Science.gov

Sample records for abrupt phase transition

  1. Rounding of abrupt phase transitions in brain networks

    NASA Astrophysics Data System (ADS)

    Villa Martín, Paula; Moretti, Paolo; Muñoz, Miguel A.

    2015-01-01

    The observation of critical-like behavior in cortical networks represents a major step forward in elucidating how the brain manages information. Understanding the origin and functionality of critical-like dynamics, as well as its robustness, is a major challenge in contemporary neuroscience. Here, we present an extensive numerical study of a family of simple dynamical models, which describe activity propagation in brain networks through the integration of different neighboring spiking potentials, mimicking basic neural interactions. The requirement of signal integration may lead to discontinuous phase transitions in networks that are well described by the mean-field approximation, thus preventing the emergence of critical points in such systems. Brain networks, however, are finite dimensional and exhibit a heterogeneous hierarchical structure that cannot be encoded in mean-field models. Here we propose that, as a consequence of the presence of such a heterogeneous substrate with its concomitant structural disorder, critical-like features may emerge even in the presence of integration. These conclusions may prove significant in explaining the observation of traits of critical behavior in large-scale measurements of brain activity.

  2. A steep-slope transistor based on abrupt electronic phase transition.

    PubMed

    Shukla, Nikhil; Thathachary, Arun V; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-07

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  3. A steep-slope transistor based on abrupt electronic phase transition

    PubMed Central

    Shukla, Nikhil; Thathachary, Arun V.; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G.; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-01-01

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (‘sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications. PMID:26249212

  4. Analysis of abrupt transitions in ecological systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The occurrence and causes of abrupt transitions, thresholds, or regime shifts between ecosystem states are of great concern and the likelihood of such transitions is increasing for many ecological systems. General understanding of abrupt transitions has been advanced by theory, but hindered by the l...

  5. Basic mechanism for abrupt monsoon transitions

    PubMed Central

    Levermann, Anders; Schewe, Jacob; Petoukhov, Vladimir; Held, Hermann

    2009-01-01

    Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R c, no conventional monsoon can develop; above R c, two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R c for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation. PMID:19858472

  6. Towards Greenland Glaciation: cumulative or abrupt transition?

    NASA Astrophysics Data System (ADS)

    Tan, Ning; Dumas, Christophe; Ladant, Jean-Baptiste; Ramstein, Gilles; Contoux, Camille

    2016-04-01

    During the mid-Pliocene warming period (3-3.3 Ma BP), global annual mean temperature is warmer by 2-3 degree than pre-industrial. Greenland ice sheet volume is supposed to be a 50% reduction compared to nowadays [Haywood et al. 2010]. Around 2.7-2.6 Ma BP, just ~ 500 kyr after the warming peak of mid-Pliocene, there is already full Greenland Glaciation [Lunt et al. 2008]. How does Greenland ice sheet evolve from a half size to a glaciation level during 3 Ma - 2.5 Ma? Data show that there is a decreasing trend of atmospheric CO2 concentration from 3 Ma to 2.5 Ma [Seki et al.2010; Bartoli et al. 2011; Martinez et al. 2015]. However, a recent study [Contoux et al. 2015] suggests that a lowering of CO2 is not sufficient to initiate a perennial glaciation on Greenland and must be combined to low summer insolation, to preserve the ice sheet during insolation maximum, suggesting a cumulative process. In order to diagnose whether the ice sheet build-up is an abrupt event or a cumulative process, we carry on, for the first time, a transient simulation of climate and ice sheet evolutions from 3 Ma to 2.5 Ma. This strategy enables to investigate waxing and waning of the ice sheet during several orbital cycles. To reach this goal, we use a tri-dimensional interpolation method designed by Ladant et al. (2014) which combines the evolution of CO2 concentration, orbital parameters and Greenland ice sheet sizes in an off-line way by interpolating snapshots simulations. Thanks to this new method, we can build a transient like simulation through asynchronous coupling between GCM and ice sheet model. With this method, we may consistently answer the question of the build-up of Greenland: abrupt or cumulative process.

  7. Towards Greenland Glaciation: Cumulative or Abrupt Transition?

    NASA Astrophysics Data System (ADS)

    Tan, N.; Ramstein, G.; Contoux, C.; Ladant, J. B.; Dumas, C.; Donnadieu, Y.

    2014-12-01

    The insolation evolution [Laskar 2004] from 4 to 2.5 Ma depicts a series of three summer solstice insolation minima between 2.7 and 2.6 Ma, but there are other more important summer solstice minima notably around 3.82 and 3.05 Ma. On such a time span of more than 1 Ma, data shows that there are variations in the evolution of atmospheric CO2 concentration with a local maximum around 3 Ma [Seki et al.2010; Bartoli et al. 2011], before a decrease between 3 and 2.6 Ma. The latter, suggesting an abrupt ice sheet inception around 2.7 Ma, has been shown to be a major culprit for the full Greenland Glaciation [Lunt et al. 2008]. However, a recent study [Contoux et al. 2014, in review] suggests that a lowering of CO2 is not sufficient to initiate a glaciation on Greenland and must be combined to low summer insolation, with surviving ice during insolation maximum, suggesting a cumulative process in the first place, which could further lead to full glaciation at 2.7 Ma. Through a new tri-dimensional interpolation method implemented within the asynchronous coupling between an atmosphere ocean general circulation model (IPSL-CM5A) and an ice sheet model (GRISLI), we investigate the transient evolution of Greenland ice sheet during the Pliocene to diagnose whether the ice sheet inception is an abrupt event or rather a cumulative process, involving waxing and waning of the ice sheet during several orbital cycles. ReferencesBartoli, G., Hönisch, B., & Zeebe, R. E. (2011). Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26(4). Contoux C, Dumas C, Ramstein G, Jost A, Dolan A. M. (2014) Modelling Greenland Ice sheet inception and sustainability during the late Pliocene. (in review for Earth and Planetary Science Letters.).Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428

  8. Early warnings and missed alarms for abrupt monsoon transitions

    NASA Astrophysics Data System (ADS)

    Thomas, Z. A.; Kwasniok, F.; Boulton, C. A.; Cox, P. M.; Jones, R. T.; Lenton, T. M.; Turney, C. S. M.

    2015-12-01

    Palaeo-records from China demonstrate that the East Asian Summer Monsoon (EASM) is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesized that over these timescales, the EASM exhibits two stable states with bifurcation-type tipping points between them. Here we test this hypothesis by looking for early warning signals of past bifurcations in speleothem δ18O records from Sanbao Cave and Hulu Cave, China, spanning the penultimate glacial cycle. We find that although there are increases in both autocorrelation and variance preceding some of the monsoon transitions during this period, it is only immediately prior to the abrupt monsoon shift at the penultimate deglaciation (Termination II) that statistically significant increases are detected. To supplement our data analysis, we produce and analyse multiple model simulations that we derive from these data. We find hysteresis behaviour in our model simulations with transitions directly forced by solar insolation. However, signals of critical slowing down, which occur on the approach to a bifurcation, are only detectable in the model simulations when the change in system stability is sufficiently slow to be detected by the sampling resolution of the data set. This raises the possibility that the early warning "alarms" were missed in the speleothem data over the period 224-150 kyr and it was only at the monsoon termination that the change in the system stability was sufficiently slow to detect early warning signals.

  9. Abrupt vegetation transitions characterise long-term Amazonian peatland development

    NASA Astrophysics Data System (ADS)

    Roucoux, K. H.; Baker, T. R.; Gosling, W. D.; Honorio Coronado, E.; Jones, T. D.; Lahteenoja, O.; Lawson, I. T.

    2012-04-01

    Recent investigations of wetlands in western Amazonia have revealed the presence of extensive peatlands with peat deposits of up to 8 m-thick developing under a variety of vegetation types (Lähteenoja et al. 2012). Estimated to cover 150,000 km2 (Schulman et al. 1999), these peatlands make a valuable contribution to landscape and biological diversity and represent globally important carbon stores. In order to understand the processes leading to peat formation, and the sensitivity of these environments to future climatic change, it is necessary to understand their long-term history. The extent to which peatland vegetation changes over time, the stability of particular communities, the controls on transitions between vegetation types and how these factors relate to the accumulation of organic matter are not yet known. We report the first attempt to establish the long-term (millennial scale) vegetation history of a recently-described peatland site: Quistococha, a palm swamp, or aguajal, close to Iquitos in northern Peru. The vegetation is dominated by Mauritia flexuosa and Mauritiella armata and occupies a basin which is thought to be an abandoned channel of the River Amazon. We obtained a 4 m-long peat sequence from the deepest part of the basin. AMS-radiocarbon dating yielded a maximum age of 2,212 cal yr BP for the base of the peat, giving an average accumulation rate of 18 cm per century. Below the peat are 2 m of uniform, largely inorganic pale grey clays of lacustrine origin, which are underlain by an unknown thickness of inorganic sandy-silty clay of fluvial origin. Pollen analysis, carried out at c. 88-year intervals, shows the last 2,212 years to be characterised by the development of at least four distinct vegetation communities, with peat accumulating throughout. The main phases were: (1) Formation of Cyperaceae (sedge) fen coincident with peat initiation; (2) A short-lived phase of local Mauritia/Mauritiella development; (3) Development of mixed wet

  10. Early warnings and missed alarms for abrupt monsoon transitions

    NASA Astrophysics Data System (ADS)

    Thomas, Z. A.; Kwasniok, F.; Boulton, C. A.; Cox, P. M.; Jones, R. T.; Lenton, T. M.; Turney, C. S. M.

    2015-04-01

    Palaeo-records from China (Cheng et al., 2009; Wang et al., 2008, 2001) demonstrate the East Asian Summer Monsoon (EASM) is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesised that over these timescales, the EASM exhibits two stable states with bifurcation-type tipping points between them (Schewe et al., 2012). Here we test this hypothesis by looking for early warning signals of past bifurcations in speleothem records from Sanbao Cave and Hulu Cave, China (Wang et al., 2008, 2001), spanning the penultimate glacial cycle, and in multiple model simulations derived from the data. We find hysteresis behaviour in our model simulations with transitions directly forced by solar insolation. We detect critical slowing down prior to an abrupt monsoon shift during the penultimate deglaciation consistent with long-term orbital forcing. However, such signals are only detectable when the change in system stability is sufficiently slow to be detected by the sampling resolution of the dataset, raising the possibility that the alarm was missed and a similar forcing drove earlier EASM shifts.

  11. Abrupt onset of tongue deformation and phase space response of ions in magnetically-confined plasmas

    PubMed Central

    Ida, K.; Kobayashi, T.; Itoh, K.; Yoshinuma, M.; Tokuzawa, T.; Akiyama, T.; Moon, C.; Tsuchiya, H.; Inagaki, S.; Itoh, S.-I.

    2016-01-01

    An abrupt onset of the new tongue-shaped deformation of magnetic surface in magnetized plasmas, which was conjectured in since the 1960s but has not been observed, is experimentally identified just before an abrupt onset of a large-scale collapse event. Two novel properties of the event are identified. First, the transition of symmetry of perturbation (rather than a growth of linearly unstable MHD modes) was found to be a key for the onset of abrupt collapse, i.e., the transition of symmetry gives a new route to the collapse from stable state. Second, as a phase-space response of ions, the distortion from Maxwell-Boltzmann distribution of epithermal ions was observed for the first time. PMID:27796370

  12. Gradual and abrupt changes during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Ford, Heather L.; Sosdian, Sindia M.; Rosenthal, Yair; Raymo, Maureen E.

    2016-09-01

    During the Mid-Pleistocene Transition (MPT), the dominant glacial-interglacial cyclicity as inferred from the marine δ18O records of benthic foraminifera (δ18Obenthic) changed from 41 kyr to 100 kyr years in the absence of a comparable change in orbital forcing. Currently, only two Mg/Ca-derived, high-resolution bottom water temperature (BWT) records exist that can be used with δ18Obenthic records to separate temperature and ice volume signals over the Pleistocene. However, these two BWT records suggest a different pattern of climate change occurred over the MPT-a record from North Atlantic DSDP Site 607 suggests BWT decreased with no long-term trend in ice volume over the MPT, while South Pacific ODP Site 1123 suggests that BWT has been relatively stable over the last 1.5 Myr but that there was an abrupt increase in ice volume at ∼900 kyr. In this paper we attempt to reconcile these two views of climate change across the MPT. Specifically, we investigated the suggestion that the secular BWT trend obtained from Mg/Ca measurements on Cibicidoides wuellerstorfi and Oridorsalis umbonatus species from N. Atlantic Site 607 is biased by the possible influence of Δ[CO32-] on Mg/Ca values in these species by generating a low-resolution BWT record using Uvigerina spp., a genus whose Mg/Ca values are not thought to be influenced by Δ[CO32-]. We find a long-term BWT cooling of ∼2-3°C occurred from 1500 to ∼500 kyr in the N. Atlantic, consistent with the previously generated C. wuellerstorfi and O. umbonatus BWT record. We also find that changes in ocean circulation likely influenced δ18Obenthic, BWT, and δ18Oseawater records across the MPT. N. Atlantic BWT cooling starting at ∼1.2 Ma, presumably driven by high-latitude cooling, may have been a necessary precursor to a threshold response in climate-ice sheet behavior at ∼900 ka. At that point, a modest increase in ice volume and thermohaline reorganization may have caused enhanced sensitivity to the 100 kyr

  13. Precise interpolar phasing of abrupt climate change during the last ice age

    USGS Publications Warehouse

    ,; Buizert, Christo; Adrian, Betty M.; Ahn, Jinho; Albert, Mary; Alley, Richard B.; Baggenstos, Daniel; Bauska, Thomas K.; Bay, Ryan C.; Bencivengo, Brian B.; Bentley, Charles R.; Brook, Edward J.; Chellman, Nathan J.; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cravens, Eric; Cuffey, Kurt M.; Dunbar, Nelia W.; Edwards, Jon S.; Fegyveresi, John M.; Ferris, Dave G.; Fitzpatrick, Joan J.; Fudge, T. J.; Gibson, Chris J.; Gkinis, Vasileios; Goetz, Joshua J.; Gregory, Stephanie; Hargreaves, Geoffrey Mill; Iverson, Nels; Johnson, Jay A.; Jones, Tyler R.; Kalk, Michael L.; Kippenhan, Matthew J.; Koffman, Bess G.; Kreutz, Karl; Kuhl, Tanner W.; Lebar, Donald A.; Lee, James E.; Marcott, Shaun A.; Markle, Bradley R.; Maselli, Olivia J.; McConnell, Joseph R.; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter D.; Nishiizumi, Kunihiko; Nunn, Richard M.; Orsi, Anais J.; Pasteris, Daniel R.; Pedro, Joel B.; Pettit, Erin C.; Price, P. Buford; Priscu, John C.; Rhodes, Rachael H.; Rosen, Julia L.; Schauer, Andrew J.; Schoenemann, Spruce W.; Sendelbach, Paul J.; Severinghaus, Jeffrey P.; Shturmakov, Alexander J.; Sigl, Michael; Slawny, Kristina R.; Souney, Joseph M.; Sowers, Todd A.; Spencer, Matthew K.; Steig, Eric J.; Taylor, Kendrick C.; Twickler, Mark S.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Welten, Kees C.; Wendricks, Anthony W.; White, James W. C.; Winstrup, Mai; Wong, Gifford J.; Woodruff, Thomas E.

    2015-01-01

    The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives1. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa2, 3, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw4, 5, 6. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events7, 8, 9. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision2, 3,10. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.

  14. Precise interpolar phasing of abrupt climate change during the last ice age.

    PubMed

    2015-04-30

    The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard-Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.

  15. Analysis of Nuclear Quantum Phase Transitions

    SciTech Connect

    Li, Z. P.; Meng, J.; Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2009-08-26

    A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.

  16. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

    NASA Astrophysics Data System (ADS)

    Knudson, Marcus; Desjarlais, Michael; Becker, Andeas; Lemke, Raymond; Cochrane, Kyle; Savage, Mark; Bliss, David; Mattsson, Thomas; Redmer, Ronald

    2015-06-01

    Recently a so-called shock-ramp platform has been developed on the Sandia Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a reasonably constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state. This technique generates relatively cool (~1-2 kK), high pressure (>300 GPa), high compression (~10-15 fold compression) states, allowing experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like liquid to a conducting atomic-like liquid. In this talk we will discuss the experimental platform, survey the various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present the results of experiments that clearly show an abrupt transition to a metallic state. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Abrupt transitions between macrobenthic faunal assemblages across seagrass bed margins

    NASA Astrophysics Data System (ADS)

    Barnes, R. S. K.; Hamylton, S.

    2013-10-01

    The nature of the transition from one contrasting macrobenthic assemblage to another across interfaces between intertidal seagrass and unvegetated sand was investigated in the subtropical Moreton Bay Marine Park, eastern Australia, via six two-dimensional core lattices. The same pattern of transition was manifested in each lattice. Macrofaunal abundance, species density (both observed and estimated total) and assemblage composition did not vary with distance away from the interface within the 0.75 m wide marginal bands of each habitat type. Neither were there significant differences in assemblage metrics or composition between the marginal and non-edge regions of either habitat. There were, however, very marked differences in assemblage composition, abundance and species density across the 25 cm wide strip on either side of the actual interface, the interacting assemblages reacting symmetrically. All these differences therefore took place over an ecotone distance of only 0.5 m at most. Spatial trends in assemblage metrics across the boundary zone were captured accurately by second and third order polynomial regression models. It also appeared that edge effects on individual species within the seagrass were a variable local response not a consistent effect of closeness to the bare sand.

  18. Cosmological phase transitions

    SciTech Connect

    Kolb, E.W. |

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  19. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Venditti, Jeremy G.

    2016-04-01

    Median grain sizes on riverbeds range from boulders in uplands to silt in lowlands; however, rivers with ~1-5 mm diameter bed sediment are rare. This grain size gap also marks an abrupt transition between gravel- and sand-bedded reaches that is unlike any other part of the fluvial network. Abrupt gravel-sand transitions have been attributed to rapid breakdown or rapid transport of fine gravel, or a bimodal sediment supply, but supporting evidence is lacking. Here we demonstrate that rivers dramatically lose the ability to transport sand as wash load where bed shear velocity drops below ~0.1 m/s, forcing an abrupt transition in bed-material grain size. Using thresholds for wash load and initial motion, we show that the gap emerges only for median bed-material grain sizes of ~1-5 mm due to Reynolds number dependencies in suspension transport. The grain size gap, therefore, is sensitive to material properties and gravity, with coarser gaps predicted on Mars and Titan.

  20. Phase-locked states and abrupt shifts in Pacific climate indices

    NASA Astrophysics Data System (ADS)

    Douglass, David H.

    2013-10-01

    Douglass has shown that ENSO index aNino3.4 contains segments phase locked to subharmonics of the annual solar cycle and also that a set of indices including aNino3.4 shows abrupt shifts between these phase-locked states. Here, four additional Pacific indices are studied. These five indices show that the Pacific climate system alternates between two regimes: (1) Solar cycle (SOL), (2) Teleconnections (TEL). During SOL each index shows two components that are phase locked to the solar cycle. The first is at the annual cycle, while the second is at a subharmonic of the annual cycle. During TEL abrupt climate shifts occur.

  1. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

    NASA Astrophysics Data System (ADS)

    Knudson, M. D.; Desjarlais, M. P.; Becker, A.; Lemke, R. W.; Cochrane, K. R.; Savage, M. E.; Bliss, D. E.; Mattsson, T. R.; Redmer, R.

    2015-06-01

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

  2. Tipping Elements in Earth Systems Special Feature: Basic mechanism for abrupt monsoon transitions

    NASA Astrophysics Data System (ADS)

    Levermann, Anders; Schewe, Jacob; Petoukhov, Vladimir; Held, Hermann

    2009-12-01

    Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R c, no conventional monsoon can develop; above R c, two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R c for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation.

  3. The role of stochastic noise in the abrupt climatic transitions of the pleistocene

    SciTech Connect

    Matteucci, G.

    1991-01-01

    Analyses of marine [delta][sup 18]O records suggest that the variations of the Earth's orbital parameters have induced and provided the timing of the Pleistocene climatic oscillations. This dissertation analyses some statistical properties of the Pleistocene climate by estimating the Probability Density Function (PDF) of the [delta][sup 18]O record. The results allow to define statistically what were the [open quotes]typical conditions[close quotes] (in a probabilistic sense) of the Quaternary, to identify the modes of the PDF as the mean glacial and interglacial climatic states, and to clarify the meaning and the abruptness of the climatic transitions. A zero-dimensional Energy Balance Model is developed. The nonlinearity of the ice albedo-temperature feedback leads to multiple steady-state equilibria. The role of stochastic perturbations and their interaction with the orbital forcing in producing the periodic and abrupt climatic transitions of the late Pleistocene are illustrated. A stochastic sensitivity analysis is used to clarify the results, especially the selective amplification of the orbitally-induced 100 kyr cycle, and the predictability of the system on the time scales of the orbital cycles. From the analysis of GCM simulations and observational zonally- averaged data a one-dimensional EBM is then developed. The strong nonlinearity of this model and the occurrence of multiple equilibria is caused by the presence of the Thin Ice Cap Instability. A discussion of the features that stochastic perturbations would introduce, follows. Finally a GCM sensitivity study to atmospheric CO[sub 2] shows how the effects of varying CO[sub 2] concentrations can be included in simple EBMs. The role that stochastic perturbations, orbital forcing, and the known past concentrations of atmospheric CO[sub 2] have played in producing the abrupt climatic transitions of the late Pleistocene is discussed.

  4. Transition process of abrupt climate change based on global sea surface temperature over the past century

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Hou, Wei; Feng, Guolin

    2016-05-01

    A new detection method has been proposed to study the transition process of abrupt climate change. With this method, the climate system transiting from one stable state to another can be verified clearly. By applying this method to the global sea surface temperature over the past century, several climate changes and their processes are detected, including the start state (moment), persist time, and end state (moment). According to the spatial distribution, the locations of climate changes mainly have occurred in the Indian Ocean and western Pacific before the middle twentieth century, in the 1970s in the equatorial middle-eastern Pacific, and in the middle and southern Pacific since the end of the twentieth century. In addition, the quantitative relationship between the transition process parameters is verified in theory and practice: (1) the relationship between the rate and stability parameters is linear, and (2) the relationship between the rate and change amplitude parameters is quadratic.

