Science.gov

Sample records for abrupt climate shifts

  1. Abrupt climate shift in the Western Mediterranean Sea.

    PubMed

    Schroeder, K; Chiggiato, J; Bryden, H L; Borghini, M; Ben Ismail, S

    2016-03-11

    One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected.

  2. Abrupt climate shift in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.

    2016-03-01

    One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected.

  3. Abrupt climate shift in the Western Mediterranean Sea

    PubMed Central

    Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.

    2016-01-01

    One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected. PMID:26965790

  4. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models.

    PubMed

    Drijfhout, Sybren; Bathiany, Sebastian; Beaulieu, Claudie; Brovkin, Victor; Claussen, Martin; Huntingford, Chris; Scheffer, Marten; Sgubin, Giovanni; Swingedouw, Didier

    2015-10-27

    Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change.

  5. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models

    PubMed Central

    Drijfhout, Sybren; Bathiany, Sebastian; Beaulieu, Claudie; Brovkin, Victor; Claussen, Martin; Huntingford, Chris; Scheffer, Marten; Sgubin, Giovanni; Swingedouw, Didier

    2015-01-01

    Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change. PMID:26460042

  6. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Brander, Keith; Luczak, Christophe; Ibanez, Frederic

    2008-11-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.

  7. Theoretical basis for predicting climate-induced abrupt shifts in the oceans

    PubMed Central

    Beaugrand, Gregory

    2015-01-01

    Among the responses of marine species and their ecosystems to climate change, abrupt community shifts (ACSs), also called regime shifts, have often been observed. However, despite their effects for ecosystem functioning and both provisioning and regulating services, our understanding of the underlying mechanisms involved remains elusive. This paper proposes a theory showing that some ACSs originate from the interaction between climate-induced environmental changes and the species ecological niche. The theory predicts that a substantial stepwise shift in the thermal regime of a marine ecosystem leads indubitably to an ACS and explains why some species do not change during the phenomenon. It also explicates why the timing of ACSs may differ or why some studies may detect or not detect a shift in the same ecosystem, independently of the statistical method of detection and simply because they focus on different species or taxonomic groups. The present theory offers a way to predict future climate-induced community shifts and their potential associated trophic cascades and amplifications.

  8. Implications of abrupt climate change.

    PubMed

    Alley, Richard B

    2004-01-01

    Records of past climates contained in ice cores, ocean sediments, and other archives show that large, abrupt, widespread climate changes have occurred repeatedly in the past. These changes were especially prominent during the cooling into and warming out of the last ice age, but persisted into the modern warm interval. Changes have especially affected water availability in warm regions and temperature in cold regions, but have affected almost all climatic variables across much or all of the Earth. Impacts of climate changes are smaller if the changes are slower or more-expected. The rapidity of abrupt climate changes, together with the difficulty of predicting such changes, means that impacts on the health of humans, economies and ecosystems will be larger if abrupt climate changes occur. Most projections of future climate include only gradual changes, whereas paleoclimatic data plus models indicate that abrupt changes remain possible; thus, policy is being made based on a view of the future that may be optimistic.

  9. Implications of abrupt climate change.

    PubMed Central

    Alley, Richard B.

    2004-01-01

    Records of past climates contained in ice cores, ocean sediments, and other archives show that large, abrupt, widespread climate changes have occurred repeatedly in the past. These changes were especially prominent during the cooling into and warming out of the last ice age, but persisted into the modern warm interval. Changes have especially affected water availability in warm regions and temperature in cold regions, but have affected almost all climatic variables across much or all of the Earth. Impacts of climate changes are smaller if the changes are slower or more-expected. The rapidity of abrupt climate changes, together with the difficulty of predicting such changes, means that impacts on the health of humans, economies and ecosystems will be larger if abrupt climate changes occur. Most projections of future climate include only gradual changes, whereas paleoclimatic data plus models indicate that abrupt changes remain possible; thus, policy is being made based on a view of the future that may be optimistic. PMID:17060975

  10. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink

    NASA Astrophysics Data System (ADS)

    Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.

    2016-03-01

    The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.

  11. Approaching the Edge of Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Ramadhin, C.; Yi, C.

    2015-12-01

    The phenomenon of Abrupt Climate Change (ACC) became evident as paleoclimate data analyses began revealing that Earth's climate has the ability to rapidly switch from one state to the next in just a few decades after thresholds are crossed. Previously paleo-climatologists thought these switches were gradual but now there is growing concern to identify thresholds and the dominant feedback mechanisms that propel systems toward thresholds. Current human civilization relies heavily on climate stability and ACC threatens immense disruption with potentially disastrous consequences for all ecosystems. Therefore, prediction of the climate system's approach to threshold values would prove vital for the resilience of civilization through development of appropriate adaptation strategies when that shift occurs. Numerous studies now establish that earth systems are experiencing dramatic changes both by system interactions and anthropogenic sources adding urgency for comprehensive knowledge of tipping point identification. Despite this, predictions are difficult due to the immensity of interactions among feedback mechanisms. In this paper, we attempt to narrow this broad spectrum of critical feedback mechanisms by reviewing several publications on role of feedbacks in initiating past climate transitions establishing the most critical ones and significance in current climate changes. Using a compilation of paleoclimate datasets we compared the rates of deglaciations with that of glacial inceptions, which are approximately 5-10 times slower. We hypothesize that the critical feedbacks are unique to each type of transition such that warmings are dominated by the ice-albedo feedback while coolings are a combination of temperature - CO2 and temperature-precipitation followed by the ice-albedo feedbacks. Additionally, we propose the existence of a commonality in the dominant trigger feedbacks for astronomical and millennial timescale abrupt climate shifts and as such future studies

  12. Six-decade temporal change and seasonal decomposition of climate variables in Lake Dianchi watershed (China): stable trend or abrupt shift?

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Liang, Zhongyao; Liu, Yong; Guo, Huaicheng; He, Dan; Zhao, Lei

    2015-01-01

    Meteorological trend analysis is a useful tool for understanding climate change and can provide useful information on the possibility of future change. Lake Dianchi is the sixth largest freshwater body in China with serious eutrophication. Algal blooms outbreak was proven to be closely associated with some climatic factors in Lake Dianchi. It is therefore essential to explore the trends of climatic time series to understand the mechanism of climate change on lake eutrophication. We proposed an integrated method of Mann-Kendall (MK) test, seasonal-trend decomposition using locally weighted regression (LOESS) (STL), and regime shift index (RSI) to decompose the trend analysis and identify the stable and abrupt changes of some climate variables from 1951 to 2009. The variables include mean air temperature (Tm), maximum air temperatures (Tmax), minimum air temperatures (Tmin), precipitation (Prec), average relative humidity (Hum), and average wind speed (Wind). The results showed that (a) annual Tm, Tmax, and Tmin have a significant increasing trend with the increasing rates of 0.26, 0.15and 0.43 °C per decade, respectively; (b) annual precipitation has an insignificant decreasing trend with the decreasing rate of 3.17 mm per decade; (c) annual Hum has a significant decreasing trend in all seasons; and (d) there are two turning points for temperature rise around 1980 and 1995 and two abrupt change periods for precipitation with the extreme points appearing in 1963 and 1976. Temperature rise and precipitation decline in summer and autumn as well as wind speed decrease after the 1990s may be an important reason for algal blooms outbreak in Lake Dianchi. This study was expected to provide foundation and reference for regional water resource management.

  13. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  14. Sensitivity and Thresholds of Ecosystems to Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Peteet, D. M.

    2001-12-01

    Rapid vegetational change is a hallmark of past abrupt climate change, as evidenced from Younger Dryas records in Europe, eastern North America, and the Pacific North American rim. The potential response of future ecosystems to abrupt climate change is targeted, with a focus on particular changes in the hydrological cycle. The vulnerability of ecosystems is notable when particular shifts cross thresholds of precipitation and temperature, as many plants and animals are adapted to specific climatic "windows". Significant forest species compositional changes occur at ecotonal boundaries, which are often the first locations to record a climatic response. Historical forest declines have been linked to stress, and even Pleistocene extinctions have been associated with human interaction at times of rapid climatic shifts. Environmental extremes are risky for reproductive stages, and result in nonlinearities. The role of humans in association with abrupt climate change suggests that many ecosystems may cross thresholds from which they will find it difficult to recover. Sectors particularly vulnerable will be reviewed.

  15. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  16. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  17. Can ice sheets trigger abrupt climatic change?

    SciTech Connect

    Hughes, T.

    1996-11-01

    The discovery in recent years of abrupt climatic changes in climate proxy records from Greenland ice cores and North Atlantic sediment cores, and from other sites around the world, has diverted attention from gradual insolation changes caused by Earth`s orbital variations to more rapid processes on Earth`s surface as forcing Quaternary climatic change. In particular, forcing by ice sheets has been quantified for a major ice stream that drained the Laurentide Ice Sheet along Hudson Strait. The history of these recent discoveries leading to an interest in ice sheets is reviewed, and a case is made that ice sheets may drive abrupt climatic change that is virtually synchronous worldwide. Attention is focused on abrupt inception and termination of a Quaternary glaciation cycle, abrupt changes recorded as stadials and interstadials within the cycle, abrupt changes in ice streams that trigger stadials and interstadials, and abrupt changes in the Laurentide Ice Sheet linked to effectively simultaneous abrupt changes in its ice streams. Remaining work needed to quantify further these changes is discussed. 90 refs., 14 figs.

  18. Abrupt climate change: Mechanisms, patterns, and impacts

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    In the span of only a few decades, the global temperature can soar by more than a dozen degrees Celsius, a feat that 20 years ago was considered improbable, if not impossible. But recent research in the nascent field of rapid climate change has upended the dominant views of decades past. Focusing primarily on events during and after the most recent glaciation, from 80,000 years ago, the AGU monograph Abrupt Climate Change: Mechanisms, Patterns, and Impacts, edited by Harunur Rashid, Leonid Polyak, and Ellen Mosley-Thompson, explores the transient climate transitions that were only recently uncovered in climate proxies around the world. In this interview, Eos talks to Harunur Rashid about piecing together ancient climes, the effect of abrupt change on historical civilizations, and why younger researchers may be more worried about modern warming than their teachers.

  19. Abrupt tropical climate change: past and present.

    PubMed

    Thompson, Lonnie G; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-07-11

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged delta(18)O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth's climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, approximately 5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world's most populous regions.

  20. Abrupt tropical climate change: Past and present

    PubMed Central

    Thompson, Lonnie G.; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-01-01

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged δ18O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth’s climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, ≈5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world’s most populous regions. PMID:16815970

  1. Weird Weather: Large Abrupt Widespread Climate Changes

    SciTech Connect

    Alley, Richard B.

    2001-01-24

    Ice-core records and other paleoclimatic indicators show that large (up to 10 degrees C), abrupt (in about 10 years), widespread (hemispheric to global) climate changes have been common for much of the last 100,000 years and beyond, but rare during the most recent few millennia. Changes in the coupled ocean-atmosphere system with a center of activity in the north Atlantic probably have been important, but several hypotheses remain possible including solar influence and a stochastically resonant interaction with changing freshwater fluxes. Our current understanding does not allow us to exclude the possibility that human or natural processes could 'flip the switch' of another abrupt change in the future.

  2. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  3. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960 2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations

    NASA Astrophysics Data System (ADS)

    Oguz, Temel; Gilbert, Denis

    2007-02-01

    Functioning of the Black Sea ecosystem has profoundly changed since the early 1970s under cumulative effects of excessive nutrient enrichment, strong cooling/warming, over-exploitation of pelagic fish stocks, and population outbreak of gelatinous carnivores. Applying a set of criteria to the long-term (1960-2000) ecological time-series data, the present study demonstrates that the Black Sea ecosystem was reorganised during this transition phase in different forms of top-down controlled food web structure through successive regime-shifts of distinct ecological properties. The Secchi disc depth, oxic-anoxic interface zone, dissolved oxygen and hydrogen sulphide concentrations also exhibit abrupt transition between their alternate regimes, and indicate tight coupling between the lower trophic food web structure and the biogeochemical pump in terms of regime-shift events. The first shift, in 1973-1974, marks a switch from large predatory fish to small planktivore fish-controlled system, which persisted until 1989 in the form of increasing small pelagic and phytoplankton biomass and decreasing zooplankton biomass. The increase in phytoplankton biomass is further supported by a bottom-up contribution due to the cumulative response to high anthropogenic nutrient load and the concurrent shift of the physical system to the "cold climate regime" following its ˜20-year persistence in the "warm climate regime". The end of the 1980s signifies the depletion of small planktivores and the transition to a gelatinous carnivore-controlled system. By the end of the 1990s, small planktivore populations take over control of the system again. Concomitantly, their top-down pressure when combined with diminishing anthropogenic nutrient load and more limited nutrient supply into the surface waters due to stabilizing effects of relatively warm winter conditions switched the "high production" regime of phytoplankton to its background "low production" regime. The Black Sea regime-shifts

  4. Abrupt or not abrupt - biodiversity affects climate-vegetation interaction at the end of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Bathiany, Sebastian; Brovkin, Victor; Kleinen, Thomas

    2014-05-01

    Palaeo-climate and ecosystem data derived from the sediment record from Lake Yoa (Ounianga Kebir, North-East Tchad) have been interpreted as support for a weak interaction between climate and vegetation without abrupt changes in precipitation climate and vegetation coverage over the last 6000 years. However, interpretation of these data has neglected potential effects of plant diversity on the stability of the climate - vegetation system. Here, we use a conceptual model that represents plant diversity in terms of moisture requirement; some plant types are sensitive to changes in precipitation thereby leading to an unstable system with the possibility of abrupt changes, while other plant types are more resilient with gradual system changes. We demonstrate that plant diversity tends to attenuate the instability of the interaction between climate and sensitive plant types, while it reduces the stability of the interaction between climate and less sensitive plant types. Hence, despite large sensitivities of individual plant types to precipitation, a gradual decline in precipitation and mean vegetation cover can occur. The present study offers a new interpretation for reconstructed shifts in vegetation and climate in northern Africa at the end of the African Humid Period. It focusses on the ecosystems in semi-arid climate, but the principle that plant diversity can affect the stability of climate-vegetation interaction may generally apply.

  5. The Role of the Tropics in Abrupt Climate Changes

    SciTech Connect

    Fedorov, Alexey

    2013-12-07

    Topics addressed include: abrupt climate changes and ocean circulation in the tropics; what controls the ocean thermal structure in the tropics; a permanent El Niño in paleoclimates; the energetics of the tropical ocean.

  6. International policy implications of abrupt climate change scenarios

    SciTech Connect

    Molitor, M.R.

    1997-12-31

    New theoretical and empirical evidence supports the view that in the recent past [Holocene] abrupt climate changes occurred over very short [decadal] time periods. One leading possibility of future changes involves the North Atlantic Ocean conveyor that transfers warm surface waters from the equator to northern latitudes and helps maintain Europe`s climate. The predicted abrupt climate change scenario theorizes that the conveyor may be modified as a result of disruption of the thermohaline circulation driving North, Atlantic Deep Water. This would lead, the theory contends, to a rapid cooling of Europe`s climate. In light of the EPCC`s 1995 Second Assessment Report conclusion that there is a {open_quotes}discernible{close_quotes} human influence on the global climate system, there are many emerging questions concerning possible abrupt climate change scenarios.

  7. Sea-ice switches and abrupt climate change.

    PubMed

    Gildor, Hezi; Tziperman, Eli

    2003-09-15

    We propose that past abrupt climate changes were probably a result of rapid and extensive variations in sea-ice cover. We explain why this seems a perhaps more likely explanation than a purely thermohaline circulation mechanism. We emphasize that because of the significant influence of sea ice on the climate system, it seems that high priority should be given to developing ways for reconstructing high-resolution (in space and time) sea-ice extent for past climate-change events. If proxy data can confirm that sea ice was indeed the major player in past abrupt climate-change events, it seems less likely that such dramatic abrupt changes will occur due to global warming, when extensive sea-ice cover will not be present.

  8. Evidence for abrupt climate changes in annually laminated marine sediments.

    PubMed

    Kemp, Alan E S

    2003-09-15

    Annually laminated sediments from marine or lacustrine settings represent valuable high-resolution archives of climate change that record variation due to changing precipitation and run-off from land or variation in biological productivity and flux in the water column. Because of their annual resolution such sediments may capture abrupt changes of interannual to decadal scales rivaling corals and ice cores in resolution. Laminated sediments often occur intermittently in the sediment column, and the onset and cessation of laminae commonly record the abrupt crossing of thresholds related to climate change, for example, in the degree of oxygenation of bottom waters. Such records from marginal basins and continental margins have been pivotal in demonstrating that abrupt changes hitherto documented only in high-latitude ice cores are synchronous with climatic change at low latitudes. These insights into global teleconnections have improved our understanding of the mechanisms of rapid climate change. In deep-sea settings, the discovery of the episodic occurrence of laminated diatom-rich sediments in the Equatorial Pacific and Southern Ocean provides evidence for massive climate-related biogeochemical excursions tied to abrupt changes in the input, distribution and availability of nutrients in the oceans.

  9. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Loschetter, A.

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to > 70% could be identified up to 1-3 h in advance. This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  10. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Loschetter, Annick

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value and to the one of high probability value: the latter value generally supports the call for evacuation. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to >70% could be identified up 4 hours in advance, ~2.5 days before the evacuation call (decided for an eruption probability >80% during the MESIMEX exercise). This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  11. Abrupt climate change and thermohaline circulation: mechanisms and predictability.

    PubMed

    Marotzke, J

    2000-02-15

    The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.

  12. The role of the thermohaline circulation in abrupt climate change.

    PubMed

    Clark, Peter U; Pisias, Nicklas G; Stocker, Thomas F; Weaver, Andrew J

    2002-02-21

    The possibility of a reduced Atlantic thermohaline circulation in response to increases in greenhouse-gas concentrations has been demonstrated in a number of simulations with general circulation models of the coupled ocean-atmosphere system. But it remains difficult to assess the likelihood of future changes in the thermohaline circulation, mainly owing to poorly constrained model parameterizations and uncertainties in the response of the climate system to greenhouse warming. Analyses of past abrupt climate changes help to solve these problems. Data and models both suggest that abrupt climate change during the last glaciation originated through changes in the Atlantic thermohaline circulation in response to small changes in the hydrological cycle. Atmospheric and oceanic responses to these changes were then transmitted globally through a number of feedbacks. The palaeoclimate data and the model results also indicate that the stability of the thermohaline circulation depends on the mean climate state.

  13. Atmospheric teleconnections between the tropics and the Southern Hemisphere westerly winds during abrupt climate change

    NASA Astrophysics Data System (ADS)

    Markle, B. R.; Steig, E. J.; Buizert, C.; Schoenemann, S. W.; Bitz, C. M.; Fudge, T. J.; Pedro, J. B.; Ding, Q.; Jones, T. R.; White, J. W. C.; Sowers, T. A.

    2015-12-01

    Abrupt, large amplitude climate oscillations occurred in the North Atlantic region during the last deglaciation and glacial period. Antarctic temperatures show a lagged and out-of-phase response, suggesting that these climate anomalies were propagated to the Southern Hemisphere high latitudes through changes in ocean circulation. Large changes in atmospheric circulation in the tropics accompanied abrupt North Atlantic climate change and modeling studies have predicted an atmospheric teleconnection between the tropics and the Southern Hemisphere westerly winds. However, consistent paleoclimate evidence for this tropical-high southern latitude atmospheric teleconnection has been lacking. Here we use a new high-resolution deuterium excess record from West Antarctica to show that moisture sources for Antarctic precipitation changed in phase with abrupt shifts in Northern Hemisphere climate, significantly before Antarctic temperature change. These results suggest that Southern Hemisphere mid-latitude storm tracks and westerly winds migrated north- and southwards within decades of rapid North Atlantic warming and cooling, respectively, and in parallel with the well-established migrations of the intertropical convergence zone. Both ocean and atmospheric processes, operating on different timescales, are critical to the global expression of abrupt climate change and this atmospheric link between the hemispheres may be important to the underlying dynamics.

  14. Response of seafloor ecosystems to abrupt global climate change.

    PubMed

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L(-1) [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  15. Response of seafloor ecosystems to abrupt global climate change

    PubMed Central

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-01-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L−1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  16. Response of seafloor ecosystems to abrupt global climate change

    NASA Astrophysics Data System (ADS)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mLṡL-1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  17. An interhemispheric mechanism for glacial abrupt climate change

    NASA Astrophysics Data System (ADS)

    Banderas, Rubén; Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa

    2015-05-01

    The last glacial period was punctuated by abrupt climate changes that are widely considered to result from millennial-scale variability of the Atlantic meridional overturning circulation (AMOC). However, the origin of these AMOC reorganizations remains poorly understood. The climatic connection between both hemispheres indicated by proxies suggests that the Southern Ocean (SO) could regulate this variability through changes in winds and atmospheric CO concentration. Here, we investigate this hypothesis using a coupled climate model forced by prescribed CO and SO wind-stress variations. We find that the AMOC exhibits an oscillatory behavior between weak and strong circulation regimes which is ultimately caused by changes in the meridional density gradient of the Atlantic Ocean. The evolution of the simulated climatic patterns matches the amplitude and timing of the largest events that occurred during the last glacial period and their widespread climatic impacts. Our results suggest the existence of an internal interhemispheric oscillation mediated by the bipolar seesaw that could promote glacial abrupt climate changes through variations in atmospheric CO levels, the strength of the SO winds and AMOC reorganizations, and provide an explanation for the pervasive Antarctic-like climate signal found in proxy records worldwide.

  18. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, Jean

    2017-01-01

    Abrupt changes in climate have occurred in many locations around the globe over the last glacial cycle, with pronounced temperature swings on timescales of decades or less in the North Atlantic. The global pattern of these changes suggests that they reflect variability in the Atlantic meridional overturning circulation (AMOC). This review examines the evidence from ocean sediments for ocean circulation change over these abrupt events. The evidence for changes in the strength and structure of the AMOC associated with the Younger Dryas and many of the Heinrich events is strong. Although it has been difficult to directly document changes in the AMOC over the relatively short Dansgaard-Oeschger events, there is recent evidence supporting AMOC changes over most of these oscillations as well. The lack of direct evidence for circulation changes over the shortest events leaves open the possibility of other driving mechanisms for millennial-scale climate variability.

  19. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change.

    PubMed

    Lynch-Stieglitz, Jean

    2017-01-03

    Abrupt changes in climate have occurred in many locations around the globe over the last glacial cycle, with pronounced temperature swings on timescales of decades or less in the North Atlantic. The global pattern of these changes suggests that they reflect variability in the Atlantic meridional overturning circulation (AMOC). This review examines the evidence from ocean sediments for ocean circulation change over these abrupt events. The evidence for changes in the strength and structure of the AMOC associated with the Younger Dryas and many of the Heinrich events is strong. Although it has been difficult to directly document changes in the AMOC over the relatively short Dansgaard-Oeschger events, there is recent evidence supporting AMOC changes over most of these oscillations as well. The lack of direct evidence for circulation changes over the shortest events leaves open the possibility of other driving mechanisms for millennial-scale climate variability.

  20. Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, U.S.A.

    PubMed

    Elliott, Grant P

    2012-07-01

    Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad

  1. Abrupt climate change and collapse of deep-sea ecosystems

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Demenocal, P.B.; Okahashi, H.; Linsley, B.K.

    2008-01-01

    We investigated the deep-sea fossil record of benthic ostracodes during periods of rapid climate and oceanographic change over the past 20,000 years in a core from intermediate depth in the northwestern Atlantic. Results show that deep-sea benthic community "collapses" occur with faunal turnover of up to 50% during major climatically driven oceanographic changes. Species diversity as measured by the Shannon-Wiener index falls from 3 to as low as 1.6 during these events. Major disruptions in the benthic communities commenced with Heinrich Event 1, the Inter-Aller??d Cold Period (IACP: 13.1 ka), the Younger Dryas (YD: 12.9-11.5 ka), and several Holocene Bond events when changes in deep-water circulation occurred. The largest collapse is associated with the YD/IACP and is characterized by an abrupt two-step decrease in both the upper North Atlantic Deep Water assemblage and species diversity at 13.1 ka and at 12.2 ka. The ostracode fauna at this site did not fully recover until ???8 ka, with the establishment of Labrador Sea Water ventilation. Ecologically opportunistic slope species prospered during this community collapse. Other abrupt community collapses during the past 20 ka generally correspond to millennial climate events. These results indicate that deep-sea ecosystems are not immune to the effects of rapid climate changes occurring over centuries or less. ?? 2008 by The National Academy of Sciences of the USA.

  2. Abrupt climate change and collapse of deep-sea ecosystems.

    PubMed

    Yasuhara, Moriaki; Cronin, Thomas M; Demenocal, Peter B; Okahashi, Hisayo; Linsley, Braddock K

    2008-02-05

    We investigated the deep-sea fossil record of benthic ostracodes during periods of rapid climate and oceanographic change over the past 20,000 years in a core from intermediate depth in the northwestern Atlantic. Results show that deep-sea benthic community "collapses" occur with faunal turnover of up to 50% during major climatically driven oceanographic changes. Species diversity as measured by the Shannon-Wiener index falls from 3 to as low as 1.6 during these events. Major disruptions in the benthic communities commenced with Heinrich Event 1, the Inter-Allerød Cold Period (IACP: 13.1 ka), the Younger Dryas (YD: 12.9-11.5 ka), and several Holocene Bond events when changes in deep-water circulation occurred. The largest collapse is associated with the YD/IACP and is characterized by an abrupt two-step decrease in both the upper North Atlantic Deep Water assemblage and species diversity at 13.1 ka and at 12.2 ka. The ostracode fauna at this site did not fully recover until approximately 8 ka, with the establishment of Labrador Sea Water ventilation. Ecologically opportunistic slope species prospered during this community collapse. Other abrupt community collapses during the past 20 ka generally correspond to millennial climate events. These results indicate that deep-sea ecosystems are not immune to the effects of rapid climate changes occurring over centuries or less.

  3. Paleoclimate. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming.

    PubMed

    Praetorius, Summer K; Mix, Alan C

    2014-07-25

    Some proposed mechanisms for transmission of major climate change events between the North Pacific and North Atlantic predict opposing patterns of variations; others suggest synchronization. Resolving this conflict has implications for regulation of poleward heat transport and global climate change. New multidecadal-resolution foraminiferal oxygen isotope records from the Gulf of Alaska (GOA) reveal sudden shifts between intervals of synchroneity and asynchroneity with the North Greenland Ice Core Project (NGRIP) δ(18)O record over the past 18,000 years. Synchronization of these regions occurred 15,500 to 11,000 years ago, just prior to and throughout the most abrupt climate transitions of the last 20,000 years, suggesting that dynamic coupling of North Pacific and North Atlantic climates may lead to critical transitions in Earth's climate system.

  4. Climate response to abrupt cessation of solar radiation management

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Armour, K.; Bitz, C. M.; Battisti, D. S.

    2012-12-01

    Solar radiation management (SRM) as a means to reduce or cancel the effects of increased greenhouse gases may be regarded as effective to the extent that it broadly reduces warming and other related changes. Studies that have previously modeled SRM have focused on spatial inhomogeneities in the climate response, assuming that SRM is continued indefinitely and global climate is stabilized. In this study, we focus on the possible situation in which SRM is terminated (e.g. due to lack of funding, international governmental disorganization, technical failure, or unanticipated negative consequences) while greenhouse gases have continued rising. We use a global climate model (GCM) with a prescribed stratospheric sulfate burden that counteracts the Representative Concentration Pathway 8.5 (RCP8.5) - wherein the radiative forcing reaches 8.5 W/m2 above the preindustrial by 2100 - to show that upon termination of the sulfate burden, abrupt and sustained warming occurs that is well outside familiar 20th century bounds, especially on land. The GCM utilized has a climate sensitivity of 3.2 degrees Celsius, yet in reality climate sensitivity is unknown, its probability density distribution exhibiting a long tail at the high end of sensitivity. Using SRM to stabilize climate while greenhouse gases continue to rise has the effect of obscuring how the climate would respond to the additional gases given the opportunity - climate sensitivity would be masked. We use a simple upwelling-diffusion energy balance model to span the range of the observationally-constrained climate sensitivities to investigate the range of global mean rate of temperature rise following SRM termination, in addition to its sensitivity to termination year and background emissions scenario. We show that in fact, the distribution of temperature trends following termination could be far broader than those simulated by the GCM. These inherent dangers suggest that solar radiation management should only be

  5. Low-latitude mountain glacier evidence for abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E. S.; Lin, P.; Davis, M. E.; Mashiotta, T. A.; Brecher, H. H.

    2004-12-01

    Clear evidence that a widespread warming of Earth's climate system is now underway comes from low latitude mountain glaciers. Proxy temperature histories reconstructed from ice cores, and the rapidly accelerating loss of both the total ice area and ice volume on a near global scale suggest that these glaciers responding to increasing rates of melting. In situ observations reveal the startling rates at which many tropical glaciers are disappearing. For example, the retreat of the terminus of the Qori Kalis Glacier in Peru is roughly 200 meters per year, 40 times faster than its retreat rate in 1978. Similarly, in 1912 the ice on Mount Kilimanjaro covered 12.1 km2, but today it covers only 2.6 km2. If the current rate of retreat continues, the perennial ice fields may disappear within the next few decades, making this the first time in the past 11,700 years that Kilimanjaro will be devoid of the ice that shrouds its summit. Tropical glaciers may be considered ``the canaries in the coal mine'' for the global climate system as they integrate and respond to key climatological variables, such as temperature, precipitation, cloudiness, humidity, and incident solar radiation. A composite of the decadally-averaged oxygen isotopic records from three Andean and three Tibetan ice cores extending back over the last two millennia shows an isotopic enrichment in the 20th century that suggests a large-scale warming is underway at lower latitudes. Multiple lines of evidence from Africa, the Middle East, Europe and South America indicate an abrupt mid-Holocene climate event in the low latitudes. If such an event were to occur now with a global human population of 6.3 billion people, the consequences could be severe. Clearly, we need to understand the nature and cause of abrupt climate events.

  6. Abrupt reorganization of North Pacific and western North American climate during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Mitchell, Jonathan L.; Tripati, Aradhna E.

    2016-11-01

    Dramatic hydroclimate shifts occurred in western North America during the last deglaciation, but the timing and mechanisms driving these changes are uncertain and debated, and previous modeling has largely relied on linear interpolations between equilibrium snapshot simulations. Using a published transient climate simulation and a range of proxy records, we analyze the region's climate evolution in order to identify the mechanisms governing hydroclimate shifts. A rapid loss of ice around 14,000 years ago causes an abrupt reorganization of the circulation, which precipitates drying and moistening of southwestern and northwestern North America, respectively. The atmospheric circulation transitions between two states on a timescale of decades to centuries, during which time the westerly jet shifts north by about 7°. In contrast to previous studies, we find that changes in the water budget of western North America prior to this event are not attributable to variations in the position of the jet, but rather to the intensity of moisture transport into the continent.

  7. Dynamic response of desert wetlands to abrupt climate change

    PubMed Central

    Springer, Kathleen B.; Manker, Craig R.; Pigati, Jeffrey S.

    2015-01-01

    Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated 14C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming. PMID:26554007

  8. Dynamic response of desert wetlands to abrupt climate change.

    PubMed

    Springer, Kathleen B; Manker, Craig R; Pigati, Jeffrey S

    2015-11-24

    Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated (14)C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming.

  9. Dynamic response of desert wetlands to abrupt climate change

    USGS Publications Warehouse

    Springer, Kathleen; Manker, Craig; Pigati, Jeff

    2015-01-01

    Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated 14C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming.

  10. Wildfire responses to abrupt climate change in North America.

    PubMed

    Marlon, J R; Bartlein, P J; Walsh, M K; Harrison, S P; Brown, K J; Edwards, M E; Higuera, P E; Power, M J; Anderson, R S; Briles, C; Brunelle, A; Carcaillet, C; Daniels, M; Hu, F S; Lavoie, M; Long, C; Minckley, T; Richard, P J H; Scott, A C; Shafer, D S; Tinner, W; Umbanhowar, C E; Whitlock, C

    2009-02-24

    It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial-interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.

  11. Abrupt cooling over the North Atlantic in modern climate models

    PubMed Central

    Sgubin, Giovanni; Swingedouw, Didier; Drijfhout, Sybren; Mary, Yannick; Bennabi, Amine

    2017-01-01

    Observations over the 20th century evidence no long-term warming in the subpolar North Atlantic (SPG). This region even experienced a rapid cooling around 1970, raising a debate over its potential reoccurrence. Here we assess the risk of future abrupt SPG cooling in 40 climate models from the fifth Coupled Model Intercomparison Project (CMIP5). Contrary to the long-term SPG warming trend evidenced by most of the models, 17.5% of the models (7/40) project a rapid SPG cooling, consistent with a collapse of the local deep-ocean convection. Uncertainty in projections is associated with the models' varying capability in simulating the present-day SPG stratification, whose realistic reproduction appears a necessary condition for the onset of a convection collapse. This event occurs in 45.5% of the 11 models best able to simulate the observed SPG stratification. Thus, due to systematic model biases, the CMIP5 ensemble as a whole underestimates the chance of future abrupt SPG cooling, entailing crucial implications for observation and adaptation policy. PMID:28198383

  12. Abrupt cooling over the North Atlantic in modern climate models.

    PubMed

    Sgubin, Giovanni; Swingedouw, Didier; Drijfhout, Sybren; Mary, Yannick; Bennabi, Amine

    2017-02-15

    Observations over the 20th century evidence no long-term warming in the subpolar North Atlantic (SPG). This region even experienced a rapid cooling around 1970, raising a debate over its potential reoccurrence. Here we assess the risk of future abrupt SPG cooling in 40 climate models from the fifth Coupled Model Intercomparison Project (CMIP5). Contrary to the long-term SPG warming trend evidenced by most of the models, 17.5% of the models (7/40) project a rapid SPG cooling, consistent with a collapse of the local deep-ocean convection. Uncertainty in projections is associated with the models' varying capability in simulating the present-day SPG stratification, whose realistic reproduction appears a necessary condition for the onset of a convection collapse. This event occurs in 45.5% of the 11 models best able to simulate the observed SPG stratification. Thus, due to systematic model biases, the CMIP5 ensemble as a whole underestimates the chance of future abrupt SPG cooling, entailing crucial implications for observation and adaptation policy.

  13. Abrupt cooling over the North Atlantic in modern climate models

    NASA Astrophysics Data System (ADS)

    Sgubin, Giovanni; Swingedouw, Didier; Drijfhout, Sybren; Mary, Yannick; Bennabi, Amine

    2017-02-01

    Observations over the 20th century evidence no long-term warming in the subpolar North Atlantic (SPG). This region even experienced a rapid cooling around 1970, raising a debate over its potential reoccurrence. Here we assess the risk of future abrupt SPG cooling in 40 climate models from the fifth Coupled Model Intercomparison Project (CMIP5). Contrary to the long-term SPG warming trend evidenced by most of the models, 17.5% of the models (7/40) project a rapid SPG cooling, consistent with a collapse of the local deep-ocean convection. Uncertainty in projections is associated with the models' varying capability in simulating the present-day SPG stratification, whose realistic reproduction appears a necessary condition for the onset of a convection collapse. This event occurs in 45.5% of the 11 models best able to simulate the observed SPG stratification. Thus, due to systematic model biases, the CMIP5 ensemble as a whole underestimates the chance of future abrupt SPG cooling, entailing crucial implications for observation and adaptation policy.

  14. A comparison of two methods for detecting abrupt changes in the variance of climatic time series

    NASA Astrophysics Data System (ADS)

    Rodionov, Sergei N.

    2016-06-01

    Two methods for detecting abrupt shifts in the variance - Integrated Cumulative Sum of Squares (ICSS) and Sequential Regime Shift Detector (SRSD) - have been compared on both synthetic and observed time series. In Monte Carlo experiments, SRSD outperformed ICSS in the overwhelming majority of the modeled scenarios with different sequences of variance regimes. The SRSD advantage was particularly apparent in the case of outliers in the series. On the other hand, SRSD has more parameters to adjust than ICSS, which requires more experience from the user in order to select those parameters properly. Therefore, ICSS can serve as a good starting point of a regime shift analysis. When tested on climatic time series, in most cases both methods detected the same change points in the longer series (252-787 monthly values). The only exception was the Arctic Ocean sea surface temperature (SST) series, when ICSS found one extra change point that appeared to be spurious. As for the shorter time series (66-136 yearly values), ICSS failed to detect any change points even when the variance doubled or tripled from one regime to another. For these time series, SRSD is recommended. Interestingly, all the climatic time series tested, from the Arctic to the tropics, had one thing in common: the last shift detected in each of these series was toward a high-variance regime. This is consistent with other findings of increased climate variability in recent decades.

  15. Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study

    NASA Astrophysics Data System (ADS)

    Mitsui, Takahito; Crucifix, Michel

    2016-07-01

    The last glacial period was punctuated by a series of abrupt climate shifts, the so-called Dansgaard-Oeschger (DO) events. The frequency of DO events varied in time, supposedly because of changes in background climate conditions. Here, the influence of external forcings on DO events is investigated with statistical modelling. We assume two types of simple stochastic dynamical systems models (double-well potential-type and oscillator-type), forced by the northern hemisphere summer insolation change and/or the global ice volume change. The model parameters are estimated by using the maximum likelihood method with the NGRIP Ca^{2+} record. The stochastic oscillator model with at least the ice volume forcing reproduces well the sample autocorrelation function of the record and the frequency changes of warming transitions in the last glacial period across MISs 2, 3, and 4. The model performance is improved with the additional insolation forcing. The BIC scores also suggest that the ice volume forcing is relatively more important than the insolation forcing, though the strength of evidence depends on the model assumption. Finally, we simulate the average number of warming transitions in the past four glacial periods, assuming the model can be extended beyond the last glacial, and compare the result with an Iberian margin sea-surface temperature (SST) record (Martrat et al. in Science 317(5837): 502-507, 2007). The simulation result supports the previous observation that abrupt millennial-scale climate changes in the penultimate glacial (MIS 6) are less frequent than in the last glacial (MISs 2-4). On the other hand, it suggests that the number of abrupt millennial-scale climate changes in older glacial periods (MISs 6, 8, and 10) might be larger than inferred from the SST record.

  16. Climatic and Societal Causes for Abrupt Environmental Change in the Mediterranean During the Common Era

    NASA Astrophysics Data System (ADS)

    Mensing, S. A.; Tunno, I.; Sagnotti, L.; Florindo, F.; Noble, P. J.; Archer, C.; Zimmerman, S. R. H.; Pavón-Carrasco, F. J.; Cifnani, G.; Passigli, S.; Piovesan, G.

    2015-12-01

    We compare climatic and societal causes for abrupt environmental change for the last 2000 years in the Rieti Basin, central Italy using high-resolution sedimentary paleoenvironmental proxies, historical documents, and annually resolved independent climate reconstructions of temperature and precipitation. Pollen zones, identified from temporally constrained cluster analysis, coincide with historic periods developed from well-established ceramic sequences corresponding to the Roman Imperial through Late Antique (1 to 600 CE) Early Medieval (600 to 875 CE), Medieval through Late Medieval (875 to 1400 CE), Renaissance and Modern (1400 to 1725 CE), and Contemporary periods (1725 CE to present). Non-metric dimensional scaling (NMDS) ordination showed that each temporal period occupied a unique ecologic space suggesting that a new landscape was created during each successive historic period. During Roman time, between 1 and 500 CE, a modest decline in forest coincides with a positive phase of the North Atlantic Oscillation (NAO) and drier climate; however mesophyllous forest is preserved. Steep decline in forest cover between 850 and 950 CE coincides with positive temperature anomalies in Europe and a positive NAO. Although this would seem to suggest climate as a cause, temperature and precipitation changes are modest and the magnitude and rapidity of the vegetation change suggests climate played a small role. Archaeological evidence from across Europe identifies socioeconomic factors that produced forest clearing. In contrast, cooler temperatures and a negative NAO (increased ppt) appears to have been a catalyst for land abandonment and forest recovery in the 13th to 14th centuries. The NAO produces opposite effects on societies in the eastern and western Mediterranean with the negative phase in 1400 CE leading to cool wet climate and land abandonment in central Italy but an abrupt shift to drier conditions and change from sedentary village life to nomadism in Syria.

  17. The case of the global jitters - Even in seemingly stable times, climate can take an abrupt turn

    SciTech Connect

    Monastersky, R.

    1996-03-02

    Research in different parts of the world has recently revealed signs that climate has behaved erratically during the last few millennia. Conditions in various regions have shifted abruptly and repeatedly, perhaps even at the time of the collapse of the Akkadian civilization in 2200 B.C. This article discusses recent work of various scientists, who are trying to forecast future conditions, to understand what is causing these shifts and whether this rhythum has played a role in recent global warming. A side bar discusses signs of a solar link to climatic change.

  18. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.

    PubMed

    Boulton, Chris A; Lenton, Timothy M

    2015-09-15

    Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.

  19. Climate changes, shifting ranges

    USGS Publications Warehouse

    Romanach, Stephanie

    2015-01-01

    Even a fleeting mention of the Everglades conjures colorful images of alligators, panthers, flamingos, and manatees. Over the centuries, this familiar cast of characters has become synonymous with life in south Florida. But the workings of a changing climate have the potential to significantly alter the menagerie of animals that call this area home. Global projections suggest south Florida wildlife will need to contend with higher temperatures, drier conditions, and rising seas in the years ahead. Recent modeling efforts shed new light on the potential outcomes these changes may have for threatened and endangered species in the area.

  20. The role of oceanic heat transport in abrupt millennial-scale climate transitions

    NASA Astrophysics Data System (ADS)

    Arzel, Olivier; de Verdière, Alain Colin; England, Matthew H.

    2010-05-01

    The last glacial period was punctuated by rapid climate shifts, known as Dansgaard-Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic Meridional Overturning Circulation. Here an idealized single-hemisphere three-dimensional ocean-atmosphere-sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, we show that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally-averaged coupled models. This fundamental difference is a direct consequence of the weaker temperature stratification of the glacial ocean, mainly caused by upper ocean cooling. With similar overturning strengths between the cold and warm climates, this weaker temperature stratification implies a weaker baroclinic heat transport that ultimately leads to a weaker stabilization of the circulation by the negative temperature advection feedback. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, we show that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials, with maximum variance in the northern extension of the western boundary current in the North Atlantic. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial-interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes: they originate

  1. Abrupt shifts in ecosystem function and intensification of global biogeochemical cycle driven by hydroclimatic extremes

    NASA Astrophysics Data System (ADS)

    Ma, Xuanlong; Huete, Alfredo; Ponce-Campos, Guillermo; Zhang, Yongguang; Xie, Zunyi; Giovannini, Leandro; Cleverly, James; Eamus, Derek

    2016-04-01

    Amplification of the hydrologic cycle as a consequence of global warming is increasing the frequency, intensity, and spatial extent of extreme climate events globally. The potential influences resulting from amplification of the hydro-climatic cycle, coupled with an accelerating warming trend, pose great concerns on the sustainability of terrestrial ecosystems to sequester carbon, maintain biodiversity, provide ecosystem services, food security, and support human livelihood. Despite the great implications, the magnitude, direction, and carry-over effect of these extreme climate events on ecosystem function, remain largely uncertain. To address these pressing issues, we conducted an observational, interdisciplinary study using satellite retrievals of atmospheric CO2 and photosynthesis (chlorophyll fluorescence), and in-situ flux tower measures of ecosystem-atmosphere carbon exchange, to reveal the shifts in ecosystem function across extreme drought and wet periods. We further determine the factors that govern ecosystem sensitivity to hydroclimatic extremes. We focus on Australia but extended our analyses to other global dryland regions due to their significant role in global biogeochemical cycles. Our results revealed dramatic impacts of drought and wet hydroclimatic extremes on ecosystem function, with abrupt changes in vegetation productivity, carbon uptake, and water-use-efficiency between years. Drought resulted in widespread reductions or collapse in the normal patterns of vegetation growth seasonality such that in many cases there was no detectable phenological cycle during extreme drought years. We further identified a significant increasing trend (p < 0.001) in extreme wet year precipitation amounts over Australia and many other global regions, resulting in an increasing trend in magnitude of the episodic carbon sink pulses coupled to each La Niña-induced wet years. This finding is of global biogeochemical significance, with the consequence of amplifying

  2. Decoupling of Northern North Atlantic Sea Surface Temperature and Deep Circulation during Abrupt Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Jonkers, L.; Barker, S.; Hall, I. R.

    2014-12-01

    Abrupt climate change is a prominent feature of the ice ages. The prevailing view is that these changes are related to fluctuations in ocean circulation, possibly triggered by changes in freshwater forcing as a result of ice-rafting events in the North Atlantic. Here we investigate this view by presenting results from a sediment core in the Northern North Atlantic (ODP 983 60.4°N, 23.6°W, 1984m depth, ~12-35 kyr), which is ideally positioned to monitor changes in the flow speed of Iceland-Scotland Overflow Waters. The mean size of silt (10-63 μm) has been proposed as a useful flow speed indicator, but can be influenced the presence of ice-rafted detritus (IRD). We present grain size data obtained using a Coulter counter as well as a laser diffraction particle sizer, which we compare to the proportion of Neogloboquadrina pachyderma (proxy for sea surface temperature) and manually counted coarse IRD. Grain size results are comparable for the two techniques and the influence of IRD is clearly visible in the mean size data. We use end-member modelling to derive an IRD-free estimate of flow speed variability and find clear reductions in the flow speed associated with IRD input. Sea surface temperature however, appears to vary independently from IRD input and hence deep circulation. In particular, IRD appears and current speed decreases after the onset of cooling and additional temperature variability is observed that is not associated with IRD events or changes in the deep circulation. These results question the classical view of freshwater forcing as the driver of abrupt climate change. We suggest that North Atlantic temperature variability may be related to shifts in position of the polar front and that, while IRD events may be coeval with changes in the deep circulation, these changes are not required to explain the abrupt temperature variability in the Northern North Atlantic.

