optetrak inserts. All IB II and Advance implants showed evidence of backside wear, whereas 17% (5 out of 30) of the retrieved Optetrak implants had no observable wear. There were no significant differences when comparing the depth of wear score between designs. The locking mechanism greatly affects the propensity for wear and should be considered when choosing a knee implant system. PMID:18751767

  19. Corneal Abrasions

    MedlinePlus

    ... prevent injuries by wearing eye protection (such as goggles or a facemask) when you're enjoying sports like skiing, snowboarding, hockey, and lacrosse. Safety goggles can protect your eyes when you're using ...

  20. Dental wear, wear rate, and dental disease in the African apes.

    PubMed

    Elgart, Alison A

    2010-06-01

    The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin-enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin-enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin-enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample. PMID:20077466

  1. Tribopolymerization as an anti-wear mechanism. Quarterly progress report

    SciTech Connect

    Furey, M.J.

    1996-04-01

    During the first three months of 1996, progress on the Energy-Related Project was made in several different but connected areas. These included (a) establishing of load/velocity limits of selected monomers for ceramic lubrication, (b) the discovery of new and effective monomers designed for higher temperature anti-wear applications, (c) improvements and modifications of the high load/high speed pin-on-disk machine, (d) the initiation of related or spin-off projects designed to get the advanced technology into the marketplace, (e) the filing of three new patent applications, and (f) collaborative research with Dr. Kajdas -- the co-inventor with Dr. Furey -- on tribopolymerization as a novel and effective approach to the boundary lubrication of ceramics and steel.

  2. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.

    PubMed

    Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei

    2015-03-01

    Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure. PMID:25625787

  3. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    NASA Astrophysics Data System (ADS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-12-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant.

  4. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh and W) in contact with single crystal silicon carbide riders. Results indicate that the friction force in the plowing of metal and the groove height (corresponding to the wear volume of the groove) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease, and the contact pressure increases with an increase in solute content of binary alloys. There appears to be very good correlation of the solute to iron atomic ratio with the decreasing rate of change of coefficient of friction, the decreasing rate of change of groove height and the increasing rate of change of contact pressure with increasing solute content. These rates of change increase as the solute to iron atomic radius ratio increases or decreases from unity.

  5. Pitfalls and outcomes from accelerated wear testing of mechanical heart valves.

    PubMed

    Campbell, A; Baldwin, T; Peterson, G; Bryant, J; Ryder, K

    1996-06-01

    In 1990 Sorin Biomedica introduced a new bileaflet heart valve called the Bicarbon valve. This design was reported to eliminate wear in the hinge mechanism. Clinical quality Sorin Bicarbon, CarboMedics, St. Jude Medical, Duromedics and Jyros valves were obtained to test this claim and to compare the wear in the pivot of this new valve to other available heart valves. The valves were visually inspected then subjected to 4,000 cycles at a physiological beat rate in vitro. The valves were re-inspected then subjected to 400 million cycles in a Reul type accelerated wear tester. Scanning electron microscope photographs were taken of all contact areas at 40, 80, 120, 160, 200, 240, 280 and 400 million cycles. Wear marks on the inflow side of the Sorin, CarboMedics and St. Jude leaflets were measured and compared. Orifice wear was not quantified because of difficulty with measuring inside complex depressions. After 4,000 cycles of testing at a physiological beat rate the CarboFilmTM coating on the Sorin orifice showed signs of erosion. The other valve components only exhibited minor burnishing after 4,000 cycles. Following completion of 400 million cycles in an accelerated wear tester, approximately ten years in vivo, all valves showed significant wear. The inflow face of the pivot on the Sorin Bicarbon leaflets exhibited the deepest wear marks. The CarboFilm coating on the Sorin Bicarbon orifices was removed from most areas of leaflet contact. The transition between the remaining coating and the eroded areas created a rough edge. The tips of the Sorin leaflets contacted the bottom of the orifice pivot, in contrast to the St. Jude Medical and CarboMedics designs, which had minimal contact between the leaflet and the orifice. PMID:8803765

  6. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.

    PubMed

    Vahdat, Vahid; Grierson, David S; Turner, Kevin T; Carpick, Robert W

    2013-04-23

    Wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM), including for the widely used amplitude modulation (AM-AFM) mode. Unfortunately, a comprehensive scientific understanding of nanoscale wear is lacking. We have developed a protocol for conducting consistent and quantitative AM-AFM wear experiments. The protocol involves controlling the tip-sample interaction regime during AM-AFM scanning, determining the tip-sample contact geometry, calculating the peak repulsive force and normal stress over the course of the wear test, and quantifying the wear volume using high-resolution transmission electron microscopy imaging. The peak repulsive tip-sample interaction force is estimated from a closed-form equation accompanied by an effective tip radius measurement procedure, which combines transmission electron microscopy and blind tip reconstruction. The contact stress is estimated by applying Derjaguin-Müller-Toporov contact mechanics model and also numerically solving a general contact mechanics model recently developed for the adhesive contact of arbitrary axisymmetric punch shapes. We discuss the important role that the assumed tip shape geometry plays in calculating both the interaction forces and the contact stresses. Contact stresses are significantly affected by the tip geometry while the peak repulsive force is mainly determined by experimentally controlled parameters, specifically, the free oscillation amplitude and amplitude ratio. The applicability of this protocol is demonstrated experimentally by assessing the performance of diamond-like carbon-coated and silicon-nitride-coated silicon probes scanned over ultrananocrystalline diamond substrates in repulsive mode AM-AFM. There is no sign of fracture or plastic deformation in the case of diamond-like carbon; wear could be characterized as a gradual atom-by-atom process. In contrast, silicon nitride wears through removal of the cluster of atoms and plastic

  7. Primary electric propulsion technology study. [for thruster wear-out mechanisms

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Beattie, J. R.

    1979-01-01

    An investigation of the 30-cm engineering-model-thruster technology with emphasis placed on the development of models for understanding and predicting the operational characteristics and wear-out mechanisms of the thruster as a function of operating or design parameters is presented. The task studies include: (1) the wear mechanisms and wear rates that determine the useful lifetime of the thruster discharge chamber; (2) cathode lifetime as determined by the depletion of barium from the barium-aluminate-impregnated-porous-tungsten insert that serves as a barium reservoir; (3) accelerator-grid-system technology; (4) a verification of the high-voltage propellant-flow-electrical-isolator design developed under NASA contract NAS3-20395 for operation at 10-kV applied voltage and 10-A equivalent propellant flow with mercury and argon propellants. A model was formulated for predicting performance.

  8. Comparison of wear behaviors for an artificial cervical disc under flexion/extension and axial rotation motions.

    PubMed

    Wang, Song; Song, Jian; Liao, Zhenhua; Feng, Pingfa; Liu, Weiqiang

    2016-06-01

    The wear behaviors of a ball-on-socket (UHMWPE-on-Ti6Al4V) artificial cervical disc were studied with 1.5MC (million cycles) wear simulation under single flexion/extension and axial rotation motion and their composite motion. The wear rates, wear traces, and contact stress were analyzed and contrasted based on mass loss, optical microscopy and SEM as well as 3D profilometer, and ANSYS software, respectively. A much higher wear rate and more severe wear scars appeared under multi-directional motion. Flexion/extension motion of 7.5° lead to more severe wear than that under axial rotation motion of 4°. The above results were closely related to the contact compression stress and shear stress. The wear surface in FE motion showed typical linear wear scratches while revealing obvious arc-shaped wear tracks in AR motion. However, the central zone of both ball and socket components revealed more severe wear tracks than that in the edge zone under these two different motions. The dominant wear mechanism was plowing/scratching and abrasive wear as well as a little oxidation wear for the titanium socket while it was scratching damage with adhesive wear and fatigue wear due to plastic deformation under cyclic load and motion profiles for the UHMWPE ball. PMID:27040218

  9. Dry Sliding Wear Behavior of 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Show, Bijay Kumar; Mondal, Dipak Kumar; Maity, Joydeep

    2014-09-01

    In this research work, the dry sliding wear behavior of 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) hybrid composite was investigated at low sliding speed (1 m/s) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion (along with associated subsurface cracking and delamination) and microcutting abrasion at lower load. While at higher load, abrasive wear involving microcutting and microploughing along with adherent oxide formation was observed. The overall wear rate increased with increasing normal load. The massive particle clusters as well as individual reinforcement particles were found to stand tall to resist abrasive wear. Besides, at higher load, the generation of adherent nodular tribo-oxide through nucleation and epitaxial growth on existing Al2O3 particles lowered down the wear rate. Accordingly, at any normal load, 6351 Al-(4 vol.% SiC + 4 vol.% Al2O3) hybrid composite exhibited superior wear resistance (lower overall wear rate) than the reported wear resistance of monolithic 6351 Al alloy.

  10. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    PubMed

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins. PMID:25805253

  11. A Comparative Study on the Dry Sliding Wear Behavior of Mild Steel and 6061Al-15wt.%SiCp Composite

    NASA Astrophysics Data System (ADS)

    Banerjee, Arpita; Tungala, Vedavyas; Sala, Kasturi; Biswas, Koushik; Maity, Joydeep

    2015-06-01

    Alumina-steel sliding contacts are often encountered in industrial applications. Aluminum metal matrix composite (AlMMC) is considered as a suitable replacement for ferrous materials. However, Alumina-steel/AlMMC tribological system has not been readily investigated. Accordingly, in this research work, the dry sliding wear characteristic of 6061Al-15wt.%SiCp composite and mild steel against an alumina disk is investigated and compared at three loads (10, 30, and 50 N). In mild steel, the wear mechanism envisages a mild adhesive wear at low load (10 N), while abrasive wear and oxidative wear at higher loads (30 and 50 N). The overall wear rate linearly increased with increasing load. In 6061Al-15wt.%SiCp composite, at all loads, the basic wear mechanism involves abrasive wear with de-bonding of SiC particles and oxidative wear. A non-linear relationship between wear rate and load indicates higher severity of wear loss. Particularly at higher load, the 6061Al-15wt.%SiCp composite suffers from extensive wear loss (26 times higher wear rate at 50 N load) as compared to mild steel. This indicates the unsuitability of using 6061Al-15wt.%SiCp composite as a replacement for mild steel under severe abrasive wear situation. The higher wear severity of 6061Al-15wt.%SiCp composite is attributed to the following: (i) de-bonding of reinforcement (SiC) particles reducing the material strength and subsequent removal of matrix material by micro-chipping mechanism; and (ii) an intense oxidation of 6061Al matrix under frictional heat and subsequent removal of oxide layer.

  12. Surface carbonization of titanium for abrasion-resistant implant materials.

    PubMed

    Zhu, Yuhe; Watari, Fumio

    2007-03-01

    Carbide layer was formed on the surface of Ti by heating in hydrocarbon atmosphere (benzene C6H6) at 1000-1400 degrees C using a high frequency induction heating method. Physical and mechanical properties of carbide-coated Ti were investigated to examine its potential as an abrasion-resistant implant material. Scanning electron microscopy (SEM) showed that the surface of Ti was covered with fine grains of 1-4 microm diameter, depending on heating conditions. In addition, carbide layer of about 1-25 microm thickness was observed on the cross-section of specimens by SEM and energy dispersive spectroscopy. Vickers hardness of surface carbide was found to be more than 2000. Further, Martens scratch test and ultrasonic scaler abrasion test showed that the indentation depth and width of carbide-coated Ti were much smaller than pure Ti, thereby confirming its high abrasion resistance. These results showed that for Ti implant materials that require high abrasion resistance, such as the abutment for dental implants, surface carbide coatings would be an effective means to improve their wear properties. PMID:17621941

  13. Mechanical face seals: Lubrication and wear resistance. (Latest citations from FLUIDEX data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning the design, development and applications of mechanical face seals relative to antifriction behavior, improved materials, lubricant effects, and accelerated model wear tests. Performance evaluations in mining, gas turbine engines, and pumps are included. (Contains 250 citations and includes a subject term index and title list.)

  14. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    PubMed

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement. PMID:26918929

  15. Wear mechanisms in metal-on-metal bearings: the importance of tribochemical reaction layers.

    PubMed

    Wimmer, Markus A; Fischer, Alfons; Büscher, Robin; Pourzal, Robin; Sprecher, Christoph; Hauert, Roland; Jacobs, Joshua J

    2010-04-01

    Metal-on-metal (MoM) bearings are at the forefront in hip resurfacing arthroplasty. Because of their good wear characteristics and design flexibility, MoM bearings are gaining wider acceptance with market share reaching nearly 10% worldwide. However, concerns remain regarding potential detrimental effects of metal particulates and ion release. Growing evidence is emerging that the local cell response is related to the amount of debris generated by these bearing couples. Thus, an urgent clinical need exists to delineate the mechanisms of debris generation to further reduce wear and its adverse effects. In this study, we investigated the microstructural and chemical composition of the tribochemical reaction layers forming at the contacting surfaces of metallic bearings during sliding motion. Using X-ray photoelectron spectroscopy and transmission electron microscopy with coupled energy dispersive X-ray and electron energy loss spectroscopy, we found that the tribolayers are nanocrystalline in structure, and that they incorporate organic material stemming from the synovial fluid. This process, which has been termed "mechanical mixing," changes the bearing surface of the uppermost 50 to 200 nm from pure metallic to an organic composite material. It hinders direct metal contact (thus preventing adhesion) and limits wear. This novel finding of a mechanically mixed zone of nanocrystalline metal and organic constituents provides the basis for understanding particle release and may help in identifying new strategies to reduce MoM wear. PMID:19877285

  16. The role of near-surface plastic deformation in the wear of lamellar solids

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E.; Hartman, L. A.; Hauck, K. E.; Surprenant, V. A.

    1985-01-01

    It is shown in this paper that the role of surface and near-surface plastic deformation is especially significant in both sliding and abrasive wear of lamellar composites. Lamellar structures were produced artificially from alternate layers of pure copper and pure tin or lead foils. The resulting composites were tested in three different wear tests: single-pass abrasion by a sharp, hard abrader; multiple-pass rubbing by a hard, rounded abrader; and pin-on-disk sliding. In each case the counterface was a hard alloy steel. Tests were run with the composite lamellae in two orientations: perpendicular and parallel to the sliding direction. It was found that the composites had much less wear resistance and greater abradability when oriented perpendicular to the rub direction. The mechanisms for wear particle removal and the role of plastic deformation in the process were studied by plasticity analysis and by microscopic (SEM and optical) observation.

  17. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    SciTech Connect

    Franco, P.; Estrems, M.; Faura, F.

    2007-04-07

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.

  18. Investigations of High Temperature Wear Mechanisms for Tool Steel Under Open-Sliding Contact

    NASA Astrophysics Data System (ADS)

    Mnif, R.; Baccouch, Z.; Elleuch, R.; Richard, C.

    2014-08-01

    During hot working processes, working tools are subjected to severe conditions. Wear is one of the major life limiting factors of the hot working tools. The identification and understanding of the wear mechanism are extremely important for solving problems related to the hot working process. The ultimate aim of this paper is to assess some wear mechanisms of the tool steel used in hot drawing. The tribological tests were performed on high temperature pin-on-disc tribometer with an open-sliding contact for a simulation of hot-drawing process with a refreshed contact surface. The pin material was X40 CrMoV5 steel and the disc material was Fe 360B steel. Experiments were carried out for different disc temperatures ranging from room temperature to 800°C, a constant sliding speed of 50 rev/min and a constant normal load of 70 N. The evolution surface damage and oxides tribolayers have been investigated by SEM and EDS. The results have shown that an increase in test temperature facilitates the generation of oxide and assists in the compaction of the debris, thus producing a wear protective layer, and therefore, a reduction in friction coefficient.

  19. Surface folding in metals: a mechanism for delamination wear in sliding

    PubMed Central

    Mahato, Anirban; Guo, Yang; Sundaram, Narayan K.; Chandrasekar, Srinivasan

    2014-01-01

    Using high-resolution, in situ imaging of a hard, wedge-shaped model asperity sliding against a metal surface, we demonstrate a new mechanism for particle formation and delamination wear. Damage to the residual surface is caused by the occurrence of folds on the free surface of the prow-shaped region ahead of the wedge. This damage manifests itself as shallow crack-like features and surface tears, which are inclined at very acute angles to the surface. The transformation of folds into cracks, tears and particles is directly captured. Notably, a single sliding pass is sufficient to damage the surface, and subsequent passes result in the generation of platelet-like wear particles. Tracking the folding process at every stage from surface bumps to folds to cracks/tears/particles ensures that there is no ambiguity in capturing the mechanism of wear. Because fold formation and consequent delamination are quite general, our findings have broad applicability beyond wear itself, including implications for design of surface generation and conditioning processes. PMID:25197251

  20. Microstructures and Mechanical Properties of a Wear-Resistant Alloyed Ductile Iron Austempered at Various Temperatures

    NASA Astrophysics Data System (ADS)

    Cui, Junjun; Chen, Liqing

    2015-08-01

    To further improve the mechanical performance of a new type of alloyed bainitic wear-resistant ductile iron, the effects of the various austempering temperatures have been investigated on microstructure and mechanical behaviors of alloyed ductile iron Fe-3.50C-1.95Si-3.58Ni-0.71Cu-0.92Mo-0.65Cr-0.36Mn (in weight percent). This alloyed ductile iron were firstly austenitized at 1123 K (850 °C) for 1 hour and then austempered in a salt bath at 548 K, 573 K, and 598 K (275 °C, 300 °C, and 325 °C) for 2 hours according to time-temperature-transformation diagram calculated by JMatPro software. The microstructures of austempered wear-resistant ductile irons consist of matrix of dark needle-like ferrite plus bright etching austenite and some amount of martensite and some dispersed graphite nodules. With increasing the austempering temperature, the amount of ferrite decreases in austempered ductile iron, while the amount of austenite and carbon content of austenite increases. There is a gradual decrease in hardness and increase in compressive strength with increasing austempering temperature. The increased austenite content and coarsened austenite and ferrite can lead to a hardness decrease as austempering temperature is increased. The increased compressive strength can be attributed to a decreased amount of martensitic transformation. The alloyed ductile iron behaves rather well wear resistance when the austempering is carried out at 598 K (325 °C) for 2 hours. Under the condition of wear test by dry sand/rubber wheel, the wear mechanisms of austempered ductile irons are both micro-cutting and plastic deformation.

  1. Abrasive resistance of arc sprayed carbonitride alloying self-shielded coatings

    NASA Astrophysics Data System (ADS)

    Deng, Yu; Yu, Shengfu; Xing, Shule; Huang, Linbing; Lu, Yan

    2011-10-01

    Wear-resistant coatings were prepared on the surface of the Q235 low-carbon steel plate by HVAS with the carbonitride alloying self-shielded flux-cored wire. Detection and analysis on the microstructure and properties of the coatings were carried out by using scanning electron microscope, microhardness tester and wear tester. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that the coatings have good forming, homogeneous microstructure and compact structure. The coatings have good hardness, the average microhardness value reaches 520 HV 0.1, and the highest value is up to about 560 HV 0.1. As a result, the coatings have good abrasive wear performance and adhesion strength.

  2. Tribopolymerization as an anti-wear mechanism. Progress report

    SciTech Connect

    Furey, M.J.

    1995-12-01

    During the first phase of this project, significant progress was made in several of the connected issues that make up the objectives of this grant. The central thrust or theme of this work under the DOE/ERIP grant is to carry out prototype testing of the concept of tribopolymerization as a novel mechanism of boundary lubrication--under more severe, high-load, high-speed conditions that are most likely to exist in field applications. The authors see this as an important step in attracting industries to license and market the results of this new technology. In addition, they have began to explore other potential, energy-saving applications of the concept of tribopolymerization. These exploratory studies are quite promising; they are likely to open new doors in industrial applications. To carry out the experimental part of this program, a new device has been built. Highlights of these and other developments are given.

  3. Degradation of experimental composite materials and in vitro wear simulation

    NASA Astrophysics Data System (ADS)

    Givan, Daniel Allen

    2001-12-01

    The material, mechanical, and clinical aspects of surface degradation of resin composite dental restorative materials by in vitro wear simulation continues to be an area of active research. To investigate wear mechanisms, a series of experimental resin composites with variable and controlled filler particle shape and loading were studied by in vitro wear simulation. The current investigation utilized a simulation that isolated the wear environment, entrapped high and low modulus debris, and evaluated the process including machine and fluid flow dynamics. The degradation was significantly affected by filler particle shape and less by particle loading. The spherical particle composites demonstrated wear loss profiles suggesting an optimized filler loading may exist. This was also demonstrated by the trends in the mechanical properties. Very little difference in magnitude was noted for the wear of irregular particle composites as a function of particulate size; and as a group they were more wear resistant than spherical particle composites. This was the result of different mechanisms of wear that were correlated with the three-dimensional particle shape. The abrasive effects of the aggregate particles and the polymeric stabilization of the irregular shape versus the destabilization and "plucking" of the spherical particles resulted in an unprotected matrix that accounted for significantly greater wear of spherical composite. A model and analysis was developed to explain the events associated with the progressive material wear loss. The initial phase was explained by fatigue-assisted microcracking and loss of material segments in a zone of high stress immediately beneath a point of high stress contact. The early phase was characterized by the development of a small facet primarily by fatigue-assisted microcracking. Although the translation effects were minimal, some three-body and initial two-body wear events were also present. In the late phases, the abrasive effects

  4. Microstructure and abrasion resistance of plasma sprayed titania coatings

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Neufuss, K.; Chraska, P.

    2006-12-01

    Agglomerated titania nanopowder and a “classical” titania were sprayed by the high throughput water-stabilized plasma (WSP) and thoroughly compared. Optical microscopy with image analysis as well as mercury intrusion porosimetry were used for quantification of porosity. Results indicate that the “nano” coatings in general exhibit finer pores than coatings of the “conventional” micron-sized powders. Mechanical properties such as Vickers microhardness and slurry abrasion response were measured and linked to the structural investigation. Impact of the variation in the slurry composition on wear resistance of tested coatings and on character of the wear damage is discussed. The overall results, however, suggest that the “nano” coatings properties are better only for carefully selected sets of spraying parameters, which seem to have a very important impact.

  5. A comparison of the abrasiveness of six ceramic surfaces and gold.

    PubMed

    Jacobi, R; Shillingburg, H T; Duncanson, M G

    1991-09-01

    A type III gold alloy and six different ceramic surfaces were secured in an abrasion machine opposing extracted teeth to determine their relative abrasiveness and resistance to wear. The rankings of restorative materials from least abrasive to most abrasive were: gold alloy, polished; cast ceramic, polished; porcelain, polished; cast ceramic, polished and shaded; porcelain, polished and glazed; cast ceramic, cerammed skin shaded; and cast ceramic, cerammed skin unshaded. The ranking of materials from most wear-resistant to least wear-resistant was: gold alloy, cast ceramic cerammed, cast ceramic cerammed and shaded, porcelain polished, porcelain glazed, cast ceramic polished and shaded, and cast ceramic polished. PMID:1800724

  6. Mechanisms of lubrication and wear of a bonded solid lubricant film

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    To obtain a better understanding of how bonded solid lubricant films lubricate and wear (in general), the tribological properties of polyimide-bonded graphite fluoride films were studied (in specific). A pin-on-disk type of testing apparatus was used; but in addition to sliding a hemispherically tipped rider, a rider with a 0.95 mm diameter flat area was slid against the film. This was done so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred. In the first, the film supported the load. The lubricating mechanism consisted of the shear of a thin surface layer (of the film) between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  7. Wear Characteristics of Sintered Cermets

    NASA Astrophysics Data System (ADS)

    Bidulský, Róbert; Bidulská, Jana; Arenas, Freddy; Grande, Marco Actis

    2012-02-01

    The present paper deals with the tribological behaviour of the boride and carbide hardmetals evaluated by performing comparative dry sliding pin-on-disc experiments using normal contact loads. Analyses of the wear performance results, microstructural evaluation and processing conditions effect indicate that microstructure inhomogenities play an important role in abrasive wear behaviour of cermets. In term of grain size and chemical composition, the addition of VC also play an important role in increasing the wear resistance.

  8. Sliding Wear Properties of HVOF Thermally Sprayed Nylon-11 and Nylon-11/Ceramic Composites on Steel

    NASA Astrophysics Data System (ADS)

    Jackson, L.; Ivosevic, M.; Knight, R.; Cairncross, R. A.

    2007-12-01

    Polymer and polymer/ceramic composite coatings were produced by ball-milling 60 μm Nylon-11 together with nominal 10 vol.% of nano and multiscale ceramic reinforcements and by HVOF spraying these composite feedstocks onto steel substrates to produce semicrystalline micron and nanoscale reinforced polymer matrix composites. Room temperature dry sliding wear performance of pure Nylon-11, Nylon-11 reinforced with 7 nm silica, and multiscale Nylon-11/silica composite coatings incorporating 7-40 nm and 10 μm ceramic particles were characterized using a pin-on-disk tribometer. Coefficient of friction and wear rate were determined as a function of applied load and coating composition. Surface profilometry and scanning electron microscopy were used to characterize and analyze the coatings and wear scars. The pure Nylon-11 coating experienced less wear than the composites due to the occurrence of two additional wear mechanisms: abrasive and fatigue wear.

  9. Environmentally clean slurry using nano-TiO2-abrasive mixed with oxidizer H2O2 for ruthenium-film chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Park, Jin-Hyung; Park, Jea-Gun

    2013-10-01

    A colloidal silica-abrasive-based slurry mixed with periodate salts has been used for chemical mechanical planarization (CMP) of ruthenium (Ru) film in semiconductor-chip fabrication. This slurry has serious environmental problems such as generation of toxic RuO4 gas, corrosion, and ionic contamination. We developed an environmentally clean slurry using nano-TiO2 abrasive mixed with hydrogen peroxide (H2O2) for the purpose of Ru-film CMP. Moreover, this slurry is free of corrosion and ionic contamination. The polishing rates of Ru and SiO2 films with this slurry strongly depended on the H2O2 concentration; the Ru-film polishing rate rapidly increased with H2O2 concentration up to 1 wt% and then slightly decreased or saturated, whereas the SiO2-film polishing rate abruptly dropped to ∼50 Å/min. In particular, the adsorbed amount of H2O2 on nano-TiO2 abrasive directly determined the Ru-film polishing rate, indicating a new CMP mechanism of Ru film in the slurry.

  10. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  11. Abrasion and erosion testing of materials used in power production from coal

    SciTech Connect

    Tylczak, Joseph H.; Adler, Thomas A.; Rawers, James C.

    2003-09-01

    The Albany Research Center (ARC) has a long history of studying abrasive wear, related to mineral testing, handling, and processing. The center has also been instrumental in the design and development of wear test procedures and equipment. Research capabilities at ARC include Pin-on-Drum, Pin-on-Disk, and Dry Sand/Rubber Wheel abrasion tests, Jaw Crusher gouging test, Ball-on-Ball Impact test, and Jet erosion tests. Abrasive and erosive wear studies have been used to develop both new alloys and improved heat treatments of commercial alloys. As part of ARC’s newest iteration on wear testing to evaluate materials for use in new and existing pulverized coal combustion and gasifier power systems, the ARC has designed and constructed a new High Temperature Hostile Atmosphere Erosion Wear Test (HAET). This new piece of test apparatus is designed for erosive particle velocities of 10-40 m/sec and temperatures from room temperature (23°C) to 800+°C, with special control over the gas atmosphere. A variable speed whirling arm design is used to vary the impact energy of the gravity fed erosive particles. The specimens are mounted at the edge of a disk and allow a full range of impingement angles to be selected. An electric furnace heats the specimens in an enclosed retort to the selected temperature. Tests include both oxidizing conditions and reducing conditions. A range of gases, including CO, CO2, CH4, H2, H2S, HCl, N2, O2, and SO2 can be mixed and delivered to the retort. During the erosion testing a stream of abrasive powder is delivered in front of the specimens. This apparatus is designed to use low abrasive fluxes, which simulate real operating conditions in commercial power plants. Currently ~270 μm SiO2 particles are being used to simulate the abrasive impurities typically found in coal. Since operators are always striving for longer lifetimes and higher operating temperatures, this apparatus can help elucidate mechanisms of wastage and identify superior

  12. Unveiling Ultra-High Temperature Wear and Indentation Damage Mechanisms of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Bumgardner, Clifton; Li, Xiaodong

    2015-12-01

    Thermal barrier coatings are necessary to protect turbine blades within jet engines from extreme environments that the substrate material may not be capable of withstanding. Therefore, failure of the coating due to wear during its operational lifecycle is a critical event. In order to understand the failure mechanisms of the coating layers, a zirconia-based coating on a nickel alloy substrate was subjected to wear testing to simulate pressure and temperature conditions within a jet engine. Using a Hertzian contact model, the maximum shear and its depth were determined and analyzed in conjunction with the coating material properties and scanning electron microscopy and energy dispersive x-ray spectrometry images. The coupled imaging and contact model analyses made possible the identification of the location and time of delamination and its underlying causes. Our findings provide key insights for the development of more resilient thermal barrier coatings.

  13. Frictional Characterization of Chemical-Mechanical Polishing Pad Surface and Diamond Conditioner Wear

    NASA Astrophysics Data System (ADS)

    Yamada, Yohei; Kawakubo, Masanori; Hirai, Osamu; Konishi, Nobuhiro; Kurokawa, Syuhei; Doi, Toshiro

    2008-08-01

    We evaluated a contact metrology instrument used in chemical-mechanical polishing (CMP) systems for high-volume manufacture and examined in situ coefficient of friction (COF) monitoring to identify the tribology of CMP, and subsequently to determine the useful lifespan of consumables. The results showed that the direct measurement of the wear of the pad allowed for an accurate determination of both pad thickness and the ideal time to replace the pad and conditioner disk based on pad wear rate. We also presented a clear correlation between the working grid area of the conditioner disk and the tribological behavior of the pad break-in procedure, leading to the result showing that the variation in tungsten film removal rate decreased as the working grid density of the conditioner disk increased. This study has proven the effectiveness of measuring friction force for better CMP control.

  14. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  15. Comparison of Wear Resistance Mechanisms of Die Steel Implanted with C and mo Ions

    NASA Astrophysics Data System (ADS)

    Cheng, M. F.; Yang, J. H.; Luo, X. D.; Zhang, T. H.

    Mo and C ions extracted from a metal vapor vacuum arc ion source were implanted into the surface of die steel (H13) to compare the wear resistance mechanisms of the implanted samples, respectively. The concentration depth profiles of implanted ions were measured using Rutherford backscattering spectroscopy and calculated by a code called TRIDYN. The structures of the implanted steel were observed by X-ray photoelectron spectroscopy and grazing-angle X-ray diffraction, respectively. It was found that the conventional heat-treated H13 steel could not be further hardened by the subsequent implanted C ions, and the thickness of the implanted layer was not an important factor for the Mo and C ion implantation to improve the wear resistance of the H13 steel. Mo ion implantation could obviously improve the wear resistance of the steel at an extraction voltage of 48 kV and a dose of 5 × 1017cm-2 due to formation of a modification layer of little oxidation with Mo2C in the implanted surface.

  16. WEAR RESISTANCE AND MECHANICAL PROPERTIES OF HIGHLY CROSSLINKED UHMWPE DOPED WITH VITAMIN-E

    PubMed Central

    Oral, Ebru; Christensen, Steven D.; Malhi, Arnaz S.; Wannomae, Keith K.; Muratoglu, Orhun K.

    2008-01-01

    Our hypothesis was that cross-linked UHMWPE stabilized with vitamin-E would be wear and fatigue resistant. Acetabular liners were radiation cross-linked, doped with vitamin E and γ-sterilized. Hip simulator wear rate of vitamin E-stabilized UHMWPE was approximately 1 and 6 mg/million-cycles in clean serum and in serum with third-body bone cement particles, respectively; a four to ten-fold decrease from that of conventional UHMWPE. The ultimate strength, yield strength, elongation-at-break and fatigue resistance of vitamin E-stabilized UHMWPE were significantly higher than that of 100-kGy irradiated and melted UHMWPE and were unaffected by accelerated aging. Rim impingement testing with 3.7 mm-thick acetabular liners up to 2 million-cycles showed no significant damage of the cross-linked liners compared to conventional, gamma-sterilized in inert UHMWPE vitamin-E stabilized liners. The data indicate good wear properties and improved mechanical and fatigue properties for vitamin-E stabilized cross-linked UHMWPE. PMID:16781413

  17. Wear resistance properties of austempered ductile iron

    SciTech Connect

    Lerner, Y.S.; Kingsbury, G.R.

    1998-02-01

    A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.