  5. Geometry Transition in the Cocos Plate, from Flat-Steep to Constant Dip: Smooth or Abrupt?

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Clayton, R. W.; Brudzinski, M. R.; Valdés-González, C. M.; Cabral-Cano, E.; Arciniega-Ceballos, A.; Córdoba-Montiel, F.

    2013-05-01

    Subduction of the Cocos Plate beneath North America has a variable and complex behavior along the Middle-American Trench. Initially, its geometry was delineated from regional seismicity. In the last 10 years, seismic experiments have illuminated some details in the geometry. They have reported, from NW to SE an abrupt dip transition, from 50 to 26°, as the result of a tear that splits Cocos North from Cocos South; then there is a smooth transition to a horizontal geometry under central Mexico. Further southeast, under the Isthmus of Tehuantepec, the Cocos plate shows a constant ~26° subduction dip. This last transition has been assumed to be smooth from the sparse seismicity in the region. A first glimpse of the slab geometry under Oaxaca, shows the slab continues to be flat at least until 97.5°W longitude, where the slab suddenly changes to a ~55° dip to the northeast. This occurs at a distance of ~75 km from the Pico de Orizaba volcano, which is a similar distance as the active Popocatepetl volcano from the place where the slab dives into the mantle along the Meso-American Subduction Experiment line, in central Mexico. East of this region, receiver function images show an abrupt change in the geometry and length of the slab.

  6. Abrupt transitions to a cold North Atlantic in the late Holocene

    NASA Astrophysics Data System (ADS)

    Geirsdóttir, Áslaug; Miller, Gifford; Larsen, Darren; Florian, Christopher; Pendleton, Simon

    2015-04-01

    The Holocene provides a time interval with boundary conditions similar to present, except for greenhouse gas concentrations. Recent high-resolution Northern Hemisphere records show general cooling related to orbital terms through the late Holocene, but also highly non-linear abrupt departures of centennial scale summer cold periods. These abrupt departures are evident within the last two millennia (the transitions between the Roman Warm Period (RWP, ~2,000 yr BP), the Dark Ages Cold Period (DACP, ~500-900 years AD), the Medieval Warm Period (MWP, 1000-1200 years AD) and the Little Ice Age (LIA, ~1300-1900 AD). A series of new, high-resolution and securely dated lake records from Iceland also show abrupt climate departures over the past 2 ka, characterized by shifts to persistent cold summers and an expanded cryosphere. Despite substantial differences in catchment-specific processes that dominate the lake records, the multi-proxy reconstructions are remarkably similar. After nearly a millennium with little evidence of significant climate shifts, the beginning of the first millennium AD is characterized by renewed summer cooling that leads to an expanding cryosphere. Slow summer cooling over the first five centuries is succeeded by widespread substantial cooling, with evidence for substantial expansion of glaciers and ice caps throughout our field areas between 530 and 900 AD, and an accompanying reduction in vegetation cover across much of Iceland that led to widespread landscape instability. These data suggest that the North Atlantic system began a transition into a new cold state early in the first millennium AD, which was amplified after 500 AD, until it was interrupted by warmer Medieval times between ~1000 and 1250 AD. Although severe soil erosion in Iceland is frequently associated with human settlement dated to 871 ±2 AD our reconstructions indicate that soil erosion began several centuries before settlement, during the DACP, whereas for several centuries

  7. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    PubMed Central

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2016-01-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  8. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.

    PubMed

    Papasavvas, Christoforos A; Wang, Yujiang; Trevelyan, Andrew J; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  9. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    NASA Astrophysics Data System (ADS)

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  10. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  11. Abrupt Transitions in Climate Throughout the Holocene from a Lake Sediment Record in se Greenland

    NASA Astrophysics Data System (ADS)

    de Wet, G.; Bradley, R. S.; Balascio, N. L.

    2012-12-01

    Arctic climate variability over the Holocene has been both extensive and, at times, abrupt. Current understanding of these changes is still quite limited with few high-resolution paleoclimate records available for this period. In order to place observed and predicted 21st century climate change in perspective, reliable and highly resolved paleo-reconstructions of Arctic climate are essential. Using an 8.5 m sediment core from Nanerersarpik Lake, this project will characterize climate changes during the Holocene, including the deglacial transition, the rapid changes that are known to have occurred around 8,200 years ago, the transition from Holocene thermal maximum (HTM) to the colder Neoglacial period, and intervals of abrupt climate change during the late Holocene such as the Medieval Warm Period and Little Ice Age. The 8.5 m sediment core from Nanerersarpik contains a dense gray clay in the lower 0.5m. The upper 8.0m of sediment is light brown and organic-rich with centimeter to half-centimeter laminations, interrupted by mass-movement events. Paleoenvironmental conditions have been interpreted using magnetic susceptibility, grain size, biogenic silica, TOC, C/N, and δ13Corg, as well as with high-resolution spectral reflectance and scanning XRF profiles. These parameters allow us to interpret changes in autochthonous productivity and clastic input throughout the Holocene. A chronology for the record has been established using 210Pb and 11 radiocarbon dates. Cryptotephra analysis will also be carried out to improve the chronology during the Late Holocene. The age-model indicates Nanerersarpik Lake contains an ~8,500-yr sediment record with a linear age/depth relationship and a sedimentation rate of 0.1cm/yr, allowing for potentially decadal scale resolution of environmental changes. Preliminary results show an abrupt transition from dense glacial clay to laminated organic rich sediment near the base of the core. This is interpreted as marking the retreat of

  12. Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Ksherim, Baruch; Cohen, Reuven; Havlin, Shlomo

    2011-12-01

    Robustness of two coupled networks systems has been studied separately only for dependency coupling [Buldyrev , Nature (London)NATUAS0028-083610.1038/nature08932 464, 1025 (2010)] and only for connectivity coupling [Leicht and D’Souza, e-print arXiv:0907.0894]. Here we study, using a percolation approach, a more realistic coupled networks system where both interdependent and interconnected links exist. We find rich and unusual phase-transition phenomena including hybrid transition of mixed first and second order, i.e., discontinuities like in a first-order transition of the giant component followed by a continuous decrease to zero like in a second-order transition. Moreover, we find unusual discontinuous changes from second-order to first-order transition as a function of the dependency coupling between the two networks.

  13. Symmetry in DIET phase transitions

    NASA Astrophysics Data System (ADS)

    Zhang, J. P.; Marks, L. D.

    1989-11-01

    Analysis of the route of the phase transitions in transition metal oxides driven by DIET of oxygen from the surfaces observed by high resolution electron microscopy indicates that there is a symmetry selection rule. The phase transitions are to a structure with a higher point group symmetry where the new phase with a lower oxygen content is either one with a supergroup symmetry with respect to the original phase, or is an amorphous intermediary. The final phase has the highest symmetry and is also a metallic conductor. If a possible lower oxygen content phase does not have the correct supergroup symmetry, it is not formed. It is also found that the point group is conserved during the phase transition if the oxide belongs to the highest groups O h or D 6h. This symmetry selection rule can therefore be used to predict the route of the phase transition. The symmetry rule operates when the phase transition is diffusional.

  14. Quantum phase transition in space

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.

  15. Theory of antiferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Tolédano, Pierre; Guennou, Mael

    2016-07-01

    At variance with structural ferroic phase transitions which give rise to macroscopic tensors coupled to macroscopic fields, criteria defining antiferroelectric (AFE) phase transitions are still under discussion due to the absence of specific symmetry properties characterizing their existence. They are recognized by the proximity of a ferroelectric (FE) phase induced under applied electric field, with a double hysteresis loop relating the induced polarization to the electric field and a typical anomaly of the dielectric permittivity. Here, we show that there exist indeed symmetry criteria defining AFE transitions. They relate the local symmetry of the polar crystallographic sites emerging at an AFE phase transition with the macroscopic symmetry of the AFE phase. The dielectric properties of AFE transitions are deduced from a Landau theoretical model in which ferroelectric and ferrielectric phases are shown to stabilize as the result of specific symmetry-allowed couplings of the AFE order parameter with the field-induced polarization.

  16. HIGH-PRESSURE PHYSICS. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium.

    PubMed

    Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R

    2015-06-26

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

  17. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  18. Abrupt Sea Surface Temperature changes during The Last Glacial-Interglacial Transition in the Iberian margin: Sea Level implications

    NASA Astrophysics Data System (ADS)

    Rodrigues, Teresa; Grimalt, Joan; Abrantes, Fatima; Naughton, Filipa; Flores, José-Abel

    2010-05-01

    Uk'37-SST and organic terrestrial biomarkers were used to reconstruct Sea surface temperature (SST) and continental input in a shallow core (D13882) from the Tagus mud patch (Iberian margin) during last glacial and interglacial transition (LGIT). In the western Iberian margin the Heinrich 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface temperature conditions mediated by a marine warm phase that coincides with the Bolling-Allerod event (B-A) in the neighbor continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. However, SST values and amplitude of variation recorded in core D13882 differ from deep sea core MD03- 2699 and other available palaeoclimate sequences from this region. While the SST values from most deep sea cores reflect the latitudinal gradient detected on the Iberian Peninsula during H1 and B-A, the shallow core (D13882) SSTs are colder than the ones recorded in the deep sea. This suggests that a supplementary input of cold freshwater coming from the continent reached shallow areas. This hypothesis is supported by the high terrigenous biomarkers and total organic carbon content as well as by the dominance of tetra alkenone in the Tagus mud patch. Furthermore, the comparison of all western Iberia SST records suggest that the SST increase during the B-A event started 1,000 yr before the meltwater pulse 1A (mwp-1A) and attained maximum values during or slightly after this sea level rise episode. Conversely, the sharp SST increase in the Iberian margin during the YD/Holocene transition, is synchronous with the meltwater pulse 1B (mwp-1B). The decrease of continental input in the Tagus mud patch confirms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes of the western Iberian margin, in the adjacent landmasses and temperature in Greenland suggest that the mwp-1B, could have been initiated in the Northern

  19. Interplay between micelle formation and waterlike phase transitions

    NASA Astrophysics Data System (ADS)

    Heinzelmann, G.; Figueiredo, W.; Girardi, M.

    2010-02-01

    A lattice model for amphiphilic aggregation in the presence of a structured waterlike solvent is studied through Monte Carlo simulations. We investigate the interplay between the micelle formation and the solvent phase transition in two different regions of temperature-density phase diagram of pure water. A second order phase transition between the gaseous (G) and high density liquid (HDL) phases that occurs at very high temperatures, and a first order phase transition between the low density liquid (LDL) and (HDL) phases that takes place at lower temperatures. In both cases, we find the aggregate size distribution curve and the critical micellar concentration as a function of the solvent density across the transitions. We show that micelle formation drives the LDL-HDL first order phase transition to lower solvent densities, while the transition G-HDL is driven to higher densities, which can be explained by the markedly different degrees of micellization in both cases. The diffusion coefficient of surfactants was also calculated in the LDL and HDL phases, changing abruptly its behavior due to the restructuring of waterlike solvent when we cross the first order LDL-HDL phase transition. To understand such behavior, we calculate the solvent density and the number of hydrogen bonds per water molecule close to micelles. The curves of the interfacial solvent density and the number of hydrogen bonds per water molecule in the first hydration signal a local phase change of the interfacial water, clarifying the diffusion mechanism of free surfactants in the solvent.

  20. Phase transitions in complex network dynamics

    NASA Astrophysics Data System (ADS)

    Squires, Shane

    Two phase transitions in complex networks are analyzed. The first of these is a percolation transition, in which the network develops a macroscopic connected component as edges are added to it. Recent work has shown that if edges are added "competitively" to an undirected network, the onset of percolation is abrupt or "explosive." A new variant of explosive percolation is introduced here for directed networks, whose critical behavior is explored using numerical simulations and finite-size scaling theory. This process is also characterized by a very rapid percolation transition, but it is not as sudden as in undirected networks. The second phase transition considered here is the emergence of instability in Boolean networks, a class of dynamical systems that are widely used to model gene regulation. The dynamics, which are determined by the network topology and a set of update rules, may be either stable or unstable, meaning that small perturbations to the state of the network either die out or grow to become macroscopic. Here, this transition is analytically mapped onto a well-studied percolation problem, which can be used to predict the average steady-state distance between perturbed and unperturbed trajectories. This map applies to specific Boolean networks with few restrictions on network topology, but can only be applied to two commonly used types of update rules. Finally, a method is introduced for predicting the stability of Boolean networks with a much broader range of update rules. The network is assumed to have a given complex topology, subject only to a locally tree-like condition, and the update rules may be correlated with topological features of the network. While past work has addressed the separate effects of topology and update rules on stability, the present results are the first widely applicable approach to studying how these effects interact. Numerical simulations agree with the theory and show that such correlations between topology and update

  1. Phase Transitions and Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Gentile, Nicholas A.

    1994-01-01

    Results are presented for numerical calculations of gravitational collapses and explosions. Two effects are studied. The first involves aspects of the numerical models used in almost all current gravitational collapse calculations. The second involves phase transitions in the equation of state of dense matter. A (1+1) dimensional general relativistic hydrodynamics code was constructed to investigate both effects. A modification of standard artificial viscosity methods was developed. This extended both the tensor artificial viscosity formulation and the artificial heat conduction formulation to the general relativistic regime. This method shows better results for collapse calculations than the standard scalar artificial viscosity. Numerical collapse calculations were also examined with respect to the number of zones used in the model. These calculations suggest that the number of zones used in current supernova calculations may be insufficient, and that the more sophisticated artificial viscosity methods used may be useful in future core collapse investigations. The second effect studied by this thesis is the impact of phase transitions in dense matter on the results of core collapse in Type 2 supernovae. Two different phase transitions were investigated. The QCD phase transition embodies the prediction of quantum chromodynamics that at high density the constituents of baryonic matter will be free quarks and gluons. The effects on the shock wave formed by core collapse and bounce is studied for various phase transitions. We find that some of the phase transitions modeled significantly increase the shock strength. The second phase transition we study is one from a normal hadronic gas to Q matter. Q matter is a phase of dense baryonic matter that is motivated by soliton models for the nucleus. It has been used to model zero temperature dense matter in static stellar objects, here we extend it to finite temperature, determine the phase transitions with hadronic matter

  2. Revisiting Lake Hämelsee: reconstructing abrupt Lateglacial climate transitions using state- of-the-art palaeoclimatological proxies

    NASA Astrophysics Data System (ADS)

    Engels, Stefan; Hoek, Wim; Lane, Christine; Sachse, Dirk; Wagner-Cremer, Friederike

    2015-04-01

    Lake Hämelsee (Germany) is one of the northernmost sites in NW Europe that has varved sediments throughout large parts of its Lateglacial and Early Holocene sediment sequence. Previous research on this site has shown its potential, in terms of chronological resolution and palaeoecological reconstructions, for reconstructing the abrupt transitions into and out of the Younger Dryas, the last cold period of the last glacial. The site was revisited during a 1-week summer school for Early Stage Researchers (2013), within the INTIMATE Example training and research project, supported by EU Cost Action ES0907. Two overlapping sediment sequences were retrieved from the centre of the lake during the summer school. These sediments have since formed the basis for follow-up research projects, which have sparked the collaboration of around 30 researchers in 12 laboratories across Europe. A chronological framework for the core has been composed from a combination of varve counting, radiocarbon dating and tephrochronology. Tephrostratigraphic correlations allow direct correlation and precise comparison of the record to marine and ice core records from the North Atlantic region, and other terrestrial European archives. Furthermore, the core is has been subjected to multiple sedimentological (e.g. XRF, loss-on-ignition), geochemical (e.g. lipid biomarkers, GDGTs) and palaeoecological (e.g. pollen, chironomids) proxy-based reconstructions of past environmental and climatic conditions. The results provide important insights into the nature of the abrupt climate transitions of the Lateglacial and Early Holocene, both locally and on a continental scale. The INTIMATE Example participants: Illaria Baneschi, Achim Brauer, Christopher Bronk Ramsey, Renee de Bruijn, Siwan Davies, Aritina Haliuc, Katalin Hubay, Gwydion Jones, Meike Müller, Johanna Menges, Josef Merkt, Tom Peters, Francien Peterse, Anneke ter Schure, Kathrin Schuetrumpf, Richard Staff, Falko Turner, Valerie van den Bos.

  3. Abrupt climate changes in northwestern Colombia during the Lateglacial and Holocene transition

    NASA Astrophysics Data System (ADS)

    Velasquez Ruiz, C.

    2013-05-01

    High resolution pollen/spores records from Paramo de Frontino (6, 29N, 76, 6W) and Paramo de Belmira (6,42'N, 75,40'W) in Colombia (Velásquez C. and H. Hooghiemstra, Paleobotany, 2012 in press; Velásquez C., et al., in preparation) spanning 17300 and 34000 cal yr BP; are studied for abrupt climatic change and compared with a La Cocha diatom record (Gonzalez, Z, et al., 2012), Frontino and Cariaco Basin (offshore Venezuela) titanium records and a Cariaco sea surface temperatures record (Gorin, G., et al, in preparation; Haug, et al., 2001; Lea D., et al., 2003; respectively); in reference to detected vegetation and climate variations. The most remarkable events occurred at 8200, 9300, 10400, 12000, 13500, 14.5-14.7, 16.2 and 21.4 cal yr BP. Low frequency cycles of 1500-2500 yr are present along the records suggesting that the North Atlantic Bond Cycles are also registered in northwestern South American terrestrial records. Some of these changes were dry while others wet, showing that both patterns "Cold poles, dry tropics" and "Cold poles, wet tropics" can be expressed. It was also found that the estimated temperatures from Paramo de Frontino (pollen based) and sea surface temperatures in Cariaco followed a similar trend during the the Late Glacial and Early Holocene. However, in the case of moisture, the Titanium record (indicative of rainfall) from the Cariaco Basin, the aquatic vegetation pollen and titanium records from Paramo de Frontino and diatoms record from La Cocha lake, showed a clear antiphase behavior during the same periods. Position and shape of Intertropical Convergence Zone are postulated as responsible for this variation. Keywords: palinology, Intertropical Convergence Zone, titanium, Colombia, climatic and vegetation changes.

  4. Dansgaard-Oeschger-like abrupt climate transition in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Tziperman, E.; Eisenman, I.; Bitz, C.

    2006-12-01

    The last glaciation (80-10 kyr BP) was punctuated by dramatic switches between warm and cold climates characterized by abrupt warming events recorded in Greenland ice cores. A leading hypothesis attributes these Dansgaard-Oeschger (DO) events to internal variability in the North Atlantic meridional overturning circulation (MOC), but theories have struggled to explain how these changes in MOC are capable of inducing such a large signal in Greenland. We present the results of two simulations using the CCSM3 coupled atmosphere-ocean-sea ice model. Both simulations are forced by land ice distributions characteristic of periods midway between glacial and interglacial states, but one simulation is initialized with a warm interglacial ocean initial condition while the other has a cold glacial ocean initial condition. The main difference between the surface temperatures in the two simulations is the presence of a warm region covering southern Greenland and the Greenland and Norwegian Seas in the warm-initiated simulation. The simulations have differing MOC for about 700 years which appears to cause differences in sea ice cover leading to an annual mean temperature disparity of 10° C in southern Greenland, in agreement with proxy reconstructions of the temperature change associated with DO events. The cold-initiated simulation quickly adjusts to a fairly constant state characterized by weak MOC, large sea ice area, and cold Greenland temperature. In contrast to this, the warm-initiated simulation displays an initial excitation of the MOC amplitude which then decreases over the next several hundred years. At this point we reduce the CO2 by 15ppm to represent further evolution of a developing glaciation, after which the MOC grows and then gradually decreases again. These results provide falsifiable predictions regarding the regional and seasonal distribution of DO events which can be compared directly with proxy data.

  5. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  6. Abrupt transitions during sustained explosive eruptions: Examples from the 1912 eruption of Novarupta, Alaska

    USGS Publications Warehouse

    Adams, N.K.; Houghton, B.F.; Hildreth, W.

    2006-01-01

    Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 ??m vesicle diameter and cumulative number densities ranging from 107-109 cm-3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and

  7. Abrupt transitions between gyroscopic and internal gravity waves: the mid-latitude case

    NASA Astrophysics Data System (ADS)

    van Haren, Hans

    The large-scale vertical density stratification, represented by buoyancy frequency N, is generally very stable in the upper half of the ocean, and relatively weak in the lower half. However, closer inspection of density profiles demonstrates steps rather than a smooth increase with depth. As is demonstrated here using Richardson number, geostrophic balance and slantwise convective mixing arguments, these layers have a limited set of minimum, weak stratification, N-values Nmin indicating the transition between stably stratified and convective layers. Adopting the viewpoint that the transition occurs for neutral stability in the direction of Earth's rotation ) and (iii) Nmin = 4fh, both under nonlinear stability, where horizontal component fh = 2 sin , because the effect of fh is the tilting of vortex tubes away from the local vertical in the direction of Ω. The above explains very well deep-ocean North-Atlantic and Mediterranean observations on transitions in conductivity-temperature with depth profiles, inertial polarization and near-inertial shear. The latter peaks at sub-inertial 0.97f, which is associated with the lower inertio-gravity wave limit for Nmin = 4fh, thereby stressing the importance of fh for the dominant physics associated with mixing in the ocean.

  8. New Phase Transition of Solid Bromine under High Pressure

    SciTech Connect

    San-Miguel, A.; Libotte, H.; Gaspard, J.-P.; Gauthier, M.; Aquilanti, G.; Pascarelli, S.

    2007-07-06

    Solid bromine has been studied by x-ray absorption spectroscopy experiments up to a maximum pressure of 75 GPa. The data analysis of the extended fine structure reveals that the intramolecular distance first increases, reaching its maximum value at 25{+-}5 GPa. From this value the intramolecular distance abruptly begins to decrease evidencing a nonpreviously observed phase transformation taking place at 25{+-}5 GPa. A maximum variation of 0.08 A ring is observed at 65{+-}5 GPa where again a phase transition occurs. This last transformation could correspond with the recently observed change to an incommensurate modulated phase. We discuss the possible generalization of the observed new phase transition at 25{+-}5 GPa to the case of the other halogens.

  9. The Nonlinear Response of the Equatorial Pacific Ocean-Atmosphere System to Periodic Variations in Insolation and its Association with the Abrupt Climate Transitions during the Quaternary.

    NASA Astrophysics Data System (ADS)

    Lopes, P. G.