  3. Antarctic Forcing of Abrupt Global Climate Change During Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Turney, Christian; Jones, Richard; Phipps, Steven; Thomas, Zoë; Hogg, Alan; Kershaw, Peter; Fogwill, Christopher; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian; Muscheler, Raimund; Hughen, Konrad; Staff, Richard; Grosvenor, Mark; Golledge, Nicholas; Haberle, Simon

    2016-04-01

    Contrasting Greenland and Antarctic temperature trends during the late Pleistocene (60,000 to 11,650 years ago) are thought to be driven by imbalances in the rate of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'), with millennial-scale cooling Dansgaard-Oeschger (D-O) events in the north leading warming in the south. An alternative origin for these abrupt climate shifts, however, is the Southern Hemisphere whereby changes are transmitted globally via atmospheric and/or oceanic teleconnections. Testing these competing hypotheses is challenging given the relatively large uncertainties associated with dating terrestrial, marine and ice core chronologies. Here we use a fully coupled climate system model to investigate whether freshening of the Southern Ocean has extra-regional climate impacts. Focusing on an Isotope Stage 3 cooling event preserved in Antarctic ice cores immediately prior to Antarctic Isotope Maximum 4 (AIM 4; around 29,000 years ago) we undertook an ensemble of transient meltwater simulations. We observe no impact on the Atlantic Meridional Overturning Circulation (AMOC) from freshwater hosing in the Southern Ocean but a dramatic warming over the North Atlantic and contrasting precipitation patterns across the low latitudes. Exploiting a new bidecadally-resolved 14C calibration dataset obtained from New Zealand kauri (Agathis australis) we undertook intensive radiocarbon dating and high-resolution multiproxy analysis of the tropical Australia Lynch's Crater terrestrial peat sequence spanning this same period and find a synchronous change in hydroclimate to the purported meltwater event in the Southern Ocean. Our results imply Southern Ocean dynamics played a significant role in driving global climate change across this period via atmospheric teleconnections, with implications for other abrupt events through the late Pleistocene.

  4. Modeling abrupt cultural regime shifts during the Palaeolithic and Stone Age.

    PubMed

    Aoki, Kenichi

    2014-12-07

    The coupled dynamics of the size and the mean cultural/technological level of a population, with positive feedback between these two variables, is modeled in the Malthusian-Boserupian framework. Bifurcation diagrams, with innovativeness or the cultureless carrying capacity as the parameter, show that abrupt transitions in the mean cultural level are possible. For example, a gradual evolutionary change toward greater innate innovativeness would produce an associated gradual increase in mean cultural level, until a threshold is crossed that triggers an abrupt cultural regime shift. Hence, the model may help explain the apparently sudden and dramatic efflorescences of Palaeolithic/Stone Age culture during the Late Pleistocene, without having to invoke major contemporaneous genetic changes in cognition. The results of statistical studies on the association between population size and toolkit diversity among ethnographic societies are also discussed.

  5. Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Bitz, Cecilia M.; Chiang, John C. H.

    We explore the adjustment of the global climate to an abrupt slowdown of the Atlantic Meridional Circulation (AMOC), with a particular focus on the energetics. The slowdown is induced by a sudden freshwater perturbation in the North Atlantic. Reduction in the AMOC decreases northward ocean heat transport (OHT) and leads to cooling in the northern high latitudes. This cooling results in a local reduction to the top of atmosphere (TOA) radiative heat loss and an increase in northward atmospheric heat transport (AHT). The energy for the increased northward AHT comes from a combination of increased downward radiative flux at the TOA in the southern tropics and anomalous heating from the ocean in the northern tropics, both of which are consequences of the southward shift in the Intertropical Convergence Zone. Hence, viewed in the energetics framework, the atmospheric response to an AMOC slowdown extends throughout the Northern Hemisphere and into the tropics, and suggests an intimate coupling between the two regions. The mechanisms for the high-latitude-tropical coupling are examined. When comparing freshwater perturbation experiments in modern and Last Glacial Maximum (LGM) background states, we found that the changes to the northward OHT, and the mechanisms of global adjustment to the AMOC slowdown, were qualitatively similar in both instances. The one major difference is that freshening in the LGM climate induces a significantly stronger sea ice feedback than in a modern climate, allowing greater local cooling of the North Atlantic, and causing a commensurately larger global climate adjustment.

  6. Abrupt climate change and transient climates during the Paleogene: a marine perspective

    NASA Technical Reports Server (NTRS)

    Zachos, J. C.; Lohmann, K. C.; Walker, J. C.; Wise, S. W.

    1993-01-01

    Detailed investigations of high latitude sequences recently collected by the Ocean Drilling Program (ODP) indicate that periods of rapid climate change often culminated in brief transient climates, with more extreme conditions than subsequent long term climates. Two examples of such events have been identified in the Paleogene; the first in latest Paleocene time in the middle of a warming trend that began several million years earlier: the second in earliest Oligocene time near the end of a Middle Eocene to Late Oligocene global cooling trend. Superimposed on the earlier event was a sudden and extreme warming of both high latitude sea surface and deep ocean waters. Imbedded in the latter transition was an abrupt decline in high latitude temperatures and the brief appearance of a full size continental ice-sheet on Antarctica. In both cases the climate extremes were not stable, lasting for less than a few hundred thousand years, indicating a temporary or transient climate state. Geochemical and sedimentological evidence suggest that both Paleogene climate events were accompanied by reorganizations in ocean circulation, and major perturbations in marine productivity and the global carbon cycle. The Paleocene-Eocene thermal maximum was marked by reduced oceanic turnover and decreases in global delta 13C and in marine productivity, while the Early Oligocene glacial maximum was accompanied by intensification of deep ocean circulation and elevated delta 13C and productivity. It has been suggested that sudden changes in climate and/or ocean circulation might occur as a result of gradual forcing as certain physical thresholds are exceeded. We investigate the possibility that sudden reorganizations in ocean and/or atmosphere circulation during these abrupt transitions generated short-term positive feedbacks that briefly sustained these transient climatic states.

  7. Abrupt climate change and transient climates during the Paleogene: a marine perspective.

    PubMed

    Zachos, J C; Lohmann, K C; Walker, J C; Wise, S W

    1993-03-01

    Detailed investigations of high latitude sequences recently collected by the Ocean Drilling Program (ODP) indicate that periods of rapid climate change often culminated in brief transient climates, with more extreme conditions than subsequent long term climates. Two examples of such events have been identified in the Paleogene; the first in latest Paleocene time in the middle of a warming trend that began several million years earlier: the second in earliest Oligocene time near the end of a Middle Eocene to Late Oligocene global cooling trend. Superimposed on the earlier event was a sudden and extreme warming of both high latitude sea surface and deep ocean waters. Imbedded in the latter transition was an abrupt decline in high latitude temperatures and the brief appearance of a full size continental ice-sheet on Antarctica. In both cases the climate extremes were not stable, lasting for less than a few hundred thousand years, indicating a temporary or transient climate state. Geochemical and sedimentological evidence suggest that both Paleogene climate events were accompanied by reorganizations in ocean circulation, and major perturbations in marine productivity and the global carbon cycle. The Paleocene-Eocene thermal maximum was marked by reduced oceanic turnover and decreases in global delta 13C and in marine productivity, while the Early Oligocene glacial maximum was accompanied by intensification of deep ocean circulation and elevated delta 13C and productivity. It has been suggested that sudden changes in climate and/or ocean circulation might occur as a result of gradual forcing as certain physical thresholds are exceeded. We investigate the possibility that sudden reorganizations in ocean and/or atmosphere circulation during these abrupt transitions generated short-term positive feedbacks that briefly sustained these transient climatic states.

  8. Sensitivity and rapidity of vegetational response to abrupt climate change

    NASA Technical Reports Server (NTRS)

    Peteet, D.

    2000-01-01

    Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.

  9. Sensitivity and rapidity of vegetational response to abrupt climate change.

    PubMed

    Peteet, D

    2000-02-15

    Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.

  10. Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria.

    PubMed

    Higgins, Paul A T; Mastrandrea, Michael D; Schneider, Stephen H

    2002-05-29

    Interactions between subunits of the global climate-biosphere system (e.g. atmosphere, ocean, biosphere and cryosphere) often lead to behaviour that is not evident when each subunit is viewed in isolation. This newly evident behaviour is an emergent property of the coupled subsystems. Interactions between thermohaline circulation and climate illustrate one emergent property of coupling ocean and atmospheric circulation. The multiple thermohaline circulation equilibria that result caused abrupt climate changes in the past and may cause abrupt climate changes in the future. Similarly, coupling between the climate system and ecosystem structure and function produces complex behaviour in certain regions. For example, atmosphere-biosphere interactions in the Sahel region of West Africa lead to multiple stable equilibria. Either wet or dry climate equilibria can occur under otherwise identical forcing conditions. The equilibrium reached is dependent on past history (i.e. initial conditions), and relatively small perturbations to either climate or vegetation can cause switching between the two equilibria. Both thermohaline circulation and the climate-vegetation system in the Sahel are prone to abrupt changes that may be irreversible. This complicates the relatively linear view of global changes held in many scientific and policy communities. Emergent properties of coupled socio-natural systems add yet another layer of complexity to the policy debate. As a result, the social and economic consequences of possible global changes are likely to be underestimated in most conventional analyses because these nonlinear, abrupt and irreversible responses are insufficiently considered.

  11. Climate-driven regime shifts in Arctic marine benthos

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-01-01

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319

  12. Climate-driven regime shifts in Arctic marine benthos.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-08-28

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980-2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years.

  13. Ice-core evidence of abrupt climate changes.

    PubMed

    Alley, R B

    2000-02-15

    Ice-core records show that climate changes in the past have been large, rapid, and synchronous over broad areas extending into low latitudes, with less variability over historical times. These ice-core records come from high mountain glaciers and the polar regions, including small ice caps and the large ice sheets of Greenland and Antarctica.

  14. Simulating the response of glacial ice-sheets to past abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Banderas, Rubén; Álvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa

    2016-04-01

    Dansgaard-Oeschger (D/O) events were recurrent glacial abrupt climatic transitions between cold and warm conditions over Greenland with an approximate characteristic time of a thousand years. The uncertainties among the available sea level reconstructions hinder our understanding of the interactions between climate and global ice volume. In addition, only limited highly-resolved and continuous sea level records exist. Thus, the millennial time-scale response of glacial ice-sheets to past abrupt climate changes is not well known. Here, we use a hybrid ice sheet-ice shelf model in order to investigate the response of glacial ice-sheets to the influence of millennial-scale climate variability. An ensemble of simulations is performed by forcing the model with a wide range of time-varying climatologies derived from proxy data and from some of the currently available climate model simulations. The assessment of the resulting suite of transient simulations will contribute to constrain the inadequacies of sea level reconstructions in terms of amplitude and timing and will help to understand the implications of glacial abrupt climate changes in past sea level variability. Furthermore, our experiments could be useful to elucidate the mechanisms that involve the interactions between climate and ice sheets on millennial time scales, including future climate change.

  15. High-resolution Greenland ice core data show abrupt climate change happens in few years.

    PubMed

    Steffensen, Jørgen Peder; Andersen, Katrine K; Bigler, Matthias; Clausen, Henrik B; Dahl-Jensen, Dorthe; Fischer, Hubertus; Goto-Azuma, Kumiko; Hansson, Margareta; Johnsen, Sigfús J; Jouzel, Jean; Masson-Delmotte, Valérie; Popp, Trevor; Rasmussen, Sune O; Röthlisberger, Regine; Ruth, Urs; Stauffer, Bernhard; Siggaard-Andersen, Marie-Louise; Sveinbjörnsdóttir, Arny E; Svensson, Anders; White, James W C

    2008-08-01

    The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.

  16. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics

    PubMed Central

    Partin, J.W.; Quinn, T.M.; Shen, C.-C.; Okumura, Y.; Cardenas, M.B.; Siringan, F.P.; Banner, J.L.; Lin, K.; Hu, H.-M.; Taylor, F.W.

    2015-01-01

    Proxy records of temperature from the Atlantic clearly show that the Younger Dryas was an abrupt climate change event during the last deglaciation, but records of hydroclimate are underutilized in defining the event. Here we combine a new hydroclimate record from Palawan, Philippines, in the tropical Pacific, with previously published records to highlight a difference between hydroclimate and temperature responses to the Younger Dryas. Although the onset and termination are synchronous across the records, tropical hydroclimate changes are more gradual (>100 years) than the abrupt (10–100 years) temperature changes in the northern Atlantic Ocean. The abrupt recovery of Greenland temperatures likely reflects changes in regional sea ice extent. Proxy data and transient climate model simulations support the hypothesis that freshwater forced a reduction in the Atlantic meridional overturning circulation, thereby causing the Younger Dryas. However, changes in ocean overturning may not produce the same effects globally as in Greenland. PMID:26329911

  17. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics.

    PubMed

    Partin, J W; Quinn, T M; Shen, C-C; Okumura, Y; Cardenas, M B; Siringan, F P; Banner, J L; Lin, K; Hu, H-M; Taylor, F W

    2015-09-02

    Proxy records of temperature from the Atlantic clearly show that the Younger Dryas was an abrupt climate change event during the last deglaciation, but records of hydroclimate are underutilized in defining the event. Here we combine a new hydroclimate record from Palawan, Philippines, in the tropical Pacific, with previously published records to highlight a difference between hydroclimate and temperature responses to the Younger Dryas. Although the onset and termination are synchronous across the records, tropical hydroclimate changes are more gradual (>100 years) than the abrupt (10-100 years) temperature changes in the northern Atlantic Ocean. The abrupt recovery of Greenland temperatures likely reflects changes in regional sea ice extent. Proxy data and transient climate model simulations support the hypothesis that freshwater forced a reduction in the Atlantic meridional overturning circulation, thereby causing the Younger Dryas. However, changes in ocean overturning may not produce the same effects globally as in Greenland.

  18. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.-C.; Okumura, Y.; Cardenas, M. B.; Siringan, F. P.; Banner, J. L.; Lin, K.; Hu, H.-M.; Taylor, F. W.

    2015-09-01

    Proxy records of temperature from the Atlantic clearly show that the Younger Dryas was an abrupt climate change event during the last deglaciation, but records of hydroclimate are underutilized in defining the event. Here we combine a new hydroclimate record from Palawan, Philippines, in the tropical Pacific, with previously published records to highlight a difference between hydroclimate and temperature responses to the Younger Dryas. Although the onset and termination are synchronous across the records, tropical hydroclimate changes are more gradual (>100 years) than the abrupt (10-100 years) temperature changes in the northern Atlantic Ocean. The abrupt recovery of Greenland temperatures likely reflects changes in regional sea ice extent. Proxy data and transient climate model simulations support the hypothesis that freshwater forced a reduction in the Atlantic meridional overturning circulation, thereby causing the Younger Dryas. However, changes in ocean overturning may not produce the same effects globally as in Greenland.

  19. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally.

    PubMed

    Higgins, Steven I; Scheiter, Simon

    2012-08-09

    It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state. Although different types of uncertainty limit our capacity to assess this risk, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system, whether large-scale vegetation systems can tip into alternative states is poorly understood. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.

  20. Abrupt Climate Change: A Magnetic Coupling Model (MCM) Prediction.

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2002-04-01

    Recent findings [p.8 ISBN 0-309-07434-7] show major climate changes often occur in a decade. This is another of many MCM predictions (see refs). All of them tested from 1968 to date have been proven, including: Global warming is real and driven by fossil fuel (1970's); This CO2 forcing has ended Major Ice Ages; All Major and Minor Ice Ages are caused by decreases in existing (primarily subvisible and other thin, especially newly forming) cirrus at mid to high geomagnetic latitudes; Ionization of the atmosphere near 250 grams per square cm depth by GCR (galactic cosmic ray protons circa 1 gev) cause cirrus depression; Ice cores and other proxy records show ice ages exhibit increased beryllium-10, carbon-14, etc, due to GCR. As noted in the Mar and Apr abstracts, the MCM predictable climate ended in 2000, following over 30 yrs of our ignoring its easily testable warnings re fossil fuel. Hence, we now face the somber question of whether human intervention is still possible in a CO2 Runaway and sea level rise that may be on a decade time scale. [Ely, Session A8, APS Mtg, Seattle, Mar 01; Ely, Session H14.013, APS Mtg, Apr 01; MCM pub list http://faculty.washington.edu/ely/MCM.html

  1. Vegetation responses to abrupt climatic changes during the Last Interglacial Complex (Marine Isotope Stage 5) at Tenaghi Philippon, NE Greece

    NASA Astrophysics Data System (ADS)

    Milner, A. M.; Roucoux, K. H.; Collier, R. E. L.; Müller, U. C.; Pross, J.; Tzedakis, P. C.

    2016-12-01

    The discovery that climate variability during the Last Glacial shifted rapidly between climate states has intensified efforts to understand the distribution, timing and impact of abrupt climate change under a wide range of boundary conditions. In contribution to this, we investigate the nature of abrupt environmental changes in terrestrial settings of the Mediterranean region during the Last Interglacial Complex (Marine Isotope Stage [MIS] 5) and explore the relationships of these changes to high-latitude climate events. We present a new, temporally highly resolved (mean: 170 years) pollen record for the Last Interglacial Complex from Tenaghi Philippon, north-east Greece. The new pollen record, which spans the interval from 130,000 to 65,000 years ago, forms part of an exceptionally long polleniferous sediment archive covering the last 1.35 million years. The pollen data reveal an interglacial followed by alternating forest and steppe phases representing the interstadials and stadials of the Early Glacial. Superimposed on these millennial-scale changes is evidence of persistent sub-millennial-scale variability. We identify ten high-amplitude abrupt events in the pollen record, characterised by rapid contractions of closed forest to open steppe environment and interpreted to indicate major changes in moisture availability and temperature. The contractions in forest cover on millennial timescales appear associated with cooling events in the Mediterranean Sea, North Atlantic and Greenland regions, linked to the Dansgaard-Oeschger (DO) cycles of the Early Glacial. On sub-millennial timescales, the pattern of changes in forest cover at Tenaghi Philippon display a structure similar to the pattern of short-lived precursor and rebound-type events detected in the Greenland ice-core record. Our findings indicate that persistent, high-amplitude environmental variability occurred throughout the Early Glacial, on both millennial and submillennial timescales. Furthermore, the

  2. Southern Tibetan Plateau ice core δ18O reflects abrupt shifts in atmospheric circulation in the late 1970s

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Risi, Camille; Masson-Delmotte, Valerie; He, You; Xu, Baiqing

    2016-01-01

    Ice cores from the Tibetan Plateau provide high-resolution records of changes in the snow and ice isotopic composition. In the monsoon sector of southern Tibetan Plateau, their climatic interpretation has been controversial. Here, we present a new high-resolution δ18O record obtained from 2206 measurements performed at 2-3 cm depth resolution along a 55.1 m depth ice core retrieved from the Noijinkansang glacier (NK, 5950 m a.s.l.) that spans the period from 1864 to 2006 AD. The data are characterized by high δ18O values in the nineteenth century, 1910s and 1960s, followed by a drop in the late 1970s and a recent increasing trend. The comparison with regional meteorological data and with a simulation performed with the LMDZiso general circulation model leads to the attribution of the abrupt shift in the late 1970s predominantly to changes in regional atmospheric circulation, together with the impact of atmospheric temperature change. Correlation analyses suggest that the large-scale modes of variability (PDO and ENSO, i.e. Pacific Decadal Oscillation and El Nino-Southern Oscillation) play important roles in modulating NK δ18O changes. The NK δ18O minimum at the end of the 1970s coincides with a PDO phase shift, an inflexion point of the zonal index (representing the overall intensity of the surface westerly anomalies over middle latitudes) as well as ENSO, implying interdecadal modulation of the influence of the PDO/ENSO on the Indian monsoon on southern TP precipitation δ18O. While convective activity above North India controls the intra-seasonal variability of precipitation δ18O in southern TP, other processes associated with changes in large-scale atmospheric circulation act at the inter-annual scale.

  3. Precise interpolar phasing of abrupt climate change during the last ice age.

    PubMed

    2015-04-30

    The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard-Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

  4. Precise interpolar phasing of abrupt climate change during the last ice age

    USGS Publications Warehouse

    ,; Buizert, Christo; Adrian, Betty M.; Ahn, Jinho; Albert, Mary; Alley, Richard B.; Baggenstos, Daniel; Bauska, Thomas K.; Bay, Ryan C.; Bencivengo, Brian B.; Bentley, Charles R.; Brook, Edward J.; Chellman, Nathan J.; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cravens, Eric; Cuffey, Kurt M.; Dunbar, Nelia W.; Edwards, Jon S.; Fegyveresi, John M.; Ferris, Dave G.; Fitzpatrick, Joan J.; Fudge, T. J.; Gibson, Chris J.; Gkinis, Vasileios; Goetz, Joshua J.; Gregory, Stephanie; Hargreaves, Geoffrey Mill; Iverson, Nels; Johnson, Jay A.; Jones, Tyler R.; Kalk, Michael L.; Kippenhan, Matthew J.; Koffman, Bess G.; Kreutz, Karl; Kuhl, Tanner W.; Lebar, Donald A.; Lee, James E.; Marcott, Shaun A.; Markle, Bradley R.; Maselli, Olivia J.; McConnell, Joseph R.; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter D.; Nishiizumi, Kunihiko; Nunn, Richard M.; Orsi, Anais J.; Pasteris, Daniel R.; Pedro, Joel B.; Pettit, Erin C.; Price, P. Buford; Priscu, John C.; Rhodes, Rachael H.; Rosen, Julia L.; Schauer, Andrew J.; Schoenemann, Spruce W.; Sendelbach, Paul J.; Severinghaus, Jeffrey P.; Shturmakov, Alexander J.; Sigl, Michael; Slawny, Kristina R.; Souney, Joseph M.; Sowers, Todd A.; Spencer, Matthew K.; Steig, Eric J.; Taylor, Kendrick C.; Twickler, Mark S.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Welten, Kees C.; Wendricks, Anthony W.; White, James W. C.; Winstrup, Mai; Wong, Gifford J.; Woodruff, Thomas E.

    2015-01-01

    The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives1. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa2, 3, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw4, 5, 6. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events7, 8, 9. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision2, 3,10. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.

  5. An astronomical correspondence to the 1470 year cycle of abrupt climate change

    NASA Astrophysics Data System (ADS)

    Kelsey, A. M.; Menk, F. W.; Moss, P. T.

    2015-10-01

    The existence of a ~ 1470 year cycle of abrupt climate change is well-established, manifesting in Bond ice-rafting debris (IRD) events, Dansgaard-Oeschger atmospheric temperature cycle, and cyclical climatic conditions precursory to increased El Niño/Southern Oscillation (ENSO) variability and intensity. This cycle is central to questions on Holocene climate stability and hence anthropogenic impacts on climate (deMenocal et al., 2000). To date no causal mechanism has been identified, although solar forcing has been previously suggested. Here we show that interacting combination of astronomical variables related to Earth's orbit may be causally related to this cycle and several associated key isotopic spectral signals. The ~ 1470 year climate cycle may thus be regarded as a high frequency extension of the Milankovitch precessional cycle, incorporating orbital, solar and lunar forcing through interaction with the tropical and anomalistic years and Earth's rotation.

  6. Transition process of abrupt climate change based on global sea surface temperature over the past century

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Hou, Wei; Feng, Guolin

    2016-05-01

    A new detection method has been proposed to study the transition process of abrupt climate change. With this method, the climate system transiting from one stable state to another can be verified clearly. By applying this method to the global sea surface temperature over the past century, several climate changes and their processes are detected, including the start state (moment), persist time, and end state (moment). According to the spatial distribution, the locations of climate changes mainly have occurred in the Indian Ocean and western Pacific before the middle twentieth century, in the 1970s in the equatorial middle-eastern Pacific, and in the middle and southern Pacific since the end of the twentieth century. In addition, the quantitative relationship between the transition process parameters is verified in theory and practice: (1) the relationship between the rate and stability parameters is linear, and (2) the relationship between the rate and change amplitude parameters is quadratic.

  7. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    PubMed

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change.

  8. North Atlantic ocean circulation and abrupt climate change during the last glaciation

    NASA Astrophysics Data System (ADS)

    Henry, L. G.; McManus, J. F.; Curry, W. B.; Roberts, N. L.; Piotrowski, A. M.; Keigwin, L. D.

    2016-07-01

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ13C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean’s persistent, central role in abrupt glacial climate change.

  9. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation.

    PubMed

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie

    2013-12-03

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.

  10. Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?

    PubMed

    Broecker, W S

    2003-06-06

    Two hypotheses have been put forward to explain the large and abrupt climate changes that punctuated glacial time. One attributes such changes to reorganizations of the ocean's thermohaline circulation and the other to changes in tropical atmosphere-ocean dynamics. In an attempt to distinguish between these hypotheses, two lines of evidence are examined. The first involves the timing of the freshwater injections to the northern Atlantic that have been suggested as triggers for the global impacts associated with the Younger Dryas and Heinrich events. The second has to do with evidence for precursory events associated with the Heinrich ice-rafted debris layers in the northern Atlantic and with the abrupt Dansgaard-Oeschger warmings recorded in the Santa Barbara Basin.

  11. Long-term phenological shifts in raptor migration and climate.

    PubMed

    Jaffré, Mikaël; Beaugrand, Grégory; Goberville, Eric; Jiguet, Frédéric; Kjellén, Nils; Troost, Gerard; Dubois, Philippe J; Leprêtre, Alain; Luczak, Christophe

    2013-01-01

    Climate change is having a discernible effect on many biological and ecological processes. Among observed changes, modifications in bird phenology have been widely documented. However, most studies have interpreted phenological shifts as gradual biological adjustments in response to the alteration of the thermal regime. Here we analysed a long-term dataset (1980-2010) of short-distance migratory raptors in five European regions. We revealed that the responses of these birds to climate-induced changes in autumn temperatures are abrupt and synchronous at a continental scale. We found that when the temperatures increased, birds delayed their mean passage date of autumn migration. Such delay, in addition to an earlier spring migration, suggests that a significant warming may induce an extension of the breeding-area residence time of migratory raptors, which may eventually lead to residency.

  12. Viable count estimates of lag time responses for Salmonella typhimurium M48 subjected to abrupt osmotic shifts.

    PubMed

    Mellefont, L A; McMeekin, T A; Ross, T

    2005-12-15

    Generally, relative lag times (RLT; lag time divided by generation time) become extended as conditions become less favourable for growth. Mellefont et al. (2003, 2004) [Mellefont, L.A., McMeekin, T.A., Ross, T., 2003. The effect of abrupt osmotic shifts on the lag phase duration of foodborne bacteria. Int. J. Food Microbiol. 83(3), 281-293; Mellefont, L.A., McMeekin, T.A., Ross, T., 2004. The effect of abrupt osmotic shifts on the lag phase duration of physiologically distinct populations of Salmonella typhimurium. Int. J. Food Microbiol. 92, 111-120] reported that abrupt osmotic shifts of Salmonella typhimurium M48 from optimal to low aw led to unexpectedly small RLTs at low aw. In this study, RLTs resulting from similar osmotic shifts were estimated by viable count (VC) and compared to turbidimetric estimates to test the hypothesis that the 'downturn' in RLT is an artefact of the turbidimetric technique used. No 'downturn' in RLT was observed with VC data and RLTs increased with increasing magnitude of osmotic shift. Anomalous turbidimetric estimates of lag time at low aw were confirmed as the likely source of the 'downturn' in RLT. The abrupt osmotic shifts resulted in a complex pattern of microbial population behaviour. Immediately after transfer from optimal aw to low aw, inactivation of a portion of the population occurred for all the conditions tested. The degree of inactivation became progressively larger with larger shifts in aw. The initial decline in population was followed by a period during which no change in numbers occurred, followed by growth that appeared, in most cases, to be exponential. At the lowest aws tested (< or =0.954), the growth response after the initial decline was at a rate slower than that of exponential phase growth. Due to the use of non-selective media containing pyruvate (to eliminate oxygen radicals), the observed patterns of inactivation, lag and regrowth at most aw conditions are unlikely to result from a temporary loss of

  13. Consistent simulations of multiple proxy responses to an abrupt climate change event.

    PubMed

    LeGrande, A N; Schmidt, G A; Shindell, D T; Field, C V; Miller, R L; Koch, D M; Faluvegi, G; Hoffmann, G

    2006-01-24

    Isotope, aerosol, and methane records document an abrupt cooling event across the Northern Hemisphere at 8.2 kiloyears before present (kyr), while separate geologic lines of evidence document the catastrophic drainage of the glacial Lakes Agassiz and Ojibway into the Hudson Bay at approximately the same time. This melt water pulse may have been the catalyst for a decrease in North Atlantic Deep Water formation and subsequent cooling around the Northern Hemisphere. However, lack of direct evidence for ocean cooling has lead to speculation that this abrupt event was purely local to Greenland and called into question this proposed mechanism. We simulate the response to this melt water pulse using a coupled general circulation model that explicitly tracks water isotopes and with atmosphere-only experiments that calculate changes in atmospheric aerosol deposition (specifically (10)Be and dust) and wetland methane emissions. The simulations produce a short period of significantly diminished North Atlantic Deep Water and are able to quantitatively match paleoclimate observations, including the lack of isotopic signal in the North Atlantic. This direct comparison with multiple proxy records provides compelling evidence that changes in ocean circulation played a major role in this abrupt climate change event.

  14. Transient Adjustment of the global climate to an abrupt Northern North Atlantic cooling

    NASA Astrophysics Data System (ADS)

    Tang, G.; Chang, P.; Panetta, R.; Saravanan, R.

    2013-12-01

    The Thermohaline Circulation (THC) is thought to play a key role in abrupt changes in Earth climate. In cold periods such as the Younger Dryas, the THC was much weaker than today. In an experiment with a fully coupled CCSM3 model an artificial freshwater flux is added to the Northern North Atlantic Ocean surface, which weakens the THC. The North Atlantic Ocean surface cools almost instantly after the freshwater flux onset. This cooling is subsequently spread throughout the Northern Hemisphere, resulting in the ITCZ moving southward. In the weakening THC, heat carried by the THC from Southern Hemisphere to the Northern Hemisphere is reduced, resulting in a cooler Northern Hemisphere. It is still questioned what role the atmosphere plays in this process. There are two possible ways the atmosphere may change the ocean surface temperature. One is that the wind changes the ocean surface wind-driven circulation, leading to a change to the ocean heat budget. Another is that the atmosphere changes the ocean-atmosphere heat flux directly. Here we look into the second possibility by comparing the effects of freshwater flux in a fully coupled model to the effects of the same flux in a model constructed by coupling an atmospheric general circulation model (CAM3) to a thermodynamic slab ocean model. With use of appropriate Q-fluxes, the coupled model with the slab ocean has the same climatology as the fully coupled CCSM3 model. Perturbation Q-fluxes are constructed for the fresh water flux experiments using a restoring technique. We find that the atmosphere interacting with a thermodynamic slab ocean can spread the cooling from the Northern North Atlantic and cause the ITCZ to move southward, and that there is a cooling front propagating southward with a speed depending on the mixed layer depth: a deeper mixed layer depth results in a slower propagation. By applying the Q-flux perturbation only in the Northern North Atlantic Ocean, the effect of the ocean circulation change on

  15. Abrupt Climate Events Recorded in Chinese and Central Asian Loess Sequences

    NASA Astrophysics Data System (ADS)

    Machalett, Bjoern; Oches, Eric A.; Haam, Eddie; Lai, Zhongping; Endlicher, Wilfried

    2013-04-01

    of suborbital global climate changes and an initiator of abrupt climate oscillations in the Northern Hemisphere.

  16. Abrupt Climate Events Recorded in Chinese and Central Asian Loess Sequences

    NASA Astrophysics Data System (ADS)

    Machalett, B.; Oches, E. A.; Haam, E. K.; Lai, Z.; Endlicher, W.

    2013-12-01

    of suborbital global climate changes and an initiator of abrupt climate oscillations in the Northern Hemisphere.

  17. Abrupt Holocene climate change as an important factor for human migration in West Greenland.

    PubMed

    D'Andrea, William J; Huang, Yongsong; Fritz, Sherilyn C; Anderson, N John

    2011-06-14

    West Greenland has had multiple episodes of human colonization and cultural transitions over the past 4,500 y. However, the explanations for these large-scale human migrations are varied, including climatic factors, resistance to adaptation, economic marginalization, mercantile exploration, and hostile neighborhood interactions. Evaluating the potential role of climate change is complicated by the lack of quantitative paleoclimate reconstructions near settlement areas and by the relative stability of Holocene temperature derived from ice cores atop the Greenland ice sheet. Here we present high-resolution records of temperature over the past 5,600 y based on alkenone unsaturation in sediments of two lakes in West Greenland. We find that major temperature changes in the past 4,500 y occurred abruptly (within decades), and were coeval in timing with the archaeological records of settlement and abandonment of the Saqqaq, Dorset, and Norse cultures, which suggests that abrupt temperature changes profoundly impacted human civilization in the region. Temperature variations in West Greenland display an antiphased relationship to temperature changes in Ireland over centennial to millennial timescales, resembling the interannual to multidecadal temperature seesaw associated with the North Atlantic Oscillation.

  18. Laurentide Ice Sheet meltwater and abrupt climate change during the last glaciation

    SciTech Connect

    Hill, H W; Flower, B P; Quinn, T M; Hollander, D J; Guilderson, T P

    2005-10-02

    A leading hypothesis to explain abrupt climate change during the last glacial cycle calls on fluctuations in the margin of the North American Laurentide Ice Sheet (LIS), which may have routed freshwater between the Gulf of Mexico (GOM) and North Atlantic, affecting North Atlantic Deep Water (NADW) variability and regional climate. Paired measurements of {delta}O and Mg/Ca of foraminiferal calcite from GOM sediments reveal five episodes of LIS meltwater input from 28-45 thousand years ago (ka) that do not match the millennial-scale Dansgaard-Oeschger (D/O) warmings recorded in Greenland ice. We suggest that summer melting of the LIS may occur during Antarctic warming and likely contributed to sea-level variability during Marine Isotope Stage 3 (MIS 3).

  19. Projecting the risk of future climate shifts

    NASA Astrophysics Data System (ADS)

    Enfield, David B.; Cid-Serrano, Luis

    2006-06-01

    Recent research has shown that decadal-to-multidecadal (D2M) climate variability is associated with environmental changes that have important consequences for human activities, such as public health, water availability, frequency of hurricanes, and so forth. As scientists, how do we convert these relationships into decision support products useful to water managers, insurance actuaries, and others, whose principal interest lies in knowing when future climate regime shifts will likely occur that affect long-horizon decisions? Unfortunately, numerical models are far from being able to make deterministic predictions for future D2M climate shifts. However, the recent development of paleoclimate reconstructions of the Atlantic Multidecadal Oscillation (AMO) (Gray et al., [2004]) and Pacific Decadal Oscillation (PDO); (MacDonald and Case, [2005]) give us a viable alternative: to estimate probability distribution functions from long climate index series that allow us to calculate the probability of future D2M regime shifts. In this paper, we show how probabilistic projections can be developed for a specific climate mode - the AMO as represented by the Gray et al. ([2004]) tree-ring reconstruction. The methods are robust and can be applied to any D2M climate mode for which a sufficiently long index series exists, as well as to the growing body of paleo-proxy reconstructions that have become available. The target index need not be a paleo-proxy calibrated against a climate index; it may profitably be calibrated against a specific resource of interest, such as stream flow or lake levels.

  20. Postglacial Response of Terrestrial Neotropical Vegetation to Abrupt Climate Change as Recorded by Pollen from a Marine Core, Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Delusina, I.; Peterson, L. C.; Spero, H. J.

    2011-12-01

    The response of terrestrial vegetation to the climatic shift that followed the Last Glacial Maximum is a critical component of the Neotropical climate system: it is linked to the carbon cycle and makes it possible to trace the impact of climatic alterations. We analyzed fossil pollen from high-resolution marine core MD03-2620 from the anoxic Cariaco Basin, off the coast of Venezuela. The study covers the period from Last Glacial Maximum (LGM) to the mid-Holocene. Previous paleoreconstructions from Cariaco Basin sediments emphasized that the abrupt climatic change that followed the LGM was associated with a shift of the ITCZ, subsequent sea level oscillations and alteration in a thermohaline circulation. We maintain that pollen from the marine core reflects vegetation trends of a large regional area, which smooths out local peculiarities in vegetation and allows us to trace the Cold/Dry-Warm/Wet dynamic in the pollen assemblages of the Cariaco sediments. Our pollen analysis indicates an interval of clear dominance of C4-type plants between ca 19.0 - 17.5 kyr BP, representing the transition from salt-marshes to steppe/savanna on the lowland. The onset of the Mystery Interval MI (17.5 to ~14.5 kyr BP) caused the most dramatic changes in vegetation for all postglacial time and was characterized sequentially by both a wet and dry signal, resulting in the reduction of forest vegetation, and later with the expansion of salt marshes in the littoral zone. According to the pollen data, MI consisted of two clearly recognized parts with a bridge in the middle: 1) H1-a. Dry interval between ~17.5 and 16.5 kyr BP with gradually growing humidity, that reaches a plateau at ~16.6 kyr BP. 2) Middle of the MI: ~ 16.5 - 15.8 kyr BP, exhibiting warm, humid conditions. 3) H1-b. Dry period after ~15.8 kyr BP, to ~14.5 kyr BP. The largest abrupt change in the pollen record is the transition to the Bølling/Allerød Stade, where our results are well correlated with plant wax biomarker

  1. Vegetation zones shift in changing climate

    NASA Astrophysics Data System (ADS)

    Belda, Michal; Halenka, Tomas; Kalvova, Jaroslava; Holtanova, Eva

    2016-04-01

    The analysis of climate patterns can be performed for each climate variable separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. In case of the Köppen-Trewartha classification it is integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also represent a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is used on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Furthermore, the analysis of the CMIP5 ensemble for RCP 4.5 and 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries

  2. Planet-wide volcanics correlated with Last Glacial abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Bay, R. C.; Bramall, N.; Price, P. B.

    2004-12-01

    We recently reported a correlation in excess of 99.5% between volcanic ash layers recorded in the deep ice core site at Siple Dome, West Antarctica and millennium-timescale abrupt cold periods (Dansgaard-Oeschger events) recorded at Summit, Greenland (GISP2) during the last glacial period. These data, obtained with our deep borehole optical dust logger, are the best evidence yet for a causal connection between volcanism and millennial climate change on the planetary scale, and lead to possibilities of a direct causal relationship. We now present a comparison with other volcanic proxies which demonstrates that the heaviest ash layers we detected at Siple Dome, those sufficiently concentrated for detailed chemical analysis in the core, appear to have come from local sources in West Antarctica, whereas the majority correspond to volcanic events detected throughout the Antarctic continent that correlate strongly with millennial climate changes in the Northern Hemisphere. Excluding the several heaviest ash signals in the Siple Dome data set increases the correlation with climate above the 3-sigma level, more than 800-to-one rejection of the null hypothesis. In June 2004 we deployed a high-resolution logger in the GRIP borehole at Summit, Greenland. We detected of order ˜100 volcanic ash layers which correlate weakly if at all with millennial climate change, consistent with studies of other Greenlandic records of volcanism. This contrast may provide an important clue to understanding global volcano-climate interaction as well as the role of the Southern Hemisphere. Of interest is a scenario in which volcanic ash and sulfate abruptly increase the soluble iron in large surface areas of nutrient-limited oceans, particularly the Southern Ocean, and stimulate growth of phytoplankton which enhance cooling by altering ocean albedo and atmospheric chemistry through mechanisms not fully understood. Viewed from another perspective, crustal stresses from ice-sheet loading

  3. Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report

    SciTech Connect

    Hill, Christopher

    2015-06-15

    This project investigated possible mechanisms by which melt-water pulses can induce abrupt change in the Atlantic Meridional Overturning Circulation (AMOC) magnitude. AMOC magnitude is an important ingredient in present day climate. Previous studies have hypothesized abrupt reduction in AMOC magnitude in response to influxes of glacial melt water into the North Atlantic. Notable fresh-water influxes are associated with the terminus of the last ice age. During this period large volumes of melt water accumulated behind retreating ice sheets and subsequently drained rapidly when the ice weakened sufficiently. Rapid draining of glacial lakes into the North Atlantic is a possible origin of a number of paleo-record abrupt climate shifts. These include the Younger-Dryas cooling event and the 8,200 year cooling event. The studies undertaken focused on whether the mechanistic sequence by which glacial melt-water impacts AMOC, which then impacts Northern Hemisphere global mean surface temperature, is dynamically plausible. The work has implications for better understanding past climate stability. The work also has relevance for today’s environment, in which high-latitude ice melting in Greenland appears to be driving fresh water outflows at an accelerating pace.

  4. An abrupt and prominent climatic reversal at 9.2 ka in the northeastern North America

    NASA Astrophysics Data System (ADS)

    Hou, J.; Huang, Y.; Shuman, B. N.; Oswald, W.; Foster, D. R.

    2008-12-01

    Continental climate during the early Holocene (from 10 to 7 ka) is characterized by multiple abrupt climatic reversals such as the well-known 8.2 ka event that has been observed worldwide and attributed to the terminal collapse of the Laurentide Ice Sheet (LIS) in the North American continent. However, many episodes of meltwater releases occurred prior to the final collapse of LIS, their impact on the continental climate is much less understood. We present in this paper decadal-scale hydrogen isotopic records of aquatic and terrestrial plant biomarkers from Blood Pond, Massachusetts during the early Holocene. Our isotopic records infer a cooling of 3~4 degree between 9.3 and 9.1 ka against the millennial scale climate background, mainly induced by changes in precipitation seasonality. In comparison, the 8.2 ka event displays smaller amplitude of temperature cooling of 1~2 degree at our southern New England site. We interpret our observed climatic reversal at ~ 9.2 ka as representing increased proportion of winter precipitation in conjunction with a drier and cooler summer, triggered by slowdown in thermohaline circulation as a result of freshwater release from the proglacial lakes. We attribute the difference in climate response at 8.2 ka and 9.2 ka events to the configuration of LIS, with 9.2 ka LIS having a much stronger blocking effect on the moisture from the Gulf of Mexico during the summer. Our data suggest that the seasonality of the precipitation at the southern New England was highly sensitive to meltwater releases, especially prior to the final collapse of the LIS.

  5. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-04

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  6. Antarctic Forcing of Abrupt Global Climate Change during Oxygen Isotope Stage 3.

    NASA Astrophysics Data System (ADS)

    Turney, C. S.; Palmer, J. G.

    2015-12-01

    Contrasting Greenland and Antarctic temperature trends during the late Pleistocene (60 to 11.5 ka) are thought to be driven by imbalances in the rate of formation of North Atlantic and Antarctic deep water (the 'bipolar seesaw'), with millennial-scale cooling Dansgaard-Oeschger (D-O) events in the north leading warming in the south. Robustly testing this paradigm, however, requires a level of chronological precision currently lacking in terrestrial and marine records. Here we report a bidecadally-resolved New Zealand tree-ring sequence spanning two millennia that preserves a record of atmospheric radiocarbon (14C), allowing us to precisely align terrestrial, marine and ice sequences across a period encompassing ice-rafted debris event Heinrich 3 (H3) in the North Atlantic and Antarctic Isotope Maximum 4 (AIM4) in the Southern Hemisphere. We observe no significant difference in atmospheric and marine 14C records across H3 suggesting negligible impact on Atlantic Meridional Overturning Circulation (AMOC) but find that a climate downturn before AIM4 had a global impact, with warming in the North Atlantic (D-O 5.1) and a dramatic change in low latitude hydroclimate. Using the fully coupled CSIRO Mk3L climate system model we find that these trends are consistent with an Antarctic meltwater event propagated globally by atmospheric teleconnections. Our results suggest Southern Ocean dynamics played a significant role in driving global climate change across this period with implications for abrupt events through the late Pleistocene.

  7. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  8. Agriculture, Settlement, and Abrupt Climate Change: The 4.2ka BP event in Northern Mesopotamia

    NASA Astrophysics Data System (ADS)

    Ristvet, L.