  18. Wearing knee wraps affects mechanical output and performance characteristics of back squat exercise.

    PubMed

    Lake, Jason P; Carden, Patrick J C; Shorter, Kath A

    2012-10-01

    The aim of this study was to investigate the effects of wearing knee wraps on mechanical output and performance characteristics of back squat exercise. Ten resistance trained men (back squat 1 repetition maximum [1RM]: 160.5 ± 18.4 kg) performed 6 single back squats with 80% 1RM, 3 wearing knee wraps, 3 without. Mechanical output was obtained from ground reaction force, performance characteristics from digitized motion footage obtained from a single high-speed digital camera. Wearing knee wraps led to a 39% reduction (0.09 compared with 0.11 m, p = 0.037) in horizontal barbell displacement that continued during the lifting phase. Lowering phase vertical impulse remained within 1% across conditions; however, the lowering phase was performed 45% faster (1.13 compared with 1.57 seconds). This demonstrated that vertical force applied to the center of mass during the lowering phase was considerably larger and was likely a consequence of the generation and storage of elastic energy within the knee wrap. Subsequent vertical impulse applied to the center of mass was 10% greater (192 compared with 169 N·s, p = 0.018). Mechanical work involved in vertically displacing the center of mass was performed 20% faster and was reflected by a 10% increase in peak power (2,121 compared with 1,841 W, p = 0.019). The elastic properties of knee wraps increased mechanical output but altered back squat technique in a way that is likely to alter the musculature targeted by the exercise and possibly compromise the integrity of the knee joint. Knee wraps should not be worn during the strength and condition process, and perceived weakness in the knee joint should be assessed and treated. PMID:22995993

  19. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  20. Dry Sliding Wear Behaviour of Flyash Reinforced ZA-27 Alloy Based Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Krishna, M.; Bhattacharyya, D.

    In the present investigation, an attempt has been made to evaluate the wear rate of ZA-27 alloy composites reinforced with fly ash particles from 1 to 3 wt% in steps of 1 wt%. The compo-casting method has been used to fabricate the composites using Raichur fly ash of average size 3-5 microns. The wear specimens are tested under dry conditions using a pin-on-disc sliding wear testing machine with wear loads of 20-120 N in steps of 20 N, and the sliding distances in the range of 0.5 km to 2.5 km. The results indicate that the wear rate of the composites is less than that of the matrix alloy and it further decreases with the increase in fly ash content. However, the material loss in terms of wear rate and wear volume increases with the increase in load and sliding distance, both in the cases of composites and the matrix alloy. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle-cracking induced delamination wear. It is found that with the increase in fly ash content, the wear resistance increases monotonically. The observations have been explained using scanning electron microscope (SEM) analysis of the worn surfaces of the composites.

  1. Microstructure and Sliding Wear Resistance of Laser Cladded WC/Ni Composite Coatings with Different Contents of WC Particle

    NASA Astrophysics Data System (ADS)

    Xu, J. S.; Zhang, X. C.; Xuan, F. Z.; Wang, Z. D.; Tu, S. T.

    2012-09-01

    The aim of this article was to address the effect of WC content on the microstructure, microhardness, and sliding wear resistance of laser cladded WC/Ni composite coatings. The content of WC particle in the feed powder varied in the range of 0-80 wt.%. Experimental results showed that the laser cladded coatings exhibited homogeneous microstructure without pores or cracks. By comparing with the 45# steel substrate, the microhardness of WC/Ni composite coatings was relatively high. The microhardness of coating increased with increasing the content of WC particles. The wear resistance of WC/Ni composite coatings was strongly dependent on the content of WC particle and their microstructure. When the WC content was lower than 40 wt.% in the feed powder, the wear rate of the coatings decreased with increasing WC content. The two-body abrasive wear was identified as the main wear mechanisms. For the coatings with WC content higher than 40 wt.% in the feed powder, their wear rate increased with increasing WC content. The three-body abrasive wear and fatigue wear were the main failures. The coating with 40 wt.% WC in the feed powder exhibited the best wear resistance.

  2. The boron oxide{endash}boric acid system: Nanoscale mechanical and wear properties

    SciTech Connect

    Ma, X.; Unertl, W.N.; Erdemir, A.

    1999-08-01

    The film that forms spontaneously when boron oxide (B{sub 2}O{sub 3}) is exposed to humid air is a solid lubricant. This film is usually assumed to be boric acid (H{sub 3}BO{sub 3}), the stable bulk phase. We describe the nanometer-scale surface morphology, mechanical properties, and tribological properties of these films and compare them with crystals precipitated from saturated solutions of boric acid. Scanning force microscopy (SFM) and low-load indentation were the primary experimental tools. Mechanical properties and their variation with depth are reported. In all cases, the surfaces were covered with a layer that has different mechanical properties than the underlying bulk. The films formed on boron oxide showed no evidence of crystalline structure. A thin surface layer was rapidly removed, followed by slower wear of the underlying film. The thickness of this initial layer was sensitive to sample preparation conditions, including humidity. Friction on the worn surface was lower than on the as-formed surface in all cases. In contrast, the SFM tip was unable to cause any wear to the surface film on the precipitated crystals. Indentation pop-in features were common for precipitated crystals but did not occur on the films formed on boron oxide. The surface structures were more complex than assumed in models put forth previously to explain the mechanism of lubricity in the boron oxide{endash}boric acid{endash}water system. {copyright} {ital 1999 Materials Research Society.}

  3. Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale

    NASA Astrophysics Data System (ADS)

    Eder, S. J.; Feldbauer, G.; Bianchi, D.; Cihak-Bayr, U.; Betz, G.; Vernes, A.

    2015-07-01

    Using molecular dynamics, we simulate the abrasion process of an atomically rough Fe surface with multiple hard abrasive particles. By quantifying the nanoscopic wear depth in a time-resolved fashion, we show that Barwell's macroscopic wear law can be applied at the atomic scale. We find that in this multiasperity contact system, the Bowden-Tabor term, which describes the friction force as a function of the real nanoscopic contact area, can predict the kinetic friction even when wear is involved. From this the Derjaguin-Amontons-Coulomb friction law can be recovered, since we observe a linear dependence of the contact area on the applied load in accordance with Greenwood-Williamson contact mechanics.

  4. Wear Mechanisms in Electron Sources for Ion Propulsion, 2: Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.; Polk, James E.

    2008-01-01

    The wear of the keeper electrode in discharge hollow cathodes is a major impediment to the implementation of ion propulsion onboard long-duration space science missions. The development of a predictive theoretical model for hollow cathode keeper life has long been sought, but its realization has been hindered by the complexities associated with the physics of the partially ionized gas and the associated erosion mechanisms in these devices. Thus, although several wear mechanisms have been hypothesized, a quantitative explanation of life test erosion profiles has remained incomplete. A two-dimensional model of the partially ionized gas in a discharge cathode has been developed and applied to understand the mechanisms that drove the erosion of the keeper in two long-duration life tests of a 30-cm ion thruster. An extensive set of comparisons between predictions by the numerical simulations and measurements of the plasma properties and of the erosion patterns is presented. It is found that the near-plume plasma oscillations, predicted by theory and observed by experiment, effectively enhance the resistivity of the plasma as well as the energy of ions striking the keeper.

  5. A rotary-airlock valve resists abrasive mixtures

    SciTech Connect

    Not Available

    1993-03-01

    Hill and Griffith (H and G, Cincinnati, Ohio) is a leading supplier of custom-blended additives to founderies. Thousands of tons of clay and carbon blends such as bentonite, gilsonite and pulverized coal, pass through the company's rotary-airlock feeding system each month. H and G's original rotary valves had cylinders lined with chrome, and closed-end rotors with tips made from nickel-chromium alloys. These valves remained in service for a maximum of only three months each. During that time, the abrasive mixtures passing through the valves virtually eroded them, increasing tolerances and causing significant air leakage. The leaks caused the pneumatic line to plug up, reducing the velocity of the line below the minimum level needed to carry any material. To overcome the leakage, a second blower was added to the system. This unit supplied an additional 40 brake hp to the pneumatic-conveying line. With constant maintenance of the valve and the continuous operation of both blowers, H and G was able to extend the valve's life by nine months. After 20 years of trying valves with various configuration, H and G installed a Smoot Type 6 rotary-airlock valve in September of 1985. The new valve's internals were made from abrasion-resistant grades of NiHard and Stellite. This combination of alloys prolonged the active life of the valve by improving its abrasion resistance. During its first year, the Smoot valve did not break down, leak air or require use of the secondary blower. After its first year of service no wear was found on the valve's internal surfaces. Another mechanical analysis was performed in 1991, after five additional years of valve operation. The valve, which had now handled more than 250,000 tons of product, showed minimal wear. H and G's capital costs had been reduced from 25[cents]/ton to 3[cents]/ton by the new valve.

  6. Dry Sliding Wear Behavior of a Novel 6351 Al-Al4SiC4 Composite

    NASA Astrophysics Data System (ADS)

    Mondal, Manas Kumar; Biswas, Koushik; Saha, Atanu; Maity, Joydeep

    2015-02-01

    In this research work the dry sliding wear behavior of 6351 Al alloy and 6351 Al based composites possessing varying amount of (2-7 vol.%) in situ Al4SiC4 reinforcement was investigated at low sliding speed (1 m/s) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion and microcutting abrasion. Under selected loads (9.8 and 24.5 N), the overall wear resistance increased with increasing content of Al4SiC4 particles since particles stood tall against the process of wear. Besides, strain hardening of the matrix played an additional role to provide wear resistance. Therefore, the newly developed 6351Al-Al4SiC4 composite can be used as light weight wear resistance component in industry.

  7. Influence of hip joint simulator design and mechanics on the wear and creep of metal-on-polyethylene bearings.

    PubMed

    Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M

    2016-05-01

    Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. PMID:27160559

  8. Influence of hip joint simulator design and mechanics on the wear and creep of metal-on-polyethylene bearings

    PubMed Central

    Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M

    2016-01-01

    Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. PMID:27160559

  9. Wear resistance of a metal surface modified with minerals

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Balasch, P. V.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2016-02-01

    The article describes the advantages of the new technology of mineral coating of metal products for the friction pair of mechanical systems. It presents the research results of the wear rate of the samples made of 12X13 steel (X12Cr13) with mineral layers, in the experiments with a piston ring sliding inside a cylinder liner with grease. The wear rate of the samples with mineral layers is lower almost by two factors than that of the samples made of grey foundry iron and untreated samples. As the result of slip/rolling abrasion tests of parts with mineral layers under conditions of high contact pressure, a suggestion was made concerning probable mechanics of surface wear.

  10. Effects of sintering temperatures on microstructure and wear resistance of iron-silica composite

    NASA Astrophysics Data System (ADS)

    Amir, Adibah; Mamat, Othman

    2015-07-01

    Ceramic particle reinforced into metal base matrix composite has been reported to produce higher strength and wear resistance than its alloys because the ceramic phases can strongly resist abrasion. In this study the iron matrix was reinforced with two compositions of 20 and 25 wt. % fine silica particles. The compacts were produced by using powder metallurgy fabrication technique and sintered at three sintering temperatures: 1000, 1100 and 1200°C. Effects of various sintering temperatures on microstructures and the composite's wear resistance were evaluated via optical and SEM microscopy. Both compositions were also subjected to ball-on-disk wear test. The results showed the reinforcement weight fraction of 20 wt.% of silica and sintering temperature at 1100°C exhibited better result, in all aspects. It possessed higher mechanical properties, it's microstructure revealed most intact reinforcing region and it displayed higher wear resistance during wear test.

  11. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  12. Mechanisms of lubrication and wear of a bonded solid-lubricant film

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    The tribological properties of polyimide-bonded graphite fluoride films were investigated. A pin-on-disk type of testing apparatus was used; in addition to sliding a hemispherically tipped rider, a rider with a 0.95-mm-diameter flat area was slid against the film so that a lower, less variable contact stress could be achieved. Two stages of lubrication occurred: in the first, the film supported the load and the lubricating mechanism consisted of the shear of a thin surface layer between the rider and the bulk of the film. The second occurred after the bonded film had worn to the substrate, and consisted of the shear of very thin lubricant films between the rider and flat plateaus generated on the metallic substrate asperities. The film wear mechanism was strongly dependent on contact stress.

  13. Evaluation of hardness and wear resistance of interim restorative materials

    PubMed Central

    Savabi, Omid; Nejatidanesh, Farahnaz; Fathi, Mohamad Hossein; Navabi, Amir Arsalan; Savabi, Ghazal

    2013-01-01

    Background: The interim restorative materials should have certain mechanical properties to withstand in oral cavity. The aim of this study was to evaluate the hardness and wear resistance of interim restorative materials. Materials and Methods: Fifteen identical rectangular shape specimens with dimensions of 2 mm × 10 mm × 30 mm were made from 7 interim materials (TempSpan, Protemp 3 Garant, Revotek, Unifast LC, Tempron, Duralay, and Acropars). The Vickers hardness and abrasive wear of specimens were tested in dry conditions and after 1 week storage in artificial saliva. The depth of wear was measured using surface roughness inspection device. Data were subjected to Kruskal–Wallis and Mann–Whitney tests. The Pearson correlation coefficient was used to determine the relationship between hardness and wear (α =0.05). Results: TempSpan had the highest hardness. The wear resistance of TempSpan (in dry condition) and Revotek (after conditioning in artificial saliva) was significantly higher (P < 0.05). There was no statistically significant correlation between degree of wear and hardness of the materials (P = 0.281, r = −0.31). Conclusion: Hardness and wear resistance of interim resins are material related rather than category specified. PMID:23946734

  14. Friction and Wear

    NASA Technical Reports Server (NTRS)

    Pomey, Jacques

    1952-01-01

    From the practical point of view, this analysis shows that each problem of friction or wear requires its particular solution. There is no universal solution; one or other of the factors predominates and defines the choice of the solution. In certain cases, copper alloys of great thermal conductivity are preferred; in others, plastics abundantly supplied with water. Sometimes, soft antifriction metals are desirable to distribute the load; at other times, hard metals with high resistance to abrasion or heat.

  15. Cylindrical Wire Electrical Discharge Machining of Metal Bond Diamond Wheels- Part II: Wheel Wear Mechanism

    SciTech Connect

    McSpadden, SB

    2002-01-22

    The use of stereo scanning Electron Microscopy (SEM) to investigate the wear mechanism of the wire EDM true metal bond diamond wheel for ceramic grinding is presented. On the grinding wheel, a wedge-shape removal part was machined to enable the examination and measurement of the worn wheel surfaces using the stereo SEM. The stereo SEM was calibrated by comparing results of depth profile of a wear groove with the profilometer measurements. On the surface of the grinding wheel after wire EDM truing and before grinding, the diamond protruding heights were measured in the level of 35 {micro}m, comparing to the 54 {micro}m average size of the diamond in the grinding wheel. The gap between the EDM wire and rotating grinding wheel is estimated to be about 35 to 40 {micro}m. This observation indicates that, during the wire EDM, electrical sparks occur between the metal bond and EDM wire, which leaves the diamond protruding in the gap between the wire and wheel. The protruding diamond is immediately fractured at the start of the grinding process, even under a light grinding condition. After heavy grinding, the grinding wheel surface and the diamond protrusion heights are also investigated using the stereo SEM. The height of diamond protrusion was estimated in the 5 to 15 {micro}m range. This study has demonstrated the use of stereo SEM as a metrology tool to study the grinding wheel surface.

  16. Effect of Silicon on Mechanical and Wear Properties of Aluminium-Alloyed Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Vadiraj, Aravind; Tiwari, Shashank

    2014-08-01

    Influence of Si on mechanical and wear properties of Al-alloyed gray cast iron has been investigated in this work. The Si content is varied from 1.27 to 2.1% in five different alloys with nearly 2% Al additions. Alloy with 2.1% Si and 1.9% Al shows maximum ferrite matrix with highest flake volume (17.3%). It also has the lowest hardness and strength. Rest of the alloys with Si content equal to or less than 1.7% and 2% Al content shows maximum pearlite matrix with higher hardness and strength. They have also shown a tendency for oxide formation and reduced wear during sliding probably due to higher friction heat and lower heat dissipation tendency due to lower flake volume and Al addition which reduces thermal conductivity of the matrix. The same oxide layer was not evident in alloy with 2.1% Si and 1.9% Al alloy having the highest flake volume (17.3%).

  17. Preparation and characterization of poly(vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance.

    PubMed

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-06-15

    Membranes with more resilience to abrasive wear are highly desired in water treatment, especially for seawater desalination. Nanocomposite poly(vinylidene fluoride) (PVDF)/nanoclay membranes were prepared by phase inversion and then tested for abrasion resistance. Their material properties were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), tensile testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Nanoclay Cloisite(®) 15A was utilised as the inorganic nanoparticle incorporated into PVDF. FTIR results showed a shifting of the PVDF crystalline phase from α to β thus indicating that the nanoclay altered the PVDF host material's structure and mechanical properties in terms of stiffness and toughness. Water permeation test showed that nanoclay at low concentration tended to reduce water flux. All nanocomposite membranes, with between 1 wt% and 5 wt% initial nanoclay loading, were more abrasion resistant than the control PVDF membrane. However, the 1 wt% exhibited superior resistance, lasting two times longer than the reference PVDF membrane under the same abrasive condition. The 1 wt% nanoclay membrane appeared less abraded by SEM observation, while also having the greatest tensile strength improvement (from 4.5 MPa to 4.9 MPa). This membrane also had the smallest agglomerated nanoclay particle size and highest toughness compared to the higher nanoclay content membranes. Nanoclays are therefore useful for improving abrasion resistance of PVDF membranes, but optimal loadings are essential to avoid losing essential mechanical properties. PMID:24698723

  18. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  19. Wear Performance of Cu-Alloyed Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Batra, Uma; Batra, Nimish; Sharma, J. D.

    2013-04-01

    An investigation was carried out to examine the influence of structural and mechanical properties on wear behavior of austempered ductile iron (ADI). Ductile iron (DI) samples were austenitized at 900 °C for 60 min and subsequently austempered for 60 min at three temperatures: 270, 330, and 380 °C. Microstructures of the as-cast DI and ADIs were characterized using optical and scanning microscopy, respectively. The structural parameters, volume fraction of austenite, carbon content of austenite, and ferrite particle size were determined using x-ray diffraction technique. Mechanical properties including Vicker's hardness, 0.2% proof strength, ultimate tensile strength, ductility, and strain hardening coefficient were determined. Wear tests were carried out under dry sliding conditions using pin-on-disk machine with a linear speed of 2.4 m/s. Normal load and sliding distance were 45 N and 1.7 × 104 m, respectively. ADI developed at higher austempering temperature has large amounts of austenite, which contribute toward improvement in the wear resistance through stress-induced martensitic transformation, and strain hardening of austenite. Wear rate was found to depend on 0.2% proof strength, ductility, austenite content, and its carbon content. Study of worn surfaces and nature of wear debris revealed that the fine ausferrite structure in ADIs undergoes oxidational wear, but the coarse ausferrite structure undergoes adhesion, delamination, and mild abrasion too.

  20. Development of a two-body wet abrasion test method with attention to the effects of reused abradant

    SciTech Connect

    Blau, Peter Julian; Dehoff, Ryan R

    2012-01-01

    Abrasive wear is among the most common and costliest causes for material wastage, and it occurs in many forms. A simple method has been developed to quantify the response of metals and alloys to two-body wet abrasion. A metallographic polishing machine was modified to create a disk-on-flat sliding test rig. Adhesive-backed SiC grinding papers were used under fixed load and speed to rank the abrasive wear of seven alloy steels, some of which are candidates for drill cones for geothermal drilling. Standardized two-body abrasion tests, like those described in ASTM G132, feed unused abrasive into the contact; however, the current work investigated whether useful rankings could still be obtained with a simpler testing configuration in which specimens repeatedly slide on the same wear path under water-lubricated conditions. Tests using abrasive grit sizes of 120 and 180 resulted in the same relative ranking of the alloys although the coarser grit produced more total wear. Wear decreased when the same abrasive disk was re-used for up to five runs, but the relative rankings of the steels remained the same. This procedure was presented to ASTM Committee G2 on Wear and Erosion as a potential standard test for wet two-body abrasive wear.

  1. Metallographic evaluation of hip joint implants wear and electrochemical implants potential.

    PubMed

    Kmieć, Krzysztof; Sibinski, Marcin; Synder, Marek; Drobniewski, Marek; Kozłowski, Piotr

    2014-12-01

    We performed metallographic evaluations of implants, removed during revision hip arthroplasty. The implants were evaluated for electrochemical potentials and the presence of wear products on the implants surface. A total of 50 patients (50 hips) underwent revision hip arthroplasty during the years 2007-2009 for aseptic loosening. The mean follow-up from primary hip replacement to revision was 10.1 years (from six months to 17 years). All hip joint implants removed during the revision arthroplasty were submitted to metallographic analysis and all heads were submitted to analysis under a scanning microscope. All polyethylene (PE) cups and inserts showed numerous features of wear (friction wear, plastic deformation and creeping, fatigue wear and degradation), six PE cups were broken. In six ceramic cups, only friction wear features were found; one of them was mechanically broken. In all heads articulating on PE not one had any mechanical damage. Heads of ceramic implants in ceramic-ceramic articulation undergo abrasive wear. None of the studied stems (cemented or uncemented) revealed any features of wear. Areas of titanium crystals (formed by electrolytic sedimentation of metals) were macroscopically identified on the sliding surface of six heads that was confirmed by chemical composition and scanning microscope.In the course of prosthesis use, wear products are produced and transferred onto the sliding surfaces of implant heads and cups via ways other than purely mechanical contact. It has been confirmed that metals used for implant construction, make galvanic cells with different electrochemical potentials. PMID:25362874

  2. Microstructure and elevated temperature wear behavior of induction melted Fe-based composite coating

    NASA Astrophysics Data System (ADS)

    Hu, Ge; Meng, Huimin; Liu, Junyou

    2014-10-01

    Fe-based composite coating prepared onto the component of guide wheel using ultrasonic frequency inductive cladding (UFIC) technique has been investigated in terms of microstructure, phase constitutions, microhardness and elevated temperature wear behavior by scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Vickers microhardness tester and ball-on-disc wear tester. The results indicated that the primary phase in the coating contained austenite γ-Fe, eutectic γ-Fe/(Cr,Fe)2B, boride (Cr,Fe)2B and precipitation enriched in Mo. The average microhardness of the coating was 760 ± 10 HV0.2, which was three times higher than that of the substrate. With increasing temperature, the friction coefficients of the coating and high-chromium cast iron decreased gradually while the wear rates increased during dry sliding wear condition. The relative wear resistance of the coating was 1.63 times higher than that of the high-chromium cast iron at 500 °C, which was ascribed to the hard borides with high thermal stability uniformly embedded in the coating and the formation of dense transfer layer formed onto the worn surface. The high temperature wear mechanism of the coating was dominated by mild abrasive wear. The study revealed that Fe-based composite coating had excellent high temperature wear resistance under dry sliding wear condition.

  3. Wear Assessment of Conical Pick used in Coal Cutting Operation

    NASA Astrophysics Data System (ADS)

    Dewangan, Saurabh; Chattopadhyaya, Somnath; Hloch, Sergej

    2015-09-01

    Conical pick is a widely used tool for cutting coal in mines. It has a cemented carbide tip inserted in a steel body. Cemented carbide has been in use for many years for coal/rock cutting because it has the optimum combination of hardness, toughness and resistance against abrasive wear. As coal/rock is a heterogeneous substance, the cutting tool has to undergo various obstructions at the time of excavation that cause the tool to wear out. The cracks and fractures developing in the cemented carbide limit the life of the tool. For a long time, different wear mechanisms have been studied to develop improved grades of cemented carbide with high wear resistance properties. The research is still continuing. Moreover, due to the highly unpredictable nature of coal/rock, it is not easy to understand the wear mechanisms. In the present work, an attempt has been made to understand the wear mechanisms in four conical picks, which were used in a continuous miner machine for underground mining of coal. The wearing pattern of the conical pick indicates damage in its cemented carbide tip as well as the steel body. The worn out parts of the tools have been critically examined using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) point analysis. Mainly four types of wear mechanisms, namely, coal/rock intermixing, plastic deformation, rock channel formation and crushing and cracking, have been detected. The presence of coal/rock material and their respective concentrations in the selected area of worn out surface were observed using the spectra generated by EDX analysis.

  4. Effect of progressive wear on the contact mechanics of hip replacements--does the realistic surface profile matter?

    PubMed

    Wang, Ling; Yang, Wenjian; Peng, Xifeng; Li, Dichen; Dong, Shuangpeng; Zhang, Shu; Zhu, Jinyu; Jin, Zhongmin

    2015-04-13

    The contact mechanics of artificial metal-on-polyethylene hip joints are believed to affect the lubrication, wear and friction of the articulating surfaces and may lead to the joint loosening. Finite element analysis has been widely used for contact mechanics studies and good agreements have been achieved with current experimental data; however, most studies were carried out with idealist spherical geometries of the hip prostheses rather than the realistic worn surfaces, either for simplification reason or lacking of worn surface profile. In this study, the worn surfaces of the samples from various stages of hip simulator testing (0 to 5 million cycles) were reconstructed as solid models and were applied in the contact mechanics study. The simulator testing results suggested that the center of the head has various departure value from that of the cup and the value of the departure varies with progressively increased wear. This finding was adopted into the finite element study for better evaluation accuracy. Results indicated that the realistic model provided different evaluation from that of the ideal spherical model. Moreover, with the progressively increased wear, large increase of the contact pressure (from 12 to 31 MPa) was predicted on the articulating surface, and the predicted maximum von Mises stress was increased from 7.47 to 13.26 MPa, indicating the marked effect of the worn surface profiles on the contact mechanics of the joint. This study seeks to emphasize the importance of realistic worn surface profile of the acetabular cup especially following large wear volume. PMID:25680298

  5. Mechanical characterization of several ion-implanted alloys: nanoindentation testing, wear testing and finite element modeling

    NASA Astrophysics Data System (ADS)

    Bourcier, R. J.; Follstaedt, D. M.; Dugger, M. T.; Myers, S. M.

    1991-07-01

    The influence of ion implantation on the mechanical properties of metal alloys has been examined using a variety of experimental and numerical techniques. Ultralow load indentation testing and finite element modeling has been used for the aluminum/oxygen to extract fundamental mechanical properties. Aluminum implanted with 20 at.% O exhibits extraordinary strength, as high as 3300 MPa. The degree of strengthening expected for this Al(O) alloy on the basis of the observed microstructure of fine (1.5-3.5 nm) oxide precipitates was estimated using several micromechanical models, and the results agree with our experimental findings. Pin-on-disk tribological characterization of aluminum implanted with 10 at.% oxygen revealed that the ion-beam treatment reduced the average friction coefficient from greater than 1.0 (for pure Al) to approximately 0.25 (for Al(O)). Large-amplitude stick-slip oscillations, which occur within the first two cycles for pure aluminum, were postponed to 30-50 cycles for the ion-implanted material. Two stainless steels which have been amorphized by implantation, 304 implanted with C and 440C implanted with Ti + C, show measurable hardening with implantation, of the order of 40 and 15%, respectively. In addition, nanoindentation within pin-on-disk wear tracks on 440C reveals that the mechanical state of the extensively deformed implanted layer is apparently unchanged from its initial state.

  6. Composites for Increased Wear Resistance: Current Achievements and Future Prospects

    NASA Technical Reports Server (NTRS)

    Lancaster, J. K.

    1984-01-01

    The various ways in which reductions in wear and/or friction can be achieved by the use of composite materials are reviewed. Reinforced plastics are emphasized and it is shown that fillers and fibers reduce wear via several mechanisms additional to their role of increasing overall mechanical strength, preferential transfer, counter face abrasion, preferential load support, or third-body formation on either the composite or its counterface. Examples are given from recent work on thin layer composites of the type widely used as dry bearings in aircraft flight control mechanisms. Developments in metal based composites and carbon-carbon composites for high energy brakes are discussed. The aspects which could benefit by increased fundamental understanding identified and the types of composites which appear to have greatest potential for further growth are indicated.

  7. Effect of load, area of contact, and contact stress on the wear mechanisms of a bonded solid lubricant film

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    A pin on disk type of friction and wear apparatus was used to study the effect of load, contact stress and rider area of contact on the friction and wear properties of polyimide bonded graphite fluoride films. Different rider area contacts were obtained by initially generating flats (with areas of 0.0035, 0.0071, 0.0145, and 0.0240 cm) on 0.476-cm radius hemispherically tipped riders. Different projected contact stresses were obtained by applying loads of 2.5- to 58.8-N to the flats. Two film wear mechanisms were observed. The first was found to be a linear function of contact stress and was independent of rider area of contact. The second was found to increase exponentially as the stress increased. The second also appeared to be a function of rider contact area. Wear equations for each mechanism were empirically derived from the experimental data. In general, friction coefficients increased with increasing rider contact area and with sliding duration. This was related to the build up of thick rider transfer films.

  8. Wear of the Charité® lumbar intervertebral disc replacement investigated using an electro-mechanical spine simulator

    PubMed Central

    Moghadas, Parshia; Shepherd, Duncan ET; Hukins, David WL

    2015-01-01

    The Charité® lumbar intervertebral disc replacement was subjected to wear testing in an electro-mechanical spine simulator. Sinusoidally varying compression (0.6–2 kN, frequency 2 Hz), rotation (±2°, frequency 1 Hz), flexion–extension (6° to −3°, frequency 1 Hz) and lateral bending (±2°, frequency 1 Hz) were applied out of phase to specimens immersed in diluted calf serum at 37 °C. The mass of the ultra-high-molecular weight polyethylene component of the device was measured at intervals of 0.5, 1, 2, 3, 4 and 5 million cycles; its volume was also measured by micro-computed tomography. Total mass and volume losses were 60.3 ± 4.6 mg (mean ± standard deviation) and 64.6 ± 6.0 mm3. Corresponding wear rates were 12.0 ± 1.4 mg per million cycles and 12.8 ± 1.2 mm3 per million cycles; the rate of loss of volume corresponds to a mass loss of 11.9 ± 1.1 mg per million cycles, that is, the two sets of measurements of wear agree closely. Wear rates also agree closely with measurements made in another laboratory using the same protocol but using a conventional mechanical spine simulator. PMID:25834002

  9. A numerical approach towards understanding the mechanism of fatigue wear in tread vulcanizates during rolling of tires

    NASA Astrophysics Data System (ADS)

    Razzaghi-Kashani, Mehdi

    2000-10-01

    Analysis of surface fracture and progress of fatigue wear on the surface of tire tread under road asperity loading is the main objective of this study. Starting with an idealized smooth surface of having precursor flaws, a simple mechanism for formation of wear debris and development of surface patterns is proposed. In this mechanism, step-wise propagation of these micro-flaws under periodic loading by asperities of the road is simulated using Moving Template Finite Element Analysis (MTFEA) in linear geometry and further analyzed using ABAQUS software in non-linear geometry. It is attempted to extend this analysis to heterogeneous rubber compounds where dispersed particles may affect propagation of surface cracks. Mechanical characterization of all existing phases i.e. rubber matrix, filler reinforcing units, and dispersed rubber particles (minor phase in blends) under similar conditions as asperity loading is performed by experimental/numerical methods prior to any stress analysis of such systems. Also, some features of carbon black reinforcement such as stress/strain amplifications in the rubber phase and distribution of stress/strain in constituents of the compound are predicted by combining FEA with experimental observations. Applying mechanical properties of all phases in local FEA models, interactions between ongoing crack tips and dispersed particles are analyzed. Some mechanical mechanisms by which filler reinforcing units and dispersed rubber particles retard propagation of cracks and possibly improving wear resistance are hypothesized.

  10. Wear prediction in a fluidized bed

    SciTech Connect

    Boyle, E.J.; Rogers, W.A.

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  11. Wear and friction of oxidation-resistant mechanical carbon graphites at 650 C in air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisnader, D. W.

    1975-01-01

    Studies were conducted to determine the friction and wear properties of experimental carbon-graphites. Hemispherically tipped carbon-graphite rider specimens were tested in sliding contact with rotating Inconel X-750 disks in air. A surface speed of 1.33 m/sec, a load of 500 g, and a specimen temperature of 650 C were used. Results indicate: (1) hardness is not a major factor in determining friction and wear under the conditions of these studies. (2) Friction and wear as low as or lower than those observed for a good commercial seal material were attained with some of the experimental materials studied. (3) The inclusion of boron carbide (as an oxidation inhibitor) has a strong influence on wear rate. (4) Phosphate treatment reduces the friction coefficient when boron carbide is not present in the base material.

  12. Wear behavior of austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  13. Mechanical and tribological characterization of TiB2 thin films.