    2015-12-01

    The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as

  10. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    SciTech Connect

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  11. Quantum phase transitions studied within the interacting boson model

    PubMed

    Cejnar; Jolie

    2000-06-01

    We study quasicritical phenomena in transitions between two "quantum phases" of a finite boson system, described by the interacting boson model 1 used in nuclear physics. The model is formulated in the algebraic framework and has a simple geometrical interpretation; the "phases" represented by dynamical symmetries U(5) and SU(3) correspond to spherical and deformed nuclear shapes. The quasicriticality of the U(5)-SU(3) transition is shown to be connected with the following phenomena simultaneously occurring in a narrow parameter region between the symmetries: (a) abrupt structural changes of eigenstates, (b) multiple avoided crossing of levels, (c) peaked density of exceptional points, (d) qualitative changes of the corresponding classical potential. We show that these spectroscopic features influence the dynamics of intersymmetry transitions in the model parameter space if the parameters themselves become dynamical variables. PMID:11088296

  12. Acute tubular necrosis (ATN) presenting with an unusually prolonged period of marked polyuria heralded by an abrupt oliguric phase

    PubMed Central

    Ramoutar, Virin; Landa, Cristian; James, Leighton R

    2014-01-01

    A 50-year-old African-American man presented with acute tubular necrosis (ATN) secondary to hypotension from non-typhoid Salmonella gastroenteritis and bacteraemia. The oliguric phase lasted only 24 h followed by prolonged polyuria for 20 days, with urine output in excess of 16 L/day at maximum. As indexed in PubMed this is only the second published case of this nature since 1974, in which an abrupt oliguric phase of 24 h or less heralded prolonged polyuria in ATN. The diagnosis is challenging as fractional excretion of sodium early in the clinical course and rapid normalisation of serum creatinine with intravenous fluids (IVF) may point towards prerenal azotaemia resulting in a premature discharge from hospital. Patients with an abrupt oliguric phase may suffer a secondary renal insult from the profound fluid loss that is to follow and may need inpatient monitoring with supplemental IVF to prevent deleterious outcomes. PMID:25150229

  13. Sliding Over a Phase Transition

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.

    2011-03-01

    The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).

  14. Visualizing Non-abrupt Transition of Quantum Well States at Stepped Silver Surfaces

    PubMed Central

    Kumar Saha, Srijan; Manna, Sujit; Stepanyuk, Valeri S.; Kirschner, Jürgen

    2015-01-01

    We use scanning tunneling spectroscopy (STS) experiments and first-principles density functional theory (DFT) calculations to address a fundamental question of how quantum well (QW) states for electrons in a metal evolve spatially in the lateral direction when there is a surface step that changes the vertical confinement thickness. This study reveals a clear spatially dependent, nearly continuous trend in the energetic shifts of quantum well (QW) states of thin Ag(111) film grown on Cu(111) substrate, showing the strongest change near the step edge. A large energetic shift equaling up to ~200 meV with a lateral extension of the QW states of the order of ~20 Å is found, even though the step-edge is atomically sharp as evidenced by a line scan. The observed lateral extension and the nearly smooth transition of QW states are understood within the context of step-induced charge oscillation, and Smoluchowski-type charge spreading and smoothing. PMID:26243639

  15. Abrupt community transitions and cyclic evolutionary dynamics in complex food webs☆

    PubMed Central

    Takahashi, Daisuke; Brännström, Åke; Mazzucco, Rupert; Yamauchi, Atsushi; Dieckmann, Ulf

    2013-01-01

    Understanding the emergence and maintenance of biodiversity ranks among the most fundamental challenges in evolutionary ecology. While processes of community assembly have frequently been analyzed from an ecological perspective, their evolutionary dimensions have so far received less attention. To elucidate the eco-evolutionary processes underlying the long-term build-up and potential collapse of community diversity, here we develop and examine an individual-based model describing coevolutionary dynamics driven by trophic interactions and interference competition, of a pair of quantitative traits determining predator and prey niches. Our results demonstrate the (1) emergence of communities with multiple trophic levels, shown here for the first time for stochastic models with linear functional responses, and (2) intermittent and cyclic evolutionary transitions between two alternative community states. In particular, our results indicate that the interplay of ecological and evolutionary dynamics often results in extinction cascades that remove the entire trophic level of consumers from a community. Finally, we show the (3) robustness of our results under variations of model assumptions, underscoring that processes of consumer collapse and subsequent rebound could be important elements of understanding biodiversity dynamics in natural communities. PMID:23948552

  16. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model.

    PubMed

    Lóbez, C M; Relaño, A

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy. PMID:27575109

  17. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model

    NASA Astrophysics Data System (ADS)

    Lóbez, C. M.; Relaño, A.

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system—the Dicke model—focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.

  18. Non-equilibrium phase transitions

    SciTech Connect

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.

  19. Phase Transitions in Dipalmitoylphosphatidylcholine Monolayers.

    PubMed

    Zuo, Yi Y; Chen, Rimei; Wang, Xianju; Yang, Jinlong; Policova, Zdenka; Neumann, A Wilhelm

    2016-08-23

    A self-assembled phospholipid monolayer at an air-water interface is a well-defined model system for studying surface thermodynamics, membrane biophysics, thin-film materials, and colloidal soft matter. Here we report a study of two-dimensional phase transitions in the dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface using a newly developed methodology called constrained drop surfactometry (CDS). CDS is superior to the classical Langmuir balance in its capacity for rigorous temperature control and leak-proof environments, thus making it an ideal alternative to the Langmuir balance for studying lipid polymorphism. In addition, we have developed a novel Langmuir-Blodgett (LB) transfer technique that allows the direct transfer of lipid monolayers from the droplet surface under well-controlled conditions. This LB transfer technique permits the direct visualization of phase coexistence in the DPPC monolayer. With these technological advances, we found that the two-dimensional phase behavior of the DPPC monolayer is analogous to the three-dimensional phase transition of a pure substance. This study has implications in the fundamental understanding of surface thermodynamics as well as applications such as self-assembled monolayers and pulmonary surfactant biophysics. PMID:27479299

  20. Phase transition thermodynamics of bisphenols.

    PubMed

    Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F

    2014-10-16

    Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.

  1. Structural phase transitions in boron carbide under stress

    NASA Astrophysics Data System (ADS)

    Korotaev, P.; Pokatashkin, P.; Yanilkin, A.

    2016-01-01

    Structural transitions in boron carbide B4C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C-B-C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route.

  2. Statistical mechanics of topological phase transitions in networks

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derényi, Imre; Farkas, Illés; Vicsek, Tamás

    2004-04-01

    We provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully connected network. In our studies—based on an exact enumeration method, Monte Carlo simulations, and theoretical considerations—we find a rich variety of topological phase transitions when the temperature is varied. These transitions signal singular changes in the essential features of the global structure of the network. Depending on the energy function chosen, the observed transitions can be best monitored using the order parameters Φs=smax/M, i.e., the size of the largest connected component divided by the number of edges, or Φk=kmax/M, the largest degree in the network divided by the number of edges. If, for example, the energy is chosen to be E=-smax, the observed transition is analogous to the percolation phase transition of random graphs. For this choice of the energy, the phase diagram in the (,T) plane is constructed. Single-vertex energies of the form E=∑if(ki), where ki is the degree of vertex i, are also studied. Depending on the form of f(ki), first-order and continuous phase transitions can be observed. In case of f(ki)=-(ki+α)ln(ki), the transition is continuous, and at the critical temperature scale-free graphs can be recovered. Finally, by abruptly decreasing the temperature, nonequilibrium processes (e.g., nucleation and growth of particular topological phases) can also be interpreted by the present approach.

  3. Work and quantum phase transitions: quantum latency.

    PubMed

    Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J

    2014-06-01

    We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.

  4. ABRUPT CHANGES OF THE PHOTOSPHERIC MAGNETIC FIELD IN ACTIVE REGIONS AND THE IMPULSIVE PHASE OF SOLAR FLARES

    SciTech Connect

    Cliver, E. W.; Petrie, G. J. D.; Ling, A. G.

    2012-09-10

    We compared time profiles of changes of the unsigned photospheric magnetic flux in active regions with those of their associated soft X-ray (SXR) bursts for a sample of 75 {>=} M5 flares well observed by Global Oscillation Network Group longitudinal magnetographs. Sixty-six of these events had stepwise changes in the spatially integrated unsigned flux during the SXR flares. In superposed epoch plots for these 66 events, there is a sharp increase in the unsigned magnetic flux coincident with the onset of the flare impulsive phase while the end of the stepwise change corresponds to the time of peak SXR emission. We substantiated this result with a histogram-based comparison of the timing of flux steps (onset, midpoint of step, and end) for representative points in the flaring regions with their associated SXR event time markers (flare onset, onset of impulsive phase, time of peak logarithmic derivative, maximum). On an individual event basis, the principal part of the stepwise magnetic flux change occurred during the main rise phase of the SXR burst (impulsive phase onset to SXR peak) for {approx}60% of the 66 cases. We find a close timing agreement between magnetic flux steps and >100 keV emission for the three largest hard X-ray (>100 keV) bursts in our sample. These results identify the abrupt changes in photospheric magnetic fields as an impulsive phase phenomenon and indicate that the coronal magnetic field changes that drive flares are rapidly transmitted to the photosphere.

  5. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  6. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  7. Nonequilibrium dynamics of phase transitions

    NASA Astrophysics Data System (ADS)

    Gagne, Carmen Jeanne

    2001-11-01

    Phase transitions occur in such diverse and important systems as ferromagnets, liquid crystals and the early Universe. The dynamics of phase transitions such as these have been studied for decades, but the analytical models still need a great deal of improvement before they can adequately describe all time stages and regions under the coexistence curve. Numerical studies can supplement these analytical theories, but they need to accurately describe the continuum equations that they are intended to solve. This thesis describes a method for removing the lattice- spacing and renormalization-mass dependence of Langevin simulations of phase mixing in (2 + 1)-dimensional asymmetric Ginzburg-Landau models with short-ranged interactions. Also, the spread in the order parameter near the critical value of the control parameter due to critical slowing down is used to more accurately determine this value of the control parameter in these simulations. In addition, a new method is proposed for quantifying the departure from equilibrium. The method explores the behavior of the rate of change of the momentum-integrated structure function, ΔStot( t), as it evolves in time. As an illustration, we examine a (1 + 1)-dimensional model of a stochastic Ginzburg-Landau model at varying cooling rates. We show that ΔStot(t) displays a peak which scales with cooling time-scale as t1/2q in the over-damped limit and t1/3q in the underdamped limit. The peak amplitude was found to scale with cooling time-scale as t6/5q in all viscosities studied.

  8. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  9. Phase transitions for the Brusselator model

    NASA Astrophysics Data System (ADS)

    Ma, Tian; Wang, Shouhong

    2011-03-01

    Dynamic phase transitions of the Brusselator model is carefully analyzed, leading to a rigorous characterization of the types and structure of the phase transitions of the model from basic homogeneous states. The study is based on the dynamic transition theory developed recently by the authors.

  10. On the structure of supercritical phase transition

    SciTech Connect

    Hirata, Y.S. )

    1990-06-10

    A novel physical picture is presented for the normal-to-supercritical phase transition in QED around a large-Z nucleus. The process is described as the decay of the false vacuum in close analogy to the first-order phase transition in statistical mechanics. The irreversible nature of the transition is pointed out and the physical implications of this picture are discussed.

  11. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  12. Accessing hidden isosymmetric phase transitions in perovskite thin films

    NASA Astrophysics Data System (ADS)

    Rondinelli, James; Coh, Sinisa

    2011-03-01

    Isosymmetric phase transitions (IPT), which show no change in occupied Wyckoff positions or crystallographic space group, are exceedingly rare in crystalline matter because most condensed systems respond to external stimuli by undergoing ``conventional'' symmetry-lowering displacive, martensitic or reconstructive transitions. In this work, we use first-principles density functional calculations to identify an elusive IPT in orthorhombic AB O3 perovskite oxides with tendency towards rhombohedral symmetry. Using perovskite LaGa O3 as our prototypical system, we show that the latent isosymmetric phase transition, which manifests as an abrupt change in the octahedral rotation axis, is accessible only with an external elastic constraint---bi-axial strain. We show the transition originates from a soft phonon that describes the geometric connectivity and relative phase of the Ga O6 polyhedra. By connecting the origin of IPT to a chemical and structural incompatibility between the lattice and the elastic constraints, we describe how subtle changes in bulk orthorhombic and monoclinic symmetries are critical to the complete engineering of structure-correlated electronic properties in thin films. Because bi-axial strain is the critical parameter controlling the IPT, we suggest heteroepitaxial synthesis of IPT materials is a plausible route to realize high- κ dielectric actuators with variable band gaps and dielectric anisotropies.

  13. Abrupt transition to heightened poliomyelitis epidemicity in England and Wales, 1947-1957, associated with a pronounced increase in the geographical rate of disease propagation.

    PubMed

    Smallman-Raynor, M R; Cliff, A D

    2014-03-01

    The abrupt transition to heightened poliomyelitis epidemicity in England and Wales, 1947-1957, was associated with a profound change in the spatial dynamics of the disease. Drawing on the complete record of poliomyelitis notifications in England and Wales, we use a robust method of spatial epidemiological analysis (swash-backwash model) to evaluate the geographical rate of disease propagation in successive poliomyelitis seasons, 1940-1964. Comparisons with earlier and later time periods show that the period of heightened poliomyelitis epidemicity corresponded with a sudden and pronounced increase in the spatial rate of disease propagation. This change was observed for both urban and rural areas and points to an abrupt enhancement in the propensity for the geographical spread of polioviruses. Competing theories of the epidemic emergence of poliomyelitis in England and Wales should be assessed in the light of this evidence.

  14. Phase transitions in physiologic coupling

    PubMed Central

    Bartsch, Ronny P.; Schumann, Aicko Y.; Kantelhardt, Jan W.; Penzel, Thomas; Ivanov, Plamen Ch.

    2012-01-01

    Integrated physiological systems, such as the cardiac and the respiratory system, exhibit complex dynamics that are further influenced by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and the respiratory system adjust their rhythms, despite continuous fluctuations in their dynamics, we study the phase synchronization of heartbeat intervals and respiratory cycles. The nature of this interaction, its physiological and clinical relevance, and its relation to mechanisms of neural control is not well understood. We investigate whether and how cardiorespiratory phase synchronization (CRPS) responds to changes in physiological states and conditions. We find that the degree of CRPS in healthy subjects dramatically changes with sleep-stage transitions and exhibits a pronounced stratification pattern with a 400% increase from rapid eye movement sleep and wake, to light and deep sleep, indicating that sympatho-vagal balance strongly influences CRPS. For elderly subjects, we find that the overall degree of CRPS is reduced by approximately 40%, which has important clinical implications. However, the sleep-stage stratification pattern we uncover in CRPS does not break down with advanced age, and surprisingly, remains stable across subjects. Our results show that the difference in CRPS between sleep stages exceeds the difference between young and elderly, suggesting that sleep regulation has a significantly stronger effect on cardiorespiratory coupling than healthy aging. We demonstrate that CRPS and the traditionally studied respiratory sinus arrhythmia represent different aspects of the cardiorespiratory interaction, and that key physiologic variables, related to regulatory mechanisms of the cardiac and respiratory systems, which influence respiratory sinus arrhythmia, do not affect CRPS. PMID:22691492

  15. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  16. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  17. Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator

    NASA Astrophysics Data System (ADS)

    Doron, A.; Tamir, I.; Mitra, S.; Zeltzer, G.; Ovadia, M.; Shahar, D.

    2016-02-01

    In certain disordered superconductors, upon increasing the magnetic field, superconductivity terminates with a direct transition into an insulating phase. This phase is comprised of localized Cooper pairs and is termed a Cooper-pair insulator. The current-voltage characteristics measured in this insulating phase are highly nonlinear and, at low temperatures, exhibit abrupt current jumps. Increasing the temperature diminishes the jumps until the current-voltage characteristics become continuous. We show that a direct correspondence exists between our system and systems that undergo an equilibrium, second-order, phase transition. We illustrate this correspondence by comparing our results to the van der Waals equation of state for the liquid-gas mixture. We use the similarities to identify a critical point where an out of equilibrium second-order-like phase transition occurs in our system. Approaching the critical point, we find a power-law behavior with critical exponents that characterizes the transition.

  18. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  19. Microscopic Description of Nuclear Quantum Phase Transitions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2007-08-31

    The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.

  20. Simple theory of transitions between smectic, nematic, and isotropic phases.

    PubMed

    Emelyanenko, A V; Khokhlov, A R

    2015-05-28

    The transitions between smectic, nematic, and isotropic phases are investigated in the framework of a unified molecular-statistical approach. The new translational order parameter is different from the one introduced in K. Kobayashi [Phys. Lett. A 31, 125 (1970)] and W. L. McMillan [Phys. Rev. A 4, 1238 (1971)]. The variance of the square sine of intermolecular shift angle along the director is introduced to take self-consistently into account the most probable location of the molecules with respect to each other, which is unique for every liquid crystal (LC) material and is mainly responsible for the order parameters and phase sequences. The mean molecular field was treated in terms of only two parameters specific to any intermolecular potential of elongated molecules: (1) its global minimum position with respect to the shift of two interacting molecules along the director and (2) its inhomogeneity/anisotropy ratio. A simple molecular model is also introduced, where the global minimum position is determined by the linking groups elongation Δ/d, while the inhomogeneity/anisotropy ratio Gβ/Gγ is determined by the ratio of electrostatic and dispersion contributions. All possible phase sequences, including abrupt/continuous transformation between the smectic and nematic states and the direct smectic-isotropic phase transition, are predicted. The theoretical prediction is in a good agreement with experimental data for some simple materials correlating with our molecular model, but it is expected to be valid for any LC material.

  1. Abrupt transition from ferromagnetic to antiferromagnetic of interfacial exchange in perpendicularly magnetized L1(0)-MnGa/FeCo tuned by Fermi level position.

    PubMed

    Ma, Q L; Mizukami, S; Kubota, T; Zhang, X M; Ando, Y; Miyazaki, T

    2014-04-18

    An abrupt transition of the interfacial exchange coupling from ferromagnetic to antiferromagnetic was observed in the interface of perpendicularly magnetized L10-MnGa/Fe1-xCox epitaxial bilayers when x was around 25%. By considering the special band structure of the MnGa alloy, we present a model explaining this transition by the spin-polarization reversal of Fe1-xCox alloys due to the rise of the Fermi level as the Co content increases. The effect of interfacial exchange coupling on the coercive force (Hc) and the spin-dependent tunneling effect in perpendicular magnetic tunnel junctions (pMTJs) based on the coupled composite were also studied. Changes from the normal spin valve to inverted magnetoresistance loops corresponding to the coupling transition were observed in pMTJs with MnGa/Fe1-xCox as an electrode. PMID:24785068

  2. Electroweak phase transition in ultraminimal technicolor

    SciTech Connect

    Jaervinen, Matti; Sannino, Francesco; Ryttov, Thomas A.

    2009-05-01

    We unveil the temperature-dependent electroweak phase transition in new extensions of the standard model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe ultra minimal walking technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space, which yield a strong first-order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.

  3. Phase transitions in the early universe

    NASA Astrophysics Data System (ADS)

    Wainwright, Carroll L.

    I explore the theory and computation of early-Universe finite-temperature phase transitions involving scalar fields. I focus primarily on the electroweak phase transition, but some of the methods I develop are applicable to any scalar-field cosmological phase transition (such as the computation of the lifetime of zero-temperature metastable vacua). I begin by examining phase transition thermodynamics with many extra coupled degrees of freedom, finding that such transitions have the potential to produce large amounts of entropy and can significantly dilute the concentration of thermal relic species (e.g., dark matter). I then detail a novel algorithm for calculating instanton solutions with multiple dynamic scalar fields, and present a computational package which implements the algorithm and computes the finite-temperature phase structure. Next, I discuss theoretical and practical problems of gauge dependence in finite-temperature effective potentials, using the Abelian Higgs and Abelian Higgs plus singlet models to show the severity of the problem. Finally, I apply the aforementioned algorithm to the electroweak phase transition in the next-to-minimal supersymmetric standard model (NMSSM). My collaborators and I find viable regions of the NMSSM which contain a strongly first-order phase transition and large enough CP violation to support electroweak baryogenesis, evade electric dipole moment constraints, and provide a dark matter candidate which could produce the observed 130 GeV gamma-ray line observed in the galactic center by the Fermi Gamma-ray Space Telescope.

  4. Phase transitions in QCD and string theory

    NASA Astrophysics Data System (ADS)

    Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.

    1991-02-01

    We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.

  5. Phase transition of aragonite in abalone nacre

    NASA Astrophysics Data System (ADS)

    An, Yuanlin; Liu, Zhiming; Wu, Wenjian

    2013-04-01

    Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.

  6. Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Popov, A. P.; Bykov, A. V.; Tuchin, V. V.

    2014-10-01

    Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.

  7. QCD Phase Transition in Dgp Brane Cosmology

    NASA Astrophysics Data System (ADS)

    Atazadeh, K.; Ghezelbash, A. M.; Sepangi, H. R.

    2012-08-01

    In the standard picture of cosmology it is predicted that a phase transition, associated with chiral symmetry breaking after the electroweak transition, has occurred at approximately 10μ seconds after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider the quark-hadron phase transition in a Dvali, Gabadadze and Porrati (DGP) brane world scenario within an effective model of QCD. We study the evolution of the physical quantities useful for the study of the early universe, namely, the energy density, temperature and the scale factor before, during and after the phase transition. Also, due to the high energy density in the early universe, we consider the quadratic energy density term that appears in the Friedmann equation. In DGP brane models such a term corresponds to the negative branch (ɛ = -1) of the Friedmann equation when the Hubble radius is much smaller than the crossover length in 4D and 5D regimes. We show that for different values of the cosmological constant on a brane, λ, phase transition occurs and results in decreasing the effective temperature of the quark-gluon plasma and of the hadronic fluid. We then consider the quark-hadron transition in the smooth crossover regime at high and low temperatures and show that such a transition occurs along with decreasing the effective temperature of the quark-gluon plasma during the process of the phase transition.

  8. Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics

    SciTech Connect

    Park, S.; Pan, M.; Markowski, K.; Yoshikawa, S.; Cross, L.E.