    2003-12-01

    An abrupt aridification event at 4200 BP has been recorded in 41 paleoclimate proxies in the Old World, from Kilmanjaro, Tanzania to Rajasthan, India, East Asia and the Pacific. This event is particularly well defined for Western Asia, where it has been associated with the abandonment of settlements across the Fertile Crescent and the collapse of states on the Levantine coast and in the dry-farming plains of Northern Mesopotamia, including the Akkadian Empire. Adaptations to climate change are constrained by both local environmental and social factors. Agriculturalists, especially those living in pre-industrial societies, are particularly susceptible to changes in precipitation. The Tell Leilan Regional Survey, which systematically studied sites in a 1650km2 area of Northeastern Syria, records one set of adaptations to this event in an area where dry-farming provided the subsistence base. The survey transect crosses ecotones, from the present 500mm isohyet in the North to the 250mm isohyet in the South, and contains diverse wadi systems, ground water resources, soil profiles, and an ancient marsh/lake-- all of which allow this region to be taken as a microcosm of Northern Mesopotamia. In order to contextualize our study of human response to abrupt climate change, it is necessary to consider how the economic and social systems that were previously in place were transformed by this event. This study attempts to quantify climate change and model its effects on agricultural, pastoral, and settlement systems in Northeastern Syria from 2400-1700 BC. From 2400-2300 BC, optimal climate conditions coincided with the consolidation of an indigenous state. The next century witnessed the Akkadian conquest and imperialization of the Habur plains, which resulted in both the intensification and extensification of agro-production. During the next 300 years, (2200-1900 BC), rainfall plummeted to 70% of the climatic optimum, triggering the abandonment of cities along with their

  9. Combined effect of soil erosion and climate change induces abrupt changes in soil and vegetation properties in semiarid Mediterranean shrublands.

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio

    2013-04-01

    Semiarid Mediterranean ecosystems are experiencing major alterations as a result of the complex interactions between climatic fluctuations and disturbances caused by human activities. Future scenarios of global change forecast a rapid degradation of these ecosystems, with a reduction of their functionality, as a result of changes in relevant vegetation and soil properties. Some theoretical models indicate that these ecosystems respond non-linearly to regular variations in the external conditions, with an abrupt shift when conditions approach a certain critical level or threshold. Considering these predictions, there is an urgent need to know the effects that these alterations might have on semi-arid ecosystems and their components. In this study, we aim at analyzing the consequences of climate change and increasing soil erosion on soil and vegetation properties and the functional dynamics of semiarid Mediterranean shrublands. We predict that the combined effect of both drivers will be additive or synergistic, increasing the negative effects of each one. We compared vegetation and soil properties of flat areas (low erosion) and steep hillslopes (high erosion) in two climatic areas (484 mm and 10.3°C, and 368mm and 11.9°C, respectively) that reproduce the predicted climate change in temperature and precipitation for the next 40 years. Species richness, vegetal cover, plant life-form composition were determined in 20 m2 plots and soil was sampled in the same plots to determine bulk density, aggregate stability, fertility and water holding capacity. All soil and vegetation properties were negatively affected by soil erosion and climate change. However, contrary to our hypothesis, the joined effect of both drivers on all soil and vegetation properties was antagonistic, except for the vegetal cover that showed an additive response to their interaction. Our results evidence that soil erosion affects more negatively the soil and vegetation properties in the cooler and

  10. Shifting seasons, climate change and ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Thackeray, Stephen; Henrys, Peter; Hemming, Deborah; Huntingford, Chris; Bell, James; Leech, David; Wanless, Sarah

    2014-05-01

    In recent decades, the seasonal timing of many biological events (e.g. flowering, breeding, migration) has shifted. These phenological changes are believed to be one of the most conspicuous biological indicators of climate change. Rates and directions of phenological change have differed markedly among species, potentially threatening the seasonal synchrony of key species interactions and ultimately ecosystem functioning. Differences in phenological change among-species at different trophic levels, and with respect to other broad species traits, are likely to be driven by variations in the climatic sensitivity of phenological events. However, as yet, inconsistencies in analytical methods have hampered broad-scale assessments of variation in climate sensitivity among taxonomic and functional groups of organisms. In this presentation, results will be presented from a current collaborative project (http://www.ceh.ac.uk/sci_programmes/shifting-seasons-uk.html) in which many UK long-term data sets are being integrated in order to assess relationships between temperature/precipitation, and the timing of seasonal events for a wide range of plants and animals. Our aim is to assess which organism groups (in which locations/habitats) are most sensitive to climate. Furthermore, the role of anthropogenic climate change as a driver of phenological change is being assessed.

  11. Reconstruction of hydrologic responses to late-Glacial (9-33ka) abrupt climate transitions in the coastal southwest United States

    NASA Astrophysics Data System (ADS)

    Wu, M.; Feakins, S. J.; Kirby, M. E.

    2013-12-01

    A sediment core retrieved from Lake Elsinore, the largest natural freshwater lake in southern California, spans an age of 9 to 33ka BP. The period includes several late-Glacial abrupt climate transitions such as the Heinrich events (HEs) 1-3, the Bølling-Allerød (B-A), and the Younger Dryas (YD). This terrestrial site provides a unique opportunity to evaluate changes in hydrology in coastal southwest United States across these key abrupt climate transition events. Hydrogen isotopic ratios (δDwax) of the long-chain C28 alkanoic acid, a biomarker for terrestrial leaf wax, extracted from the sediments, were analyzed to reveal the δD of precipitation water in the past (δDprecip). In the modern climate, higher δDprecip values are associated with moisture sourced from the tropical Pacific, which brings a drier and warmer climate, whereas lower δDprecip values are associated with moisture sourced from north Pacific brought by polar jet stream, causing a wetter and colder climate. δDwax ranges from about -210‰ to -100‰ between late-Glacial HEs and the beginning of Holocene. The pattern generally correlates with Greenland ice core and regional speleothem records, with lower δDwax values corresponding to colder periods (HEs), and higher δDwax values corresponding to warmer periods (B-A and early Holocene). We infer cold and wet climate with north Pacific sourced moisture during the glacial, followed by gradual warming and drying into the B-A and Holocene, when the moisture sources shifted to the tropical Pacific. There is no substantive response to the YD. The fluctuations of δDwax into and out of the HEs can be as large as about 60‰, suggesting greatly variable hydrology across these late-Glacial abrupt climate transition events. The large shifts in δDwax signal during deglaciation and HEs indicate that hydrology in the coastal southwest US has responded sensitively to climate change, and therefore has important implications for water resources in this

  12. Impact of Climate and Fires on Abrupt Permafrost Thaw in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Reents, C.; Greenberg, J. A.; Hu, F.

    2015-12-01

    Thermo-erosion from abrupt permafrost thaw is a key pulse disturbance in the Arctic that may impact the global carbon cycle. Abrupt thaw can occur when the permafrost active layer expands in response to climate warming and/or increased wildfire activity. Understanding these drivers of thermo-erosion is necessary to anticipate feedbacks in the Arctic, where summer temperature and fire frequency are predicted to increase. We examine modern and late-Holocene thermo-erosion in high-fire (Noatak) and low-fire (North Slope) tundra ecoregions of Alaska using a combination of remote-sensing and paleo-records. Lakes with active thaw features were identified through Landsat-7 image classification and time-series analysis based on observed 0.52-0.60 μm reflectance peaks following slump formation. We identified 1067 and 1705 lakes with active features between CE 2000-2012 in the Noatak and North Slope ecoregions, respectively. The density of features was higher in the highly flammable Noatak (0.04 versus 0.01 features km-2, respectively), suggesting that warmer climate and/or fires likely promote high thermo-erosional activity at present. To assess modern signals of thermo-erosion and identify past events, we analyzed soil profiles and lake-sediment cores from both ecoregions using X-ray fluorescence. The ratios of Ca:K and Ca:Sr increased with depth in permafrost soils, were higher in soils from younger versus older slump surfaces, and were significantly correlated with the ratio of carbonate to feldspar and clay minerals in lake sediments (r=0.96 and 0.93, P<0.0001, n=15). We interpret past increases in Ca:K, Ca:Sr, and δ13C as enhanced weathering of carbonate-rich permafrost soils associated with thermo-erosion. At the North Slope site, we identified ten episodes of thermoerosion over the past 6000 years and found strong correspondence to summer temperature trends. Events were more frequent at the Noatak site, where 15 thermo-erosional episodes and 26 fires occurred over

  13. North Atlantic Meridional Overturning Circulation (AMOC) and Abrupt Climate Change through the Last Glaciation

    NASA Astrophysics Data System (ADS)

    Henry, G., III; McManus, J. F.; Curry, W. B.; Keigwin, L. D.; Giosan, L.

    2014-12-01

    The climate of the glacial North Atlantic was punctuated by catastrophic discharges of icebergs (Heinrich events), as well as by more mysterious, abrupt warming events associated with Dansgaard-Oeschger oscillations. These events are suspected to be related to changes in AMOC and its influence on heat transport and the regional and global heat budget. Investigation of these rapid oscillations is often limited by the resolution of sediment records. High accumulation rates at our study site (33.69°N, 57.58°W, 4583m water depth) on the Bermuda Rise allow improved resolution by one to two orders of magnitude. Cores CDH19 (38.81m) and CDH13 (36.70m), were recovered during KNR191, the initial deployment of the RV Knorr's long coring system developed at the Woods Hole Oceanographic Institution with support from the NSF. These cores contain high quality sediment sections that allow high resolution studies extending through the last glacial cycle at a key location for monitoring past oceanographic and climatic variability. Here we present detailed multi-proxy data from Bermuda Rise sediments reflecting deep ocean chemistry and dynamics of the last glaciation, and combine them with published data to produce a continuous, high resolution record spanning the last 70,000 years. CaCO3 burial fluxes, foraminifera stable isotopes, and sedimentary uranium-series disequilibria (including seawater-derived 231Pa /230Th), display coherent, complementary variability throughout the last glaciation. Glacial values in each proxy are consistent with reduced ventilation and overturning compared to the Holocene, with intervals that indicate substantial millennial reductions in each, and others when they briefly approach Holocene levels. In multiple instances, particularly spanning interstadials eight through twelve (IS8-IS12) our results are consistent with an abrupt, subcentennial acceleration in the export of excess 231Pa from the North Atlantic during stadial-interstadial transitions

  14. The Role of the Tropics in Last Glacial Abrupt Climate Change from a West Antarctic Ice Core

    NASA Astrophysics Data System (ADS)

    Jones, T. R.; White, J. W. C.; Steig, E. J.; Cuffey, K. M.; Vaughn, B. H.; Morris, V. A.; Vasileios, G.; Markle, B. R.; Schoenemann, S. W.

    2014-12-01

    Debate exists as to whether last glacial abrupt climate changes in Greenland, and associated changes in Antarctica, had a high-latitude or tropical trigger. An ultra high-resolution water isotope record from the West Antarctic Ice Sheet Divide (WAIS Divide) Ice Core Project has been developed with three key water isotope parameters that offer insight into this debate: δD, δ18O, and deuterium excess (dxs). δD and δ18O are a proxy for local temperature and regional atmospheric circulation, while dxs is primarily a proxy for sea surface temperature at the ice core's moisture source(s) (relative humidity and wind speed also play a role). We build on past studies that show West Antarctic climate is modulated by El Niño Southern Oscillation (ENSO) teleconnection mechanisms, which originate in the equatorial Pacific Ocean, to infer how past ENSO changes may have influenced abrupt climate change. Using frequency analysis of the water isotope data, we can reconstruct the amplitude of ENSO-scale climate oscillations in the 2-15 year range within temporal windows as low as 100 years. Our analysis uses a back diffusion model that estimates initial amplitudes before decay in the firn column. We combine δD, δ18O, and dxs frequency analysis to evaluate how climate variability at WAIS Divide is influenced by tropical climate forcing. Our results should ultimately offer insight into the role of the tropics in abrupt climate change.

  15. Abrupt climate changes in northwestern Colombia during the Lateglacial and Holocene transition

    NASA Astrophysics Data System (ADS)

    Velasquez Ruiz, C.

    2013-05-01

    High resolution pollen/spores records from Paramo de Frontino (6, 29N, 76, 6W) and Paramo de Belmira (6,42'N, 75,40'W) in Colombia (Velásquez C. and H. Hooghiemstra, Paleobotany, 2012 in press; Velásquez C., et al., in preparation) spanning 17300 and 34000 cal yr BP; are studied for abrupt climatic change and compared with a La Cocha diatom record (Gonzalez, Z, et al., 2012), Frontino and Cariaco Basin (offshore Venezuela) titanium records and a Cariaco sea surface temperatures record (Gorin, G., et al, in preparation; Haug, et al., 2001; Lea D., et al., 2003; respectively); in reference to detected vegetation and climate variations. The most remarkable events occurred at 8200, 9300, 10400, 12000, 13500, 14.5-14.7, 16.2 and 21.4 cal yr BP. Low frequency cycles of 1500-2500 yr are present along the records suggesting that the North Atlantic Bond Cycles are also registered in northwestern South American terrestrial records. Some of these changes were dry while others wet, showing that both patterns "Cold poles, dry tropics" and "Cold poles, wet tropics" can be expressed. It was also found that the estimated temperatures from Paramo de Frontino (pollen based) and sea surface temperatures in Cariaco followed a similar trend during the the Late Glacial and Early Holocene. However, in the case of moisture, the Titanium record (indicative of rainfall) from the Cariaco Basin, the aquatic vegetation pollen and titanium records from Paramo de Frontino and diatoms record from La Cocha lake, showed a clear antiphase behavior during the same periods. Position and shape of Intertropical Convergence Zone are postulated as responsible for this variation. Keywords: palinology, Intertropical Convergence Zone, titanium, Colombia, climatic and vegetation changes.

  16. Abrupt shift in δ18O values at Medicine Lake volcano (California, USA)

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.

    1998-01-01

     Oxygen-isotope analyses of lavas from Medicine Lake volcano (MLV), in the southern Cascade Range, indicate a significant change in δ18O in Holocene time. In the Pleistocene, basaltic lavas with <52% SiO2 averaged +5.9‰, intermediate lavas averaged +5.7‰, and silicic lavas (≥63.0%SiO2) averaged +5.6‰. No analyzed Pleistocene rhyolites or dacites have values greater than +6.3‰. In post-glacial time, basalts were similar at +5.7‰ to those erupted in the Pleistocene, but intermediate lavas average +6.8‰ and silicic lavas +7.4‰ with some values as high as +8.5‰. The results indicate a change in the magmatic system supplying the volcano. During the Pleistocene, silicic lavas resulted either from melting of low-18O crust or from fractionation combined with assimilation of very-low-18O crustal material such as hydrothermally altered rocks similar to those found in drill holes under the center of the volcano. By contrast, Holocene silicic lavas were produced by assimilation and/or wholesale melting of high-18O crustal material such as that represented by inclusions of granite in lavas on the upper flanks of MLV. This sudden shift in assimilant indicates a fundamental change in the magmatic system. Magmas are apparently ponding in the crust at a very different level than in Pleistocene time.

  17. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions.

    PubMed

    Molina, Mario; Zaelke, Durwood; Sarma, K Madhava; Andersen, Stephen O; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-12-08

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of "dangerous anthropogenic interference" (DAI). Scientific and policy literature refers to the need for "early," "urgent," "rapid," and "fast-action" mitigation to help avoid DAI and abrupt climate changes. We define "fast-action" to include regulatory measures that can begin within 2-3 years, be substantially implemented in 5-10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO(2) GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO(2) emissions.

  18. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions

    PubMed Central

    Molina, Mario; Zaelke, Durwood; Sarma, K. Madhava; Andersen, Stephen O.; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-01-01

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of “dangerous anthropogenic interference” (DAI). Scientific and policy literature refers to the need for “early,” “urgent,” “rapid,” and “fast-action” mitigation to help avoid DAI and abrupt climate changes. We define “fast-action” to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO2 GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO2 emissions. PMID:19822751

  19. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon.

    PubMed

    Röpke, Cristhiana P; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J G; Deus, Cláudia Pereira de; Pires, Tiago H S; Winemiller, Kirk O

    2017-01-10

    Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon.

  20. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon

    PubMed Central

    Röpke, Cristhiana P.; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J. G.; Deus, Cláudia Pereira de; Pires, Tiago H. S.; Winemiller, Kirk O.

    2017-01-01

    Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon. PMID:28071701

  1. Abrupt Climate Change Caused by Global Fires from a Large Meteor Impact

    NASA Astrophysics Data System (ADS)

    Bardeen, C.; Toon, O. B.; Garcia, R. R.; Otto-Bliesner, B. L.; Wolf, E. T.

    2015-12-01

    Global or near-global fires like those that are thought to have occurred after the Chicxulub asteroid impact are associated with abrupt climate change and the K-Pg mass extinction event. Using the Community Earth System Model (CESM), a three-dimensional coupled climate model with interactive chemistry, we have simulated the climate response to global fires assuming a burden of 70,000 Tg, as estimated from the K-Pg layer sediments by Wolbach et al. (1988). Soot aerosols are lofted by solar heating and remain in the atmosphere for about 6 years, warming the stratosphere by more than 240 K and suppressing completely solar radiation at the surface for 2 years. Global average land surface temperatures cool by -28 K after 3 years and ocean temperatures by -11 K after 4 years. Precipitation is reduced by 80 % for 5 years, and the ozone column is reduced by 80 % for 4 years. The tropical tropopause cold point disappears for a few years, leading to water vapor mixing ratios of > 1000 ppmv in the stratosphere. There is a rapid recovery around year 6, when the soot is removed by wet deposition as stratospheric water condenses and precipitates, but this is followed by a peak in the UV Index in the tropics of over 40 before stratospheric ozone recovers. Ocean temperature cools by more than -2 K to a depth of 300 m, and sea ice develops in the Black Sea, Caspian Sea, and Baltic Sea. Global fires, two years of darkness, extreme surface cooling, significant ocean cooling, increases in sea ice extent and a large short-term increase in UV Index would have been catastrophic for many life forms. This work is the first step in an effort to simulate the climatic effects of all of the aerosols and gases that may have been generated by the Chicxulub impact in a model that has been configured for late-Cretaceous conditions to help assess the role of the Chicxulub impact in the K-Pg extinction.

  2. Abrupt climate change: Past, present and the search for precursors as an aid to predicting events in the future (Hans Oeschger Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mayewski, Paul Andrew

    2016-04-01

    The demonstration using Greenland ice cores that abrupt shifts in climate, Dansgaard-Oeschger (D-O) events, existed during the last glacial period has had a transformational impact on our understanding of climate change in the naturally forced world. The demonstration that D-O events are globally distributed and that they operated during previous glacial periods has led to extensive research into the relative hemispheric timing and causes of these events. The emergence of civilization during our current interglacial, the Holocene, has been attributed to the "relative climate quiescence" of this period relative to the massive, abrupt shifts in climate that characterized glacial periods in the form of D-O events. But, everything is relative and climate change is no exception. The demise of past civilizations, (eg., Mesopatamian, Mayan and Norse) is integrally tied to abrupt climate change (ACC) events operating at regional scales. Regionally to globally distributed ACC events have punctuated the Holocene and extreme events have always posed significant challenges to humans and ecosystems. Current warming of the Arctic, in terms of length of the summer season, is as abrupt and massive, albeit not as extensive, as the transition from the last major D-O event, the Younger Dryas into the Holocene (Mayewski et al., 2013). Tropospheric source greenhouse gas rise and ozone depletion in the stratosphere over Antarctica are triggers for the modern advent of human emission instigated ACCs. Arctic warming and Antarctic ozone depletion have resulted in significance changes to the atmospheric circulation systems that transport heat, moisture, and pollutants in both hemispheres. Climate models offer a critical tool for assessing trends, but they cannot as yet predict ACC events, as evidenced by the inability of these models to predict the rapid onset of Arctic warming and resulting changes in atmospheric circulation; and in the model vs past analog differences in projections for

  3. Early Heritage-Language Education and the Abrupt Shift to a Dominant-Language Classroom: Impact on the Personal and Collective Esteem of Inuit Children in Arctic Quebec

    ERIC Educational Resources Information Center

    Bougie, Evelyne; Wright, Stephen C.; Taylor, Donald M.

    2003-01-01

    This research explored the impact of the abrupt shift from heritage-language to dominant-language education on Inuit children's personal and collective self-esteem. Specifically, the following question was addressed: will early heritage-language education serve as an inoculation against the potential negative impact of being submerged in a…

  4. Abrupt Late Holocene Shift in Atmospheric Circulation Recorded by Mineral Dust in the Siple Dome Ice Core, Antarctica

    NASA Astrophysics Data System (ADS)

    Koffman, B. G.; Goldstein, S. L.; Kaplan, M. R.; Winckler, G.; Bory, A. J. M.; Biscaye, P.

    2015-12-01

    Atmospheric dust directly influences Earth's climate by altering the radiative balance and by depositing micronutrients in the surface ocean, affecting global biogeochemical cycling. In addition, mineral dust particles provide observational evidence constraining past atmospheric circulation patterns. Because dust can originate from both local and distant terrestrial sources, knowledge of dust provenance can substantially inform our understanding of past climate history, atmospheric transport pathways, and differences in aerosol characteristics between glacial and interglacial climate states. Dust provenance information from Antarctic ice cores has until now been limited to sites in East Antarctica. Here we present some of the first provenance data from West Antarctica. We use Sr-Nd isotopes to characterize dust extracted from late Holocene ice (~1000-1800 C.E.) from the Siple Dome ice core. The data form a tight array in Sr-Nd isotope space, with 87Sr/86Sr ranging between ~0.7087 and 0.7102, and ɛNd ranging between ~ -7 and -16. This combination is unique for Antarctica, with low Nd and low Sr isotope ratios compared to high-elevation East Antarctic sites, requiring a dust source from ancient (Archean to early Proterozoic) and unweathered continental crust, which mixes with young volcanic material. Both components are likely sourced from Antarctica. We also observe significant, systematic variability in Sr and Nd isotopic signatures through time, reflecting changes in the mixing ratio of these sources, and hypothesize that these changes are driven by shifts in circulation patterns. A large change occurs over about 10 years at ca. 1125 C.E. (ΔɛNd = +3 and Δ87Sr/86Sr = -0.0014). This shift coincides with changes in climate proxies in Southern Hemisphere paleoclimate records reflecting variability in the Westerlies. We therefore interpret the shift in dust provenance at Siple Dome to be related to larger-scale circulation changes. In general, the observed shifts

  5. Game-Changing Innovations: How Culture Can Change the Parameters of Its Own Evolution and Induce Abrupt Cultural Shifts

    PubMed Central

    2016-01-01

    One of the most puzzling features of the prehistoric record of hominid stone tools is its apparent punctuation: it consists of abrupt bursts of dramatic change that separate long periods of largely unchanging technology. Within each such period, small punctuated cultural modifications take place. Punctuation on multiple timescales and magnitudes is also found in cultural trajectories from historical times. To explain these sharp cultural bursts, researchers invoke such external factors as sudden environmental change, rapid cognitive or morphological change in the hominids that created the tools, or replacement of one species or population by another. Here we propose a dynamic model of cultural evolution that accommodates empirical observations: without invoking external factors, it gives rise to a pattern of rare, dramatic cultural bursts, interspersed by more frequent, smaller, punctuated cultural modifications. Our model includes interdependent innovation processes that occur at different rates. It also incorporates a realistic aspect of cultural evolution: cultural innovations, such as those that increase food availability or that affect cultural transmission, can change the parameters that affect cultural evolution, thereby altering the population’s cultural dynamics and steady state. This steady state can be regarded as a cultural carrying capacity. These parameter-changing cultural innovations occur very rarely, but whenever one occurs, it triggers a dramatic shift towards a new cultural steady state. The smaller and more frequent punctuated cultural changes, on the other hand, are brought about by innovations that spur the invention of further, related, technology, and which occur regardless of whether the population is near its cultural steady state. Our model suggests that common interpretations of cultural shifts as evidence of biological change, for example the appearance of behaviorally modern humans, may be unwarranted. PMID:28036346

  6. Continuous methane record of abrupt climate change 10-68 ka: sighting Heinrich events in the ice core record

    NASA Astrophysics Data System (ADS)

    Rhodes, Rachael; Brook, Edward; Chiang, John; Blunier, Thomas; Cheng, Hai; Edwards, R. Lawrence; Maselli, Olivia; McConnell, Joseph; Romanini, Daniele; Severinghaus, Jeffrey; Sowers, Todd; Stowasser, Christopher

    2014-05-01

    The Last Glacial period was punctuated by millennial scale abrupt climate changes - Dansgaard-Oeschger (D-O) cycles and Heinrich events. Controls on the magnitude and frequency of these climate perturbations, and how they may be inter-related, remain unclear. Specific problems include the difficulty of dating Heinrich sediment layers and local bias of key paleoclimate archives. We present a highly detailed and precise record of ice core methane (CH4), a globally integrated signal, which resolves climatic features in unprecedented resolution. Abrupt CH4 increases are resolved in Heinrich Stadials (HS) 1, 2, 4 and 5 where, in contrast to all D-O cycles, there are no concurrent abrupt changes in Greenland temperature. Using modern-day tropical rainfall variability as an analog, we propose that strong cooling in the North Atlantic severely restricted the northerly range of the Intertropical Convergence Zone (ITCZ), leading to an enhanced wet season over Southern Hemisphere tropical land areas, and consequently driving production of excess CH4 in tropical wetlands. Our findings place four Heinrich events firmly within ice core chronologies and suggest maximum durations of 778 to 1606 yr. CH4 anomalies are only associated with Heinrich events of Hudson Strait provenance, indicating that the tropical impacts of Heinrich events were not uniform.

  7. Insolation and Abrupt Climate Change Effects on the Western Pacific Maritime Monsoon

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Cardenas, M.; Siringan, F. P.; Hori, M.; Okumura, Y.; Banner, J. L.; Lin, K.; Jiang, X.; Taylor, F. W.

    2013-12-01

    Many monsoon-sensitive paleoclimate archives capture the response of the Asian-Australian monsoon system to changes in summer insolation, as well as abrupt climate changes such as the Younger Dryas (YD). The response is commonly a direct one in Holocene and YD archives. In the case of insolation, increased summer insolation leads to increased monsoon rainfall over land, as captured in stalagmite δ18O records from Oman and China. We evaluate this direct response using maritime stalagmite records from the island of Palawan, Philippines (10 N, 119 E). The wet season in Palawan occurs over the same months (June-October) as in Oman, India and China. Therefore, we expected the Palawan stalagmite δ18O record, a proxy of rainfall, to have a similar response to changing insolation and hence, a trend of decreasing monsoon rainfall over the Holocene. However, the Holocene trend in two partially replicated stalagmite δ18O records is opposite to that expected: rainfall increases over the Holocene, despite the decrease of summer insolation over the Holocene. We interpret the Holocene trend observed at Palawan to be the result of an increase in the maritime monsoon that balances the reduction in the land monsoon; an interpretation that is consistent with previously published results from coupled ocean-atmosphere general circulation model runs. Seawater δ18O reconstructions from marine sediment cores in the western tropical Pacific contain a freshening trend over the Holocene, also supporting the hypothesis of increase maritime monsoon rainfall. The direct relationship between monsoon rainfall over land as recorded in the YD interval in Chinese stalagmite records is also observed in maritime monsoon rainfall during the YD at Palawan: both records get drier during the YD cold interval. This agreement between YD stalagmite records from China and Palawan contrasts sharply with the inverse relationship between these records over the Holocene. We further investigate the nature of

  8. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    SciTech Connect

    Fedorov, Alexey

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  9. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Sun, Liguang; Chen, Liqi; Xu, Libin; Wang, Yuhong; Wang, Xinming

    2016-06-01

    Extreme climatic events have profound impacts on human society. Here we present the results of a study of organic biomarkers within a sedimentary section at the archaeological site of Yuchisi, eastern China, in order to reconstruct climatic variability during the Dawenkou (5,050–4,400 yr BP) and Longshan (4,400–4,000 yr BP) cultures. At ~4,400 yr BP, within the cultural transition horizon, abrupt changes in biomarkers, such as the fatty acid ratio C18:2/C18:0, 2C31/(C27 + C29), n-C18-ol and n-C30-ol, indicate the occurrence of local climate changes over the course of a few decades. These changes occurred during the transition from the Holocene warm period to a subsequent cold period which lasted for the following 600 years. This climatic shift has been recorded at numerous sites worldwide, and it is likely to have been the main cause of the widespread collapse of many isolated cultures at that time. The palaeoclimatic and archaeological data from the Yuchisi sediments may provide new insights into the relationship between climate change and prehistoric cultural transitions.

  10. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage

    PubMed Central

    Wang, Jianjun; Sun, Liguang; Chen, Liqi; Xu, Libin; Wang, Yuhong; Wang, Xinming

    2016-01-01

    Extreme climatic events have profound impacts on human society. Here we present the results of a study of organic biomarkers within a sedimentary section at the archaeological site of Yuchisi, eastern China, in order to reconstruct climatic variability during the Dawenkou (5,050–4,400 yr BP) and Longshan (4,400–4,000 yr BP) cultures. At ~4,400 yr BP, within the cultural transition horizon, abrupt changes in biomarkers, such as the fatty acid ratio C18:2/C18:0, 2C31/(C27 + C29), n-C18-ol and n-C30-ol, indicate the occurrence of local climate changes over the course of a few decades. These changes occurred during the transition from the Holocene warm period to a subsequent cold period which lasted for the following 600 years. This climatic shift has been recorded at numerous sites worldwide, and it is likely to have been the main cause of the widespread collapse of many isolated cultures at that time. The palaeoclimatic and archaeological data from the Yuchisi sediments may provide new insights into the relationship between climate change and prehistoric cultural transitions. PMID:27283832

  11. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    SciTech Connect

    Fedorov, Alexey V.

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  12. A climatic driver for abrupt mid-Holocene vegetation dynamics and the hemlock decline in New England.

    PubMed

    Foster, David R; Oswald, W Wyatt; Faison, Edward K; Doughty, Elaine D; Hansen, Barbara C S

    2006-12-01

    The mid-Holocene decline of eastern hemlock is widely viewed as the sole prehistorical example of an insect- or pathogen-mediated collapse of a North American tree species and has been extensively studied for insights into pest-host dynamics and the consequences to terrestrial and aquatic ecosystems of dominant-species removal. We report paleoecological evidence implicating climate as a major driver of this episode. Data drawn from sites across a gradient in hemlock abundance from dominant to absent demonstrate: a synchronous, dramatic decline in a contrasting taxon (oak); changes in lake sediments and aquatic taxa indicating low water levels; and one or more intervals of intense drought at regional to continental scales. These results, which accord well with emerging climate reconstructions, challenge the interpretation of a biotically driven hemlock decline and highlight the potential for climate change to generate major, abrupt dynamics in forest ecosystems.

  13. The fluvial system response to abrupt climate change during the last cold stage: the Upper Pleistocene River Thames fluvial succession at Ashton Keynes, UK

    NASA Astrophysics Data System (ADS)

    Lewis, S. G.; Maddy, D.; Scaife, R. G.

    2001-02-01

    The last interglacial-glacial cycle (125-10 ka BP) is characterised by numerous rapid shifts in global climate on sub-Milankovitch timescales, recorded in the ocean and ice core records. These climatic fluctuations are clearly recorded in those European terrestrial sedimentary sequences that span this time period without interruption. In the UK, only fragmentary Upper Pleistocene sequences exist, mainly within the fluvial archive of the major river systems such as the Thames. The response of the upper River Thames to abrupt fluctuations in climate is documented in the fluvial sediments beneath the Floodplain Terrace (Northmoor Member of the Upper Thames Formation) at Ashton Keynes, Wiltshire. A number of criteria are set out by which significant changes in the fluvial system may be established from the sedimentological, palaeoecological and geochronological information contained within the succession. The sedimentary succession is divisible into four facies associations, on the basis of their sedimentology and bounding surface characteristics. These represent distinct phases of fluvial activity at the site and allow changes in fluvial style to be inferred. Palaeoecological reconstructions from pollen analysis of peats within the sequence provides an indication of the nature and direction of Late Glacial environmental change and optically stimulated luminescence and radiocarbon dating methods provide chronological control on the sequence. These data suggest that major changes in fluvial style are recorded within the succession, which can be related to the climatic fluctuations that took place on the oxygen isotope stage 5a/4 transition (approximately 70 ka BP) and the Devensian Late Glacial climatic warm-cold-warm oscillation (13-11 ka BP). The changes in fluvial style are a result of variations in sediment supply to the river resulting from changes in slope stability, vegetation cover and cold-climate mass movement processes and variations in discharge regime

  14. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    SciTech Connect

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  15. Micropaleontological Record of Post-glacial History in Lake Champlain and Adjacent Regions: Implications for Glacial Lake Drainage and Abrupt Climate Events

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Manley, P. L.; Guilbault, J.; Berke, M.; Rayburn, J. A.; Franzi, D. A.; Knuepfer, P. L.

    2005-12-01

    Post-glacial lacustrine and marine sediments of the Lake Champlain region range from 20 to >50 meters in thickness presenting an opportunity to assess the timing of North American glacial lake drainage at multidecadal timescales and evaluate its effect on North Atlantic salinity and abrupt climate events 13.5 to 10 kyr B.P. High-resolution analysis of foraminifera and ostracodes from cores taken onshore in the Plattsburgh, N.Y. vicinity and southern Quebec and offshore in southern Lake Champlain reveal complex changes in salinity during and after the transition from pro-glacial Lake Vermont (Lake Candona in Canada) to marine sedimentation in the Champlain Sea. The microfaunal sequence (bottom to top) includes: non-marine ostracodes ( Candona) in lacustrine varves, foraminiferal assemblages (common Cassidulina reniforme), another interval of Candona-bearing sediments (sometimes containing foraminifera), and, finally, sediments from the main phase of the Champlain sea episode containing diverse foraminiferal and marine ostracode assemblages. A decrease in salinity during the Champlain Sea is also in evidence from the shift in dominance of distinct variants of Elphidium in the deep basin. The marine episode ended with a progressive salinity decrease and the formation of Lake Champlain about 10 kyr B.P. Observed salinity changes could be caused by catastrophic fresh-water influx from large glacial lakes west of the Lake Champlain region, meltwater from the retreating Laurentide Ice Sheet margin, diminished influx of marine water from the St. Lawrence due to changes in the position of the ice sheet margin and isostatic adjustment, or a combination of factors. The ages of these events were determined by estimating the reservoir effect on radiocarbon dates on marine shells through comparison with AMS dates on plant material and palynology, and shed light on the hypothesis that glacial lake discharges catalyzed abrupt climate events.

  16. Abrupt climate variability in the North Atlantic region: Did the icebergs do it?

    NASA Astrophysics Data System (ADS)

    Barker, S.; Chen, J.; Gong, X.; Jonkers, L.; Knorr, G.; Thornalley, D. J.

    2014-12-01

    We present high resolution records of temperature and ice rafted debris over the last ~440Kyr from a sediment core retrieved from the NE Atlantic. Our records reveal that episodes of ice rafting typically occurred after abrupt cooling at the site. Because the site is sensitive to the earliest phases of ice rafting as recorded by other sites across the wider Atlantic, this suggests that icebergs were not the trigger for North Atlantic cold events. Moreover we find a different relationship between cooling and the arrival of rafted ice at a site ~750km to the SE of ours. We suggest that asynchronous cooling between these locations can be explained by the more gradual southward migration of the North Atlantic polar front. We describe a mechanism that can explain the occurrence of abrupt stadial events over Greenland as a non-linear response as regional cooling continues beyond the threshold necessary for sustaining ocean circulation in its 'warm' mode with active convection north of Iceland. Thus while the freshwater derived from melting icebergs may provide a positive feedback for enhancing and prolonging stadial conditions, it is probably not the trigger for northern stadial events.

  17. The abrupt climate change at the Eocene–Oligocene boundary and the emergence of South-East Asia triggered the spread of sapindaceous lineages

    PubMed Central

    Buerki, Sven; Forest, Félix; Stadler, Tanja; Alvarez, Nadir

    2013-01-01

    Background and Aims Paleoclimatic data indicate that an abrupt climate change occurred at the Eocene–Oligocene (E–O) boundary affecting the distribution of tropical forests on Earth. The same period has seen the emergence of South-East (SE) Asia, caused by the collision of the Eurasian and Australian plates. How the combination of these climatic and geomorphological factors affected the spatio-temporal history of angiosperms is little known. This topic is investigated by using the worldwide sapindaceous clade as a case study. Methods Analyses of divergence time inference, diversification and biogeography (constrained by paleogeography) are applied to a combined plastid and nuclear DNA sequence data set. Biogeographical and diversification analyses are performed over a set of trees to take phylogenetic and dating uncertainty into account. Results are analysed in the context of past climatic fluctuations. Key Results An increase in the number of dispersal events at the E–O boundary is recorded, which intensified during the Miocene. This pattern is associated with a higher rate in the emergence of new genera. These results are discussed in light of the geomorphological importance of SE Asia, which acted as a tropical bridge allowing multiple contacts between areas and additional speciation across landmasses derived from Laurasia and Gondwana. Conclusions This study demonstrates the importance of the combined effect of geomorphological (the emergence of most islands in SE Asia approx. 30 million years ago) and climatic (the dramatic E–O climate change that shifted the tropical belt and reduced sea levels) factors in shaping species distribution within the sapindaceous clade. PMID:23723259

  18. Two Degrees of Separation: Abrupt Climate Change and the Adverse Impact to US National Security

    DTIC Science & Technology

    2009-04-01

    trend of increasing GHG emissions is marginally impacting or irrelevant altogether. “Other factors, including sun spots, solar winds, variations ...climate variations over a wide range of time scales, making it a natural sensor of climate variability and providing a visible expression of climate...many observed changes in phenology and distribution have been associated with rising water temperatures, as well as changes in salinity, oxygen levels

  19. Central European vegetation response to abrupt climate change at 8.2 ka

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; Lotter, André F.

    2001-06-01

    Oxygen isotope records show a major climatic reversal at 8.2 ka in Greenland and Europe. Annually laminated sediments from two lakes in Switzerland and Germany were sampled contiguously to assess the response of European vegetation to climate change ca. 8.2 ka with time resolution and precision comparable to those of the Greenland ice cores. The pollen assemblages show pronounced and immediate responses (0 20 yr) of terrestrial vegetation to the climatic change at 8.2 ka. A sudden collapse of Corylus avellana (hazel) was accompanied by the rapid expansion of Pinus (pine), Betula (birch), and Tilia (linden), and by the invasion of Fagus silvatica (beech) and Abies alba (fir). Vegetational changes suggest that climatic cooling reduced drought stress, allowing more drought-sensitive and taller growing species to out-compete Corylus avellana by forming denser forest canopies. Climate cooling at 8.2 ka and the immediate reorganization of terrestrial ecosystems has gone unrecognized by previous pollen studies. On the basis of our data we conclude that the early Holocene high abundance of C. avellana in Europe was climatically caused, and we question the conventional opinion that postglacial expansions of F. silvatica and A. alba were controlled by low migration rates rather than by climate. The close connection between climatic change and vegetational response at a subcontinental scale implies that forecasted global warming may trigger rapid collapses, expansions, and invasions of tree species.

  20. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change

    PubMed Central

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-01-01

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443

  1. Does the diversification rate of endemic birds of mainland China follow abrupt, gradual shifting or constant patterns?

    PubMed

    Chen, Youhua

    2017-03-01

    In this brief report, time-varying (including both gradual and abrupt change) and time-constant diversification models are fitted on a phylogeny of endemic birds of mainland China to test the diversification patterns of endemic birds in the region. The results show that phylogeny of endemic birds is best quantified by a constant-rate diversification model through model comparison. Limitations of the study are discussed. In particular, ignorance of non-endemic taxa and the limited sampling of endemic taxa could influence the conclusions of the study.

  2. Revisiting Lake Hämelsee: reconstructing abrupt Lateglacial climate transitions using state- of-the-art palaeoclimatological proxies

    NASA Astrophysics Data System (ADS)

    Engels, Stefan; Hoek, Wim; Lane, Christine; Sachse, Dirk; Wagner-Cremer, Friederike

    2015-04-01

    Lake Hämelsee (Germany) is one of the northernmost sites in NW Europe that has varved sediments throughout large parts of its Lateglacial and Early Holocene sediment sequence. Previous research on this site has shown its potential, in terms of chronological resolution and palaeoecological reconstructions, for reconstructing the abrupt transitions into and out of the Younger Dryas, the last cold period of the last glacial. The site was revisited during a 1-week summer school for Early Stage Researchers (2013), within the INTIMATE Example training and research project, supported by EU Cost Action ES0907. Two overlapping sediment sequences were retrieved from the centre of the lake during the summer school. These sediments have since formed the basis for follow-up research projects, which have sparked the collaboration of around 30 researchers in 12 laboratories across Europe. A chronological framework for the core has been composed from a combination of varve counting, radiocarbon dating and tephrochronology. Tephrostratigraphic correlations allow direct correlation and precise comparison of the record to marine and ice core records from the North Atlantic region, and other terrestrial European archives. Furthermore, the core is has been subjected to multiple sedimentological (e.g. XRF, loss-on-ignition), geochemical (e.g. lipid biomarkers, GDGTs) and palaeoecological (e.g. pollen, chironomids) proxy-based reconstructions of past environmental and climatic conditions. The results provide important insights into the nature of the abrupt climate transitions of the Lateglacial and Early Holocene, both locally and on a continental scale. The INTIMATE Example participants: Illaria Baneschi, Achim Brauer, Christopher Bronk Ramsey, Renee de Bruijn, Siwan Davies, Aritina Haliuc, Katalin Hubay, Gwydion Jones, Meike Müller, Johanna Menges, Josef Merkt, Tom Peters, Francien Peterse, Anneke ter Schure, Kathrin Schuetrumpf, Richard Staff, Falko Turner, Valerie van den Bos.

  3. Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    SciTech Connect

    Schlosser, Courtney Adam; Walter-Anthony, Katey; Zhuang, Qianlai; Melillo, Jerry

    2013-04-26

    Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of field measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming.

  4. Abrupt Climate Change in the Arctic (and Beyond): An Update (Invited)

    NASA Astrophysics Data System (ADS)

    Alley, R. B.

    2013-12-01

    Our understanding of future Arctic change is informed by the history of past changes, which often have been both large and abrupt. The well-known ice-age events such as the Younger Dryas show how sea-ice changes can amplify forcing to produce very large responses, with wintertime sea ice especially important. These changes are increasingly seen to have played a central role in the ice-age cycling through their global impact on CO2 storage in the deep ocean. The Heinrich events reveal processes of ice-sheet/ocean interaction, some of which are being played out in Greenland and Antarctica now, and which may have large future effects on sea-level rise. The paleoclimatic record plus physical understanding greatly reduce the worst worries about instabilities from methane stored in cold places, but tend to support a role in amplifying future warming. Overall, the very large impacts of past Arctic changes, and the likelihood that future changes under business-as-usual fossil-fuel emissions will be unprecedented in combined size and speed, raise important questions.

  5. Life stage, not climate change, explains observed tree range shifts.

    PubMed

    Máliš, František; Kopecký, Martin; Petřík, Petr; Vladovič, Jozef; Merganič, Ján; Vida, Tomáš

    2016-05-01

    Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages.

  6. Iceberg discharges and oceanic circulation changes during glacial abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Alvarez-Solas, Jorge; Robinson, Alexander; Banderas, Rubén; Montoya, Marisa

    2015-04-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted debris in the North Atlantic Ocean during the last glacial period. These are interpreted as massive iceberg discharges mainly from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence points to an active role of the oceanic circulation. Here we will present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model. Two mechanisms producing iceberg discharges are compared. First, we reproduce the classic binge-purge by which the iceberg surges are produced thanks to the existence of an internal thermo-mechanical feedback that allows the ice sheet to behave under an oscillatory regime. Second, our ice-sheet model is forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. In this case, the model generates a time series of iceberg calving that agrees with ice-rafted debris records over the past 80 ka. We compare the two theories and discuss their advantages and weaknesses in terms of both the robustness of the physics on which they are based and their comparison with proxies. This comparison highlights the importance of considering past oceanic circulation changes in order to understand the ice-sheet dynamics. However, the ultimate processes determining abrupt changes in the Atlantic Meridional Overturning Circulation (AMOC) remain elusive. Therefore we will also analyze several proposed mechanisms that aims to explain such AMOC reorganizations, focusing on those that do not require freshwater flux forcing.

  7. Unity of Science: from High-Energy Neutrinos to Abrupt Climate Change and Life in Ice

    NASA Astrophysics Data System (ADS)

    Price, P. Buford

    2004-03-01

    These diverse topics exploit optical properties of micron-size particles in ice. AMANDA (Antarctic Muon and Neutrino Detector Array) searches for astrophysical sources of high-energy neutrinos by recording arrival times of Cherenkov light from their interaction products (muons and cascades) at phototubes in the 0.1 km^3 array in deep ice at the South Pole. Using pulsed lasers and LEDs in the array, we found that absorptivity and scattering of light in ice depend on dust concentration, which varies with depth due to dependence of dust concentration on global temperature at the time of deposition. Knowing dust concentration vs depth in AMANDA, we can fit muon tracks and locate neutrino sources to 1 arcdegree. As an AMANDA spinoff, we invented the Dust Logger, a new paleoclimatological instrument that emits laser light into glacial ice surrounding the borehole down which it is lowered. It records light that reenters the borehole after being partially absorbed and scattered by dust in the ice. This signal serves as an accurate proxy for global temperature as a function of time over a million years. The Dust Logger obtains a detailed time sequence of glacial and interglacial periods and of abrupt temperature changes that occur at millennial intervals. Occasional eruptions of nearby volcanoes punctuate the dust record with cm-thick ash layers in ice. We infer that strong volcanic eruptions lead to millennial-scale global coolings, most likely by dumping soluble iron- and acid-rich grains into nutrient-limited southern oceans, thus stimulating rapid growth of phytoplankton, which sequester carbon dioxide, a major greenhouse gas, from the atmosphere. Microbial cells are similar to dust in size and contain biomolecules that autofluoresce. We invented a BioSpectraLogger, which emits 224-nm laser light into ice and searches for fluorescence by microbes able to live in liquid veins in ice. It can be used in lakes, oceans, ice, and permafrost. A miniaturized version can search

  8. Climate penalty for shifting shipping to the Arctic.

    PubMed

    Fuglestvedt, Jan S; Dalsøren, Stig Bjørløw; Samset, Bjørn Hallvard; Berntsen, Terje; Myhre, Gunnar; Hodnebrog, Øivind; Eide, Magnus Strandmyr; Bergh, Trond Flisnes

    2014-11-18

    The changing climate in the Arctic opens new shipping routes. A shift to shorter Arctic transit will, however, incur a climate penalty over the first one and a half centuries. We investigate the net climate effect of diverting a segment of Europe-Asia container traffic from the Suez to an Arctic transit route. We find an initial net warming for the first one-and-a-half centuries, which gradually declines and transitions to net cooling as the effects of CO2 reductions become dominant, resulting in climate mitigation only in the long term. Thus, the possibilities for shifting shipping to the Arctic confront policymakers with the question of how to weigh a century-scale warming with large uncertainties versus a long-term climate benefit from CO2 reductions.