    PubMed

    Silva, F J G; Casais, R C B; Martinho, R P; Baptista, A P M

    2012-12-01

    Titanium Diboride (TiB2) presents high mechanical and physical properties. Some wear studies were also carried out in order to evaluate its tribological properties. One of the most popular wear tests for thin films is the ball-cratering configuration. This work was focused on the study of the tribological properties of TiB2 thin films using micro-abrasion tests and following the BS EN 1071-6: 2007 standard. Due to high hardness usually patented by these films, diamond was selected as abrasive on micro-abrasion tests. Micro-abrasion wear tests were performed under five different durations, using the same normal load, speed rotation and ball. Films were deposited by unbalanced magnetron sputtering Physical Vapour Deposition (PVD) technique using TiB2 targets. TiB2 films were characterized using different methods as Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Electron Probe Micro-Analyser (EPMA), Ultra Micro Hardness and Scratch-test Analysis, allowing to confirm that TiB2 presents adequate mechanical and physical properties. Ratio between hardness (coating and abrasive particles), wear resistance and wear coefficient were studied, showing that TiB2 films shows excellent properties for tribological applications. PMID:23447976

  14. Resistance of dentin coating materials against abrasion by toothbrush.

    PubMed

    Gando, Iori; Ariyoshi, Meu; Ikeda, Masaomi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2013-01-01

    Thin-film coating of root dentin surface by all-in-one adhesives has been shown to be an effective option to prevent root surface caries. The purpose of this study was to investigate the wear resistance against toothbrush abrasion of two all-in-one coating materials; Shield Force (SF) and Hybrid Coat (HC). Bovine dentin surfaces were covered with one of the coating materials; SF or HC. After storage in water for 24 h, the testing surface was subjected to the toothbrush abrasion test up to 50,000 cycles either in water or toothpaste slurry. The remaining thickness of the coating material was measured using SEM. Toothpaste slurry significantly increased rate of tooth brush abrasion of the coating materials. While SF and HC wore at a similar pace under toothbrush abrasion, SF had a thicker coat and could protect dentin longer, up to 50,000 cycles. PMID:23370872

  15. Clinical measurement of tooth wear: Tooth wear indices

    PubMed Central

    López-Frías, Francisco J.; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Llamas-Carreras, José M.

    2012-01-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification corresponds to a different process with specific clinical features. Classifications made so far have no accurate prevalence data because the indexes do not necessarily measure a specific etiology, or because the study populations can be diverse in age and characteristics. Tooth wears (attrition, erosion and abrasion) is perceived internationally as a growing problem. However, the interpretation and comparison of clinical and epidemiological studies, it is increasingly difficult because of differences in terminology and the large number of indicators/indices that have been developed for the diagnosis, classification and monitoring of the loss of dental hard tissue. These indices have been designed to identify increasing severity and are usually numerical, none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. A literature review is conducted with the aim of analyzing the evolution of the indices used today and discuss whether they meet the clinical needs and research in dentistry. Key words:Tooth wear, tooth wear indices, attrition, erosion, abrasion, abfraction. PMID:24558525

  16. Mechanical property and wear performance dependence on processing condition for cold-sprayed WC-(nanoWC-Co)

    NASA Astrophysics Data System (ADS)

    Yang, Guan-Jun; Gao, Pei-Hu; Li, Cheng-Xin; Li, Chang-Jiu

    2015-03-01

    WC-(nanoWC-Co) with micro-WC reinforcing particles in nanoWC-Co cermet matrix was cold-sprayed by using WC-Co with bimodal sized WC particles (with both micro-sized WC particles and nano-sized WC particles). The effect of spray powder property and post-spray treatment on the mechanical properties and wear performance of cold-sprayed WC-(nanoWC-Co) coating were examined in comparison to the conventional high-velocity oxy-fuel (HVOF)-sprayed WC-Co coating. Results showed that both hardness and toughness were influenced by the spray powder properties and the post-spray heat treatment. Compared to the HVOF-sprayed WC-Co coating with micro-sized WC particles, WC-(nanoWC-Co) exhibited much higher hardness and toughness and thereby much higher wear resistance. The further toughening of WC-(nanoWC-Co) by post-spray heat treatment significantly doubled the wear performance. The excellent wear resistance of WC-(nanoWC-Co) is attributed to the simultaneous strengthening and toughening effects resulting from the microstructure design of bimodal WC particle size distribution composed of both micro-sized and nano-sized WC particles.

  17. Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe-Cr-B hardfacing alloy

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Lu, Pengpeng; Wang, You; Liu, Saiyue; Zou, Zhiwei

    2016-01-01

    Fe-Cr-B hardfacing alloys with different nano-additives content were investigated. The effects of nano-additives on the microstructures of hardfacing alloy were studied by using optical microscope, scanning electron microscope, X-ray diffractometer. The hardness and the fracture toughness of hardfacing alloys were measured, respectively. The sliding wear tests were carried out using a ball-on-disc tribometer. The experimental results showed that primary carbide of hardfacing alloys was refined and its distribution became uniform with content of nano-additives increased. The hardfacing alloys are composed of Cr7C3, Fe7C3, α-Fe and Fe2B according to the results of X-ray diffraction. The hardness of hardfacing alloys increased linearly with the increase of nano-additives. The hardness of the hardfacing alloy with 1.5 wt.% nano-additives increased 54.8% than that of the hardfacing alloy without nano-additives and reached to 1011HV. The KIC of the hardfacing alloy with 0.65 wt.% nano-additives was 15.4 MPam1/2, which reached a maximum. The value increased 57.1% than that of the hardfacing alloy without nano-additives. The wear rates of the hardfacing layer with 0.65 wt.% and 1.0 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. The main wear mechanism was adhesion wear.

  18. The effect of graphene content and sliding speed on the wear mechanism of nickel-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Algul, H.; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A.

    2015-12-01

    Nickel-graphene metal matrix composite coatings were fabricated by pulse electrodeposition technique from a Watt's type electrolyte. Effect of the graphene concentration in the electrolyte on the microstructure, microhardness, tribological features of nanocomposite coatings were evaluated in details. Microhardness of the composite coating was measured using a Vicker's microhardness indenter. The surfaces of the samples were characterized by scanning electron microscopy (SEM). Raman spectroscopy, EDS and XRD analysis were used to determine chemical composition and structure of composite coatings. The tribological behavior of the resultant composite coating was tested by a reciprocating ball-on disk method at constant load but varying sliding speeds for determination the wear loss and friction coefficient features against a counterface. The wear and friction variations of the electrodeposited nickel graphene nanocomposite coatings sliding against an M50 steel balls were carried out on a CSM Instrument. The friction and wear properties of the coatings were examined without any lubrication at room temperature in the ambient air. The change in wear mechanisms by changing graphene nanosheets content was also comprehensively studied.

  19. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  20. Wear Behaviour of Pressible Lithium Disilicate Glass Ceramic

    PubMed Central

    Peng, Zhongxiao; Rahman, Muhammad Izzat Abdul; Zhang, Yu; Yin, Ling

    2015-01-01

    This paper reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressible lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using 3D laser scanning microscopy, scanning electron microscopy and energy dispersive x-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behaviour of LDGC and will provide guidelines for better utilisation and preparation of the material for long-term success in dental restorations. PMID:25980530

  1. Abrasion of eroded root dentine brushed with different toothpastes.

    PubMed

    De Menezes, Márcio; Turssi, Cecilia Pedroso; Hara, Anderson Takeo; Messias, Danielle Cristine Furtado; Serra, Mônica Campos

    2004-09-01

    This study evaluated the surface roughness change and wear provided by different dentifrices on root dentine previously exposed to erosive challenges. According to a randomized complete block design, 150 slabs of bovine root dentine (6 x 3 x 2 mm) were ground flat and polished. In an area of 4 x 3 mm on the dentine surface, specimens were submitted to five erosive/abrasive events, each one composed by: exposure to Sprite Diet or distilled water for 5 min, then to a remineralizing solution for 1 min, and simulation of 5,000 brushing strokes. Four dentifrices--regular (RE), baking soda (BS), whitening (WT) and tartar control (TC)--and distilled water (CO), used as control, were compared. Final texture and the wear depth were evaluated using a profilometer. ANOVA did not show significant interaction, indicating that the effect of dentifrices on both surface roughness change and wear did not depend on whether or not the dentine was eroded ( p>0.05). There was no difference between abrasion of eroded and sound dentine. The Tukey's test revealed that WT, BS and TC provided the highest increase in surface roughness differing from RE and CO. TC yielded the deepest wear of root dentine, whereas RE and CO, the shallowest. No significant difference in wear among BS, TC and WT were observed. Within the limitations of this study, the data showed that abrasion of both eroded and sound root dentine was dependent on the dentifrice used. PMID:15146320

  2. Simulated oral wear of packable composites.

    PubMed

    Clelland, Nancy L; Villarroel, Soraya C; Knobloch, Lisa A; Seghi, Robert R

    2003-01-01

    Wear resistance has been a problem for the posterior application of resin composites. This study evaluated and compared the wear characteristics of two conventional and two packable composites. Opposing enamel wear was also measured. One traditional hybrid composite-Herculite XR (HXR), one micro-filled composite-Heliomolar (HM) and two packable composites-Filtek P60 (P60) and Surefil (SF) were formed into disks (n = 10) and used as substrates for the wear test. Enamel was harvested from extracted human third molars and machined into cusps with a 5-mm spherical radius (n = 40). The Oregon Health Sciences University oral wear simulator was used to evaluate abrasive wear and attrition of the composite materials and wear of the opposing enamel. The resulting enamel wear facets were measured and recorded in mm2 using optical scanning methods and a computer graphics program. Abrasion and attrition of the composite substrates were measured using a profilometer. Both sets of data were subjected to ANOVA and multiple comparison tests to determine significant differences. After wear testing, scanning electron micrographs were made using representative composite samples from each group. The packable composites showed significantly less attrition and abrasive wear (p < 0.001) than the conventional controls. The microfilled composite HM resulted in significantly lower enamel wear (p < 0.001) than the materials HXR and P60 but was not significantly different from the packable composite SF at the alpha = 0.05 level. The results of this in-vitro study suggest that packable composites may have improved wear resistance over some conventional composites. Clinical studies are needed to evaluate packable composites over time. PMID:14653301

  3. Recent advances in the mechanical durability of superhydrophobic materials.

    PubMed

    Milionis, Athanasios; Loth, Eric; Bayer, Ilker S

    2016-03-01

    Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry. PMID:26792021

  4. Innovative tribometer for in situ spectroscopic analyses of wear mechanisms and phase transformation in ceramic femoral heads.

    PubMed

    Puppulin, Leonardo; Leto, Andrea; Wenliang, Zhu; Sugano, Nobuhiko; Pezzotti, Giuseppe

    2014-03-01

    The literature on tribological assessments of artificial hip joints usually focuses on correlations between joint composition, size, and specific wear rates, but conspicuously ignores the physical aspects behind the occurrence of degradation mechanisms of friction and wear. Surface degradation in artificial joints occurs because of increases in temperature and local exacerbation of contact stresses inside the moving contact as a consequence of physical and chemical modifications of the sliding surfaces. This article reports about the development of a new pin-on-ball spectroscopy-assisted tribometer device that enables investigating also physical rather than merely engineering aspects of wear processes using in situ Raman and fluorescence techniques. This innovative tribometer is designed to bring about, in addition to conventional tribological parameters, also information of temperature, stress and phase transformations in the femoral heads as received from the manufacturer. Raman and fluorescence spectra at the point of sliding contact are recorded durilng reciprocating hard-on-hard dry-sliding tests. Preliminary results were collected on two different commercially available ceramic-on-ceramic hip joint bearing couples, made of monolithic alumina and alumina-zirconia composites. Although the composite couple showed direct evidence of tetragonal-to-monoclinic phase transformation, which enhanced the coefficient of friction, the specific wear rate was significantly lower than that of the monolithic one (i.e., by a factor 2.63 and 4.48 on the pin and head side, respectively). In situ collected data compared to ex situ analyses elucidated the surface degradation processes and clarified the origin for the higher wear resistance of the composite as compared to the monolithic couple. PMID:23453272

  5. Acoustic emission from single point machining: Source mechanisms and signal changes with tool wear

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.; McManigle, A.P.

    1994-05-01

    Acoustic emission (AE) was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Heat treatments that increase the strength of 4340 steel substantially increase the amount of AE produced during deformation, while heat treatments that increase the strength of Ti-6Al-4V dramatically decrease the amount of AE produced during deformation. There was little change in root-mean-square (rms) AE level during machining for either alloy as a function of prior heat treatment, demonstrating that chip deformation is not a major source of AE in single point machining. Additional data from a variety of materials suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of AE. Changes in AE signal characteristics with tool wear were also monitored during single point machining. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristics with wear for a given material may be sufficient to be used to monitor tool wear.

  6. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Wang, Jianlei; Jia, Qian; Yuan, Xiaoyang; Wang, Shaopeng

    2012-10-01

    The service life and the reliability of contact mechanical seal are directly affected by the wear of seal pairs (rotor vs. stator), especially under the cryogenic environment in liquid rocket engine turbopumps. Because of the lower friction and wear rate, amorphous carbon (a-C) coatings are the promising protective coatings of the seal pairs for contact mechanical seal. In this paper, a-C coatings were deposited on 9Cr18 by pulsed DC magnetron sputtering. The tribological performances of the specimen were tested under three sealed fluid conditions (air, water and liquid nitrogen). The results show that the coatings could endure the cryogenic temperature while the friction coefficients decrease with the increased contact load. Under the same contact condition, the friction coefficient of the a-C coatings in liquid nitrogen is higher than that in water and that they are in air. The friction coefficients of the a-C coatings in liquid nitrogen range from 0.10 to 0.15. In the cryogenic environment, the coatings remain their low specific wear rates (0.9 × 10-6 to 1.8 × 10-6 mm3 N-1 m-1). The results provide an important reference for designing a water lubricated bearing or a contact mechanical seal under the cryogenic environment that is both reliable and has longevity.

  7. Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report

    SciTech Connect

    Hibbs, L.E. Jr.; Sogoian, G.C.

    1983-05-01

    The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

  8. Wear of nanofilled dental composites at varying filler concentrations.

    PubMed

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    The aim of this study is to examine the effects of nanofiller concentration on the mechanisms of wear of a dental composite. Nanofilled composites were fabricated with a bisphenol A glycidyl methacrylate polymer and 40 nm SiO2 filler particles at three filler loads (25, 50, and 65 wt %). The elastic modulus, flexural strength, and hardness of the composites and the unfilled resin were measured. The materials (n = 8) were tested in the modified wear testing device at 50,000, 100,000, and 200,000 cycles with 20N force at 1 Hz. A 33% glycerine lubricant and stainless steel antagonist were used. The worn composite and antagonist surfaces were analyzed with noncontact profilometry and SEM. The volumetric wear data indicated that there are significant differences between filler concentrations and cycles (p < 0.05). A trend was noted that increasing filler content beyond 25% decreased the wear resistance of the composites. Increasing filler content increased hardness and modulus and increased flexural strength up to 50% fill. SEM evaluation of the worn specimens indicated that the resin and 25% filled materials exhibited cracking and failed by fatigue and the 50 and 65% filled materials exhibited microcutting and failed by abrasive wear. Based on the results of this study, composite manufacturers are recommended to use a filler concentration between 25 and 50% when using nanosized filler particles. PMID:24909664

  9. [Improve wear resistance of UHMWPE by O+ ion implanted].

    PubMed

    Xiong, Dangsheng

    2003-12-01

    Ultra high molecular weight polyethylene (UHMWPE) was implanted with 450 keV and 100 keV O+ ions at dosage of 1 x 10(15)/cm2, 5 x 10(15)/cm2, 3 x 10(14)/cm2, respectively. Its wear behaviors were studied under dry friction condition and lubrication by means of distilled water using a pin-on-disk tribometer with a Si3N4 ceramic ball as a counterface. The wear surfaces were examined with SEM. The experimental results showed that the wear rate of implanted UHMWPE is lower than that of un-implanted UHMWPE under both dry and distilled friction conditions, especially for 450 keV energy and 5 x 10(15)/cm2 dose implantation. The friction coefficient of O+ ions implanted UHMWPE is higher than that of un-implanted UHMWPE under both dry and distilled friction conditions. The adhesive, plow and plastic deformation are the wearing mechanism for un-implanted UHMWPE; the fatigue and abrasive wear are that for implanted UHMWPE. PMID:14716850

  10. Single- and Two-Layer Coatings of Metal Blends onto Carbon Steel: Mechanical, Wear, and Friction Characterizations

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat

    2014-01-01

    Single- and two-layer coatings were deposited onto carbon steel using a high-velocity oxy-fuel deposition gun. The two-layer coating consisted of a top layer of tungsten carbide cobalt/nickel alloy blend that provides wear resistance and a bottom layer of iron/molybdenum blend that provides corrosion resistance. The morphological changes in the single- and two-layer coatings were examined using scanning electron microscopy. The residual stresses formed on the surface of various coatings were determined from x-ray diffraction data. Nanomechanical properties were measured using the nanoindentation technique. Microhardness and fracture toughness were measured incorporating the microindentation tests. Macrowear and macrofriction characteristics were measured using the pin-on-disk testing apparatus. The goal of this study was to ensure that the mechanical properties, friction, and wear resistance of the two-layer coating are similar to that of the single-layer coating.

  11. Mobile load simulators - A tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces

    NASA Astrophysics Data System (ADS)

    Gehrig, R.; Zeyer, K.; Bukowiecki, N.; Lienemann, P.; Poulikakos, L. D.; Furger, M.; Buchmann, B.

    2010-12-01

    Mechanically produced abrasion particles and resuspension processes are responsible for a significant part of the PM10 emissions of road traffic. However, specific differentiation between PM10 emissions due to abrasion and resuspension from road pavement is very difficult due to their similar elemental composition and highly correlated variation in time. In this work Mobile Load Simulators were used to estimate PM10 emission factors for pavement abrasion and resuspension on different pavement types for light and heavy duty vehicles. From the experiments it was derived that particle emissions due to abrasion from pavements in good condition are quite low in the range of only a few mg·km -1 per vehicle if quantifiable at all. Considerable abrasion emissions, however, can occur from damaged pavements. Resuspension of deposited dust can cause high and extremely variable particle emissions depending strongly on the dirt load of the road surface. Porous pavements seem to retain deposited dust better than dense pavements, thus leading to lower emissions due to resuspension compared to pavements with a dense structure (e.g. asphalt concrete). Tyre wear seemed not to be a quantitatively significant source of PM10 emissions from road traffic.

  12. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications

    NASA Astrophysics Data System (ADS)

    Barbezat, G.; Nicoll, A. R.; Sickinger, A.

    1993-04-01

    In the area of antiwear coatings, carbide-containing coatings and oxide ceramic coatings are applied using different thermal spray processes in the form of individual layers. In many industries these coatings have become technically significant on components where wear and friction can cause critical damage in the form of abrasion, erosion and scuffing together with corrosion. Carbide-containing and ceramic coatings have been produced with different thermal spray processes for the determination of abrasive, adhesive and erosive wear resistance. Two types of abrasion test, namely an adhesion wear test and an erosion test in water at a high velocity, were used for the characterization of wear resistance under different conditions. The coatings were also characterized with regard to microstructure, composition and fracture toughness. The influence of the thermal spraying process parameters on the microstructure is presented together with the influence of the microstructure on the behavior of the coatings under simulated service conditions.

  13. Wear mechanisms of sintered self-lubricating Al-based composites under dry friction

    NASA Astrophysics Data System (ADS)

    Rusin, N. M.; Skorentsev, A. L.; Gurskih, A. V.

    2015-10-01

    The composition and structure of the surface layer, formed as a result of dry friction of the steel disc and Al-Sn composites, were studied. The research showed that the final stage of composites wearing is the destruction of the thin surface layer formed as a result of the sample's material and oxide particles mixing during dry friction.

  14. Wear of nanofilled dental composites in a newly-developed in vitro testing device

    NASA Astrophysics Data System (ADS)

    Lawson, Nathaniel C.

    Purpose. In vivo wear of dental composites can lead to loss of individual tooth function and the need to replace a composite restoration. To evaluate the wear performance of new and existing dental composites, we developed a novel system for measuring in vitro wear and we used this system to analyze the mechanisms of wear of nanofilled composite materials. Methods. A modified wear testing device was designed based on the Alabama wear testing machine. The new device consists of: (1) an antagonist which is lowered to and raised from the composite specimen by weight loading, (2) a motorized stage to cause the antagonist to slide 2mm on the composite surface, and (3) pumps for applying lubricant to the specimens. Various testing parameters of the device were examined before testing, including the impulse force, the third-body medium, the lubricant and antagonist. The parameters chosen for this study were 20N at 1Hz with a 33% glycerine lubricant and stainless steel antagonist. Three nano-composites were fabricated with a BisGMA polymer matrix and 40nm SiO2 filler particles at three filler loads (25%, 50% and 65%). The mechanical properties of the composites were measured. The materials were then tested in the modified wear testing device under impact wear, sliding wear and a combination of impact and sliding wear. The worn surfaces were then analyzed with a non-contact profilometer and SEM. Results. The volumetric wear data indicated that increasing filler content beyond 25% decreased the wear resistance of the composites. Increasing filler content increased hardness and decreased toughness. SEM evaluation of the worn specimens indicated that the 25% filled materials failed by fatigue and the 50% and 65% filled materials failed by abrasive wear. Impact wear produced fretting in this device and sliding wear is more aggressive than impact wear. Conclusion. Based on the results of this study and previous studies on this topic, manufacturers are recommended to use a filler

  15. Study on Wear Reduction Mechanisms of Artificial Cartilage by Synergistic Protein Boundary Film Formation

    NASA Astrophysics Data System (ADS)

    Nakashima, Kazuhiro; Sawae, Yoshinori; Murakami, Teruo

    Poly(vinyl alcohol) (PVA) hydrogel is one of the anticipated materials for artificial cartilage. PVA hydrogel has high water content and a low elastic modulus similar to natural cartilage, but its major disadvantage is its lower strength. PVA hydrogel experienced rapid wear under severe conditions such as mixed or boundary lubrication. Therefore, the existence of a protective surface film with low friction becomes important to prevent surface failure. In this study, the reciprocating frictional tests for a sliding pair of PVA hydrogel and glass plate were carried out, and fluorescent observations were performed to identify the roles of adsorbed protein film. Albumin and γ-globulin, which are contained in natural synovial fluid, were used by mixing into the lubricant. It appears that groups of albumin molecules adsorb on the smooth γ-globulin adsorbed layer at content of 2.1wt% of proteins with an appropriate ratio. But in the case of a lubricant which has excessive protein at 2.8wt%, albumin and γ-globulin adsorbed separately. Considering the wear reduction at 2.1wt% content of protein, albumin and γ-globulin constituted synergistic adsorbed film for wear reduction. It is indicated that albumin constructs a low shear layer and γ-globulin forms a layer protecting PVA hydrogel from wear. It is considered that wear and friction of PVA hydrogel were reduced due to slip of the boundary of adsorbed albumin and γ-globulin layer. Content of protein and ratio of albumin to γ-globulin (AG ratio) are important to constitute the appropriate protein film.

  16. The High performance of nanocrystalline CVD diamond coated hip joints in wear simulator test.

    PubMed

    Maru, M M; Amaral, M; Rodrigues, S P; Santos, R; Gouvea, C P; Archanjo, B S; Trommer, R M; Oliveira, F J; Silva, R F; Achete, C A

    2015-09-01

    The superior biotribological performance of nanocrystalline diamond (NCD) coatings grown by a chemical vapor deposition (CVD) method was already shown to demonstrate high wear resistance in ball on plate experiments under physiological liquid lubrication. However, tests with a close-to-real approach were missing and this constitutes the aim of the present work. Hip joint wear simulator tests were performed with cups and heads made of silicon nitride coated with NCD of ~10 μm in thickness. Five million testing cycles (Mc) were run, which represent nearly five years of hip joint implant activity in a patient. For the wear analysis, gravimetry, profilometry, scanning electron microscopy and Raman spectroscopy techniques were used. After 0.5 Mc of wear test, truncation of the protruded regions of the NCD film happened as a result of a fine-scale abrasive wear mechanism, evolving to extensive plateau regions and highly polished surface condition (Ra<10nm). Such surface modification took place without any catastrophic features as cracking, grain pullouts or delamination of the coatings. A steady state volumetric wear rate of 0.02 mm(3)/Mc, equivalent to a linear wear of 0.27 μm/Mc favorably compares with the best performance reported in the literature for the fourth generation alumina ceramic (0.05 mm(3)/Mc). Also, squeaking, quite common phenomenon in hard-on-hard systems, was absent in the present all-NCD system. PMID:26024650

  17. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  18. Mechanical properties of Al-60 Pct SiC p composites alloyed with Mg

    NASA Astrophysics Data System (ADS)

    Ahlatci, H.; Çimenoğlu, H.; Candan, E.

    2004-07-01

    In the present work, the effect of an Mg addition on the mechanical properties of the Al-60 vol pct SiC p composites were investigated by uniaxial compression, three-point bending, impact and wear tests (composite-metal and composite-abrasive types). The composites were produced by the pressure-infiltration technique. The composition of the Al matrix was varied between 0 and 8 pct Mg. The mean diameter of the SiC particles was 23 µm. Upon addition of Mg, Mg2Si precipitated in the matrix and the amount of the porosity dramatically decreased. Mg-alloyed-matrix composites exhibited higher strength, lower toughness, and higher wear resistance than pure-Al-matrix composites. During composite-metal wear testing, wear progressed in two sequential periods (running-in and steady state). Weight loss during wear testing decreased with increasing Mg content of the matrix. The degree of improvement of abrasive resistance depended on the abrasive-grain size. Above 200 °C, the composite-abrasive wear resistance decreased with increasing test temperature for all materials.

  19. Effects of sterilization on wear in total knee arthroplasty.

    PubMed

    White, S E; Paxson, R D; Tanner, M G; Whiteside, L A

    1996-10-01

    Twenty-nine Ortholoc II ultrahigh molecular weight polyethylene tibial components were retrieved from 27 patients at revision surgery from the same hospital. The polyethylene material grade, method of sterilization, and sterilization dosage for 26 of the tibial components were determined by tracing the material lot number for each component. Each tibial surface was scored for wear using a qualitative scoring system that evaluated delamination, pitting, scratching, cold flow, abrasion, and burnishing. After the wear score analysis, 14 of the 26 components were analyzed to determine the physical and mechanical properties of the polyethylene including toughness and elongation. Seven of these 14 components were sterilized using ethylene oxide and 7 were sterilized using gamma radiation. Tibial components sterilized with gamma radiation had significantly higher wear rates than those sterilized with ethylene oxide. Thirteen of the 18 components sterilized with gamma radiation had delamination of the articular surface compared with 2 of 8 components sterilized with ethylene oxide. Mechanical properties were significantly affected by the sterilization method. Components sterilized with ethylene oxide had significantly higher toughness and percent elongation than those sterilized with gamma radiation. These findings suggest that ethylene oxide sterilization caused less microstructural damage to the polyethylene and resulted in significantly less wear than was found in those components sterilized with gamma radiation. PMID:8895634

  20. Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy.

    PubMed

    Balla, Vamsi Krishna; Soderlind, Julie; Bose, Susmita; Bandyopadhyay, Amit

    2014-04-01

    Laser surface melting (LSM) of Ti6Al4V alloy was carried out with an aim to improve properties such as microstructure and wear for implant applications. The alloy substrate was melted at 250W and 400W at a scan velocity of 5mm/s, with input energy of 42J/mm(2) and 68J/mm(2), respectively. The results showed that equiaxed α+β microstructure of the substrate changes to mixture of acicular α in β matrix after LSM due to high cooling rates in the range of 2.25×10(-3)K/s and 1.41×10(-3)K/s during LSM. Increasing the energy input increased the thickness of remelted region from 779 to 802µm and 1173 to 1199µm. Similarly, as a result of slow cooling rates under present experimental conditions, the grain size of the alloy increased from 4.8μm to 154-199μm. However, the hardness of the Ti6Al4V alloy increased due to LSM melting and resulted in lowest in vitro wear rate of 3.38×10(-4)mm(3)/Nm compared to untreated substrate with a wear rate of 6.82×10(-4)mm(3)/Nm. PMID:24388220

  1. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    PubMed Central

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-01-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967

  2. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  3. A modified ASTM G-75 abrasion test helps select candidate alloys for service in a corrosive and abrasive slurry

    SciTech Connect

    Corbett, R.A.; Morrison, W.S.; Jenkins, C.F.; Westinghouse Savannah River Co., Aiken, SC )

    1989-01-01

    The design of a hazardous waste immobilization facility at the Savannah River Site (SRS) set material requirements for both abrasion resistance and corrosion resistance in process equipment. Standard ASTM slurry wear test G75 was modified to permit evaluation and comparison of abrasive resistance of candidate materials of construction in the laboratory. However, corrosion was found to contribute significantly to overall metal loss during the testing. Consequently, the abrasive slurry used for the testing was modified by adjusting its chemistry to include appropriate corrosive species. The Miller numbers obtained in the modified G75 Miller abrasion test are described. Pilot plant observations for Type 304L austenitic stainless steel were available. These data were used to generate a Morrison-Miller Ratio'' in order to determine anticipated field abrasion properties for other alloys. Hardness for many of the alloys fell in a narrow range about Rockwell B90, but performance varied significantly in response to slurry chemistry. This effect if synergistic may often be overlooked in the selection process, and it needs to be addressed. Some pilot plant testing of other alloys is essential to confirm the calculated abrasion rates and the approach of using the Morrison-Miller ratio. 6 refs., 3 figs., 5 tabs.

  4. Effects of short-term brace wearing on the pendulum-like mechanism of walking in healthy subjects.

    PubMed

    Mahaudens, Philippe; Banse, Xavier; Detrembleur, Christine

    2008-11-01

    Progressive spinal deformities, such as scoliosis, often need orthotic management to prevent deterioration. Such braces may alter spinal segmental movements, which contribute in minimizing energy requirements during gait. The goal of this study was to isolate the immediate effect of bracing on mechanical work and energy cost in 13 healthy subjects. Gait was assessed by a conventional motion analysis system. Our results showed a decrease in pelvis and shoulder motion, an increase in external work, and an alteration in pendulum-like mechanism of walking when wearing the brace. However, no significant difference was observed in total mechanical work, electromyographic activity and energy cost. The loss of efficiency of this pendulum mechanism could be due to the reduction of pelvis and shoulder motion brought about by the brace. PMID:18515109

  5. Receiving Wear-Resistance Coverings Additives of Nanoparticles of Refractory Metals at a Laser Cladding

    NASA Astrophysics Data System (ADS)

    Murzakov, M. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Andreev, A. O.; Birukov, V. P.; Markushov, Y. V.

    2016-02-01

    Laser cladding technology was used to conduct experiments on production of wear-resistant coatings with additive nanoparticles of refractory metals (WC, TaC). Mechanical testing of coating abrasion was made using Brinell-Howarth method. The obtained data was compared with wear- resistance of commercial powder containing WC. It was found that at a concentration 10-15% coating with nanopowder additives shows a dramatic increase in wear-resistance by 4-6 times as compared to carbon steel substrate. There were conducted metallurgical studies of coatings on inverse electron reflection. There was determined elemental composition of deposited coating and substrate, and microhardness measured. It was found that structure of deposited coating with nanoparticles is fine.

  6. Photoresist-Free Patterning by Mechanical Abrasion of Water-Soluble Lift-Off Resists and Bare Substrates: Toward Green Fabrication of Transparent Electrodes

    PubMed Central

    Printz, Adam D.; Chan, Esther; Liong, Celine; Martinez, René S.; Lipomi, Darren J.

    2013-01-01

    This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process—“abrasion lithography”—takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq–1 and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices. PMID:24358321

  7. Effect of low temperature annealing on the wear properties of NITINOL

    NASA Astrophysics Data System (ADS)

    Mukunda, Sriram; Nath. S, Narendra; Herbert, Mervin A.; Mukunda, P. G.

    2016-02-01

    NiTi shape memory alloy is a wonder material that is a solution looking for problems. The material finds wide biomedical applications like endodontic files for root canal treatment and cardiovascular stents. This material has rendered the surgical procedure simple compared to that with the existing Stainless Steel (SS) or titanium ones. NiTi as an endodontic file would cause less discomfort to the patients in comparison to that with far stiffer SS or titanium ones. Here nearly equi-atomic 50:50 commercial NiTi rods were subjected to low temperature aging at 300 to 450°C. The wear resistance of the as-received and the heat-treated samples was studied using adhesive wear tests on hardened steel counter face. Abrasive wear tests were run against Alumina disc to simulate the working of endodontic drills and files against dental hard and soft tissues. The abrasive wear resistance is expected to be proportional to the Vickers Hardness of the material and is high for the 450°C heat-treated sample. A correlation between the mechanical properties and microstructures of this material is attempted

  8. Wear Mechanism Maps for Magnesium Alloy AM60 and Composite AM60-9% (Al2O3)f

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Muhammad Zafar

    The purpose of this work was to study the tribological behaviour of squeeze cast Mg alloy AM60 and its composite AM60-9% (Al2O3) f. Dry sliding wear tests were performed on specimens of these materials using a block-on-ring tribometer which was equipped with a COF and temperature measurement system. Wear, COF and temperature maps were constructed to illustrate the effect of temperature and COF on the wear behaviour of the Mg alloy and it's composite. Four wear regimes namely low, mild, transient and severe wear were identified. The transition from mild to severe wear regime was found to be dependent on the bulk temperature of the specimen. Oxidational wear prevailed in low and mild wear whereas plastic deformation induced wear and melt wear controlled the wear rates in transient and severe wear regimes, respectively. This study shows that the incorporation of Al2O3 fibres in AM60 alloy improved the wear resistance of the resulting composite by delaying the transition from mild to severe wear.