    1997-08-01

    The electric field induced phase transition behavior of lead lanthanum zirconate titanate stannate (PLZTS) ceramics was investigated. PLZTS undergoes a tetragonal antiferroelectric (AFE{sub Tet}) to rhombohedral ferroelectric (FE{sub Rh}) phase transition with the application of an electric field. The volume increase associated with this antiferroelectric (AFE){endash}ferroelectric (FE) phase transition plays an important role with respect to actuator applications. This volume increase involves an increase in both transverse and longitudinal strains. The E field at which the transverse strain increases is accompanied by an abrupt jump in polarization. The longitudinal strain, however, lags behind this polarization jump exhibiting a slight decrease at the onset of phase switching. This decoupling was related to the preferentially oriented AFE domain configuration, with its tetragonal c-axis perpendicular to the applied electric field. It is suggested that phase switching involves multiple steps involving both structural transformation and domain reorientation. {copyright} {ital 1997 American Institute of Physics.}

  9. Phase transition phenomenon: A compound measure analysis

    NASA Astrophysics Data System (ADS)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  10. Studying Phase Transitions in Nuclear Collisions

    SciTech Connect

    Mishustin, I.N.

    2000-12-31

    Three main topics are discussed concerning the theoretical description and observable signatures of possible phase transitions in nuclear collisions. The first one is related to the multifragmentation of equilibrated sources and its connection to a liquid-gas phase transition in finite systems. The second one deals with the Coulomb excitation of ultrarelativistic heavy ions resulting in their deep disintegration. The third topic is devoted to the description of a first-order phase transition in rapidly expanding matter. The resulting picture is that a strong collective flow of matter will lead to the fragmentation of a metastable phase into droplets. If the transition from quark-gluon plasma to hadron gas is of the first order, it will manifest itself by strong nonstatistical fluctuations in observable hadron distributions.

  11. Critical behaviours of contact near phase transitions

    PubMed Central

    Chen, Y.-Y.; Jiang, Y.-Z.; Guan, X.-W.; Zhou, Qi

    2014-01-01

    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviours, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition, and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviours in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition. PMID:25346226

  12. Critical behaviours of contact near phase transitions.

    PubMed

    Chen, Y-Y; Jiang, Y-Z; Guan, X-W; Zhou, Qi

    2014-01-01

    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviours, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition, and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviours in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition. PMID:25346226

  13. Thermal Phase Transitions in Finite Quantum Systems

    SciTech Connect

    Dean, D.J.

    2001-10-18

    In this Proceedings, the author will describe the behavior of two different quantum-mechanical systems as a function of increasing temperature. While these systems are somewhat different, the questions addressed are very similar, namely, how does one describe transitions in phase of a finite many-body system; how does one recognize these transitions in practical calculations; and how may one obtain the order of the transition.

  14. Magnetic fields from the electroweak phase transition

    SciTech Connect

    Tornkvist, O.

    1998-02-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  15. Nuclear binding near a quantum phase transition

    NASA Astrophysics Data System (ADS)

    Lee, Dean

    2016-03-01

    I review recent ab initio results by the Nuclear Lattice Effective Field Theory Collaboration showing that nature lies close to a quantum phase transition between an alpha-particle gas and nuclear liquid. I discuss the control parameter of this transition and the implications for clustering in nuclei and improving ab initio nuclear structure calculations.

  16. Gravitational Effects on the Inflationary Phase Transition

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Gerhard

    The thesis contains work on phase transitions in field theory with gravity present. Results on bubble nucleation in gravitational fields are included. A specific model has been examined, the SU(5) Grand Unified Theory of the Coleman-Weinberg type coupled to gravity. The modes of the phase transition have been analyzed with respect to the requirement of obtaining sufficient inflation to resolve the horizon puzzle and the flatness/oldness puzzle.

  17. Dynamic phase transition in diluted Ising model

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sourav; Gorai, Gopal; Santra, S. B.

    2015-06-01

    Dynamic phase transition in disordered Ising model in two dimensions has been studied in presence of external time dependent oscillating magnetic field applying Glauber Monte Carlo techniques. Dynamic phase transitions are identified estimating dynamic order parameter against temperature for different concentrations of disorder. For a given field strength and frequency for which there was no hysteresis, it is observed that disorder is able induce hysteresis in the system. Effect of increasing concentration of disorder on hysteresis loop area has also been studied.

  18. Persistent homology analysis of phase transitions

    NASA Astrophysics Data System (ADS)

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  19. The last glacial-interglacial transition (LGIT) in the western mid-latitudes of the North Atlantic: Abrupt sea surface temperature change and sea level implications

    NASA Astrophysics Data System (ADS)

    Rodrigues, Teresa; Grimalt, Joan O.; Abrantes, Fátima; Naughton, Filipa; Flores, José-Abel

    2010-07-01

    High resolution reconstructions of sea surface temperature (U k'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C 37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse 1B. The decrease of continental input to the mud patch confirms a sea level rise in

  20. Reentrant phase transition in charged colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Arora, Akhilesh K.; Tata, B. V. R.; Sood, A. K.; Kesavamoorthy, R.

    1988-06-01

    We report the observation of a novel phase transition in dilute aqueous suspensions of polystyrene particles as a function of ionic impurity concentration C. The suspension phase separates into dense and rare phases only for a restricted range of C which depends on particle concentration n. The dense phase has liquidlike or crystalline order depending on n and C. Free energies of the homogeneous and the phase-separated states are calculated with an effective interparticle potential. The calculated phase diagram is in qualitative agreement with the present experimental results.

  1. Contemporary Research of Dynamically Induced Phase Transitions

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence

    2015-06-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions. Supported by the DoD/DOE Joint Munitions Technology Development Program.

  2. Cancer as a dynamical phase transition

    PubMed Central

    2011-01-01

    This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined. PMID:21867509

  3. Electronic and thermal effects in the insulator-metal phase transition in VO{sub 2} nano-gap junctions

    SciTech Connect

    Joushaghani, Arash; Jeong, Junho; Stewart Aitchison, J.; Poon, Joyce K. S.; Paradis, Suzanne; Alain, David

    2014-12-08

    By controlling the thermal transport of VO{sub 2} nano-gap junctions using device geometry, contact material, and applied voltage waveforms, the electronically induced insulator-metal phase transition is investigated in the adiabatic heating and transient carrier injection regimes. With a gradual ramping of an applied voltage on a microsecond time scale, the transition electric field threshold can be directly reduced by the Joule heating. With an abrupt applied voltage, the transition threshold is initiated by carriers injected within the first tens of nanoseconds, but the complete insulator-metal phase transition is limited by thermal redistribution times to hundreds of nanoseconds.

  4. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect

    Megevand, Ariel; Sanchez, Alejandro D.

    2008-03-15

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  5. Topological phases and phase transitions on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Yang, Yuan; Li, Xiaobing; Xing, Dingyu

    2016-10-01

    We investigate possible phase transitions among the different topological insulators in a honeycomb lattice under the combined influence of spin-orbit couplings and staggered magnetic flux. We observe a series of topological phase transitions when tuning the flux amplitude, and find topologically nontrivial phases with high Chern number or spin-Chern number. Through tuning the exchange field, we also find a new quantum state which exhibits the electronic properties of both the quantum spin Hall state and quantum anomalous Hall state. The topological characterization based on the Chern number and the spin-Chern number are in good agreement with the edge-state picture of various topological phases.

  6. Magnetic phase transitions in layered intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.

    2012-10-01

    Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.

  7. Continuous and discontinuous topological quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Goswami, Pallab; Sau, Jay D.

    2016-07-01

    The continuous quantum phase transition between noninteracting, time-reversal symmetric topological and trivial insulators in three dimensions is described by the massless Dirac fermion. We address the stability of this quantum critical point against short range electronic interactions by using renormalization group analysis and mean field theory. For sufficiently weak interactions, we show that the nature of the direct transition remains unchanged. Beyond a critical strength of interactions we find that either (i) there is a direct first order transition between two time reversal symmetric insulators or (ii) the direct transition is eliminated by an intervening time reversal and inversion odd "axionic" insulator. We also demonstrate the existence of an interaction driven first order quantum phase transition between topological and trivial gapped states in lower dimensions.

  8. Quantum trajectory phase transitions in the micromaser.

    PubMed

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser. PMID:21928957

  9. Microgravity Two-Phase Flow Transition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  10. Phase Transitions in Thin Block Copolymer Films

    SciTech Connect

    Kramer, Edward J.

    2010-10-08

    David Turnbull's experiments and theoretical insights paved the way for much of our modern understanding of phase transitions in materials. In recognition of his contributions, this lecture will concentrate on phase transitions in a material system not considered by Turnbull, thin diblock copolymer films. Well-ordered block copolymer films are attracting increasing interest as we attempt to extend photolithography to smaller dimensions. In the case of diblock copolymer spheres, an ordered monolayer is hexagonal, but the ordered bulk is body-centered cubic (bcc). There is no hexagonal plane in the bcc structure, so a phase transition must occur as n, the number of layers of spheres in the film, increases. How this phase transition occurs with n and how it can be manipulated is the subject of the first part of my presentation. In the second part of the talk, I show that monolayers of diblock copolymer spheres and cylinders undergo order-to-disorder transitions that differ greatly from those of the bulk. These ordered 2D monolayers are susceptible to phonon-generated disorder as well as to thermal generation of defects, such as dislocations, which, while they are line defects in 3D, are point defects in 2D. The results are compared to the theories of melting of 2D crystals (spheres) and of 2D smectic liquid crystals (cylinders), a comparison that will allow us to understand most, but not all, of the features of these order-disorder transitions that occur as the temperature is increased.

  11. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  12. Possible Structural Phase Transitions in Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Sahin, Hasan; Peeters, Francois

    2014-03-01

    Most of the the transition metal dichalcogenides (TMD) have graphene-like hexagonal crystal structure which are composed of metal atom layers (M) sandwiched between layers of chalcogen atoms (X) and these structures have MX2 stoichiometry. Chalcogen layers can be stacked on top of each other in two different forms: H phase made of trigonal prismatic holes for metal atoms and T phase that consists staggered chalcogen layers forming octahedral holes for metals. Among the TMDs that have been reported to be stable, individual layers of MoS2, MoSe2, WS2 and WSe2 have 1H structure in their ground state while dichalcogens of Ti, V and Ta prefer the 1T phase. In our study we investigate the physical mechanisms underlying for the possible phase transitions in TMDs. Our calculations based on first-principles techniques reveal that in addition to H and T phases various distorted H and T phases can be also stabilized by point defects. These new phases have entirely different electronic properties.

  13. Phase transitions in multiplicative competitive processes

    SciTech Connect

    Shimazaki, Hideaki; Niebur, Ernst

    2005-07-01

    We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality.

  14. Friction forces on phase transition fronts

    SciTech Connect

    Mégevand, Ariel

    2013-07-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.

  15. Noisy quantum phase transitions: an intuitive approach

    NASA Astrophysics Data System (ADS)

    Dalla Torre, Emanuele G.; Demler, Eugene; Giamarchi, Thierry; Altman, Ehud

    2012-11-01

    Equilibrium thermal noise is known to destroy any quantum phase transition. What are the effects of non-equilibrium noise? In two recent papers, we have considered the specific case of a resistively shunted Josephson junction driven by 1/f charge noise. At equilibrium, this system undergoes a sharp quantum phase transition at a critical value of the shunt resistance. By applying a real-time renormalization group approach, we found that the noise has three main effects: it shifts the phase transition, renormalizes the resistance and generates an effective temperature. In this paper, we explain how to understand these effects using simpler arguments based on Kirchhoff laws and time-dependent perturbation theory. We also show how these effects modify physical observables and especially the current-voltage characteristic of the junction. In the appendix, we describe two possible realizations of the model with ultracold atoms confined to one dimension.

  16. Late-time cosmological phase transitions

    SciTech Connect

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1990-11-01

    It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z {approx gt} 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies ({Delta}T/T) {approx lt} 10{sup {minus}5} can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of {approximately}100M pc for large-scale structure as well as {approximately}1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs.

  17. Shape phase transitions and critical points

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2009-05-04

    We investigate different aspects connected with shape phase transitions in nuclei and the possible occurrence of dynamical symmetries at the critical points. We discuss in particular the behaviour of the neighbour odd nuclei at the vicinity of the critical points in the even nuclei. We consider both the case of the transition from the vibrational behaviour to the gamma-unstable deformation (characterized within the collective Bohr hamiltonian by the E(5) critical point symmetry) and the case of the transition from the vibrational behaviour to the stable axial deformation (characterized by the X(5) symmetry). The odd particle is assumed to be moving in the three single particle orbitals j = 1/2,3/2,5/2, a set of orbitals that is known to lead to possible supersymmetric cases. The coupling of the odd particle to the Bohr hamiltonian does lead in fact in the former case at the critical point to the E(5/12) boson-fermion dynamical symmetry. An alternative approach to the two shape transitions is based on the Interacting Boson Fermion Model. In this case suitably parametrized boson-fermion hamiltonians can describe the evolution of the odd system along the shape transitions. At the critical points both energy spectra and electromagnetic transitions were found to display characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The behaviour of the odd nuclei can therefore be seen as necessary complementary signatures of the occurrence of the phase transitions.

  18. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Sun, Liguang; Chen, Liqi; Xu, Libin; Wang, Yuhong; Wang, Xinming

    2016-06-01

    Extreme climatic events have profound impacts on human society. Here we present the results of a study of organic biomarkers within a sedimentary section at the archaeological site of Yuchisi, eastern China, in order to reconstruct climatic variability during the Dawenkou (5,050–4,400 yr BP) and Longshan (4,400–4,000 yr BP) cultures. At ~4,400 yr BP, within the cultural transition horizon, abrupt changes in biomarkers, such as the fatty acid ratio C18:2/C18:0, 2C31/(C27 + C29), n-C18-ol and n-C30-ol, indicate the occurrence of local climate changes over the course of a few decades. These changes occurred during the transition from the Holocene warm period to a subsequent cold period which lasted for the following 600 years. This climatic shift has been recorded at numerous sites worldwide, and it is likely to have been the main cause of the widespread collapse of many isolated cultures at that time. The palaeoclimatic and archaeological data from the Yuchisi sediments may provide new insights into the relationship between climate change and prehistoric cultural transitions.

  19. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage.

    PubMed

    Wang, Jianjun; Sun, Liguang; Chen, Liqi; Xu, Libin; Wang, Yuhong; Wang, Xinming

    2016-01-01

    Extreme climatic events have profound impacts on human society. Here we present the results of a study of organic biomarkers within a sedimentary section at the archaeological site of Yuchisi, eastern China, in order to reconstruct climatic variability during the Dawenkou (5,050-4,400 yr BP) and Longshan (4,400-4,000 yr BP) cultures. At ~4,400 yr BP, within the cultural transition horizon, abrupt changes in biomarkers, such as the fatty acid ratio C18:2/C18:0, 2C31/(C27 + C29), n-C18-ol and n-C30-ol, indicate the occurrence of local climate changes over the course of a few decades. These changes occurred during the transition from the Holocene warm period to a subsequent cold period which lasted for the following 600 years. This climatic shift has been recorded at numerous sites worldwide, and it is likely to have been the main cause of the widespread collapse of many isolated cultures at that time. The palaeoclimatic and archaeological data from the Yuchisi sediments may provide new insights into the relationship between climate change and prehistoric cultural transitions. PMID:27283832

  20. The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage

    PubMed Central

    Wang, Jianjun; Sun, Liguang; Chen, Liqi; Xu, Libin; Wang, Yuhong; Wang, Xinming

    2016-01-01

    Extreme climatic events have profound impacts on human society. Here we present the results of a study of organic biomarkers within a sedimentary section at the archaeological site of Yuchisi, eastern China, in order to reconstruct climatic variability during the Dawenkou (5,050–4,400 yr BP) and Longshan (4,400–4,000 yr BP) cultures. At ~4,400 yr BP, within the cultural transition horizon, abrupt changes in biomarkers, such as the fatty acid ratio C18:2/C18:0, 2C31/(C27 + C29), n-C18-ol and n-C30-ol, indicate the occurrence of local climate changes over the course of a few decades. These changes occurred during the transition from the Holocene warm period to a subsequent cold period which lasted for the following 600 years. This climatic shift has been recorded at numerous sites worldwide, and it is likely to have been the main cause of the widespread collapse of many isolated cultures at that time. The palaeoclimatic and archaeological data from the Yuchisi sediments may provide new insights into the relationship between climate change and prehistoric cultural transitions. PMID:27283832

  1. Phase transition in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Mäkelä, Jarmo

    2016-04-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature TC . In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature TC may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole, the characteristic temperature TC corresponds to the Hawking temperature of the hole.

  2. Network traffic behaviour near phase transition point

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  3. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  4. Quantum phase transitions in antiferromagnets and superfluids

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Vojta, Matthias

    2000-05-01

    We present a general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition. Basic results are reviewed in the context of experiments on the spin-ladder compounds, insulating two-dimensional antiferromagnets, and double-layer quantum Hall systems. Recent large N computations on an extended t- J model (Phys. Rev. Lett. 83 (1999) 3916) motivate a global scenario of the quantum phases and transitions in the high-temperature superconductors, and connections are made to numerous experiments.

  5. Elastic anomalies at the magnetic phase transitions of TbTe3

    NASA Astrophysics Data System (ADS)

    Saint-Paul, M.; Guttin, C.; Lejay, P.; Leynaud, O.; Monceau, P.

    2016-08-01

    We report sound velocity and ultrasonic attenuation measurements in the vicinity of the successive magnetic phase transitions Tmag1~6.5 K, Tmag2~5.8 K and Tmag3~5.3 K in the charge density wave TbTe3 compound. A detailed investigation of the critical contributions to the temperature dependences of the sound velocity and ultrasonic attenuation is presented. Anisotropic stress dependences ∂Tmag1 / ∂σ found at the antiferromagnetic phase transition Tmag1 is associated with the layered structure of this compound. An abrupt step-like increase in the velocity and a sharp peak in the attenuation are observed with the longitudinal and shear modes at the lock-in magnetic phase transition Tmag3=5.3 K. The critical velocity and attenuation behaviors in the high temperature paramagnetic above Tmag1 are described in terms of a phenomenological dynamic scaling expression.

  6. Holographic endpoint of spatially modulated phase transition

    SciTech Connect

    Ooguri, Hirosi; Park, Chang-Soon

    2010-12-15

    In a previous paper [S. Nakamura, H. Ooguri, and C. S. Park, Phys. Rev. D 81, 044018 (2010)], we showed that the Reissner-Nordstroem black hole in the five-dimensional anti-de Sitter space coupled to the Maxwell theory with the Chern-Simons term is unstable when the Chern-Simons coupling is sufficiently large. In the dual conformal field theory, the instability suggests a spatially modulated phase transition. In this paper, we construct and analyze nonlinear solutions which describe the endpoint of this phase transition. In the limit where the Chern-Simons coupling is large, we find that the phase transition is of the second order with the mean field critical exponent. However, the dispersion relation with the Van Hove singularity enhances quantum corrections in the bulk, and we argue that this changes the order of the phase transition from the second to the first. We compute linear response functions in the nonlinear solution and find an infinite off-diagonal DC conductivity in the new phase.

  7. Phase transitions in the evolution of gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    The role of gene regulatory networks is to respond to environmental conditions and optimize growth of the cell. A typical example is found in bacteria, where metabolic genes are activated in response to nutrient availability, and are subsequently turned off to conserve energy when their specific substrates are depleted. However, in fluctuating environmental conditions, regulatory networks could experience strong evolutionary pressures not only to turn the right genes on and off, but also to respond optimally under a wide spectrum of fluctuation timescales. The outcome of evolution is predicted by the long-term growth rate, which differentiates between optimal strategies. Here we present an analytic computation of the long-term growth rate in randomly fluctuating environments, by using mean-field and higher order expansion in the environmental history. We find that optimal strategies correspond to distinct regions in the phase space of fluctuations, separated by first and second order phase transitions. The statistics of environmental randomness are shown to dictate the possible evolutionary modes, which either change the structure of the regulatory network abruptly, or gradually modify and tune the interactions between its components.

  8. Theory and phenomenology of electroweak phase transitions

    NASA Astrophysics Data System (ADS)

    Patel, Hiren H.

    An open problem in cosmology is to explain the origin of baryon abundance implied by observational cosmology. Among the many proposed explanations, electroweak baryogenesis is particularly attractive in that its ingredients is discoverable by modern experiments. The analysis of the electroweak phase transition in the early universe comprises an integral component within the larger study of electroweak baryogenesis. In this work, I make a detailed investigation of the conventional analysis of the electroweak phase transition commonly found in literature, and explicitly demonstrate that results are not independent of the choice of gauge. In its place, I provide a manifestly gauge-independent method for the analysis, review sources of theoretical and numerical uncertainties, and explore avenues for further development. Next, I explore the dynamics of the electroweak phase transition in two minimal extensions of the Standard Model of particle physics. Within these simple models, I describe a novel pattern of electroweak symmetry breaking favorable for baryogenesis that can serve as a paradigm for phase transition analysis in more complicated models.

  9. Hysteresis in the phase transition of chocolate

    NASA Astrophysics Data System (ADS)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  10. Dual condensate and QCD phase transition

    SciTech Connect

    Zhang Bo; Bruckmann, Falk; Fodor, Zoltan; Szabo, Kalman K.; Gattringer, Christof

    2011-05-23

    The dual condensate is a new QCD phase transition order parameter, which connnects confinement and chiral symmetry breaking as different mass limits. We discuss the relation between the fermion spectrum at general boundary conditions and the dual condensate and show numerical results for the latter from unquenched SU(3) lattice configurations.

  11. Interfacial phase transitions in conducting fluids.

    PubMed

    Freyland, Werner

    2008-02-21

    We present a review, largely based on recent experimental work of our group, on phase transitions at interfaces of fluid metals, alloys and ionic liquids. After a brief analysis of possible experimental errors and limitations of surface sensitive methods, we first deal with first-order wetting transitions at the liquid/vapour and liquid/wall interface in systems such as Ga-based alloys, K-KCl melts, and fluid Hg. The following chapter refers to surface freezing or surface induced crystallization in different metal alloys. The respective surface phase diagrams are discussed in comparison with their bulk counterpart. In the last part we present very recent investigations of ionic liquid interfaces, including order-disorder transitions at the liquid/vapour interface and examples of two-dimensional phase transitions at the electrified ionic liquid/metal interface. Finally, a simple electrowetting experiment with an ionic liquid droplet under vacuum is described which gives new insight into the contact angle saturation problem. The article ends up with a few perspective remarks on open problems and potential impact of interfacial phenomena on applied research. PMID:18259631

  12. Phase transitions in nonequilibrium traffic theory

    SciTech Connect

    Zhang, H.M.