  9. The ocean's role in the transient response of climate to abrupt greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    Marshall, John; Scott, Jeffery R.; Armour, Kyle C.; Campin, J.-M.; Kelley, Maxwell; Romanou, Anastasia

    2015-04-01

    We study the role of the ocean in setting the patterns and timescale of the transient response of the climate to anthropogenic greenhouse gas forcing. A novel framework is set out which involves integration of an ocean-only model in which the anthropogenic temperature signal is forced from the surface by anomalous downwelling heat fluxes and damped at a rate controlled by a `climate feedback' parameter. We observe a broad correspondence between the evolution of the anthropogenic temperature () in our simplified ocean-only model and that of coupled climate models perturbed by a quadrupling of . This suggests that many of the mechanisms at work in fully coupled models are captured by our idealized ocean-only system. The framework allows us to probe the role of the ocean in delaying warming signals in the Southern Ocean and in the northern North Atlantic, and in amplifying the warming signal in the Arctic. By comparing active and passive temperature-like tracers we assess the degree to which changes in ocean circulation play a role in setting the distribution and evolution of . The background ocean circulation strongly influences the large-scale patterns of ocean heat uptake and storage, such that is governed by an advection/diffusion equation and weakly damped to the atmosphere at a rate set by climate feedbacks. Where warming is sufficiently small, for example in the Southern Ocean, changes in ocean circulation play a secondary role. In other regions, most noticeably in the North Atlantic, changes in ocean circulation induced by are central in shaping the response.

  10. An abrupt centennial-scale drought event and mid-holocene climate change patterns in monsoon marginal zones of East Asia.

    PubMed

    Li, Yu; Wang, Nai'ang; Zhang, Chengqi

    2014-01-01

    The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0-7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to different geographical

  11. Examining the potential impact of a warming ocean on food insecure Africa: concerns and mechanisms for abrupt climate change

    NASA Astrophysics Data System (ADS)

    Funk, C.; Dettinger, M.; Verdin, J.

    2007-12-01

    Given that more than 200 million sub-Saharan Africans are food insecure, abrupt climate change in Africa could be devastating. Recent observations for eastern and southern Africa suggest substantial declines in main growing season rainfall over the past 20 years. In this talk we present research from a multi-year study that examined the causes and implications of these drying trends. Our statistical and dynamic modeling results suggest that warming in the Indian Ocean has been linked to increased oceanic convection and disruptions in onshore moisture transports. These moisture transport disruptions, in turn, are probably associated with an increased frequency in agricultural drought in sub-tropical countries along Africa's eastern seaboard. This 'warm ocean-dry Africa' dipole appears to be a major driver of decadal variability. An evaluation of 11 climate change models suggests that increased tropical Indian Ocean precipitation, and the associated moisture transport disruptions, may in fact be anthropogenic, accounting for at least part of the regional drought tendencies in eastern and southern Africa over the past 20 years. These simulations also suggest continued increases in oceanic convection will be very likely over the next century. This diabatic forcing will likely produce continuing rainfall declines across 7 food insecure nations. These drying trends, combined with declining per capita agricultural capacity, are likely to contribute to a ~250 percent increase in food shortages over the next 30 years. Modest agricultural and market development, however, could alleviate the food problem substantially.

  12. Abrupt climate variability of eastern Anatolia vegetation during the last glacial

    NASA Astrophysics Data System (ADS)

    Pickarski, N.; Kwiecien, O.; Langgut, D.; Litt, T.

    2015-07-01

    Detailed analyses of the Lake Van pollen and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial. The climate within the last glacial period (∼75-15 ka BP) was cold and dry, with low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (∼28-14.5 ka BP) dominated by the highest values of xerophytic steppe vegetation. Our high-resolution multi proxy record shows rapid expansions and contractions that mimic the stadial-interstadial pattern of the Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores, and thus, provide a linkage to North Atlantic climate oscillations. Periods of reduced moisture availability characterized at Lake Van by enhanced xerophytic species correlates well with increase in ice-rafted debris (IRD) and a decrease of sea surface temperature (SST) in the North Atlantic. Furthermore, comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be recognized by the strength and position of the westerlies in eastern Anatolia. Influenced by rough topography at Lake Van, the expansion of temperate species (e.g. deciduous Quercus) was stronger during interstadials DO 19, 17-16, 14, 12 and 8. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris in marine sediments, are identified in eastern Anatolia by AP values not lower and high steppe components not more abundant than during DO stadials. In addition, this work is a first attempt to establish a continuous microscopic charcoal record over the last glacial in the Near East, which documents an initial immediate response to millennial-scale climate and environmental variability and enables the shed light on the history of fire activity during the last glacial.

  13. Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Street-Perrott, F. Alayne; Perrott, R. Alan

    1990-02-01

    Several prolonged droughts in the Sahel and tropical Mexico during the past 14,000 years were coincident with large injections of fresh water into the northern North Atlantic Ocean. The link between these phenomena lies in the thermohaline circulation of the oceans: input of fresh water decreases salinity leading to reduced North Atlantic Deep Water formation and anomalies of sea surface temperature of the kind associated with decreased rainfall in the northern tropics. Ice-sheet disintegration, the most important source of fresh-water input to the oceans, should therefore be considered explicitly in models of past and future climate.

  14. Abrupt climate oscillations during the last deglaciation in central north america

    PubMed

    Yu; Eicher

    1998-12-18

    Evidence from stable isotopes and a variety of proxies from two Ontario lakes demonstrate that many of the late glacial-to-early Holocene events that are well known from the North Atlantic seaboard, such as the Gerzensee-Killarney Oscillation (also known as the Intra-Allerod Cold Period), Younger Dryas, and Preboreal Oscillation, also occurred in central North America. These results thus imply that climatic forcing acted in the same manner in both regions and that atmospheric circulation played an important role in the propagation of these events.

  15. Abrupt climate and vegetation variability of eastern Anatolia during the last glacial

    NASA Astrophysics Data System (ADS)

    Pickarski, N.; Kwiecien, O.; Langgut, D.; Litt, T.

    2015-11-01

    Detailed analyses of the Lake Van pollen, Ca / K ratio, and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial (~ 111.5-11.7 ka BP). The climate of the last glacial was cold and dry, indicated by low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (~ 28-14.5 ka BP), which was dominated by highest values of xerophytic steppe vegetation. Our high-resolution multi-proxy record shows rapid expansions and contractions of tree populations that reflect variability in temperature and moisture availability. These rapid vegetation and environmental changes can be related to the stadial-interstadial pattern of Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores. Periods of reduced moisture availability were characterized by enhanced occurrence of xerophytic species and high terrigenous input from the Lake Van catchment area. Furthermore, the comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be explained by the strength and position of the westerlies, which are responsible for the supply of humidity in eastern Anatolia. Influenced by the diverse topography of the Lake Van catchment, more pronounced DO interstadials (e.g., DO 19, 17-16, 14, 12 and 8) show the strongest expansion of temperate species within the last glacial. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris (IRD) in marine sediments, cannot be separated from other DO stadials based on the vegetation composition in eastern Anatolia. In addition, this work is a first attempt to establish a continuous microscopic charcoal record for the last glacial in the Near East. It documents an immediate response to millennial-scale climate and environmental variability and enables us to shed light on the history of fire activity during the last glacial.

  16. Abrupt Climate Change & Paleoindian Environments in western Colorado from 17-9 ka yr BP

    NASA Astrophysics Data System (ADS)

    Whitlock, C. L.; Briles, C.; Meltzer, D. J.

    2010-12-01

    The late-glacial period was characterized by rapid climate changes that resulted in significant ecosystem reorganizations worldwide. In western Colorado, one of the coldest locations in North American today, mountain environments during the late-glacial period are poorly known. Yet, archeological evidence indicates that Folsom-age Paleoindians were present in the region, perhaps even occasionally over-wintering in the Gunnison Basin during the Younger Dryas Chronozone (YDC; 12.9 to 11.5ka yr BP). To determine the climate, vegetation, and fire history during the late-glacial/early-Holocene transition, a 17-kyr-old sediment core from Lily Pond (38°56’06” N, 106°38’37”W, 3208m elevation) was analyzed for pollen and charcoal and compared with other high-resolution records from the region. The data suggest that, following deglaciation, the region supported an alpine parkland dominated by Artemisia and scattered Picea. Conditions warmed and became wetter than before during the Bølling-Allerød period (B/A; 14.7 to 12.9ka yr BP), when the region was covered by open Picea, Pinus, and Abies forest. Cooling during the YDC is inferred from abundant Picea, slightly more Artemisia and decreased Pinus, which indicate the presence of subalpine parkland. With the onset of the Holocene at ~11.5 ka yr BP, Pinus, Quercus, Artemisia, and Chenopodiaceae increased, suggesting an upslope expansion of xerophytic taxa in response to warmer and effectively drier summers than before or at present. Fire activity was absent prior to 14.7 ka yr BP, increased substantially during the B/A, decreased during the YDC, increased at the beginning of the Holocene, and declined in the early Holocene. The vegetation changes that occurred at Lily Pond are generally consistent with other high-resolution records in the Colorado Rockies in showing cooler-than-present YDC followed by rapid warming. The Lily Lake data provide new information that indicates substantial warming and establishment of

  17. Abrupt climatic changes as triggering mechanisms of massive volcanic collapses: examples from Mexico (Invited)

    NASA Astrophysics Data System (ADS)

    Capra, L.

    2010-12-01

    Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo

  18. Insects overshoot the expected upslope shift caused by climate warming.

    PubMed

    Bässler, Claus; Hothorn, Torsten; Brandl, Roland; Müller, Jörg

    2013-01-01

    Along elevational gradients, climate warming may lead to an upslope shift of the lower and upper range margin of organisms. A recent meta-analysis concluded that these shifts are species specific and considerably differ among taxonomic lineages. We used the opportunity to compare upper range margins of five lineages (plants, beetles, flies, hymenoptera, and birds) between 1902-1904 and 2006-2007 within one region (Bavarian Forest, Central Europe). Based on the increase in the regional mean annual temperature during this period and the regional lapse rate, the upslope shift is expected to be between 51 and 201 m. Averaged across species within lineages, the range margin of all animal lineages shifted upslope, but that of plants did not. For animals, the observed shifts were probably due to shifts in temperature and not to changes in habitat conditions. The range margin of plants is therefore apparently not constrained by temperature, a result contrasting recent findings. The mean shift of birds (165 m) was within the predicted range and consistent with a recent global meta-analysis. However, the upslope shift of the three insect lineages (>260 m) exceeded the expected shift even after considering several sources of uncertainty, which indicated a non-linear response to temperature. Our analysis demonstrated broad differences among lineages in their response to climate change even within one region. Furthermore, on the considered scale, the response of ectothermic animals was not consistent with expectations based on shifts in the mean annual temperature. Irrespective of the reasons for the overshooting of the response of the insects, these shifts lead to reorganizations in the composition of assemblages with consequences for ecosystem processes.

  19. Climate, paleoecology and abrupt change during the Late Proterozoic: A consideration of causes and effects

    NASA Astrophysics Data System (ADS)

    McMenamin, Mark A. S.

    This chapter examines the influence of the biosphere on the initiation, and termination of, the glaciations of the late Proterozoic. Recent considerations suggest that the biosphere controlled the timing of the onset of glaciation and also controlled the timing of the end of glaciation. Massive carbonate accumulation and giant stromatolites of the Late Proterozoic, combined with major blooms of phytoplankton, led to significant drops in the carbon dioxide content of the atmosphere, and forced climate from greenhouse to icehouse conditions. Cryoconites and hyperscums, each with a distinctively adapted cryophilic microbiota, developed during the Proterozoic ice ages and may have been a factor in melting the ice. The Proterozoic Tindir Group, Alaska provides evidence for such a cryophilic microbiota. Only by invoking the activity of such organisms can we explain the rapidity of deglaciation. A propensity to accumulate massive carbonates was present before the glaciation as well as after the deposition of the cap carbonates. Substrate disturbance by burrowing metazoa after the ice ages disrupted the microbial mat component of Proterozoic carbonate sequestration. Stromatolites after the glaciation tend to have porous, clotted and thrombolitic textures instead of evenly laminated textures and would therefore be less effective at retaining carbon dioxide (as carbonate and organic matter) and keeping it out of marine circulation. Newly emergent, burrowing metazoa of the Late Proterozoic eventually halted the development of ice-age inducing conditions, and may have prevented even worse glaciations by releasing hydrocarbons sequestered in seafloor sediment.

  20. Climate and Antartic Intermediate Water Covariations on Centennial-Millennial Timescales during MIS 3—Constraining the Role of the "Oceanic Tunnel" in Abrupt Climate Change.

    NASA Astrophysics Data System (ADS)

    Kleiven, H. F.; Ninnemann, U.

    2014-12-01

    The equatorward ventilation of Southern Hemisphere extratropical water masses to the low latitude thermocline has been proposed as a window through which the high latitude ocean can modulate tropical climate on anything from decadal to orbital timescales. This hypothesis is founded largely on the observation that tropical thermocline waters originate mostly in the Southern Hemisphere and that computer simulations suggest property anomalies in these source regions can advect through the intermediate ocean, "the ocean tunnel" to influence tropical SST. However, few observational records of extratropical ocean changes are available to assess their impacts on multi-decadal and longer timescales. Here we add to the observational record using new decadally resolved planktonic and benthic foraminiferal isotopic records spanning MIS 3 (20-50 ka) from the Chilean slope ODP Site 1233 that is located on the northern margin of the Antarctic Circumpolar Current and its seafloor lies in the core of Antarctic Intermediate Water (AAIW). Thus the site is ideally situated to reconstruct both near surface and AAIW variability in the high southern latitudes. On centennial to millennial timescales, changes in intermediate water properties track those in the near surface albeit with a reduced amplitude—confirming the idea that changes in the extratropical ocean effect the oceanic tunnel on these timescales. The new benthic and plantic foraminiferal isotope results demonstrate that variations in intermediate ocean properties and climate of the southeast Pacific closely align with those recorded in the EPICA ice core from Dronning Maud Land. Such abrupt, synoptic scale changes in Antarctic climate and dynamics will have potentially widespread climatic and biogeochemical consequences along the downstream flowpath of AAIW. The broad coherence of the observed Antarctic signal supports the concept of hemispheric thermal asynchrony on millennial timescales, and the extension of this climate

  1. Modeling dust emission variations in Eastern Europe related to North-Atlantic abrupt climate changes of the last glacial period

    NASA Astrophysics Data System (ADS)

    Sima, A.; Kageyama, M.; Rousseau, D.; Ramstein, G.; Schulz, M.; Balkanski, Y.; Antoine, P.; Dulac, F.; Hatte, C.; Lagroix, F.; Gerasimenko, N.

    2010-12-01

    The European loess sequences of the last glacial period (~ 100-15 kyr BP) show periods of strong dust accumulation alternating with episodes of reduced (or no) sedimentation, allowing soil development. For the main loess sedimentation period (~ 40 - 15 kyr BP), data indicate a correlation between these variations and the North Atlantic rapid climate changes: the Dansgaard-Oeschger (DO) and Heinrich (H) events. We use numerical modeling to investigate the relationship between the North-Atlantic abrupt changes and the sedimentation variations in Europe. A first study (Sima et al, QSR, 2009) focused on western Europe, and addressed the impact on dust emission of North-Atlantic SST changes as those associated to DO and H events. It proposed that vegetation played a key role in modulating dust emission variations in western European source areas. Here we focus on eastern Europe, especially on the areas north and north-east of the Carpathian Mountains, where loess deposits have recorded DO and H events (Rousseau et al. Clim. Past D, 2010). As in the previous study, we use the LMDZ AGCM and the SECHIBA land-surface models to simulate a reference glacial state (“stadial”), a cold (“HE”) and a warm (“DO interstadial”) perturbation, all corresponding to Marine Isotope Stage 3 conditions. We follow the same protocol as for the study on the west-European sector to analyze the impact of the climate factors and surface conditions on dust emission. The simulated most active emission areas are compatible with the loess deposit distribution, and the key role of vegetation in stadial-interstadial dust emission variations is confirmed.

  2. The Shifting Climate Portfolio of the Greater Yellowstone Area

    PubMed Central

    Sepulveda, Adam J.; Tercek, Michael T.; Al-Chokhachy, Robert; Ray, Andrew M.; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann W.; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change. PMID:26674185

  3. The shifting climate portfolio of the Greater Yellowstone Area

    USGS Publications Warehouse

    Sepulveda, Adam; Tercek, Mike T; Al-Chokhachy, Robert K.; Ray, Andrew; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.

  4. The Shifting Climate Portfolio of the Greater Yellowstone Area.

    PubMed

    Sepulveda, Adam J; Tercek, Michael T; Al-Chokhachy, Robert; Ray, Andrew M; Thoma, David P; Hossack, Blake R; Pederson, Gregory T; Rodman, Ann W; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world's most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948-2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA's physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.

  5. Abrupt State Change in Spatially-Patterned Subalpine Forests in Northern Colorado During the Medieval Climate Anomaly

    NASA Astrophysics Data System (ADS)

    Calder, W. J.; Shuman, B. N.

    2014-12-01

    Spatial patterns in many ecosystems arise from feedbacks associated with the potential for critical transitions and multiple stable states. Such systems may be susceptible to abrupt change, which could be indicated by early-warning signals, such as critical slowing down (increasingly long recovery from perturbation as a threshold approaches). Paleoecological data from ribbon forests, a type of subalpine parkland found in the Rocky Mountains, offer an opportunity to test these hypotheses. The forests consist of alternating strips of forest and meadow that form because bands of Picea and Abies trees act as snow fences with large snowdrifts forming on their lee sides. Drifts provide moisture for the adjacent trees, but also increase seedling mortality and shorten the growing season where drifts accumulate. The feedbacks between forest growth and snow accumulation maintain the ribbon forest-meadow pattern, and raise the potential for abrupt change if the feedbacks breakdown in response to factors like drought or fire. Our fossil pollen data from Summit Lake, located on the Continental Divide in the Park Range, northern Colorado, indicate that a closed forest transitioned rapidly to a ribbon forest state at ca. 1000 BP. Artemisia pollen increased (20 to 35%) and Picea and Abies pollen decreased (25 to 15%) within a century or less after a pair of charcoal peaks. Decreased charcoal influx (from 0.6 to 0.4 pieces/cm2/yr) and fire frequency (from 4.5 to 1.5 fires/ka) coincided with the pollen assemblage changes, and is consistent with decreased landscape biomass and fuel connectivity. Initial analyses show evidence of critical slowing down before the state change. After eight of eleven fires recorded by peaks in charcoal accumulation, Artemisia pollen percentages rise to a peak consistent with brief opening of the initially forested landscape. After 2000 BP, the magnitude and duration of the post-fire changes increases until no recovery is recorded after the shift at 1000

  6. Abrupt changes in rainfall during the twentieth century

    NASA Astrophysics Data System (ADS)

    Narisma, G.; Foley, J.; Licker, R.; Ramankutty, N.

    2007-12-01

    mostly located in semi-arid and arid regions (with rainfall amounts of about 350-700 mm per year). This is consistent with climate modeling results, which include the effects of dynamic vegetation cover. These studies show that arid and semi-arid regions are more likely to have multiple equilibrium states and exhibit abrupt "regime shifts" between states. Our analysis shows the extent and magnitude of sudden decreases in rainfall across the globe during the 20th century and is an important first step for studying dynamics of and the mechanisms behind these abrupt changes.

  7. Microbial Community Dynamics from Permafrost Across the Pleistocene-Holocene Boundary and Response to Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Mahony, M.; Froese, D. G.; Lanoil, B. D.

    2014-12-01

    Earth is currently undergoing rapid warming similar to that observed about 10,000 years ago at the end of the Pleistocene. We know a considerable amount about the adaptations and extinctions of mammals and plants at the Pleistocene/Holocene (P/H) boundary, but relatively little about changes at the microbial level. Due to permafrost soils' freezing anoxic conditions, they act as microbial diversity archives allowing us to determine how microbial communities adapted to the abrupt warming at the end of P. Since microbial community composition only helps differentiate viable and extant microorganisms in frozen permafrost, microbial activity in thawing permafrost must be investigated to provide a clear understanding of microbial response to climate change. Current increased temperatures will result in warming and potential thaw of permafrost and release of stored organic carbon, freeing it for microbial utilization; turning permafrost into a carbon source. Studying permafrost viable microbial communities' diversity and activity will provide a better understanding of how these microorganisms respond to soil edaphic variability due to climate change across the P/H boundary, providing insight into the changes that the soil community is currently undergoing in this modern era of rapid climate change. Modern soil, H and P permafrost cores were collected from Lucky Lady II site outside Dawson City, Yukon. 16S rRNA high throughput sequencing of permafrost DNA showed the same trends for total and viable community richness and diversity with both decreasing with permafrost depth and only the richness increasing in mid and early P. The modern, H and P soils had 50.9, 33.9, and 27.3% unique viable species and only 14% of the total number of viable species were shared by all soils. Gas flux measurements of thawed permafrost showed metabolic activity in modern and permafrost soils, aerobic CH­­4 consumption in modern, some H and P soils, and anaerobic CH­­4 production in one H

  8. Can a species keep pace with a shifting climate?

    PubMed

    Berestycki, H; Diekmann, O; Nagelkerke, C J; Zegeling, P A

    2009-02-01

    Consider a patch of favorable habitat surrounded by unfavorable habitat and assume that due to a shifting climate, the patch moves with a fixed speed in a one-dimensional universe. Let the patch be inhabited by a population of individuals that reproduce, disperse, and die. Will the population persist? How does the answer depend on the length of the patch, the speed of movement of the patch, the net population growth rate under constant conditions, and the mobility of the individuals? We will answer these questions in the context of a simple dynamic profile model that incorporates climate shift, population dynamics, and migration. The model takes the form of a growth-diffusion equation. We first consider a special case and derive an explicit condition by glueing phase portraits. Then we establish a strict qualitative dichotomy for a large class of models by way of rigorous PDE methods, in particular the maximum principle. The results show that mobility can both reduce and enhance the ability to track climate change that a narrow range can severely reduce this ability and that population range and total population size can both increase and decrease under a moving climate. It is also shown that range shift may be easier to detect at the expanding front, simply because it is considerably steeper than the retreating back.

  9. Abrupt climate changes and the effects of North Atlantic deepwater formation: Results from the GENESIS global climate model and comparison with data from the Younger Dryas event and the event at 8200 years bp and the present

    NASA Astrophysics Data System (ADS)

    Agustsdottir, Anna Maria

    1998-10-01

    Abrupt changes in climate towards glacial conditions have occurred several times during the last tens of thousands of years. A reduction in ocean heat transport to the high-latitude North Atlantic, associated with reduction, shutdown, or southward shift in formation of North Atlantic Deepwater, is hypothesized to have caused or amplified abrupt cooling events. The model-data comparisons reported here provide strong support for this hypothesis for the Younger Dryas interval and the cold event about 8200 years ago, and show likely changes were such an oceanic change to occur in the near future. Different levels of North Atlantic ocean heat transport were specified in age-appropriate simulations using the GENESIS GCM climate model. For the Younger Dryas, simulated reduction in GENESIS ocean heat transport (in versions 1.02A and 2.0) from modern levels produces climate-anomaly patterns, including many seasonal changes, that closely match observations, however, observed changes far from the North Atlantic are somewhat larger than modeled. Both model and data indicate stronger winds during cold times. Modeled cold-time winds produce about 10% more tropical-ocean Ekman divergence in regions and at times of prominent upwelling. The cooling associated with this, but not calculated for the mixed- layer GENESIS model ocean, probably is important in model-data differences. Because of the success of GENESIS in simulating Younger Dryas changes around the North Atlantic but underestimating those beyond this region, the large changes simulated for a modern reduction of North Atlantic ocean heat transport likely march or underestimate those that would occur if such a change occurred in the near future. Reduction in ocean heat transport for 8200 years ago form modern levels produces an anomaly pattern somewhat like observations, but reduction form heat transport higher than modern produces a much better match. Together with other evidence, this suggests that this cold climate event

  10. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-08

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

  11. Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes

    NASA Astrophysics Data System (ADS)

    Turner, Falko; Tolksdorf, Johann Friedrich; Viehberg, Finn; Schwalb, Antje; Kaiser, Knut; Bittmann, Felix; von Bramann, Ullrich; Pott, Richard; Staesche, Ulrich; Breest, Klaus; Veil, Stephan

    2013-01-01

    Mechanisms of climatic control on river system development are still only partially known. Palaeohydrological investigations from river valleys often lack a precise chronological control of climatic processes and fluvial dynamics, which is why their specific forces remain unclear. In this multidisciplinary case study from the middle Elbe river valley (northern Germany) multiple dating of sites (palynostratigraphy, radiocarbon- and OSL-dating) and high-resolution analyses of environmental and climatological proxies (pollen, plant macro-remains and ostracods) reveal a continuous record of the environmental and fluvial history from the Lateglacial to the early Holocene. Biostratigraphical correlation to northwest European key sites shows that river system development was partially out of phase with the main climatic shifts. The transition from a braided to an incised channel system predated the main phase of Lateglacial warming (˜14.6 ka BP), and the meandering river did not change its drainage pattern during the cooling of the Younger-Dryas period. Environmental reconstructions suggest that river dynamics were largely affected by vegetation cover, as a vegetation cover consisting of herbs, dwarf-shrubs and a few larger shrubs seems to have developed before the onset of the main Lateglacial warming, and pine forests appear to have persisted in the river valley during the Younger Dryas. In addition, two phases of high fluvial activity and new channel incision during the middle part of the Younger Dryas and during the Boreal were correlated with changes from dry towards wet climatic conditions, as indicated by evident lake level rises. Lateglacial human occupation in the river valley, which is shown by numerous Palaeolithic sites, forming one of the largest settlement areas of that period known in the European Plain, is assigned to the specific fluvial and environmental conditions of the early Allerød.

  12. Phylogeny Predicts Future Habitat Shifts Due to Climate Change

    PubMed Central

    Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A.

    2014-01-01

    Background Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. Methodology We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Conclusions Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8–77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change. PMID:24892737

  13. Shifting Global Invasive Potential of European Plants with Climate Change

    PubMed Central

    Peterson, A. Townsend; Stewart, Aimee; Mohamed, Kamal I.; Araújo, Miguel B.

    2008-01-01

    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species. PMID:18560572

  14. Shifting global invasive potential of European plants with climate change.

    PubMed

    Peterson, A Townsend; Stewart, Aimee; Mohamed, Kamal I; Araújo, Miguel B

    2008-06-18

    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species.

  15. Climatic and human impacts on quasi-periodic and abrupt changes of sedimentation rate at multiple time scales in Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Liu, Huiyu; Xu, Xiaojuan; Lin, Zhenshan; Zhang, Mingyang; Mi, Ying; Huang, Changchun; Yang, Hao

    2016-12-01

    With the ensemble Empirical Mode Decomposition Method (EEMD) and the non-parametric Mann-Kendall Test, the quasi-periodic and abrupt changes of sedimentation rate at multiple time scales, and their relations to climate changes and human activities from 1951 to 2010 in Meiliang Bay of Lake Taihu (China) were studied. The results showed the following. (1) The change in sedimentation rate can be completely decomposed into three quasi-periodic changes on 3.7, 6.4, and 24-yr time scales, and a long-term trend. (2) The quasi-periodic changes in sedimentation rate are significantly and positively related to changes in annual average temperature at 6.4 and 24-yr time scales and human activities at 3.7-yr time scales, and not significantly related to precipitation at these time scales. The trend of sedimentation rate has a negative relation with temperature, but positive relations with precipitation and human activities. As a whole, the total variance contribution of climate changes to the quasi-periodic changes of sedimentation rate is close to that of human activities; (3) Temperature and precipitation are possibly related to the abrupt change of sedimentation rate as a whole. Floods have significant impacts on abrupt changes in the sedimentation rate at 3.7, 6.4 and 24-yr time scales. Moreover, some abrupt changes of sedimentation rate at 3.7- and 6.4-yr time scales are partly related to the changes of precipitation at 3.1-yr time scale and temperature at 5-yr time scale. The results of this study will help identify the impacts of climate change and human activities on lake sedimentation at different time scales, and will be available for use as a guide for reasonable development and effective protection of lake resources.

  16. Evidence that the insertion events of IS2 transposition are biased towards abrupt compositional shifts in target DNA and modulated by a diverse set of culture parameters.

    PubMed

    Gonçalves, Geisa A L; Oliveira, Pedro H; Gomes, Ana G; Prather, Kristala L J; Lewis, Leslie A; Prazeres, Duarte M F; Monteiro, Gabriel A

    2014-08-01

    Insertion specificity of mobile genetic elements is a rather complex aspect of DNA transposition, which, despite much progress towards its elucidation, still remains incompletely understood. We report here the results of a meta-analysis of IS2 target sites from genomic, phage, and plasmid DNA and find that newly acquired IS2 elements are consistently inserted around abrupt DNA compositional shifts, particularly in the form of switch sites of GC skew. The results presented in this study not only corroborate our previous observations that both the insertion sequence (IS) minicircle junction and target region adopt intrinsically bent conformations in IS2, but most interestingly, extend this requirement to other families of IS elements. Using this information, we were able to pinpoint regions with high propensity for transposition and to predict and detect, de novo, a novel IS2 insertion event in the 3' region of the gfp gene of a reporter plasmid. We also found that during amplification of this plasmid, process parameters such as scale, culture growth phase, and medium composition exacerbate IS2 transposition, leading to contamination levels with potentially detrimental clinical effects. Overall, our findings provide new insights into the role of target DNA structure in the mechanism of transposition of IS elements and extend our understanding of how culture conditions are a relevant factor in the induction of genetic instability.

  17. Evolutionary consequences of climate-induced range shifts in insects.

    PubMed

    Sánchez-Guillén, Rosa A; Córdoba-Aguilar, Alex; Hansson, Bengt; Ott, Jürgen; Wellenreuther, Maren

    2016-11-01

    Range shifts can rapidly create new areas of geographic overlap between formerly allopatric taxa and evidence is accumulating that this can affect species persistence. We review the emerging literature on the short- and long-term consequences of these geographic range shifts. Specifically, we focus on the evolutionary consequences of novel species interactions in newly created sympatric areas by describing the potential (i) short-term processes acting on reproductive barriers between species and (ii) long-term consequences of range shifts on the stability of hybrid zones, introgression and ultimately speciation and extinction rates. Subsequently, we (iii) review the empirical literature on insects to evaluate which processes have been studied, and (iv) outline some areas that deserve increased attention in the future, namely the genomics of hybridisation and introgression, our ability to forecast range shifts and the impending threat from insect vectors and pests on biodiversity, human health and crop production. Our review shows that species interactions in de novo sympatric areas can be manifold, sometimes increasing and sometimes decreasing species diversity. A key issue that emerges is that climate-induced hybridisations in insects are much more widespread than anticipated and that rising temperatures and increased anthropogenic disturbances are accelerating the process of species mixing. The existing evidence only shows the tip of the iceberg and we are likely to see many more cases of species mixing following range shifts in the near future.

  18. Abrupt plant physiological changes in southern New Zealand at the termination of the Mi-1 event reflect shifts in hydroclimate and pCO2

    NASA Astrophysics Data System (ADS)

    Reichgelt, Tammo; D'Andrea, William J.; Fox, Bethany R. S.

    2016-12-01

    A rise in atmospheric CO2 is believed to be necessary for the termination of large-scale glaciations. Although the Antarctic Ice Sheet is estimated to have melted from ∼125% to ∼50% its modern size, there is thus far no evidence for an increase in atmospheric CO2 associated with the Mi-1 glacial termination in the earliest Miocene. Here, we present evidence from a high-resolution terrestrial record of leaf physiological change in southern New Zealand for an abrupt increase in atmospheric CO2 coincident with the termination of the Mi-1 glaciation and lasting approximately 20 kyr. Quantitative pCO2 estimates, made using a leaf gas exchange model, suggest that atmospheric CO2 levels may have doubled during this period, from 516 ± 111ppm to 1144 ± 410ppm, and subsequently returned back to 425 ± 53ppm. The 20-kyr interval with high pCO2 estimates is also associated with a period of increased moisture supply to southern New Zealand, inferred from carbon and hydrogen isotopes of terrestrial leaf waxes. The results provide the first high-resolution record of terrestrial environmental change at the Oligocene/Miocene boundary, document a ∼20 kyr interval of elevated pCO2 and increased local moisture availability, and provide insight into ecosystem response to a major orbitally driven climatic transition.

  19. Climate change, elevational range shifts, and bird extinctions.

    PubMed

    Sekercioglu, Cagan H; Schneider, Stephen H; Fay, John P; Loarie, Scott R

    2008-02-01

    Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8 degrees C, projected a best guess of 400-550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1 degrees C warming) to 30.0% (6.4 degrees C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100-500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.

  20. Analysis of climate paths reveals potential limitations on species range shifts.

    PubMed

    Early, Regan; Sax, Dov F

    2011-11-01

    Forecasts of species endangerment under climate change usually ignore the processes by which species ranges shift. By analysing the 'climate paths' that range shifts might follow, and two key range-shift processes--dispersal and population persistence--we show that short-term climatic and population characteristics have dramatic effects on range-shift forecasts. By employing this approach with 15 amphibian species in the western USA, we make unexpected predictions. First, inter-decadal variability in climate change can prevent range shifts by causing gaps in climate paths, even in the absence of geographic barriers. Second, the hitherto unappreciated trait of persistence during unfavourable climatic conditions is critical to species range shifts. Third, climatic fluctuations and low persistence could lead to endangerment even if the future potential range size is large. These considerations may render habitat corridors ineffectual for some species, and conservationists may need to consider managed relocation and augmentation of in situ populations.

  1. ENSO's non-stationary and non-Gaussian character: the role of climate shifts

    NASA Astrophysics Data System (ADS)

    Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.

    2009-07-01

    El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all

  2. Links between abrupt change in tropical hydroclimate, high-latitude climate change, and atmospheric greenhouse gases during the last ice age

    NASA Astrophysics Data System (ADS)

    Brook, E.; Rhodes, R.; Marcott, S. A.; Bauska, T. K.; Edwards, J. S.; Rosen, J. L.; Ahn, J.; Severinghaus, J. P.; Petrenko, V. V.; Menking, J. A.; Kalk, M.

    2015-12-01

    Development of very high-resolution data from polar ice cores over the last decade reveals a rich spectrum of greenhouse gas variability and its relationship to both tropical and subtropical hydroclimate and high-latitude abrupt climate change. The well-known atmospheric methane variations associated with Dansgaard-Oeschger events are now strongly linked to enhanced wetland emissions in the northern tropics based on recent work on the interpolar methane gradient. An increase in tropical rainfall associated with ITCZ migration is consistent with these observations. In addition, small, on order 5-10 ppm, changes in carbon dioxide accompany at least some Dansgaard-Oeschger events. Changes in terrestrial carbon storage, possibly in the tropics, are one explanation, but new stable isotope measurements indicate that this cannot be the only source for these events, and suggest that rising sea surface temperature must contribute. Very detailed recent data reveal variability during Greenlandic stadial periods that add to the potential links between greenhouse gases and tropical hydroclimate. During the last ice age and deglaciation, small, but rapid increases in atmospheric methane during some "Heinrich Stadials" suggest increases in methane emissions from the southern tropics associated with Heinrich events, possibly due to extreme southerly migration of rainfall belts associated with the ITCZ. Abrupt increases in carbon dioxide occur at precisely the same time as many of these Heinrich Stadial methane events. Stable isotopic data related to two of these abrupt carbon dioxide changes (during HS1 and preliminarily for HS 4) implicate an isotopically depleted source. Rapid release of terrestrial carbon (possibly due to drying in the northern tropics) is a possible explanation, although release of respiratory carbon dioxide from an ocean source (for example, due to increases in southern ocean upwelling) is another plausible alternative, albeit one that requires a fast oceanic

  3. The impact of shift work and organizational work climate on health outcomes in nurses.

    PubMed

    von Treuer, Kathryn; Fuller-Tyszkiewicz, Matthew; Little, Glenn

    2014-10-01

    Shift workers have a higher rate of negative health outcomes than day shift workers. Few studies however, have examined the role of difference in workplace environment between shifts itself on such health measures. This study investigated variation in organizational climate across different types of shift work and health outcomes in nurses. Participants (n = 142) were nursing staff from a metropolitan Melbourne hospital. Demographic items elicited the type of shift worked, while the Work Environment Scale and the General Health Questionnaire measured organizational climate and health respectively. Analysis supported the hypotheses that different organizational climates occurred across different shifts, and that different organizational climate factors predicted poor health outcomes. Shift work alone was not found to predict health outcomes. Specifically, permanent night shift workers had significantly lower coworker cohesion scores compared with rotating day and evening shift workers and significantly higher managerial control scores compared with day shift workers. Further, coworker cohesion and involvement were found to be significant predictors of somatic problems. These findings suggest that differences in organizational climate between shifts accounts for the variation in health outcomes associated with shift work. Therefore, increased workplace cohesion and involvement, and decreased work pressure, may mitigate the negative health outcomes of shift workers.

  4. Late second-early first millennium BC abrupt climate changes in coastal Syria and their possible significance for the history of the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kaniewski, D.; Paulissen, E.; Van Campo, E.; Weiss, H.; Otto, T.; Bretschneider, J.; Van Lerberghe, K.

    2010-09-01

    The alluvial deposits near Gibala-Tell Tweini provide a unique record of environmental history and food availability estimates covering the Late Bronze Age and the Early Iron Age. The refined pollen-derived climatic proxy suggests that drier climatic conditions occurred in the Mediterranean belt of Syria from the late 13th/early 12th centuries BC to the 9th century BC. This period corresponds with the time frame of the Late Bronze Age collapse and the subsequent Dark Age. The abrupt climate change at the end of the Late Bronze Age caused region-wide crop failures, leading towards socio-economic crises and unsustainability, forcing regional habitat-tracking. Archaeological data show that the first conflagration of Gibala occurred simultaneously with the destruction of the capital city Ugarit currently dated between 1194 and 1175 BC. Gibala redeveloped shortly after this destruction, with large-scale urbanization visible in two main architectural phases during the Early Iron Age I. The later Iron Age I city was destroyed during a second conflagration, which is radiocarbon-dated at circa 2950 cal yr BP. The data from Gibala-Tell Tweini provide evidence in support of the drought hypothesis as a triggering factor behind the Late Bronze Age collapse in the Eastern Mediterranean.

  5. New evidence from the South China Sea for an abrupt termination of the last glacial period

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Klas, M.; Andree, M.; Bonani, G.; Wolfli, W.

    1988-01-01

    Results demonstrating an abrupt change in the rate and character of sedimentation in the South China Sea at the close of the last glacial period are presented. Radiocarbon dating and its position in the oxygen isotope shift suggest that this change may be coincident with the abrupt change in climatic conditions seen at high latitudes in the North Atlantic and the Antarctic at 13 kyr BP. These results support the contention that a major global climatic change occurred between 14 and 13 kyr BP.

  6. Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds.

    PubMed

    Virkkala, Raimo; Lehikoinen, Aleksi

    2014-10-01

    Climate change has been shown to cause poleward range shifts of species. These shifts are typically demonstrated using presence-absence data, which can mask the potential changes in the abundance of species. Moreover, changes in the mean centre of weighted density of species are seldom examined, and comparisons between these two methods are even rarer. Here, we studied the change in the mean weighted latitude of density (MWLD) of 94 bird species in Finland, northern Europe, using data covering a north-south gradient of over 1000 km from the 1970s to the 2010s. The MWLD shifted northward on average 1.26 km yr(-1) , and this shift was significantly stronger in northern species compared to southern species. These shifts can be related to climate warming during the study period, because the annual temperature had increased more in northern Finland (by 1.7 °C) than in southern Finland (by 1.4 °C), although direct causal links cannot be shown. Density shifts of species distributed over the whole country did not differ from shifts in species situated on the edge of the species range in southern and northern species. This means that density shifts occur both in the core and on the edge of species distribution. The species-specific comparison of MWLD values with corresponding changes in the mean weighted latitude using presence-absence atlas data (MWL) revealed that the MWLD moved more slowly than the MWL in the atlas data in the southern species examined, but more rapidly in the northern species. Our findings highlight that population densities are also moving rapidly towards the poles and the use of presence-absence data can mask the shift of population densities. We encourage use of abundance data in studies considering the effects of climate change on biodiversity.

  7. Abrupt warming of the Red Sea

    NASA Astrophysics Data System (ADS)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  8. The Nonlinear Response of the Equatorial Pacific Ocean-Atmosphere System to Periodic Variations in Insolation and its Association with the Abrupt Climate Transitions during the Quaternary.

    NASA Astrophysics Data System (ADS)

    Lopes, P. G.

    2015-12-01

    The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as

  9. Detecting abrupt dynamic change based on changes in the fractal properties of spatial images

    NASA Astrophysics Data System (ADS)

    Liu, Qunqun; He, Wenping; Gu, Bin; Jiang, Yundi

    2016-08-01

    Many abrupt climate change events often cannot be detected timely by conventional abrupt detection methods until a few years after these events have occurred. The reason for this lag in detection is that abundant and long-term observational data are required for accurate abrupt change detection by these methods, especially for the detection of a regime shift. So, these methods cannot help us understand and forecast the evolution of the climate system in a timely manner. Obviously, spatial images, generated by a coupled spatiotemporal dynamical model, contain more information about a dynamic system than a single time series, and we find that spatial images show the fractal properties. The fractal properties of spatial images can be quantitatively characterized by the Hurst exponent, which can be estimated by two-dimensional detrended fluctuation analysis (TD-DFA). Based on this, TD-DFA is used to detect an abrupt dynamic change of a coupled spatiotemporal model. The results show that the TD-DFA method can effectively detect abrupt parameter changes in the coupled model by monitoring the changing in the fractal properties of spatial images. The present method provides a new way for abrupt dynamic change detection, which can achieve timely and efficient abrupt change detection results.

  10. Analysis of abrupt transitions in ecological systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The occurrence and causes of abrupt transitions, thresholds, or regime shifts between ecosystem states are of great concern and the likelihood of such transitions is increasing for many ecological systems. General understanding of abrupt transitions has been advanced by theory, but hindered by the l...

  11. The complex behavior of the Cordilleran Ice Sheet and mountain glaciers to abrupt climate change during the latest Pleistocene

    NASA Astrophysics Data System (ADS)

    Menounos, Brian; Goehring, Brent; Osborn, Gerald; Clarke, Garry K. C.; Ward, Brent; Margold, Martin; Bond, Jeff; Clague, John J.; Lakeman, Tom; Schaefer, Joerg; Koch, Joe; Gosse, John; Stroeven, Arjen P.; Seguinot, Julien; Heyman, Jakob; Fulton, Robert

    2014-05-01

    Surficial mapping and more than 70 radiometric ages 10Be, 14C] constrain the evolution of the Cordilleran Ice Sheet (CIS) and associated mountain glaciers in western Canada during the latest Pleistocene. Our data suggest that: i) there is widespread evidence for the Younger Dryas (YD) throughout the mountains of western Canada; ii) late Pleistocene climate reconstructions based solely on alpine moraines may be misleading in regions with decaying ice sheets; iii) extensive interfluves in some mountain regions were ice-free between 16 ka and 13 ka (kilo calibrated yrs BP). Initial decay of the CIS from its maximum extent around 16 ka was likely due to a combination of climatic (surface melting) and dynamical factors. Climate amelioration during the Bølling-Allerød Warm Period [14.7-12.9 ka], likely the cause for the major phase of CIS decay, resulted in ice sheet equilibrium line altitudes (ELAs) ranging from 2500 m asl in southern BC to around 2000 m asl along the BC-Yukon border. Hence, before the onset of the Younger Dryas (YD) Cold Period [12.9-11.7 ka], the ice sheet shrank and became a labyrinth of individual and coalescing valley glaciers fed by major accumulation zones centered on the Coast Mountains and other high ranges of NW Canada. The response of remnant ice and cirque glaciers to the YD climate deterioration was highly variable. In some cases, small glaciers (0.5-2 km2) built YD moraines that were only hundreds of meters beyond those constructed during the Little Ice Age (LIA) [0.30-0.15 ka]. Our dating also reveals that much larger glaciers persisted in nearby valleys that lie hundreds of meters below the cirques. Hence, we infer that many cirques were completely deglaciated prior the YD, in contrast to low-lying valleys where ice sheet remnants persisted. Glaciers also advanced in north-central British Columbia during the YD, but here glaciers constructed large terminal and lateral moraines. In the Cassiar and northern Coast mountains, for example

  12. Geographical limits to species-range shifts are suggested by climate velocity.

    PubMed

    Burrows, Michael T; Schoeman, David S; Richardson, Anthony J; Molinos, Jorge García; Hoffmann, Ary; Buckley, Lauren B; Moore, Pippa J; Brown, Christopher J; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Sydeman, William J; Ferrier, Simon; Williams, Kristen J; Poloczanska, Elvira S

    2014-03-27

    The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.