  9. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions. PMID:24993884

  10. The wear of oriented UHMWPE under isotropically rough and scratched counterface test conditions.

    PubMed

    Dharmastiti, R; Barton, D C; Fisher, J; Edidin, A; Kurtz, S

    2001-01-01

    Unidirectional wear tests of UHMWPE against smooth counterfaces show that molecular chains at the surface of virgin material become oriented parallel to the sliding direction giving low wear rate. It is postulated that under more abrasive conditions and predominantly unidirectional motion as in knee prostheses, it may proof beneficial to provide molecular orientation of the bulk material. Therefore strips of UHMWPE were oriented by die drawing at elevated temperature and the resulting anisotropic material subjected to tensile tests, small punch tests and also unidirectional wear tests both parallel and perpendicular to the draw direction. The tensile tests showed that, in the parallel direction, the oriented UHMWPE became stiffer and less ductile compared to the virgin UHMWPE. In the perpendicular direction, there were reductions in yield stress, 5% proof stress and energy to failure compared to the virgin material. The small punch test showed that the oriented UHMWPE exhibited apparent hardening when tested in both parallel and perpendicular directions but the mechanical behaviour in the perpendicular direction was comparable to the virgin UHMWPE. The wear tests demonstrated that the oriented UHMWPE did not show any significant improvement of wear resistance for sliding against either isotropically rough or scratched counterfaces. There was no clear dependency between the mechanical properties and wear factors of the oriented UHMWPE. PMID:11564907

  11. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  12. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  13. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  14. Assessment HVOF sprayed coatings for reducing wear on pump components

    SciTech Connect

    Kaufold, R.; McCaul, C.; Brunhouse, S.

    1994-12-31

    Long-term pump efficiency and durability are directly related to the wear and corrosion resistance of materials used to manufacture pump components. Conventional OEM design materials often do not provide long-term resistance to wear caused by abrasive grains, particle erosion, corrosion, and cavitation. As a result, pump components can fail prematurely causing pump downtime and interrupting service life. Thermal-sprayed coatings, in particular, those deposited by HVOF, can help prevent this loss by reducing premature pump failure resulting from accelerated wear. The intent of this paper is to assess the degree of wear protection provided by various materials deposited by HVOF as compared to those coatings accepted by pump manufacturers. The materials tested ranged from tungsten carbide to chromium carbide to nickel-base alloys. The coating properties were analyzed by metallographic characterization, abrasive wear, corrosive wear, and anti-galling.

  15. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  16. Mechanical properties and wear and corrosion resistance of electrodeposited Ni Co/SiC nanocomposite coating

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Sun, Chufeng; Gao, Ping; Zhou, Feng; Liu, Weimin

    2006-03-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating.

  17. High Wear Resistance of White Cast Iron Treated by Novel Process: Principle and Mechanism

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoshuai; Zuo, Xunwei; Liu, Yu; Chen, Nailu; Rong, Yonghua

    2015-12-01

    Based on microstructure desired, a novel process is proposed to treat Fe-2.4C-12.0Cr (mass pct) white cast iron balls, that is, destabilizing heat treatment following multicycle quenching and sub-critical treatment (De-MQ-Sct) process, and such a complex process is simply performed by alternate water quenching and air cooling. For comparison, the white cast iron balls also were treated by conventional normalization (NOR) process and Oil-quenching process, respectively. The partitioning of carbon from martensite to retained austenite during De-MQ-Sct process promotes the interaction between carbide precipitation and martensitic transformation, while this interaction is a unique effect only produced by multicycle quenching linking destabilizing and sub-critical treatments, which leads to more and finer secondary carbides and more carbon-enriched austenite in De-MQ-Sct sample than those in NOR or Oil-quenching sample. The average hardness of 60 HRC and impact toughness of 12.6 J/cm2 are obtained in De-MQ-Sct white cast iron balls, which are much higher than those in NOR and Oil-quenching ones. The wear behaviours measured by pin-on-disk wear tests indicate that the weight loss of De-MQ-Sct sample is only about one third of the NOR sample and one half of the Oil-quenching sample. Microstructural characterization reveals that high wear resistance related to hardness and toughness of the De-MQ-Sct balls are mainly attributed to the considerable fine secondary carbides and stable carbon-enriched retained austenite.

  18. Experimental study and finite element analyses of electrode wear mechanisms during the resistance spot welding of galvannealed steel

    NASA Astrophysics Data System (ADS)

    Lu, Feng

    The wear mechanisms of electrodes used on resistance spot welding of galvannealed steels were studied. The study focused on the inter-relationship among the steel properties, welding parameters and electrode wear. Six different galvannealed steels were studied using a standard constant current welding test. With the same kind of Cu-Zr electrode, the tests were performed with the electrode force fixed at 600 lbs and the welding time fixed at 12 cycles for all the steels studied. The welding current is set at just below the expulsion limit for each of the steels. The microstructure and mechanical properties of these steels were examined by SEM and microhardness tests. The face profiles for electrodes subjected to various numbers of welds were examined using carbon imprint tests and low magnification optical microscopy. The alloys formed on the electrode face were studied by the EDS and WDS quantitative analyses and linescans. Changes in the microhardness of the electrode material near the electrode face during the electrode wear process were also studied. Combined with the experimental examination, a sequentially coupled finite element analysis procedure was used to analyze the detailed distribution and evolution of the electrical current, temperature and stress throughout the process of making a weld. These analyses have greatly enhanced the understanding of the experimental observations. The results of this study indicate that the welding current is the dominant factor influencing electrode life. When the electrode force and the welding time are fixed, the welding current is determined by the steel properties. Thicker steel sheets and higher steel sheet surface hardnesses will result in smaller welding current. When the electrode force and welding time are fixed, steels requiring higher welding currents will yield shorter electrode lives. With increasing welding current, the top and bottom electrodes in this study showed increasingly different wear behaviors

  19. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. PMID:23871543

  20. Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry.

    PubMed

    Saha, Gobinda C; Khan, Tahir I; Glenesk, Larry B

    2009-07-01

    Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.7 trillion barrels of bitumen, of which over 175 billion are recoverable with current technology, and 315 billion barrels are ultimately recoverable with technological advances. A major problem of operating machinery and equipment in the oil sands is the unpredictable failure from operating in this highly aggressive environment. One of the significant causes of that problem is premature material wear. An approach to minimize this wear is the use of protective coatings and, in particular, a cermet thin coating. A high level of coating homogeneity is critical for components such as bucketwheels, draglines, conveyors, shovels, heavyhauler trucks etc. that are subjected to severe degradation through abrasive wear. The identification, development and application of optimum wear solutions for these components pose an ongoing challenge. Nanostructured cermet coatings have shown the best results of achieving the degree of homogeneity required for these applications. In this study, WC-17Co cermet powder with nanocrystalline WC core encapsulated with 'duplex' Co layer was used to obtain a nanostructured coating. To apply this coating, high velocity oxy-fuel (HVOF) thermal spraying technique was used, as it is known for producing wear-resistant coatings superior to those obtained from plasma-based techniques. Mechanical, sliding wear and microstructural behavior of the coating was compared with those of the microstructured coating obtained from spraying WC-10Co-4Cr cermet powder by HVOF technique. Results from the nanostructured coating, among others, showed an average of 25% increase in microhardness, 30% increase in sliding wear resistance and

  1. Abrasion resistance of oxidized zirconium in comparison with CoCrMo and titanium nitride coatings for artificial knee joints.

    PubMed

    Galetz, Mathias C; Fleischmann, Ernst W; Konrad, Christian H; Schuetz, Adelheid; Glatzel, Uwe

    2010-04-01

    Most total knee replacement joints consist of a metal femoral component made from a cobalt-chromium- molybdenum (CoCrMo)-alloy and a tibial component with an ultrahigh molecular weight polyethylene (UHMWPE) bearing surface. Wear of the UHMWPE remains the primary disadvantage of these implants. The allergic potential ascribed to CoCrMo-alloys is a further concern. Other metallic alloys with and without ceramic coatings are clinically used to avoid these problems. This study compared the mechanical surface properties of an oxidized zirconium alloy with those of cast and wrought CoCrMo and TiAlV6-4. Additionally, the influence of a titanium nitride (TiN)-plasma coating on the surface properties was investigated. The composition of the oxidized zirconium layer was analyzed. Micro- and macrohardness tests as well as adhesion tests were used to reveal material differences in terms of their abrasive wear potential in artificial joints. PMID:20162723

  2. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.

    PubMed

    Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  3. Universal scaling relations for pebble abrasion

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2012-12-01

    The process of abrasion of gravel in bed load transport results from particle-to-particle collisions, where the energy involved is sufficient to cause chipping and spallation but not fragmentation of parent grains. The removed rock material is not infinitesimal; daughter products as large as coarse sand can be produced. Although previous work has shown that lithology, grain shape, and energy of collision are contributing factors that control abrasion rates of river-bed material, little is known regarding the relationship between these factors and diminution rates. Here we explicitly isolate and investigate how these three factors influence rates of abrasion and the size distribution of daughter products, with laboratory experiments. The apparatus is a double pendulum (Newton's cradle) that produces well-controlled binary collisions. A high-speed camera precisely measures collision energy, while mass of parent rocks. and the size and shape distributions of daughter products, are measured periodically. We examined abrasion of initially square-cut 'rocks' as they underwent successive collisions in the binary collision apparatus. We have examined mass loss rate for varied lithologies, and observe a similar power-law relationship between impact energy and mass abraded. When normalized by sensible material properties, mass loss curves for all materials collapse onto a single curve, suggesting that the underlying mechanics of abrasion for different materials are the same. The relationship does not display the linear trend expected from pure energetics, and we suggest that this is a shape effect as protruding - and hence easily eroded - corners are worn away. Analysis of daughter-product particle size distributions for different lithology fragments - including natural rocks and also bricks - show the same functional form. Surprisingly, it is the power-law relation expected for brittle materials undergoing fragmentation. This suggests that brittle fracture theory also

  4. Simulation of the filtration mechanism of hyaluronic acid in total knee prosthesis

    NASA Astrophysics Data System (ADS)

    Di Paolo, J.; Berli, M. E.; Campana, D. M.; Ubal, S.; Cárdenes, L. D.

    2007-11-01

    Polyethylene (UHMWPE) wear in current knee prosthesis causes prosthesis loosening after no more than 15 years. In this work, a steady state one-dimensional lubrication model with non- Newtonian fluid, porous elastic layer on tibial component, ultra-filtration mechanism of fluid and some features of the surface roughness is studied through a numerical technique based on the Finite Element Method. The results show that the UHMWPE stiffness makes difficult the lubrication mechanism of the artificial joint and promotes abrasive and fatigue wear. Nevertheless, the use of compliant porous materials on the tibial component could reduce friction and wear. Moreover, the ultra-filtration mechanism promotes efficiency on the joint.

  5. Aluminum nanocomposites having wear resistance better than stainless steel

    SciTech Connect

    An, Linan; Qu, Jun; Luo, Jinsong; Fan, Yi; Zhang, Ligong; Liu, Jinling; Xu, Chengying; Blau, Peter Julian

    2011-01-01

    Tribological behavior of alumina-particle-reinforced aluminum composites made by powder metallurgy process has been investigated. The nanocomposite containing 15 vol% of Al2O3 nanoparticles exhibits excellent wear resistance by showing significantly low wear rate and abrasive wear mode. The wear rate of the nanocomposite is even lower than stainless steel. We have also demonstrated that such excellent wear resistance only occurred in the composite reinforced with the high volume fraction of nanosized reinforcing particles. The results were discussed in terms of the microstructure of the nanocomposite.

  6. Modeling of cumulative tool wear in machining metal matrix composites

    SciTech Connect

    Hung, N.P.; Tan, V.K.; Oon, B.E.

    1995-12-31

    Metal matrix composites (MMCs) are notoriously known for their low machinability because of the abrasive and brittle reinforcement. Although a near-net-shape product could be produced, finish machining is still required for the final shape and dimension. The classical Taylor`s tool life equation that relates tool life and cutting conditions has been traditionally used to study machinability. The turning operation is commonly used to investigate the machinability of a material; tedious and costly milling experiments have to be performed separately; while a facing test is not applicable for the Taylor`s model since the facing speed varies as the tool moves radially. Collecting intensive machining data for MMCs is often difficult because of the constraints on size, cost of the material, and the availability of sophisticated machine tools. A more flexible model and machinability testing technique are, therefore, sought. This study presents and verifies new models for turning, facing, and milling operations. Different cutting conditions were utilized to assess the machinability of MMCs reinforced with silicon carbide or alumina particles. Experimental data show that tool wear does not depend on the order of different cutting speeds since abrasion is the main wear mechanism. Correlation between data for turning, milling, and facing is presented. It is more economical to rank machinability using data for facing and then to convert the data for turning and milling, if required. Subsurface damages such as work-hardened and cracked matrix alloy, and fractured and delaminated particles are discussed.

  7. Single-asperity contributions to multi-asperity wear simulated with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Eder, S. J.; Cihak-Bayr, U.; Bianchi, D.

    2016-03-01

    We use a molecular dynamics approach to simulate the wear of a rough ferrite surface due to multiple hard, abrasive particles under variation of normal pressure, grinding direction, and particle geometry. By employing a clustering algorithm that incorporates some knowledge about the grinding process such as the main grinding direction, we can break down the total wear volume into contributions from the individual abrasive particles in a time-resolved fashion. The resulting analysis of the simulated grinding process allows statements on wear particle generation, distribution, and stability depending on the initial topography, the grinding angle, the normal pressure, as well as the abrasive shape and orientation with respect to the surface.

  8. Dendritic Arm Spacing Affecting Mechanical Properties and Wear Behavior of Al-Sn and Al-Si Alloys Directionally Solidified under Unsteady-State Conditions

    NASA Astrophysics Data System (ADS)

    Cruz, Kleber S.; Meza, Elisangela S.; Fernandes, Frederico A. P.; Quaresma, José M. V.; Casteletti, Luiz C.; Garcia, Amauri

    2010-04-01

    Alloys of Al-Sn and Al-Si are widely used in tribological applications such as cylinder liners and journal bearings. Studies of the influence of the as-cast microstructures of these alloys on the final mechanical properties and wear resistance can be very useful for planning solidification conditions in order to permit a desired level of final properties to be achieved. The aim of the present study was to contribute to a better understanding about the relationship between the scale of the dendritic network and the corresponding mechanical properties and wear behavior. The Al-Sn (15 and 20 wt pct Sn) and Al-Si (3 and 5 wt pct Si) alloys were directionally solidified under unsteady-state heat flow conditions in water-cooled molds in order to permit samples with a wide range of dendritic spacings to be obtained. These samples were subjected to tensile and wear tests, and experimental quantitative expressions correlating the ultimate tensile strength (UTS), yield tensile strength, elongation, and wear volume to the primary dendritic arm spacing (DAS) have been determined. The wear resistance was shown to be significantly affected by the scale of primary dendrite arm spacing. For Al-Si alloys, the refinement of the dendritic array improved the wear resistance, while for the Al-Sn alloys, an opposite effect was observed, i.e., the increase in primary dendrite arm spacing improved the wear resistance. The effect of inverse segregation, which is observed for Al-Sn alloys, on the wear resistance is also discussed.

  9. Chemically Derived Dense Alumina-Zirconia Composites for Improved Mechanical and Wear Erosion Properties

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As a result of this funded project high purity Zirconia-Toughened Alumina (ZTA) ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and rheological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. This improved materials should have enhanced properties such strength, toughness, and wear resistance for advanced structural applications, for example engine components in high technology aerospace applications.

  10. A correlation between abrasion resistance and other properties of some acrylic resins used in dentistry.

    PubMed

    Harrison, A; Huggett, R; Handley, R W

    1979-01-01

    This investigation studies the relationship of hardness, elastic modulus and scratch width as dependent variables to the abrasion resistance of twenty-three dental acrylic resins. The multiple correlation R, when all three variables are used as predictors, is 0.727. Because of the significant intercorrelations between the variables themselves a stepwise multiple regression analysis showed hardness as a redundant variable. Abrasive wear can be estimated from the following equation Abrasive wear = 806.1 - 0.1498 modulus + 0.681 scratch width (R = 0.725; standard deviation of estimate +/- 50.8) The deletion of scratch width does not appreciably reduce the standard deviation of the estimate: Abrasive wear = 1063.4 - 0.2055 modulus (r = 0.683; standard deviation of estimate +/- 50.3) The method of curing the specimens conformed to the respective manufacturers' instructions. Abrasion and scratch tests were performed using methods developed by the authors and previously described in the literature, whereas the hardness and elastic modulus results were devised from standard test procedures. Further research is currently in progress to improve the predictive power of abrasion resistance with additional new variables. PMID:429382

  11. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  12. Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Guo, Lei; Cheng, Zhenxiong; Wu, Huantao; Ye, Fuxing; Zhang, Keke

    2014-11-01

    WC-12Co powders with a bimodal size distributed WC particles were used to produce coating by high velocity oxy-fuel (HVOF) spraying (B coating), and HVOF sprayed WC-12Co coatings from microstructured, submicrostructured and nanostructured powders were also fabricated for comparison. The phase constitution, microstructure, mechanical properties and wear performance of the coatings were investigated. Decarburization occurred during coatings preparation, and the carbide retention of B coating was 0.934, higher than that of nanostructured coating. B coating exhibited typical multimodal microstructure, and had considerably high microhardness and the highest fracture toughness among the four coatings, with the values of 1291 HV0.1 and 10.76 MPa m1/2, respectively. When sliding against GCr15 ring in block-on-ring configuration, B coating exhibited the lowest wear rate and relatively lower friction coefficient compared with other coatings, with the average values of 0.94 × 10-7 mm3 N-1 m-1 and 0.63 at 245 N load, respectively, which could be attributed to the concrete-like structure.

  13. Tool Wear in Friction Drilling

    SciTech Connect

    Miller, Scott F; Blau, Peter Julian; Shih, Albert J.

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  14. Effect of La2O3 Addition on Microstructure and Wear Behavior of Electrospark Deposited Ni-BASED Coatings

    NASA Astrophysics Data System (ADS)

    Yuxin, Gao; Jian, Yi

    2013-12-01

    La2O3 doped Ni-based coatings have been prepared by electrospark deposition technique. The effect of La2O3 on the microstructure, hardness and wear behavior of the as-prepared Ni-based coatings is investigated by using X-ray diffractometer, scanning electron microscope, wear tribometer and Vickers hardness tester. Results indicates that the microstructure, hardness and wear resistance of La2O3 doped Ni-based coatings are effectively improved as compared to the undoped one, and the coating with the addition of 2.5 wt.% La2O3 shows the optimal improvement effects. The addition of La2O3 can reduce the defects, refine grains and increase hardness of the coating, which can inhibit the nucleation and propagation of cracking, consequently resist cutting and fracture during the wear process. Moreover, the addition of La2O3 leads to changes in abrasion mechanism of the coatings, and the reasons resulting in different abrasion mechanisms are discussed.

  15. Effect of surface hardness on the wear resistance of steel 40Kh under hydroabrasive wear

    SciTech Connect

    Grigor'ev, E.S.

    1984-03-01

    This article presents equations which can be used in the selection of optimal correlations of the hardness of the surface layer of steel 40Kh and the abrasive filler in the design and manufacture of components of oil-well equipment operating under conditions of hydroabrasive wear. An experiment was conducted to determine the relation of the surface hardness of steel 40Kh to wear resistance under hydroabrasive wear in a slurry stream. The test conditions were: velocity of the hydroabrasive stream of 15 m/sec, abrasive concentration in the slurry of 50 g/liter, quartz abrasive sand from the Karadag sand pit with a grain size of 0.2-0.315 mm and microhardness of 11,000 N/mm/sup 2/, medium of technical water, and test duration of 5 h. It is determined that the approximation of the relation of the amount of wear of steel 40Kh to the surface hardness by means of a curvilinearregression equation makes it possible to determine more accurately the nature and amount of wear of steel 40Kh under hydorabrasive wear in a slurry stream.

  16. Abrasion resistant composition

    DOEpatents

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  17. Ceramic wear in indentation and sliding

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The various wear mechanisms involved with single-crystal ceramic materials in indentation and in sliding contacts. Experiments simulating interfacial events have been conducted with hemispherical, conical and pyramidal indenters (riders). With spherical riders, under either abrasive or adhesive conditions, two types of fracture pits have been observed. First, spherical-shaped fracture pits and wear particles are found as a result of either indenting or sliding. These are shown to be due to a spherical-shaped fracture along the circular or spherical stress trajectories. Second, polyhedral fracture pits and debris, produced by anisotropic fracture, and also found both during indenting and sliding. These are primarily controlled by surface and subsurface cracking along cleavage planes. Several quantitative results have also been obtained from this work. For example, using a pyramidal diamond, crack length of Mn-Zn ferrite in the indentation process grows linearly with increasing normal load. Moreover, the critical load to fracture both in indentation and sliding is essentially isotropic and is found to be directly proportional to the indenter radius.

  18. Delamination wear on two retrieved polyethylene inserts after gamma sterilization in nitrogen.

    PubMed

    Brandt, J-M; Medley, J B; MacDonald, S J; Bourne, R B

    2011-03-01

    Two self-aligning mobile bearing knee replacements (SAL-1) with gamma-in-nitrogen sterilized polyethylene inserts were revised due to instability after 6.3 years and after 14.2 years in vivo in two patients. The predominant damage features were burnishing, cracking, and delamination and were observed on the proximal bearing surface of the retrieved polyethylene inserts. This suggested an association with sub-surface fatigue, perhaps initiated by in vivo oxidative degradation which was confirmed by developing a sub-surface white band in one insert. The damage features observed on the distal bearing surface of the polyethylene inserts suggested both an adhesive wear mechanism and an abrasive wear mechanism. The titanium-nitrite coated, titanium-alloy tibial tray was severely worn in one case and possibly contributed to third-body abrasive wear at the distal surface interface. We suggest to carefully follow-up patients who received this type of mobile bearing knee system. PMID:20598549

  19. Wear Resistance of Coating Films on Hob Teeth

    NASA Astrophysics Data System (ADS)

    Umezaki, Yoji; Funaki, Yoshiyuki; Kurokawa, Syuhei; Ohnishi, Osamu; Doi, Toshiro

    The wear resistance of coating films on hob teeth is investigated through the simulated hobbing tests with a flytool. The coating films on hob teeth are titanium family ceramics such as TiN, TiCN, TiSiN and TiAlN and aluminum chromium family ceramics such as AlCrN and AlCrSiN. The wear of coated tools is shown about film thickness, film materials, ingredient ratio in a film component and the oxidization of coating films. The oxidization is clarified from a result of the influence on the crater wear progress through wear cutting tests in atmosphere of nitrogen gas or oxygen gas. The oxidization of TiAlN coating films produces oxide products on the tool rake face, and this oxidation relates to the amount of crater wear. The increase of aluminum concentration in the TiAlN film improves the crater wear resistance in air atmosphere, while it has a reverse effect in nitrogen gases. The AlCrSiN film has effective wear resistance against the abrasive wear and/or oxidization wear. The oxidation film formed on the AlCrSiN film is very firm and this suppresses the oxidation wear on the rake face and works against the abrasive wear advantageously.

  20. Design of an impact abrasion testing machine

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Beeley, P. R.; Baker, A. J.

    1994-04-01

    By using a cam-flat follower-impact shaft with a crank-flat rotating anvil system, the machine to be described can create various impact abrasion conditions to simulate a large range of industrial situations encountered in this field. The main features of the machine are the long working life of the flat rotating anvil, which works in the same way as that of the disk in a pin-on-disk wear tester, and the accurate control of both the impact energy delivered to the specimen and the total sliding distance of the specimen on the anvil. Statistical analysis of test results on the machine with EN24 steel and cast high manganese steel shows that the uncertainty of the population mean is within +/- 4.7% of the sample mean under a 95% confidence level of student distribution, which indicates a very good accuracy of test.

  1. Effect of resin monomer composition on toothbrush wear resistance.

    PubMed

    Kawai, K; Iwami, Y; Ebisu, S

    1998-04-01

    The purpose of this study was to compare the toothbrush abrasion resistance of seven different experimental resins which were made by changing the composition of resin monomers. The experimental resins were made by mixing four kinds of dental resin monomers (Bis-GMA, UDMA, TMPT and TEGDMA), camphorquinone (1 wt%), dimethylaminoethyl methacrylate (2 wt%) and 2,6-di-tert-butyl-p-cresol (0.05 wt%). The resin specimens were stored in air for 2 weeks, and then put on a toothbrush abrasion testing machine. After 100000 strokes, the wear loss of each specimen was determined by weight change during the wear test. TMPT-TEGDMA resin showed the most wear resistance, while Bis-GMA- and UDMA-based resins showed increased wear resistance with an increased content of TEGDMA. Also, a inverse relationship between the microhardness number and the amount of wear of the respective resins was confirmed. PMID:9610853

  2. Microstructure and Wear Behavior of Conventional and Nanostructured Plasma-Sprayed WC-Co Coatings

    NASA Astrophysics Data System (ADS)

    Sánchez, E.; Bannier, E.; Salvador, M. D.; Bonache, V.; García, J. C.; Morgiel, J.; Grzonka, J.

    2010-09-01

    WC-12%Co coatings were deposited by atmospheric plasma spraying using conventional and nanostructured powders and two secondary plasmogenous gases (He and H2). Coating microstructure and phase composition were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffraction techniques (XRD) techniques. This study examined wear and friction properties of the coatings under dry friction conditions. SEM was used to analyze abraded surface microstructure. Coating microhardness and fracture toughness were also determined. All coatings displayed strong decarburization as a result of WC decomposition, which gave rise to the formation of secondary phases (W2C and W). A very fine undissolved WC crystalline dispersion coexisted with these new phases. TEM observation confirmed that the matrix was predominantly amorphous and filled with block-type, frequently dislocated crystallites. Wear was observed to follow a three-body abrasive mechanism, since debris between the ball and the coating surface was detected. The main wear mechanism was based on subsurface cracking, owing to the arising debris. WC grain decomposition and dissolution were concluded to be critical factors in wear resistance. The level of decomposition and dissolution could be modified by changing the plasmogenous gas or feed powder grain size. The influence of the plasmogenous gas on wear resistance was greater than the influence of feedstock particle size.

  3. Degradation of nontoxic fouling-release coatings as a result of abrasion and long-term exposure

    SciTech Connect

    Meyer, A.E.; Baier, R.E.; Forsberg, R.L.

    1995-06-01

    Previous work by this research group demonstrates that methylsilicone-based coatings having critical surface tensions between 20 and 25 mN/m allow easy mechanical detachment of zebra mussel infestations and other fouling for at least 2 years. Continuing evaluations of the coated test panels and trash racks at test sites in western New York confirm and extend the 2-year findings. Coatings which, in addition, contain elutable oils display an apparent further resistance to initial colonization by zebra mussels, but this early benefit does not carry over to the brush-removal forces required for cleaning of the once-fouled coating. Several of the elastomeric methylsilicone coatings are prone to cutting and abrasion damage, limiting their suitability for heavy-duty use and/or situations requiring periodic cleaning. Since standard tests for abrasion and wear developed for paints are not applicable to elastomeric coatings, our laboratory is using a brush abrasion test to evaluate fouling-release coatings for an increasing series of wet brushing cycles.

  4. Wearing gloves in the hospital

    MedlinePlus

    Infection control - wearing gloves; Patient safety - wearing gloves; Personal protective equipment - wearing gloves; PPE - wearing gloves; Nosocomial infection - wearing gloves; Hospital acquired infection - wearing gloves

  5. On the mechanism of formation of wear-resistant coatings on the friction surfaces of technical products in the presence of these drugs Tribo

    NASA Astrophysics Data System (ADS)

    Sharifullin, S. N.; Dunayev, A. V.

    2016-06-01

    Extending the service life of technical devices by exposing the surface of the friction tribo different drugs is an established fact. There are various hypotheses to explain the mechanism of formation of coatings with high wear resistance and low coefficient of friction on the mating surfaces of friction units of machines and mechanisms during their operation with the presence of drugs Tribo. All these conflicting hypotheses. The proposed technology without the wear operation of equipment using Tribo drugs differ in content and methodology of processing machinery. In this paper, an analysis of existing hypotheses formation mechanism of these coatings. The authors have their own experience in the development and application of technologies without the wear operation of equipment using Tribo drugs. This allows them to develop their own hypothesis of the mechanism of formation of coatings with high wear resistance and low coefficient of friction on the mating surfaces of friction units of machines and mechanisms during their operation with the presence of drugs Tribo.

  6. Wear behavior of pressable lithium disilicate glass ceramic.

    PubMed

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. PMID:25980530

  7. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion

    NASA Astrophysics Data System (ADS)

    Emelyanenko, Alexandre M.; Shagieva, Farida M.; Domantovsky, Alexandr G.; Boinovich, Ludmila B.

    2015-03-01

    Existing and emerging applications of laser-driven methods make an important contribution to advancement in nanotechnological approaches for the design of superhydrophobic surfaces. In this study, we describe a superhydrophobic coating on stainless steel, designed by nanosecond IR laser treatment with subsequent chemisorption of fluorooxysilane for use in heavily loaded hydraulic systems. Coating characterization reveals extreme water repellency, chemical stability on long-term contact with water, and excellent durability of functional properties under prolonged abrasive wear and cavitation loads. The coating also demonstrates self-healing properties after mechanical damage.

  8. Improving Tribological Properties of Cast Al-Si Alloys through Application of Wear-Resistant Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Culliton, David; Betts, Anthony; Carvalho, Sandra; Kennedy, David

    2013-04-01

    Flame Spray Thermal Spray coatings are low-cost, high-wear surface-treatment technologies. However, little has been reported on their potential effects on cast automotive aluminum alloys. The aim of this research was to investigate the tribological properties of as-sprayed NiCrBSi and WC/12Co Flame Spray coatings applied to two cast aluminum alloys: high-copper LM24 (AlSi8Cu3Fe), and low-copper LM25 (AlSi7Mg). Potential interactions between the mechanical properties of the substrate and the deposited coatings were deemed to be significant. Microstructural, microhardness, friction, and wear (pin-on-disk, microabrasion, Taber abrasion, etc.) results are reported, and the performance differences between coatings on the different substrates were noted. The coefficient of friction was reduced from 0.69-0.72 to 0.12-0.35. Wear (pin-on-disk) was reduced by a factor of 103-104, which was related to the high surface roughness of the coatings. Microabrasion wear was dependent on coating hardness and applied load. Taber abrasion results showed a strong dependency on the substrate, coating morphology, and homogeneity.

  9. Wear and microstructural integrity of ceramic plasma sprayed coatings

    NASA Astrophysics Data System (ADS)

    Erickson, Lynn C.

    1999-10-01

    In this work a series of ceramic plasma sprayed (PS) coatings, both alumina- and chromia-based, were sprayed according to a matrix of deposition parameters in order to produce a broad range of microstructures. To investigate the effect of splat size on the coating response, a series of mono-crystalline a -alumina powders with very narrow particle size ranges, nominally 5, 10 and 18 microns in diameter, was sprayed. The coatings were extensively characterized for a variety of microstructural features, including porosity, the angular distribution and density of microcracks as well as the lamellar, or splat, dimensions, using techniques of metallurgical analysis and electron microscopy. The coatings were then evaluated using a series of micromechanical techniques, including indentation, controlled scratch testing, abrasion and dry particle erosion, to investigate their response to different contact situations. It was found that the microstructural features with the most influence on the behaviour of ceramic PS coatings during contact, or wear, by hard particles include, in order of importance: (1) macro-porosity, (2) horizontal crack density, (3) degree of flattening of the splats and (4) volume of unmelted particles, which are all linked to the level and strength of interlamellar bonding in the coating. The major effect of the inter-lamellar bonding in ceramic PS coatings was seen in the wear mechanism transitions. As the level of inter-splat bonding in the coating decreases, the contact load at which the transition from plastic deformation to splat fracture and debonding occurs does as well. However, the load at which catastrophic brittle fracture and spalling occur is increased. All of the micromechanical and wear methods evaluated in the present work were sensitive to differences in the coating microstructures to varying degrees. The low load abrasion results showed the most sensitivity to the microstructural differences of the coatings, followed by controlled

  10. Study on the influence of back blade shape on the wear characteristics of centrifugal slurry pump

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhou, S. P.; Li, S.

    2016-05-01

    CFX particle inhomogeneous model was introduced for the mechanism analysis of a centrifugal slurry pump which is equipped with back blades on impeller shrouds. Combining with the total efficiency correction, the simulation showed good prediction accuracy of external characteristics results compared with the experimental values. Vorticity and Q-Criterion were chosen as the variables to illustrate the abrasion morphology and wear mechanism by contrasting simulation result with worn impeller in engineering. The analysis showed that the large vorticity intensity areas are distributed at the edge of impeller shroud and intensively behind the back blades. Moreover, the vorticity scattered on suction surface of back blade shows the largest intensity. The contour of Q-Criterion demonstrated that the swirl scale in front cavity is obviously larger than that in back cavity. The distribution of vorticity on both front and back shrouds can reasonably explain the impeller wear characteristics. Finally, the forward curved back blade proved to be excellence performance in vorticity distribution.