    2000-02-01

    This paper uses the center difference scheme of Lax-Friedrichs to numerically solve a newly developed continuum traffic flow theory and the kinematic theory of Lighthill and Whitham, and Richards, and it studies the flow-concentration phase transitions in flow containing both shock and rarefaction waves. A homogeneous road with finite length was modeled by both theories. Numerical simulations show that both theories yield nearly identical results for two representative Riemann problems--one has a shock solution and the other a rarefaction wave solution. Their phase transition curves, however, are different: those derived from the new theory have two branches--one for acceleration flow and one for deceleration flow, whereas those derived from the LWR theory comprise a single curve--the equilibrium curve. The phase transition curves in the shock case agree well with certain experimental observations but disagree with others. This disagreement may be resolved by studying transitions among nonequilibrium states, which awaits further development of a more accurate finite difference approximation of the nonequilibrium theory.

  13. Novel approach to study liquid crystal phase transitions using Legendre moments

    NASA Astrophysics Data System (ADS)

    Sreehari Sastry, S.; Mallika, K.; Gowri Sankara Rao, B.; Tiong Ha, Sie; Lakshminarayana, S.

    2012-08-01

    A novel approach is proposed to investigate the phase transitions of cholesteric liquid crystals using the Legendre moments. The textures of cholesteric liquid crystals (cholesteryl butyrate, cholesteryl n-valerate, cholesteryl decanoate, and cholesteryl myristate) are captured as a function of temperature using high-resolution camera attached to the arthroscopic mode of polarizing optical microscope with hot stage. A recurrence formula is used to compute the Legendre moments of the liquid crystal textures based on the Legendre polynomial using MATLAB software. The abrupt change in the values of Legendre moments as a function of temperature gives the phase transitions of liquid crystals. The investigated transition temperatures of cholesteric liquid crystals are compared with other techniques.

  14. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    PubMed Central

    Uhlíř, V.; Arregi, J. A.; Fullerton, E. E.

    2016-01-01

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRh films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. The collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions. PMID:27725642

  15. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    NASA Astrophysics Data System (ADS)

    Uhlíř, V.; Arregi, J. A.; Fullerton, E. E.

    2016-10-01

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRh films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. The collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.

  16. Deconfinement Phase Transition and the Quark Condensate

    SciTech Connect

    Fischer, Christian S.

    2009-07-31

    We study the dual quark condensate as a signal for the confinement-deconfinement phase transition of QCD. This order parameter for center symmetry has been defined recently by Bilgici et al. within the framework of lattice QCD. In this work we determine the ordinary and the dual quark condensate with functional methods using a formulation of the Dyson-Schwinger equations for the quark propagator on a torus. The temperature dependence of these condensates serves to investigate the interplay between the chiral and deconfinement transitions of quenched QCD.

  17. Phase Transition of DNA Coated Nanogold Networks

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa; Sun, Young; Harris, Nolan; Wickremasinghe, Nissanka

    2004-03-01

    Melting and hybridization of DNA-coated gold nanoparticle networks are investigated with optical absorption spectroscopy and tansmission electron microscopy. Single-stranded DNA-coated nanogold are linked with complementary, single-stranded linker DNA to form particle networks. Network formation results in a solution color change, which can be used for DNA detection. Compared to free DNA, networked DNA-nanoparticle systems result in a sharp melting transition. Melting curves calculated from percolation theory agree with our experimental results(1). (1) C.-H. Kiang, ``Phase Transition of DNA-Linked Gold Nanoparticles,'' Physica A, 321 (2003) 164--169.

  18. Phase transitions in Pareto optimal complex networks.

    PubMed

    Seoane, Luís F; Solé, Ricard

    2015-09-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.

  19. Percolation phase transition of static and growing networks under a weighted function

    NASA Astrophysics Data System (ADS)

    Jia, Xiao; Hong, Jin-Song; Gao, Ya-Chun; Yang, Hong-Chun; Yang, Chun; Fu, Chuan-Ji; Hu, Jian-Quan

    2016-02-01

    We investigate the percolation phase transitions in both the static and growing networks where the nodes are sampled according to a weighted function with a tunable parameter α. For the static network, i.e. the number of nodes is constant during the percolation process, the percolation phase transition can evolve from continuous to discontinuous as the value of α is tuned. Based on the properties of the weighted function, three typical values of α are analyzed. The model becomes the classical Erdös-Rényi (ER) network model at α=1. When α=0.5, it is shown that the percolation process generates a weakly discontinuous phase transition where the order parameter exhibits an extremely abrupt transition with a significant jump in large but finite system. For α=‑1, the cluster size distribution at the lower pseudo-transition point does not obey the power-law behavior, indicating a strongly discontinuous phase transition. In the case of growing network, in which the collection of nodes is increasing, a smoother continuous phase transition emerges at α=0.5, in contrast to the weakly discontinuous phase transition of the static network. At α=‑1, on the other hand, probability modulation effect shows that the nature of strongly discontinuous phase transition remains the same with the static network despite the node arrival even in the thermodynamic limit. These percolation properties of the growing networks could provide useful reference for network intervention and control in practical applications in consideration of the increasing size of most actual networks.

  20. Topological phase transition in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, Kee Joo

    Despite considerable interests in transition metal dichalcogenides (TMDs), such as MX2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still in its infancy. The conventional view of topological phase transition (TPT) in TMDs is that the band inversion occurs between the metal d and chalcogen p orbital bands. More precisely, the former is pulled down below the latter. Here we introduce an explicit scheme for analyzing TPT in topological materials and find that the TPT in TMDs is different from the conventional speculation. When the 1T phase undergoes a structural transformation to the 1T' phase in monolayer MX2, the band topology changes from trivial to non-trivial, leading to the TPT. We discuss the exact role of the metal d and chalcogen p orbital bands during the TPT. Our finding would provide clear guidelines for understanding the topological nature not only in TMDs but also in other topological materials yet to be explored.

  1. Phase Transitions in Models of Bird Flocking

    NASA Astrophysics Data System (ADS)

    Christodoulidi, H.; van der Weele, K.; Antonopoulos, Ch. G.; Bountis, T.

    2014-12-01

    The aim of the present paper is to elucidate the transition from collective to random behavior exhibited by various mathematical models of bird flocking. In particular, we compare Vicsek's model [Vicsek et al., Phys. Rev. Lett. 75, 1226-1229 (1995)] with one based on topological considerations. The latter model is found to exhibit a first order phase transition from flocking to decoherence, as the "noise parameter" of the problem is increased, whereas Vicsek's model gives a second order transition. Refining the topological model in such a way that birds are influenced mostly by the birds in front of them, less by the ones at their sides and not at all by those behind them (because they do not see them), we find a behavior that lies in between the two models. Finally, we propose a novel mechanism for preserving the flock's cohesion, without imposing artificial boundary conditions or attractive forces.

  2. Gravitational Waves from a Dark Phase Transition

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro

    2015-10-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU (N ) dark sectors with nf flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  3. Gravitational Waves from a Dark Phase Transition.

    PubMed

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios. PMID:26565451

  4. Phase transition in the countdown problem.

    PubMed

    Lacasa, Lucas; Luque, Bartolo

    2012-07-01

    We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.

  5. Nonequilibrium phase transitions in biomolecular signal transduction

    NASA Astrophysics Data System (ADS)

    Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David

    2011-11-01

    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.

  6. Shock Induced Phase Transitions in Polymeric Nitrogen

    NASA Astrophysics Data System (ADS)

    Mattson, William; Balu, Radhakrishnan

    2011-06-01

    The reported density functional molecular dynamics simulations are of a shock travelling through ~4,000 atoms arranged in the equilibrium cg-N configuration equilibrated at T = 250K, P = 1 atm. Atoms within a small segment of the material given an extra velocity consistent with various desired flyer plate impact velocity. The resulting atomic trajectories show a number of complex behaviors including a phase transition to a previously unseen phase, spontaneous defect formation, and chemical reactions. The stability of the shock and the unusual properties of the above phenomena will be discussed.

  7. Shock Induced Phase Transitions in Polymeric Nitrogen

    NASA Astrophysics Data System (ADS)

    Mattson, William

    2010-03-01

    The reported density functional molecular dynamics simulations are of a shock travelling through ˜4,000 atoms arranged in the equilibrium cg-N configuration equilibrated at T = 250K, P = 1 atm. Atoms within a small segment of the material given an extra velocity consistent with various desired flyer plate impact velocity. The resulting atomic trajectories show a number of complex behaviors including a phase transition to a previously unseen phase, spontaneous defect formation, and chemical reactions. The stability of the shock and the unusual properties of the above phenomena will be discussed.

  8. Structural phase transitions in monolayer molybdenum dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo

    2015-03-01

    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  9. Extracellular ice phase transitions in insects.

    PubMed

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  10. Topological phase transitions in frustrated magnets

    NASA Astrophysics Data System (ADS)

    Southern, B. W.; Peles, A.

    2006-06-01

    The role of topological excitations in frustrated Heisenberg antiferromagnets between two and three spatial dimensions is considered. In particular, the antiferromagnetic Heisenberg model on a stacked triangular geometry with a finite number of layers is studied using Monte Carlo methods. A phase transition that is purely topological in nature occurs at a finite temperature for all film thicknesses. The results indicate that topological excitations are important for a complete understanding of the critical properties of the model between two and three dimensions.

  11. Abrupt plate accelerations shape rifted continental margins

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength–velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  12. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  13. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time. PMID:27437571

  14. Phase transitions in planar bilayer membranes.

    PubMed

    White, S H

    1975-02-01

    Temperature-dependent structural changes in planar bilayer membranes formed from glycerol monooleate (GMO) dispersed in various n-alkane solvents (C12-C17) have been studied using precise measurements of specific geometric capacitance (Cg). Cg generally increases as temperature (T) decreases. A change in the slope of Cg(T) occurs between 15 and 18 degrees C for all solvent systems examined. Measurements of the interfacial tension (gamma) of the bulk GMO-alkane dispersions against 0.1 M NaCl show that gamma generally decreases with decreasing temperature. The data can be fitted with two straight lines of different slope which intersect on the average at 17 degrees C. Pagano et al. (1973, Science (Wash. D.C.). 181:557) have shown using calorimetry that GMO has a phase transition at about 15 degrees C. Thus, the changes in Cg and gamma with temperature are likely to result from a GMO phase transition. A second structural change is observed to occur between 5 and 10 degrees C which has not been detected calorimetrically. Calculations of Cg based on various estimates of the hydrocarbon dielectric coefficient (epsilon-b) and/or hydrocarbon thickness (delta-b) leads to models for the structure of the bilayer above and below the phase transition temperature.

  15. Coupled magnetic, structural, and electronic phase transitions in FeRh

    NASA Astrophysics Data System (ADS)

    Lewis, L. H.; Marrows, C. H.; Langridge, S.

    2016-08-01

    The B2-ordered intermetallic magnetic compound FeRh exhibits a thermodynamically first-order phase transition in the vicinity of room temperature that makes it a highly intriguing subject for both fundamental and applied study. On heating through the transition the magnetic character changes from antiferromagnetic to ferromagnetic order with an accompanying large increase in the electrical conductivity and an abrupt expansion in the lattice structure. Accompanying these effects is a very large entropy change comprising both magnetic and lattice contributions. As well as being driven by temperature, these coupled phase transitions may be driven by the application or removal of a magnetic field, or, because of the extremely strong lattice-spin interactions present in this compound, by an applied strain (pressure), and combinations thereof. In addition to these driving factors, the transition temperature can also be tuned by both compositional and finite size effects. Building from historical work on bulk forms of FeRh, the effects of extrinsic and intrinsic parameter variation on the coupled magnetic, structural, and electronic phase transitions are reviewed here, with special attention directed to phenomena that manifest themselves in thin films. Overall, the rich manner in which the physical properties of FeRh change at the phase transition has potential for a wide range of technological applications in areas such as thermally-assisted magnetic recording media, CFC-free magnetic cooling, sensors for energy management, and novel spintronic devices.

  16. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  17. Phase transitions of ɛ-HNIW in compound systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-yuan; Guo, Xue-yong; Jiao, Qing-jie; Zhang, Pu

    2016-05-01

    The heat-induced phase transitions of ɛ-HNIW, both neat and coated with various additives used in plastic bonded explosives, were investigated using powder X-ray diffraction and differential scanning calorimetry. It was found that ɛ-HNIW, after being held at 70°C for 60h, remained in the ɛ-phase. Applying other conditions, various phase transition parameters were determined, including Tc (the critical phase transition temperature), T50 (the temperature at which 50% of the phase transition is complete) and T180 (the percentage of γ-HNIW present in samples heated to 180°C). According to the above three parameters, additives were divided into three categories: those that delay phase transition, those that raise the critical temperature and the transition rate, and those that promote the phase transition. Based on the above data, a phase transition mechanism is proposed.

  18. Transitional Bubble in Periodic Flow Phase Shift

    NASA Technical Reports Server (NTRS)

    Talan, M.; Hourmouziadis, Jean

    2004-01-01

    One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point

  19. Exploiting phase transitions for fusion optimization problems

    NASA Astrophysics Data System (ADS)

    Svenson, Pontus

    2005-05-01

    Many optimization problems that arise in multi-target tracking and fusion applications are known to be NP-complete, ie, believed to have worst-case complexities that are exponential in problem size. Recently, many such NP-complete problems have been shown to display threshold phenomena: it is possible to define a parameter such that the probability of a random problem instance having a solution jumps from 1 to 0 at a specific value of the parameter. It is also found that the amount of resources needed to solve the problem instance peaks at the transition point. Among the problems found to display this behavior are graph coloring (aka clustering, relevant for multi-target tracking), satisfiability (which occurs in resource allocation and planning problem), and the travelling salesperson problem. Physicists studying these problems have found intriguing similarities to phase transitions in spin models of statistical mechanics. Many methods previously used to analyze spin glasses have been used to explain some of the properties of the behavior at the transition point. It turns out that the transition happens because the fitness landscape of the problem changes as the parameter is varied. Some algorithms have been introduced that exploit this knowledge of the structure of the fitness landscape. In this paper, we review some of the experimental and theoretical work on threshold phenomena in optimization problems and indicate how optimization problems from tracking and sensor resource allocation could be analyzed using these results.

  20. Phase transitions of Dirac electrons in bismuth.

    PubMed

    Li, Lu; Checkelsky, J G; Hor, Y S; Uher, C; Hebard, A F; Cava, R J; Ong, N P

    2008-07-25

    The Dirac Hamiltonian, which successfully describes relativistic fermions, applies equally well to electrons in solids with linear energy dispersion, for example, in bismuth and graphene. A characteristic of these materials is that a magnetic field less than 10 tesla suffices to force the Dirac electrons into the lowest Landau level, with resultant strong enhancement of the Coulomb interaction energy. Moreover, the Dirac electrons usually come with multiple flavors or valley degeneracy. These ingredients favor transitions to a collective state with novel quantum properties in large field. By using torque magnetometry, we have investigated the magnetization of bismuth to fields of 31 tesla. We report the observation of sharp field-induced phase transitions into a state with striking magnetic anisotropy, consistent with the breaking of the threefold valley degeneracy. PMID:18653888

  1. Dynamical phase transitions in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rotter, Ingrid

    2012-02-01

    The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  2. Topological Phase Transition without Gap Closing

    PubMed Central

    Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto

    2013-01-01

    Topological phase transition is accompanied with a change of topological numbers. According to the bulk-edge correspondence, the gap closing and the breakdown of the adiabaticity are necessary at the phase transition point to make the topological number ill-defined. However, the gap closing is not always needed. In this paper, we show that two topological distinct phases can be continuously connected without gap closing, provided the symmetry of the system changes during the process. Here we propose the generic principles how this is possible by demonstrating various examples such as 1D polyacetylene with the charge-density-wave order, 2D silicene with the antiferromagnetic order, 2D silicene or quantum well made of HgTe with superconducting proximity effects and 3D superconductor Cu doped Bi2Se3. It is argued that such an unusual phenomenon can occur when we detour around the gap closing point provided the connection of the topological numbers is lost along the detour path. PMID:24071900

  3. Impurity-tuned non-equilibrium phase transition in a bacterial carpet

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Teng; Wu, Kuan-Ting; Uchida, Nariya; Woon, Wei-Yen

    2016-05-01

    The effects of impurity on the non-equilibrium phase transition in Vibrio alginolyticus bacterial carpets are investigated through a position-sensitive-diode implemented optical tweezers-microsphere assay. The collective flow increases abruptly as we increase the rotation rate of flagella via Na+ concentration. The effects of impurities on the transition behavior are examined by mixing cells of a wild type strain (VIO5) with cells of a mutant strain (NMB136) in different swimming patterns. For dilute impurities, the transition point is shifted toward higher Na+ concentration. Increasing the impurities' ratio to over 0.25 leads to a significant drop in the collective force, suggesting a partial orientational order with a smaller correlation length.

  4. Microscopic analysis of nuclear quantum phase transitions in the N{approx_equal}90 region

    SciTech Connect

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.; Lalazissis, G. A.; Ring, P.

    2009-05-15

    The analysis of shape transitions in Nd isotopes, based on the framework of relativistic energy-density functionals and restricted to axially symmetric shapes in T. Niksic, D. Vretenar, G. A. Lalazissis, and P. Ring [Phys. Rev. Lett. 99, 092502 (2007)], is extended to the region Z=60,62,64 with N{approx_equal}90 and includes both {beta} and {gamma} deformations. Collective excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. The results reproduce available data and show that there is an abrupt change of structure at N=90 that can be approximately characterized by the X(5) analytic solution at the critical point of the first-order quantum phase transition between spherical and axially deformed shapes.

  5. Phase transitions of nuclear matter beyond mean field theory

    SciTech Connect

    Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa

    2007-10-15

    The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.

  6. Jahn-Teller solitons, structural phase transitions, and phase separation.

    PubMed

    Clougherty, Dennis P

    2006-02-01

    It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids. PMID:16486846

  7. Jahn-Teller Solitons, Structural Phase Transitions, and Phase Separation

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2006-02-01

    It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids.

  8. Swarms, phase transitions, and collective intelligence

    SciTech Connect

    Millonas, M.M.

    1992-12-31

    A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.

  9. Swarms, phase transitions, and collective intelligence

    SciTech Connect

    Millonas, M.M. . Dept. of Physics)

    1992-01-01

    A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.

  10. Influences of structural mismatch on morphology, phase transition temperature, segmental dynamics and color-transition behaviors of polydiacetylene vesicles.

    PubMed

    Pattanatornchai, Thanutpon; Charoenthai, Nipaphat; Traiphol, Rakchart

    2014-10-15

    In this contribution, we report a systematic study of polydiacetylene (PDA) vesicles fabricated by mixing two types of monomers, 10,12-tricosadiynoic acid (TCDA) and 10,12-pentacosadiynoic acid (PCDA). These diacetylene (DA) monomers constitute the same head group but different alkyl chain length, which in turn causes structural mismatch within the PDA layers. The PCDA:TCDA ratios are 100, 75, 50, 25 and 0mol%. Morphologies and properties of these PDA vesicles are explored by utilizing laser light scattering, transmission electron microscopy, differential scanning calorimetry, temperature-dependent nuclear magnetic resonance spectroscopy (NMR) and spin-lattice relaxation time (T1) measurements. An increase in DA mole ratio to 50mol% leads to significant increase in particle size. The mixed PDA vesicles also exhibit irregular shape with rather rough surface. The mismatch of alkyl side chain causes the drop of phase transition temperature. For the system of mixed poly(PCDA50:TCDA50), its transition temperature is lower than those of the pure PDAs. The NMR line shape analysis detects an abrupt change of proton signal adjacent to the PDA head group during the blue/red color-transition process. The T1 measurements also reveal different local environments of PDA alkyl side chains in the blue and red phases. The mismatch of PDA side chains causes significant drop of the color-transition temperature. PMID:25086392

  11. Influences of structural mismatch on morphology, phase transition temperature, segmental dynamics and color-transition behaviors of polydiacetylene vesicles.

    PubMed

    Pattanatornchai, Thanutpon; Charoenthai, Nipaphat; Traiphol, Rakchart

    2014-10-15

    In this contribution, we report a systematic study of polydiacetylene (PDA) vesicles fabricated by mixing two types of monomers, 10,12-tricosadiynoic acid (TCDA) and 10,12-pentacosadiynoic acid (PCDA). These diacetylene (DA) monomers constitute the same head group but different alkyl chain length, which in turn causes structural mismatch within the PDA layers. The PCDA:TCDA ratios are 100, 75, 50, 25 and 0mol%. Morphologies and properties of these PDA vesicles are explored by utilizing laser light scattering, transmission electron microscopy, differential scanning calorimetry, temperature-dependent nuclear magnetic resonance spectroscopy (NMR) and spin-lattice relaxation time (T1) measurements. An increase in DA mole ratio to 50mol% leads to significant increase in particle size. The mixed PDA vesicles also exhibit irregular shape with rather rough surface. The mismatch of alkyl side chain causes the drop of phase transition temperature. For the system of mixed poly(PCDA50:TCDA50), its transition temperature is lower than those of the pure PDAs. The NMR line shape analysis detects an abrupt change of proton signal adjacent to the PDA head group during the blue/red color-transition process. The T1 measurements also reveal different local environments of PDA alkyl side chains in the blue and red phases. The mismatch of PDA side chains causes significant drop of the color-transition temperature.