  13. Directionality of recent bird distribution shifts and climate change in Great Britain.

    PubMed

    Gillings, Simon; Balmer, Dawn E; Fuller, Robert J

    2015-06-01

    There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988-1991 and 2008-2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north-west and north-east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer-effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north-north-westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species-specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more

  14. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania

    NASA Astrophysics Data System (ADS)

    Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris

    2017-01-01

    Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.

  15. Tracking lags in historical plant species' shifts in relation to regional climate change.

    PubMed

    Ash, Jeremy D; Givnish, Thomas J; Waller, Donald M

    2017-03-01

    Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species' shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species' traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change.

  16. PREDICTING CLIMATE-INDUCED RANGE SHIFTS: MODEL DIFFERENCES AND MODEL RELIABILITY

    EPA Science Inventory

    Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common ...

  17. PREDICTING CLIMATE-INDUCED RANGE SHIFTS FOR MAMMALS: HOW GOOD ARE THE MODELS?

    EPA Science Inventory

    In order to manage wildlife and conserve biodiversity, it is critical that we understand the potential impacts of climate change on species distributions. Several different approaches to predicting climate-induced geographic range shifts have been proposed to address this proble...

  18. The Climate Shift and the Climate Variability in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lopez Parages, Jorge; Rodriguez-Fonseca, Belen

    2010-05-01

    The so-called "climate shift" (CS) was defined at the beginning of the nineties as a dramatic change between 1976-77 in the basic state of the tropical Pacific and in the ENSO dynamics. Nowadays, the 1976-1977 shift is interpreted as a phase change in a decadal scale oscillation (the Pacific Decadal Oscillation, PDO, Mantua et al. 1997) lasting from about 1976 to 1988 (Trenberth and Hurrell 1994, Miller et al. 1994). However, several changes in the global climate have been reported after the CS; as changes in the air-sea interactions and in the tropical and extratropical teleconnection patterns. The climate variability of the Mediterranean area is influenced by the North Atlantic Oscillation (NAO, Hurrell, 2003), which frequency and positive phase intensity has suffered an increase after the CS unprecedented in the instrumental period, in coincidence with extreme drought conditions in the Mediterranean region. This results remark the non-stationary variability of the NAO (Vicente-Serrano and López-Moreno, 2008b) and the existence of changes in the underlying dynamics. In addition, Tropical Atlantic Variability (TAV) and ENSO have also shown to exhibit a strong and non- stationary influence in the Mediterranean basin, with maximum correlations at the beginning of the twenty century and since the CS (Mariotti et al. 2002), in concordance with the Atlantic Multidecadal Oscillation (AMO) evolution. A recent singular discovery show the influence of the Atlantic Niño on its Pacific counterpart (Rodríguez-Fonseca et al. 2009; Losada et al. 2009), a relation that was statistically pointed out in Polo et al. (2008a). These results remark the increasing importance of the TAV on the global climate and on the observed change, from the late 70's, in the global teleconnections. Although some studies point out the seasonal dependence of the leading modes of precipitation variability over Europe (Zveryaev, 2006), in this work, a gridded monthly terrestrial gauge

  19. Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming

    PubMed Central

    Gibson-Reinemer, Daniel K.; Rahel, Frank J.

    2015-01-01

    Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013

  20. Facilitating climate-change-induced range shifts across continental land-use barriers.

    PubMed

    Robillard, Cassandra M; Coristine, Laura E; Soares, Rosana N; Kerr, Jeremy T

    2015-12-01

    Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near-continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species' abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern-era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi-continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.

  1. How will biotic interactions influence climate change-induced range shifts?

    PubMed

    HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J

    2013-09-01

    Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts.

  2. Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries.

    PubMed

    Polley, Lydden; Thompson, R C Andrew

    2009-06-01

    For human, domestic animal and wildlife health, key effects of directional climate change include the risk of the altered occurrence of infectious diseases. Many parasite zoonoses have high potential for vulnerability to the new climate, in part because their free-living life-cycle stages and ectothermic hosts are directly exposed to climatic conditions. For these zoonoses, climate change can shift boundaries for ecosystem components and processes integral to parasite transmission and persistence, and these shifts can impact host health. Vulnerable boundaries include those for spatial distributions, host-parasite assemblages, demographic rates, life-cycle phenologies, associations within ecosystems, virulence, and patterns of infection and disease. This review describes these boundary shifts and how molecular techniques can be applied to defining the new boundaries.

  3. Coccolithophore response to Abrupt and short-term climate changes in the Gulf of Lions (Western Mediterranean) during the last climatic cycle

    NASA Astrophysics Data System (ADS)

    Flores, J.; Gravalosa, J.; Colmenero-Hidalgo, E.; Sierro, F. J.; Canals, M.; Frigola, J.; Grimalt, J.; Berné, S.; Dannielou, B.

    2007-12-01

    Cores PRGL-1 (310 m long) and MD99-2348 (21.5 m long) were recovered in the Gulf of Lions (42.690N; 03.838 E) at 298.48 m water depth, during the PROMESS 1 campaign (SRV Bavenit drilling vessel) and IMAGES V (RV Marion Dufresne, Calypso piston core), respectively. The high sedimentation rates -estimated by robust 14C dating- have given us an excellent opportunity to perform high resolution analyses on these materials. In this study we present data from the last 25 kys. The retrieved sediments consist of silty-clay terrigenous material mixed with a small amount of calcareous microfossils. Quantitative analyses of coccolithophore assemblages allow us to identify significant changes in sea surface temperature in this period. Cold peaks are marked by increases in the proportion of Gephyrocapsa muellerae and large morphotypes of Emiliania huxleyi (>5 m); some of the most significant can be correlated with Heinrich events. The high sedimentation rates observed during most of the studied interval also allow us to identify an overprinted multicentennial scale pattern related to Dansgaard-Oeschger cycles. The combined analyses of coccolithophores and planktonic foraminifers permits to produce a sea surface temperature (SST) record in which sharp fluctuations of around 4º C in amplitude have been detected. These abrupt changes in SST are also linked to changes in surface productivity and in the deep and intermediate water dynamics, probably related with variations in the atmospheric pattern (NAO-like oscillations). PROMESS 1 is funded by the European Community (EVR1-T-40024).

  4. North by north-west: climate change and directions of density shifts in birds.

    PubMed

    Lehikoinen, Aleksi; Virkkala, Raimo

    2016-03-01

    There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence-absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000 km south-north gradient in Finland, that between 1970-1989 and 2000-2012, 128 bird species shifted their densities, on average, 37 km towards the north north-east. The species-specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north-east (186 km), the species-specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species-specific characteristics and human land-use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north-west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.

  5. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America.

    PubMed

    Harsch, Melanie A; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species' elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change.

  6. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  7. Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s

    NASA Astrophysics Data System (ADS)

    Hong, Chi-Cherng; Wu, Yi-Kai; Li, Tim

    2016-10-01

    In this study, a new interpretation is proposed for the abrupt decrease in tropical cyclone (TC) activity in the western North Pacific (WNP) after the late 1990s. We hypothesize that this abrupt change constitutes a part of the phenomenon of interdecadal change in TC activity in the Pacific Basin, including the WNP, western South Pacific (WSP), and eastern North Pacific. Our analysis revealed that the climate-regime shift (CRS) in the Pacific during the middle to late 1990s resulted in a La Niña-like mean state, which was responsible for the interdecadal change in TC activity in the late 1990s. Analyses of the TC genesis potential index and numerical experiments revealed that the decline in TC activity in both the WNP and WSP was primarily attributable to the increase of vertical wind shear in the central Pacific due to the La Niña-like associated cold sea surface temperature (SST). Conversely, the La Niña-like associated warm SST in the western Pacific produced anomalous vertical transport of water vapor, increasing moisture levels in the mid-troposphere and TC activity in the western WNP. Furthermore, the CRS modified the mean TC genesis position and shifted the steering flow to the west, resulting in the increased frequency of TC landfalls in Taiwan, southeastern China, and northern Australia after the late 1990s.

  8. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology

  9. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    PubMed

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  10. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities

    PubMed Central

    Barton, Andrew D.; Finkel, Zoe V.; Stock, Charles A.

    2016-01-01

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951–2000) and future (2051–2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec−1), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec−1. The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles. PMID:26903635

  11. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.

    PubMed

    Sunday, Jennifer M; Pecl, Gretta T; Frusher, Stewart; Hobday, Alistair J; Hill, Nicole; Holbrook, Neil J; Edgar, Graham J; Stuart-Smith, Rick; Barrett, Neville; Wernberg, Thomas; Watson, Reg A; Smale, Dan A; Fulton, Elizabeth A; Slawinski, Dirk; Feng, Ming; Radford, Ben T; Thompson, Peter A; Bates, Amanda E

    2015-09-01

    Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.

  12. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    PubMed

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  13. Ecosystem shifts under climate change - a multi-model analysis from ISI-MIP

    NASA Astrophysics Data System (ADS)

    Warszawski, Lila; Beerling, David; Clark, Douglas; Friend, Andrew; Ito, Akihito; Kahana, Ron; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Lucht, Wolfgang; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Tito Rademacher, Tim; Schaphoff, Sibyll

    2013-04-01

    Dramatic ecosystem shifts, relating to vegetation composition and water and carbon stocks and fluxes, are potential consequences of climate change in the twenty-first century. Shifting climatic conditions, resulting in changes in biogeochemical properties of the ecosystem, will render it difficult for endemic plant and animal species to continue to survive in their current habitat. The potential for major shifts in biomes globally will also have severe consequences for the humans who rely on vital ecosystem services. Here we employ a novel metric of ecosystem shift to quantify the magnitude and uncertainty in these shifts at different levels of global warming, based on the response of seven biogeochemical Earth models to different future climate scenarios, in the context of the Intersectoral Impact Model Intercomparison Project (ISI-MIP). Based on this ensemble, 15% of the Earth's land surface will experience severe ecosystem shifts at 2°C degrees of global warming above 1980-2010 levels. This figure rises monotonically with global mean temperature for all models included in this study, reaching a median value of 60% of the land surface in a 4°C warmer world. At both 2°C and 4°C of warming, the most pronounced shifts occur in south-eastern India and south-western China, large swathes of the northern lattitudes above 60°N, the Amazon region and sub-Saharan Africa. Where dynamic vegetation composition is modelled, these shifts correspond to significant reductions in the land surface of vunerable vegetation types. We show that global mean temperature is a robust predictor of ecosystem shifts, whilst the spread across impact models is the greatest contributor to uncertainty.

  14. Evidence for Pacific Climate Regime Shifts as Preserved in a Southeast Alaska Ice Core

    NASA Astrophysics Data System (ADS)

    Porter, S. E.; Mosley-Thompson, E. S.; Thompson, L. G.

    2012-12-01

    Climate modes emanating from the Pacific sector have far-reaching effects across the globe. The El Niño/Southern Oscillation (ENSO) reflects anomalies in the sea surface temperature and pressure fields over the tropical Pacific, but climate implications from these anomalies extend to monsoon regions of Asia to North America and even Europe. The Pacific Decadal Oscillation (PDO) explains sea surface temperature anomalies in the North Pacific sector and influences the long-term behavior of the ENSO cycle as well as the storm track over North America expressed as the Pacific/North American Pattern (PNA). The impacts of both climate change and drastically reduced Arctic sea ice cover on these teleconnection patterns are poorly understood, and with little knowledge about their past behavior, predicting the changes in these climate modes is extremely difficult. An ice core from the col between Mt. Bona and Mt. Churchill in southeast Alaska provides an opportunity to examine the PDO prior to both the start of instrumental records and the more recent effects of anthropogenic climate change. The Bona-Churchill records of isotopic, dust, and chemical composition are compared to nearby meteorological station and 20th century reanalysis data to evaluate their strength as climate recorders. Climate indices such as the PDO and PNA, along with indices created to describe the strength and position of the Aleutian Low and Siberian High, are incorporated into the analysis to determine if proxy relationships are altered under different climate regimes. Satellite records of sea ice extent within the Sea of Okhotsk and the Bering Sea, when compared to the Bona-Churchill data, show a distinct change in behavior in the mid-1990s possibly in response to the temporary negative shift in the PDO. This behavioral shift is explored and placed into a broader climate context to determine whether similar events have occurred in the past or if this shift is unique to a rapidly warming Arctic.

  15. Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy.

    PubMed

    Sofaer, Helen R; Skagen, Susan K; Barsugli, Joseph J; Rashford, Benjamin S; Reese, Gordon C; Hoeting, Jennifer A; Wood, Andrew W; Noon, Barry R

    2016-09-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species' vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland

  16. Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

    USGS Publications Warehouse

    Sofaer, Helen; Skagen, Susan; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon C.; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.

    2016-01-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland

  17. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation

    USGS Publications Warehouse

    Allen, C.D.; Breshears, D.D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects - particularly those caused by mortality - largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and pinon-juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.

  18. Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation

    PubMed Central

    Allen, Craig D.; Breshears, David D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and piñon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change. PMID:9843976

  19. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation.

    PubMed

    Allen, C D; Breshears, D D

    1998-12-08

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects-particularly those caused by mortality-largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and pinon-juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.

  20. Neanderthal and Anatomically Modern Human interaction with Abrupt Late Pleistocene Environments - the data is finally good enough to talk about climate change!

    NASA Astrophysics Data System (ADS)

    Blockley, Simon; Schreve, Danielle

    2015-04-01

    The timing and nature of the appearance of Anatomically Modern Humans (AMH) in Europe, their interaction with, and eventual morphological replacement of Neanderthals (despite some shared genetic heritage) has been a matter of intense debate within archaeology for a generation. This period, often termed the Middle to Upper Palaeolithic transition occurs in the latter part of Marine Isotope Stage Three and in recent decades archaeological interest has been complemented by the input of palaeoclimate scientists, over the role of abrupt climate change in this process. This was due to the recognition from ice core and marine proxy archives, in particular, of periods if intense cooling, correlated to the marine record of Heinrich ice rafted debris layers from the Atlantic. As a result of these collaborations between the archaeological and palaeoenvironmental communities various drivers have been proposed for the Middle to Upper Palaeolithic Transition that include: (1) resource competition between two species occupying similar niches; (2) the impact of repeated cycles of Heinrich event cooling, leading to the decline and eventual disappearance of the Neanderthal populations, leaving a new region open for AMH exploitation; and (3) catastrophic impacts of large volcanic eruptions on Neanderthal populations. Attempts to address the above hypotheses have been dogged by the chronological precision available for a number of key archives. The accuracy of many of the radiocarbon ages that underpin the chronology for both Neanderthal and AMH archaeological sites has been questioned1. This has been exacerbated by uncertainties over the influence of variability in the radiocarbon marine reservoir effect on marine palaeoclimate records and a marine dominated radiocarbon calibration curve. Additionally, the counting uncertainties of the master Greenland palaeoclimate archives are also large by this time, meaning palaeoclimate interpretation can be equivocal. However, several research

  1. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  2. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

    PubMed Central

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  3. Climatic regime shifts and their impacts on marine ecosystem and fisheries resources in Korean waters

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Ik; Lee, Jae Bong; Kim, Suam; Oh, Jai-Ho

    2000-10-01

    There were climatic regime shifts over the North Pacific in 1976 and 1988 which affected the dynamics of the marine ecosystem and fisheries resources in Korean waters. Precipitation in Korean waters showed a decadal scale climatic jump, especially of Ullungdo Island, reflecting the regime shift that occurred in the North Pacific. The variation was also detected in East Asian atmospheric systems. The Aleutian Low and North Pacific High Pressure Systems showed substantial changes in 1976 and around 1987-89. 1976 was an unusually warm year for Korea; mean sea surface temperature (SST) was higher than ‘normal’ and was accompanied by a northward shift in the thermal front. Post 1976, the volume transport of the Kuroshio Current increased and higher seawater and air temperatures persisted until 1988. Other shifts occurred after 1976 such as an increase in mixed layer depth (MLD) and biological changes in the ecosystem of Korean waters including decreases in spring primary production and an increase in autumn primary production. Primary production increased again after 1988, and was followed by a significant increase in zooplankton biomass after 1991. The 1976 regime shift was manifested by a decreased biomass and production of saury, but an increase in biomass and production of sardine and filefish in Korean waters. After 1988, recruitment, biomass, and production of sardine collapsed while those of mackerel substantially increased. Based on these observations, hypotheses on the relationship between the climate-driven oceanic changes and changes in fisheries resources were developed and are discussed.

  4. Pregnancy Complications: Placental Abruption

    MedlinePlus

    ... page It's been added to your dashboard . The placenta attaches to the wall of the uterus (womb) ... abruption is a serious condition in which the placenta separates from the wall of the uterus before ...

  5. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    SciTech Connect

    Xu, Peng; Yin, Rongxin; Brown, Carrie; Kim, DongEun

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

  6. Climate change influences on crop mix shifts in the United States

    NASA Astrophysics Data System (ADS)

    Cho, Sung Ju; McCarl, Bruce A.

    2017-01-01

    We examine the impact of current and future climate on crop mixes over space in the US. We find using historical data that temperature and precipitation are among the causal factors for shits in crop production location and mixes, with some crops being more sensitive than others. In particular, we find that when temperature rises, cotton, rice, sorghum and winter wheat are more likely to be chosen. We also find that barley, sorghum, winter wheat, spring wheat and hay are more likely to be chosen as regions become drier, and corn, cotton, rice and soybeans are more likely to be selected in wetter regions. Additionally, we assess how much of the observed crop mix shifts between 1970 and 2010 were contributed to by climate change. There we find climate explains about 7–50% of the shift in latitude, 20–36% in longitude and 4–28% of that in elevation. Finally, we estimate climate change impacts on future crop mix under CMIP5 scenarios. There we find shifts in US production regions for almost all major crops with the movement north and east. The estimates describe how the farmers respond to altering climate and can be used for planning future crop allocations.

  7. Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes

    NASA Astrophysics Data System (ADS)

    Boer, Matthias M.; Bowman, David M. J. S.; Murphy, Brett P.; Cary, Geoffrey J.; Cochrane, Mark A.; Fensham, Roderick J.; Krawchuk, Meg A.; Price, Owen F.; Resco De Dios, Víctor; Williams, Richard J.; Bradstock, Ross A.

    2016-06-01

    Most studies of climate change effects on fire regimes assume a gradual reorganization of pyrogeographic patterns and have not considered the potential for transformational changes in the climate-vegetation-fire relationships underlying continental-scale fire regimes. Here, we model current fire activity levels in Australia as a function of mean annual actual evapotranspiration (E) and potential evapotranspiration (E 0), as proxies for fuel productivity and fuel drying potential. We distinguish two domains in E,{E}0 space according to the dominant constraint on fire activity being either fuel productivity (PL-type fire) or fuel dryness (DL-type fire) and show that the affinity to these domains is related to fuel type. We propose to assess the potential for transformational shifts in fire type from the difference in the affinity to either domain under a baseline climate and projected future climate. Under the projected climate changes potential for a transformational shift from DL- to PL-type fire was predicted for mesic savanna woodland in the north and for eucalypt forests in coastal areas of the south-west and along the Continental Divide in the south-east of the continent. Potential for a shift from PL- to DL-type fire was predicted for a narrow zone of eucalypt savanna woodland in the north-east.

  8. Climate change influences on crop mix shifts in the United States

    PubMed Central

    Cho, Sung Ju; McCarl, Bruce A.

    2017-01-01

    We examine the impact of current and future climate on crop mixes over space in the US. We find using historical data that temperature and precipitation are among the causal factors for shits in crop production location and mixes, with some crops being more sensitive than others. In particular, we find that when temperature rises, cotton, rice, sorghum and winter wheat are more likely to be chosen. We also find that barley, sorghum, winter wheat, spring wheat and hay are more likely to be chosen as regions become drier, and corn, cotton, rice and soybeans are more likely to be selected in wetter regions. Additionally, we assess how much of the observed crop mix shifts between 1970 and 2010 were contributed to by climate change. There we find climate explains about 7–50% of the shift in latitude, 20–36% in longitude and 4–28% of that in elevation. Finally, we estimate climate change impacts on future crop mix under CMIP5 scenarios. There we find shifts in US production regions for almost all major crops with the movement north and east. The estimates describe how the farmers respond to altering climate and can be used for planning future crop allocations. PMID:28098198

  9. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations

    PubMed Central

    Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation. PMID:26132268

  10. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.

    PubMed

    Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation.

  11. The abrupt onset of the modern South Asian Monsoon winds

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Eberli, Gregor P.; Kroon, Dick; Wright, James D.; Swart, Peter K.; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A.; Alonso-García, Montserrat; Bialik, Or M.; Blättler, Clara L.; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M.; Pratiwi, Santi D.; Reijmer, John J. G.; Reolid, Jesús; Slagle, Angela L.; Sloss, Craig R.; Su, Xiang; Yao, Zhengquan; Young, Jeremy R.

    2016-07-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment’s content of particulate organic matter. A weaker ‘proto-monsoon’ existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  12. The abrupt onset of the modern South Asian Monsoon winds.

    PubMed

    Betzler, Christian; Eberli, Gregor P; Kroon, Dick; Wright, James D; Swart, Peter K; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A; Alonso-García, Montserrat; Bialik, Or M; Blättler, Clara L; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M; Pratiwi, Santi D; Reijmer, John J G; Reolid, Jesús; Slagle, Angela L; Sloss, Craig R; Su, Xiang; Yao, Zhengquan; Young, Jeremy R

    2016-07-20

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  13. The abrupt onset of the modern South Asian Monsoon winds

    PubMed Central

    Betzler, Christian; Eberli, Gregor P.; Kroon, Dick; Wright, James D.; Swart, Peter K.; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A.; Alonso-García, Montserrat; Bialik, Or M.; Blättler, Clara L.; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M.; Pratiwi, Santi D.; Reijmer, John J. G.; Reolid, Jesús; Slagle, Angela L.; Sloss, Craig R.; Su, Xiang; Yao, Zhengquan; Young, Jeremy R.

    2016-01-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment’s content of particulate organic matter. A weaker ‘proto-monsoon’ existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system. PMID:27436574

  14. On the influence of poleward jet shift on shortwave cloud feedback in global climate models

    NASA Astrophysics Data System (ADS)

    Wall, Casey J.; Hartmann, Dennis L.

    2015-12-01

    Experiments designed to separate the effect of atmospheric warming from the effect of shifts of the eddy-driven jet on shortwave (SW) cloud feedback are performed with three global climate models (GCMs). In each model a warming simulation produces a robust SW cloud feedback dipole, with a negative (positive) feedback in the high-latitudes (subtropics). The cloud brightening in high-latitudes that characterizes warming simulations is not produced by jet shifts alone in any of the models, but is highly sensitive to perturbations of freezing temperature seen by the cloud microphysics scheme, indicating that thermodynamic mechanisms involving the phase of cloud condensate dominate the SW feedback at high-latitudes. In one of the models a poleward jet shift causes significant cloud dimming throughout the midlatitudes, but in two models it does not. Differences in cloud response to jet shifts in two of the models are attributed to differences in the shallow convection parameterizations.

  15. Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach.

    PubMed

    Jenouvrier, Stéphanie; Visser, Marcel E

    2011-11-01

    The debate on emission targets of greenhouse gasses designed to limit global climate change has to take into account the ecological consequences. One of the clearest ecological consequences is shifts in phenology. Linking these shifts to changes in population viability under various greenhouse gasses emission scenarios requires a unifying framework. We propose a box-in-a-box modeling approach that couples population models to phenological change. This approach unifies population modeling with both ecological responses to climate change as well as evolutionary processes. We advocate a mechanistic embedded correlative approach, where the link from genes to population is established using a periodic matrix population model. This periodic model has several major advantages: (1) it can include complex seasonal behaviors allowing an easy link with phenological shifts; (2) it provides the structure of the population at each phase, including the distribution of genotypes and phenotypes, allowing a link with evolutionary processes; and (3) it can incorporate the effect of climate at different time periods. We believe that the way climatologists have approached the problem, using atmosphere-ocean coupled circulation models in which components are gradually included and linked to each other, can provide a valuable example to ecologists. We hope that ecologists will take up this challenge and that our preliminary modeling framework will stimulate research toward a unifying predictive model of the ecological consequences of climate change.

  16. A New Tool for Exploring Climate Change Induced Range Shifts of Conifer Species in China

    PubMed Central

    Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong

    2014-01-01

    It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management. PMID:25268604

  17. A 2400-year record of abrupt climate change from Almalou Crate Lake in NW Iran: Investigating the potential influence of solar variability on the climate of West Asia during late Holocene

    NASA Astrophysics Data System (ADS)

    Sharifi, A.; Pourmand, A.; Canuel, E. A.; Naderi Beni, A.; Lahijani, H. A.

    2013-12-01

    The Mediterranean climate of northwest Iran is influenced by mid-latitude Westerlies and the winter expansion of the Siberian Anticyclone. Given the significance of this region in development of human civilizations, high-resolution reconstructions of abrupt climate change are of particular interest during the Holocene. Almalou Crater Lake sustains the growth of plants inside the crater of a dormant volcanic cone on the eastern flank of the Sahand volcanic district in NW Iran. At an elevation of 2491 m.a.s.l., the crater is exclusively fed by rainfall during the spring and fall and snowfall during the winter. Preservation of organic matter within the crater can potentially record changes in atmospheric deposition and paleo-environmental conditions over this region. To reconstruct changes in atmospheric aeolian input, we present a high-resolution (sub-decadal) multi-proxy record of climate variability during the last 2400 years from a 3-m peat core recovered from the crater peat bog. Radiocarbon dates of eight samples along the core show a nearly constant rate of accumulation (7.7 mm yr-1, R2=0.98) since 2404×25 cal yr BP. Downcore X-ray fluorescence measurements of selected conservative lithogenic elements (e.g., Al, Si, and Ti) as well as redox-sensitive elements (e.g., Fe and Rb) at 10 mm intervals reveal several periods of elevated abundances related to enhanced atmospheric dust deposition. The co-variations between relative abundances of conservative and redox-sensitive elements as a function of time show significant agreement and attest to the ombrotrophic nature of the entire record. Intervals of enhanced dust deposition inferred from XRF data reveal three short episodes (~ 150-y) at 450-600, 1150-1300, and 1400-1550 cal yr BP, and one prolonged period (500 y) of dust accumulation from 1600 to 2070 cal yr BP. These intervals of high atmospheric dust coincide with historical records of drought and famine in Iran since 2000 BP. Wavelet analysis conducted on the

  18. Climate change and fishing: a century of shifting distribution in North Sea cod

    PubMed Central

    Engelhard, Georg H; Righton, David A; Pinnegar, John K

    2014-01-01

    Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern- and north-easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. PMID:24375860

  19. Effects of climate change and shifts in forest composition on forest net primary production.

    PubMed

    Chiang, Jyh-Min; Iverson, Louts R; Prasad, Anantha; Brown, Kim J

    2008-11-01

    Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (PnET-II Model) that will be associated with alterations in species composition. We selected four 200 x 200 km areas in Wisconsin, Maine, Arkansas, and the Ohio-West Virginia area, representing focal areas of potential species range shifts. PnET-II model simulations were carried out assuming that all forests achieved steady state, of which the species compositions were predicted by DISTRIB model with no migration limitation. The total NPP under the current climate ranged from 552 to 908 g C/m(2) per year. The effects of potential species redistributions on NPP were moderate (-12% to +8%) compared with the influence of future climatic changes (-60% to +25%). The direction and magnitude of climate change effects on NPP were largely dependent on the degree of warming and water balance. Thus, the magnitude of future climate change can affect the feedback system between the atmosphere and biosphere.

  20. Abruption-associated prematurity

    PubMed Central

    Han, Christina S.; Schatz, Frederick; Lockwood, Charles J.

    2011-01-01

    SYNOPSIS Chronic, subacute decidual hemorrhage (i.e., abruptio placenta and retrochorionic hematoma formation) is an important contributor to preterm parturition. Such hemorrhage induces thrombin from decidual tissue factor, which play a pivotal role in the development of preterm premature rupture of membranes and preterm delivery by acting through protease-activated receptors to promote the production of pro-inflammatory cytokines, and matrix-degrading metalloproteinases. Severe, acute abruption can lead to maternal and fetal mortality. Current management of abruption is individualized based on severity of disease, underlying etiology, and gestational age. PMID:21890016

  1. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    NASA Astrophysics Data System (ADS)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  2. Response of the Arabian Sea to global warming and associated regional climate shift.

    PubMed

    Kumar, S Prasanna; Roshin, Raj P; Narvekar, Jayu; Kumar, P K Dinesh; Vivekanandan, E

    2009-12-01

    The response of the Arabian Sea to global warming is the disruption in the natural decadal cycle in the sea surface temperature (SST) after 1995, followed by a secular warming. The Arabian Sea is experiencing a regional climate-shift after 1995, which is accompanied by a five fold increase in the occurrence of "most intense cyclones". Signatures of this climate-shift are also perceptible over the adjacent landmass of India as: (1) progressively warmer winters, and (2) decreased decadal monsoon rainfall. The warmer winters are associated with a 16-fold decrease in the decadal wheat production after 1995, while the decreased decadal rainfall was accompanied by a decline of vegetation cover and increased occurrence of heat spells. We propose that in addition to the oceanic thermal inertia, the upwelling-driven cooling provided a mechanism that offset the CO(2)-driven SST increase in the Arabian Sea until 1995.

  3. Modelling climate change effects on benthos: Distributional shifts in the North Sea from 2001 to 2099

    NASA Astrophysics Data System (ADS)

    Weinert, Michael; Mathis, Moritz; Kröncke, Ingrid; Neumann, Hermann; Pohlmann, Thomas; Reiss, Henning

    2016-06-01

    In the marine realm, climate change can affect a variety of physico-chemical properties with wide-ranging biological effects, but the knowledge of how climate change affects benthic distributions is limited and mainly restricted to coastal environments. To project the response of benthic species of a shelf sea (North Sea) to the expected climate change, the distributions of 75 marine benthic species were modelled and the spatial changes in distribution were projected for 2099 based on modelled bottom temperature and salinity changes using the IPCC scenario A1B. Mean bottom temperature was projected to increase between 0.15 and 5.4 °C, while mean bottom salinity was projected to moderately increase by 1.7. The spatial changes in species distribution were modelled with Maxent and the direction and extent of these changes were assessed. The results showed a latitudinal northward shift for 64% of the species (maximum 109 km; brittle star Ophiothrix fragilis) and a southward shift for 36% (maximum 101 km; hermit crab Pagurus prideaux and the associated cloak anemone Adamsia carciniopados; 105 km). The relatively low rates of distributional shifts compared to fish or plankton species were probably influenced by the regional topography. The environmental gradients in the central North Sea along the 50 m depth contour might act as a 'barrier', possibly resulting in a compression of distribution range and hampering further shifts to the north. For 49 species this resulted in a habitat loss up to 100%, while only 11 species could benefit from the warming in terms of habitat gain. Particularly the benthic communities of the southern North Sea, where the strongest temperature increase was projected, would be strongly affected by the distributional changes, since key species showed northward shifts and high rates of habitat loss, with potential ramifications for the functioning of the ecosystem.

  4. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  5. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.

    PubMed

    Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K

    2014-08-22

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.

  6. Shorebird migration in the face of climate change: potential shifts in migration phenology and resource availability

    USGS Publications Warehouse

    Stutzman, Ryan J.; Fontaine, Joseph J

    2015-01-01

    Changes in temperature and seasonality resulting from climate change are heterogeneous, potentially altering important sources of natural selection acting on species phenology. Some species have apparently adapted to climate change but the ability of most species to adapt remains unknown. The life history strategies of migratory animals are dictated by seasonal factors, which makes these species particularly vulnerable to heterogeneous changes in climate and phenology. Here, we examine the phenology of migratory shorebirds, their habitats, and primary food resources, and we hypothesize how climate change may affect migrants through predicted changes in phenology. Daily abundance of shorebirds at stopover sites was correlated with local phenology and peaked immediately prior to peaks in invertebrate food resources. A close relationship between migrant and invertebrate phenology indicates that shorebirds may be vulnerable to changes in seasonality driven by climate change. It is possible that shifts in migrant and invertebrate phenology will be congruent in magnitude and direction, but because migration phenology is dependent on a suite of ecological factors, any response is likely to occur at a larger temporal scale and may lag behind the response of invertebrate food resources. The resulting lack of sufficient access to food at stopover habitats may cause migrants to extend migration and have cascading effects throughout their life cycle. If the heterogeneous nature of climate change results in uneven changes in phenology between migrants and their prey, it may threaten the long-term viability of migratory populations

  7. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans.

  8. Shifts in the ecological niche of Lutzomyia peruensis under climate change scenarios in Peru.

    PubMed

    Moo-Llanes, D A; Arque-Chunga, W; Carmona-Castro, O; Yañez-Arenas, C; Yañez-Trujillano, H H; Cheverría-Pacheco, L; Baak-Baak, C M; Cáceres, A G

    2017-02-02

    The Peruvian Andes presents a climate suitable for many species of sandfly that are known vectors of leishmaniasis or bartonellosis, including Lutzomyia peruensis (Diptera: Psychodidae), among others. In the present study, occurrences data for Lu. peruensis were compiled from several items in the scientific literature from Peru published between 1927 and 2015. Based on these data, ecological niche models were constructed to predict spatial distributions using three algorithms [Support vector machine (SVM), the Genetic Algorithm for Rule-set Prediction (GARP) and Maximum Entropy (MaxEnt)]. In addition, the environmental requirements of Lu. peruensis and three niche characteristics were modelled in the context of future climate change scenarios: (a) potential changes in niche breadth; (b) shifts in the direction and magnitude of niche centroids, and (c) shifts in elevation range. The model identified areas that included environments suitable for Lu. peruensis in most regions of Peru (45.77%) and an average altitude of 3289 m a.s.l. Under climate change scenarios, a decrease in the distribution areas of Lu. peruensis was observed for all representative concentration pathways. However, the centroid of the species' ecological niche showed a northwest direction in all climate change scenarios. The information generated in this study may help health authorities responsible for the supervision of strategies to control leishmaniasis to coordinate, plan and implement appropriate strategies for each area of risk, taking into account the geographic distribution and potential dispersal of Lu. peruensis.

  9. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    PubMed

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  10. Multi-directional Abundance Shifts Among North American Birds and the Relative Influence of Multi-Faceted Climate Factors.

    PubMed

    Huang, Qiongyu; Sauer, John R; Dubayah, Ralph O

    2017-03-12

    Shifts in species distributions are major fingerprint of climate change. Examining changes in species abundance structures at a continental scale enables robust evaluation of climate change influences, but few studies have conducted these evaluations due to limited data and methodological constraints. In this study, we estimate temporal changes in abundance from North American Breeding Bird Survey data at the scale of physiographic strata to examine the relative influence of different components of climatic factors and evaluate the hypothesis that shifting species distributions are multi-directional in resident bird species in North America. We quantify the direction and velocity of the abundance shifts of 57 permanent resident birds over 44 years using a centroid analysis. For species with significant abundance shifts in the centroid analysis, we conduct a more intensive correlative analysis to identify climate components most strongly associated with composite change of abundance within strata. Our hypotheses focus on two contrasts: the relative importance of climate extremes versus averages, and of temperature versus precipitation in strength of association with abundance change. Our study shows that 36 species had significant abundance shifts over the study period. The average velocity of the centroid is 5.89 km·yr(-1) .The shifted distance on average covers 259 km, 9% of range extent. Our results strongly suggest that the climate change fingerprint in studied avian distributions is multidirectional. Among 6 directions with significant abundance shifts, the northwestward shift was observed in the largest number of species (n=13). The temperature/average climate model consistently has greater predictive ability than the precipitation/extreme climate model in explaining strata-level abundance change. Our study shows heterogeneous avian responses to recent environmental changes. It highlights needs for more species-specific approaches to examine contributing

  11. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    PubMed

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.

  12. Ecosystem management mitigates climate change induced vegetation shifts in West Africa

    NASA Astrophysics Data System (ADS)

    Scheiter, S.; Savadogo, P.

    2013-12-01

    Savannas serve as benefit to livelihood for many people in the tropics and sub-tropics and welfare of people strongly depends on goods and services that savanna ecosystems provide, such as food production, livestock production, fuel wool, species richness and climate stabilization. Yet, the flow of these ecosystem services is strongly influenced by climate change and land use. Due to the large proportion of the Earth's land surface covered by savannas, changes in the dynamics and structure of savanna vegetation may not only influence the conditions for the local population, but may also have strong impacts on the climate system and global biogeochemical cycles. In this study, we use a dynamic vegetation model, the aDGVM, to explore how climate and land use interact to influence vegetation dynamics and the distribution of west African savannas under ambient and future environmental conditions. More specifically, we investigate fire management, wood cutting and grazing, land use activities often applied in savannas. We show that under future conditions and in the absence of land use, large savanna areas could shift towards a more wood dominated vegetation state due to CO2 fertilization effects, increases in water use efficiency and decreases in fire activity. However, land use has the potential to maintain desired vegetation states that ensure the flux of important ecosystem services even under future conditions. The model projects that ecosystem management can compensate climate change impacts on vegetation and delay or avoid critical biome shifts. This study highlights the impacts of land use and management on vegetation dynamics and the future distribution of savannas and the necessity to include land use into assessments of the future vegetation state.

  13. The Uncontrolled Economic Engine of the Developing Economies, Speeding up the Climate Shift

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Khan, M. A.

    2014-12-01

    As we progress into the 21st century, the world faces challenges of truly global nature bearing implications on the whole world in one way or another. The global economic engine has shifted from the western world (Developed Economies) to the eastern world (Developing Economies) which has brought about tremendous change in the climate related variables in this part of the world. As uncontrolled carbon emissions grow in the developing economies, the phenomenon of global warming and climate shifts become more and more prevalent. While this economic activity provides income for millions of households, it is contributing generously to the rapid degradation of the environment. Developing economies as it has been seen do not employ or abide by stringent regulations regarding emissions which result in uncontrolled emissions. In this particular scenario, it is a tedious task to convince governments in the developing economies to implement regulations regarding emissions because businesses in these economies deem such regulations to be economically unviable. The other side of the problem is that these uncontrolled emission are causing evident climate shifts which has had adverse impacts on the agricultural societies where shifting climates are leading to reduced agricultural output and productivity. Consequently the lives of millions associated directly or indirectly with agriculture are affected and on a more global level, the agricultural produce is decreasing which increases the chances of famine in parts of the world. The situation could have devastating impacts on the global economy and environmental standards and therefore needs to be addressed on emergency basis. The first step towards betterment could be the introduction of the carbon trading economy in the developing economies which would incentivize emission reduction and become more attractive and in the process sustaining minimum possible damage to the environment. Though carbon trading is a formidable first step

  14. Range and niche shifts in response to past climate change in the desert horned lizard (Phrynosoma platyrhinos).

    PubMed

    Jezkova, Tereza; Jaeger, Jef R; Oláh-Hemmings, Viktória; Jones, K Bruce; Lara-Resendiz, Rafael A; Mulcahy, Daniel G; Riddle, Brett R

    2016-05-01

    During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions - niches - to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard (Phrynosoma platyrhinos), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.

  15. Competition and facilitation may lead to asymmetric range shift dynamics with climate change.

    PubMed

    Ettinger, Ailene; HilleRisLambers, Janneke

    2017-02-04

    Forecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population-level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline.

  16. A multi-model analysis of risk of ecosystem shifts under climate change

    NASA Astrophysics Data System (ADS)

    Warszawski, Lila; Friend, Andrew; Ostberg, Sebastian; Frieler, Katja; Lucht, Wolfgang; Schaphoff, Sibyll; Beerling, David; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Kahana, Ron; Ito, Akihiko; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Nishina, Kazuya; Pavlick, Ryan; Tito Rademacher, Tim; Buechner, Matthias; Piontek, Franziska; Schewe, Jacob; Serdeczny, Olivia; Schellnhuber, Hans Joachim

    2013-12-01

    Climate change may pose a high risk of change to Earth’s ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5-19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980-2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest.

  17. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change.

  18. Macrophysical climate models and Holocene hunter-gatherer subsistence shifts in Central Texas, USA

    NASA Astrophysics Data System (ADS)

    Mauldin, R. P.; Munoz, C.

    2013-12-01

    We use stable carbon isotopic values from bone collagen, as well as carbon values from carbonate extracted from bone apatite from 69 prehistoric human skeletal samples to investigate past resource use and climate relationships over the Middle and Late Holocene in Central Texas. Bone samples come from seven archaeological sites and samples date from 6,900 BP to the close of the prehistoric sequence at about 350 BP. Carbon isotopes from these samples suggest four broad dietary trends. From 6,900 through about 3,800 BP, carbon isotopes suggest a gradual increase in the consumption of resources that ultimately use a C3 photosynthetic pathway. A decline in δ13C in both collagen and carbonate values follows, suggesting a decrease in C3 resource use through roughly 2,900 BP. A variable, but once again increasing pattern on C3 resource use by prehistoric hunter-gatherers is indicated in bone isotopes through about 1,000 BP. After that date, a decrease in C3 resource dependence, with hints at greater subsistence diversity, is suggested through the close of the sequence at 350 BP. To assess the impact of climate shifts on this isotopic pattern, we developed a series of macrophysical climate models (MCM) for several locations in Central Texas focusing on fall, winter, and early spring precipitation. This fall-spring rainfall should closely determine C3 production. If subsistence shifts are responding to climate-induced changes in resource availability, then the measured hunter-gatherer carbon isotope trends summarized above should pattern with C3 production as monitored by the modeled fall-spring precipitation values. For the Middle Holocene portion of the sequence, the precipitation models suggest increasing C3 production, consistent with increasing C3 dependence shown in the isotopic data. A decline in C3 production between 3,900 and 3,000 BP in the models is also consistent with the isotopic decline at that point. After 3,000 BP, however, the coupling between fall

  19. Prolonged instability prior to a regime shift.

    PubMed

    Spanbauer, Trisha L; Allen, Craig R; Angeler, David G; Eason, Tarsha; Fritz, Sherilyn C; Garmestani, Ahjond S; Nash, Kirsty L; Stone, Jeffery R

    2014-01-01

    Regime shifts are generally defined as the point of 'abrupt' change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.

  20. Which way will the circulation shift in a changing climate? Possible nonlinearity of extratropical cloud feedbacks

    NASA Astrophysics Data System (ADS)

    Tandon, Neil F.; Cane, Mark A.

    2016-08-01

    In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO2 increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO2 produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO2 increases smaller than ~25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO2 forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO2 forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO2 doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO2 increases by more than ~25 %. But on shorter timescales, our results give good reason to expect significant

  1. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift.

    PubMed

    North, Ryan P; North, Rebecca L; Livingstone, David M; Köster, Oliver; Kipfer, Rolf

    2014-03-01

    The (Lower) Lake of Zurich provides an ideal system for studying the long-term impact of environmental change on deep-water hypoxia because of its sensitivity to climatic forcing, its history of eutrophication and subsequent oligotrophication, and the quality and length of its data set. Based on 39 years (1972-2010) of measured profiles of temperature, oxygen concentration and phosphorus (P) concentration, the potentially confounding effects of oligotrophication and climatic forcing on the occurrence and extent of deep-water hypoxia in the lake were investigated. The time-series of Nürnberg's hypoxic factor (HF) for the lake can be divided into three distinct segments: (i) a segment of consistently low HF from 1972 to the late-1980s climate regime shift (CRS); (ii) a transitional segment between the late-1980s CRS and approximately 2000 within which the HF was highly variable; and (iii) a segment of consistently high HF thereafter. The increase in hypoxia during the study period was not a consequence of a change in trophic status, as the lake underwent oligotrophication as a result of reduced external P loading during this time. Instead, wavelet analysis suggests that changes in the lake's mixing regime, initiated by the late-1980s CRS, ultimately led to a delayed but abrupt decrease in the deep-water oxygen concentration, resulting in a general expansion of the hypoxic zone in autumn. Even after detrending to remove long-term effects, the concentration of soluble reactive P in the bottom water of the lake was highly correlated with various measures of hypoxia, providing quantitative evidence supporting the probable effect of hypoxia on internal P loading. Such climate-induced, ecosystem-scale changes, which may result in undesirable effects such as a decline in water quality and a reduction in coldwater fish habitats, provide further evidence for the vulnerability of large temperate lakes to predicted increases in global air temperature.

  2. Contemporary perspectives on the niche that can improve models of species range shifts under climate change.

    PubMed

    Morin, Xavier; Lechowicz, Martin J

    2008-10-23

    Pioneering efforts to predict shifts in species distribution under climate change used simple models based on the correlation between contemporary environmental factors and distributions. These models make predictions at coarse spatial scales and assume the constancy of present correlations between environment and distribution. Adaptive management of climate change impacts requires models that can make more robust predictions at finer spatio-temporal scales by accounting for processes that actually affect species distribution on heterogeneous landscapes. Mechanistic models of the distribution of both species and vegetation types have begun to emerge to meet these needs. We review these developments and highlight how recent advances in our understanding of relationships among the niche concept, species diversity and community assembly point the way towards more effective models for the impacts of global change on species distribution and community diversity.