  11. Effect of high-intensity ultrasonic treatment on microstructure, hardness and wear behaviour of the hypereutectic Mg-5Si alloy

    NASA Astrophysics Data System (ADS)

    Moussa, M. E.; Waly, M. A.; El-Sheikh, A. M.

    2016-07-01

    The effect of high-intensity ultrasonic treatment (HIUST) on microstructure, hardness and wear behavior in Mg-5wt.%Si hypereutectic alloy has been investigated. The results showed clearly that without HIUST, most of primary Mg2Si appeared as coarse dendritic morphology with average size of about 200 µm. With HIUST, the average size of primary Mg2Si decreased significantly to about 33 µm and their morphologies changed to polyhedral shape. The modification mechanism is mainly attributed conjugation of two mechanisms: cavitation-enhanced heterogeneous nucleation and cavitation-induced dendrite fragmentation. The alloy treated with HIUST has higher hardness and wear resistance than that untreated with HIUST. The wear mechanism of investigated alloys at low applied load (10 N) and low sliding speed (0.3 m/s) is a mild abrasive oxidative wear with little adhesion. However, the wear mechanism due to the applied high loads (30, 50 N) at low sliding speed (0.3 m/s) and/or to the applied high sliding speeds (0.6, 0.9 m/s) under low load (10 N), could be described as delamination mechanism. The microstructures of the specimens were analyzed by optical microscope (OM) (model OPTIKA M-790, Italy). Energy dispersion spectrum (EDS) affiliated to field emission scanning electron microscopy (FESEM) (model Quanta FEG, The Netherlands) were performed to reveal the concentration of alloying elements in selected areas of the microstructure.

  12. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  13. Wear resistance of ductile irons

    SciTech Connect

    Lerner, Y.S. )

    1994-06-01

    This study was undertaken to evaluate the wear resistance of different grades of ductile iron as alternatives to high-tensile-strength alloyed and inoculated gray irons and bronzes for machine-tool and high-pressure hydraulic components. Special test methods were employed to simulate typical conditions of reciprocating sliding wear with and without abrasive-contaminated lubricant for machine and press guideways. Quantitative relationships were established among wear rate, microstructure and microhardness of structural constituents, and nodule size of ductile iron. The frictional wear resistance of ductile iron as a bearing material was tested with hardened steel shafts using standard test techniques under continuous rotating movement with lubricant. Lubricant sliding wear tests on specimens and components for hydraulic equipment and apparatus were carried out on a special rig with reciprocating motion, simulating the working conditions in a piston/cylindrical unit in a pressure range from 5 to 32 MPa. Rig and field tests on machine-tool components and units and on hydraulic parts have confirmed the test data.

  14. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  15. Fretting Wear Properties of TiCN-Ni Cermets: Influence of Load and Secondary Carbide Addition

    NASA Astrophysics Data System (ADS)

    Manoj Kumar, B. V.; Basu, Bikramjit

    2008-03-01

    The increasing demand for TiCN-based cermets in tribological applications necessitates a thorough understanding of the influence of experimental as well as material parameters on the friction and wear properties. In optimizing microstructure and properties, secondary carbides are added to baseline TiCN-Ni cermet. The present work aims at evaluating the fretting wear behavior of Ti(CN)-Ni cermets containing various secondary carbides, such as WC, NbC, TaC, and HfC, against steel at different loading (2, 6, and 10 N) conditions. The evolution of tangential frictional force for the investigated cermets was analyzed in terms of fretting logs and fretting loops. The topographical characterization of worn surfaces was performed, using laser surface profilometry and a scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy (EDS) capability. The steady-state coefficient of friction (COF) was minimum (0.33) for a TiCN-20Ni cermet/steel tribocouple, while a maximum COF (0.47) was recorded for TiCN-20Ni-10HfC cermet/steel at a 2-N load. The wear rate of the cermets varied in the range of 1.7 × 10-6 to 3.5 × 10-6 mm3/Nm. The TiCN-20Ni-10HfC cermet exhibited poor wear resistance among investigated cermets. The dominant wear mechanisms were found as abrasion and tribolayer formation. The dominance of abrasion is explained in terms of cumulative energy dissipation.

  16. Use of a TiBN Multilayer Coating for Wear Reduction

    SciTech Connect

    Behrens, Bernd-Arno; Bistron, Marcus; Bach, Friedrich-Wilhelm; Moehwald, Kai; Deisser, Todd Alexander

    2007-05-17

    The near surface area of forging dies is exposed to high mechanical loads. Additionally thermal and chemical stresses occur during the forging process. Depending on the number of forged parts, several kinds of damage develop in the surface area, which lead to failures of forging dies. Die wear is the main reason of failure with a 70% ratio. The abrasion resistance of the surface area of forging dies has to be increased in order to reduce wear. Therefore different methods were examined such as the increase of the abrasion resistance by plasma nitriding and by coating with ceramic layers (TiN, TiCN, TiC, CrN). These layers are applied to the forging die by using PACVD or PAPVD treatment. At the Institute of Metal Forming and Metal-Forming Machines of the University of Hanover a wear reduction by factor 3.5 compared to nitrided forging dies for forging helical gears was achieved. This was possible by using a coating compound of 18 ceramic layers. These excellent results for the multilayer system can be explained through the energy reduction at the inner boundaries and a crack deflection effect at the phase transitions. The layer support of neighboring layers and a stress relaxation through the stacked construction of the layer system are also improving the durability of the coating. This multilayer coating consists of a TiN-TiCN-TiC layer system with an overall thickness of 1.8 {mu}m. This paper presents investigations of this multilayer compound and further research to reduce wear through an additional TiBN coating layer. With this additional top coating an increase of the thermal resistance and the oxidation resistance can be achieved. As a result of this enhancement a further increase of the wear reduction was expected.

  17. Fractal characterization of wear-erosion surfaces

    SciTech Connect

    Rawers, J.; Tylczak, J.

    1999-12-01

    Wear erosion is a complex phenomenon resulting in highly distorted and deformed surface morphologies. Most wear surface features have been described only qualitatively. In this study wear surfaces features were quantified using fractal analysis. The ability to assign numerical values to wear-erosion surfaces makes possible mathematical expressions that will enable wear mechanisms to be predicted and understood. Surface characterization came from wear-erosion experiments that included varying the erosive materials, the impact velocity, and the impact angle. Seven fractal analytical techniques were applied to micrograph images of wear-erosion surfaces. Fourier analysis was the most promising. Fractal values obtained were consistent with visual observations and provided a unique wear-erosion parameter unrelated to wear rate. In this study stainless steel was evaluated as a function of wear erosion conditions.

  18. Mechanical and tribological properties of ion beam-processed surfaces

    NASA Astrophysics Data System (ADS)

    Kodali, Padma

    steel were determined to be adhesive, abrasive, and third body wear. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness. The wear morphology of the coatings that were tested against a ruby slider suggested that abrasive wear, brittle fracture, and third body wear are the mechanisms by which loss of material can occur.

  19. The Behavior of Water in Collagen and Hydroxyapatite Sites of Cortical Bone: Fracture, Mechanical Wear, and Load Bearing Studies

    PubMed Central

    Gul-E-Noor, Farhana; Singh, Chandan; Papaioannou, Antonios; Sinha, Neeraj; Boutis, Gregory S.

    2015-01-01

    The mechanical properties of cortical bone, which is largely comprised of collagen, hydroxyapatite, and water, are known to hinge on hydration. Recently, the characteristics of water in bone have drawn attention as potential markers of bone quality. We report on the dynamics, diffusion, population, and exchange of water in cortical bone by NMR relaxation and diffusion methodologies. Relaxation measurements over timescales ranging from 0.001 to 4.2 s reveal two distinguishable water environments. Systematic exposure to ethylenediaminetetraacetic acid or collagenase reveals one peak in our 2D relaxation map belonging to water present in the hydroxyapatite rich environment, and a second peak with shorter relaxation times arising from a collagen rich site. Diffusion-T2 measurements allowed for direct measurement of the diffusion coefficient of water in all observable reservoirs. Further, deuterium relaxation methods were applied to study cortical bone under an applied force, following mechanical wear or fracture. The tumbling correlation times of water reduce in all three cases, indicating that water dynamics may be used as a probe of bone quality. Lastly, changes in the relative populations and correlation times of water in bone under an applied force suggest that load bearing occurs largely in the collagen rich environment and is reversible. PMID:26659838

  20. Eye Wear

    MedlinePlus

    Eye wear protects or corrects your vision. Examples are Sunglasses Safety goggles Glasses (also called eyeglasses) Contact ... jobs and some sports carry a risk of eye injury. Thousands of children and adults get eye ...

  1. Abrasion-resistant antireflective coating for polycarbonate

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1978-01-01

    Following plasma-polymerization technique, treatment in oxygen glow discharge further enhances abrasion resistance and transmission. Improvement in abrasion resistance was shown by measuring percentage of haze resulting from abrasion. Coating samples were analyzed for abrasion using standard fresh rubber eraser. Other tests included spectra measurements and elemental analysis with spectrometers and spectrophotometers.

  2. A nonmineralized approach to abrasion-resistant biomaterials

    PubMed Central

    Pontin, Michael G.; Moses, Dana N.; Waite, J. Herbert; Zok, Frank W.

    2007-01-01

    The tooth-like mouthparts of some animals consist of biomacromolecular scaffolds with few mineral components, making them intriguing paradigms of biostructural materials. In this study, the abrasion resistance of the jaws of one such animal, the bloodworm Glycera dibranchiata, has been evaluated by nanoindentation, nanoscratching, and wear testing. The hardest, stiffest, and most abrasion-resistant materials are found within a thin (<3 μm) surface layer near the jaw tip and a thicker (10–20 μm) subsurface layer, both rich in unmineralized Cu. These results are consistent with the supposition that Cu ions are involved in the formation of intermolecular coordination complexes between proteins, creating a highly cross-linked molecular network. The intervening layer contains aligned atacamite [Cu2(OH)3Cl] fibers and exhibits hardness and stiffness (transverse to the alignment direction) that are only slightly higher than those of the bulk material but lower than those of the two Cu-rich layers. Furthermore, the atacamite-containing layer is the least abrasion-resistant, by a factor of ≈3, even relative to the bulk material. These observations are broadly consistent with the behavior of engineering polymer composites with hard fiber or particulate reinforcements. The alignment of fibers parallel to the jaw surface, and the fiber proximity to the surface, are both suggestive of a natural adaptation to enhance bending stiffness and strength rather than to endow the surface regions with enhanced abrasion resistance. PMID:17702868

  3. Improved hardness and wear properties of B-ion implanted polycarbonate

    SciTech Connect

    Lee, E.H.; Rao, G.R.; Mansur, L.K. )

    1992-07-01

    Polycarbonate (Lexan) was implanted with 100 and 200 keV B{sup +} ions to doses of 0.26, 0.78, and 2.6{times}10{sup 15} ions/cm{sup 2} at room temperature ({lt}100 {degree}C). Mechanical characterization of implanted materials was carried out by nanoindentation and sliding wear tests. The results showed that the hardness of implanted polycarbonate increased with increasing ion energy and dose, attaining hardness up to 3.2 GPa at a dose of 2.6{times}10{sup 15} ions/cm{sup 2} for 200 keV ions, which is more than 10 times that of the unimplanted polymer. Wear properties were characterized using a reciprocating tribometer with nylon, brass, and SAE 52100 Cr-steel balls with 0.5 and 1 N normal forces for 10 000 cycles. The wear mode varied widely as a function of ion energy, dose, wear ball type, and normal load. For given ion energy, load, and ball type conditions, there was an optimum dose that produced the greatest wear resistance and lowest friction coefficient. For polycarbonate implanted with 0.78{times}10{sup 15} ions/cm{sup 2}, the nylon ball produced no wear after 10 000 cycles. Moreover, the overall friction coefficient was reduced by over 40% by implantation. The results suggest that the potential of ion-beam technology for improving polycarbonate is significant, and that surface-sensitive mechanical properties can be tailored to meet the requirements for applications demanding hardness, wear, and abrasion resistance.

  4. Dental abrasion as a cutting process.

    PubMed

    Lucas, Peter W; Wagner, Mark; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Michael, Shaji; Thai, Lidia A; Strait, David S; Swain, Michael V; van Casteren, Adam; Renno, Waleed M; Shekeban, Ali; Philip, Swapna M; Saji, Sreeja; Atkins, Anthony G

    2016-06-01

    A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential. PMID:27274807

  5. Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding

    NASA Astrophysics Data System (ADS)

    Zhou, Shengfeng; Dai, Xiaoqin; Zheng, Haizhong

    2012-02-01

    The carck-free Fe-based +20 wt% WC coating with large area was produced by mutli-track overlapping laser induction hybrid rapid cladding. The results showed that the maximum laser scanning speed and the maximum feeding rate of powder can be increased to 3500 mm/min and 120 g/min, respectively. The cast WC particles were dissolved almost completely and had a worse wettability with Fe-based metal matrix. The precipitated carbides such as M 12C and M 23C 6 (M=Fe, W, Cr) formed an intergranular network around the primary Fe-based phase enriched with tungsten. The microhardness of coating decreased first, and then increased slightly with an increase in the track. The first track had the highest microhardness (i.e. 870HV 0.2). Moreover, the wear weight of coating approximately had a linear relationship with the sliding distance, and increased with an increase in the sliding speed. The wear rate approximately remained constant with an increase in the sliding distance and was two times lower than that of the hardened steel AISI 1045 with a hardness of 60HRC. The wear mechanism during the dry sliding wear was a combination of oxidation wear and abrasion wear.

  6. CR TKA UHMWPE wear tested after artificial aging of the vitamin E treated gliding component by simulating daily patient activities.

    PubMed

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods. PMID:25506594

  7. CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities

    PubMed Central

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M.

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods. PMID:25506594

  8. Mobile-bearing knees reduce rotational asymmetric wear.

    PubMed

    Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung

    2007-09-01

    Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees. PMID:17483732

  9. Tooth Wear Prevalence and Sample Size Determination : A Pilot Study

    PubMed Central

    Abd. Karim, Nama Bibi Saerah; Ismail, Noorliza Mastura; Naing, Lin; Ismail, Abdul Rashid

    2008-01-01

    Tooth wear is the non-carious loss of tooth tissue, which results from three processes namely attrition, erosion and abrasion. These can occur in isolation or simultaneously. Very mild tooth wear is a physiological effect of aging. This study aims to estimate the prevalence of tooth wear among 16-year old Malay school children and determine a feasible sample size for further study. Fifty-five subjects were examined clinically, followed by the completion of self-administered questionnaires. Questionnaires consisted of socio-demographic and associated variables for tooth wear obtained from the literature. The Smith and Knight tooth wear index was used to chart tooth wear. Other oral findings were recorded using the WHO criteria. A software programme was used to determine pathological tooth wear. About equal ratio of male to female were involved. It was found that 18.2% of subjects have no tooth wear, 63.6% had very mild tooth wear, 10.9% mild tooth wear, 5.5% moderate tooth wear and 1.8 % severe tooth wear. In conclusion 18.2% of subjects were deemed to have pathological tooth wear (mild, moderate & severe). Exploration with all associated variables gave a sample size ranging from 560 – 1715. The final sample size for further study greatly depends on available time and resources. PMID:22589636

  10. Enhanced nano-mechanical and wear properties of polycarbosilane derived SiC coating on silicon

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jonaki; Ghosh, Sujan; Ghosh, Arnab; Ranjan, Ashok; Saxena, Arvind K.; Das, Probal K.; Banerjee, Rajat

    2015-01-01

    Liquid Polycarbosilane derived β-SiC and α-SiC coating was deposited at three differently moderate high temperatures by CVD method on Silicon wafers. The nano-mechanical properties such as hardness, reduced Young's modulus, elastic recovery and plasticity index of the coatings were evaluated and compared at different deposition temperature. It was observed that with the increase in deposition temperature the nano-mechanical property of the coating enhances, the reason being the increase in crystallinity along with good adherence at higher temperature. Moreover the tribological properties of the coated samples show similar trends with increase in deposition temperature although it were found to be much better for the β-SiC than that of the α-SiC coated samples. All the coated samples shows brittle mode of failure during tribological testing. It was found that the 900 °C deposited film has better nano-mechanical as well as good tribological properties compared to other temperature of deposition due to better crystallinity and adherence. Thus the enhanced mechanical and tribological properties of this coating can be used as protective films on silicon for application in micrometers and other micro devices.

  11. Abrasives in snuff?

    PubMed

    Dahl, B L; Stølen, S O; Oilo, G

    1989-08-01

    The purpose of this study was to determine and calculate the inorganic contents of four brands of snuff. Visual inspection of wet snuff showed fairly large, yellow crystal-like particles. Scanning electron microscopy and X-ray dispersive (EDX) analyses were used to study both wet snuff and ashes of snuff, whereas light emission spectrography was used to determine elements in the ashes. The crystal-like particles did not dissolve in distilled water or in ethanol heated to 60 degrees C. EDX analyses showed that most elements remained in the particles after washing. The total weight percentage of inorganic material in snuff was calculated after burning dried snuff until constant weight was obtained. The ashes of snuff did not contain any crystal-like particles but consisted of a small-grained amorphous mass. The following elements were detected: Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, Pb, Si, Sr, Ti, Va, and Zr. Other elements such as rare earths were not searched for. The weight percentage of inorganic elements ranged between 12.35 +/- 0.69 and 20.95 +/- 0.81. Provided snuff is used in the same manner as chewing tobacco, and some people admit to doing so, there is a risk that its relatively high contents of inorganic material and heavily soluble salts may be conducive to excessive abrasion of teeth and restorations. PMID:2782061

  12. A comparison of the tribological behaviour of Y-TZP in tea and coffee under micro-abrasion conditions

    NASA Astrophysics Data System (ADS)

    Sharifi, S.; Stack, M. M.

    2013-10-01

    The micro-abrasion of Y-TZP, a candidate dental restorative material, was investigated in a range of caffeine-containing solutions which included tea and coffee. Additions of sugar and milk were used to test the effects of viscosity and pH on the wear rate. The results indicated a significant increase in wear rate in the various solutions, with some correlation between wear rate and increases in viscosity and this was linked to enhance particle entrainment in the more viscous solutions. The generally lower wear rate in tea compared to coffee was associated with a longer ageing period in this solution before uniform wear was observed. Micro-abrasion maps were used to characterize the differences in performance for the material in the environments studied.

  13. A Study on Tactile Friction and Wear

    NASA Astrophysics Data System (ADS)

    Sugishita, Junji; Usami, Hatsuhiko; Hattori, Tomokazu

    The tactile wear (“tezure” in Japanese) is an abrasion phenomenon of material surfaces caused by the contact of human hand over a long period of time. Though this phenomenon has been the focus of various articles, an extensive study with regard to the wear characteristics is of a profound importance. To date, we have several remarkable examples such as the statue of Pindola Bharadvaja (Buddhist) and the St. Peter statue (Christian). Followers of the respective religions who are deeply attached and rooted have been touching the statues as part of their rituals for many generations over centuries. In this study, an attempt is done to verify the friction and wear characteristics of various soft metals with contact of human finger. The results of our experiments show that the friction coefficient upon the contact of the human finger and pure copper are very high and thus proving tactile wear of soft metals can be generated easily.

  14. Wear-resistant polytetrafluoroethylene via electron irradiation

    SciTech Connect

    Blanchet, T.A.; Peng, Y.L.

    1996-06-01

    The sliding wear and friction behavior of irradiation-modified PTFE (by 10 MeV electrons in ambient air) against polished stainless steel is studied. Steady-state wear rate is shown to decrease monotonically by more than three orders of magnitude as the dose of the irradiation is increased from 0 to 30 Mrad. Friction initially increases with increasing dose, reaching a miximum value at 5 Mrad, then decreases with subsequent increases in dose, attaining a value similar to that of unirradiated PTFE at 30 Mrad. Hardness monotonically increases with increasing dose; however, irradiated PTFE was not found to abrasively damage the steel countersurface as many wear-resistant particle-filled PTFE composites do. Wear reduction is accomplished as debris production transforms from that of numerous large plate-like debris for unirradiated PTFE to that of very fine debris for irradiated PTFE. 26 refs., 6 figs.

  15. Effect of Cr on Microstructure, Mechanical Properties, and Wear Behavior of In Situ 20 wt.%Al2O3/Fe-25Al Composites

    NASA Astrophysics Data System (ADS)

    Bai, Yaping; Xing, Jiandong; Guo, Yongchun; Li, Jianping; He, Yuanyuan; Ma, Shengqiang

    2015-02-01

    In order to improve the room temperature ductility and high temperature strength of Fe-25Al alloys, in situ 20 wt.%Al2O3/Fe-25Al composites with 0, 1, 2, 3, 4, and 5 at.% Cr element contents (0-6.70 wt.%) were prepared by mechanical alloying inducing self-propagating reaction with subsequent plasma-activated sintering. Microstructures, room temperature hardness, flexural strength, fracture toughness, and compression property and wear behavior at mid-high temperatures of the sintered samples were tested and analyzed. The results showed that all the composites with Cr element addition had good microstructure with fine grain size and high relative density. The flexural strength and fracture toughness increased first and then decreased with increasing content of Cr. Especially, the composites with 3 at.% Cr had the highest flexural strength, highest fracture toughness, and best compressive properties during 298-1073 K, and the main fracture mechanism changed from brittle fracture at room temperature to plastic deformation and pullout of the second phase at 673 K. With Cr content increasing, the friction coefficients decreased and the wear rates increased because of decreasing hardness. The composites with 3 at.% Cr had excellent wear properties with lower friction coefficient and wear rate.

  16. Comparison microstructure and sliding wear properties of nickel-cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition

    NASA Astrophysics Data System (ADS)

    Karslioglu, Ramazan; Akbulut, Hatem

    2015-10-01

    Nickel-cobalt (Ni-Co) alloys and Ni-Co/multiwalled carbon nanotube (MWCNT) composite coatings were prepared under direct current (DC), pulse current (PC) and pulse reverse current (PRC) methods. The effect of different deposition currents on the surface microstructure, crystallographic structure, microhardness, and reciprocating sliding wear behavior were investigated. MWCNT co-deposition caused to modify Ni-Co surface morphology, decrease in grain size, and increase in surface roughness, since MWCNTs effected the deposition mechanisms of Ni-Co alloy. The nanocomposite coatings deposited using PC and PRC deposition exhibited significant improvement in microhardness and wear resistance due to unique enhanced reinforcement of MWCNTs in Ni-Co coatings. Reciprocating sliding wear tests evidenced that co-deposition of MWCNTs provided effective load bearing ability and self-lubrication between the friction surfaces. However, the friction coefficient increases for all the nanocomposites produced with DC, PC and PRC methods showed to be increased. In the Ni-Co alloy coatings, the predominant wear mechanisms was delamination caused by fatigue micro cracking whereas in the MWCNT co-deposited composites wear mechanism showed abrasive grooves and plastic deformation due to decreased real contact area.

  17. Lubrication and wear mechanisms of polyimide-bonded graphite fluoride films subjected to low contact stress

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    The tribological properties of polyimide-bonded graphite fluoride films were studied with a pin-on-disk friction apparatus. A 440 C HT stainless steel rider with a 0.95 millimeter diameter flat area was slid against the film in order to achieve a light, closely controlled contact stress. A 1 kilogram load was applied to this flat to give a projected contact stress of 14 megapascals. Two stages of lubrication were operating. In the first stage, the film supported the load and the lubricating mechanism appeared to be the shear of a thin surface layer of the film between the rider and the bulk of the film. The second stage began after the original film was worn away, and the lubricating mechanism appeared to be the shear of very thin lubricant layers between the flat area on the rider and flat plateaus generated on the sandblasted asperities of the metallic substrate. The major difference between the lubricating mechanisms of the hemispherical and flat riders was that the flat wore through the film much more slowly than did the hemisphere.

  18. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    PubMed

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. PMID:24365326

  19. Evaluation of the wear properties of high interstitial stainless steels

    SciTech Connect

    Tylczak, J.H.; Rawers, J.C.; Alman, D.E.

    2007-04-01

    Adding carbon to high nitrogen steels increases interstitial concentrations over what can be obtained with nitrogen addition alone. This can results in an increase in hardness, strength, and wear resistance. The alloys produced for this study were all based on commercially available high-nitrogen Fe-18Cr-18Mn stainless steel. This study is the first significant wear study of these new high interstitial nitrogen-carbon stainless steel alloys. Wear tests included: scratch, pin-on-disk abrasion, dry sand/rubber wheel abrasion, impeller impact, and jet erosion. Increasing interstitial concentration increased strength and hardness and improved wear resistance under all test conditions. The results are discussed in terms of overall interstitial alloy concentration.

  20. Physical, Mechanical, and Dry Sliding Wear Properties of Fe-Cr-W-C Hardfacing Alloys Under Different Tungsten Addition

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Shamanian, Morteza; Azimi, Ghasem

    2015-04-01

    In this study, the effects of tungsten on microstructure and wear performance of Fe-Cr-C claddings were evaluated. In this regard, tungsten inert gas surfacing process was employed to deposit Fe-Cr-C and Fe-Cr-C-W hardfacing alloys on plain carbon steel substrate using preplaced powders. Phase composition, microstructure, and wear behavior of clad layers were investigated using X-ray diffraction analysis, optical and scanning electron microscopy, and reciprocating wear tests, respectively. The claddings were well bonded to the substrate and showed a uniform microstructure. Cr7C3 and WC carbides were detected in the deposited layers. Further investigations indicated that the hardness and wear resistance can be improved by adding tungsten into Fe-Cr-C hardfacing alloys.

  1. Conduit Coating Abrasion Testing

    NASA Technical Reports Server (NTRS)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  2. Wear Behavior and Mechanism of Fe-Al Intermetallic Coating Prepared by Hot-Dip Aluminizing and Diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Y.; Zhou, Y.; Liu, J. Q.; Chen, K. M.; Mo, J. G.; Cui, X. H.; Wang, S. Q.

    2016-05-01

    A Fe-Al intermetallic compound coating was prepared on AISI H13 steel by hot-dip aluminizing and subsequent high-temperature diffusion. Dry sliding wear tests of the Fe-Al intermetallic coating were performed at 298 K to 873 K (25 °C to 600 °C). The wear behavior of the Fe-Al intermetallic coating was noticed to vary markedly with the temperature and load. At 298 K (25 °C), the wear rate rapidly increased with an increase of the load. As the temperature was elevated, the wear rate dramatically decreased except for the cases under 300 N at 473 K and 673 K (200 °C and 400 °C). The Fe-Al intermetallic coating possessed an excellent elevated-temperature wear performance, especially at 673 K to 873 K (400 °C to 600 °C), but worse room-temperature one, which were noticed to be attributed to the existence and inexistence of thin tribo-oxide layers, respectively. Such a thin tribo-oxide layer was considered to provide a protection for the intermetallic compound. When the tribo-oxide layer did not form at room temperature or the formed one was massively delaminated above the critical load at elevated temperatures, Fe-Al intermetallic coating possessed poor wear resistance.

  3. Anti-Wear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive

    SciTech Connect

    Qu, Jun; Bansal, Dinesh G; Yu, Bo; Howe, Jane Y; Luo, Huimin; Dai, Sheng; Li, Huaqing; Blau, Peter Julian; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald

    2012-01-01

    An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential anti-wear lubricant additive. Unlike most other ILs that have very low solubility in non-polar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 oC, showed no corrosive attack to cast iron in ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron <8o). Most importantly, this phosphonium-based IL has demonstrated effective anti-scuffing and anti-wear characteristics when blended with lubricating oils. For example, a 5 wt.% addition into a synthetic base oil eliminated the scuffing failure experienced by the neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by three orders of magnitude. A synergistic effect on wear protection was observed with the current anti-wear additive when added into a fully-formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL s anti-scuffing and anti-wear functionality.

  4. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2016-06-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  5. Effect of Annealing Temperature on Hardness and Wear Resistance of Electroless Ni-B-Mo Coatings

    NASA Astrophysics Data System (ADS)

    Serin, Ihsan Gökhan; Göksenli, Ali

    2015-06-01

    Formation of nickel-boron-molybdenum (Ni-B-Mo) coating on steel by electroless plating and evaluation of their morphology, hardness and tribological properties post heat treatment at different temperatures for 1 h is investigated. The 25 μm thick coating is uniform and adhesion between the substrate and coating is good. Ni-B-Mo coating was amorphous-like structure in their as-plated condition and by 400°C heat-treated coating, nickel fully crystallized and nickel borides and molybdenum carbide were formed. All coatings exhibited higher hardness than the substrate steel. Hardness values of all coatings up to 400°C did not change distinctively but decreased partly beyond 400°C. Friction coefficient reached lowest value post heat treatment at 300°C but later increased with increasing tempering temperature. Wear resistance was lowest in as-plated coating; however it reached the highest value at 300°C. Worn surface of the coatings showed the abrasive wear as the dominant wear mechanism. An additional adhesive wear mechanism was detected in coating tempered at 550°C. Moreover, our results confirmed that the molybdenum addition improved the thermal stability of the resulting coating. Therefore, Ni-B-Mo coating has potential for application in precision mould, optical parts mould or bipolar plates, where thermal stability is essential.

  6. Wear Mechanisms in Electron Sources for Ion Propulsion, 1: Neutralizer Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira

    2008-01-01

    Upon the completion of two long-duration life tests of a 30-cm ion engine, the orifice channel of the neutralizer hollow cathode was eroded away to as much as twice its original diameter. Whereas the neutralizer cathode orifice opened significantly, no noticeable erosion of the discharge cathode orifice was observed. Noquantitative explanation of these erosion trends has been established since the completion of the two life tests. A two-dimensional model of the partially ionized gas inside these devices has been developed and applied to the neutralizer hollow cathode. The numerical simulations show that the main mechanism responsible for the channel erosion is sputtering by Xe+. These ions are accelerated by the sheath along the channel and bombard the surface with kinetic energy/charge of about 17 V at the beginning of cathode life. The density of the ions inside the neutralizer orifice is computed to be as high as 2.1 x 10(sup 22) m(sup -3). Because of the 3.5-times larger diameter of the discharge cathode orifice, the ion density inside the orifice is more than 40 times lower and the sheath drop 7 V lower compared with the values in the neutralizer. At these conditions, Xe+ can cause no significant sputtering of the surface.

  7. Wear and degradation on retrieved zirconia femoral heads.

    PubMed

    Nogiwa-Valdez, A A; Rainforth, W M; Stewart, T D

    2014-03-01

    Zirconia femoral heads retrieved from patients after different implantation periods (up to 13 years) were analysed using vertical scanning interferometry, atomic force microscopy and Raman microspectroscopy. A range of topographical and compositional changes on the surface of the retrievals are reported in this work. The study revealed that changes in roughness are the result of a combination of factors, i.e. scratching, surface upheaval due to transformation to the monoclinic phase and grain pull-out. Clusters of transformed monoclinic grains were observed on heads implanted for more than 3 years. The phase composition of these clusters was confirmed by Raman microspectroscopy. Increased abrasive wear and a higher monoclinic phase content concentrated on the pole of the femoral heads, confirming that the tetragonal to monoclinic phase transformation was not only induced by the tetragonal phase metastability and environmental conditions but mechanical and tribological factors, also affected the transformation kinetics. Additionally, the head implanted for 13 years showed evidence of a self-polishing mechanism leading to a considerable smoothening of the surface. These observations provide an insight into the interrelated mechanisms underlying the wear and transformation process on zirconia ceramics during implantation. PMID:24140384

  8. The Relationship between the Microstructure and Abrasive Resistance of a Hardfacing Alloy in the Fe-Cr-C-Nb-V System

    NASA Astrophysics Data System (ADS)

    Correa, E. O.; Alcântara, N. G.; Tecco, D. G.; Kumar, R. V.

    2007-08-01

    The relationship between abrasive wear resistance and microstructure of a hardfacing alloy based on the Fe-Cr-C-Nb-V system was investigated. This material was developed for cladding, by an open arc welding technique, of components subjected to severe abrasive wear. The work undertaken included the solidification study, microstructural characterization, and abrasion testing. Microstructural examinations of hardfaced layer showed that the microstructure of the alloy consisted of a large volume fraction of primary niobium carbides randomly dispersed in a metastable austenitic matrix containing fine M3C carbides and “islands” of eutectic mixture of γ/M7C3. Energy dispersive X-ray analysis results showed that V preferentially partitioned into the NbC and M3C phases. In comparison with the conventional high carbon/high chromium hardfacing alloy with higher hardness, a Fe-Cr-C-Nb-V hardfacing alloy exhibited improved abrasive wear resistance and a microstructure with higher toughness.

  9. Fractal characterization of wear-erosion surfaces

    SciTech Connect

    Rawers, James C.; Tylczak, Joseph H.