  12. Phase Transitions and Domain Structures in Nanoferroelectrics.

    NASA Astrophysics Data System (ADS)

    Levanyuk, Arkadi

    2006-03-01

    A review of the Landau-type theory of size effects in ferroelectric phase transitions will be presented. An aspect of this theory, a question about the ``critical thickness'' of ferroelectric thin films will be the main emphasis. This question can be reduced to that of the size dependence of temperature of ferroelectric phase transition by taking into account two possibilities for such a transition: formation of (i) single- or (ii) multi-domain ferroelectric state. In a defect-free sample, two factors would define which of these possibilities is realized: the depolarizing field and the specific features of the sample surface reflected in the boundary conditions for the Landau-type equations in addition to the conventional electrodynamics boundary conditions. The possibility of the transition into the single domain state strongly depends on a character of electrodes and the additional boundary conditions, while it is much less important for the multi-domain case. In realistic conditions, the transition would proceed into the multi-domain state, especially in near cubic ferroelectrics, e.g. films of cubic perovskites with an elastic mismatch between the film and a substrate. Importantly, the shift of a transition temperature with respect to a bulk is relatively small in this case. The message is that, while studying the question about the ``critical thickness'', multi-domain states rather than single domain ones should be considered first of all, contrary to the approach in some recent papers where only monodomain state was studied.. In particular, there is no definite indication of ultimate ``critical thickness'' for a multi domain ferroelectric state in nearly cubic samples. Along with ultra thin films the ferroelectric nanopowders are also intensively studied now. Here the size effects are more complicated because of long-range interaction between the particles. The problems which the theory faces here are briefly commented upon. It is worth mentioning that

  13. Evolutionary Phase Transitions in Random Environments.

    PubMed

    Skanata, Antun; Kussell, Edo

    2016-07-15

    We present analytical results for long-term growth rates of structured populations in randomly fluctuating environments, which we apply to predict how cellular response networks evolve. We show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively under random (i.e., nonperiodic) environments. We identify the evolutionary phase diagram for simple response networks, which we show can exhibit both continuous and discontinuous transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral epidemics to emergence of drug resistance. PMID:27472146

  14. Quantum coherence and quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Li, Yan-Chao; Lin, Hai-Qing

    2016-05-01

    We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD.

  15. Chiral phase transition from string theory.

    PubMed

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  16. Berry phase transition in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  17. Symmetry considerations in structural phase transitions

    NASA Astrophysics Data System (ADS)

    Perez-Mato, J. M.; Aroyo, M. I.; Orobengoa, D.

    2012-03-01

    The most important symmetry arguments to be considered in the analysis of structural phase transitions are reviewed. A practical approach is used, with the discussion of many examples. In particular, we stress the straightforward application of computer tools freely available in internet to solve these symmetry-related problems. We focus on programs available on the Bilbao Crystallographic Server (www.cryst.ehu.es), but also the use of some programs from the ISOTROPY site (http://stokes.byu.edu/isotropy.html) is discussed.

  18. Dependence of phase transitions on small changes

    NASA Astrophysics Data System (ADS)

    Stoop, R.

    1993-06-01

    In this contribution, the generalized thermodynamic formalism is applied to a nonhyperbolic dynamical system in two comparable situations. The change from one situation to the other is small in the sense that the grammar and the singularities of the system are preserved. For the discussion of the effects generated by this change, the generalized entropy functions are calculated and the sets of the specific scaling functions which reflect the phase transition of the system are investigated. It is found that even under mild variations, this set is not invariant.

  19. Evolutionary Phase Transitions in Random Environments

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    2016-07-01

    We present analytical results for long-term growth rates of structured populations in randomly fluctuating environments, which we apply to predict how cellular response networks evolve. We show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively under random (i.e., nonperiodic) environments. We identify the evolutionary phase diagram for simple response networks, which we show can exhibit both continuous and discontinuous transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral epidemics to emergence of drug resistance.

  20. Quantum phase transitions, frustration, and the Fermi surface in the Kondo lattice model

    NASA Astrophysics Data System (ADS)

    Eidelstein, Eitan; Moukouri, S.; Schiller, Avraham

    2011-07-01

    The quantum phase transition from a spin-Peierls phase with a small Fermi surface to a paramagnetic Luttinger-liquid phase with a large Fermi surface is studied in the framework of a one-dimensional Kondo-Heisenberg model that consists of an electron gas away from half filling, coupled to a spin-1/2 chain by Kondo interactions. The Kondo spins are further coupled to each other with isotropic nearest-neighbor and next-nearest-neighbor antiferromagnetic Heisenberg interactions which are tuned to the Majumdar-Ghosh point. Focusing on three-eighths filling and using the density-matrix renormalization-group (DMRG) method, we show that the zero-temperature transition between the phases with small and large Fermi momenta appears continuous, and involves a new intermediate phase where the Fermi surface is not well defined. The intermediate phase is spin gapped and has Kondo-spin correlations that show incommensurate modulations. Our results appear incompatible with the local picture for the quantum phase transition in heavy fermion compounds, which predicts an abrupt change in the size of the Fermi momentum.

  1. Broken Symmetry Bond Order Phase Transitions in 1D Generalized Ionic Hubbard Models

    NASA Astrophysics Data System (ADS)

    Wilkens, Tim; Martin, Richard M.

    2000-03-01

    An ionic Hubbard model at half filling is expected to undergo a transition from a band insulator (BI) at U=0 to a Mott insulator (MI) like the usual Hubbard model at large U. In previous numerical work this was found to occur at a metallic point with an abrupt change of 1/2 in the electronic polarization(R.Resta and S.Sorella, PRL 74) 4738 (1995); G.Ortiz et al, PRB 54 13515 (1996).; however, this left open questions about the transition since a topological variable cannot be a valid order parameter for a true phase transition. Recent theoretical work has predicted the existence of a Bond Ordered (BO) phase between the BI and MI phases(M.Fabrizio et al, PRL 83) 2014 (1999) . We report the results of Quantum Monte Carlo (QMC) calculations that determine the spontaneous BO order parameter and polarization showing a second order quantum phase transition at a critical U. Studies at large U and/or small ionicity lead to our conclusion that the MI is unstable to the BO phase at any non-zero ionicity. These results further suggest interesting conclusions about quantized charge transport in these correlated systems.

  2. Phase transitions in fluids and biological systems

    NASA Astrophysics Data System (ADS)

    Sipos, Maksim

    metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.

  3. Nuclear Binding Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G.; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Lee, Dean; Rupak, Gautam

    2016-09-01

    How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.

  4. Phase Transitions of Single Semistiff Polymer Chains

    NASA Astrophysics Data System (ADS)

    Bastolla, Ugo; Grassberger, Peter

    1997-12-01

    We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the “prunedenriched Rosenbluth Method” (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low- T states. This allows us to study in detail the phase diagram as a function of nn attraction ɛ and stiffness x. It shows a θ-collapse line with a transition from open coils (small ɛ) to molten compact globules (large ɛ) and a freezing transition toward a state with orientational global order (large stiffness x). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996), J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, the θ-temperature increases with stiffness x. The freezing temperature increases even faster, and reaches the θ-line at a finite value of x. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniach et al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.

  5. Phase transition in the ABC model.

    PubMed

    Clincy, M; Derrida, B; Evans, M R

    2003-06-01

    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2pi square root 3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions. PMID:16241312

  6. Phase transitions in Thirring’s model

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Casetti, Lapo; Latella, Ivan; Pérez-Madrid, Agustín; Ruffo, Stefano

    2016-07-01

    In his pioneering work on negative specific heat, Walter Thirring introduced a model that is solvable in the microcanonical ensemble. Here, we give a complete description of the phase-diagram of this model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. In both ensembles, we find a line of first-order phase transitions which ends in a critical point. However, neither the line nor the point have the same location in the phase-diagram of the two ensembles. We also show that the microcanonical and canonical critical points can be analytically related to each other using a Landau expansion of entropy and free energy, respectively, in analogy with what has been done in (Cohen and Mukamel 2012 J. Stat. Mech. P12017). Examples of systems with certain symmetries restricting the Landau expansion have been considered in this reference, while no such restrictions are present in Thirring’s model. This leads to a phase diagram that can be seen as a prototype for what happens in systems of particles with kinematic degrees of freedom dominated by long-range interactions.

  7. Photoinduced topological phase transition in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Jin, Guojun

    2014-06-01

    In epitaxial graphene irradiated by an off-resonance circularly polarized light, we demonstrate a phase transition taking place between the band insulator and Floquet topological insulator. Considering the competition between staggered sublattice potential and photon dressing, we derive the dynamical energy gap and phase diagram in the tight-binding approximation. It is found that a threshold value of light intensity is necessary to realize a Floquet topological insulator. At the phase boundary, for each set of parameters, there is a special state with only one valley that is Dirac cone gapless, but the other remains gapped; in the band insulating phase, only one valley provides low-energy electrons, and it could be switched to the other by reversing the polarization direction of light. From these results, two electronic devices are designed: one is an optical-sensing np junction, where the photodriven unusual intervalley tunneling exhibits a stronger detectable signal than the intravalley tunneling, and the other is a topological field-effect transistor, where polarized light is used to turn on or turn off a nonequilibrium current.

  8. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great

  9. Gravitational waves from the electroweak phase transition

    SciTech Connect

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.

  10. Stress induced phase transitions in silicon

    NASA Astrophysics Data System (ADS)

    Budnitzki, M.; Kuna, M.

    2016-10-01

    Silicon has a tremendous importance as an electronic, structural and optical material. Modeling the interaction of a silicon surface with a pointed asperity at room temperature is a major step towards the understanding of various phenomena related to brittle as well as ductile regime machining of this semiconductor. If subjected to pressure or contact loading, silicon undergoes a series of stress-driven phase transitions accompanied by large volume changes. In order to understand the material's response for complex non-hydrostatic loading situations, dedicated constitutive models are required. While a significant body of literature exists for the dislocation dominated high-temperature deformation regime, the constitutive laws used for the technologically relevant rapid low-temperature loading have severe limitations, as they do not account for the relevant phase transitions. We developed a novel finite deformation constitutive model set within the framework of thermodynamics with internal variables that captures the stress induced semiconductor-to-metal (cd-Si → β-Si), metal-to-amorphous (β-Si → a-Si) as well as amorphous-to-amorphous (a-Si → hda-Si, hda-Si → a-Si) transitions. The model parameters were identified in part directly from diamond anvil cell data and in part from instrumented indentation by the solution of an inverse problem. The constitutive model was verified by successfully predicting the transformation stress under uniaxial compression and load-displacement curves for different indenters for single loading-unloading cycles as well as repeated indentation. To the authors' knowledge this is the first constitutive model that is able to adequately describe cyclic indentation in silicon.

  11. Phase transitions in supercritical explosive percolation

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Nagler, Jan; Cheng, Xueqi; Jin, Xiaolong; Shen, Huawei; Zheng, Zhiming; D'Souza, Raissa M.

    2013-05-01

    Percolation describes the sudden emergence of large-scale connectivity as edges are added to a lattice or random network. In the Bohman-Frieze-Wormald model (BFW) of percolation, edges sampled from a random graph are considered individually and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function with asymptotic value of α, a constant. The BFW process has been studied as a model system for investigating the underlying mechanisms leading to discontinuous phase transitions in percolation. Here we focus on the regime α∈[0.6,0.95] where it is known that only one giant component, denoted C1, initially appears at the discontinuous phase transition. We show that at some point in the supercritical regime C1 stops growing and eventually a second giant component, denoted C2, emerges in a continuous percolation transition. The delay between the emergence of C1 and C2 and their asymptotic sizes both depend on the value of α and we establish by several techniques that there exists a bifurcation point αc=0.763±0.002. For α∈[0.6,αc), C1 stops growing the instant it emerges and the delay between the emergence of C1 and C2 decreases with increasing α. For α∈(αc,0.95], in contrast, C1 continues growing into the supercritical regime and the delay between the emergence of C1 and C2 increases with increasing α. As we show, αc marks the minimal delay possible between the emergence of C1 and C2 (i.e., the smallest edge density for which C2 can exist). We also establish many features of the continuous percolation of C2 including scaling exponents and relations.

  12. Preon model and cosmological quantum-hyperchromodynamic phase transition

    SciTech Connect

    Nishimura, H.; Hayashi, Y.

    1987-05-15

    From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.

  13. Preon model and cosmological quantum-hyperchromodynamic phase transition

    NASA Astrophysics Data System (ADS)

    Nishimura, H.; Hayashi, Y.

    1987-05-01

    From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.

  14. Phase transitions and morphologies of aerosol particles

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U.; Zuend, A.; Peter, T.

    2012-12-01

    Tropospheric aerosol particles consisting of complex mixtures of organic compounds, ammonium sulfate (AS) and water undergo phase transitions such as liquid-liquid phase separation (LLPS), efflorescence and deliquescence as a consequence of changes in ambient relative humidity (RH). These phase transitions in the mixed aerosol particles may lead to different particle configurations such as core-shell or partially engulfed structures. However, the physical states and morphologies of these aerosol particles are still poorly understood. In this study, we investigate the phase transitions and morphological changes of various internally mixed organics/AS/water particles with different organic-to-inorganic ratios (OIR), namely OIR = 6:1, 2:1, 1:2 and 1:6 during humidity cycles using optical microscopy and Raman spectroscopy. Particularly, we explore how the properties of different organic functional groups and the compositional complexity of the organic aerosol fraction influence the occurrence of LLPS in the relationship with the organic oxygen-to-carbon (O:C) ratios. We found that LLPS occurred for all mixtures with O:C < 0.56, for none of the mixtures with O:C > 0.80, and depended on the specific types and compositions of organic functional groups for 0.56 < O:C < 0.80. Moreover, the number of mixture components and the spread of the O:C range did not notably influence the conditions for LLPS to occur. Since in ambient aerosols O:C and OIR range typically between 0.2 and 1.0, and between 4:1 and 1:5, respectively, LLPS is expected to be a common feature of tropospheric aerosols. AS in the mixed particles effloresced between 0 and 47 %RH and deliquesced between 71 and 80 %RH during humidity cycles. Compared to a deliquescence relative humidity (DRH) of 80 % for pure AS, the DRH in the mixed particles showed slightly lower values. A strong reduction or complete inhibition of efflorescence occurred for mixtures with high OIR that did not exhibit LLPS. Both core-shell and

  15. Does sex induce a phase transition?

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.

    2008-05-01

    We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for large enough “chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.

  16. Quark-hadron phase transition in massive gravity

    NASA Astrophysics Data System (ADS)

    Atazadeh, K.

    2016-11-01

    We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  17. Weyl semimetals and topological phase transitions

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    Weyl semimetals are semimetals with nondegenerate 3D Dirac cones in the bulk. We showed that in a transition between different Z2 topological phases, i.e. between the normal insulator (NI) and topological insulator (TI), the Weyl semimetal phase necessarily appears when inversion symmetry is broken. In the presentation we show that this scenario holds for materials with any space groups without inversion symmetry. Namely, let us take any band insulator without inversion symmetry, and assume that the gap is closed by a change of an external parameter. In such cases we found that the system runs either into (i) a Weyl semimetal or (ii) a nodal-line semimetal, but no insulator-to-insulator transition happens. This is confirmed by classifying the gap closing in terms of the space groups and the wavevector. In the case (i), the number of Weyl nodes produced at the gap closing ranges from 2 to 12 depending on the symmetry. In (ii) the nodal line is protected by mirror symmetry. In the presentation, we explain some Weyl semimetal and nodal-line semimetals which we find by using this classification. As an example, we explain our result on ab initio calculation on tellurium (Te). Tellurium consists of helical chains, and therefore lacks inversion and mirror symmetries. At high pressure the band gap of Te decreases and finally it runs into a Weyl semimetal phase, as confirmed by our ab initio calculation. In such chiral systems as tellurium, we also theoretically propose chiral transport in systems with such helical structures; namely, an orbital magnetization is induced by a current along the chiral axis, in analogy with a solenoid.

  18. High-pressure phase transitions of strontianite

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  19. Magnetic and structural phase transitions in erbium at low temperatures and high pressures

    SciTech Connect

    Thomas, Sarah A.; Tsoi, Georgiy M.; Wenger, Lowell E.; Vohra, Yogesh K.

    2012-02-07

    Electrical resistance and crystal structure measurements have been carried out on polycrystalline erbium (Er) at temperatures down to 10 K and pressures up to 20 GPa. An abrupt change in the slope of the resistance is observed with decreasing temperature below 84 K, which is associated with the c-axis modulated (CAM) antiferromagnetic (AFM) ordering of the Er moments. With increasing pressure the temperature of the resistance slope change and the corresponding AFM ordering temperature decrease until vanishing above 10.6 GPa. The disappearance of the slope change in the resistance occurs at similar pressures where the hcp structural phase of Er is transformed to a nine-layer {alpha}-Sm structural phase, as confirmed by our high-pressure synchrotron x-ray diffraction studies. These results suggest that the disappearance in the AFM ordering of Er moments is strongly correlated to the structural phase transition at high pressures and low temperatures.

  20. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  1. QCD PHASE TRANSITIONS-VOLUME 15.

    SciTech Connect

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  2. Phase transitions in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2009-03-01

    In this study we simulate an interaction of femtosecond laser pulses (100 fs, 800 nm, 0.1-10 J/cm 2) with metal targets of Al, Au, Cu, and Ni. For analysis of laser-induced phase transitions, melting and shock waves propagation as well as material decomposition we use an Eulerian hydrocode in conjunction with a thermodynamically complete two-temperature equation of state with stable and metastable phases. Isochoric heating, material evaporation from the free surface of the target and fast propagation of the melting and shock waves are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical spallation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are taken into account but the main issue of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results are in agreement with available experimental findings.

  3. Critical phenomena and noise-induced phase transitions in neuronal networks.

    PubMed

    Lee, K-E; Lopes, M A; Mendes, J F F; Goltsev, A V

    2014-01-01

    We study numerically and analytically first- and second-order phase transitions in neuronal networks stimulated by shot noise (a flow of random spikes bombarding neurons). Using an exactly solvable cortical model of neuronal networks on classical random networks, we find critical phenomena accompanying the transitions and their dependence on the shot noise intensity. We show that a pattern of spontaneous neuronal activity near a critical point of a phase transition is a characteristic property that can be used to identify the bifurcation mechanism of the transition. We demonstrate that bursts and avalanches are precursors of a first-order phase transition, paroxysmal-like spikes of activity precede a second-order phase transition caused by a saddle-node bifurcation, while irregular spindle oscillations represent spontaneous activity near a second-order phase transition caused by a supercritical Hopf bifurcation. Our most interesting result is the observation of the paroxysmal-like spikes. We show that a paroxysmal-like spike is a single nonlinear event that appears instantly from a low background activity with a rapid onset, reaches a large amplitude, and ends up with an abrupt return to lower activity. These spikes are similar to single paroxysmal spikes and sharp waves observed in electroencephalographic (EEG) measurements. Our analysis shows that above the saddle-node bifurcation, sustained network oscillations appear with a large amplitude but a small frequency in contrast to network oscillations near the Hopf bifurcation that have a small amplitude but a large frequency. We discuss an amazing similarity between excitability of the cortical model stimulated by shot noise and excitability of the Morris-Lecar neuron stimulated by an applied current.

  4. Scaling theory of topological phase transitions.

    PubMed

    Chen, Wei

    2016-02-10

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined. PMID:26790004

  5. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    SciTech Connect

    Tevzadze, Alexander G.; Kisslinger, Leonard; Kahniashvili, Tina; Brandenburg, Axel

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  6. Scaling theory of topological phase transitions.

    PubMed

    Chen, Wei

    2016-02-10

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.

  7. Phase transitions in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Lathouwers, Emma

    In Hidden Markov Models (HMMs), a Markov process is not directly accessible. In the simplest case, a two-state Markov model ``emits'' one of two ``symbols'' at each time step. We can think of these symbols as noisy measurements of the underlying state. With some probability, the symbol implies that the system is in one state when it is actually in the other. The ability to judge which state the system is in sets the efficiency of a Maxwell demon that observes state fluctuations in order to extract heat from a coupled reservoir. The state-inference problem is to infer the underlying state from such noisy measurements at each time step. We show that there can be a phase transition in such measurements: for measurement error rates below a certain threshold, the inferred state always matches the observation. For higher error rates, there can be continuous or discontinuous transitions to situations where keeping a memory of past observations improves the state estimate. We can partly understand this behavior by mapping the HMM onto a 1d random-field Ising model at zero temperature. We also present more recent work that explores a larger parameter space and more states. Research funded by NSERC, Canada.

  8. Phase Transitions in Networks of Memristive Elements

    NASA Astrophysics Data System (ADS)

    Sheldon, Forrest; di Ventra, Massimiliano

    The memory features of memristive elements (resistors with memory), analogous to those found in biological synapses, have spurred the development of neuromorphic systems based on them (see, e.g.,). In turn, this requires a fundamental understanding of the collective dynamics of networks of memristive systems. Here, we study an experimentally-inspired model of disordered memristive networks in the limit of a slowly ramped voltage and show through simulations that these networks undergo a first-order phase transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON/OFF ratio. We provide also a mean-field theory that reproduces many features of the transition and particularly examine the role of boundary conditions and current- vs. voltage-controlled networks. The dynamics of the mean-field theory suggest a distribution of conductance jumps which may be accessible experimentally. We finally discuss the ability of these networks to support massively-parallel computation. Work supported in part by the Center for Memory and Recording Research at UCSD.

  9. Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts.

    PubMed

    Greaves, G N; Wilding, M C; Fearn, S; Langstaff, D; Kargl, F; Cox, S; Van, Q Vu; Majérus, O; Benmore, C J; Weber, R; Martin, C M; Hennet, L

    2008-10-24

    We combine small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) with aerodynamic levitation techniques to study in situ phase transitions in the liquid state under contactless conditions. At very high temperatures, yttria-alumina melts show a first-order transition, previously inferred from phase separation in quenched glasses. We show how the transition coincides with a narrow and reversible maximum in SAXS indicative of liquid unmixing on the nanoscale, combined with an abrupt realignment in WAXS features related to reversible shifts in polyhedral packing on the atomic scale. We also observed a rotary action in the suspended supercooled drop driven by repetitive transitions (a polyamorphic rotor) from which the reversible changes in molar volume (1.2 +/- 0.2 cubic centimeters) and entropy (19 +/- 4 joules mole(-1) kelvin(-1)) can be estimated. PMID:18948535

  10. 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Wells, Mary; Dawson, Douglas

    2009-01-01

    A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.

  11. Pressure-induced phase transition in CrO2.

    PubMed

    Alptekin, Sebahaddin

    2015-12-01

    The ab initio constant pressure molecular dynamics technique and density functional theory with generalized gradient approximation (GGA) was used to study the pressure-induced phase transition of CrO2. The phase transition of the rutile (P42/mnm) to the orthorhombic CaCl2 (Pnnm) structure at 30 GPa was determined successfully in a constant pressure simulation. This phase transition was analyzed from total energy calculations and, from the enthalpy calculation, occurred at around 17 GPa. Structural properties such as bulk modules, lattice parameters and phase transition were compared with experimental results. The phase transition at 12 ± 3 GPa was in good agreement with experimental results, as was the phase transition from the orthorhombic CaCl2 (Pnnm) to the monoclinic (P21/c) structure also found at 35 GPa.