  3. Northward shifts of the distributions of Spanish reptiles in association with climate change.

    PubMed

    Moreno-Rueda, Gregorio; Pleguezuelos, Juan M; Pizarro, Manuel; Montori, Albert

    2012-04-01

    It is predicted that climate change will drive extinctions of some reptiles and that the number of these extinctions will depend on whether reptiles are able to change their distribution. Whether the latitudinal distribution of reptiles may change in response to increases in temperature is unknown. We used data on reptile distributions collected during the 20th century to analyze whether changes in the distributions of reptiles in Spain are associated with increases in temperature. We controlled for biases in sampling effort and found a mean, statistically significant, northward shift of the northern extent of reptile distributions of about 15.2 km from 1940-1975 to 1991-2005. The southern extent of the distributions did not change significantly. Thus, our results suggest that the latitudinal distributions of reptiles may be changing in response to climate change.

  4. Eluding catastrophic shifts.

    PubMed

    Villa Martín, Paula; Bonachela, Juan A; Levin, Simon A; Muñoz, Miguel A

    2015-04-14

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences.

  5. Eluding catastrophic shifts

    PubMed Central

    Villa Martín, Paula; Bonachela, Juan A.; Levin, Simon A.; Muñoz, Miguel A.

    2015-01-01

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences. PMID:25825772

  6. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.

    PubMed

    Elsgaard, L; Børgesen, C D; Olesen, J E; Siebert, S; Ewert, F; Peltonen-Sainio, P; Rötter, R P; Skjelvåg, A O

    2012-01-01

    Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.

  7. A Holocene record of climate-driven shifts in coastal carbon sequestration

    USGS Publications Warehouse

    Mitra, Siddhartha; Zimmerman, A.R.; Hunsinger, G.B.; Willard, D.; Dunn, J.C.

    2009-01-01

    A sediment core collected in the mesohaline portion of Chesapeake Bay was found to contain periods of increased delivery of refractory black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs). The BC was most likely produced by biomass combustion during four centennialscale dry periods as indicated by the Palmer Drought Severity Index (PDSI), beginning in the late Medieval Warm Period of 1100 CE. In contrast, wetter periods were associated with increased non-BC organic matter influx into the bay, likely due to greater runoff and associated nutrient delivery. In addition, an overall increase in both BC and non-BC organic matter deposition during the past millennium may reflect a shift in climate regime. The finding that carbon sequestration in the coastal zone responds to climate fluctuations at both centennial and millennial scales through fire occurrence and nutrient delivery has implications for past and future climate predictions. Drought-induced fires may lead, on longer timescales, to greater carbon sequestration and, therefore, represent a negative climate feedback. Copyright 2009 by the American Geophysical Union.

  8. Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate.

    PubMed

    Jenouvrier, Stéphanie; Weimerskirch, Henri; Barbraud, Christophe; Park, Young-Hyang; Cazelles, Bernard

    2005-05-07

    Ecosystems and populations are known to be influenced not only by long-term climatic trends, but also by other short-term climatic modes, such as interannual and decadal-scale variabilities. Because interactions between climatic forcing, biotic and abiotic components of ecosystems are subtle and complex, analysis of long-term series of both biological and physical factors is essential to understanding these interactions. Here, we apply a wavelet analysis simultaneously to long-term datasets on the environment and on the populations and breeding success of three Antarctic seabirds (southern fulmar, snow petrel, emperor penguin) breeding in Terre Adélie, to study the effects of climate fluctuations on Antarctic marine ecosystems. We show that over the past 40 years, populations and demographic parameters of the three species fluctuate with a periodicity of 3-5 years that was also detected in sea-ice extent and the Southern Oscillation Index. Although the major periodicity of these interannual fluctuations is not common to different species and environmental variables, their cyclic characteristics reveal a significant change since 1980. Moreover, sliding-correlation analysis highlighted the relationships between environmental variables and the demography of the three species, with important change of correlation occurring between the end of the 1970s and the beginning of the 1980s. These results suggest that a regime shift has probably occurred during this period, significantly affecting the Antarctic ecosystem, but with contrasted effects on the three species.

  9. Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate

    PubMed Central

    Jenouvrier, Stéphanie; Weimerskirch, Henri; Barbraud, Christophe; Park, Young-Hyang; Cazelles, Bernard

    2005-01-01

    Ecosystems and populations are known to be influenced not only by long-term climatic trends, but also by other short-term climatic modes, such as interannual and decadal-scale variabilities. Because interactions between climatic forcing, biotic and abiotic components of ecosystems are subtle and complex, analysis of long-term series of both biological and physical factors is essential to understanding these interactions. Here, we apply a wavelet analysis simultaneously to long-term datasets on the environment and on the populations and breeding success of three Antarctic seabirds (southern fulmar, snow petrel, emperor penguin) breeding in Terre Adélie, to study the effects of climate fluctuations on Antarctic marine ecosystems. We show that over the past 40 years, populations and demographic parameters of the three species fluctuate with a periodicity of 3–5 years that was also detected in sea-ice extent and the Southern Oscillation Index. Although the major periodicity of these interannual fluctuations is not common to different species and environmental variables, their cyclic characteristics reveal a significant change since 1980. Moreover, sliding-correlation analysis highlighted the relationships between environmental variables and the demography of the three species, with important change of correlation occurring between the end of the 1970s and the beginning of the 1980s. These results suggest that a regime shift has probably occurred during this period, significantly affecting the Antarctic ecosystem, but with contrasted effects on the three species. PMID:16024342

  10. Climate and health impacts of the shift from traditional solid cookstove fuels to modern energy sources

    NASA Astrophysics Data System (ADS)

    Lacey, F.; Henze, D. K.; Martin, R.; Lee, C. J.; van Donkelaar, A.; Reed, L.

    2015-12-01

    Globally, 2.8 million people use solid fuels for meal preparation. As regions in which solid fuel cooking is prevalent become more industrialized, this number will decrease leading to commensurate changes in greenhouse gas, aerosol and aerosol precursor emissions from the residential sector. Here we explore the impacts of this shift from traditional solid fuel use to equivalent energy sources from modern power generation on climate change and exposure to ambient air pollution. We use sensitivities calculated with the GEOS-Chem adjoint model, which allows us to estimate the climate and health impacts due to changes in atmospheric composition from grid-scale shifts in energy usage. Various scenarios for alternative energy generation sources are considered. Climate impacts are reported as changes in global averaged surface temperature through the use of absolute regional temperature potentials and health impacts are reported as changes in premature deaths calculated using changes in population-weighted PM2.5 concentrations combined with integrated exposure response functions. Global model PM2.5 surface concentrations are downscaled to improve exposure estimates through application of remotely sensed aerosol optical depth measurements. Our assessment of the impacts of fuel switching allows for estimates of upper and lower bounds, for both climate and health impacts, at the global and national scale. Baseline calculations using these methods estimate impacts of approximately 0.22 K warming and 217,000 premature deaths caused by changes in ambient air quality due to present day cookstove emissions which represents the base case for these comparisons. Overall, the results of this study provide important information to both individual country's governments and non-governmental organizations that are targeting energy infrastructure improvements.

  11. Early Stages Of Biome Shift in Boreal Alaska: Climate Sensitivity of Tree Growth and Accelerated Tree Mortality

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Grant, T.; Alix, C. M.; Spencer, D. L.; Beck, P. S.

    2012-12-01

    The boreal forest region of Alaska is characterized by a major east-west climate gradient, in addition to a widely appreciated north-south gradient. Low elevations of the eastern and central Interior experience warm summer temperatures and low annual precipitation, while coastal western Alaska has cool summer temperatures and greater precipitation. In the Interior the four dominant tree species of white and black spruce, aspen, and Alaska birch on low elevation sites nearly all register a strong negative radial growth relationship to summer temperatures, concentrated in May and July. Precipitation, particularly in late winter and midsummer, plays a supplemental role as a positive factor in growth. Floodplain white spruce along the Yukon and Kuskokwim Rivers transition from negative temperature response to positive response in western Alaska near the tree limit. Populations of white spruce on treeline sites display both negative growth response to July temperature and positive response to spring temperatures, with the negative response dominant in the east and the positive response dominant in the west. Across boreal Alaska summer temperatures increased abruptly in 1974, and have remained at historically high levels since. Correspondingly, climatic favorability for radial growth of Interior trees on most low elevation sites has been at extreme low levels particularly in the 21st century. Satellite-based NDVI coverage confirms that forest growth reduction is widespread in boreal Alaska since the 1980s. Defoliating and wood boring insects have reached outbreak population levels across most of boreal Alaska, partly from release of direct temperature control on the insects and partly from increased tree host susceptibility. Major outbreak species include aspen leaf miner, spruce engraver beetle, and spruce budworm. About a dozen tall willow species have been subjected to widespread attack by willow leaf blotch miner, and a new disease and defoliating insect have spread

  12. Understanding Abrupt, Natural Climate Variability Post-Industrial Revolution from the Subtropical Eastern Pacific: A Novel High Resolution Alkenone-derived Sea Surface Temperature Record

    NASA Astrophysics Data System (ADS)

    Kelly, C. S.; O'Mara, N. A.; Herbert, T.; Abella-Gutiérrez, J. L.; Herguera, J. C.

    2015-12-01

    Despite the ocean's importance in global biogeochemical feedbacks and heat storage, there is still a paucity of decadally-resolved sea surface temperature (SST) records to complement lacustrine and dendrological records of recent paleoclimate. Natural climate variability on multidecadal timescales is dominated by internal ocean circulation dynamics and feedbacks, and it is therefore imperative to employ marine proxies to reconstruct high resolution climate change. The timescales of this ocean-induced natural climate variability can be broken down into a few characteristic climate modes. Pressing questions about these modes include their stationarity in frequency and amplitude over time, in addition to the hypothesis that anthropogenic climate change has altered their behavior in comparison to natural variability. To pursue these questions, we must discern and analyze suitable climate archives in regions where modes of interest dominate modern climate variability. The region of Baja California, Mexico exhibits exceptional teleconnection to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Local, dramatic effects of ENSO and PDO on the marine biology and economy underline the importance of regional paleoclimate records from the Baja peninsula. Here, we present a high-resolution alkenone-derived SST reconstruction from the Industrial Revolution through the year 2000 by analysis of laminated box and Kasten sediment cores at Site PCM 00-78 (25.18°N, 112.66°W) in the subtropical eastern Pacific at a depth of 540 meters. Our SST record corresponds with NOAA extended reconstructed sea surface temperature, providing a robust basis for organic geochemical marine climatic reconstructions on timescales usually accessible only through speleothems, coral density bands, tree rings, and the like. Accordingly, based on this comparison to the historical data we expect our SST record may provide a more robust record of inter and multidecadal

  13. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China

    PubMed Central

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-01-01

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21st century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change. PMID:26867481

  14. The Impact of North-South Shifts in the Sahel on North Atlantic Climate

    NASA Astrophysics Data System (ADS)

    Murphy, L.; Clement, A. C.; Mahowald, N. M.; Albani, S.; Swart, P. K.; Arienzo, M. M.

    2013-12-01

    Cool periods in the North Atlantic have been linked to hydrological changes over the Sahel region. It has been postulated that the Sahara-Sahel border shifted southwards during the last Heinrich event, which resulted in the semi-arid Sahel becoming more arid. This would drive changes in dust emission rates over North Africa. In fact proxy data indicates North Africa was dustier during the last Heinrich event than during the LGM. Recent analysis of CMIP5 models suggests the Western Sahel may become drier later this century. This may be analogous to past changes that have occurred in this region. Here we examine the implications of a southward shift in the Sahara-Sahel border in the Community Earth System Model version 1 (CESM1). Imposed changes in soil erodibility over the Sahel region results in greater dust emission rates and transport across the tropical Atlantic. Greater dust loading cools local sea surface temperatures and may have implications on the Atlantic Meridional Overturning Circulation. Our idealized runs can be used to understand how changes in dust forced climate change during the past as well as how potential future hydrological changes over the western Sahel can impact Atlantic climate.

  15. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China.

    PubMed

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-02-12

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.

  16. Cross-scale assessment of potential habitat shifts in a rapidly changing climate

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Bella, Elizabeth S.; Carlson, Matthew L.; Graziano, Gino; Lamb, Melinda; Seefeldt, Steven S.; Morisette, Jeffrey T.

    2014-01-01

    We assessed the ability of climatic, environmental, and anthropogenic variables to predict areas of high-risk for plant invasion and consider the relative importance and contribution of these predictor variables by considering two spatial scales in a region of rapidly changing climate. We created predictive distribution models, using Maxent, for three highly invasive plant species (Canada thistle, white sweetclover, and reed canarygrass) in Alaska at both a regional scale and a local scale. Regional scale models encompassed southern coastal Alaska and were developed from topographic and climatic data at a 2 km (1.2 mi) spatial resolution. Models were applied to future climate (2030). Local scale models were spatially nested within the regional area; these models incorporated physiographic and anthropogenic variables at a 30 m (98.4 ft) resolution. Regional and local models performed well (AUC values > 0.7), with the exception of one species at each spatial scale. Regional models predict an increase in area of suitable habitat for all species by 2030 with a general shift to higher elevation areas; however, the distribution of each species was driven by different climate and topographical variables. In contrast local models indicate that distance to right-of-ways and elevation are associated with habitat suitability for all three species at this spatial level. Combining results from regional models, capturing long-term distribution, and local models, capturing near-term establishment and distribution, offers a new and effective tool for highlighting at-risk areas and provides insight on how variables acting at different scales contribute to suitability predictions. The combinations also provides easy comparison, highlighting agreement between the two scales, where long-term distribution factors predict suitability while near-term do not and vice versa.

  17. Disparity in elevational shifts of European trees in response to recent climate warming.

    PubMed

    Rabasa, Sonia G; Granda, Elena; Benavides, Raquel; Kunstler, Georges; Espelta, Josep M; Ogaya, Romá; Peñuelas, Josep; Scherer-Lorenzen, Michael; Gil, Wojciech; Grodzki, Wojciech; Ambrozy, Slawomir; Bergh, Johan; Hódar, José A; Zamora, Regino; Valladares, Fernando

    2013-08-01

    Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography.

  18. Heat waves connect abrupt polar climate changes during the past 67ka: evidence from sediment core GeoB3912-1

    NASA Astrophysics Data System (ADS)

    Yang, X.; Rial, J. A.

    2014-12-01

    According to the hypothesis of polar synchronization, climate variations of Earth's poles are connected with a persistent phase lock of π/2 throughout the last glacial period. However, it is not clear yet how the Earth's two poles communicate with each other, the Thermohaline circulation (THC) being a possible candidate for signal carrier. Here we present a possible way of climate variation propagation through the Atlantic Ocean - likely in the form of heat or thermal wave (Cattaneo's solution) - based on lagged correlation between an organic carbon climate proxy record from the tropical Atlantic and the south-north polar temperature gradient. We further demonstrate that the speed of such propagation is frequency dependent, of which the wave of the longest period travels the fastest at the speed of ~32 km/year consistent with the estimated speed of the THC. The observed speed - frequency relationship can be successfully modeled as resulting from a propagating dispersive thermal wave initiated by the polar temperature gradient maximum. We show that such heat wave propagation is a potential mechanism to couple and synchronize the polar climates during the last glacial period and to force the occurrence of Heinrich events. To summarize, the polar temperature gradient anomalies are consequence of the π/2 phase lock between the polar climates, which is caused by polar synchronization maintained by the coupling, which is, as the data suggest, in the form of thermal waves. The spikes in organic carbon and the Fe/Ca ratio records in the core GeoB3912-1 can be thought of as snapshots of the passage of strong meteorological wavefronts through the equatorial region. The results strongly suggest that each peak in the organic carbon recorded a half-hemisphere-delayed passage of a wave-like disturbance through the equator carrying the south-north temperature gradient maxima. And each of these occurs within timing error of the Heinrich events H0-H6.

  19. Effects of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation

    NASA Astrophysics Data System (ADS)

    Sa, T. D.; Guild, L. S.; Carvalho, C. J.; Potter, C. S.; Wickel, A. J.; Brienza, S.; Kato, M. A.; Kato, O.

    2002-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Ni¤o events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through 1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and 2) greater rooting depth of trees planted for fallow improvement. This experimental practice (mechanized chop-and-mulch with fallow improvement) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira

  20. Version 5 of Forecasts; Forecasts of Climate-Associated Shifts in Tree Species

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Kumar, J.; Potter, K. M.; Hoffman, F. M.

    2014-12-01

    Version 5 of the ForeCASTS tree range shift atlas (www.geobabble.org/~hnw/global/treeranges5/climate_change/atlas.html) now predicts global shifts in the suitable ranges of 335 tree species (essentially all woody species measured in Forest Inventory Analysis (FIA)) under forecasts from the Parallel Climate Model, and the Hadley Model, each under future climatic scenarios A1 and B1, each at two future dates (2050 and 2100). Version 5 includes more Global Biodiversity Information Facility (GBIF) occurrence points, uses improved heuristics for occurrence training, and recovers occurrence points that fall in water. A multivariate clustering procedure was used to quantitatively delineate 30 thousand environmentally homogeneous ecoregions across present and 8 potential future global locations at once, using global maps of 17 environmental characteristics describing temperature, precipitation, soils, topography and solar insolation. Occurrence of each tree species on FIA plots and in GBIF samples was used to identify a subset of suitable ecoregions from the full set of 30 thousand. This subset of suitable ecoregions was compared to the known current present range of the tree species. Predicted present ranges correspond well with existing ranges for all but a few of the 335 tree species. The subset of suitable ecoregions can then be tracked into the future to determine whether the suitable home range remains the same, moves, grows, shrinks, or disappears under each model/scenario combination. A quantitative niche breadth analysis allows sorting of the 17 environmental variables from the narrowest, most important, to the broadest, least restrictive environmental factors limiting each tree species. Potential tree richness maps were produced, along with a quantitative potential tree endemism map for present and future CONUS. Using a new empirical imputation method which associates sparse measurements of dependent variables with particular clustered combinations of the

  1. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts

    NASA Astrophysics Data System (ADS)

    Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.

    2015-09-01

    , but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.

  2. Northern Peatland Shifts Under Changing Climate and Their Impact on Permafrost

    NASA Astrophysics Data System (ADS)

    Shur, Y.; Jorgenson, T.; Kanevskiy, M. Z.

    2014-12-01

    Formation of peatlands depends primarily on climate and its interactions with hydrology, soil thermal regimes, plant composition, and nutrients. A water balance with precipitation exceeding evaporation is necessary for their formation. The rate of peat accumulation also greatly depends on thermal resources. The prominent impact of the water balance and temperature on peatland formation is evident in the West Siberia Lowland. The rate of peat accumulation steadily increases from arctic tundra to moss tundra, to forest tundra, to northern taiga, and to southern taiga. This increase is a result in increase in air temperature and length of the growing season because all of these zones have water balance favorable for peat formation. Further to south, evaporation prevails over precipitation and peat formation occurs only in isolated areas. Climate change will redefine geographical distribution of climatic and vegetation zones. It is predicted that in arctic and subarctic regions the difference between precipitation and evaporation will increase and as a result these regions will remain favorable to peat accumulation. With increase of thermal resources, the rate of peat accumulation will also increase. The Alaska Arctic Coastal Plain is of a special interest because it has thousands of shallow lakes, which due to warming climate would shift from open waterbodies to peatlands through shoreline paludification and infilling. The accumulation of organic matter will likely turn open water into shore fens and bogs, and eventually to peat plateaus, as is occurring in many boreal landscapes. Expected impact on permafrost in arctic and subarctic regions will include rise of the permafrost table, thickening of the ice-rich intermediate layer with ataxitic (suspended) cryostructure, and replacement of frost boils with earth hummocks. In the contemporary continuous permafrost zone, permafrost formed as climate-driven will be transformed into climate-driven ecosystem protected

  3. Mountain Climates on the Move: Implications for Past and Future Vegetation Shifts in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Wason, J. W., III; Dovciak, M.; Bevilacqua, E.

    2015-12-01

    Climate change in the northeastern United States is expected to shift climatic (temperature) envelopes for spruce-fir forests upslope and northward decreasing their area in the region by 2100. Coarse scale landscape models however, may not incorporate heterogeneity in climatic conditions in mountains that can create climatic refugia for species in high-elevation spruce-fir forests. To determine spatial and temporal trends in climate of mountain spruce-fir forests we measured microclimate at 98 forest plots in 2012 and 2013 on 12 mountains in New York, Vermont, New Hampshire, and Maine. By linking regional climate trends with our spatial climate data we calculated elevational shifts in temperature envelopes during the last 50 years. Additionally we linked our spatial dataset to a range of future climate conditions for 2100 based on Representative Concentration Pathways (1 to 5°C warming). We hypothesized that climates have already changed to an extent that spruce-fir forests should begin to respond and that future climate conditions may shift suitable habitat for spruce-fir forests beyond their current range. We found that regional climate change over the last 50 years has resulted in warming of 0.66 and 1.62°C for average annual daily maximum (Tmax) and minimum (Tmin) temperatures in the region. When linked to our spatial microclimate model, this warming results in a 100 (Tmax) and 312m (Tmin) upslope shift in temperature envelopes. Future climate projections suggest that by 2100 Tmax may shift upslope between 152 and 758m for the 1 and 5°C scenarios respectively, while Tmin may shift upslope between 192 and 962m. Spruce-fir forests typically occupy an elevation range of ~500m suggesting that the climate experienced in these forests 50 years ago may not be found within their elevation range by 2100. These results are discussed in the context of responses of tree populations and growth rates observed along the elevation gradients of northeastern United States.

  4. Multiple abrupt climate changes in the western hemisphere during the past 50,000 years, and their implications concerning the response of vegetation to changing atmospheric chemistry

    SciTech Connect

    Jacobson, G.L. Jr.; Grimm, E.C.

    1995-06-01

    Independent evidence spanning the last 50,000 years from ice cores, ocean sediments, and detailed glacial-geologic investigations implies multiple. large warm/cool oscillations with a frequency of ca. 3000 years through much of the Western Hemisphere. Paleoecological studies at sites in North America and the west coast of South America reveal major, synchronous changes in vegetation corresponding to many of these high-frequency changes in climate. Sequences on both sides of the equator culminate in substantial warming at 14 ka BP and a brief cooling at ca. 11 ka BP just prior to the final onset of Holocene warming. The high-frequency climate oscillations are not explained by {open_quotes}Milankovitch{close_quotes} cycles in solar insolation or by changes in thermohaline ocean circulation. Rather, these changes in climate and the attendant synchronous, broad-scale responses of vegetation indicate a global atmospheric forcing. However, that forcing is apparently also distinct from changing concentrations of atmospheric CO2 (as represented in the Vostok ice-core data). High-resolution CO2 data, such as that from the new Greenland ice cores, will be required before critical assessments of plant-physiological responses to past atmospheric changes can be carried out.

  5. A stratigraphic framework for naming and robust correlation of abrupt climatic changes during the last glacial period based on three synchronized Greenland ice core records

    NASA Astrophysics Data System (ADS)

    Rasmussen, Sune O.

    2014-05-01

    Due to their outstanding resolution and well-constrained chronologies, Greenland ice core records have long been used as a master record of past climatic changes during the last interglacial-glacial cycle in the North Atlantic region. As part of the INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. This is based on a combination of isotope ratios (δ18O, reflecting mainly local temperature) and calcium concentrations (reflecting mainly atmospheric dust loading). In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. This is a key step aimed at promoting unambiguous comparison and correlation between different proxy records, as well as a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is under review for publication in Quaternary Science Reviews. Author team: S

  6. Mechanisms Controlling Species Responses to Climate Change: Thermal Tolerances and Shifting Range Limits. (Invited)

    NASA Astrophysics Data System (ADS)

    Sage, R. F.; Bykova, O.; Coiner, H.

    2010-12-01

    One of the main effects of anthropogenic climate change will be widespread shifts in species distribution, with the common assumption that they will migrate to higher elevation and latitude. While this assumption is supported by migration patterns following climate warming in the past 20,000 years, it has not been rigorously evaluated in terms of physiological mechanism, despite the implication that migration in response to climate warming is controlled by some form of thermal adaptation. We have been evaluating the degree to which species range limits are controlled by physiological patterns of thermal tolerance in bioinvaders of North America. Bioinvaders presumably have few biotic controls over their distribution and thus are more likely to fully exploit their thermal niche. In cheatgrass (Bromus tectorum), the minimum lethal temperature in winter is -32C, which corresponds to the mean winter minimum temperature at its northern range limit. In red brome (Bromus rubens), the minimum lethal temperature is also near -32C, which is well below the minimum winter temperature near -20C that corresponds to its northern distribution limit. In kudzu (Pueraria lobata), the minimum lethal temperature is near -20C, which corresponds to the midwinter minimum at its northern distribution limit; however, overwintering kudzu tissues are insulated by soil and snow cover, and thus do not experience lethal temperatures at kudzu's northern range limit. These results demonstrate that some invasive species can exploit the potential range defined by their low temperature tolerance and thus can be predicted by mechanistic models to migrate to higher latitudes with moderation of winter cold. The distribution of other invaders such as kudzu and red brome are not controlled by tolerance of midwinter cold. Developing mechanistic models of their distributions, and how these might change with climate warming, will require extensive physiological study.

  7. The potential macroalgae habitat shifts in an Antarctic Peninsula fjord due to climate change

    NASA Astrophysics Data System (ADS)

    Jerosch, Kerstin; Scharf, Frauke; Deregibus, Dolores; Campana, Gabriela; Zacher, Katharina; Hass, Christian; Quartino, Liliana; Abele, Doris

    2016-04-01

    The Western Antarctic Peninsula (WAP) region is one of the most rapidly warming on earth since the last 50 yr. The WAP glaciers currently contribute one third of the melt water to global sea level rise. Climate warming is supposed to induce important changes in polar ecosystems, from microbial communities to apex predators' levels. Macroalgae are the main biomass producers in Potter Cove located at King George Island, the biggest island of the South Shetland Arc. They are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package 'biomod2' which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model (EM) used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The modeled current status of macroalgae distribution results in only 18.25% of earlier estimated areas populated by macroalgae in Potter Cove. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.

  8. Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms.

    PubMed

    Isaak, Daniel J; Rieman, Bruce E

    2013-03-01

    Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments are difficult because model predictions are either untestable or so imprecise that definitive answers may not be obtained within timespans relevant for effective conservation. Here, we develop the equations for calculating isotherm shift rates (ISRs) in streams that can be used to represent historic or future warming scenarios and be calibrated to individual streams using local measurements of stream temperature and slope. A set of reference equations and formulas are provided for application to most streams. Example calculations for streams with lapse rates of 0.8 °C/100 m and long-term warming rates of 0.1-0.2 °C decade(-1) indicate that isotherms shift upstream at 0.13-1.3 km decade(-1) in steep streams (2-10% slope) and 1.3-25 km decade(-1) in flat streams (0.1-1% slope). Used more generally with global scenarios, the equations predict isotherms shifted 1.5-43 km in many streams during the 20th Century as air temperatures increased by 0.6 °C and would shift another 5-143 km in the first half of the 21st Century if midrange projections of a 2 °C air temperature increase occur. Variability analysis suggests that short-term variation associated with interannual stream temperature changes will mask long-term isotherm shifts for several decades in most locations, so extended biological monitoring efforts are required to document anticipated distribution shifts. Resampling of historical sites could yield estimates of biological responses in the short term and should be prioritized to validate bioclimatic models and develop a better understanding about the effects of temperature increases

  9. Climate Extremes Triggered State Shifting of US Great Plains Prairie under Experimental Warming

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Xu, X.; Sherry, R.; Niu, S.; Li, D.; Xia, J.

    2012-04-01

    Ecosystems can exist under multiple stable states. Transition from one stable state to another is usually triggered by perturbations such as climate extremes, which should be large enough to push the ecosystem over a threshold. Ecosystem state changes can alter ecosystem functions and services as dramatically as in Sahara with vegetation changes from tropical forests to grassland and deserts over 6000 years. Thus it is crucial to understand mechanisms underlying ecosystem state changes. State changes of ecosystem vegetation have been well documented in paleo-records and predicted to occur under climate change by dynamic global vegetation models. Paleo-records usually offer broad-scale patterns of ecosystem state changes over time and rarely offer much insight into fundamental mechanisms underlying the state changes. Model predictions may be calibrated against contemporary and paleo vegetation distributions but have not been carefully tested against experimental evidence. The latter, however, is extremely rare largely because global chance experiments are mostly short term. We have observed state shifting of a US Great Plains prairie under long-term experimental warming and clipping treatments. Our analysis of 11-year data from the experiment showed two-stage stimulations of aboveground net primary production (ANPP) with small increases in the first 7 followed by distinctly large increases under experimental warming in comparison with those under control. The two-stage ANPP simulations were corresponded with species reordering with the plant community over time but not related to warming-induced changes in temperature, soil moisture and nitrogen dynamics in the grassland. The state shifting of the grassland under the experimental warming was partly because our experimental site locates in an ecotone between the mixed and tall grass prairies. Under the experimental warming, the prairie was shifting from the mixed prairie as dominated by Schizachyrium scoparium

  10. Surface water input from snowmelt and rain throughfall in western juniper: potential impacts of climate change and shifts in semi-arid vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shifts in both climate and land cover can both potentially impact above ground hydrological processes. In the western U.S., both climatic shifts from snow to rain-dominated precipitation and land cover shifts of pinyon and juniper species in grass and shrub-dominated landscapes alter interception, ...

  11. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 years: Insights into regional atmospheric circulation and dust-related climate impacts

    NASA Astrophysics Data System (ADS)

    McGee, D.; deMenocal, P. B.; Winckler, G.; Stuut, J. W.; Bradtmiller, L. I.; Mahowald, N. M.; Albani, S.

    2012-12-01

    Reconstructions of eolian dust accumulation in West African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in West African dust emissions over the last 20 ka, including high dust emissions during Heinrich Stadial 1 and the Younger Dryas and lower dust emissions during the African Humid Period, a period of enhanced monsoon precipitation from approximately 11.7-5 ka. The limited spatial extent of these records, as well as the lack of high-resolution flux data, do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 27°N to 19°N along the northwest African margin, as well as from cores in the western tropical Atlantic reflecting downwind deposition. By combining grain size endmember modeling with 230Th-normalized fluxes in these cores, we are able to document spatial and temporal changes in dust loads and grain size distributions within the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the AHP. Our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. Using these new records to tune dust loadings in a fully coupled model of 6 ka climate, we find that low dust fluxes during the AHP may have had a substantial positive feedback on regional precipitation by amplifying the northward displacement of the Atlantic and West African ITCZ.

  12. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades

    NASA Astrophysics Data System (ADS)

    Tian, Yongjun; Kidokoro, Hideaki; Watanabe, Tatsuro

    2006-02-01

    climatic regime shifts in the North Pacific. These results strongly suggest that the structure of the fish community in the Japan/East Sea was largely affected by climatic and oceanic regime shifts rather than by fishing. There is no evidence showing “fishing down food webs” in the Japan/East Sea. However, in addition to the impacts of abrupt shifts that occurred in the late 1980s, the large predatory and demersal fishes seem to be facing stronger fishing pressure with the collapse of the Japanese sardine.

  13. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    PubMed

    Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  14. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

    PubMed Central

    Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994

  15. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem.

    PubMed

    Sahade, Ricardo; Lagger, Cristian; Torre, Luciana; Momo, Fernando; Monien, Patrick; Schloss, Irene; Barnes, David K A; Servetto, Natalia; Tarantelli, Soledad; Tatián, Marcos; Zamboni, Nadia; Abele, Doris

    2015-11-01

    The Antarctic Peninsula (AP) is one of the three places on Earth that registered the most intense warming in the last 50 years, almost five times the global mean. This warming has strongly affected the cryosphere, causing the largest ice-shelf collapses ever observed and the retreat of 87% of glaciers. Ecosystem responses, although increasingly predicted, have been mainly reported for pelagic systems. However, and despite most Antarctic species being benthic, responses in the Antarctic benthos have been detected in only a few species, and major effects at assemblage level are unknown. This is probably due to the scarcity of baselines against which to assess change. We performed repeat surveys of coastal benthos in 1994, 1998, and 2010, analyzing community structure and environmental variables at King George Island, Antarctica. We report a marked shift in an Antarctic benthic community that can be linked to ongoing climate change. However, rather than temperature as the primary factor, we highlight the resulting increased sediment runoff, triggered by glacier retreat, as the potential causal factor. The sudden shift from a "filter feeders-ascidian domination" to a "mixed assemblage" suggests that thresholds (for example, of tolerable sedimentation) and alternative equilibrium states, depending on the reversibility of the changes, could be possible traits of this ecosystem. Sedimentation processes will be increasing under the current scenario of glacier retreat, and attention needs to be paid to its effects along the AP.

  16. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    USGS Publications Warehouse

    Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  17. Climate-Induced Range Shifts and Possible Hybridisation Consequences in Insects

    PubMed Central

    Sánchez-Guillén, Rosa Ana; Muñoz, Jesús; Rodríguez-Tapia, Gerardo; Feria Arroyo, T. Patricia; Córdoba-Aguilar, Alex

    2013-01-01

    Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful. PMID:24260411

  18. Phase shifts, herbivory, and the resilience of coral reefs to climate change.

    PubMed

    Hughes, Terence P; Rodrigues, Maria J; Bellwood, David R; Ceccarelli, Daniela; Hoegh-Guldberg, Ove; McCook, Laurence; Moltschaniwskyj, Natalie; Pratchett, Morgan S; Steneck, Robert S; Willis, Bette

    2007-02-20

    Many coral reefs worldwide have undergone phase shifts to alternate, degraded assemblages because of the combined effects of over-fishing, declining water quality, and the direct and indirect impacts of climate change. Here, we experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date. The experiment was undertaken on the Great Barrier Reef, within a no-fishing reserve where coral abundances and diversity had been sharply reduced by bleaching. In control areas, where fishes were abundant, algal abundance remained low, whereas coral cover almost doubled (to 20%) over a 3 year period, primarily because of recruitment of species that had been locally extirpated by bleaching. In contrast, exclusion of large herbivorous fishes caused a dramatic explosion of macroalgae, which suppressed the fecundity, recruitment, and survival of corals. Consequently, management of fish stocks is a key component in preventing phase shifts and managing reef resilience. Importantly, local stewardship of fishing effort is a tractable goal for conservation of reefs, and this local action can also provide some insurance against larger-scale disturbances such as mass bleaching, which are impractical to manage directly.

  19. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    NASA Astrophysics Data System (ADS)

    Lapenis, Andrei; Lawrence, Gregory; Buyantuev, Alexander

    2015-04-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  20. Holocene peatland shifts in vegetation, carbon, and climate at Imnavait, Alaska

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Nichols, J. E.; Ouni, S.; Pavia, F.; Pearl, Y.

    2012-12-01

    The Imnavait Creek basin (68 40'N, 149 20'W; elevation 875-945 m) in the foothills of the Brooks Range, AK has been well studied in terms of modern vegetational communities, hydrology, and soils. But paleoclimate and paleovegetation reconstructions are limited. We retrieved a 2-m peatland core to examine the macrofossil/biomarker/carbon sequestration history throughout the Holocene and late-glacial. AMS 14C dates of the macrofossil remains will allow us to calculate carbon sequestration rates. The Holocene history (the top meter) records marked shifts in vascular plant as well as bryophyte history. A tri-partite sequence is apparent, with Andromeda/Sphagnum remains abundant in the early Holocene. The absence of bryophytes and the presence of Eriophorum and Carex achenes characterize the mid-Holocene. Andromeda and Betula nana with Sphagnum remains are abundant in the upper 30 cm of the core. Hydrogen isotope ratios of leaf wax alkanes record higher effective moisture in the early and late Holocene, suggesting more evaporative loss in the mid-Holocene which is characterized by Eriophorum. We compare our results with previously observed palynological shifts from lakes in the region and place this Arctic paleorecord in a larger perspective of peatland histories in a N-S transect covering nearly 10 degrees of latitude across Alaska. This tripartite pattern of effective moisture appears to be the same throughout the Alaskan transect, suggesting strong climatic control.

  1. Catastrophic ecosystem shifts in dry tropical forest: evidence, mechanisms and implications for climate change

    NASA Astrophysics Data System (ADS)

    Lawrence, D.; D'Odorico, P.; Runyan, C.; Diekmann, L.; DeLonge, M. S.; Das, R.; Eaton, J.; Vandecar, K.; Schmook, B.

    2015-12-01

    Tropical dry forests have long been used by humans. Has it been sustainable? Not in the southern Yucatan. Biomass accumulation declines with each cycle of shifting cultivation with implications for both internal recycling of nutrients and external inputs of nutrients. We detail the evidence for a decline in P inputs from biomass burning (aboveground biomass, litter, and coarse woody debris), an increase in leaching losses from deep soils, and a decline in atmospheric inputs of new P from Saharan dust following the transition from mature to secondary forest. Canopy trapping of dust is critical to maintaining P balance in this system. Effective trapping is diminished by changes in the structure of secondary forest--loss of height, leaf area and basal area. Experimental studies show that it is atmospheric transport of dust, not microbial shedding or leaching from live tissues, that explains the difference between throughfall P and P in bulk deposition. Because of net losses in P, uptake of carbon during regrowth is slower with each cycle of shifting cultivation. As much of the tropics has moved beyond a mature forest frontier, the decline in carbon sequestration is likely widespread over both dry and wet forests. The terrestrial carbon sink in the tropics may be declining. The capacity to sequester carbon through afforestation, reforestation and restoration has certainly diminished over time, limiting the effectiveness of such efforts to help mitigate climate change.

  2. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem

    PubMed Central

    Sahade, Ricardo; Lagger, Cristian; Torre, Luciana; Momo, Fernando; Monien, Patrick; Schloss, Irene; Barnes, David K. A.; Servetto, Natalia; Tarantelli, Soledad; Tatián, Marcos; Zamboni, Nadia; Abele, Doris

    2015-01-01

    The Antarctic Peninsula (AP) is one of the three places on Earth that registered the most intense warming in the last 50 years, almost five times the global mean. This warming has strongly affected the cryosphere, causing the largest ice-shelf collapses ever observed and the retreat of 87% of glaciers. Ecosystem responses, although increasingly predicted, have been mainly reported for pelagic systems. However, and despite most Antarctic species being benthic, responses in the Antarctic benthos have been detected in only a few species, and major effects at assemblage level are unknown. This is probably due to the scarcity of baselines against which to assess change. We performed repeat surveys of coastal benthos in 1994, 1998, and 2010, analyzing community structure and environmental variables at King George Island, Antarctica. We report a marked shift in an Antarctic benthic community that can be linked to ongoing climate change. However, rather than temperature as the primary factor, we highlight the resulting increased sediment runoff, triggered by glacier retreat, as the potential causal factor. The sudden shift from a “filter feeders–ascidian domination” to a “mixed assemblage” suggests that thresholds (for example, of tolerable sedimentation) and alternative equilibrium states, depending on the reversibility of the changes, could be possible traits of this ecosystem. Sedimentation processes will be increasing under the current scenario of glacier retreat, and attention needs to be paid to its effects along the AP. PMID:26702429

  3. Shift of grey seal subspecies boundaries in response to climate, culling and conservation.

    PubMed

    Fietz, Katharina; Galatius, Anders; Teilmann, Jonas; Dietz, Rune; Frie, Anne Kristine; Klimova, Anastasia; Palsbøll, Per J; Jensen, Lasse F; Graves, Jeff A; Hoffman, Joseph I; Olsen, Morten Tange

    2016-09-01

    Identifying the processes that drive changes in the abundance and distribution of natural populations is a central theme in ecology and evolution. Many species of marine mammals have experienced dramatic changes in abundance and distribution due to climatic fluctuations and anthropogenic impacts. However, thanks to conservation efforts, some of these species have shown remarkable population recovery and are now recolonizing their former ranges. Here, we use zooarchaeological, demographic and genetic data to examine processes of colonization, local extinction and recolonization of the two northern European grey seal subspecies inhabiting the Baltic Sea and North Sea. The zooarchaeological and genetic data suggest that the two subspecies diverged shortly after the formation of the Baltic Sea approximately 4200 years bp, probably through a gradual shift to different breeding habitats and phenologies. By comparing genetic data from 19th century pre-extinction material with that from seals currently recolonizing their past range, we observed a marked spatiotemporal shift in subspecies boundaries, with increasing encroachment of North Sea seals on areas previously occupied by the Baltic Sea subspecies. Further, both demographic and genetic data indicate that the two subspecies have begun to overlap geographically and are hybridizing in a narrow contact zone. Our findings provide new insights into the processes of colonization, extinction and recolonization and have important implications for the management of grey seals across northern Europe.

  4. Simulating the Interacting Effects of Intraspecific Variation, Disturbance, and Competition on Climate-Driven Range Shifts in Trees.

    PubMed

    Moran, Emily V; Ormond, Rhys A

    2015-01-01

    Climate change is expected to favor shifts in plant distributions; some such shifts are already being observed along elevation gradients. However, the rate of such shifts may be limited by their ability to reach newly suitable areas and by competition from resident species. The degree of local adaptation and genetic variation may also play a role in the interaction between migrants and residents by affecting relative fitness. We used a simulation model to explore the interacting effects of dispersal, fecundity, disturbance, and genetic variation on range-edge dynamics between a pair of demographically similar tree species. Ideal climate for an individual is determined by genotype. The simulated landscape undergoes an 80-year period of climate change in which climate bands shift upslope; subsequently, climate is held constant for 300 years. The presence of a high-elevation competitor caused a significant lag in the range shift of the low-elevation species relative to competition-free scenarios. Increases in fecundity and dispersal distance both helped to speed up the replacement of the high-elevation species by the low-elevation species at their range boundary. While some disturbance scenarios facilitated this transition, frequent canopy disturbance inhibited colonization by removing reproductive adults and led to range contractions in both species. Differences between dispersal scenarios were more pronounced when disturbance was frequent (15 vs. 25 year return interval) and dispersal was limited. When the high-elevation species lacked genetic variation, its range was more-easily invaded by the low-elevation species, while a similar lack of variation in the low-elevation species inhibited colonization-but only when this lack of variation decreased the fitness of the affected species near the range boundary. Our model results support the importance of measuring and including dispersal/fecundity, disturbance type and frequency, and genetic variation when assessing the

  5. Simulating the Interacting Effects of Intraspecific Variation, Disturbance, and Competition on Climate-Driven Range Shifts in Trees

    PubMed Central

    2015-01-01

    Climate change is expected to favor shifts in plant distributions; some such shifts are already being observed along elevation gradients. However, the rate of such shifts may be limited by their ability to reach newly suitable areas and by competition from resident species. The degree of local adaptation and genetic variation may also play a role in the interaction between migrants and residents by affecting relative fitness. We used a simulation model to explore the interacting effects of dispersal, fecundity, disturbance, and genetic variation on range-edge dynamics between a pair of demographically similar tree species. Ideal climate for an individual is determined by genotype. The simulated landscape undergoes an 80-year period of climate change in which climate bands shift upslope; subsequently, climate is held constant for 300 years. The presence of a high-elevation competitor caused a significant lag in the range shift of the low-elevation species relative to competition-free scenarios. Increases in fecundity and dispersal distance both helped to speed up the replacement of the high-elevation species by the low-elevation species at their range boundary. While some disturbance scenarios facilitated this transition, frequent canopy disturbance inhibited colonization by removing reproductive adults and led to range contractions in both species. Differences between dispersal scenarios were more pronounced when disturbance was frequent (15 vs. 25 year return interval) and dispersal was limited. When the high-elevation species lacked genetic variation, its range was more-easily invaded by the low-elevation species, while a similar lack of variation in the low-elevation species inhibited colonization—but only when this lack of variation decreased the fitness of the affected species near the range boundary. Our model results support the importance of measuring and including dispersal/fecundity, disturbance type and frequency, and genetic variation when assessing

  6. Characteristics of the deep ocean carbon system during the past 150,000 years: SigmaCO2 distributions, deep water flow patterns, and abrupt climate change.

    PubMed

    Boyle, E A

    1997-08-05

    Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-SigmaCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower SigmaCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more SigmaCO2-depleted and deep waters are SigmaCO2-enriched compared with the waters of the present. In the northern Indian Ocean, delta13C and Cd data are consistent with upper water SigmaCO2 depletion relative to the present. There is no evident proximate source of this SigmaCO2-depleted water, so I suggest that SigmaCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000-130,000 years before the present).

  7. Effect of climate change on shoreline shifts at a straight and continuous coast

    NASA Astrophysics Data System (ADS)

    Rajasree, B. R.; Deo, M. C.; Sheela Nair, L.