    1999-12-01

    Wear erosion is a complex phenomenon resulting in highly distorted and deformed surface morphologies. Most wear surface features have been described only qualitatively. In this study wear surfaces features were quantified using fractal analysis. The ability to assign numerical values to wear-erosion surfaces makes possible mathematical expressions that will enable wear mechanisms to be predicted and understood. Surface characterization came from wear-erosion experiments that included varying the erosive materials, the impact velocity, and the impact angle. Seven fractal analytical techniques were applied to micrograph images of wear-erosion surfaces. Fourier analysis was the most promising. Fractal values obtained were consistent with visual observations and provided a unique wear-erosion parameter unrelated to wear rate.

  10. Influence of Plasma Intensity on Wear and Erosion Resistance of Conventional and Nanometric WC-Co Coatings Deposited by APS

    NASA Astrophysics Data System (ADS)

    Bonache, V.; Salvador, M. D.; García, J. C.; Sánchez, E.; Bannier, E.

    2011-03-01

    The effects of plasma intensity and powder particle size on wear and erosion resistance have been evaluated for WC-12 wt.%Co coatings deposited by Air Plasma Spraying. Coatings were deposited from micrometric and nanostructured powders. SEM and XRD characterization showed the presence of WC, W2C, W, and an amorphous Co-rich matrix. The performance of the different coatings was compared in sliding wear tests (ball-on-disk), under dry friction conditions. Wear debris and tracks were analyzed by SEM. The debris generated during the test was found to have a great influence on the sliding properties. Wear follows a "three-body abrasive mechanism" and is dominated by coating spallation because of sub-surface cracking. In order to evaluate erosion behavior, solid particle erosion tests were conducted. Eroded coatings were analyzed by SEM, and erosion mainly occurs by a "cracking and chipping mechanism." The study shows that wear and erosion behavior is strongly affected by plasma arc intensity.

  11. Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application

    PubMed Central

    Ganapathy, Perumal; Manivasagam, Geetha; Rajamanickam, Asokamani; Natarajan, Alagumurthi

    2015-01-01

    This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface methodology to obtain dense coating. The tribological behaviors of the coated and uncoated substrates were evaluated using a ball-on-plate sliding wear tester at 37°C in simulated body-fluid conditions. The microstructure of both the titanium alloy and coated specimen were examined using an optical microscope and scanning electron microscope. The hardness of the plasma-sprayed alumina–zirconia composite coatings was 2.5 times higher than that of the Ti-6Al-4V alloy, while the wear rate of Ti-6Al-4V alloy was 253 times higher than that of the composite-coated Ti-6Al-4V alloy. The superior wear resistance of the alumina–zirconia coated alloy is attributed to its enhanced hardness and intersplat bonding strength. Wear-track examination showed that the predominant wear mechanism of Ti-6Al-4V alloy was abrasive and adhesive wear, whereas, in the case of alumina–zirconia composite coated alloy, the wear was dominated by microchipping and microcracking. PMID:26491323

  12. Comparison of ceria nanoparticle concentrations in effluent from chemical mechanical polishing of silicon dioxide.

    PubMed

    Zazzera, Larry; Mader, Brian; Ellefson, Mark; Eldridge, Jess; Loper, Steve; Zabasajja, John; Qian, Julie

    2014-11-18

    This work measured and compared the effluent from the chemical mechanical polishing (CMP) of silicon dioxide using ceria slurry and ceria fixed abrasive. CMP waste streams were tested for total solids, cerium, silicon, and 6 nm to 20 μm diameter particles. The concentration of cerium and total solids in the effluent were very different for the two polishes studied. The fixed abrasive polish produced 94% less CeO2 emissions per SiO2 removed. The higher ceria levels in the slurry effluent are associated with 99-279 nm particles, and attributed to ceria abrasive. The lower concentration of ceria in the effluent from the fixed abrasive process is due to the lower wear rate of mineral from the fixed abrasive, compared to the more environmentally mobile mineral in the slurry. These results support the "bonded" nature of the abrasive particles in fixed abrasive polishing and are relevant to sustainability strategies that seek to reduce particle emissions in surface conditioning technology. PMID:25317965

  13. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    NASA Astrophysics Data System (ADS)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  14. Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations

    DOE PAGESBeta

    Landauer, Alexander K.; Barnhill, William C.; Qu, Jun

    2016-03-10

    Here we examine the elasticity, hardness, and resistance-to-plastic-deformation (P/S2) measured via nanoindentation of several tribofilms and correlates these properties to friction and wear behavior. The tribofilms were generated by ball-on-plate reciprocating sliding lubricated by a base oil containing an ionic liquid, phosphonium-organophosphate or ammonium-organophosphate, zinc dialkyldithiophosphate (ZDDP), or combination of IL and ZDDP. Nanoindentation was conducted at room and elevated temperatures. While there seems little correlation between the tribofilm hardness and tribological behavior, a higher modulus generally leads to better friction and wear performance. Interestingly, a lower P/S2 ratio tends to reduce friction and improve wear protection, which is inmore » an opposite trend as reported for bulk materials. Ultimately, this is likely attributable to the dynamic, self-healing characteristics of tribofilms.« less

  15. [Grinding of titanium. 1. Commercial and experimental wheels made of silicon carbide abrasives].

    PubMed

    Miyakawa, O; Watanabe, K; Okawa, S; Nakano, S; Shiokawa, N; Kobayashi, M; Tamura, H

    1990-01-01

    Cast titanium was ground with commercial and experimental wheels made of silicon carbide abrasives, and their grinding performance was investigated. With the vitrified wheels made of the GC abrasive, at a higher the wheel circumferential speed and heavier the grinding pressure, the cutting rate was greater, accompanied by violent wear of the wheel. Being independent of the wheel speed, the grinding ratio reached about 1 under pressure heavier than 100 gf. The MgO-MgCl2-bonded wheels of the C abrasive exhibited a similar tendency. The manner in which the wheel was moved over the work during grinding proved to be very important, compared with the Ni-Cr alloy as reported previously. Only depression of the wheel against the work resulted in chemical attrition of the abrasive and discoloration of the work surface, or grinding burn, due to oxidation of titanium. Even when the wheel was moved over the work, chip-formation process of the cutting edge was far from ideal, and the work surface was contaminated due to reaction of titanium with the abrasive. At a higher wheel circumferential speed, more chips were loaded or built-up in the wheel and strongly rubbed the work surface, resulting in violent wear of the wheel; loading and dislodging of such chips were repeated. PMID:2134811

  16. Cover and Erosion Asymmetry in Saltation-Abrasion

    NASA Astrophysics Data System (ADS)

    Stark, C. P.; Parker, G.

    2014-12-01

    Erosion in bedrock-floored rivers is both driven and limited by the amount of sediment transported along the bed. Some sediment boosts wear rates, whereas too much generates a protective cover. This phenomenon determines the shape of river channels in a variety of landscapes and limits how fast they evolve. Here we reevaluate data from a well-known bedrock wear experiment to throw new light on how the saltation-abrasion process. Instead of a symmetric form for erosion versus sediment flux relative to transport capacity, we find the erosion rate peak shifts towards lower sediment fluxes when blocking of oblique saltation trajectories is taken into account. The theoretical context for this reevaluation is a cover-saltation-abrasion model, based on queueing theory (QT), for bedload transport over a planar bedrock bed. The QT approach provides some clarity in the stochastic treatment of granular impacts and cover, and generates closed-form solutions for wear rate in terms of sediment flux and simplified saltation geometry. Applied to the Sklar & Dietrich (2001) experiments in a very small recirculating flume, the two-parameter QT model fits the observed relation between erosion rate and sediment load, infers sediment flux as a function of load, admits non-negligible wear rates for a mean sediment depth of one grain, i.e., for full cover on average, but also suggests that bedrock erosion is blocked at >=50% instantaneous cover. The QT model makes testable predictions for future laboratory experiments and highlights the need for specific improvements in more comprehensive treatments of bedrock erosion and cover.

  17. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  18. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  19. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  20. Brushing abrasion of eroded dentin after application of sodium fluoride solutions.

    PubMed

    Attin, T; Zirkel, C; Hellwig, E

    1998-01-01

    The aim of the present in vitro study was to evaluate the influence of sodium fluoride solutions on brushing abrasion of eroded dentin. Dentin specimens were prepared from 60 bovine incisors. The specimens were embedded in acrylic resin, ground flat, polished and subsequently covered with tape exposing an area of 1.8 mm x 10.0 mm in the center of the exposed dentin. The samples were alternatingly stored in a demineralizing solution (5 min) and a remineralizing solution (1 min) for 5 times. The erosive soft drink Sprite light(R) served as a demineralizing solution and artificial saliva was used as a remineralizing solution. Prior to storage in artificial saliva 15 specimens were each treated for 1 min with 250 and 2,000 ppm fluoride solution, respectively. Fifteen specimens were treated with distilled water instead of the fluoride solution (= eroded controls). The remaining samples were neither eroded with the soft drink nor fluoridated (= uneroded controls). After each immersion in artificial saliva the specimens were submitted to abrasion in a toothbrushing machine. After 5 demineralization-remineralization brushing cycles the total amount of tooth wear due to erosion and subsequent abrasion was profilometrically evaluated. Statistical analysis revealed the significantly lowest wear in the uneroded controls and the highest amount of abrasion in the eroded controls. Application of the fluoride solutions increased the wear resistance of the eroded dentin specimens, showing significantly better protection by the high-concentration compared to the low-concentration solution. The susceptibility to abrasion of the eroded dentin specimens treated with the high-concentration fluoride solution did not differ significantly from the uneroded dentin samples. It is concluded that application of 2,000 ppm sodium fluoride solutions immediately before toothbrushing significantly reduces abrasion of eroded dentin in vitro. PMID:9701659

  1. Wear of metal fiber brushes

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd Perryman, Jr.

    The goal of this dissertation was determining the wear mechanism of metal fiber brushes on commutators and slip rings with the goal of achieving the lowest possible wear rate. To this end, metal fiber brushes were operated, while conducting direct current, on gold-plated copper rotors with and without unfilled gaps to simulate slip rings and commutators, respectively. Wear rates on unfilled-groove commutators were found to be only modestly higher than on slip ring style rotors. Three possible causes for enhanced metal fiber brush wear on commutators were considered: (i) accelerated "adhesive" wear controlled by contact spots, (ii) fatigue induced wear and (iii) "fiber chopping". Similarly, SEM analysis of fiber tips and wear particles produced scant, if any, evidence of fiber chopping, which would occur as, again, fiber tips extend elastically into the commutator grooves and small slices of them would be "chopped" off by oncoming edges of commutator bars. Finally considered was "modified chopping", wherein fiber tips would be dragged over groove edges, resulting in tensile fracture and chopping. Only a single fiber fragment showed damage that might be compatible with that mechanism. Moreover, the fact that it was exemplified by a single tenuous case, rules it out as significant. The same conclusion also follows from comparing commutator wear rates with that on slip rings. These show good correlation in terms of effective brush pressure, which on commutators is increased because only bars conduct current and gaps do not support load. (Abstract shortened by UMI.)

  2. NASA interdisciplinary collaboration in tribology. A review of oxidational wear

    NASA Technical Reports Server (NTRS)

    Quinn, T. F. J.

    1983-01-01

    An in-depth review of oxidational wear of metals is presented. Special emphasis is given to a description of the concept of oxidational wear and the formulation of an Oxidational Wear Theory. The parallelism between the formation of an oxide film for dry contact conditions and the formation of other surface films for a lubricated contact is discussed. The description of oxidational wear is prefaced with a unification of wear modes into two major classes of mild and severe wear including both lubricated and dry contacts. Oxidational wear of metals is a class of mild wear where protective oxide films are formed at real areas of contact and during the time of contact at temperataure T sub c. When the oxide reaches a critical thickness, frequently in the range of 1 to 3 microns, the oxide breaks up and eventually appears as a wear particle. These oxides are preferentially formed on plateaux which alternately carry the load as they reach their critical thickness and are removed. If the system is operated at elevated temperatures, thick oxides can form both out of contact and between the plateaux. Temperature is important in determining the structure of the oxide film present. Spinel oxide (Fe3O4) which forms above 300 C is more protective than the lower temperature rhomobohedral (alpha-Fe2O3) oxide which is abrasive. An Oxidational Wear Theory is derived using a modified Archard wear law expressed in terms of activation energy (Qp) and Arrhenius constant (Ap).

  3. Damage tolerant functionally graded materials for advanced wear and friction applications

    NASA Astrophysics Data System (ADS)

    Prchlik, Lubos

    The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to

  4. Corrosion and wear resistance of chrome white irons—A correlation to their composition and microstructure

    NASA Astrophysics Data System (ADS)

    Lu, Baotong; Luo, Jingli; Chiovelli, Stefano

    2006-10-01

    The corrosion and wear resistances of a series of cast chromium white irons (CWIs) were evaluated using electrochemical and low stress sliding abrasion tests. The results show clearly that corrosion resistance of these materials is largely dependent on the quantity of chromium in the matrix, while wear resistance is mainly controlled by the volume fraction of chromium carbides. Based on theoretical analysis, a wear/corrosion performance map is established to identify alloy compositions that may be suited for erosion/corrosion conditions.

  5. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  6. Electroless Ni-P and Ni-P-Al2O3 Nanocomposite Coatings and Their Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Sharma, Ankita; Singh, A. K.

    2013-01-01

    In an effort to utilize beneficial aspects of nanoparticles in providing corrosion and wear resistance, electroless Ni-P and Ni-P-Al2O3 nanocomposite coatings were produced. Alumina particles with various contents from 5 to 20 g/L in bath were co-deposited within Ni-P deposits on mild steel (ms) substrate. Coatings were characterized by scanning electron microscopy (SEM) for morphology, energy dispersive analysis of x-ray EDAX for analyzing elemental composition and x-ray diffractometry for investigating the structural changes of their components. Electrochemical and immersion measurements were used to analyze corrosion behavior of the coatings in 3.5% NaCl solution. Wear resistance of the coating was measured by pin-on-disc method. The results indicated that the Ni-P-Al2O3 coatings provide the high hardness as compare to the Ni-P coating. Corrosion and wear resistance of coatings is observed to be superior to that of ms. Corrosion protection properties of the coatings are found to be affected with continuous exposure to the electrolyte. Coating with high concentration of alumina is exhibiting high wear resistance than Ni-P coating. Wear mechanism in case of Ni-P coating appears to be adhesive type and seems to change to abrasive type on introduction of alumina.

  7. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    NASA Astrophysics Data System (ADS)

    Pokusová, Marcela; Berta, Igor; Šooš, Ľubomír

    2014-12-01

    High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.%) 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  8. Computed tomography to quantify tooth abrasion

    NASA Astrophysics Data System (ADS)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  9. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar(Registered TradeMark), Vectran(Registered TradeMark), Orthofabric, and Tyvek(Registered TradeMark)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran(Registered TradeMark)) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar(Registered TradeMark) and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek , the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek(Registered TradeMark). This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran(Registered TradeMark) and Kevlar(Registered TradeMark) suffering considerably more extensive filament breakage.

  10. A Multidirectional Tribo-System: Wear of UHMWPE under Sliding, Rolling, and Rotation

    NASA Astrophysics Data System (ADS)

    Patten, Elias Wolfgang

    perpendicular to the primary sliding directions. These are consistent with abrasive wear, plastic flow and adhesive wear, and fatigue wear mechanisms reported in other in vitro and in vivo wear studies. The orientations of the lamellae at the wear surfaces were not discernibly different from the lamellae of an unworn section of the disk surface. Similarly, the near-surface regions of the disk cross-section were not discernibly different from the subsurface regions. Previous studies have demonstrated orientation of the microstructure during wear using transmission electron microscopy, X-ray scattering, and Fourier transform infrared spectroscopy techniques, and such methods may be necessary for texture characterization. These results demonstrate that knee kinematics have a significant effect on the cross-shear and wear of UHMWPE and should not be neglected when designing TKR. A better theoretical understanding of how kinematics contribute to wear can lead to better UHMWPE formulations, improved computer simulations of wear, and optimized TKR designs with longer life-spans.

  11. Wear Mechanisms of Carbon-Based Refractory Materials in SiMn Tap-Holes—Part II: In Situ Observation of Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Steenkamp, J. D.; Pistorius, P. Chris; Tangstad, M.

    2015-04-01

    The purpose of the study presented here is to determine to what extent chemical reactions between carbon-based refractory and slag or metal in the tap-hole of a SiMn furnace can contribute to wear of tap-hole refractory. The results of the study are reported in two parts. In Part I, thermodynamic calculations suggested that reaction between silicomanganese slag and carbon-based tap-hole refractory is possible, and experiments with nominally pure materials support this. However, practical refractory materials are by no means pure materials and contain secondary phases and porosity which can be expected to affect reaction with slag. In Part II, such reactions are examined experimentally, in cup and wettability tests, using commercially available carbon block and cold-ramming paste refractory materials and mainly industrial SiMn slag. Clear evidence was found of chemical reaction at approximately 1870 K (approximately 1600 °C), forming SiC and, it appears, metal droplets. Both carbon block and ramming paste refractory reacted with slag, with preferential attack on and penetration into the binder phase rather than aggregate particles. The two types of carbon-based refractory materials showed similar extents of chemical reaction observed as wetting and penetration in the laboratory tests. The differences in refractory life observed practically in industrial furnaces should therefore be attributed to wear mechanisms other than pure chemical wear as studied in this work.

  12. Two-body wear resistance of some indirect composite resins.

    PubMed

    Savabi, Omid; Nejatidanesh, Farahnaz; Shabanian, Mitra; Anbari, Zahra

    2011-06-01

    The aim of this study was to evaluate two-body wear of five indirect composites and compare them with enamel. Signum, belleGlass HP, SR Adoro, Dialog, GC Gradia and enamel were formed into cylinders (n = 10). Two-body abrasive wear rates were determined using a porcelain disk and a pin on disk apparatus. The height and weight loss of the specimens were measured by stereomicroscope and digital scale. The data were subjected to analysis of variance and Tukey HSD tests to determine significant differences (alpha = 0.05). GC Gradia showed significantly less wear resistance than the other materials. Enamel was more resistant than any of the tested composites. Within the limitations of this study it can be concluded that the type of resin, filler size and method of polymerization could have affect the two-body abrasion resistance of indirect composites. PMID:21780731

  13. Friction and wear behavior of aluminum and composite airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1984-01-01

    Friction and wear behavior was determined for small skin specimens under abrasive loading conditions typical of those occurring on the underside of a transport airplane during emergency belly landing. A test apparatus consisting of a standard belt sander provided the sliding surface. Small test specimens constructed of aluminum, standard graphite-epoxy composite, aramid-epoxy composite, and toughened-resin composites were tested undar a range of pressures, belt velocities, and belt-surface textures. The effects of these test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. The effect of fiber orientation in the composite materials on wear rate was also investigated. In addition, tests were performed in which thermocouples were imbedded into the various test specimens to obtain temperature-time histories during abrasion.

  14. Application of surface analysis to solve problems of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1981-01-01

    Results are presented for the use of surface analytical tools including field ion microscopy, Auger emission spectroscopy analysis (AES), cylindrical mirror Auger analysis and X-ray photoelectron spectroscopy (XPS). Data from the field ion microscope reveal adhesive transfer (wear) at the atomic level with the formation of surface compounds not found in the bulk, and AES reveals that this transfer will occur even in the presence of surface oxides. Both AES and XPS reveal that in abrasive wear with silicon carbide and diamond contacting the transition metals, the surface and the abrasive undergo a chemical or structural change which effects wear. With silicon carbide, silicon volatilizes leaving behind a pseudo-graphitic surface and the surface of diamond is observed to graphitize.

  15. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  16. Experimental study and effect of particulate interference on the microhardness, wear and microstructural properties of ternary doped coating

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Popoola, A. P. I.; Joseph, O. O.; Inegbenebor, A. O.; Olukanni, D. O.

    2016-07-01

    This paper studies effects of the composite particle infringement of ZnO/Cr2O3 on zinc rich ternary based coating. The corrosion-degradation property in 3.5% NaCl was investigatedusing polarization technique. The structural characteristics of the multilayer produce coatings were evaluated by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The mechanical response of the coated samples was studied using a diamond base Dura -Scan) micro-hardness tester and a MTR-300 dry abrasive wear tester. The combined effect of the coatings gave highly-improved performance on microhardness, corrosion and wear damage. This also implies that protection of wind-energy structures in marine environments can be achieved by composite strengthening capacity.

  17. Investigation of wear phenomena by microscopy

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1982-01-01

    The various wear mechanisms involved in the loss of material from metallic and nonmetallic surfaces are discussed. The results presented indicate how various microscopy techniques used in conjunction with other analytical tools can assist in the elucidation of a wear mechanism. Without question, microscopy is the single most important tool for the study of the wear of surfaces, to assess and address inherent mechanisms of the material removal process.

  18. Tool wear studies in fabrication of microchannels in ultrasonic micromachining.

    PubMed

    Cheema, Manjot S; Dvivedi, Akshay; Sharma, Apurbba K

    2015-03-01

    Form accuracy of a machined component is one of the performance indicators of a machining process. Ultrasonic micromachining is one such process in which the form accuracy of the micromachined component significantly depends upon the form stability of tool. Unlike macromachining, a very small amount of tool wear in micromachining could lead to considerable changes in the form accuracy of the machined component. Appropriate selection of tool material is essential to overcome this problem. The present study discusses the effect of tool material, abrasive size and step feed in fabrication of microchannels by ultrasonic machining on borosilicate glass. Development of microchannels using ultrasonic micromachining were rarely reported. It was observed that tungsten carbide tool provided a better form accuracy in comparison to the microchannel machined by stainless steel tool. The tool wear mechanism in both materials is proposed by considering scanning electron micrographs of the tool as evidence. A one factor at a time approach was used to study the effect of various process parameters. PMID:25465965

  19. Mechanism of refractory wear in the reaction shaft of furnaces for melting of raw material in the suspended state

    SciTech Connect

    Ertseva, L.N.; Roldugin, A.M.; Ryabko, A.G.; Grodinskii, G.I.

    1987-01-01

    The authors use x-ray spectroscopy and optical microscopy to test for the thermal degradation, wear, and corrosion by ore constituents of several refractories used as liners in furnaces for the melting of copper and nickel ores. Their goal in studying crust formation and eventual failure in these liner materials is to increase their service life and reduce significantly the heat losses currently experienced by these furnaces.

  20. Abrasive swivel assembly and method

    DOEpatents

    Hashish, Mohamed; Marvin, Mark

    1990-01-01

    An abrasive swivel assembly for providing a rotating, particle-laden fluid stream and, ultimately, a rotating particle-laden fluid jet is disclosed herein. This assembly includes a tubular arrangement for providing a particle-free stream of fluid, a swivel assembly for rotating a section of the tubular arrangement, and a tubular end section for introducing solid particles into the particle-free fluid stream at a point along the rotating tubular section, whereby to produce a particle-laden fluid stream. This last-mentioned stream can then be used in combination with a cooperating nozzle arrangement for providing a rotating particle-laden fluid jet. In an actual working embodiment, the fluid stream is of sufficiently high pressure so that the abrasive jet can be used as a cutting jet.

  1. Abrasive swivel assembly and method

    DOEpatents

    Hashish, Mohamed; Marvin, Mark

    1989-01-01

    An abrasive swivel assembly for providing a rotating, particle-laden fluid stream and, ultimately, a rotating particle-laden fluid jet is disclosed herein. This assembly includes a tubular arrangement for providing a particle-free stream of fluid, means for rotating a section of the tubular arrangement, and means for introducing solid particles into the particle-free fluid stream at a point along the rotating tubular section, whereby to produce a particle-laden fluid stream. This last-mentioned stream can then be used in combination with a cooperating nozzle arrangement for providing a rotating particle-laden fluid jet. In an actual working embodiment, the fluid stream is of sufficiently high pressure so that the abrasive jet can be used as a cutting jet.

  2. [Composites versus amalgam: comparative measurements of abrasion resistance in vivo: 1-year results].

    PubMed

    Meier, C; Lutz, F

    1979-03-01

    A method for the in-vivo measurement of wear resistance of restorative materials is described. A profilometer is used to record the reduction in vertical dimension of the test material's occlusal surface. This loss of substance is calculated as the wear resistance index. The technique was used in a 13 month clinical evaluation of 3 different restorative materials, Adaptic, Amalgam (Dispersalloy) and Estic microfill. The procedure is simple in execution and very accurate. Statistical analysis has shown significant differences in wear resistance of the examined materials independent of patient variation. Attrition and abrasion were definitely greater with a standard composite material (Adaptic) than with amalgam and a test composite (Estic microfill). The newly developed composite material utilizing extremely fine filler particles of pyrogenic SiO2 (Estic microfill) was shown to be comparable to amalgam in wear resistance during the 13-month test period. PMID:293032

  3. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    NASA Astrophysics Data System (ADS)

    Hakim Kamarudin, Naqib; Prasada Rao, A. K.; Azhari, Azmir

    2016-02-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work.

  4. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating

    NASA Astrophysics Data System (ADS)

    Neves, Davi; Diniz, Anselmo Eduardo; Lima, Milton Sérgio Fernandes

    2013-10-01

    Adhesion is one of the most important characteristics of coating on cutting tools. Poor coating adhesion on the tool favors fragmentation and release of hard abrasive particles between the tool and the workpiece. These particles interact with the surfaces of the tool, accelerating its wear and decreasing tool life. One possible solution is the use of laser texturing prior to coating in order to achieve a desired surface topography with enhanced adhesion properties. In the texturing, a high-frequency short-pulse laser changes surface characteristics, generating resolidified material and selective vaporization. This work evaluated the effectiveness of laser texturing in improving the substrate-coating adhesion of PVD coated cemented carbide tools. To this end, the substrates were textured with a Nd:YAG laser, in four different intensities, and then coated with a PVD TiAlN film. To ascertain the effectiveness of laser texturing, Rockwell C indentation and turning experiments were performed on both textured tools and conventional unlasered tools. The PVD coated laser-textured tool showed better performance in the indentation and turning tests than the standard tools. A comparative evaluation of tool wear mechanisms indicated that texturing did not change the wear mechanisms, but altered their importance to tool wear. The anchoring provided by the higher roughness of the textured surface increased the adhesion of the coating on the substrate, thus increasing tool life. Additionally, the chemical modification of the carbide grains due to the laser heating might be responsible for an enhanced adhesion between coating and substrate.

  5. Dental Surface Texture Characterization Based on Erosive Tooth Wear Processes.

    PubMed

    Hara, A T; Livengood, S V; Lippert, F; Eckert, G J; Ungar, P S

    2016-05-01

    The differential diagnosis of dental wear lesions affects their clinical management. We hypothesized that surface texture parameters can differentiate simulated erosion, abrasion, and erosion-abrasion lesions on human enamel and dentin. This in vitro study comprised 2 parts (both factorial 4 × 2), with 4 lesion types (erosion, abrasion, erosion-abrasion, and sound [no lesion; control]) and 2 substrates (enamel and dentin). Flattened/polished dental specimens were used in part 1, whereas natural dental surfaces were used in part 2. Testing surfaces were evaluated in blind conditions, using average surface roughness (Sa) and the following scale-sensitive fractal analysis parameters: area-scale fractal complexity (Asfc), exact proportion length-scale anisotropy of relief (eplsar), scale of maximum complexity (Smc), and textural fill volume (Tfv). Two-way analyses of variance, followed by Fisher's protected least significant difference tests (α = 0.05), were used to evaluate the effects of lesion and substrate. Classification trees were constructed to verify the strength of potential associations of the tested parameters. In part 1,Asfc, Sa, and Tfv were able to differentiate erosion and erosion-abrasion lesions from the sound (no lesion) control in both substrates; only Asfc differentiated erosion and erosion-abrasion enamel lesions (allP< 0.05). The best association of parameters correctly classified up to 84% and 94% of the lesions on enamel and dentin, respectively. In part 2, only Asfc differentiated erosion and erosion-abrasion lesions from the sound (no lesion) control in both substrates, whereas eplsar was able to differentiate erosion from erosion-abrasion (allP< 0.05). The association of parameters correctly classified up to 81% and 91% of the lesions in enamel and dentin, respectively.Asfc, Sa, and Tfv were able to differentiate erosion and erosion-abrasion lesions, despite their complicated surface textures. The association of parameters improved the

  6. Lunar Dust Simulant in Mechanical Component Testing - Paradigm and Practicality

    NASA Technical Reports Server (NTRS)

    Jett, T.; Street, K.; Abel, P.; Richmond, R.

    2008-01-01

    Due to the uniquely harsh lunar surface environment, terrestrial test activities may not adequately represent abrasive wear by lunar dust likely to be experienced in mechanical systems used in lunar exploration. Testing to identify potential moving mechanism problems has recently begun within the NASA Engineering and Safety Center Mechanical Systems Lunar Dust Assessment activity in coordination with the Exploration Technology and Development Program Dust Management Project, and these complimentary efforts will be described. Specific concerns about differences between simulant and lunar dust, and procedures for mechanical component testing with lunar simulant will be considered. In preparing for long term operations within a dusty lunar environment, the three fundamental approaches to keeping mechanical equipment functioning are dust avoidance, dust removal, and dust tolerance, with some combination of the three likely to be found in most engineering designs. Methods to exclude dust from contact with mechanical components would constitute mitigation by dust avoidance, so testing seals for dust exclusion efficacy as a function of particle size provides useful information for mechanism design. Dust of particle size less than a micron is not well documented for impact on lunar mechanical components. Therefore, creating a standardized lunar dust simulant in the particulate size range of ca. 0.1 to 1.0 micrometer is useful for testing effects on mechanical components such as bearings, gears, seals, bushings, and other moving mechanical assemblies. Approaching actual wear testing of mechanical components, it is beneficial to first establish relative wear rates caused by dust on commonly used mechanical component materials. The wear mode due to dust within mechanical components, such as abrasion caused by dust in grease(s), needs to be considered, as well as the effects of vacuum, lunar thermal cycle, and electrostatics on wear rate.

  7. Abrasion resistance of restorative glass-ionomer cements with a light-cured surface coating.

    PubMed

    Hotta, M; Hirukawa, H

    1994-01-01

    This is a comparative study of the Knoop hardness number and the toothbrush wear of a surface coating agent applied to the surface of a glass-ionomer restorative cement. A reduction in surface hardness of the coating agent resulted in an increase in brush wear. The light-cured glazing agent (Bellfeel Brightener) proved to be significantly harder than those coated with a light-cured bonding agent (Occlusin). Occlusin bonding agent was removed by comparatively rapid abrasion; however, the Bellfeel Brightener was significantly more resistant to such abrasion. The analysis of the surface hardness and scanning electron microscopy observations of the brushed surfaces of the samples suggested that Bellfeel Brightener was effective as a glazing material for glass-ionomer cement restorations. PMID:8008609

  8. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel

    NASA Astrophysics Data System (ADS)

    AL-Bukhaiti, M. A.; Al-hatab, K. A.; Tillmann, W.; Hoffmann, F.; Sprute, T.

    2014-11-01

    A new [Ti/TiAlN/TiAlCN]5 multilayer coatings were deposited onto polished substrate AISI H11 (DIN 1.2343) steel by an industrial magnetron sputtering device. The tribological performance of the coated system was investigated by a ball-on-disk tribometer against 100Cr6 steel and Al2O3 balls. The friction coefficients and specific wear rates were measured at various normal loads (2, 5, 8, and 10 N) and sliding velocities (0.2, 0.4, and 0.8 m/s) in ambient air and dry conditions. The phase structure, composition, wear tracks morphologies, hardness, and film/substrate adhesion of the coatings were characterized by light-microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 3D-surface analyzer, nanoindentation, and scratch tests. Results showed that the deposited coatings showed low wear rates in the scale of 10-15 m3/N m, low friction coefficients against 100Cr6 and Al2O3 balls in the range of 0.25-0.37, and good hardness in the range of 17-20 GPa. Results also revealed that the friction coefficients and disc wear rates decrease and increase, respectively with the increase in normal load and sliding velocity for both coating/Al2O3 and coating/100Cr6 sliding system. Compared with the uncoated-H11 substrate, the deposited coating exhibited superior tribological and mechanical properties. The dominant wear mechanism was abrasive wear for coating/Al2O3 pair, while for coating/100Cr6 pair, a combination of mild adhesive wear, severe adhesive wear, and abrasive wear (extensive plowing) were the dominant wear mechanisms at different applied normal loads.

  9. Aeolian Abrasion, a Dominant Erosion Agent in the Martian Environment

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Cooper, G.; Eddlemon, E.; Greeley, R.; Laity, J.; Phoreman, J.; Razdan, A.; van Note, S.; White, B.; Wilson, G.