  12. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  13. Main phase transitions in supported lipid single-bilayer.

    PubMed

    Charrier, A; Thibaudau, F

    2005-08-01

    We have studied the phase transitions of a phospholipidic single-bilayer supported on a mica substrate by real-time temperature-controlled atomic force microscopy. We show the existence of two phase transitions in this bilayer that we attribute to two gel (L(beta))/fluid (L(alpha)) transitions, corresponding to the independent melting of each leaflet of the bilayer. The ratio of each phase with temperature and the large broadening of the transitions' widths have been interpreted through a basic thermodynamic framework in which the surface tension varies during the transitions. The experimental data can be fit with such a model using known thermodynamic parameters. PMID:15879467

  14. Gravitational waves from global second order phase transitions

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  15. Population age and initial density in a patchy environment affect the occurrence of abrupt transitions in a birth-and-death model of Taylor's law

    USGS Publications Warehouse

    Jiang, Jiang; DeAngelis, Donald L.; Zhang, B.; Cohen, J.E.

    2014-01-01

    Taylor's power law describes an empirical relationship between the mean and variance of population densities in field data, in which the variance varies as a power, b, of the mean. Most studies report values of b varying between 1 and 2. However, Cohen (2014a) showed recently that smooth changes in environmental conditions in a model can lead to an abrupt, infinite change in b. To understand what factors can influence the occurrence of an abrupt change in b, we used both mathematical analysis and Monte Carlo samples from a model in which populations of the same species settled on patches, and each population followed independently a stochastic linear birth-and-death process. We investigated how the power relationship responds to a smooth change of population growth rate, under different sampling strategies, initial population density, and population age. We showed analytically that, if the initial populations differ only in density, and samples are taken from all patches after the same time period following a major invasion event, Taylor's law holds with exponent b=1, regardless of the population growth rate. If samples are taken at different times from patches that have the same initial population densities, we calculate an abrupt shift of b, as predicted by Cohen (2014a). The loss of linearity between log variance and log mean is a leading indicator of the abrupt shift. If both initial population densities and population ages vary among patches, estimates of b lie between 1 and 2, as in most empirical studies. But the value of b declines to ~1 as the system approaches a critical point. Our results can inform empirical studies that might be designed to demonstrate an abrupt shift in Taylor's law.

  16. Chiral phase transition in lattice QCD as a metal-insulator transition

    SciTech Connect

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2007-02-01

    We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.

  17. Excited state quantum phase transitions in many-body systems

    SciTech Connect

    Caprio, M.A. Cejnar, P.; Iachello, F.

    2008-05-15

    Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions.

  18. Mixed Bose-Fermi Mott Phases and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Altman, Ehud

    2012-02-01

    A recent experiment with an ultra-cold mixture of ^174Yb and ^173Yb atoms in an optical lattice [S. Sugawa e. al. Nature Physics 7, 642 (2011)] found a remarkable quantum phase that can be described as a mixed Mott insulator. Such a an incompressible state established at integer combined filling of the two species, must have residual low energy Fermionic degrees of freedom associated with relative motion of the two species. I will discuss the novel quantum states formed by the composite Fermions in the mixed Mott insulator as well as the unconventional phase transitions separating these states from the compressible Bose-Fermi mixture established at weak interactions. Finally I will propose to utilize the mixed Mott insulator as a quantum simulator for models of the doped Mott insulator relevant to high Tc superconductivity. The new approach, where the bosonic atoms play the role of doped holes offers significant advantages over direct simulation of the Hubbard model. In particular the mixed Mott plateau naturally provides a flat trap potential to the doped holes, while the hole doping is easily tuned by varying the relative fraction of the bosons.

  19. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960 2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations

    NASA Astrophysics Data System (ADS)

    Oguz, Temel; Gilbert, Denis

    2007-02-01

    Functioning of the Black Sea ecosystem has profoundly changed since the early 1970s under cumulative effects of excessive nutrient enrichment, strong cooling/warming, over-exploitation of pelagic fish stocks, and population outbreak of gelatinous carnivores. Applying a set of criteria to the long-term (1960-2000) ecological time-series data, the present study demonstrates that the Black Sea ecosystem was reorganised during this transition phase in different forms of top-down controlled food web structure through successive regime-shifts of distinct ecological properties. The Secchi disc depth, oxic-anoxic interface zone, dissolved oxygen and hydrogen sulphide concentrations also exhibit abrupt transition between their alternate regimes, and indicate tight coupling between the lower trophic food web structure and the biogeochemical pump in terms of regime-shift events. The first shift, in 1973-1974, marks a switch from large predatory fish to small planktivore fish-controlled system, which persisted until 1989 in the form of increasing small pelagic and phytoplankton biomass and decreasing zooplankton biomass. The increase in phytoplankton biomass is further supported by a bottom-up contribution due to the cumulative response to high anthropogenic nutrient load and the concurrent shift of the physical system to the "cold climate regime" following its ˜20-year persistence in the "warm climate regime". The end of the 1980s signifies the depletion of small planktivores and the transition to a gelatinous carnivore-controlled system. By the end of the 1990s, small planktivore populations take over control of the system again. Concomitantly, their top-down pressure when combined with diminishing anthropogenic nutrient load and more limited nutrient supply into the surface waters due to stabilizing effects of relatively warm winter conditions switched the "high production" regime of phytoplankton to its background "low production" regime. The Black Sea regime

  20. Pregnancy Complications: Placental Abruption

    MedlinePlus

    ... page It's been added to your dashboard . The placenta attaches to the wall of the uterus (womb) ... abruption is a serious condition in which the placenta separates from the wall of the uterus before ...

  1. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  2. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  3. Reentrant phase transition in granular superconductors

    NASA Astrophysics Data System (ADS)

    Fazekas, Patrik

    1982-09-01

    The conditions for the appearance of a reentrant superconducting phase in granular materials are studied in mean field approximation applied to periodic models. We assume that the relevant low-lying excitation is the transfer of a Cooper pair from a grain to one of its neighbours, and neglect pair breaking. Both on-grain ( U) and nearest neighbour ( V) Coulomb interactions are taken into account, and the Coulomb problem is treated in Bethe-Peierls approximation. When V/U is not too large, reentrance is predicted if V/U>(4+3 z)-1/2 where z is the coordination number. This result is different from a recent criterion suggested by Šimánek, which allows reentrance only in the immediate vicinities of certain discrete values of V/U. For strong enough V/U, the models treated here show a transition to an ionic-salt-like charge-ordered state. Reentrant superconductivity is shown to occur also on an ionic background. In actual systems, close-packing effects partially frustrate the ionic ordering and enhance the reentrant feature.

  4. Phase transitions in models of human cooperation

    NASA Astrophysics Data System (ADS)

    Perc, Matjaž

    2016-08-01

    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  5. Slow Noise in the Period of a Biological Oscillator Underlies Gradual Trends and Abrupt Transitions in Phasic Relationships in Hybrid Neural Networks

    PubMed Central

    Norman, Sharon E.; Butera, Robert J.; Canavier, Carmen C.

    2014-01-01

    In order to study the ability of coupled neural oscillators to synchronize in the presence of intrinsic as opposed to synaptic noise, we constructed hybrid circuits consisting of one biological and one computational model neuron with reciprocal synaptic inhibition using the dynamic clamp. Uncoupled, both neurons fired periodic trains of action potentials. Most coupled circuits exhibited qualitative changes between one-to-one phase-locking with fairly constant phasic relationships and phase slipping with a constant progression in the phasic relationships across cycles. The phase resetting curve (PRC) and intrinsic periods were measured for both neurons, and used to construct a map of the firing intervals for both the coupled and externally forced (PRC measurement) conditions. For the coupled network, a stable fixed point of the map predicted phase locking, and its absence produced phase slipping. Repetitive application of the map was used to calibrate different noise models to simultaneously fit the noise level in the measurement of the PRC and the dynamics of the hybrid circuit experiments. Only a noise model that added history-dependent variability to the intrinsic period could fit both data sets with the same parameter values, as well as capture bifurcations in the fixed points of the map that cause switching between slipping and locking. We conclude that the biological neurons in our study have slowly-fluctuating stochastic dynamics that confer history dependence on the period. Theoretical results to date on the behavior of ensembles of noisy biological oscillators may require re-evaluation to account for transitions induced by slow noise dynamics. PMID:24830924

  6. Strain glass state as the boundary of two phase transitions

    PubMed Central

    Zhou, Zhijian; Cui, Jian; Ren, Xiaobing

    2015-01-01

    A strain glass state was found to be located between B2-B19’ (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering. PMID:26307500

  7. First-order phase transition during displacement of amphiphilic biomacromolecules from interfaces by surfactant molecules.

    PubMed

    Ettelaie, Rammile; Dickinson, Eric; Pugnaloni, Luis

    2014-11-19

    The adsorption of surfactants onto a hydrophobic interface, already laden with a fixed number of amphiphilic macromolecules, is studied using the self consistent field calculation method of Scheutjens and Fleer. For biopolymers having unfavourable interactions with the surfactant molecules, the adsorption isotherms show an abrupt jump at a certain value of surfactant bulk concentration. Alternatively, the same behaviour is exhibited when the number of amphiphilic chains on the interface is decreased. We show that this sudden jump is associated with a first-order phase transition, by calculating the free energy values for the stable and the metastable states at both sides of the transition point. We also observe that the transition can occur for two approaching surfaces, from a high surfactant coverage phase to a low surfactant coverage one, at sufficiently close separation distances. The consequence of this finding for the steric colloidal interactions, induced by the overlap of two biopolymer + surfactant films, is explored. In particular, a significantly different interaction, in terms of its magnitude and range, is predicted for these two phases. We also consider the relevance of the current study to problems involving the competitive displacement of proteins by surfactants in food colloid systems.

  8. Studies of structures and phase transitions in pyrrhotite

    SciTech Connect

    Li, F.

    1997-03-31

    This report contains a general introduction, the experimental section, general conclusions, and two appendices: using projection operators to construct the basis functions and the magnetic transition of bulk pyrrhotite samples in the low-temperature range. Four chapters have been removed for separate processing. They are: From pyrrhotite to troilite: An application of the Landau theory of phase transitions; Phase transition in near stoichiometric iron sulfide; A ordering, incommensuration and phase transitions in pyrrhotite. Part 1: A TEM study of Fe{sub 7}S{sub 8}; and Part 2: A high-temperature X-ray powder diffraction and thermomagnetic study.

  9. Nuclear Liquid-Gas Phase Transition: Experimental Signals

    NASA Astrophysics Data System (ADS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cannata, F.; Chomaz, Ph.; Casini, G.; Geraci, E.; Gramegna, F.; Moroni, A.; Vannini, G.

    2005-03-01

    The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.

  10. Phase transitions for rotational states within an algebraic cluster model

    NASA Astrophysics Data System (ADS)

    López Moreno, E.; Morales Hernández, G. E.; Hess, P. O.; Yépez Martínez, H.

    2016-07-01

    The ground state and excited, rotational phase transitions are investigated within the Semimicroscopic Algebraic Cluster Model (SACM). The catastrophe theory is used to describe these phase transitions. Short introductions to the SACM and the catastrophe theory are given. We apply the formalism to the case of 16O+α→20Ne.

  11. Diamagnetic phase transitions in two-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Bakaleinikov, L. A.; Gordon, A.

    2014-11-01

    A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.

  12. Experimental and theoretical investigations on shock wave induced phase transitions

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Sikka, S. K.

    2001-06-01

    Shock wave loading of a material can cause variety of phase transitions, like polymorphism, amorphization, metallization and molecular dissociations. As the shocked state lasts only for a very short duration (about a few microseconds or less), in-situ microscopic measurements are very difficult. Although such studies are beginning to be possible, most of the shock-induced phase transitions are detected using macroscopic measurements. The microscopic nature of the transition is then inferred from comparison with static pressure data or interpreted by theoretical methods. For irreversible phase transitions, microscopic measurements on recovered samples, together with orientation relations determined from selected area electron diffraction and examination of the morphology of growth of the new phase can provide insight into mechanism of phase transitions. On theoretical side, the current ab initio band structure techniques based on density functional formalism provide capability for accurate computation of the small energy differences (a few mRy or smaller) between different plausible structures. Total energy calculation along the path of a phase transition can furnish estimates of activation barrier, which has implications for understanding kinetics of phase transitions. Molecular dynamics calculations, where the new structure evolves naturally, are becoming increasingly popular especially for understanding crystal to amorphous phase transitions. Illustrations from work at our laboratory will be presented.

  13. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  14. Phase transitions and domain structures in multiferroics

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  15. Quantum Phase Transitions in Odd-Mass Nuclei

    NASA Astrophysics Data System (ADS)

    Leviatan, A.; Petrellis, D.; Iachello, F.

    2013-03-01

    Quantum shape-phase transitions in odd-even nuclei are investigated in the framework of the interacting boson-fermion model. Classical and quantum analysis show that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially near the critical point. Experimental evidence for the occurrence of spherical to axially-deformed transitions in odd-proton nuclei Pm, Eu and Tb (Z=61, 63, 65) is presented.

  16. Changes of physical properties in multiferroic phase transitions.

    PubMed

    Litvin, Daniel B

    2014-07-01

    The physical property coefficients that arise in a phase transition which are zero in the high-symmetry phase and nonzero in the low-symmetry phase are called spontaneous coefficients. For all 1601 Aizu species of phase transitions, matrices have been constructed which show the nonzero coefficients of a wide variety of magnetic and nonmagnetic physical properties including toroidal property coefficients in the high-symmetry phase and their corresponding spontaneous coefficients in the low-symmetry phase. It is also shown that these spontaneous coefficients provide for the distinction of and switching between nonferroelastic domain pairs. PMID:25970196

  17. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  18. Reentrant topological phase transitions in a disordered spinless superconducting wire

    NASA Astrophysics Data System (ADS)

    Rieder, Maria-Theresa; Brouwer, Piet W.; Adagideli, İnanç

    2013-08-01

    In a one-dimensional spinless p-wave superconductor with coherence length ξ, disorder induces a phase transition between a topologically nontrivial phase and a trivial insulating phase at the critical mean-free path l=ξ/2. Here, we show that a multichannel spinless p-wave superconductor goes through an alternation of topologically trivial and nontrivial phases upon increasing the disorder strength, the number of phase transitions being equal to the channel number N. The last phase transition, from a nontrivial phase into the trivial phase, takes place at a mean-free path l=ξ/(N+1), parametrically smaller than the critical mean-free path in one dimension. Our result is valid in the limit that the wire width W is much smaller than the superconducting coherence length ξ.

  19. Quantum phase transitions of topological insulators without gap closing.

    PubMed

    Rachel, Stephan

    2016-10-12

    We consider two-dimensional Chern insulators and time-reversal invariant topological insulators and discuss the effect of perturbations breaking either particle-number conservation or time-reversal symmetry. The appearance of trivial mass terms is expected to cause quantum phase transitions into trivial phases when such a perturbation overweighs the topological term. These phase transitions are usually associated with a bulk-gap closing. In contrast, the chiral Chern insulator is unaffected by particle-number breaking perturbations. Moreover, the [Formula: see text] topological insulator undergoes phase transitions into topologically trivial phases without bulk-gap closing in the presence of any of such perturbations. In certain cases, these phase transitions can be circumvented and the protection restored by another U(1) symmetry, e.g. due to spin conservation. These findings are discussed in the context of interacting topological insulators.

  20. Wetting transitions in two-, three-, and four-phase systems.

    PubMed

    Hejazi, Vahid; Nosonovsky, Michael

    2012-01-31

    We discuss wetting of rough surfaces with two-phase (solid-liquid), three-phase (solid-water-air and solid-oil-water), and four-phase (solid-oil-water-air) interfaces mimicking fish scales. We extend the traditional Wenzel and Cassie-Baxter models to these cases. We further present experimental observations of two-, three-, and four-phase systems in the case of metal-matrix composite solid surfaces immersed in water and in contact with oil. Experimental observations show that wetting transitions can occur in underwater oleophobic systems. We also discuss wetting transitions as phase transitions using the phase-field approach and show that a phenomenological gradient coefficient is responsible for wetting transition, energy barriers, and wetting/dewetting asymmetry (hysteresis). PMID:22054126

  1. Quantum phase transitions of topological insulators without gap closing

    NASA Astrophysics Data System (ADS)

    Rachel, Stephan

    2016-10-01

    We consider two-dimensional Chern insulators and time-reversal invariant topological insulators and discuss the effect of perturbations breaking either particle-number conservation or time-reversal symmetry. The appearance of trivial mass terms is expected to cause quantum phase transitions into trivial phases when such a perturbation overweighs the topological term. These phase transitions are usually associated with a bulk-gap closing. In contrast, the chiral Chern insulator is unaffected by particle-number breaking perturbations. Moreover, the {{{Z}}2} topological insulator undergoes phase transitions into topologically trivial phases without bulk-gap closing in the presence of any of such perturbations. In certain cases, these phase transitions can be circumvented and the protection restored by another U(1) symmetry, e.g. due to spin conservation. These findings are discussed in the context of interacting topological insulators.

  2. Quantum phase transitions of topological insulators without gap closing.

    PubMed

    Rachel, Stephan

    2016-10-12

    We consider two-dimensional Chern insulators and time-reversal invariant topological insulators and discuss the effect of perturbations breaking either particle-number conservation or time-reversal symmetry. The appearance of trivial mass terms is expected to cause quantum phase transitions into trivial phases when such a perturbation overweighs the topological term. These phase transitions are usually associated with a bulk-gap closing. In contrast, the chiral Chern insulator is unaffected by particle-number breaking perturbations. Moreover, the [Formula: see text] topological insulator undergoes phase transitions into topologically trivial phases without bulk-gap closing in the presence of any of such perturbations. In certain cases, these phase transitions can be circumvented and the protection restored by another U(1) symmetry, e.g. due to spin conservation. These findings are discussed in the context of interacting topological insulators. PMID:27530509

  3. Wetting transitions in two-, three-, and four-phase systems.

    PubMed

    Hejazi, Vahid; Nosonovsky, Michael

    2012-01-31

    We discuss wetting of rough surfaces with two-phase (solid-liquid), three-phase (solid-water-air and solid-oil-water), and four-phase (solid-oil-water-air) interfaces mimicking fish scales. We extend the traditional Wenzel and Cassie-Baxter models to these cases. We further present experimental observations of two-, three-, and four-phase systems in the case of metal-matrix composite solid surfaces immersed in water and in contact with oil. Experimental observations show that wetting transitions can occur in underwater oleophobic systems. We also discuss wetting transitions as phase transitions using the phase-field approach and show that a phenomenological gradient coefficient is responsible for wetting transition, energy barriers, and wetting/dewetting asymmetry (hysteresis).

  4. CO2 Capture from Flue Gas by Phase Transitional Absorption

    SciTech Connect

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  5. Detection of the phase transition of Langmuir-Blodgett films on a quartz-crystal microbalance in an aqueous phase

    SciTech Connect

    Okahata, Yoshio; Kimura, Kazuhiko; Ariga, Katsuhiko )

    1989-12-20

    The frequency of the quartz-crystal microbalance (QCM) deposited with Langmuir-Blodgett (LB) films was observed to increase abruptly at the phase transition temperature (T{sub c}) from solid to liquid crystalline state of LB films in distilled water when the temperature was gradually raised. The frequency increase at the T{sub c} was not observed in the air phase. The LB films were observed from the frequency changes to swell (mass increase and frequency decrease) with the water penetration in the interlayers near (just below) the T{sub c} but not to swell both in the solid state (below the T{sub c}) and in the liquid crystalline state (above the T{sub c}) when in a water phase. The frequency increase at the T{sub c} of LB films can be explained by the fact that the slipping behavior occurs between the swelled hydrophilic interlayers in the fluid liquid crystalline state of LB films at the T{sub c}. The QCM is a useful tool to characterize LB films in the water phase.

  6. Thermodynamic model of nonequilibrium phase transitions.

    PubMed

    Martyushev, L M; Konovalov, M S

    2011-07-01

    Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux. PMID:21867119

  7. Magnetism and electronic phase transitions in monoclinic transition metal dichalcogenides with transition metal atoms embedded

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2016-08-01

    First-principles calculations have been performed to study the energetic, electronic, and magnetic properties of substitutional 3d transition metal dopants in monoclinic transition metal dichalcogenides (TMDs) as topological insulators ( 1 T ' - MX 2 with M = (Mo, W) and X = (S, Se)). We find various favorite features in these doped systems to introduce magnetism and other desirable electronic properties: (i) The Mn embedded monoclinic TMDs are magnetic, and the doped 1 T ' - MoS 2 still maintains the semiconducting character with high concentration of Mn, while an electronic phase transition occurs in other Mn doped monoclinic TMDs with an increasing concentration of Mn. Two Mn dopants prefer the ferromagnetic coupling except for substitution of the nearest Mo atoms in 1 T ' - MoS 2 , and the strength of exchange interaction shows anisotropic behavior with dopants along one Mo zigzag chain having much stronger coupling. (ii) The substitutional V is a promising hole dopant, which causes little change to the energy dispersion around the conduction and valence band edges in most systems. In contrast, parts of the conduction band drop for the electron dopants Co and Ni due to the large structural distortion. Moreover, closing band gaps of the host materials are observed with increasing carrier concentration. (iii) Single Fe dopant has a magnetic moment, but it also dopes electrons. When two Fe dopants have a small distance, the systems turn into nonmagnetic semiconductors. (iv) The formation energies of all dopants are much lower than those in hexagonal TMDs and are all negative in certain growth conditions, suggesting possible realization of the predicted magnetism, electronic phase transitions as well as carrier doping in 1 T ' - MX 2 based topological devices.

  8. The effects of Venusian mantle convection with multiple phase transitions

    NASA Technical Reports Server (NTRS)

    Steinbach, V.; Yuen, D. A.; Christensen, U. R.

    1992-01-01

    Recently there was a flurry of activities in studying the effects of phase transitions in the Earth's mantle. From petrological and geophysical considerations, phase-transitions would also play an important role in venusian dynamics. The basic differences between the two planets are the surface boundary conditions, both thermally and mechanically. In this vein we have studied time-dependent mantle convection with multiple phase transitions and depth-dependent thermal expansivity (alpha is approximately rho(exp -6)), based on high-pressure and temperature measurements. Both the olivine-spinel and spinel-perovskite transitions were simulated by introducing an effective thermal expansivity, as described. Used together with the extended Boussinesq Approximation this method serves as a powerful tool to examine the effects of phase transitions on convection at relatively low computational costs.