    2016-12-01

    The prediction of the rate of shoreline shifts as well as that of erosion and accretion over future at a given location is traditionally done on the basis of analysis of past wave data. However under the changing climate affected by global warming it is better done considering the projected wave conditions over the future. The same is demonstrated in this work with respect to a stretch of coastline at 'Udupi' along the west coast of India. The shoreline changes in the past are first determined with the help of historic satellite images. A numerical shoreline model is later run on the basis of wave simulations of past 35 years as well as future 35 years. The latter wave conditions are obtained from wind projections corresponding to a high resolution regional climate model run for a moderate pathway of global warming. Alternatively prediction of the changes over future 35 years is also made by using the soft computing tool of artificial neural network (ANN) trained with the help of past satellite images. The results indicate that the area under consideration presently undergoes considerable erosion and this process will accelerate in future. The volume of annual sediment transport will also substantially increase over the future. The alternative computations made with the help of an ANN confirmed the future rising trend of erosion, albeit at smaller rate than the numerically predicted one.

  8. Shifting ranges and conservation challenges for lemurs in the face of climate change

    PubMed Central

    Brown, Jason L; Yoder, Anne D

    2015-01-01

    Geospatial modeling is one of the most powerful tools available to conservation biologists for estimating current species ranges of Earth's biodiversity. Now, with the advantage of predictive climate models, these methods can be deployed for understanding future impacts on threatened biota. Here, we employ predictive modeling under a conservative estimate of future climate change to examine impacts on the future abundance and geographic distributions of Malagasy lemurs. Using distribution data from the primary literature, we employed ensemble species distribution models and geospatial analyses to predict future changes in species distributions. Current species distribution models (SDMs) were created within the BIOMOD2 framework that capitalizes on ten widely used modeling techniques. Future and current SDMs were then subtracted from each other, and areas of contraction, expansion, and stability were calculated. Model overprediction is a common issue associated Malagasy taxa. Accordingly, we introduce novel methods for incorporating biological data on dispersal potential to better inform the selection of pseudo-absence points. This study predicts that 60% of the 57 species examined will experience a considerable range of reductions in the next seventy years entirely due to future climate change. Of these species, range sizes are predicted to decrease by an average of 59.6%. Nine lemur species (16%) are predicted to expand their ranges, and 13 species (22.8%) distribution sizes were predicted to be stable through time. Species ranges will experience severe shifts, typically contractions, and for the majority of lemur species, geographic distributions will be considerably altered. We identify three areas in dire need of protection, concluding that strategically managed forest corridors must be a key component of lemur and other biodiversity conservation strategies. This recommendation is all the more urgent given that the results presented here do not take into

  9. Climate change, shifting seasons, and the ecohydrology of Devils Hole, Death Valley National Park

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Wilson, K. P.; Gaines, D. B.; Suarez, F. I.; Tyler, S. W.

    2011-12-01

    Devils Hole, a water-filled fracture in the carbonate aquifer of the Death Valley Regional Flow System, comprises an ecosystem that can serve as a bellwether of climate change. This 50 square meter pool of unknown depth is home to the only extant population of the endangered Devils Hole pupfish (Cyprinodon diabolis). A shallow shelf in the system provides the most suitable habitat for spawning, and the past pupfish population counts have been correlated to the water level in the system. Recently, however, population declines unrelated to water level have been observed. The 33° C waters of Devils Hole are near the upper threshold for most Cyprinodon species, and the shallow shelf experiences the greatest diurnal and seasonal temperature variability. The extremely limited habitat, small population (the spring, 2011 population survey counted approximately 100 individuals), and precarious nature of populations near survival thresholds combine to make the system exceptionally susceptible to the impacts of climate change. A hydrodynamic model of the shallow shelf was developed to simulate thermal convection in response to a number of energy fluxes, including climatic drivers such as air temperature and solar radiation. Simulations of current conditions demonstrate seasonal and diurnal changes in the temperature of the water and the substrate in which adult pupfish spawn, eggs hatch, and larvae develop. The simulated convection patterns also influence the oxygen dynamics, nutrient cycling, and the food web of the ecosystem. Simulations of future conditions using a delta change methodology point towards changes in the seasonal cycles, which may limit or shift the reproductive season of the species.

  10. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    NASA Astrophysics Data System (ADS)

    Moreno-Chamarro, Eduardo; Zanchettin, Davide; Lohmann, Katja; Jungclaus, Johann H.

    2017-02-01

    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset.

  11. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    PubMed

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change.

  12. Abrupt changes in rainfall during the twentieth century

    NASA Astrophysics Data System (ADS)

    Narisma, Gemma T.; Foley, Jonathan A.; Licker, Rachel; Ramankutty, Navin

    2007-03-01

    Complex interactions in the climate system can give rise to strong positive feedback mechanisms that may lead to sudden climatic changes. The prolonged Sahel drought and the Dust Bowl are examples of 20th century abrupt climatic changes that had serious effects on ecosystems and societies. Here we analyze global historical rainfall observations to detect regions that have undergone large, sudden decreases in rainfall. Our results show that in the 20th century about 30 regions in the world have experienced such changes. These events are statistically significant at the 99% level, are persistent for at least ten years, and most have magnitudes of change that are 10% lower than the climatological normal (1901-2000 rainfall average). This analysis illustrates the extent and magnitude of abrupt climate changes across the globe during the 20th century and may be used for studying the dynamics of and the mechanisms behind these abrupt changes.

  13. Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia.

    PubMed

    Cumming, Brian F; Laird, Kathleen R; Bennett, Joseph R; Smol, John P; Salomon, Anne K

    2002-12-10

    Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansionrecession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions.

  14. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    ,

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  15. Early indicators of change: divergent climate envelopes between tree life stages imply range shifts in the western United States

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Our results indicated that climate-induced contractions and shifts in seedling distribution in response to recent change are already under way and are particularly severe in montane tree species. While adult trees may persist for hundreds of years without significant regeneration, tree species ranges will eventually contract where tree regeneration fails.

  16. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands

    USGS Publications Warehouse

    Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.

    2016-01-01

    Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  17. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.

    PubMed

    Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D

    2016-12-15

    Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  18. Phenological shifts of native and invasive species under climate change: insights from the Boechera-Lythrum model.

    PubMed

    Colautti, Robert I; Ågren, Jon; Anderson, Jill T

    2017-01-19

    Warmer and drier climates have shifted phenologies of many species. However, the magnitude and direction of phenological shifts vary widely among taxa, and it is often unclear when shifts are adaptive or how they affect long-term viability. Here, we model evolution of flowering phenology based on our long-term research of two species exhibiting opposite shifts in floral phenology: Lythrum salicaria, which is invasive in North America, and the sparse Rocky Mountain native Boechera stricta Genetic constraints are similar in both species, but differences in the timing of environmental conditions that favour growth lead to opposite phenological shifts under climate change. As temperatures increase, selection is predicted to favour earlier flowering in native B. stricta while reducing population viability, even if populations adapt rapidly to changing environmental conditions. By contrast, warming is predicted to favour delayed flowering in both native and introduced L. salicaria populations while increasing long-term viability. Relaxed selection from natural enemies in invasive L. salicaria is predicted to have little effect on flowering time but a large effect on reproductive fitness. Our approach highlights the importance of understanding ecological and genetic constraints to predict the ecological consequences of evolutionary responses to climate change on contemporary timescales.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

  19. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  20. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  1. River-discharge dynamics in the Southern Central Andes and the 1976-77 global climate shift

    NASA Astrophysics Data System (ADS)

    Castino, F.; Bookhagen, B.; Strecker, M. R.

    2016-11-01

    Recent studies have shown that the 1976-77 global climate shift strongly affected the South American climate. In our study, we observed a link between this climate shift and river-discharge variability in the subtropical Southern Central Andes. We analyzed the daily river-discharge time series between 1940 and 1999 from small to medium mountain drainage basins (102-104 km2) across a steep climatic and topographic gradient. We document that the discharge frequency distribution changed significantly, with higher percentiles exhibiting more pronounced trends. A change point between 1971 and 1977 marked an intensification of the hydrological cycle, which resulted in increased river discharge. In the upper Rio Bermejo basin of the northernmost Argentine Andes, the mean annual discharge increased by 40% over 7 years. Our findings are important for flood risk management in areas impacted by the 1976-77 climate shift; discharge frequency distribution analysis provides important insights into the variability of the hydrological cycle in the Andean realm.

  2. Mid- to Late Holocene Climate Shift in the Southern Gulf of California and Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Perez-Cruz, L. L.; Fucugauchi, J. U.; Velasco, V.; Rodriguez, A.; Choumiline, K.

    2014-12-01

    A multiproxy record has been acquired from a gravity core (DIPAL-I K47) taken in La Paz Basin, an area which is situated in the southwestern sector of the Gulf of California at the junction to the Tropical Pacific Ocean. The high-resolution data sets, from XRF, TOC, magnetic susceptibility and hysteresis measurements, were used to track climatic changes in the tropical climate system at sub-centennial time scales over the past 7.3 cal kyr BP. The paleoprecipitation record shows variation trends, with a shift during the mid- to late Holocene, characterized by changes from high to low humidity. Pluvial, biogenic and eolian input, marked by variations in Ti, Si, Fe, K, Ca, Zr/Ti, Ca/Ti and magnetic susceptibility, shows trend changes between 7-5 cal kyr, 5-4.5 cal kyr, 4.5-3.5 cal kyr and 2.15-1.4 kyr. Drought events are recognized from 3.7 to 3.4, 2.8 to 1.8 cal kyr BP, and between 1.4 and 1.2 cal kyr BP. The southern Gulf is well suited for documenting the climatic and precipitation changes in the tropical Pacific Ocean associated with ITCZ latitudinal migration, PDO, ENSO events and the North American monsoon. Analysis of sourcing, transport and deposition of sediments is used for reconstructing the changing ocean-atmosphere circulation patterns, particularly sensitive to paleoprecipitation. The Bay receives sediments mainly from the surrounding volcanic ranges of the peninsular Baja California. There are no rivers in the peninsula and sediments are related to pluvial input trough ephemeral creeks along the steep cliff ranges and narrow shelf. Biogenic sediments are associated with productivity and oceanographic conditions through upwellings and mesoscale gyres. Eolian sediments are transported into the basin from the peninsula and continent, including transport of fine dust from the northern desert of Sonora-Mojave and arid terrains in the peninsula. It is important to highlight that a common 1800 yr solar variation spectral periodicity has been captured

  3. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    PubMed Central

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-01-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions. PMID:27934933

  4. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols.

    PubMed

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-09

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  5. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    NASA Astrophysics Data System (ADS)

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  6. Shift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae).

    PubMed

    Wedekind, Claus; Küng, Christoph

    2010-10-01

    River-dwelling fish, such as European graylings (Thymallus thymallus), are susceptible to changes in climate because they can often not avoid suboptimal temperatures, especially during early developmental stages. We analyzed data collected in a 62-year-long (1948-2009) population monitoring program. Male and female graylings were sampled about three times/week during the yearly spawning season in order to follow the development of the population. The occurrence of females bearing ripe eggs was used to approximate the timing of each spawning season. In the last years of the study, spawning season was more than 3 weeks earlier than in the first years. This shift was linked to increasing water temperatures as recorded over the last 39 years with a temperature logger at the spawning site. In early spring water temperatures rose more slowly than in later spring. Thus, embryos and larvae were exposed to increasingly colder water at a stage that is critical for sex determination and pathogen resistance in other salmonids. In summer, however, fry were exposed to increasingly warmer temperatures. The changes in water temperatures that we found embryos, larvae, and fry were exposed to could be contributing to the decline in abundance that has occurred over the last 30-40 years.

  7. Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles.

    PubMed

    Tyson, Rebecca; Lutscher, Frithjof

    2016-11-01

    The functional response of some predator species changes from a pattern characteristic for a generalist to that for a specialist according to seasonally varying prey availability. Current theory does not address the dynamic consequences of this phenomenon. Since season length correlates strongly with altitude and latitude and is predicted to change under future climate scenarios, including this phenomenon in theoretical models seems essential for correct prediction of future ecosystem dynamics. We develop and analyze a two-season model for the great horned owl (Bubo virginialis) and snowshoe hare (Lepus americanus). These species form a predator-prey system in which the generalist to specialist shift in predation pattern has been documented empirically. We study the qualitative behavior of this predator-prey model community as summer season length changes. We find that relatively small changes in summer season length can have a profound impact on the system. In particular, when the predator has sufficient alternative resources available during the summer season, it can drive the prey to extinction, there can be coexisting stable states, and there can be stable large-amplitude limit cycles coexisting with a stable steady state. Our results illustrate that the impacts of global change on local ecosystems can be driven by internal system dynamics and can potentially have catastrophic consequences.

  8. Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages.

    PubMed

    Lord, Joshua; Whitlatch, Robert

    2015-05-01

    Many terrestrial plant and marine benthic communities involve intense competition for space as a means to survive and reproduce. Superior competitors can dominate other species numerically with high reproductive rates, indirectly with high growth rates that facilitate space acquisition, or directly with competitive overgrowth. To assess how climate change could affect competitive interactions, we examined latitudinal patterns in growth rates and overgrowth competition via field surveys and experiments with marine epibenthic communities. Epibenthic fouling communities are dominated by invasive tunicates, bryozoans, and other species that grow on docks, boats, and other artificial structures. Fouling communities are space limited, so growth rate and overgrowth competition play an important role in shaping abundance patterns. We experimentally assessed temperature-dependent growth rates of several tunicates and bryozoans in eight regions spanning the U.S. east and west coasts. Several species displayed positive growth responses to warmer temperature in the northern portions of their latitudinal ranges, and vice versa. We used photo surveys of floating docks in at least 16 harbors in each region to compare communities and overgrowth competition. There was a strong correlation across species and regions between growth rate and competitive ability, indicating that growth plays an important role in competitive outcomes. Because growth rates are typically temperature dependent for organisms that compete for space, including terrestrial plants, fungi, algae, bacteria, and sessile benthic organisms, global warming could affect competitive outcomes. Our results suggest that these competitive shifts can be predicted by species' relative growth rates and latitudinal ranges.

  9. Pathogen-Host Associations and Predicted Range Shifts of Human Monkeypox in Response to Climate Change in Central Africa

    PubMed Central

    Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.

    2013-01-01

    Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820

  10. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period.

    PubMed

    Nunes, Flavia; Norris, Richard D

    2006-01-05

    An exceptional analogue for the study of the causes and consequences of global warming occurs at the Palaeocene/Eocene Thermal Maximum, 55 million years ago. A rapid rise of global temperatures during this event accompanied turnovers in both marine and terrestrial biota, as well as significant changes in ocean chemistry and circulation. Here we present evidence for an abrupt shift in deep-ocean circulation using carbon isotope records from fourteen sites. These records indicate that deep-ocean circulation patterns changed from Southern Hemisphere overturning to Northern Hemisphere overturning at the start of the Palaeocene/Eocene Thermal Maximum. This shift in the location of deep-water formation persisted for at least 40,000 years, but eventually recovered to original circulation patterns. These results corroborate climate model inferences that a shift in deep-ocean circulation would deliver relatively warmer waters to the deep sea, thus producing further warming. Greenhouse conditions can thus initiate abrupt deep-ocean circulation changes in less than a few thousand years, but may have lasting effects; in this case taking 100,000 years to revert to background conditions.

  11. Linking soil chemistry, treeline shifts and climate change: scenario modeling using an experimental approach

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Furrer, Gerhard; Anderson, Susanne; Blum, Alex; Wells, Aaron; Dahms, Dennis; Egli, Markus

    2014-05-01

    Climate change and global warming have a strong influence on the landscape development. As cold areas become warmer, both flora and fauna must adapt to new conditions (a). It is widely accepted that climate changes deeply influence the treeline shifts. In addition to that, wildfires, plant diseases and insect infestation (i.e. mountain pine beetle) can promote a selective replacement of plants, inhibiting some and favoring others, thus modifying the ecosystem in diverse ways. There is little knowledge on the behavior of soil chemistry when such changes occur. Will elemental availability become a crucial factor as a function of climate changes? The Sinks Canyon and Stough Basin - SE flank of the Wind River Range, Wyoming, USA - offer an ideal case study. Conceptually, the areas were divided into three main subsets: tundra, forest and a subarid environment. All soils were developed on granitoid moraines (b, c). From each subset, a liquid topsoil extract was produced and mixed with the solid subsoil samples in batch reactors at 50 °C. The batch experiments were carried out over 1800 h, and the progress of the dissolution was regularly monitored by analyzing liquid aliquots using IC and ICP-OES. The nutrients were mostly released within the first hours of the experiment. Silicon and Al were continuously released into the solution, while some alkali elements - i.e. Na - showed a more complex trend. Organic acids (acetic, citric) and other ligands produced during biodegradation played an active role in mineral dissolution and nutrient release. The mineral colloids detected in the extract (X-ray diffraction) can significantly control surface reactions (adsorption/desorption) and contributed to specific cationic concentrations. The experimental set up was then compared to a computed dissolution model using SerialSTEADYQL software (d, e). Decoding the mechanisms driving mineral weathering is the key to understand the main geochemical aspects of adaptation during climate

  12. Combined impact of climate change, cultivar shift, and sowing date on spring wheat phenology in Northern China

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing

    2016-08-01

    Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.

  13. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009.

    PubMed

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  14. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize ( Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  15. RESTORING COASTAL ECOSYSTEMS: ABRUPT CLIMATE CHANGE

    EPA Science Inventory

    Consensus exists that U.S. coastal ecosystems are severely degraded due to a variety of human-factors requiring large financial expenditures to restore and manage. Yet, even as controversy surrounds human factors in ecosystem degradation in the Gulf of Mexico, Chesapeake Bay, an...

  16. Abrupt Climate Change Research Act of 2009

    THOMAS, 111th Congress

    Sen. Collins, Susan M. [R-ME

    2009-09-14

    09/14/2009 Read twice and referred to the Committee on Commerce, Science, and Transportation. (text of measure as introduced: CR S9330) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Murres, capelin and ocean climate: Inter-annual associations across a decadal shift

    USGS Publications Warehouse

    Regular, P.M.; Shuhood, F.; Power, T.; Montevecchi, W.A.; Robertson, G.J.; Ballam, D.; Piatt, J.F.; Nakashima, B.

    2009-01-01

    To ensure energy demands for reproduction are met, it is essential that marine birds breed during periods of peak food availability. We examined associations of the breeding chronology of common murres (Uria aalge) with the timing of the inshore arrival of their primary prey, capelin (Mallotus villosus) from 1980 to 2006 across a period of pervasive change in the Northwest Atlantic ecosystem. We also assessed the influence of ocean temperature and the North Atlantic Oscillation (NAO; an index of winter climate and oceanography) on these interactions. We found a lagged linear relationship between variations in murre breeding chronology and the timing of capelin arrival in the previous year. On a decadal level, we found a non-linear threshold relationship between ocean temperature and the timing of capelin arrival and murre breeding. Centennially anomalous cold water temperatures in 1991 generated a marked shift in the timing of capelin spawning inshore and murre breeding, delaying both by more than 2 weeks. By the mid-1990s, ocean temperatures returned to pre-perturbation levels, whereas the temporal breeding responses of capelin and murres were delayed for a decade or more. Oceanographic conditions (temperature, NAO) were poor predictors of the timing of capelin arrival inshore in the current year compared to the previous one. Our findings suggest that knowledge of the timing of capelin availability in the previous year provides a robust cue for the long-lived murres, allowing them to achieve temporal overlap between breeding and peak capelin availability. ?? Springer Science+Business Media B.V. 2008.

  18. Plausibility Reappraisals and Shifts in Middle School Students' Climate Change Conceptions

    ERIC Educational Resources Information Center

    Lombardi, Doug; Sinatra, Gale M.; Nussbaum, E. Michael

    2013-01-01

    Plausibility is a central but under-examined topic in conceptual change research. Climate change is an important socio-scientific topic; however, many view human-induced climate change as implausible. When learning about climate change, students need to make plausibility judgments but they may not be sufficiently critical or reflective. The…

  19. Multiscale regime shifts and planetary boundaries.

    PubMed

    Hughes, Terry P; Carpenter, Stephen; Rockström, Johan; Scheffer, Marten; Walker, Brian

    2013-07-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a tipping point. Whether human activities will trigger such a global event in the near future is uncertain, due to critical knowledge gaps. In particular, we lack understanding of how regime shifts propagate across scales, and whether local or regional tipping points can lead to global transitions. The ongoing disruption of ecosystems and climate, combined with unprecedented breakdown of isolation by human migration and trade, highlights the need to operate within safe planetary boundaries.

  20. Recent Shifts in Shoreline Orientation along a Cuspate Coast Potentially Linked to Climate Change, North Carolina Outer Banks, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Moore, L. J.; Brenner, O.; McNamara, D.; Murray, A. B.

    2009-12-01

    Recent modeling (e.g., Ashton and Murray, 2006a) and observations (Ashton and Murray 2006b) suggest that sandy coastlines self-organize into large-scale plan-view shapes that depend sensitively on the regional wave climate. Subsequent modeling (Slott et al., 2007) shows that even moderate changes in wave climate, likely to arise as storm behaviors shift, may cause coastlines to change shape rapidly. Such large-scale shape changes involve greatly accentuated rates of local erosion and highly variable erosion/accretion rates. A recent analysis of wave records from the Southeastern U.S. (Komar and Allen, 2007) indicates that wave climates have already been changing over the past three decades; the heights of waves attributable to tropical storms have been increasing, changing the angular distribution of wave influences. Changes in coastline shape resulting from changes in the regional wave climate identified by Komar and Allen (2007) will likely be difficult to detect along most coastlines due to short-term variability in shoreline position and limits to the resolution at which shoreline changes can be measured over a 30-year time period. However, adjustments in coastline shape are likely to occur most quickly, and therefore to be most pronounced, on cuspate shorelines along and adjacent to cape tips because rapid changes in shoreline orientation make these locations particularly sensitive to deep-water wave approach angles. To test for the presence of detectable climate-change related shifts in coastline shape along a cuspate shoreline we conduct an historical (1852 - 1974) and recent (1974 - 2004) shoreline change analysis for Cape Hatteras and Cape Lookout, North Carolina. Results indicate a recent shift in shoreline-change patterns, with trends toward more-erosional/less-accretional shoreline response and more-accretional/less-erosional response in roughly consistent locations (relative to cape tips) on the flanks of both capes. These changes in shoreline response

  1. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change.

    PubMed

    Morin, Xavier; Thuiller, Wilfried

    2009-05-01

    Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.

  2. Holocene Vegetation and Climate Shifts from Sutherland Fen, Black Rock Forest, New York - Plant Macrofossils, Charcoal, and Carbon

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Guilderson, T.

    2008-12-01

    Sutherland Fen formed about 12,600 C-14 years ago (15,000 calendar years), the same time as adjacent Sutherland Pond and regional deglaciation. High-resolution (2 cm) analysis of the 3.2 m fen core indicates three major macrofossils zones indicative of climate shifts. These climate shifts were defined over fifty years ago through pollen stratigraphy of the regional northeastern US, but macrofossils provide new details concerning hydrological and ecological shifts. The lowest (SUB-1) dated to the late-glacial, is indicative of a shallow pond characterized by Najas, Nuphar, and Potamogeton seeds and containing Salix (willow) buds, a Rubus (berry) seed, and Picea glauca (white spruce) needles and sterigmata from the surrounding upland. Sedimention rates are highest in this boreal environmental zone. The overlying zone (SUB-2) beginning at 11,500 years ago (Holocene) indicates a continuing pond environment with aquatics such as Najas, Nuphar, and Brasenia, but Picea disappears and Pinus strobus (white pine) dominates the lower section of the zone. A warmer, drier climate produces sustained charcoal in the record at the Holocene boundary. Pinus strobus needles and seeds subsequently disappear and are replaced from 9000 to 7500 years ago by Pinus rigida (pitch pine), Betula populifolia/papyrifera (grey/paper birch), and emergent wetland plants such as Decodon, Cladium, and Cephalanthus, as well as Dulichium, Eleocharis, and Carex, suggesting a shallowing pond and a drier climate. Chara oospores indicate probably groundwater influx into the fen. About 4000 years ago, charcoal again is present. In the subsequent late Holocene a more acidic, moist, fen environment is characterized by Sphagnum, Rubus, Hypericum, Viola, Chamaedaphne, and Carex, though Brasenia and Potamogeton (pond indicators) are occasionally present. The continued presence of Sphagnum led to high carbon accumulation because of less decomposition. This increase in Sphagnum in recent millennia with aquatics

  3. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea.

    PubMed

    Defriez, Emma J; Sheppard, Lawrence W; Reid, Philip C; Reuman, Daniel C

    2016-06-01

    During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.

  4. A drought-induced shift in a forest/woodland ecotone: Rapid response to variation in climate

    SciTech Connect

    Allen, C.D.; Breshears, D.D.

    1995-06-01

    Ecotones are expected to shift relatively rapidly in response to changes in climate, but most studies relating climate change to ecotone shifts have evaluated time-scales of centuries or much longer. We used field observations, historic records, and GIS analyses of aerial photographs at several points in time between 1935 and 1991 to evaluate changes in the ecotone between ponderosa pine forest and pinon-juniper woodland on the Pajarito Plateau in northern New Mexico. A severe, regional drought occurred during this period in the 1950`s. High mortality of ponderosa pine and pinon trees occurred on relatively dry landscape positions during the drought, concurrent with associated outbreaks of bark beetles. Consequently, the ecotone between ponderosa pine forests and pinon-juniper woodlands shifted upslope by as much as 2 km, and mixed pinon-juniper woodlands were converted to overstories of only juniper at many sites. The 1950`s drought may have also reduced herbaceous ground cover in these ecotone areas, contributing to current high erosion-rates. The results demonstrate that changes in ecotones can occur rapidly over large areas and provide an analogue for the types of changes expected in many semiarid regions in response to climate warming.

  5. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians.

    PubMed

    Morris, J P; Thatje, S; Cottin, D; Oliphant, A; Brown, A; Shillito, B; Ravaux, J; Hauton, C

    2015-11-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts.

  6. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    PubMed Central

    Morris, J. P.; Thatje, S.; Cottin, D.; Oliphant, A.; Brown, A.; Shillito, B.; Ravaux, J.; Hauton, C.

    2015-01-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms’ thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts PMID:26716003

  7. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage

    PubMed Central

    Magrach, Ainhoa; Ghazoul, Jaboury

    2015-01-01

    Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes. PMID:26177201

  8. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies.

    PubMed

    Winkler, Isaac S; Mitter, Charles; Scheffer, Sonja J

    2009-10-27

    A central but little-tested prediction of "escape and radiation" coevolution is that colonization of novel, chemically defended host plant clades accelerates insect herbivore diversification. That theory, in turn, exemplifies one side of a broader debate about the relative influence on clade dynamics of intrinsic (biotic) vs. extrinsic (physical-environmental) forces. Here, we use a fossil-calibrated molecular chronogram to compare the effects of a major biotic factor (repeated shift to a chemically divergent host plant clade) and a major abiotic factor (global climate change) on the macroevolutionary dynamics of a large Cenozoic radiation of phytophagous insects, the leaf-mining fly genus Phytomyza (Diptera: Agromyzidae). We find one of the first statistically supported examples of consistently elevated net diversification accompanying shift to new plant clades. In contrast, we detect no significant direct effect on diversification of major global climate events in the early and late Oligocene. The broader paleoclimatic context strongly suggests, however, that climate change has at times had a strong indirect influence through its effect on the biotic environment. Repeated rapid Miocene radiation of these flies on temperate herbaceous asterids closely corresponds to the dramatic, climate-driven expansion of seasonal, open habitats.

  9. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage.

    PubMed

    Magrach, Ainhoa; Ghazoul, Jaboury

    2015-01-01

    Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes.

  10. A holistic view of marine regime shifts

    PubMed Central

    Conversi, Alessandra; Dakos, Vasilis; Gårdmark, Anna; Ling, Scott; Folke, Carl; Mumby, Peter J.; Greene, Charles; Edwards, Martin; Blenckner, Thorsten; Casini, Michele; Pershing, Andrew; Möllmann, Christian

    2015-01-01

    Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.

  11. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

    PubMed

    Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares

    2016-02-01

    Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L

  12. Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre

    PubMed Central

    Telwala, Yasmeen; Brook, Barry W.; Manish, Kumar; Pandit, Maharaj K.

    2013-01-01

    Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species’ response to climate change from this region are lacking. Here we use historical (1849–50) and the recent (2007–2010) data on temperature and endemic species’ elevational ranges to perform a correlative study in the two alpine valleys of Sikkim. We show that the ongoing warming in the alpine Sikkim Himalaya has transformed the plant assemblages. This study lends support to the hypothesis that changing climate is causing species distribution changes. We provide first evidence of warmer winters in the region compared to the last two centuries, with mean temperatures of the warmest and the coldest months may have increased by 0.76±0.25°C and 3.65±2°C, respectively. Warming-driven geographical range shifts were recorded in 87% of 124 endemic plant species studied in the region; upper range extensions of species have resulted in increased species richness in the upper alpine zone, compared to the 19th century. We recorded a shift of 23–998 m in species’ upper elevation limit and a mean upward displacement rate of 27.53±22.04 m/decade in the present study. We infer that the present-day plant assemblages and community structure in the Himalaya is substantially different from the last century and is, therefore, in a state of flux under the impact of warming. The continued trend of warming is likely to result in ongoing elevational range contractions and eventually, species extinctions, particularly at mountaintops. PMID:23437322

  13. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre.

    PubMed

    Telwala, Yasmeen; Brook, Barry W; Manish, Kumar; Pandit, Maharaj K

    2013-01-01

    Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species' response to climate change from this region are lacking. Here we use historical (1849-50) and the recent (2007-2010) data on temperature and endemic species' elevational ranges to perform a correlative study in the two alpine valleys of Sikkim. We show that the ongoing warming in the alpine Sikkim Himalaya has transformed the plant assemblages. This study lends support to the hypothesis that changing climate is causing species distribution changes. We provide first evidence of warmer winters in the region compared to the last two centuries, with mean temperatures of the warmest and the coldest months may have increased by 0.76±0.25°C and 3.65±2°C, respectively. Warming-driven geographical range shifts were recorded in 87% of 124 endemic plant species studied in the region; upper range extensions of species have resulted in increased species richness in the upper alpine zone, compared to the 19(th) century. We recorded a shift of 23-998 m in species' upper elevation limit and a mean upward displacement rate of 27.53±22.04 m/decade in the present study. We infer that the present-day plant assemblages and community structure in the Himalaya is substantially different from the last century and is, therefore, in a state of flux under the impact of warming. The continued trend of warming is likely to result in ongoing elevational range contractions and eventually, species extinctions, particularly at mountaintops.

  14. Embracing Uncertainty: A Case Study Examination of How Climate Change is Shifting Water Utility Planning

    NASA Astrophysics Data System (ADS)

    Kaatz, L.

    2015-12-01

    Climate change has emerged as one of the greatest challenges facing water utilities' planning for the future, adding a new source and level of complexity that is forcing many agencies to re-examine their decision-making processes. A significant barrier for many agencies is figuring out how to consider highly uncertain climate information and move away from deterministic thinking to make climate-informed decisions. To provide water professionals with practical and relevant information, the Water Utility Climate Alliance teamed up with the American Water Works Association, in coordination with the Water Research Foundation and Association of Metropolitan Water Agencies, to develop a white paper sharing insights into how and why water agencies are modifying planning and decision-making processes. The 13 case studies presented illustrate the variety of ways in which utilities are incorporating climate change into planning, from immediate operational decisions, to capital planning and asset management, to long-term supply planning.

  15. Regional climate shifts caused by gradual global cooling in the Pliocene epoch.

    PubMed

    Ravelo, Ana Christina; Andreasen, Dyke H; Lyle, Mitchell; Olivarez Lyle, Annette; Wara, Michael W

    2004-05-20

    The Earth's climate has undergone a global transition over the past four million years, from warm conditions with global surface temperatures about 3 degrees C warmer than today, smaller ice sheets and higher sea levels to the current cooler conditions. Tectonic changes and their influence on ocean heat transport have been suggested as forcing factors for that transition, including the onset of significant Northern Hemisphere glaciation approximately 2.75 million years ago, but the ultimate causes for the climatic changes are still under debate. Here we compare climate records from high latitudes, subtropical regions and the tropics, indicating that the onset of large glacial/interglacial cycles did not coincide with a specific climate reorganization event at lower latitudes. The regional differences in the timing of cooling imply that global cooling was a gradual process, rather than the response to a single threshold or episodic event as previously suggested. We also find that high-latitude climate sensitivity to variations in solar heating increased gradually, culminating after cool tropical and subtropical upwelling conditions were established two million years ago. Our results suggest that mean low-latitude climate conditions can significantly influence global climate feedbacks.

  16. Water Resources and Supply Adaptation: A paradigm Shifting for Future Climate?

    EPA Science Inventory

    Climate change adds another layer of complexity in planning, engineering and management of water resources and urban water infrastructures. Yet our current practice is confined to the traditional approach that evaluates developmental scenarios and their sustainability mostly by a...

  17. Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Christien J.; Engelbrecht, Francois A.

    2016-01-01

    Potential changes in Köppen-Geiger climate zones over southern Africa (Africa south of 22 °S) under future climate change are investigated using an ensemble of high-resolution projections of a regional climate model. The projections are performed under the A2 scenario of the Special Report on Emission Scenarios (SRES), and changes are presented for those times in the future when the increase in global average surface temperature reaches thresholds of 1, 2, and 3 °C, relative to the present-day baseline climatology. Widespread shifts in climate regimes are projected, of which the southern and eastern expansion of the hot desert and hot steppe zones is the most prominent. From occupying 33.1 and 19.4 % of southern Africa under present-day climate, these regions are projected to occupy between 47.3 and 59.7 % (hot desert zone) and 24.9 and 29.9 % (hot steppe zone) of the region in a future world where the global temperature has increased by 3 °C. The cold desert and cold steppe zones are projected to decrease correspondingly. The temperate regions of eastern South Africa, the Cape south coast, and winter rainfall region of the southwestern Cape are also projected to contract. An expansion of the hot steppe zone into the cold steppe and temperate zones may favor the intrusion of trees (and therefore the savanna biome) into the most pristine grasslands of southern Africa. However, the correlative climate-vegetation approach of using projected changes in Köppen-Geiger zones to infer future vegetation patterns is of limited value in the savanna complex of southern Africa, where complex feedbacks occur between carbon dioxide (CO2) concentrations, trees, C4 grasses, fire, and climate. The present-day temperate Cape Fynbos regime may come under increasing pressure as the encompassing temperate zone is invaded mainly from the east by the hot steppe climate regime under climate change, with the incidence of Fynbos fires also becoming more likely in a generally warmer and

  18. Tropical amphibians in shifting thermal landscapes under land-use and climate change.

    PubMed

    Nowakowski, A Justin; Watling, James I; Whitfield, Steven M; Todd, Brian D; Kurz, David J; Donnelly, Maureen A

    2017-02-01

    Land-cover and climate change are both expected to alter species distributions and contribute to future biodiversity loss. However, the combined effects of land-cover and climate change on assemblages, especially at the landscape scale, remain understudied. Lowland tropical amphibians may be particularly susceptible to changes in land cover and climate warming because many species have narrow thermal safety margins resulting from air and body temperatures that are close to their critical thermal maxima (CTmax ). We examined how changing thermal landscapes may alter the area of thermally suitable habitat (TSH) for tropical amphibians. We measured microclimates in 6 land-cover types and CTmax of 16 frog species in lowland northeastern Costa Rica. We used a biophysical model to estimate core body temperatures of frogs exposed to habitat-specific microclimates while accounting for evaporative cooling and behavior. Thermally suitable habitat area was estimated as the portion of the landscape where species CTmax exceeded their habitat-specific maximum body temperatures. We projected changes in TSH area 80 years into the future as a function of land-cover change only, climate change only, and combinations of land-cover and climate-change scenarios representing low and moderate rates of change. Projected decreases in TSH area ranged from 16% under low emissions and reduced forest loss to 30% under moderate emissions and business-as-usual land-cover change. Under a moderate emissions scenario (A1B), climate change alone contributed to 1.7- to 4.5-fold greater losses in TSH area than land-cover change only, suggesting that future decreases in TSH from climate change may outpace structural habitat loss. Forest-restricted species had lower mean CTmax than species that occurred in altered habitats, indicating that thermal tolerances will likely shape assemblages in changing thermal landscapes. In the face of ongoing land-cover and climate change, it will be critical to consider

  19. Subtask 7.3 - The Socioeconomic Impact of Climate Shifts in the Northern Great Plains

    SciTech Connect

    Jaroslav Solc; Tera Buckley; Troy Simonsen

    2007-12-31

    The Energy & Environmental Research Center (EERC) evaluated the water demand response/vulnerability to climate change factors of regional economic sectors in the northern Great Plains. Regardless of the cause of climatic trends currently observed, the research focused on practical evaluation of climate change impact, using water availability as a primary factor controlling long-term regional economic sustainability. Project results suggest that the Upper Missouri, Red River, and Upper Mississippi Watersheds exhibit analogous response to climate change, i.e., extended drought influences water availability in the entire region. The modified trend suggests that the next period for which the Red River Basin can expect a high probability of below normal precipitation will occur before 2050. Agriculture is the most sensitive economic sector in the region; however, analyses confirmed relative adaptability to changing conditions. The price of agricultural commodities is not a good indicator of the economic impact of climate change because production and price do not correlate and are subject to frequent and irregular government intervention. Project results confirm that high water demand in the primary economic sectors makes the regional economy extremely vulnerable to climatic extremes, with a similar response over the entire region. Without conservation-based water management policies, long-term periods of drought will limit socioeconomic development in the region and may threaten even the sustainability of current conditions.

  20. Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes.

    PubMed

    Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L

    2016-01-01

    Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat

  1. Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes

    PubMed Central

    Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L.

    2016-01-01

    Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, “indigenous food systems.” Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate

  2. Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin

    USGS Publications Warehouse

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  3. Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin

    NASA Astrophysics Data System (ADS)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-11-01

    Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  4. Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models.

    PubMed

    Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin

    2010-09-01

    After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.

  5. Forecasting range expansion into ecological traps: climate-mediated shifts in sea turtle nesting beaches and human development.

    PubMed

    Pike, David A

    2013-10-01

    Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies.

  6. Combining Population Structure with Historic Abitoic Processes to Better Understand Species and Community Range Shifts in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Graham, N. M.

    2015-12-01

    The evolution and speciation of plants is directly tied to the environment as the constrained stages of dispersal creates strong genetic differentiation among populations. This can result in differing genetic patterns between nuclear and chloroplast loci, where genes are inherited differently and dispersed via separate vectors. By developing distribution models based on genetic patterns found within a species, it is possible to begin understanding the influence of historic geomorphic and/or climatic processes on population evolution. If genetic patterns of the current range correlate with specific patterns of climate variability within the Pleistocene, it is possible that future shifts in species distribution in response to climate change can be more accurately modelled due to the historic signature that is found within inherited genes. Preliminary genetic analyses of Linanthus dichotomus, an annual herb distributed across California, suggests that the current taxonomic treatment does not accurately depict how this species is evolving. Genetic patterns of chloroplast genes suggest that populations are more correlated with biogeography than what the current nomenclature states. Additionally, chloroplast and nuclear genes show discrepancies in the dispersal across the landscape, suggesting pollinator driven gene flow overcoming seed dispersal boundaries. By comparing discrepancies between pollinator and seed induced gene flow we may be able to gain insight into historical pollinator communities within the Pleistocene. This information can then be applied to projected climate models to more accurately understand how species and/or communities will respond to a changing environment.

  7. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes.

    PubMed

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-11-11

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome.Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs.Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources.

  8. Climate-change-related shifts in annual phenology of a temperate snake during the last 20 years

    NASA Astrophysics Data System (ADS)

    Rugiero, Lorenzo; Milana, Giuliano; Petrozzi, Fabio; Capula, Massimo; Luiselli, Luca

    2013-08-01

    Global warming is thought to be a far-reaching threat to biodiversity, and is supposed to influence several aspects of the ecology of animals. Global warming should influence especially the ectotherm vertebrates, which depend directly from the external thermal conditions for their activities and performances. Here, we analyze the changes in phenology which have occurred in the last 20 years in a marked population of vipers, Vipera aspis, and we try to relate these changes with the intervening climatic changes. We analyzed three metrics of viper's annual phenology: (i) annual onset of above-ground activity (hereby AOA); (ii) annual onset of feeding period (AOF); (iii) annual onset of the hibernation (AOH). The annual variations of these three phenological metrics were correlated to five variables of climatic data: (1) mean annual air temperature, (2) mean February air temperature, (3) mean July air temperature, (4) yearly number of rainy days, and (5) yearly number of days with rainstorm. We observed a statistically significant reduction of AOA values from >28 days between 1987 and 1997, to approximately 20 days from 1998 to 2011, with a similar statistical trend also found for AOF values. The number of days of delay in entering hibernation increased significantly since 1998. Three sets of relationships between climatic variables and metrics of viper phenology were statistically significant, i.e. the correlation (i) between annual mean temperature and AOA (negative), (ii) between annual mean temperature and AOF (negative), and (iii) between annual mean temperature and AOH (positive). The percent of field days (between 20th February and 20th March) with no viper observed also decreased significantly over the years. Our study showed that three different traits of the annual phenology of a Mediterranean snake are shifting in the 20+ years of monitoring, and that there is correlational evidence that these shifts are linked to intervening climate change.

  9. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes

    PubMed Central

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. PMID:26560341

  10. Climate drives shifts in grass reproductive phenology across the western USA.

    PubMed

    Munson, Seth M; Long, A Lexine

    2017-03-01

    The capacity of grass species to alter their reproductive timing across space and through time can indicate their ability to cope with environmental variability and help predict their future performance under climate change. We determined the long-term (1895-2013) relationship between flowering times of grass species and climate in space and time using herbarium records across ecoregions of the western USA. There was widespread concordance of C3 grasses accelerating flowering time and general delays for C4 grasses with increasing mean annual temperature, with the largest changes for annuals and individuals occurring in more northerly, wetter ecoregions. Flowering time was delayed for most grass species with increasing mean annual precipitation across space, while phenology-precipitation relationships through time were more mixed. Our results suggest that the phenology of most grass species has the capacity to respond to increases in temperature and altered precipitation expected with climate change, but weak relationships for some species in time suggest that climate tracking via migration or adaptation may be required. Divergence in phenological responses among grass functional types, species, and ecoregions suggests that climate change will have unequal effects across the western USA.

  11. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    USGS Publications Warehouse

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. While there has been long-standing concern over impacts of 5 physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is also increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, USA, we examined the effects of 10 years of experimental warming and altered precipitation (in full-factorial design) on biocrust communities, and compared the effects of altered climate with those of long-term physical 10 disturbance (>10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increased cyanobacteria cover, with more variable effects 15 on lichens. While the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed by the climate treatments used in our study.

  12. Surveillance tools and strategies for animal diseases in a shifting climate context.

    PubMed

    Salman, Mo D

    2013-12-01

    Animal disease surveillance is watching an animal population closely to determine if a specific disease or a group of diseases makes an incursion so that a prior plan of action can be implemented. The purpose of this paper is to review existing tools and techniques for an animal disease-surveillance system that can incorporate the monitoring of climate factors and related data to enhance understanding of disease epidemiology. In recent decades, there has been interest in building information systems by combining various data sources for different purposes. Within the field of animal health, there have only been limited attempts at the integration of surveillance data with relevant climate conditions. Statistical techniques for data integration, however, have been explored and used by several disciplines. Clearly the application of available techniques for linking climate data with surveillance systems should be explored with the aim of facilitating prevention, mitigation, and adaptation responses in the surveillance setting around climate change and animal disease risks. Drawing on this wider body of work, three of the available techniques that can be utilized in the analysis of surveillance data with the available climate data sets are reviewed.

  13. Climate drives shifts in grass reproductive phenology across the western USA

    USGS Publications Warehouse

    Munson, Seth M.; Long, A. Lexine

    2016-01-01

    The capacity of grass species to alter their reproductive timing across space and through time can indicate their ability to cope with environmental variability and help predict their future performance under climate change.We determined the long-term (1895–2013) relationship between flowering times of grass species and climate in space and time using herbarium records across ecoregions of the western USA.There was widespread concordance of C3 grasses accelerating flowering time and general delays for C4 grasses with increasing mean annual temperature, with the largest changes for annuals and individuals occurring in more northerly, wetter ecoregions. Flowering time was delayed for most grass species with increasing mean annual precipitation across space, while phenology–precipitation relationships through time were more mixed.Our results suggest that the phenology of most grass species has the capacity to respond to increases in temperature and altered precipitation expected with climate change, but weak relationships for some species in time suggest that climate tracking via migration or adaptation may be required. Divergence in phenological responses among grass functional types, species, and ecoregions suggests that climate change will have unequal effects across the western USA.

  14. Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems

    PubMed Central

    Russell, Bayden D.; Harley, Christopher D. G.; Wernberg, Thomas; Mieszkowska, Nova; Widdicombe, Stephen; Hall-Spencer, Jason M.; Connell, Sean D.

    2012-01-01

    Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates. PMID:21900317

  15. Projected Shifts in Köppen Climate Zones over China and Their Temporal Evolution in CMIP5 Multi-Model Simulations

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Chan, D.; Jiang, G.; Dai, X.