    2004-12-01

    Aeolian abrasion is one of the predominant erosion mechanisms on Mars today. Martian ventifacts record the climate under which the rocks were modified (wind direction, wind speeds and particle flux) and therefore tie into the overall climatic regime of the planet. By better understanding the rates at which rocks abrade and the features diagnostic of specific climatic conditions, we can gain insight into past climates. Herein we report on numerical models, wind tunnel experiments, and field work to determine 1) Particle and kinetic fluxes on Earth and Mars, 2) the degree to which these parameters control abrasion, and 3) how, in detail, rocks of various shapes and compositions erode over time. Kinetic energy generally increases with height, whereas flux decreases, and impact angles, which affect energy transfer, and rebound effects are functions of the rock facet angle. This results in a non-linear relationship between abrasion potential and height that is a function of wind speed, planetary environment, and target geometry. We have computed the first three of these parameters numerically using a numerical saltation code, combined with published flux calculations These results have been compared to wind tunnel tests of flux vs. height, abrasion of erodible targets, and high speed video analysis under terrestrial and Martian pressures. We are also using high resolution laser scanning to characterize textures, shapes, and weathering changes for terrestrial and Martian rocks at the 100s of microns scale. We find that facet angle, texture, and rock heterogeneity are of critical importance in determining the rate and style of abrasion. Field and theoretical results demonstrate that high speed winds, not the integrated flux of lower speeds, and sand, not dust, produce most rock abrasion. On Mars, this requires sustained winds above 20-25 m/s at the near surface, a challenge in the current environment.

  10. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  11. Detecting Inter-Cusp and Inter-Tooth Wear Patterns in Rhinocerotids

    PubMed Central

    Taylor, Lucy A.; Kaiser, Thomas M.; Schwitzer, Christoph; Müller, Dennis W. H.; Codron, Daryl; Clauss, Marcus; Schulz, Ellen

    2013-01-01

    Extant rhinos are the largest extant herbivores exhibiting dietary specialisations for both browse and grass. However, the adaptive value of the wear-induced tooth morphology in rhinos has not been widely studied, and data on individual cusp and tooth positions have rarely been published. We evaluated upper cheek dentition of browsing Diceros bicornis and Rhinoceros sondaicus, mixed-feeding R. unicornis and grazing Ceratotherium simum using an extended mesowear method adapted for rhinos. We included single cusp scoring (EM(R)-S) to investigate inter-cusp and inter-tooth wear patterns. In accordance with previous reports, general mesowear patterns in D. bicornis and R. sondaicus were attrition-dominated and C. simum abrasion-dominated, reflecting their respective diets. Mesowear patterns for R. unicornis were more attrition-dominated than anticipated by the grass-dominated diet, which may indicate a low intake of environmental abrasives. EM(R)-S increased differentiation power compared to classical mesowear, with significant inter-cusp and inter-tooth differences detected. In D. bicornis, the anterior cusp was consistently more abrasion-dominated than the posterior. Wear differences in cusp position may relate to morphological adaptations to dietary regimes. Heterogeneous occlusal surfaces may facilitate the comminution of heterogeneous browse, whereas uniform, broad grinding surfaces may enhance the comminution of physically more homogeneous grass. A negative tooth wear gradient was found in D. bicornis, R. sondaicus and R. unicornis, with wear patterns becoming less abrasion-dominated from premolars to molars. No such gradients were evident in C. simum which displayed a uniform wear pattern. In browsers, premolars may be exposed to higher relative grit loads, which may result in the development of wear gradients. The second premolar may also have a role in food cropping. In grazers, high absolute amounts of ingested abrasives may override other signals, leading to

  12. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  13. Wear of short carbon-fiber-reinforced PAI and PPS

    SciTech Connect

    Behrens, W.W.; Jerina, K.L.; Hahn, H.T.

    1988-07-01

    Wear of short carbon-fiber-reinforced polyamide-imide and polyphenylene sulfide is described. Comparative data from thrust washer wear tests for both polymers are presented. Fiber orientation is shown to have a significant effect on wear rates. The wear mechanisms in both polymers are illustrated with optical and scanning electron micrographs. Wear is shown to be a nonlinear function of time and stress for both PPS and PAI. 15 references, 14 figures.

  14. Analysis of Wear Mechanisms in Low Friction, Nanocomposite AlMgB14-TiB2 Coatings

    SciTech Connect

    Cook, Bruce A; Harringa, J; Anderegg, A; Russell, A M; Qu, Jun; Blau, Peter Julian; Higdon, Clifton; Elmoursi, Alaa A

    2010-01-01

    Recent developments in coating science and technology offer new opportunities to enhance the energy-efficiency and performance of industrial machinery such as hydraulic fluid pumps and motors. The lubricated friction and wear characteristics of two wear-resistant coatings, diamond-like carbon and a nanocomposite material based on AlMgB{sub 14}-50 vol.% TiB{sub 2}, were compared in pin-on-disk tribotests using Mobil DTE-24{trademark} oil as the lubricant. In each case, the pins were fixed 9.53 mm diameter spheres of AISI 52100 steel, the load was 10 N, and the speed 0.5 m/s in all tests. Average steady-state friction coefficient values of 0.10 and 0.08 were measured for the DLC and nanocomposite, respectively. The coatings and their 52100 steel counterfaces were analyzed after the tests by X-ray photoelectron and Auger spectroscopy for evidence of material transfer or tribo-chemical reactions. The low-friction behavior of the boride nanocomposite coating is due to the formation of lubricative boric acid, B(OH){sub 3}. In contrast, the low-friction behavior of the DLC coating is related to the relatively low dielectric constant of the oil-based lubricant, leading to desorption of surface hydrogen from the coating.

  15. P/M Materials for Wear Applications

    SciTech Connect

    Hawk, Jeffrey A.

    2000-10-01

    Wear resistant materials usually consist of either very hard homogeneous single phase materials (e.g., ceramics like Al2O3, SiC, etc.) or heterogenous materials (e.g., white cast irons, composites or cermets, or composite-type materials), typically with a hard reinforcing phase dispersed in a softer matrix. In both instances, the result is the same, less penetration of the abrasive into the surface of the material being worn. Composite type materials can be produced using either a melting/solidification scheme or through powder metallurgy (P/M) techniques. In either case the result is the same, a microstructure that consists of a high volume fraction of hard, usually brittle, second phase particles in a softer matrix. However, P/M can be used to create a wider range of these materials than can melting/solidification, because in P/M processing, the desired phase does not have to be precipitated during solidification. Thus, more materials can be produced with higher volume fractions of reinforcing phases. Obviously, other factors like reinforcement size, matrix-particle interfacial strength, plastic accommodation of the matrix, etc. become important in the wear behavior of these materials. Various categories of P/M wear resistant materials will be discussed, and their wear behavior will be compared against traditional wear resistant cast materials like white cast iron and tool steels.

  16. New combined antifriction treatment of the guides of machines and mechanisms

    NASA Astrophysics Data System (ADS)

    Bishutin, S. G.

    2016-04-01

    The technology description of the combined antifriction treatment, including three stages, is presented. These stages are the following: abrasive rough-down for surface preparation to coating with antifriction material; surface rubbing with antifriction material; surface plastic deformation of the processed surface area. These stages are executed with one instrument. The article presents the technological modes of this treatment allowing the formation of wear resistant surface layers of guides of machines and mechanisms.

  17. Abrasion-resistant coatings for plastic surfaces

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Hollahan, J. R.

    1976-01-01

    Optically clear composition of organosilicon compounds insulates plastic surfaces and protects them from abrasion. Plasma polymerization process produces superior uniformity and clarity than previous coating techniques.

  18. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    NASA Astrophysics Data System (ADS)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  19. The effect of erosion and abrasion on surface properties of composite resin

    NASA Astrophysics Data System (ADS)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Munteanu, A.; Balan, A.; Iovan, G.

    2016-06-01

    The aim of the study was to evaluate the surface roughness of two commercial composite resins submitted to erosive attack, to abrasive wear and to association of erosive and abrasive challenge. Standardized samples of G-snial anterior (GC Company) and Essentia (GC Company) composite resins were randomly split in 6 groups. In group 1 the samples were maintained in artificial saliva until the evaluation of surface roughness. In group 2 the samples were submitted only to erosive attack, in group 3 only to abrasive challenge and in groups 4,5, and 6 the erosive attack was followed by abrasive challenge immediately (group 4), 30 minutes after the erosive attack (group 5) and one hour after the erosive attack (group 6). The specimens were evaluated using surface roughness measuring tester SJ-210 (Mitutoyo Corporation, Japan) and the mean surface roughness values (Ra, μm) of each specimen were registered. A significantly increase of both composite resins surface roughness was recorded after erosive attack and abrasive challenge. Toothbrushing 60 minutes after acidic contact determined no significant differences in surface roughness of composite resins.

  20. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.

    PubMed

    Tkachenko, Serhii; Datskevich, Oleg; Kulak, Leonid; Jacobson, Staffan; Engqvist, Håkan; Persson, Cecilia

    2014-11-01

    Titanium alloys are widely used in biomedical applications due to their higher biocompatibility in comparison to other metallic biomaterials. However, they commonly contain aluminum and vanadium, whose ions may be detrimental to the nervous system. Furthermore, they suffer from poor wear resistance, which limits their applications. The aim of this study was to evaluate the tribological performance of experimental Ti-1.25Si-5Zr, Ti-2.5Si-5Zr, Ti-6Si-5Zr and Ti-2.5Si-5Zr-0.2Pd alloys as compared to that of control Ti-6Al-4V, CoCr F75 and CoCr F799 alloys. Friction and wear tests were performed using a standard ball-on-disc rig in serum solution at ambient temperature with Si3N4-balls as counterparts. The alloys microstructure and hardness were investigated using optical microscopy, XRD, scanning electron microscopy (SEM) and Vickers indentation. The coefficients of friction of the experimental Ti-Si-Zr alloys were generally lower than the commercial ones with Ti-6Si-5Zr presenting the lowest value (approx. 0.1). Their wear rates were found to be 2-7 times lower than that of the commercial Ti-6Al-4V alloy, but still higher than those of the CoCr alloys. SEM analysis of worn surfaces showed that abrasion was the predominant wear mechanism for all studied materials. Wear and friction were influenced by the formation and stability of transfer layers, and while commercial Ti-6Al-4V as well as the experimental Ti-Si-Zr alloys demonstrated extensive material transfer to the ceramic counterparts, the CoCr alloys did not show such material transfer. PMID:25105238

  1. Abrasive drill for resilient materials

    NASA Technical Reports Server (NTRS)

    Koch, A. J.

    1981-01-01

    Resilient materials normally present problem in obtaining accurate and uniform hole size and position. Tool is fabricated from stiff metal rod such as tungsten or carbon steel that has diameter slightly smaller than required hole. Piercing/centering point is ground on one end of rod. Rod is then plasma-sprayed (flame-sprayed) with suitable hard abrasive coating. High-speed, slow-feed operation of tool is necessary for accurate holes, and this can be done with drill press, hard drill, or similar machines.

  2. Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion.

    PubMed

    Ferlito, Carmelo; Siewert, Jens

    2006-01-20

    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment. PMID:16486661

  3. Microstructure and Dry Sliding Wear Behavior of Fe-Based (Cr, Fe)7C3 Composite Coating Fabricated by PTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yuan, Y. L.; Li, Z. G.

    2013-11-01

    Using Cr3C2 and Fe-CrNiBSi powder blends as raw materials, an α-Fe matrix composite coating reinforced by in situ (Cr, Fe)7C3 rods, with a thickness of about 3.6 mm, was fabricated on the surface of AISI A36 low carbon steel by means of plasma-transferred arc welding. The results of microstructural analysis show that in the coating, a large number of carbides, (Cr, Fe)7C3, in rod shape grow, and radiate around some half-dissolved Cr3C2 particles. The results of dry sliding wear tests at loads 100, 200, and 300 N show that the wear resistances of (Cr, Fe)7C3-reinforced coating, respectively, are about 6.9, 14.9, and 17 times higher than that of nonreinforced pure Fe-CrNiBSi alloy coating; the average value and fluctuation range of friction coefficient (FC) of (Cr, Fe)7C3-reinforced coating are less than those of pure Fe-CrNiBSi alloy coating; the main wear mechanisms of pure Fe-CrNiBSi alloy coating are ploughing, deformation, and adhesive wear, whereas those of (Cr, Fe)7C3-reinforced coating are microcutting, abrasive, and oxidation wear; the cracks on surfaces of (Cr, Fe)7C3 rods increased with the increasing loads; and the matrix α-Fe can prevent them from extending further in the composite coating.

  4. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  5. An analysis of the physiologic parameters of intraoral wear: a review

    NASA Astrophysics Data System (ADS)

    Lawson, Nathaniel C.; Janyavula, Sridhar; Cakir, Deniz; Burgess, John O.

    2013-10-01

    This paper reviews the conditions of in vivo mastication and describes a novel method of measuring in vitro wear. Methods: parameters of intraoral wear are reviewed in this analysis, including chewing force, tooth sliding distance, food abrasivity, saliva lubrication, and antagonist properties. Results: clinical measurement of mastication forces indicates a range of normal forces between 20 and 140 N for a single molar. During the sliding phase of mastication, horizontal movement has been measured between 0.9 and 2.86 mm. In vivo wear occurs by three-body abrasion when food particles are interposed between teeth and by two-body abrasion after food clearance. Analysis of food particles used in wear testing reveals that food particles are softer than enamel and large enough to separate enamel and restoration surfaces and act as a solid lubricant. In two-body wear, saliva acts as a boundary lubricant with a viscosity of 3 cP. Enamel is the most relevant antagonist material for wear testing. The shape of a palatal cusp has been estimated as a 0.6 mm diameter ball and the hardest region of a tooth is its enamel surface. pH values and temperatures have been shown to range between 2-7 and 5-55 °C in intraoral fluids, respectively. These intraoral parameters have been used to modify the Alabama wear testing method.

  6. Study on depth-related microstructure and wear property of rare earth nitrocarburized layer of M50NiL steel

    NASA Astrophysics Data System (ADS)

    Yan, M. F.; Zhang, C. S.; Sun, Z.

    2014-01-01

    The quenched M50NiL steel was plasma nitrocarburized at 500 °C with rare earth (RE) addition. The RE nitrocarburized layer of M50NiL steel was removed stepwise (0 μm, 12 μm, 65 μm and 100 μm from the surface) and characterized using SEM equipped with EDS, XRD and microhardness tester respectively. Depth-related wear behavior of the RE nitrocarburized layer of M50NiL steel was investigated using pin-on-disk tribometer. The results show that the surface layer (0 μm from the surface) mainly consists of α‧N,C (expanded martensite), γ‧-Fe4(N,C), ɛ-Fe2-3(N,C) and a trace of Fe3O4 phase. The phase structure of the inner layers is single α‧N,C or α‧-Fe. There is a lower steady stage for all the depth-related friction coefficients of the layers due to the generation of the compact oxide film. The layer 12 μm from the surface has the lowest wear rate which is 2.4660 × 10-5 mm3 N-1 m-1. The work hardening effect only occurred on the layer 100 μm from the surface. The wear mechanisms of the layers transformed from mild abrasive and oxidative wear (0 μm from the surface) to severe adhesive and oxidative wear (100 μm from the surface) due to different phase structures and hardness. The oxygen content of the wear scar increases as the flash temperature rises and the hardness decreases when the layer comes inwards. The highest wolfram content for the layer 65 μm from the surface results in the dual role of the wear mechanism and hardness.

  7. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    NASA Astrophysics Data System (ADS)

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-12-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5-6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance.

  8. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  9. New Perspectives on Tooth Wear

    PubMed Central

    Lucas, Peter W.; Omar, Ridwaan

    2012-01-01

    Some of the efforts that have been made to document tooth wear are reviewed here with an emphasis on nonhuman mammals, literature with which dentists may not be very familiar. We project a change in research strategy from the description of wear at various scales of measurement towards investigation of the mechanical mechanisms that actually create the texture of a worn surface. These studies should reveal exactly how tooth tissue is lost and what aspects of the structure of dental tissues affect this. The most important aspects of the interaction between the tooth surface and wear particles would appear to be particle size, particle shape, their mechanical properties with respect to those of tooth tissues, and the influence of saliva. PMID:22536239

  10. Predicted wear resistances of binary carbide coatings

    SciTech Connect

    Kramer, B.M.

    1986-11-01

    A mechanistic model of the tool wear process has been presented (B. M. Kramer and P. K. Judd, J. Vac. Sci. Technol. A 3, 2439 (1985)) that includes the effects of both the abrasion of the tool material by inclusions within the workpiece and the chemical dissolution of the tool material into the matrix of the workpiece. Machining tests have been run on steel with titanium carbide coated tooling and the resulting test data have been employed to produce a rough calibration of the proposed model. This model has been used to predict the wear resistances of the other group IV B carbides and of the (Ti,Hf)C system in the machining of steel.

  11. Mechanical and tribological properties of the TiC-TiB2 composite coating deposited on 40Cr-steel by electro spark deposition

    NASA Astrophysics Data System (ADS)

    Tang, Jingming

    2016-03-01

    In the present investigation, TiC-TiB2 composite coating was deposited by electrical discharge hardening onto the surface of 40Cr steel with a TiC-TiB2 composite rod as electrode. The composite coating structure and phase compositions were characterized by SEM and XRD, the hardness and its distribution along coating were measured on micro-hardness machine. Wear resistance of composite coating was evaluated on MM-200 wear experiment machine. The results suggest that the major phases of the composite coating are TiB2, TiC and Fe3C. The micro hardness distribution along depth of composite coating is inhomogeneous, the micro hardness value of the composite coating is about 4 times of the substrate. The wear mechanism of 40Cr steel is mainly attributed to micro-cutting and adhesive wear, but the wear mechanism of composite coating is mainly attributed to micro-cutting, scratch and fatigue abrasion. The results show that the change of wear mechanism between the samples because of the hard particles and higher hardness of composite coating. Compared with the substrate, wear resistance of composite coating is 5 times higher than that of the substrate, friction coefficient of the coating decreased by 0.12-0.17 under the same wear environment. The erosion mechanism of the TiC-TiB2 composite coating is ploughing and cutting at low impact angles, but it failure in fatigue cracking and spalling at high impact angles.

  12. Structurally Integrated Coatings for Wear and Corrosion

    SciTech Connect

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  13. Surgery to improve contact lens wear in keratoconus.

    PubMed

    Moodaley, L; Buckley, R J; Woodward, E G

    1991-04-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone that gives rise to contact lens related abrasions. These nebulae do not flatten when contact lens wear is discontinued. We describe a simple technique of superficial keratectomy to remove proud nebulae in which the resulting defect healed quickly under a therapeutic hydrogel lens. In all of the six cases described patients were able to resume contact lens wear within one month of the procedure. One case was lost to follow-up. Of the remaining five (follow-up 3-9 months), all achieved comfortable wearing times of 8 hours or more and visual acuities of 20/40 or better. One patient developed a recurrent epithelial defect that resolved on discontinuing lens wear for one week. Corneal transplantation was thus avoided. PMID:2049822

  14. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  15. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  16. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  17. Bendable Extension For Abrasive-Jet Cleaning

    NASA Technical Reports Server (NTRS)

    Mayer, Walter

    1989-01-01

    Hard-to-reach places cleaned more easily. Extension for abrasive-jet apparatus bent to provide controlled abrasive cleaning of walls in deep cavities or other hard-to-reach places. Designed for controlled removal of penetrant inspection dyes from inside castings, extension tube also used for such general grit-blasting work as removal of scratches.

  18. Abrasion Resistant Coating and Method of making the same

    SciTech Connect

    Sordelet, Daniel J.; Besser, Matthew F.

    1999-06-25

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al-Cu-Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  19. Abrasion resistant coating and method of making the same

    DOEpatents

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  20. AIBA as Free Radical Initiator for Abrasive-Free Polishing of Hard Disk Substrate

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Ren, Xiaoyan

    2015-04-01

    In order to optimize the existing slurry for abrasive-free polishing (AFP) of a hard disk substrate, a water-soluble free radical initiator, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was introduced into H2O2-based slurry in the present work. Polishing experiment results with AIBA in the H2O2 slurry indicate that the material removal rate (MRR) increases and the polished surface has a lower surface roughness. The mechanism of AIBA in AFP was investigated using electron spin-resonance spectroscopy and UV-Visible analysis, which showed that the concentration of hydroxyl radical (a stronger oxidizer than H2O2) in the slurry was enhanced in the present of AIBA. The structure of the film formed on the substrate surface was investigated by scanning electron microscopy, auger electron spectroscopy and electrochemical impedance spectroscopy technology, showing that a looser and porous oxide film was found on the hard disk substrate surface when treated with the H2O2-AIBA slurry. Furthermore, potentiodynamic polarization tests show that the H2O2-AIBA slurry has a higher corrosion current density, implying that a fast dissolution reaction can occur on the substrate surface. Therefore, we can conclude that the stronger oxidation ability, loose oxide film on the substrate surface, and the higher corrosion-wear rate of the H2O2-AIBA slurry lead to the higher MRR.

  1. Tooth wear in captive giraffes (Giraffa camelopardalis): mesowear analysis classifies free-ranging specimens as browsers but captive ones as grazers.

    PubMed

    Clauss, Marcus; Franz-Odendaal, Tamara A; Brasch, Juliane; Castell, Johanna C; Kaiser, Thomas

    2007-09-01

    Captive giraffe (Giraffa camelopardalis) mostly do not attain the longevity possible for this species and frequently have problems associated with low energy intake and fat storage mobilization. Abnormal tooth wear has been among the causes suggested as an underlying problem. This study utilizes a tooth wear scoring method ("mesowear") primarily used in paleobiology. This scoring method was applied to museum specimens of free-ranging (n=20) and captive (n=41) giraffes. The scoring system allows for the differentiation between attrition--(typical for browsers, as browse contains little abrasive silica) and abrasion--(typical for grazers, as grass contains abrasive silica) dominated tooth wear. The dental wear pattern of the free-ranging population is dominated by attrition, resembles that previously published for free-ranging giraffe, and clusters within browsing herbivores in comparative analysis. In contrast, the wear pattern of the captive population is dominated by abrasion and clusters among grazing herbivores in comparative analyses. A potential explanation for this difference in tooth wear is likely related to the content of abrasive elements in zoo diets. Silica content (measured as acid insoluble ash) is low in browse and alfalfa. However, grass hay and the majority of pelleted compound feeds contain higher amounts of silica. It can be speculated that the abnormal wear pattern in captivity compromises tooth function in captive giraffe, with deleterious long-term consequences. PMID:17939353

  2. Corneal abrasions associated with pepper spray exposure.

    PubMed

    Brown, L; Takeuchi, D; Challoner, K

    2000-05-01

    Pepper spray containing oleoresin capsicum is used by law enforcement and the public as a form of nonlethal deterrent. Stimulated by the identification of a case of a corneal abrasion associated with pepper spray exposure, a descriptive retrospective review of a physician-maintained log of patients presenting to a jail ward emergency area over a 3-year period was performed. The objective was to give some quantification to the frequency with which an emergency physician could expect to see corneal abrasions associated with pepper spray exposure. Of 100 cases of pepper spray exposure identified, seven patients had sustained corneal abrasions. We conclude that corneal abrasions are not rare events when patients are exposed to pepper spray and that fluorescein staining and slit lamp or Wood's lamp examination should be performed on all exposed patients in whom corneal abrasions cannot be excluded on clinical grounds. PMID:10830682

  3. Evaluation of coal pulverizer materials: Effect of coal characteristics on wear performance and reliability: Final report

    SciTech Connect

    Donais, R.T.; Tyler, A.L.; Dufrane, K.F.; Glaeser, W.R.; Merriman, T.L.; Wright, I.G.

    1988-08-01

    This report deals mainly with abrasive wear in coal pulverizers. Eight coals, including bituminous, subbituminous, and lignite, were analyzed in the laboratory to determine their quartz (SiO/sub 2/) and pyrite (FeS/sub 2/) content. The size distribution of these two minerals was also determined. The wear of Ni-Hard rolls from pulverizers, used to grind the above coals at various utilities, was determined. It was found that wear expressed as mils/1000 ton coal correlated much better with the quartz and pyrite content of the coal than wear expressed as mils/hr. Analysis of the data obtained indicated that the effect of quartz on mill wear is much larger than that of pyrite. Coarser size fractions of both materials also increase wear. Based on the data obtained, an analytical procedure to predict the abrasiveness of coals on their quartz and pyrite content was developed. Laboratory studies were also carried out to compare the wear resistance of various commercially available castings and weld overlays. Little difference was found between two grades of Ni-Hard coatings. The wear resistance of higher chromium weld overlays or cast white irons was found to be about twice as high as that of Ni-Hard castings. This is in good agreement with wear of high chromium weld overlays observed by many utilities. 37 refs., 53 figs., 41 tabs.

  4. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion

  5. Tooth wear: the view of the anthropologist.

    PubMed

    Kaidonis, John A

    2008-03-01

    Anthropologists have for many years considered human tooth wear a normal physiological phenomenon where teeth, although worn, remain functional throughout life. Wear was considered pathological only if pulpal exposure or premature tooth loss occurred. In addition, adaptive changes to the stomatognathic system in response to wear have been reported including continual eruption, the widening of the masticatory cycle, remodelling of the temporomandibular joint and the shortening of the dental arches from tooth migration. Comparative studies of many different species have also documented these physiological processes supporting the idea of perpetual change over time. In particular, differential wear between enamel and dentine was considered a physiological process relating to the evolution of the form and function of teeth. Although evidence of attrition and abrasion has been known to exist among hunter-gatherer populations for many thousands of years, the prevalence of erosion in such early populations seems insignificant. In particular, non-carious cervical lesions to date have not been observed within these populations and therefore should be viewed as 'modern-day' pathology. Extrapolating this anthropological perspective to the clinical setting has merits, particularly in the prevention of pre-mature unnecessary treatment. PMID:17938977

  6. Considerations on the European Standard EN 14157 Test Methods: Abrasion Resistance of Natural Stones Used for Flooring in Buildings

    NASA Astrophysics Data System (ADS)

    Karaca, Z.; Günes Yılmaz, N.; Goktan, R. M.

    2012-01-01

    In Europe, the Wide Wheel abrasion (WWA) test and the Böhme abrasion (BA) test are among the most widely used standard test methods for determining abrasion resistance of natural stones, the former being the reference test method in EN 14157 Standard. However, it is stated in the Annex-A (Informative) of EN 14157 Standard that very limited data are available to provide correlations between these two test methods. To be able to fill this gap, in this study, 25 different natural stones belonging to sedimentary, metamorphic and igneous groups were tested for their abrasion resistance as well as physico-mechanical properties. Also, for a better interpretation of abrasion resistance characteristics of the tested stone materials, relationships between abrasion resistance and physico-mechanical properties were statistically examined. A statistically significant linear correlation ( R 2 = 0.85; P value = 0.000) was established between the WWA test and the BA test, which could be used in practice for converting the measured abrasion resistance values from one testing method to another. It was also found that the correlation between these two test methods improved significantly ( R 2 = 0.93; P value = 0.001) when relatively high-porosity stone materials (porosity ≥1%) were separately evaluated. Both methods of abrasion resistance employed in the present study showed statistically significant linear correlations with uniaxial compressive strength and Brazilian tensile strength, the former proving to be a more influencing parameter on resistance to abrasion. Also, from the point view of representing actual abrasion mechanism of stone materials in practice, the necessity of simulating multi-directional foot traffic in abrasion testing methods was discussed. In this respect, the reference test method in the EN 14157 Standard was criticized for not fully meeting this requirement. It was also pointed out that the reference method could have some drawbacks when applied to coarse

  7. Characterizing wear with the scanning electron microscope

    SciTech Connect

    Lee, R.H.

    1991-07-01

    The Scanning Electron Microscope (SEM) is used extensively to characterize and analyze wear mechanisms and coatings on material. Wear mechanisms and severity can be identified by the characteristic scars on sample surfaces and by examining wear debris. Backscattered electron imaging is very useful in identifying oxidized materials and locations where coatings have worn thin. These images are compared with spectra from energy-dispersive X-ray spectroscopy or wavelength-dispersive spectroscopy data to verify the identifications. Micrographs of typical wear mechanisms are presented and techniques for analysis of wear surfaces are discussed. Examples of the evaluation of coatings are also presented and an ultramicrohardness tester installed in the SEM to evaluate coating hardness and fracture toughness is described. 3 refs., 15 figs.

  8. Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications.

    PubMed

    Lee, Yoon-Seok; Niinomi, Mitsuo; Nakai, Masaaki; Narita, Kengo; Cho, Ken; Liu, Huihong

    2015-11-01

    In previous studies, it has been concluded that volume losses (V loss) of the Ti-29Nb-13Ta-4.6Zr (TNTZ) discs and balls are larger than those of the respective Ti-6Al-4V extra-low interstitial (Ti64) discs and balls, both in air and Ringer's solution. These results are related to severe subsurface deformation of TNTZ, which is caused by the lower resistance to plastic shearing of TNTZ than that of Ti64. Therefore, it is necessary to further increase the wear resistance of TNTZ to satisfy the requirements as a biomedical implant. From this viewpoint, interstitial oxygen was added to TNTZ to improve the plastic shear resistance via solid-solution strengthening. Thus, the wear behaviors of combinations comprised of a new titanium alloy, TNTZ with high oxygen content of 0.89 mass% (89O) and a conventional titanium alloy, Ti64 were investigated in air and Ringer's solution for biomedical implant applications. The worn surfaces, wear debris, and subsurface damage were analyzed using a scanning electron microscopy and an electron probe microanalysis. V loss of the 89O discs and balls are smaller than those of the respective TNTZ discs and balls in both air and Ringer's solution. It can be concluded that the solid-solution strengthening by oxygen effectively improves the wear resistance for TNTZ materials. However, the 89O disc/ball combination still exhibits higher V loss than the Ti64 disc/ball combination in both air and Ringer's solution. Moreover, V loss of the disc for the 89O disc/Ti64 ball combination significantly decreases in Ringer's solution compared to that in air. This decrease for the 89O disc/Ti64 ball combination in Ringer's solution can be explained by the transition in the wear mechanism from severe delamination wear to abrasive wear. PMID:26301568

  9. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  10. Erosive Wear Behavior of High-Alloy Cast Iron and Duplex Stainless Steel under Mining Conditions

    NASA Astrophysics Data System (ADS)

    Yoganandh, J.; Natarajan, S.; Kumaresh Babu, S. P.

    2015-09-01

    Centrifugal pumps used in the lignite mines encounter erosive wear problems, leading to a disastrous failure of the pump casings. This paper attempts to evaluate the erosive wear resistance of Ni-Hard 4, high-chromium iron, and Cast CD4MCu duplex stainless steel (DSS), for mining conditions. The prepared test coupons were subjected to an erosion test by varying the impingement velocity and the angle of impingement, under two different pH conditions of 3 and 7, which pertained to the mining conditions. XRD analysis was carried out to confirm the phases present in the alloy. The eroded surface was subjected to SEM analysis to identify the erosion mechanisms. The surface degradation of Ni-Hard 4 and high-chromium iron came from a low-angle abrasion with a grooving and plowing mechanism at a low angle of impingement. At normal impingement, deep indentations resulted in lips and crater formations, leading to degradation of the surface in a brittle manner. A combined extrusion-forging mechanism is observed in the CD4MCu DSS surface at all the impingement angles.

  11. Structural changes in and the wear of the rock cutting element of a bulldozer during operation under the North conditions

    NASA Astrophysics Data System (ADS)

    Vinokurov, G. G.; Yakovleva, S. P.; Kychkin, A. K.; Vasil'Eva, M. I.; Struchkov, N. F.; Fedorov, M. V.

    2009-10-01

    The phenomenon of accelerated wear of a ripper crown in a digging machine (bulldozer) under the North operating conditions is studied. The elemental composition, microstructure, microhardness of the crown metal and the wear surface relief characteristics are determined. It is found that, under complex heat-force conditions of loading during the exploitation of cryolite rocks, the metal in the active surface of the rock cutting element undergoes intense softening as a result of the formation of a secondary structure, namely, frictioninduced sorbite. As a result of an insufficient level of the wear resistance of the crown metal and its plasticization, the traces of abrasive wear become deeper and plastic impact-abrasive wear takes place.

  12. Forecasting of operational indicators of grinding tools with the controlled form and orientation of abrasive grains

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.; Minkin, E. M.

    2015-09-01

    The interconnection of the abrasive grain front angle parameter with the form, orientation and wear out parameters is investigated. The form of the abrasive grains was estimated by means of form coefficient which represents the relation of diameters of the spheres described around contours of grains, to diameters of the spheres entered in them. The spatial orientation angle of the abrasive grains was defined between main (i.e. the biggest) axis of the grains and the cutting plane. It is established that, depending on an orientation angle at increase in a form coefficient of the abrasive grains can be either an increase or a decrease in the values of their front angles. In most cases, with an increase in a form coefficient of the oriented grinding grains (at orientation angles Θ=10°÷125°) the growth of their front angles is fixed. At tangential orientation of grains (Θ=0°) and at the close directions of orientation (Θ=135°÷80°) the return picture is observed. Also established that the longer the abrasive grain wears along the main axis and located in the tool body, the larger is its front angle. Besides that, the front angles of the abrasive grains reach the maximum positive values at orientation angles Θ=22.5°÷45°.Dependence of tension in grains during the work with parameters of their form, orientation and depth of embedment in the bundle is investigated. It was found that for all orientation angles of grains their tension significantly increases with an increase in their form coefficient. Besides that it is confirmed that the deeper the grain is in the bundle, the lower the tension is there. Also found that tension is minimal when the grains are tangential orientated. Further on increase the option of the grains in the direction of action of the cutting force follows. Such option of orientation is the most rational both from the point of view of minimization of tension, and for ensuring rational sizes of front angles of the abrasive grains. The

  13. Abrasion resistant track shoe grouser

    DOEpatents

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  14. Influence of Fretting Wear on Lifetime of Tin Plated Connectors

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirosaka; Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    Due to the recent increase in electronic devices mounted on automobiles, a large number of connectors, especially low-cost tin plated connectors are being used. As a result, their contact reliability has become problematic. Furthermore, for the connectors which are subjected to fretting wear caused by heat cycle and vibrations, the contact resistance increases because of wear of tin and deposition of oxides, which generates problems of poor contact. This study is intended to analyze the change in contact resistance of tin plated connectors from the start of fretting wear to the end of their lifetime from the viewpoint of practical reliability, and to observe the trace and the characteristics of fretting wear microscopically. This study found that wear and oxidation of tin plated connectors start immediately with fretting wear, and thus accumulation of abrasion powder on fretting areas causes connectors to reach to the end of their useful lifetime quickly. Especially, it was demonstrated that amplitude of fretting has a considerable influence on a connector's lifetime. It is made clear that air-tightness, so-called “gas-tight” of tin in a fretting area influences fretting wear considerably.

  15. Wear resistance of TiAlSiN thin coatings.

    PubMed

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions. PMID:23447962

  16. Evaluation of wear rates and mechanisms of titanium diboride-graphite composite materials proposed for use as cathodes in Hall-Heroult cells

    SciTech Connect

    Pool, K.H.; Brimhall, J.L.; Raney, P.J.; Hart, P.E.

    1987-01-01

    Purpose of this study was to measure the initial wear rates of TiB/sub 2/ carbon-containing cathode materials (TiB/sub 2/-G) under electrolytic conditions. Parameters evaluated included bath ratio, current density, and aluminum pad thickness. In order to measure initial wear rates, the tests were limited to 8 h.

  17. Friction and wear properties of smooth diamond films grown in fullerene-argon plasmas

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Bindal, C.; Zuiker, C.; Krauss, A.R.; Gruen, D.M.

    1995-08-01

    In this study, we describe the growth mechanism and the ultralow friction and wear properties of smooth (20-50 nm rms) diamond films grown in a microwave plasma consisting of Ar and fullerene (the carbon source). The sliding friction coefficients of these films against Si{sub 3}N{sub 4} balls are 0.04 and 0.1 in dry N{sub 2} and air, which are comparable to that of natural diamond sliding against the same pin material, but is lower by factors of 5 to 10 than that afforded by rough diamond films grown in conventional H{sub 2}-CH{sub 4} plasmas. Furthermore, the smooth diamond films produced in this work afforded wear rates to Si{sub 3}N{sub 4} balls that were two to three orders of magnitude lower than those of H{sub 2}-CH{sub 4} grown films. Mechanistically, the ultralow friction and wear properties of the fullerene-derived diamond films correlate well with their initially smooth surface finish and their ability to polish even further during sliding. The wear tracks reach an ultrasmooth (3-6 nm rms) surface finish that results in very little abrasion and ploughing. The nanocrystalline microstructure and exceptionally pure sp{sup 3} bonding in these smooth diamond films were verified by numerous surface and structure analytical methods, including x-ray diffraction, high-resolution AF-S, EELS, NEXAFS, SEM, and TEM. An AFM instrument was used to characterize the topography of the films and rubbing surfaces.

  18. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various abrasives... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abrasive device and accessories. 872.6010...

  19. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various abrasives... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abrasive device and accessories. 872.6010...

  20. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various abrasives... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Abrasive device and accessories. 872.6010...

  1. Fault Wear and Friction Evolution: Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Boneh, Y.; Chang, J. C.; Lockner, D. A.; Reches, Z.

    2011-12-01

    Wear is an inevitable product of frictional sliding of brittle rocks as evidenced by the ubiquitous occurrence of fault gouge and slickenside striations. We present here experimental observations designed to demonstrate the relationship between wear and friction and their governing mechanisms. The experiments were conducted with a rotary shear apparatus on solid, ring-shaped rock samples that slipped for displacements up to tens of meters. Stresses, wear and temperature were continuously monitored. We analyzed 86 experiments of Kasota dolomite, Sierra White granite, Pennsylvania quartzite, Karoo gabbro, and Tennessee sandstone at slip velocities ranging from 0.002 to 0.97 m/s, and normal stress from 0.25 to 6.9 MPa. We conducted two types of runs: short slip experiments (slip distance < 25 mm) primarily on fresh, surface-ground samples, designed to analyze initial wear mechanisms; and long slip experiments (slip distance > 3 m) designed to achieve mature wear conditions and to observe the evolution of wear and friction as the fault surfaces evolved. The experiments reveal three wear stages: initial, running-in, and steady-state. The initial stage is characterized by (1) discrete damage striations, the length of which is comparable to total slip , and local pits or plow features; (2) timing and magnitude of fault-normal dilation corresponds to transient changes of normal and shear stresses; and (3) surface roughness increasing with the applied normal stress. We interpret these observations as wear mechanisms of (a) plowing into the fresh rock surfaces; (b) asperity breakage; and (c) asperity climb. The running-in stage is characterized by (1) intense wear-rate over a critical wear distance of Rd = 0.3-2 m; (2) drop of friction coefficient over a weakening distance of Dc = 0.2-4 m; (3) Rd and Dc display positive, quasi-linear relation with each other. We interpret these observations as indicating the organizing of newly-created wear particles into a 'three

  2. Spectroscopic wear detector

    NASA Technical Reports Server (NTRS)

    Madzsar, George C. (Inventor)

    1993-01-01

    The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.

  3. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  4. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  5. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  6. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  7. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  8. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  9. Scanning electron microscopy of dentition: methodology and ultrastructural morphology of tooth wear.

    PubMed

    Shkurkin, G V; Almquist, A J; Pfeihofer, A A; Stoddard, E L

    1975-01-01

    Scanning electron micrographs were taken of sets of human molars-those of paleo-Indians used in mastication of, ostensibly, a highly abrasive diet, and those of contemporary Americans. Different ultrastructural patterns of enamel wear were observed between the groups. PMID:1090642

  10. The measurement of abrasive particles velocities in the process of abrasive water jet generation

    NASA Astrophysics Data System (ADS)

    Zeleňák, Michal; Foldyna, Josef; Říha, Zdeněk

    2014-08-01

    An optimization of the design of the abrasive cutting head using the numerical simulation requires gathering as much information about processes occurring in the cutting head as possible. Detailed knowledge of velocities of abrasive particles in the process of abrasive water jet generation is vital for the verification of the numerical model. A method of measurement of abrasive particles at the exit of focusing tube using the FPIV technique was proposed and preliminary tests are described in the paper. Results of analysis of measured velocity fields are presented in the paper.

  11. New iron-based SiC spherical composite magnetic abrasive for magnetic abrasive finishing

    NASA Astrophysics Data System (ADS)

    Zhang, Guixiang; Zhao, Yugang; Zhao, Dongbiao; Zuo, Dunwen; Yin, Fengshi

    2013-03-01

    SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness( R a) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid

  12. Friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes

    NASA Astrophysics Data System (ADS)

    Deng, Jianxin; Yan, Pei; Wu, Ze

    2012-11-01

    MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.

  13. Effect of filler size on wear resistance of resin cement.

    PubMed

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test. PMID:14530920

  14. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  15. Mechanisms of wear in single- and two-phase materials: Final report. [Cu, Pb, Al/sub 2/O/sub 3/, Pb borosilicate glass, SiC (Pb-Cu), (Pb-Al/sub 2/O/sub 3/), (glass-Cu), (glass-Al/sub 2/O/sub 3/)

    SciTech Connect

    Macmillan, N.H.

    1987-11-01

    A comparative study has been made of the rolling-tumbling-sliding wear and solid particle erosion behavior of four single-phase materials (Cu, Pb, Al/sub 2/O/sub 3/, and a lead borosilicate glass and of series of ductile-ductile (Pb-Cu), ductile-brittle (Pb-Al/sub 2/O/sub 3/), brittle-ductile (glass-Cu), and brittle-brittle (glass-Al/sub 2/O/sub 3/) composites prepared from them. The same irregularly shaped 600 ..mu..m WC-8 wt.% Co abrasive particles were used throughout this work. Additional erosion measurements have been made on Danto Koruntz, Abresist, and sintered ..cap alpha..-SiC, using similar particles. Some subtle influences of erosive particle wear are documented for the first time, and the inadequacy of the currently available theoretical models to describe the influence of microstructure on erosion is exposed. 77 refs., 154 figs.

  16. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist. PMID:24684041

  17. Microstructures and Abrasive Properties of the Oxide Coatings on Al6061 Alloys Prepared by Plasma Electrolytic Oxidation in Different Electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Byun, Sangsik; Lee, Chan Gyu; Koo, Bon Heun; Wang, Yi Qi; Song, Jung Il

    Al2O3 coatings were prepared on T6-tempered Al6061 alloys substrate under a hybrid voltage (AC 200 V-60 Hz and DC 260 V value) by plasma electrolytic oxidation (PEO) in 30 min. The effects of different electrolytes on the abrasive behaviors of the coatings were studied by conducting dry ball-on-disk wear tests. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the coating microstructure. XRD analysis results show that the coatings mainly consist of α- and γ-Al2O3, and some mullite and AlPO4 phase in Na2SiO3 and Na3PO4 containing electrolytes, respectively. The wear test results show that the coatings which were PEO-treated in Na3PO4 containing electrolyte presented the most excellent abrasive resistance property.

  18. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  19. Resistance of nanofill and nanohybrid resin composites to toothbrush abrasion with calcium carbonate slurry.

    PubMed

    Suzuki, Toshimitsu; Kyoizumi, Hideaki; Finger, Werner J; Kanehira, Masafumi; Endo, Tatsuo; Utterodt, Andreas; Hisamitsu, Hisashi; Komatsu, Masashi

    2009-11-01

    The aim of this study was to investigate the wear of four nanofilled resin composites using simulated toothbrushing for 50,000 cycles with calcium carbonate slurry. The depth of abrasion and roughness (Ra) were measured after each 10,000 brushing cycle. The surface texture of the worn samples was examined by SEM.The wear depths of the nanofill Filtek Supreme XT (FIL), the nanohybrides Grandio (GRA), Tetric EvoCeram (TET), and Venus Diamond (VED) increased linearly with numbers of brushing cycles or approximately 80, 12, 600, and 60 mum, respectively after 50,000 strokes. Surface roughness showed virtually no change between 10,000 and 50,000 brushing cycles; the ranking order was TET < FIL < GRA < VED. FIL showed rather uniform abrasion with nanoclusters protruding from the surface. TET was very smoothly abraded without signs of debonding of the prepolymerized particles, whereas GRA and VED showed pronounced wear of the matrix polymer surrounding larger glass filler particles. PMID:20019422

  20. Wear mechanisms in hybrid composites of graphite-20 pct SiC in A356 aluminum alloy (Al-7 pct Si-0. 3 pct Mg)

    SciTech Connect

    Ames, W.; Alpas, A.T. . Dept. of Mechanical Engineering)

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 pct Si-0.3 pct Mg) matrix composites reinforced with 20 vol pct SiC particles and 3 or 10 vol pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X0ray diffractometry (XRD). The wear resistance of 3 pct graphite-20 pct SiC-A356 hybrid composite was comparable to 20 pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 pct graphite 20 pct SiC-A356 was 1 to 2 times higher than 10 pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 pct and 10 pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites.

  1. Al-MoSi2 Composite Materials: Analysis of Microstructure, Sliding Wear, Solid Particle Erosion, and Aqueous Corrosion

    NASA Astrophysics Data System (ADS)

    Gousia, V.; Tsioukis, A.; Lekatou, A.; Karantzalis, A. E.

    2016-02-01

    In this effort, AMCs reinforced with new intermetallic phases, were produced through casting and compared as far as their microstructure, sliding wear, solid particle erosion, and aqueous corrosion response. Casting was selected as a production method based on the concept: (a) ease-to-handle and low cost production route and (b) optimum homogeneity of the reinforcing phase distribution. The MoSi2 phase was produced through vacuum arc melting and the resulting drops were milled for 30 h to produce fine powder, the characteristics of which were ascertained through SEM-EDS and XRD analysis. MoSi2 was used as precursor source for the final reinforcing phase. The powder material was incorporated in molten Al1050 alloy to additions of 2, 5 and 10 vol.% respectively. Extensive reactivity between the molten Al and the MoSi2 particles was observed, leading to the formation of new reinforcing phases mainly of the Al-Mo system. In all cases, a uniform particle distribution was observed, mainly characterized by isolated intermetallic phases and few intermetallic phase clusters. Sliding wear showed a beneficial action of the reinforcing phase on the wear of the composites. Surface oxidation, plastic deformation, crack formation, and debris abrasive action were the main degradation features. The results of solid particle erosion showed that the mechanism is different as the impact angle and the vol.% change. Regarding the corrosion, the analysis revealed localized corrosion effects. The composite behavior was not altered significantly compared to that of the monolithic matrix.

  2. In vitro wear of composite with varied cure, filler level, and filler treatment.

    PubMed

    Condon, J R; Ferracane, J L

    1997-07-01

    For the clinical wear of composite filing materials to be reduced, compositional factors such as degree of cure, filler level, and silanation level should be optimized. An oral-wear-stimulating machine was used to explore the effects of these factors on abrasion and attrition wear as well as on opposing enamel wear. The composites were made from Sr glass (1-2 micron avg) and a 50/50 Bis-GMA/TEGDMA resin. Series I (A-D, E) were light-cured (Triad II) for 9, 12, 25, and 40 sec/side to produce degree of cure (DC) as measured by FTIR of 56, 60, 61, and 63%, respectively. E received an additional heat cure (120 degrees C for 10 min) to reach a DC of 66%. Series II (D, F-I) were filled to 62, 53, 48, 37, and 28 vol%, respectively. In series III (D, J-M), the portion of fillers treated with a silane coupler (MPS) was 100, 80, 60, 40, and 20%, respectively. Samples were cycled 50,000 times against an enamel antagonist in a poppy seed/PMMA slurry in the oral wear simulator to produce abrasion (load = 20 N) and attrition (load = 70 N) simultaneously. Wear depth (micron: n = 5) was measured by profilometry. Results for each series were analysed by ANOVA/Turkey's (p < or = 0.05). The wear depths did reflect cure values, though only the abrasion difference for E < A was significant. Greater wear was correlated with lower filler levels (r2 = 0.88; p < 0.05), significantly increasing below 48 vol% (G). Wear increased linearly as the percent of silane-treated fillers was reduced (r2 = 0.99; p < 0.05). Abrasion and attrition did not differ significantly for any composite. Wear of the opposing enamel was largely unchanged by these factors. Compositional factors including degree of cure, filler level, and silanation directly affected the wear resistance of dental composites evaluated in an oral wear simulator. PMID:9207774

  3. Air abrasion: an old technology reborn.

    PubMed

    Berry, E A; Eakle, W S; Summitt, J B

    1999-08-01

    Recently, air abrasion has experienced a rebirth in restorative dentistry. Originally developed in the late 1940s, the principle of air abrasion is the imparting of kinetic energy to tiny aluminum oxide particles that are projected by a stream of compressed air or gas and expelled from a small nozzle. The force generated by the relatively hard particles striking a relatively hard surface is sufficient to cut into that surface. In the last decade, more than a dozen models of air abrasion units have been introduced into the marketplace and more are on the way. Manufacturers have developed air abrasion instruments that offer a broad range of features, from small table-top units to self-contained systems with compressors, vacuums, and curing lights. The costs range dramatically--from $1,000 to $20,000 or more--depending on the complexity of the features and attachments. Manufacturers make a variety of claims to support the value of this technology to the practicing dentist. A term often used to describe one of the benefits of air abrasion is microdentistry. The claim is that smaller, less invasive tooth preparations may be accomplished using air abrasion than with a traditional bur and air turbine. This may be true in some instances, but it would certainly depend on the operator's experience and ability to visually discern fine detail. Other claims about air abrasion are that it can be used to cut into tooth structure without local anesthesia and that it should be used on all stained grooves or fissures to determine if incipient carious lesions are present. Despite the limited number of clinical studies, the popularity of air abrasion continues to grow. To gain additional insight about these claims and to see what might be on the horizon for this technology, I spoke with three highly respected educators who are recognized for their expertise in air abrasion. What they said should give the reader a better understanding of how air abrasion might augment restorative

  4. The use of analytical surface tools in the fundamental study of wear. [atomic nature of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Various techniques and surface tools available for the study of the atomic nature of the wear of materials are reviewed These include chemical etching, x-ray diffraction, electron diffraction, scanning electron microscopy, low-energy electron diffraction, Auger emission spectroscopy analysis, electron spectroscopy for chemical analysis, field ion microscopy, and the atom probe. Properties of the surface and wear surface regions which affect wear, such as surface energy, crystal structure, crystallographic orientation, mode of dislocation behavior, and cohesive binding, are discussed. A number of mechanisms involved in the generation of wear particles are identified with the aid of the aforementioned tools.

  5. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel

    NASA Astrophysics Data System (ADS)

    Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad

    2011-01-01

    This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.

  6. Experimental investigation and molecular dynamics simulations of impact-mode wear mechanisms in silicon micromachines with alkylsilane self-assembled monolayer films

    NASA Astrophysics Data System (ADS)

    Douglas, C. M.; Rouse, W. A.; Driscoll, J. A.; Timpe, S. J.

    2015-10-01

    In the current work, polycrystalline silicon microdevices are treated with a 1H,1H,2H,2H-Perfluorodecyltrichlorosilane (FDTS) self-assembled monolayer (SAM) film. Using a microelectromechanical systems-based tribometer, the adhesion characteristics of the FDTS-treated surfaces are compared to those of untreated surfaces over a range of approximately 10 × 106 impact cycles. FDTS-treated surfaces showed a lower zero-hour adhesion force compared to untreated surfaces under identical environmental conditions. The presence of the monolayer did not have a discernible effect on the number of cycles to initiate the surface degradation that was manifested as an increase in the adhesion force. Based on trends in degradation, it is concluded that similar chemical and physical wear mechanisms dominate the evolution of adhesion in both treated and untreated devices. The qualitative results of the experiment are reinforced by molecular dynamics (MD) simulations of a single nanoasperity contact coated with an octadecyltrichlorosilane (ODTS) SAM. MD simulations show cleavage of bonds along the aliphatic chains of ODTS resulting in adhesion fluctuations. In agreement with experimental observations, the MD simulation shows a logarithmic increase in adhesion force with increasing number of cycles. MD simulations also predict a logarithmic decrease in adhesion energy with increasing cycles. These results provide insight into the physicohemical changes occurring during repetitive impact of surfaces coated with low surface energy films.

  7. In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel.

    PubMed

    Attin, T; Knöfel, S; Buchalla, W; Tütüncü, R

    2001-01-01

    The aim of the present in situ study was to evaluate the effect of different periods of intraoral remineralization to decrease the susceptibility of previously demineralized enamel against toothbrushing abrasion. Six human enamel specimens (A-F) were recessed in the buccal aspects of each of eight intraoral appliances which were worn for 21 days by 8 panelists. Demineralization of the samples was performed twice a day extraorally in the acidic beverage Sprite Light for 90 s. Subsequently, the enamel specimens were brushed at different times. Specimen A was brushed immediately after the demineralization. The remaining samples B-E were brushed after the intraoral appliances had been worn for various periods of remineralization: specimen B, 10 min; C, 20 min; D, 30 min and E, 60 min, respectively. Specimen F was only demineralized and remineralized, but not brushed. After 21 days, enamel wear was measured with a laser profilometer. The following values (mean +/- standard deviation) were obtained: specimen A, 6.78+/-2.71 microm; B, 5.47+/-3.39 microm; C, 6.06+/-3.18 microm; D, 5.43+/-2.58 microm; E 4.78+/-2.57 microm, and F 0.66+/-1.11 micro;m. Analysis of variance revealed a significant influence of remineralization period on abrasive wear. However, even after a remineralization period of 60 min the wear was significantly increased as compared to the demineralized, but not brushed control. It is concluded that (1) abrasion resistance of softened enamel increases with remineralization period and (2) at least 60 min should elapse before toothbrushing after an erosive attack. PMID:11385203

  8. Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations

    NASA Astrophysics Data System (ADS)

    Peng, G. J.; Luo, Y. Y.; Wang, Z. W.

    2015-01-01

    The impeller and casing of dredge pump are worn by sediment in the flow. However, there are few studies about abrasion of the impeller and casing for normal pump operating conditions. This paper investigated the relationship between the wear rates on the surfaces of the impeller as well as casing and the sediment concentration, with the distribution of the wear rates for normal pump operating condition analyzed. An Eulerian-Lagrangian Computational Fluid Dynamics (CFD) procedure was used to simulate steady liquid-solid two-phase flow for various operating conditions. The Finnie model was then used to predict the abrasion. The results show that, the wear rate relative value of impeller and casing surface increase as the sediment concentration increases. The wear rate relative value of impeller and casing surface is larger when the pump is in low flow rate condition, and the value of casing surface is larger than that of the impeller. The wear rate relative value of pump is low when pump is in high efficiency condition. This paper shows the abrasion characteristics on the impeller and casing with sediment flow and provides reference data for predicting the abrasion conditions in the flow passage components for a dredge pump.

  9. The Effect of Pleural Abrasion on the Treatment of Primary Spontaneous Pneumothorax: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Ming, Mo-yu; Cai, Shuang-qi; Chen, Yi-Qiang

    2015-01-01

    Background Pleural abrasion has been widely used to control the recurrence of primary spontaneous pneumothorax (PSP). However, controversy still exists regarding the advantages and disadvantages of pleural abrasion compared with other interventions in preventing the recurrence of PSP. Methods The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched up to December 15, 2014 to identify randomized controlled trials (RCTs) that compared the effects of pleural abrasion with those of other interventions in the treatment of PSP. The study outcomes included the PSP recurrence rate and the occurrence rate of adverse effects. Results Mechanical pleural abrasion and apical pleurectomy after thoracoscopic stapled bullectomy exhibited similarly persistent postoperative air leak occurrence rates (p = 0.978) and 1-year PSP recurrence rates (p = 0.821), whereas pleural abrasion led to reduced residual chest pain and discomfort (p = 0.001) and a smaller rate of hemothorax (p = 0.036) than did apical pleurectomy. However, the addition of minocycline pleurodesis to pleural abrasion did not reduce the pneumothorax recurrence rate compared with apical pleurectomy (3.8% for both procedures) but was associated with fewer complications. There was no statistical difference in the pneumothorax recurrence rate between mechanical pleural abrasion and chemical pleurodesis with minocycline on either an intention-to-treat basis (4 of 42 versus 0 of 42, p = 0.12; Fisher exact test) or after exclusions (2 of 40 versus 0 of 42, p = 0.24; Fisher exact test). Pleural abrasion plus minocycline pleurodesis also did not reduce the pneumothorax recurrence rate compared with pleural abrasion alone (p = 0.055). Moreover, pleural abrasion plus minocycline pleurodesis was associated with more intense acute chest pain. The postoperative overall recurrence rate in patients who underwent staple line coverage with absorbable cellulose mesh and fibrin glue was similar to that

  10. Coatings for wear and lubrication

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Recent advances in the tribological uses of rf-sputtered and ion plated films of solid film lubricants (laminar solids, soft metals, organic polymers) and wear resistant refractory compounds (carbides, nitrides, silicides) are reviewed. The sputtering and ion plating potentials and the corresponding coatings formed were evaluated relative to the friction coefficient, wear endurance life and mechanical properties. The tribological and mechanical properties for each kind of film are discussed in terms of film adherence, coherence, density, grain size, morphology, internal stresses, thickness, and substrate conditions such as temperature, topography, chemistry and dc-biasing. The ion plated metallic films in addition to improved tribological properties also have better mechanical properties such as tensile strength and fatigue life.

  11. Friction and wear characteristics of iron-chromium alloys in contact with themselves and silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-chromium alloys in contact with (1) themselves, (2) single crystal silicon carbide disks, and (3) single crystal abrasive grit of silicon carbide. Results indicate the coefficients of friction for the alloys sliding against themselves are between those for pure iron and pure chromium, and are only slightly different with 1, 5, 9, 14, and 19 weight percent chromium in iron. The wear is due, primarily, to shearing, or tearing fracture, of the cohesive bonds in the bulk metal and plowing of the bulk by lumps of wear debris. There are only slight differences in the coefficients of friction for the various alloys when sliding on silicon carbide. The coefficient of friction for the alloys are higher than those for pure iron and pure chromium. Alloy hardening observed in the alloys plays a dominant role in controlling the abrasive friction and wear behavior of the alloys.

  12. The impact of the bead width on the properties of the anti-abrasion surfacing weld

    NASA Astrophysics Data System (ADS)

    Beczkowski, Robert; Gucwa, Marek; Wróbel, Joanna; Kulawik, Adam

    2016-06-01

    This work presents the results of research on the anti-abrasion surfacing welds designated to operate under wear conditions. The main purpose of the work was to produce single-layer surface welds by means of semi-automatic hard-facing/surface welding with the use of filler material containing carbide precipitate and with the use of 10mm- and 20mm- wide beads. The samples were subject to visual and penetrant testing and to destructive testing in the form of macro and micro metallographic testing, hardness testing and bend testing with a view to determine the effect which the beads of various widths have on the analysed factors.

  13. Effect of NiCr Clad BaF2·CaF2 Addition on Wear Performance of Plasma Sprayed Chromium Carbide-Nichrome Coating

    NASA Astrophysics Data System (ADS)

    Du, Lingzhong; Huang, Chuanbing; Zhang, Weigang; Zhang, Jingmin; Liu, Wei

    2010-03-01

    NiCr clad BaF2·CaF2 fluoride eutectic powders were added into chromium carbide-nichrome feedstock to improve the tribological properties of NiCr-Cr3C2 coating, and the structures, mechanical, and ball-on-disk sliding wear performance of the coating were characterized. The results show that NiCr cladding can effectively decrease the density and thermophysical difference between the feedstock components, while alleviate the decarburization and oxidization of the constituent phases, and form the coating with a uniform and dense microstructure. However, the addition of BaF2·CaF2 has a negative effect on mechanical properties of the coating. When the temperature reaches 500 °C, the BaF2·CaF2 eutectic is soften by the heat and smeared by the counterpart, thus the low shear stress lubricating film forms between the contact surface, that improves the tribological properties dramatically. At this temperature, the dominant wear mechanisms also change from splats spallation and abrasive wear at room temperature to plastic deformation and plawing by the counterpart. Within the temperature range from 600 to 800 °C, the friction coefficient, the wear rates of NiCr/Cr3C2-10% BaF2·CaF2 coating and its coupled Si3N4 ball are 20%, 40%, and 75% lower than those of the NiCr/Cr3C2 coating, respectively. The NiCr/Cr3C2-BaF2·CaF2 coating shows superior wear performance to the NiCr/Cr3C2 coating without lubricant additive.

  14. Blast Coating of Superelastic NiTi Wire with PTFE to Enhance Wear Properties

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Twomey, Barry; Hodgson, Darel; Stanton, Kenneth T.

    2015-03-01

    This work investigates the deposition of polytetrafluoroethylene (PTFE) onto a superelastic NiTi wire using an ambient temperature-coating technique known as CoBlast. The process utilises a stream of abrasive (Al2O3) and a coating medium (PTFE) sprayed simultaneously at the surface of the substrate. Superelastic NiTi wire is used in guidewire applications, and PTFE coatings are commonly applied to reduce damage to vessel walls during insertion and removal, and to aid in accurate positioning by minimising the force required to advance, retract or rotate the wire. The CoBlast coated wires were compared to wire treated with PTFE only. The coated samples were examined using variety of techniques: X-ray diffraction (XRD), microscopy, surface roughness, wear testing and flexural tests. The CoBlast coated samples had an adherent coating with a significant resistance to wear compared to the samples coated with PTFE only. The XRD revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of PTFE onto the surface of superelastic NiTi.

  15. Abrasion resistance of medical glove materials.

    PubMed

    Walsh, Donna L; Schwerin, Matthew R; Kisielewski, Richard W; Kotz, Richard M; Chaput, Maria P; Varney, George W; To, Theresa M

    2004-01-15

    Due to the increasing demand for nonlatex medical gloves in the health-care community, there is a need to assess the durability of alternative glove materials. This study examines durability characteristics of various glove materials by abrasion resistance testing. Natural rubber latex (latex), polyvinyl chloride (vinyl), acrylonitrile butadiene (nitrile), polychloroprene (neoprene), and a styrene-ethylene/butylene-styrene block copolymer (SEBS) were tested. All test specimens, with the exception of the vinyl, were obtained from surgical gloves. Unaged out-of-the-box specimens as well as those subjected to various degrees of artificial aging were included in the study. After the abrasion sequence, the barrier integrity of the material was assessed through the use of a static leak test. Other traditional tests performed on these materials were viral penetration to validate the abrasion data and tear testing for comparative purposes. The results indicate that specific glove-material performance is dependent upon the particular test under consideration. Most notably, abrasion, even in controlled nonsevere conditions, may compromise to varying degrees the barrier integrity of latex, vinyl, SEBS, nitrile, and neoprene glove materials. However, as evidenced by the results of testing three brands of neoprene gloves, the abrasion resistance of any one glove material may be significantly affected by variations in production processes. PMID:14689500

  16. Wear mechanisms in hybrid composites of Graphite-20 Pct SiC in A356 Aluminum Alloy (Al-7 Pct Si-0.3 Pct Mg)

    NASA Astrophysics Data System (ADS)

    Ames, W.; Alpas, A. T.

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg) matrix composites reinforced with 20 vol Pct SiC particles and 3 or 10 vol Pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X-ray diffractometry (XRD). The wear resistance of 3 Pct graphite-20 Pct SiC-A356 hybrid composite was comparable to 20 Pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 Pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 Pct graphite 20 Pct SiC-A356 was 1 to 2 times higher than 10 Pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 Pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 Pct and 10 Pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites. Tribolayers, mainly consisting of a compacted mixture of graphite, iron oxides, and aluminum, were generated on the surfaces of the hybrid composites. In the hybrid composites, the elimination of the severe wear (and hence the improvement in seizure resistance) was attributed to the reduction in friction-induced surface heating due to the presence of graphite- and iron

  17. Optimizing the mechanical properties of M50NiL steel by plasma nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Zhang, C. S.; Yan, M. F.; Sun, Z.; Wang, Y. X.; You, Y.; Bai, B.; Chen, L.; Long, Z.; Li, R. W.

    2014-10-01

    In this study, plasma nitrocarburizing at various temperatures in the range of 460-540 °C were carried out on M50NiL steel in order to improve wear properties. The nitrocarburizing temperature was optimized to obtain the best wear properties. The phase composition, microstucture and microhardness profiles of nitrocarburized layers of M50NiL steel were characterized by XRD, optical microscope and Vickers microhardness measurements, respectively. Pin-on-disc tribometer and SEM equipped with EDS were applied to measure friction and wear properties and analyze wear mechanisms involved. XRD results show that the amount of ɛ-Fe2-3(N,C) phase increased as the nitrocarburizing temperature rose form 460 °C to 500 °C and then decreased at 540 °C, while the amount of γ‧-Fe4(N,C) phase increased as the treatment temperature rose. The hardness of the nitrocarburized layers showed an obvious improvement accompanied with the increasing nitrocarburizing temperature, and obtained the maximum surface hardness of 1287 HV at 540 °C. The results of wear tests carried out at various sliding speeds indicated that the wear mechanism depends on sliding speed rather than the nitrocarburizing temperature. With the increase of the sliding speed, the wear mechanism transfers from oxidation mode to abrasive mode. The gradually deceased wear rate of the specimen nitrocarburized at 500 °C with the increase of the sliding speed indicated the excellent wear resistance under high sliding speed condition. Therefore, 500 °C can be selected as an optimized nitrocarburizing temperature for M50NiL steel.

  18. Wear characteristics of bonded solid film lubricant under high load condition

    NASA Technical Reports Server (NTRS)

    Hiraoka, Naofumi; Sasaki, Akira; Kawashima, Noritsugu; Honda, Toshio

    1991-01-01

    Wear properties of phenolic resin bonded molybdenum disulfide film lubricant were studied. In-vacuo journal bearing tests were performed to evaluate the wear-life of this film lubricant. The wear-life depends on substrate materials and on sliding velocity. Pretreated substrate surfaces were examined to reveal the reasons for these results. Additionally, investigations on film wear mechanisms were made.

  19. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  20. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    SciTech Connect

    Fell, H.A.

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.