    2014-12-01

    This study uses CMIP5 multi-model ensemble projections to calculate Köppen-Geiger climate classifications and changes in China from 1990 to 2100. The projected climate types would shift toward warmer climate types from current climate distribution, changes are characterized by pronounced retreat of alpine (ET) climate type on the Tibetan Plateau, disappearance of sub-polar continental winter dry (Dwc) over Northeast China, expansion of temperate (C-type) climate over eastern China. Projected climate shifts are time-dependent. Large climate shifts are already detected in transition regions (7.5% of total land area) around 2010, including rapid replacement of mixed forest (Dwb) by deciduous forest (Dwa) over Northeast China and strong shrinkage of ET on the Tibetan Plateau, weak northward expansion of subtropical winter-dry (Cwa) over eastern China and contract of oceanic climate (Cwb) in Southwest China. Reduction of Dwb in Northeast China and ET on the Tibetan Plateau accelerates substantially during 2010-2030 under all scenarios. Half of the total area occupied by ET in 1990 is projected to be redistributed by 2040. Under the RCP 8.5 scenario, Dwc over Northeast China disappears by 2040-2050, ET on the Tibetan Plateaus disappears by 2070, shift of subtropical humid (Cfa) climate to Cwa over large parts of southeastern China occurs after 2050 due to decreasing wintertime precipitation, and the coverage of C-type climate increases about 7.6% by 2090. Under the RCP2.6, 4.5, 6 and 8.5 emissions pathways, climate types in 22.8%, 39.0%, 46.4% and 52.6% of China's land area change by 2100, primarily following simulated warming changes.

  16. Climate change and potential reversal of regime shifts in desrt ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, regime shifts from grasslands to shrublands (i.e., desertification) in arid and semiarid ecosystems are thought to be irreversible, similar to state changes in other ecosystems. The consequences of desertification, including loss of soil and nutrients to wind and water erosion, reductions ...

  17. PREDICTING CLIMATE-INDUCED GEOGRAPHIC RANGE SHIFTS FOR MAMMALS IN THE WESTERN HEMISPHERE

    EPA Science Inventory

    In order to manage wildlife and conserve biodiversity, it is critical that we understand the potential impacts of climate change on species distributions. I used six different modeling approaches to predict the future distributions of 100 mammal species in the western hemisphere...

  18. Predicted habitat shifts of Pacific top predators in a changing climate

    NASA Astrophysics Data System (ADS)

    Hazen, Elliott L.; Jorgensen, Salvador; Rykaczewski, Ryan R.; Bograd, Steven J.; Foley, David G.; Jonsen, Ian D.; Shaffer, Scott A.; Dunne, John P.; Costa, Daniel P.; Crowder, Larry B.; Block, Barbara A.

    2013-03-01

    To manage marine ecosystems proactively, it is important to identify species at risk and habitats critical for conservation. Climate change scenarios have predicted an average sea surface temperature (SST) rise of 1-6°C by 2100 (refs , ), which could affect the distribution and habitat of many marine species. Here we examine top predator distribution and diversity in the light of climate change using a database of 4,300 electronic tags deployed on 23 marine species from the Tagging of Pacific Predators project, and output from a global climate model to 2100. On the basis of models of observed species distribution as a function of SST, chlorophyll a and bathymetry, we project changes in species-specific core habitat and basin-scale patterns of biodiversity. We predict up to a 35% change in core habitat for some species, significant differences in rates and patterns of habitat change across guilds, and a substantial northward displacement of biodiversity across the North Pacific. For already stressed species, increased migration times and loss of pelagic habitat could exacerbate population declines or inhibit recovery. The impending effects of climate change stress the urgency of adaptively managing ecosystems facing multiple threats.

  19. Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

    SciTech Connect

    Pfletschinger, H.; Prömmel, K.; Schüth, C.; Herbst, M.; Engelhardt, I.

    2014-01-01

    Vadose zone water fluxes in arid settings are investigated regarding their sensitivity to hydraulic soil parameters and meteorological data. The study is based on the inverse modeling of highly defined soil column experiments and subsequent scenario modeling comparing different climate projections for a defined arid region. In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deep vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions.

  20. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation.

    PubMed

    Chen, Tianyu; Robinson, Laura F; Burke, Andrea; Southon, John; Spooner, Peter; Morris, Paul J; Ng, Hong Chin

    2015-09-25

    Antarctic ice-core data reveal that the atmosphere experienced abrupt centennial increases in CO2 concentration during the last deglaciation (~18 thousand to 11 thousand years ago). Establishing the role of ocean circulation in these changes requires high-resolution, accurately dated marine records. Here, we report radiocarbon data from uranium-thorium-dated deep-sea corals in the Equatorial Atlantic and Drake Passage over the past 25,000 years. Two major deglacial radiocarbon shifts occurred in phase with centennial atmospheric CO2 rises at 14.8 thousand and 11.7 thousand years ago. We interpret these radiocarbon-enriched signals to represent two short-lived (less than 500 years) "overshoot" events, with Atlantic meridional overturning stronger than that of the modern era. These results provide compelling evidence for a close coupling of ocean circulation and centennial climate events during the last deglaciation.

  1. Trends in Agricultural Growing Seasons Due to Climatic Shifts in Africa: Implications for Food Security

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; de Beurs, K.; Vrieling, A.

    2009-12-01

    Some of the most profound and direct impacts of climate change over the next few decades will be on agricultural production and the broader food system. Africa is one of the regions most vulnerable to these impacts due to their under developed economies and the predominance of small farmer, subsistence agriculture. This paper focuses on understanding variations in agricultural production due to rainfall and temperature fluctuations, which are a primary cause of food insecurity on the continent in Africa. A retrospective analysis on the relationship between climate indices and environmental productivity may provide the tools to better manage agricultural investment on the African continent. This paper will present an analysis of the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), and the Multivariate ENSO Index (MEI). We explore spatial relationships between agricultural growing conditions as measured by the NDVI and the three climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The results show that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The talk will conclude with analysis which will put these climate-related factors into perspective, as just one element in the overall food security of the region. Agricultural investment policies, the functioning of markets and trade, and an increasing population are at least as important for the food security on the continent. Sustainability of livelihoods will depend both on the ability of vulnerable populations to adapt to changing growing conditions and to compete on the global market for food.

  2. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.

    PubMed

    Asch, Rebecca G

    2015-07-28

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends.

  3. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem

    PubMed Central

    Asch, Rebecca G.

    2015-01-01

    Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416

  4. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia.

    PubMed

    González, Camila; Paz, Andrea; Ferro, Cristina

    2014-01-01

    Visceral leishmaniasis (VL) is caused by the trypanosomatid parasite Leishmania infantum (=Leishmania chagasi), and is epidemiologically relevant due to its wide geographic distribution, the number of annual cases reported and the increase in its co-infection with HIV. Two vector species have been incriminated in the Americas: Lutzomyia longipalpis and Lutzomyia evansi. In Colombia, L. longipalpis is distributed along the Magdalena River Valley while L. evansi is only found in the northern part of the Country. Regarding the epidemiology of the disease, in Colombia the incidence of VL has decreased over the last few years without any intervention being implemented. Additionally, changes in transmission cycles have been reported with urban transmission occurring in the Caribbean Coast. In Europe and North America climate change seems to be driving a latitudinal shift of leishmaniasis transmission. Here, we explored the spatial distribution of the two known vector species of L. infantum in Colombia and projected its future distribution into climate change scenarios to establish the expansion potential of the disease. An updated database including L. longipalpis and L. evansi collection records from Colombia was compiled. Ecological niche models were performed for each species using the Maxent software and 13 Worldclim bioclimatic coverages. Projections were made for the pessimistic CSIRO A2 scenario, which predicts the higher increase in temperature due to non-emission reduction, and the optimistic Hadley B2 Scenario predicting the minimum increase in temperature. The database contained 23 records for L. evansi and 39 records for L. longipalpis, distributed along the Magdalena River Valley and the Caribbean Coast, where the potential distribution areas of both species were also predicted by Maxent. Climate change projections showed a general overall reduction in the spatial distribution of the two vector species, promoting a shift in altitudinal distribution for L

  5. Effects of Interannual Climate Variability on Water Availability and Productivity in Capoeira and Crops Under Traditional and Alternative Shifting Cultivation

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Sa, Tatiana D. A.; Carvalho, Claudio J. R.; Potter, Christopher S.; Wickel, Albert J.; Brienza, Silvio, Jr.; Kato, Maria doSocorro A.; Kato, Osvaldo; Brass, James (Technical Monitor)

    2002-01-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of capoeira. is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Nino events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and agriculture more resilient to the effects of agricultural pressures and drought through (1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and (2) greater rooting depth of trees planted for fallow improvement. This experimental practice (moto mechanized chop-and-mulch with fallow improvement) has resulted increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira and

  6. Parameterizing turbulence over abrupt topography

    NASA Astrophysics Data System (ADS)

    Klymak, Jody

    2016-11-01

    Stratified flow over abrupt topography generates a spectrum of propagating internal waves at large scales, and non-linear overturning breaking waves at small scales. For oscillating flows, the large scale waves propagate away as internal tides, for steady flows the large-scale waves propagate away as standing "columnar modes". At small-scales, the breaking waves appear to be similar for either oscillating or steady flows, so long as in the oscillating case the topography is significantly steeper than the internal tide angle of propagation. The size and energy lost to the breaking waves can be predicted relatively well from assuming that internal modes that propagate horizontally more slowly than the barotropic internal tide speed are arrested and their energy goes to turbulence. This leads to a recipe for dissipation of internal tides at abrupt topography that is quite robust for both the local internal tide generation problem (barotropic forcing) and for the scattering problem (internal tides incident on abrupt topography). Limitations arise when linear generation models break down, an example of which is interference between two ridges. A single "super-critical" ridge is well-modeled by a single knife-edge topography, regardless of its actual shape, but two supercritical ridges in close proximity demonstrate interference of the high modes that makes knife-edfe approximations invalid. Future direction of this research will be to use more complicated linear models to estimate the local dissipation. Of course, despite the large local dissipation, many ridges radiate most of their energy into the deep ocean, so tracking this low-mode radiated energy is very important, particularly as it means dissipation parameterizations in the open ocean due to these sinks from the surface tide cannot be parameterized locally to where they are lost from the surface tide, but instead lead to non-local parameterizations. US Office of Naval Research; Canadian National Science and

  7. Global vegetation model diversity and the risks of climate-driven ecosystem shifts

    SciTech Connect

    Bond-Lamberty, Benjamin

    2013-11-08

    Climate change is modifying global biogeochemical cycles, and is expected to exert increasingly large effects in the future. How these changes will in turn affect and interact with the structure and function of particular ecosystems is unclear, however, both because of scientific uncertainties and the very diversity of global vegetation models in use. Writing in Environmental Research Letters, Warszawski et al. (1) aggregate results from a group of models, across a range of emissions scenarios and climate data, to investigate these risks. Although the models frequently disagree about which specific regions are at risk, they consistently predict a greater chance of ecosystem restructuring with more warming; this risk roughly doubles between 2 and 3 °C increases in global mean temperature. The innovative work of Warszawski et al. represents an important first step towards fully consistent multi-model, multi-scenario assessments of the future risks to global ecosystems.

  8. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    PubMed

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a

  9. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change.

    PubMed

    Valladares, Fernando; Matesanz, Silvia; Guilhaumon, François; Araújo, Miguel B; Balaguer, Luis; Benito-Garzón, Marta; Cornwell, Will; Gianoli, Ernesto; van Kleunen, Mark; Naya, Daniel E; Nicotra, Adrienne B; Poorter, Hendrik; Zavala, Miguel A

    2014-11-01

    Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation.

  10. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM

    PubMed Central

    Zhu, Liping; Lü, Xinmiao; Wang, Junbo; Peng, Ping; Kasper, Thomas; Daut, Gerhard; Haberzettl, Torsten; Frenzel, Peter; Li, Quan; Yang, Ruimin; Schwalb, Antje; Mäusbacher, Roland

    2015-01-01

    The Tibetan Plateau (TP) is primarily influenced by the northern hemispheric middle latitude Westerlies and the Indian summer monsoon (ISM). The extent, long-distance effects and potential long-term changes of these two atmospheric circulations are not yet fully understood. Here, we analyse modern airborne pollen in a transition zone of seasonally alternating dominance of the Westerlies and the ISM to develop a pollen discrimination index (PDI) that allows us to distinguish between the intensities of the two circulation systems. This index is applied to interpret a continuous lacustrine sedimentary record from Lake Nam Co covering the past 24 cal kyr BP to investigate long-term variations in the atmospheric circulation systems. Climatic variations on the central TP widely correspond to those of the North Atlantic (NA) realm, but are controlled through different mechanisms resulting from the changing climatic conditions since the Last Glacial Maximum (LGM). During the LGM, until 16.5 cal kyr BP, the TP was dominated by the Westerlies. After 16.5 cal kyr BP, the climatic conditions were mainly controlled by the ISM. From 11.6 to 9 cal kyr BP, the TP was exposed to enhanced solar radiation at the low latitudes, resulting in greater water availability. PMID:26294226

  11. Tropically-driven climate shifts in southwestern Europe during MIS 19, a low eccentricity interglacial

    NASA Astrophysics Data System (ADS)

    Sánchez Goñi, M. F.; Rodrigues, T.; Hodell, D. A.; Polanco-Martínez, J. M.; Alonso-García, M.; Hernández-Almeida, I.; Desprat, S.; Ferretti, P.

    2016-08-01

    The relative roles of high- versus low-latitude forcing of millennial-scale climate variability are still not well understood. Here we present terrestrial-marine climate profiles from the southwestern Iberian margin, a region particularly affected by precession, that show millennial climate oscillations related to a nonlinear response to the Earth's precession cycle during Marine Isotope Stage (MIS) 19. MIS 19 has been considered the best analogue to our present interglacial from an astronomical point of view due to the reduced eccentricity centred at 785 ka. In our records, seven millennial-scale forest contractions punctuated MIS 19 superimposed to two orbitally-driven Mediterranean forest expansions. In contrast to our present interglacial, we evidence for the first time low latitude-driven 5000-yr cycles of drying and cooling in the western Mediterranean region, along with warmth in the subtropical gyre related to the fourth harmonic of precession. These cycles indicate repeated intensification of North Atlantic meridional moisture transport that along with decrease in boreal summer insolation triggered ice growth and may have contributed to the glacial inception, at ∼774 ka. The freshwater fluxes during MIS 19ab amplified the cooling events in the North Atlantic promoting further cooling and leading to MIS 18 glaciation. The discrepancy between the dominant cyclicity observed during MIS 1, 2500-yr, and that of MIS 19, 5000-yr, challenges the similar duration of the Holocene and MIS 19c interglacials under natural boundary conditions.

  12. Projected shifts in Köppen climate zones over China and their temporal evolution in CMIP5 multi-model simulations

    NASA Astrophysics Data System (ADS)

    Chan, Duo; Wu, Qigang; Jiang, Guixiang; Dai, Xianglin

    2016-03-01

    Previous studies have examined the projected climate types in China by 2100. This study identified the emergence time of climate shifts at a 1◦ scale over China from 1990 to 2100 and investigated the temporal evolution of Köppen-Geiger climate classifications computed from CMIP5 multi-model outputs. Climate shifts were detected in transition regions (7%-8% of China's land area) by 2010, including rapid replacement of mixed forest (Dwb) by deciduous forest (Dwa) over Northeast China, strong shrinkage of alpine climate type (ET) on the Tibetan Plateau, weak northward expansion of subtropical winterdry climate (Cwa) over Southeast China, and contraction of oceanic climate (Cwb) in Southwest China. Under all future RCP (Representative Concentration Pathway) scenarios, the reduction of Dwb in Northeast China and ET on the Tibetan Plateau was projected to accelerate substantially during 2010-30, and half of the total area occupied by ET in 1990 was projected to be redistributed by 2040. Under the most severe scenario (RCP8.5), sub-polar continental winter dry climate over Northeast China would disappear by 2040-50, ET on the Tibetan Plateau would disappear by 2070, and the climate types in 35.9% and 50.8% of China's land area would change by 2050 and 2100, respectively. The results presented in this paper indicate imperative impacts of anthropogenic climate change on China's ecoregions in future decades.

  13. Climate regime shifts in paleoclimate time series from the Yucatán Peninsula: from the Preclassic to Classic period

    NASA Astrophysics Data System (ADS)

    Polanco Martínez, Josue M.; Medina-Elizalde, Martin; Burns, Stephen J.; Jiang, Xiuyang; Shen, Chuan-Chou

    2015-04-01

    It has been widely accepted by the paleoclimate and archaeology communities that extreme climate events (especially droughts) and past climate change played an important role in the cultural changes that occurred in at least some parts of the Maya Lowlands, from the Pre-Classic (2000 BC to 250 AD) to Post-Classic periods (1000 to 1521 AD) [1, 2]. In particular, a large number of studies suggest that the decline of the Maya civilization in the Terminal Classic Period was greatly influenced by prolonged severe drought events that probably triggered significant societal disruptions [1, 3, 4, 5]. Going further on these issues, the aim of this work is to detect climate regime shifts in several paleoclimate time series from the Yucatán Peninsula (México) that have been used as rainfall proxies [3, 5, 6, 7]. In order to extract information from the paleoclimate data studied, we have used a change point method [8] as implemented in the R package strucchange, as well as the RAMFIT method [9]. The preliminary results show for all the records analysed a prominent regime shift between 400 to 200 BCE (from a noticeable increase to a remarkable fall in precipitation), which is strongest in the recently obtained stalagmite (Itzamna) delta18-O precipitation record [7]. References [1] Gunn, J. D., Matheny, R. T., Folan, W. J., 2002. Climate-change studies in the Maya area. Ancient Mesoamerica, 13(01), 79-84. [2] Yaeger, J., Hodell, D. A., 2008. The collapse of Maya civilization: assessing the interaction of culture, climate, and environment. El Niño, Catastrophism, and Culture Change in Ancient America, 197-251. [3] Hodell, D. A., Curtis, J. H., Brenner, M., 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature, 375(6530), 391-394. [4] Aimers, J., Hodell, D., 2011. Societal collapse: Drought and the Maya. Nature 479(7371), 44-45 (2011). [5] Medina-Elizalde, M., Rohling, E. J., 2012. Collapse of Classic Maya civilization related to modest reduction

  14. Towards Greenland Glaciation: cumulative or abrupt transition?

    NASA Astrophysics Data System (ADS)

    Tan, Ning; Dumas, Christophe; Ladant, Jean-Baptiste; Ramstein, Gilles; Contoux, Camille

    2016-04-01

    During the mid-Pliocene warming period (3-3.3 Ma BP), global annual mean temperature is warmer by 2-3 degree than pre-industrial. Greenland ice sheet volume is supposed to be a 50% reduction compared to nowadays [Haywood et al. 2010]. Around 2.7-2.6 Ma BP, just ~ 500 kyr after the warming peak of mid-Pliocene, there is already full Greenland Glaciation [Lunt et al. 2008]. How does Greenland ice sheet evolve from a half size to a glaciation level during 3 Ma - 2.5 Ma? Data show that there is a decreasing trend of atmospheric CO2 concentration from 3 Ma to 2.5 Ma [Seki et al.2010; Bartoli et al. 2011; Martinez et al. 2015]. However, a recent study [Contoux et al. 2015] suggests that a lowering of CO2 is not sufficient to initiate a perennial glaciation on Greenland and must be combined to low summer insolation, to preserve the ice sheet during insolation maximum, suggesting a cumulative process. In order to diagnose whether the ice sheet build-up is an abrupt event or a cumulative process, we carry on, for the first time, a transient simulation of climate and ice sheet evolutions from 3 Ma to 2.5 Ma. This strategy enables to investigate waxing and waning of the ice sheet during several orbital cycles. To reach this goal, we use a tri-dimensional interpolation method designed by Ladant et al. (2014) which combines the evolution of CO2 concentration, orbital parameters and Greenland ice sheet sizes in an off-line way by interpolating snapshots simulations. Thanks to this new method, we can build a transient like simulation through asynchronous coupling between GCM and ice sheet model. With this method, we may consistently answer the question of the build-up of Greenland: abrupt or cumulative process.

  15. Shift of thermokarst lakes from methane source to climate-cooling carbon sink

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, M.; Anthony, P.; Chapin, T.; Finlay, J. C.; Mack, M. C.; Davydov, S. P.; Frenzel, P.; Frolking, S. E.

    2014-12-01

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. While methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial time scales. With the help of an atmospheric perturbation model we assess thermokarst-lake carbon feedbacks to climate and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5000 years ago. High rates of Holocene carbon accumulation in lake sediments (47 ± 10 g C m-2 a-1, mean ± SE, n=20 lakes) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 Pg of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 percent. The carbon in perennially-frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears, potentially negating the climate stabilization provided by

  16. Climate-driven regime shifts in the biological communities of arctic lakes

    PubMed Central

    Smol, John P.; Wolfe, Alexander P.; Birks, H. John B.; Douglas, Marianne S. V.; Jones, Vivienne J.; Korhola, Atte; Pienitz, Reinhard; Rühland, Kathleen; Sorvari, Sanna; Antoniades, Dermot; Brooks, Stephen J.; Fallu, Marie-Andrée; Hughes, Mike; Keatley, Bronwyn E.; Laing, Tamsin E.; Michelutti, Neal; Nazarova, Larisa; Nyman, Marjut; Paterson, Andrew M.; Perren, Bianca; Quinlan, Roberto; Rautio, Milla; Saulnier-Talbot, Émilie; Siitonen, Susanna; Solovieva, Nadia; Weckström, Jan

    2005-01-01

    Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared. PMID:15738395

  17. Impact of longer-term modest climate shifts on architecture of high-frequency sequences (Cyclothems), Pennsylvanian of midcontinent U.S.A

    USGS Publications Warehouse

    Feldman, H.R.; Franseen, E.K.; Joeckel, R.M.; Heckel, P.H.

    2005-01-01

    Pennsylvanian glacioeustatic cyclothems exposed in Kansas and adjacent areas provide a unique opportunity to test models of the impact of relative sea level and climate on stratal architecture. A succession of eight of these high-frequency sequences, traced along dip for 500 km, reveal that modest climate shifts from relatively dry-seasonal to relatively wet-seasonal with a duration of several sequences (???600,000 to 1 million years) had a dominant impact on facies, sediment dispersal patterns, and sequence architecture. The climate shifts documented herein are intermediate, both in magnitude and duration, between previously documented longer-term climate shifts throughout much of the Pennsylvanian and shorter-term shifts described within individual sequences. Climate indicators are best preserved at sequence boundaries and in incised-valley fills of the lowstand systems tracts (LST). Relatively drier climate indicators include high-chroma paleosols, typically with pedogenic carbonates, and plant assemblages that are dominated by gymnosperms, mostly xerophytic walchian conifers. The associated valleys are small (4 km wide and >20 m deep), and dominated by quartz sandstones derived from distant source areas, reflecting large drainage networks. Transgressive systems tracts (TST) in all eight sequences gen erally are characterized by thin, extensive limestones and thin marine shales, suggesting that the dominant control on TST facies distribution was the sequestration of siliciclastic sediment in updip positions. Highstand systems tracts (HST) were significantly impacted by the intermediate-scale climate cycle in that HSTs from relatively drier climates consist of thin marine shales overlain by extensive, thick regressive limestones, whereas HSTs from relatively wetter climates are dominated by thick marine shales. Previously documented relative sea-level changes do not track the climate cycles, indicating that climate played a role distinct from that of relative sea

  18. Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes

    USGS Publications Warehouse

    Stone, Jeffery R.; Saros, Jasmine E.; Pederson, Gregory T.

    2016-01-01

    Large-scale atmospheric pressure centers, such as the Aleutian and Icelandic Low, have a demonstrated relationship with physical lake characteristics in contemporary monitoring studies, but the responses to these phenomena are rarely observed in lake records. We observe coherent changes in the stratification patterns of three deep (>30 m) lakes inferred from fossil diatom assemblages as a response to shifts in the location and intensity of the Aleutian Low and compare these changes with similar long-term changes observed in the δ18O record from the Yukon. Specifically, these records indicate that between 3.2 and 1.4 ka, the Aleutian Low shifted westward, resulting in an increased frequency of storm tracks across the Pacific Northwest during winter and spring. This change in atmospheric circulation ultimately produced deeper mixing in the upper waters of these three lake systems. Enhanced stratification between 4.5 and 3.3 ka and from 1.3 ka to present suggests a strengthened Aleutian Low and more meridional circulation.

  19. Climate Change and Eutrophication Induced Shifts in Northern Summer Plankton Communities

    PubMed Central

    Suikkanen, Sanna; Pulina, Silvia; Engström-Öst, Jonna; Lehtiniemi, Maiju; Lehtinen, Sirpa; Brutemark, Andreas

    2013-01-01

    Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades. PMID:23776676

  20. Climate change and eutrophication induced shifts in northern summer plankton communities.

    PubMed

    Suikkanen, Sanna; Pulina, Silvia; Engström-Öst, Jonna; Lehtiniemi, Maiju; Lehtinen, Sirpa; Brutemark, Andreas

    2013-01-01

    Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades.

  1. Expected shifts in Fusarium species' composition on cereal grain in Northern Europe due to climatic change.

    PubMed

    Parikka, P; Hakala, K; Tiilikkala, K

    2012-01-01

    In Northern Europe, changes in climate may result in better growing conditions for many crops. However, the expected warmer and more humid conditions are favourable for Fusarium head blight infections on cereals. The Fusarium species prevalent in Nordic areas to date are the same as in Central Europe: F. avenaceum, F. culmorum, F. graminearum and F. poae. The prevalence of F. graminearum in cereal grain has already increased in Central Europe and is likely to increase in the North due to the expected changes in weather conditions, reduced tillage and the predicted increase in maize cultivation in Nordic countries. The possible weather extremes predispose cereals to Fusarium infections by increasing the populations of insect pests injuring plants. Adverse conditions may even create conditions suitable for F. subglutinans or F. verticilloides to infect maize and possibly other cereals in rotation in southern parts of Scandinavia. The importance of the species that infect in relatively dry conditions, F. langsethiae and F. poae, may also increase on winter cereals which are predicted to be more prevalent in future farming. If the number of crop species cultivated will increase and non-cereal crops are included in rotations effects of reduced tillage on Fusarium infections in grain could be limited. The predicted changes in climate towards 2050 are expected to slightly change Fusarium species composition in Northern Europe. An increase in F. graminearum and possibly the invasion of northern parts of Central Europe and Denmark by fumonisin producers is expected.

  2. Shifting mountain snow patterns in a changing climate from remote sensing retrieval.

    PubMed

    Dedieu, J P; Lessard-Fontaine, A; Ravazzani, G; Cremonese, E; Shalpykova, G; Beniston, M

    2014-09-15

    Observed climate change has already led to a wide range of impacts on environmental systems and society. In this context, many mountain regions seem to be particularly sensitive to a changing climate, through increases in temperature coupled with changes in precipitation regimes that are often larger than the global average (EEA, 2012). In mid-latitude mountains, these driving factors strongly influence the variability of the mountain snow-pack, through a decrease in seasonal reserves and earlier melting of the snow pack. These in turn impact on hydrological systems in different watersheds and, ultimately, have consequences for water management. Snow monitoring from remote sensing provides a unique opportunity to address the question of snow cover regime changes at the regional scale. This study outlines the results retrieved from the MODIS satellite images over a time period of 10 hydrological years (2000-2010) and applied to two case studies of the EU FP7 ACQWA project, namely the upper Rhone and Po in Europe and the headwaters of the Syr Darya in Kyrgyzstan (Central Asia). The satellite data were provided by the MODIS Terra MOD-09 reflectance images (NASA) and MOD-10 snow products (NSIDC). Daily snow maps were retrieved over that decade and the results presented here focus on the temporal and spatial changes in snow cover. This paper highlights the statistical bias observed in some specific regions, expressed by the standard deviation values (STD) of annual snow duration. This bias is linked to the response of snow cover to changes in elevation and can be used as a signal of strong instability in regions sensitive to climate change: with alternations of heavy snowfalls and rapid snow melting processes. The interest of the study is to compare the methodology between the medium scales (Europe) and the large scales (Central Asia) in order to overcome the limits of the applied methodologies and to improve their performances. Results show that the yearly snow cover

  3. Projected shifts in fish species dominance in Wisconsin lakes under climate change.

    PubMed

    Hansen, Gretchen J A; Read, Jordan S; Hansen, Jonathan F; Winslow, Luke A

    2017-04-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33-75% of lakes where recruitment is currently supported and a 27-60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up to 85

  4. Recent Shift in Climate Relationship Enables Prediction of the Timing of Bird Breeding.

    PubMed

    Hinsley, Shelley A; Bellamy, Paul E; Hill, Ross A; Ferns, Peter N

    2016-01-01

    Large-scale climate processes influence many aspects of ecology including breeding phenology, reproductive success and survival across a wide range of taxa. Some effects are direct, for example, in temperate-zone birds, ambient temperature is an important cue enabling breeding effort to coincide with maximum food availability, and earlier breeding in response to warmer springs has been documented in many species. In other cases, time-lags of up to several years in ecological responses have been reported, with effects mediated through biotic mechanisms such as growth rates or abundance of food supplies. Here we use 23 years of data for a temperate woodland bird species, the great tit (Parus major), breeding in deciduous woodland in eastern England to demonstrate a time-lagged linear relationship between the on-set of egg laying and the winter index of the North Atlantic Oscillation such that timing can be predicted from the winter index for the previous year. Thus the timing of bird breeding (and, by inference, the timing of spring events in general) can be predicted one year in advance. We also show that the relationship with the winter index appears to arise through an abiotic time-lag with local spring warmth in our study area. Examining this link between local conditions and larger-scale processes in the longer-term showed that, in the past, significant relationships with the immediately preceding winter index were more common than those with the time-lagged index, and especially so from the late 1930s to the early 1970s. However, from the mid 1970s onwards, the time-lagged relationship has become the most significant, suggesting a recent change in climate patterns. The strength of the current time-lagged relationship suggests that it might have relevance for other temperature-dependent ecological relationships.

  5. Projected shifts in fish species dominance in Wisconsin lakes under climate change

    USGS Publications Warehouse

    Hansen, Gretchen JA; Read, Jordan S.; Hansen, Jonathan F.; Winslow, Luke

    2016-01-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989–2014) and future (2040–2064 and 2065–2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33–75% of lakes where recruitment is currently supported and a 27–60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up

  6. Predictions of Flow Duration Curve Shifts Due to Anthropogenic and Climatic Changes

    NASA Astrophysics Data System (ADS)

    Henry, N. F.; Kroll, C. N.; Endreny, T. A.

    2014-12-01

    Methods are needed to understand and predict streamflows in systems undergoing anthropogenic and climatic alteration. This study is motivated by a need to develop methods to accurately estimate historical and future flow regimes of the Delaware River to inform management decisions for the endangered dwarf wedgemussel (Alasmidonta heterodon). Many streamflow regimes in this system have undergone substantial alteration within the past 100 years. Here, flow duration curves (FDCs), a common hydrologic tool used to assess flow regimes, are created and examined at 145 Delaware River Basin catchments. These catchments have experienced various hydrologic alterations, including land use changes, water withdrawals, and river regulation due to dams and reservoirs. Linear regression models are developed for various percentile flows across a FDC. These models use watershed characteristics that describe observed flow regimes in altered as well as unaltered systems. The characteristics that have the most significant influence on the shape of the FDCs are then identified and isolated as descriptors of the alteration. Once these models are developed to include these key variables, given a specific alteration (e.g. fresh water withdrawals, change in annual precipitation, etc.), a new flow regime can be estimated. Preliminary results indicate that certain watershed characteristics related to alteration (e.g. magnitude of land fragmentation, water withdrawals, hydrologic disturbance index) are significant in our models and influence FDC patterns. The results of this study may prove to have broader applications in regards to water resources management as the methods developed here may serve as a predictive tool as human interference and climatic changes continue to alter flow regimes.

  7. Recent Shift in Climate Relationship Enables Prediction of the Timing of Bird Breeding

    PubMed Central

    Bellamy, Paul E.; Hill, Ross A.; Ferns, Peter N.

    2016-01-01

    Large-scale climate processes influence many aspects of ecology including breeding phenology, reproductive success and survival across a wide range of taxa. Some effects are direct, for example, in temperate-zone birds, ambient temperature is an important cue enabling breeding effort to coincide with maximum food availability, and earlier breeding in response to warmer springs has been documented in many species. In other cases, time-lags of up to several years in ecological responses have been reported, with effects mediated through biotic mechanisms such as growth rates or abundance of food supplies. Here we use 23 years of data for a temperate woodland bird species, the great tit (Parus major), breeding in deciduous woodland in eastern England to demonstrate a time-lagged linear relationship between the on-set of egg laying and the winter index of the North Atlantic Oscillation such that timing can be predicted from the winter index for the previous year. Thus the timing of bird breeding (and, by inference, the timing of spring events in general) can be predicted one year in advance. We also show that the relationship with the winter index appears to arise through an abiotic time-lag with local spring warmth in our study area. Examining this link between local conditions and larger-scale processes in the longer-term showed that, in the past, significant relationships with the immediately preceding winter index were more common than those with the time-lagged index, and especially so from the late 1930s to the early 1970s. However, from the mid 1970s onwards, the time-lagged relationship has become the most significant, suggesting a recent change in climate patterns. The strength of the current time-lagged relationship suggests that it might have relevance for other temperature-dependent ecological relationships. PMID:27182711

  8. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.

  9. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines

    PubMed Central

    Miller, Kristina M; Teffer, Amy; Tucker, Strahan; Li, Shaorong; Schulze, Angela D; Trudel, Marc; Juanes, Francis; Tabata, Amy; Kaukinen, Karia H; Ginther, Norma G; Ming, Tobi J; Cooke, Steven J; Hipfner, J Mark; Patterson, David A; Hinch, Scott G

    2014-01-01

    Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations. PMID:25469162

  10. Detection of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation Using Ikonos Data

    NASA Astrophysics Data System (ADS)

    Sa, T.; Guild, L.; Carvalho, C.; Wickel, A.; Brienza, S.; Kato, M.; Kato, O.; Leibs, C.

    2004-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Nino events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. The principal goal of the research is to determine the extent to which capoeira and agricultural fields are susceptible to extreme climate events (drought) under contrasting landuse/clearing practices. In Igarape-Açu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention. This experimental practice (mechanized chop-and-mulch) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. This project aims to measure water availability and it's relation to secondary forest and crop productivity in the Brazilian Amazon. We have conducted field efforts during two dry seasons (August-December). Field data on water relations were collected during the dry season of 2001 and 2002 in capoeira and crops for both

  11. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India

    PubMed Central

    Lewnard, Joseph A.

    2016-01-01

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference. PMID:27791071

  12. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs.

    PubMed

    Bennett, Scott; Wernberg, Thomas; Harvey, Euan S; Santana-Garcon, Julia; Saunders, Benjamin J

    2015-07-01

    Climate-mediated changes to biotic interactions have the potential to fundamentally alter global ecosystems. However, the capacity for novel interactions to drive or maintain transitions in ecosystem states remains unresolved. We examined temperate reefs that recently underwent complete seaweed canopy loss and tested whether a concurrent increase in tropical herbivores could be maintaining the current canopy-free state. Turf-grazing herbivorous fishes increased in biomass and diversity, and displayed feeding rates comparable to global coral reefs. Canopy-browsing herbivores displayed high (~ 10,000 g 100 m(-2) ) and stable biomass between 2006 and 2013. Tropical browsers had the highest abundance in 2013 and displayed feeding rates approximately three times higher than previously observed on coral reefs. These observations suggest that tropical herbivores are maintaining previously kelp-dominated temperate reefs in an alternate canopy-free state by grazing turfs and preventing kelp reestablishment. This remarkable ecosystem highlights the sensitivity of biotic interactions and ecosystem stability to warming and extreme disturbance events.

  13. Organic matter preservation: A proxy for Turonian climatic shifts recorded during relative sea-level stillstands

    SciTech Connect

    White, T.S.; Arthur, M.A.; Dean, W.

    1996-12-31

    We performed analyses of organic matter obtained from cores across Utah, Colorado, and Kansas. The results provide a detailed (30 cm sampling interval) record of organic matter preservation in the Turonian seaway during highstand (HST), lowstand (LST) and overlying transgressive systems tract (TST) deposition in the Western Interior Seaway. In general, total organic carbon (TOC) and carbonate (CaCO3) percentages decrease through the HST, with the highest values obtained from strata deposited during maximum transgression. Organic matter within the early- to mid-HST is dominantly marine algae with dinoflagellate and foraminiferal inputs. The late-HST contains small quantities of TOC and CaCO3, characterized as terrestrial organic debris; early-LST sediments have a signature similar to the late-HST. As one might expect, during sea-level fall the basin records mostly terrestrial inputs, whereas during sea-level rise a marine signature prevails. A similarity exists between late-LST and early-HST TOC and CaCO3 contents and is noteable for fluctuations between terrestrial and marine organic matter as indicated by Rockeval pyrolyses, organic petrography, and palynology. We surmise that during mid-HST and late-LST (i.e. during times of little or no variation in rate of sea-level change), the basin is poised to record fluctuations between terrestrial and marine-dominated sediment deposition which may be controlled by changes in climate.

  14. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    USGS Publications Warehouse

    Gustine, David; Adams, Layne; Whalen, Mary; Pearce, John

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  15. Fatigue in seafarers working in the offshore oil and gas re-supply industry: effects of safety climate, psychosocial work environment and shift arrangement.

    PubMed

    Hystad, Sigurd W; Saus, Evelyn-Rose; Sætrevik, Bjørn; Eid, Jarle

    2013-01-01

    This study examined the influence of safety climate and psychosocial work environment on the reported fatigue of seafarers working in the offshore oil and gas re-supply industry (n = 402). We found that seafarers who reported high psychological demands and perceived the organisational-level safety climate negatively,reported significantly more mental fatigue, physical fatigue, and lack of energy. In addition, seafarers who reported having high levels of job control reported being significantly less mentally fatigued. We also found some combined effects of safety climate and shift arrangement. Organisational-level safety climate did not influence the levels of physical fatigue in seafarers working on the night shift. On the contrary, seafarers working during the days reported to be more physically fatigued when they perceived the organisational-level climate to be negative compared with the positive. The opposite effect was found for group-level safety climate: seafarers working during the nights reported to be more physically fatigued when they perceived the group-level climate to be negative compared with the positive. The results from this study point to the importance of taking into consideration aspects of the psychosocial work environment and safety climate,and their potential impact on fatigue and safety in the maritime organisations.

  16. Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA

    NASA Astrophysics Data System (ADS)

    Wolfe, David W.; Schwartz, Mark D.; Lakso, Alan N.; Otsuki, Yuka; Pool, Robert M.; Shaulis, Nelson J.

    2005-05-01

    We evaluated spring phenology changes from 1965 to 2001 in northeastern USA utilizing a unique data set from 72 locations with genetically identical lilac plants (Syringa chinensis, clone “Red Rothomagensis”). We also utilized a previously validated lilac-honeysuckle “spring index” model to reconstruct a more complete record of first leaf date (FLD) and first flower date (FFD) for the region from historical weather data. In addition, we examined mid-bloom dates for apple (Malus domestica) and grape (Vitis vinifera) collected at several sites in the region during approximately the same time period. Almost all lilac sites with significant linear trends for FLD or FFD versus year had negative slopes (advanced development). Regression analysis of pooled data for the 72 sites indicated an advance of -0.092 day/year for FFD (P=0.003). The slope for FLD was also negative (-0.048 day/year), but not significant (P=0.234). The simulated data from the “spring index” model, which relies on local daily temperature records, indicated highly significant (P<0.001) negative slopes of -0.210 and -0.123 day/year for FLD and FFD, respectively. Data collected for apple and grape also indicated advance spring development, with slopes for mid-bloom date versus year of -0.20 day/year (P=0.01) and -0.146 (P=0.14), respectively. Collectively, these results indicate an advance in spring phenology ranging from 2 to 8 days for these woody perennials in northeastern USA for the period 1965 to 2001, qualitatively consistent with a warming trend, and consistent with phenology shifts reported for other mid- and high-latitude regions.

  17. Glacial-interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate

    SciTech Connect

    Charles, C.D. ); Rind, D. ); Jouzel, J. ); Koster, R.D. ); Fairbanks, R.G. )

    1994-01-28

    Large, abrupt shifts in the [sup 18]O/[sup 16]O ratio found in Greenland ice must reflect real features of the climate system variability. These isotopic shifts can be viewed as a result of air temperature fluctuations, but determination of the cause of the changes - the most crucial issue for future climate concerns - requires a detailed understanding of the controls on isotopes in precipitation. Results from general circulation model experiments suggest that the sources of Greenland precipitation varied with different climate states, allowing dynamic atmospheric mechanisms for influencing the ice core isotope shifts.

  18. Abrupt transitions to a cold North Atlantic in the late Holocene

    NASA Astrophysics Data System (ADS)

    Geirsdóttir, Áslaug; Miller, Gifford; Larsen, Darren; Florian, Christopher; Pendleton, Simon

    2015-04-01

    The Holocene provides a time interval with boundary conditions similar to present, except for greenhouse gas concentrations. Recent high-resolution Northern Hemisphere records show general cooling related to orbital terms through the late Holocene, but also highly non-linear abrupt departures of centennial scale summer cold periods. These abrupt departures are evident within the last two millennia (the transitions between the Roman Warm Period (RWP, ~2,000 yr BP), the Dark Ages Cold Period (DACP, ~500-900 years AD), the Medieval Warm Period (MWP, 1000-1200 years AD) and the Little Ice Age (LIA, ~1300-1900 AD). A series of new, high-resolution and securely dated lake records from Iceland also show abrupt climate departures over the past 2 ka, characterized by shifts to persistent cold summers and an expanded cryosphere. Despite substantial differences in catchment-specific processes that dominate the lake records, the multi-proxy reconstructions are remarkably similar. After nearly a millennium with little evidence of significant climate shifts, the beginning of the first millennium AD is characterized by renewed summer cooling that leads to an expanding cryosphere. Slow summer cooling over the first five centuries is succeeded by widespread substantial cooling, with evidence for substantial expansion of glaciers and ice caps throughout our field areas between 530 and 900 AD, and an accompanying reduction in vegetation cover across much of Iceland that led to widespread landscape instability. These data suggest that the North Atlantic system began a transition into a new cold state early in the first millennium AD, which was amplified after 500 AD, until it was interrupted by warmer Medieval times between ~1000 and 1250 AD. Although severe soil erosion in Iceland is frequently associated with human settlement dated to 871 ±2 AD our reconstructions indicate that soil erosion began several centuries before settlement, during the DACP, whereas for several centuries

  19. Designing Optimized Multi-Species Monitoring Networks to Detect Range Shifts Driven by Climate Change: A Case Study with Bats in the North of Portugal

    PubMed Central

    Amorim, Francisco; Carvalho, Sílvia B.; Honrado, João; Rebelo, Hugo

    2014-01-01

    Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends. PMID:24475265

  20. U.S. Climate change science program. Synthesis and Assessment Product 4.2: Thresholds of change in ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past three decades, climate change has become a pronounced driver of ecosystem change. Changes in phenology, range shift of species, and increases in disturbances such as wildfires have all reflected ecosystem scales responses to a warming biosphere. There have also been abrupt, nonlinear cha...

  1. Characterization of a rapid climate shift at the MIS 8/7 transition in central Spain (Valdocarros II, Autonomous Region of Madrid) by means of the herpetological assemblages

    NASA Astrophysics Data System (ADS)

    Blain, Hugues-Alexandre; Panera, Joaquin; Uribelarrea, David; Rubio-Jara, Susana; Pérez-González, Alfredo

    2012-07-01

    Climate instability with high-amplitude and rapid shifts during the Middle Pleistocene is well known from pollen records and deep-ocean sediment cores. Although poorly correlatable with such long climate/environment records, the successive fossil amphibian and reptile assemblages from the Middle Pleistocene site of Valdocarros II (Autonomous Region of Madrid, central Spain) provide a unique opportunity to characterize the climatic and environmental features of such rapid (certainly less than 1000 years) shifts from cold to warm conditions in a terrestrial sequence. As the amphibians and reptiles do not differ at species level from the extant herpetofauna of the Iberian Peninsula, they can contribute to the reconstruction of the landscape and climate. In this paper, the mutual climatic range and habitat weighting methods are applied to the herpetofaunistic assemblages in order to estimate quantitative data. The difference in mean annual temperature between "cold" and "warm" periods is estimated at 3.2 °C, with a greater increase in temperature during winter (+3 °C) than during summer (+1 °C). During "cold" periods the climate was more Oceanic (although preserving some dryness during the summers), whereas during "warm" periods the climate became Mediterranean (with mild winters and a long period of dryness in the summer and early autumn). Though higher during cold periods, the continentality (or atmospheric temperature range) remained roughly similar, in accordance with the geographical location of the site in the centre of the Iberian Peninsula. A greater amount of open landscape occurred during "cold" periods, whereas during "warm" periods the wooded areas expanded from 20% to 40% of the landscape surface. Such climatic/environmental changes, together with the numeric datings of the site, suggest that this shift may correspond to the transition from MIS 8 to MIS 7, also called Termination III.

  2. Abrupt Climate Change in the Atlantic Ocean During the Last 20,000 Years: Insights from Multi-Element Analyses of Benthic and Planktic Foraminifera and a Coupled OA-GCM

    DTIC Science & Technology

    2005-09-01

    paleoceanographic and terrestrial climate proxies . Greenland ice cores, in particular, provide evidence of large amplitude, very rapid climate change during...received the most attention because it is the largest Holocene excursion in the GISP2 810 record [Alley et al., 1997]. Multiple proxies in Greenland ice...latitude North Atlantic foraminiferal-based proxies such as modem analogue technique [Marchal et al., 2002; Risebrobakken et al., 2003], but

  3. Major shifts at the range edge of mar