  9. The electroweak phase transition in the Inert Doublet Model

    SciTech Connect

    Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim

    2015-07-21

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  10. Deviatoric stress-induced phase transitions in diamantane

    SciTech Connect

    Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Mao, Wendy L.

    2014-10-21

    The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressure medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.

  11. High pressure structural phase transitions of PbPo

    NASA Astrophysics Data System (ADS)

    Bencherif, Y.; Boukra, A.; Zaoui, A.; Ferhat, M.

    2012-09-01

    First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III-V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.

  12. Entanglement driven phase transitions in spin-orbital models

    NASA Astrophysics Data System (ADS)

    You, Wen-Long; Oleś, Andrzej M.; Horsch, Peter

    2015-08-01

    To demonstrate the role played by the von Neumann entropy (vNE) spectra in quantum phase transitions we investigate the one-dimensional anisotropic SU(2)\\otimes {XXZ} spin-orbital model with negative exchange parameter. In the case of classical Ising orbital interactions we discover an unexpected novel phase with Majumdar-Ghosh-like spin-singlet dimer correlations triggered by spin-orbital entanglement (SOE) and having k=π /2 orbital correlations, while all the other phases are disentangled. For anisotropic XXZ orbital interactions both SOE and spin-dimer correlations extend to the antiferro-spin/alternating-orbital phase. This quantum phase provides a unique example of two coupled order parameters which change the character of the phase transition from first-order to continuous. Hereby we have established the vNE spectral function as a valuable tool to identify the change of ground state degeneracies and of the SOE of elementary excitations in quantum phase transitions.

  13. Study on the phase transition behavior of poly(butylene adipate) in its blends with poly(vinyl phenol).

    PubMed

    Sun, Xiaoli; Pi, Fuwei; Zhang, Jianming; Takahashi, Isao; Wang, Feng; Yan, Shouke; Ozaki, Yukihiro

    2011-03-10

    The phase transition behavior of poly(butylene adipate) (PBA) crystals in its blends with poly(vinyl phenol) (PVPh) was investigated by infrared (IR) spectroscopy and X-ray diffraction (XRD). The IR and XRD studies indicate that the hydrogen bonding between the C═O group of PBA and the OH group of PVPh developed in the PBA/PVPh blends with the ratios of 80/20 and 50/50 does not influence the solution crystallization behavior of PBA. The phase transition behavior of PBA in the blends is, however, significantly altered by the blending. In the neat PBA, linear changes of the intensities of IR bands at 1077, 930, and 910 cm(-1) are observed in the temperature range of 25-47.5 °C followed by an abrupt change corresponding to the occurrence of β-to-α phase transition. In the blends, the accelerated intensity changes of the those IR bands occur before the β-to-α phase transition, which is contributed to the melting of imperfect β-PBA crystals at relatively lower temperature. In addition, the significantly depressed β-to-α phase transition temperature is also identified.

  14. Photothermoelectric (PTE) Versus Photopyroelectric (PPE) Detection of Phase Transitions

    NASA Astrophysics Data System (ADS)

    Dadarlat, D.; Guilmeau, E.; Hadj Sahraoui, A.; Tudoran, C.; Surducan, V.; Bourgès, C.; Lemoine, P.

    2016-05-01

    The photopyroelectric (PPE) technique is one of the photothermal (PT) methods mostly used for phase transitions investigations. In this paper, we want to compare the PPE results with those obtained using another, recently developed PT method [the photothermoelectric (PTE) calorimetry] for the same purpose of detecting phase transitions. The well-known ferro-paraelectric phase transition of TGS, taking place at a convenient temperature (about 49 {}^{circ }hbox {C}), has been selected for demonstration. A comparison of the two PPE and PTE methods, both in the back detection configuration (in the special case of optically opaque sample and thermally thick regime for both sensors and sample) shows that they are equally suitable for phase transitions detection. Performing a proper calibration, the amplitude and phase of the signals can be used in order to obtain the critical behaviour of all sample's static and dynamic thermal parameters.

  15. Effects of pressure and temperature on the M412 intermediate of the bacteriorhodopsin photocycle. Implications for the phase transition of the purple membrane.

    PubMed Central

    Tsuda, M; Govindjee, R; Ebrey, T G

    1983-01-01

    The effects of pressure and temperature on the decay kinetics of the M412 (M) intermediate in the photocycle of bacteriorhodopsin were studied to provide information about the phase transitions of the purple membrane lipids. The activation volume (delta V++) for the decay of M is expected to be different below and above a phase transition. However, no abrupt change in delta V++ was found from 3.5 degrees to 60 degrees C. But a sharp break was observed in a plot of the logarithm of the rate of M decay vs. pressure. Extrapolation of this break point to standard atmospheric pressure gives a temperature of -42 degrees C, which probably corresponds to the phase transition of the purple membrane lipids. This conclusion is supported by studies of the effect of pressure on the M kinetics of bacteriorhodopsin incorporated into dimyristoylphosphatidylcholine vesicles, whose phase transition has previously been characterized. PMID:6652216

  16. Novel Quantum Phase Transition in the Frustrated Spin Nanotube

    NASA Astrophysics Data System (ADS)

    Sakai, Toru; Nakano, Hiroki

    The S=1/2 three-leg quantum spin tube is investigated using the numerical diagonalization. The study indicated a new quantum phase transition between the 1/3 magnetization plateau phase and the plateauless one, with respect to the spin anisotropy. The phase diagram is also presented.

  17. Tunable Bragg filters with a phase transition material defect layer.

    PubMed

    Wang, Xi; Gong, Zilun; Dong, Kaichen; Lou, Shuai; Slack, Jonathan; Anders, Andre; Yao, Jie

    2016-09-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities. PMID:27607643

  18. Phase transitions in pure and dilute thin ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Korneta, W.; Pytel, Z.

    1983-10-01

    The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.

  19. Observation of topological phase transitions in photonic quasicrystals.

    PubMed

    Verbin, Mor; Zilberberg, Oded; Kraus, Yaacov E; Lahini, Yoav; Silberberg, Yaron

    2013-02-15

    Topological insulators and topological superconductors are distinguished by their bulk phase transitions and gapless states at a sharp boundary with the vacuum. Quasicrystals have recently been found to be topologically nontrivial. In quasicrystals, the bulk phase transitions occur in the same manner as standard topological materials, but their boundary phenomena are more subtle. In this Letter we directly observe bulk phase transitions, using photonic quasicrystals, by constructing a smooth boundary between topologically distinct one-dimensional quasicrystals. Moreover, we use the same method to experimentally confirm the topological equivalence between the Harper and Fibonacci quasicrystals. PMID:25166388

  20. Topology-driven magnetic quantum phase transition in topological insulators.

    PubMed

    Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu

    2013-03-29

    The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.

  1. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    PubMed

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways. PMID:26367463

  2. Quantum Oscillation Signatures of Pressure-induced Topological Phase Transition in BiTeI

    PubMed Central

    Park, Joonbum; Jin, Kyung-Hwan; Jo, Y. J.; Choi, E. S.; Kang, W.; Kampert, E.; Rhyee, J.-S.; Jhi, Seung-Hoon; Kim, Jun Sung

    2015-01-01

    We report the pressure-induced topological quantum phase transition of BiTeI single crystals using Shubnikov-de Haas oscillations of bulk Fermi surfaces. The sizes of the inner and the outer FSs of the Rashba-split bands exhibit opposite pressure dependence up to P = 3.35 GPa, indicating pressure-tunable Rashba effect. Above a critical pressure P ~ 2 GPa, the Shubnikov-de Haas frequency for the inner Fermi surface increases unusually with pressure, and the Shubnikov-de Haas oscillations for the outer Fermi surface shows an abrupt phase shift. In comparison with band structure calculations, we find that these unusual behaviors originate from the Fermi surface shape change due to pressure-induced band inversion. These results clearly demonstrate that the topological quantum phase transition is intimately tied to the shape of bulk Fermi surfaces enclosing the time-reversal invariant momenta with band inversion. PMID:26522628

  3. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes

    NASA Astrophysics Data System (ADS)

    Stamper, I. J.; Jackson, Elais; Wang, Xujing

    2014-01-01

    In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.

  4. Effect of dimensionality on vapor-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Singh, Sudhir Kumar

    2014-04-01

    Dimensionality play significant role on `phase transitions'. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions `phase transition' properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor-liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  5. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    PubMed Central

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

  6. Phase transitions for a collective coordinate coupled to Luttinger liquids.

    PubMed

    Horovitz, Baruch; Giamarchi, Thierry; Le Doussal, Pierre

    2013-09-13

    We study various realizations of collective coordinates, e.g., the position of a particle, the charge of a Coulomb box, or the phase of a Bose or a superconducting condensate, coupled to Luttinger liquids with N flavors. We find that for a Luttinger parameter (1/2)phase transition from a delocalized phase into a phase with a periodic potential at strong coupling. In the delocalized phase the dynamics is dominated by an effective mass, i.e., diffusive in imaginary time, while on the transition line it becomes dissipative. At K=(1/2) there is an additional transition into a localized phase with no diffusion at zero temperature. PMID:24074101

  7. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    PubMed

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  8. Evidence for an abrupt transition in the mantle-derived source to the Long Valley Caldera rhyolites after the climactic eruption: from subduction-modified lithosphere to asthenosphere

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2014-12-01

    Shortly after the climactic eruption of ~600 km3 of Bishop Tuff zoned rhyolitic magma, ~100 km3 of crystal-poor Early Rhyolite erupted inside Long Valley Caldera between ~750-650 ka as domes, glassy lavas, and tuffs (Hildreth, 2004). Despite similarities in bulk composition (e.g., 73-75 wt% SiO2; ~100 ppm Sr), there are marked differences between the Late (≥ 790°C) Bishop Tuff and postcaldera Early Rhyolites. Although crystal-poor (<5%), the Early Rhyolites are often saturated with 7-8 mineral phases (plag + opx + ilm + tmte + biotite + apatite + zircon ± pyrrhotite), but without the quartz, sanidine, and cpx additionally found in the more crystal-rich (12-24%) Late Bishop Tuff. Pre-eruptive temperatures, on the basis of two Fe-Ti oxides, range from 720-860°C, and ∆NNO values range from-0.4 to -0.9 (consistent with abundant ilmenite). Thus the Early Rhyolites record fO2 values that are nearly two orders of magnitude lower than those in the Late Bishop Tuff (∆NNO = +1; Hildreth and Wilson, 2007). Application of the plagioclase-liquid hygrometer to Early Rhyolites gives pre-eruptive water contents ≤ 4.4 wt% H2O. The phenocrysts in Early Rhyolite obsidians often display euhedral and/or diffusion-limited growth textures, suggesting degassing-induced crystallization during rapid ascent. Isotopic data from the literature (e.g., Simon et al., 2014 and references therein) show that Long Valley rhyolites were derived from both crustal and mantle sources. We hypothesize that the drop in fO2 between the Late Bishop Tuff and Early Rhyolites may reflect a transition in their respective mantle source, from subduction-modified lithosphere to asthenosphere. Such a time-progressive transition in the mantle source of erupted basalts is seen throughout the Great Basin, occurring earliest in its central region and more recently toward its western margin (e.g. Cousens et al., 2012). Although the geochemistry of Quaternary basalts erupted around Long Valley indicate a

  9. High-resolution calorimetric study of phase transitions in chiral smectic-C liquid crystalline phases.

    PubMed

    Sasaki, Y; Le, K V; Aya, S; Isobe, M; Yao, H; Huang, C C; Takezoe, H; Ema, K

    2012-12-01

    We carried out an improved characterization of phase transitions among chiral smectic-C subphases observed for various antiferroelectric liquid crystals by precise heat capacity measurements. It was found that the phase transitions are intrinsically first order exhibiting a remarkable heat anomaly which involves little pretransitional thermal fluctuation and a finite thermal hysteresis. On the other hand, we also noticed that the critical point of the smectic-C(α)(*)-smectic-C* transition is induced by the destabilization of the smectic-C(α)(*) phase which couples with the fluctuation associated with the smectic-A-smectic-C(α)(*) phase transition.

  10. Integrability and Quantum Phase Transitions in Interacting Boson Models

    NASA Astrophysics Data System (ADS)

    Dukelsky, J.; Arias, J. M.; Garcia-Ramos, J. E.; Pittel, S.

    2004-04-01

    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.

  11. GRAVITATIONAL PHASE TRANSITIONS IN THE COSMOLOGICAL MANY-BODY SYSTEM

    SciTech Connect

    Saslaw, William C.; Ahmad, Farooq E-mail: farphy@kashmiruniversity.ac.i

    2010-09-10

    Gravitational many-body clustering of particles (e.g., galaxies) in an expanding universe may be regarded as a form of phase transition. We calculate its properties here and find that it differs in several ways from usual laboratory phase transitions. The cosmological case is never complete since it takes longer to evolve dynamically on larger spatial scales. To examine this, we calculate the effects of higher order corrections on the thermodynamic properties and distribution functions (which are known to agree with observations). The additional higher order terms are subdominant and decrease as the number of particles in the system increases. We also propose an order parameter for this hierarchical phase transition and discuss its relation to the Yang-Lee theory of phase transitions. These results also help to quantify earlier ideas of 'continuous clustering'.

  12. Lifshitz Transitions in Magnetic Phases of the Periodic Anderson Model

    NASA Astrophysics Data System (ADS)

    Kubo, Katsunori

    2015-09-01

    We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons.

  13. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  14. Charge Inversion and Topological Phase Transition at a Twist Angle Induced van Hove Singularity of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Kim, Youngwook; Herlinger, Patrick; Moon, Pilkyung; Koshino, Mikito; Taniguchi, Takashi; Watanabe, Kenji; Smet, Jurgen H.

    2016-08-01

    Van Hove singularities (VHS's) in the density of states play an outstanding and diverse role for the electronic and thermodynamic properties of crystalline solids. At the critical point the Fermi surface connectivity changes and topological properties undergo a transition. Opportunities to systematically pass a VHS at the turn of a voltage knob and study its diverse impact are however rare. With the advent of van der Waals heterostructures, control over the atomic registry of neigbouring graphene layers offers an unprecedented tool to generate a low energy VHS easily accessible with conventional gating. Here we have addressed magnetotransport when the chemical potential crosses the twist angle induced VHS in twisted bilayer graphene. A topological phase transition is experimentally disclosed in the abrupt conversion of electrons to holes or vice versa, a loss of a non-zero Berry phase and distinct sequences of integer quantum Hall states above and below the singularity.

  15. From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions

    NASA Astrophysics Data System (ADS)

    He, Rui-Hua; Hashimoto, M.; Karapetyan, H.; Koralek, J. D.; Hinton, J. P.; Testaud, J. P.; Nathan, V.; Yoshida, Y.; Yao, Hong; Tanaka, K.; Meevasana, W.; Moore, R. G.; Lu, D. H.; Mo, S.-K.; Ishikado, M.; Eisaki, H.; Hussain, Z.; Devereaux, T. P.; Kivelson, S. A.; Orenstein, J.; Kapitulnik, A.; Shen, Z.-X.

    2011-03-01

    The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (Tc), entangled in an energy-momentum-dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.

  16. The QCD phase transitions: From mechanism to observables

    SciTech Connect

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.

  17. Phase transitions in real gases and ideal Bose gases

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2011-05-01

    Based on number theory, we present a new concept of gas without the particle interaction taken into account in which there are first-order phase transitions for T < T cr on isotherms. We present formulas for new ideal gases, solving the Gibbs paradox, and also formulas for the transition to real gases based on the concept of the Zeno line.

  18. Gravitational waves from first order phase transitions during inflation

    SciTech Connect

    Chialva, Diego

    2011-01-15

    We study the production, spectrum, and detectability of gravitational waves in models of the early Universe where first order phase transitions occur during inflation. We consider all relevant sources. The self-consistency of the scenario strongly affects the features of the waves. The spectrum appears to be mainly sourced by collisions of bubble of the new phases, while plasma dynamics (turbulence) and the primordial gauge fields connected to the physics of the transitions are generally subdominant. The amplitude and frequency dependence of the spectrum for modes that exit the horizon during inflation are different from those of the waves produced by quantum vacuum oscillations of the metric or by first order phase transitions not occurring during inflation. A not too large number of slow (but still successful) phase transitions can leave detectable marks in the common microwave background radiation, but the signal weakens rapidly for faster transitions. When the number of phase transitions is instead large, the primordial gravitational waves can be observed both in the common microwave background radiation or with LISA (but in this case only marginally, for the slowest transitions) and especially with DECIGO. We also discuss the nucleosynthesis bound and the constraints it places on the parameters of the models.

  19. Phase transitions in nanostructured potassium nitrate

    NASA Astrophysics Data System (ADS)

    Naberezhnov, Aleksandr; Koroleva, Ekaterina; Rysiakiewicz-Pasek, Ewa; Fokin, Aleksandr; Sysoeva, Anna; Franz, Alexandra; Seregin, Maksim; Tovar, Mihael

    2014-11-01

    Dielectric properties and temperature evolution of the crystal structure of nanocomposites on the basis of porous glasses and KNO3 embedded into the pores have been studied on heating and cooling. It is shown that the stability of the ferroelectric phase depends on nanoparticle sizes and temperature prehistory of sample preparation and measurement procedure. The temperature interval, where the ferroelectric phase exists, increases on decreasing of the nanoparticle size. In the composite of KNO3 and porous glasses with the average pore diameters of 7 nm, the ferroelectric phase becomes stable down to 100 K after the first heating-cooling circle.

  20. Application of a quartz-crystal microbalance for detection of phase transitions in liquid crystals and lipid multibilayers

    SciTech Connect

    Okahata, Yoshio; Ebato, Hiroshi )

    1989-10-01

    Resonance frequency increased abruptly at the phase transition temperature (T{sub c}) from solid to liquid crystalline state of liquid crystals (LCs) or lipid multibilayer films cast on a quartz-crystal microbalance (QCM) electrode when the ambient temperature increased gradually. The large frequency enhancement at the T{sub c} was observed in the case of smectic LC-coated QCM compared with those of nematic and cholesteric LC-coated QCM. Although the frequency enhancement at the T{sub c} of the LC-coated QCM was observed independent of media such as water and air phases, the frequency of the lipid multibilayer-coated QCM increased abruptly at the T{sub c} only in a water phase, but not in an air phase. Frequency enhancements at T{sub c} can be explained by slipping between layered structures of smectic LC and lipid multibilayer in the fluid liquid crystalline state above the T{sub c}. In the case of lipid multibilayers, the penetration of water into interlayers (swelling) occurs at the T{sub c} and then the frequency increase is observed due to slipping between hydrated and fluid layers only in aqueous phases.

  1. Neutron Scattering Techniques in the Study of Phase Transitions.

    NASA Astrophysics Data System (ADS)

    Rogge, Ronald Benjamin

    The properties of thermal neutrons make them particularly adept for studies of condensed matter materials and the study of phase transitions in condensed matter systems. A variety of neutron scattering techniques have been employed to study the phase transitions in Cu_3Au and CsCoBr_3, which are representatives of the two principle types of phase transitions. The binary alloy Cu_3Au undergoes a first order phase transition from its low temperature ordered phase in which the atoms preferentially occupy the sites of a simple cubic lattice, to its high temperature disordered phase at 667 +/- 3K. Although a well studied system, the results reported in this thesis shall demonstrate that there is still much that can be learned from Cu_3Au. Within the context of the Landau theory of phase transitions, there exists, in addition to the order-disorder temperature, T_{c}, upper and lower spinodal temperatures, T_{su} and T_{sl}. These mark the first temperatures upon approaching the phase transition from above and below respectively, at which metastable droplets of the second phase can fluctuate out of the first phase. Until recently, there has however been little physical evidence supporting the existence of the spinodal temperatures. Elastic and inelastic neutron scattering measurements have been performed over an extended temperature range with an emphasis on temperatures near T_{c}. The lattice constant data, order-parameter data and phonon data provided by these measurements all indicate that there are two temperature regimes just below T_{c} with a crossover between these regimes in the range of T_{c}-35K to T _{c}-25K. This crossover temperature is interpreted as the lower spinodal temperature of Cu _3Au. CsCoBr_3 is believed to pass through at least two and possibly three magnetic phase transitions. The highest temperature transition is a second -order phase transition at approximately T_ {rm N1} = 28.3 +/- 0.1K. in the high temperature paramagnetic phase, the

  2. Magnetic quantum phase transitions and entropy in Van Vleck magnet

    NASA Astrophysics Data System (ADS)

    Lavanov, G. Yu.; Kalita, V. M.; Ivanova, I. M.; Loktev, V. M.

    2016-10-01

    Field-induced magnetic quantum phase transitions in the Van Vleck paramagnet with easy-plane single-ion anisotropy and competing Ising exchange between ions with the spin S=1 have been studied theoretically. The description was made by minimizing the Lagrange function at zero temperature (T=0) and the free energy at T ≠ 0 . Stable and unstable solutions of equations corresponding to the case ψ0 = | 0 > asymptotically transform into those following from the Lagrange function at T=0. First-order phase transitions from the Van Vleck paramagnet state into the ferromagnet one were found to take place at a sufficiently high single-ion anisotropy. The entropy of such a magnet was shown to grow with its magnetization, as it occurs for antiferromagnets. At the point of quantum phase transition, the entropy has a jump, which magnitude depends on the ratio between the Ising exchange and anisotropy constants, as well as on the temperature. The described magnetic phase transition was supposed to be accompanied by the magnetocaloric effect. In the case when the Ising exchange dominates over the single-ion anisotropy, the magnetization reversal of ferromagnetic state by an external field was shown to be a phase transition of the first kind, which does not belong to orientational ones and which should be regarded as a quantum order-order phase transition.

  3. Phase control of nonadiabatic optical transitions

    NASA Astrophysics Data System (ADS)

    Hashmi, F. A.; Bouchene, M. A.

    2009-02-01

    We theoretically study the interaction of two time delayed, phase-locked, and nonresonant pulses with a two-level system in the strong field regime. The population transfer is shown to be extremely sensitive to the phase shift ϕ between the pulses, with efficient population transfer taking place only for ϕ close to π . This effect is explained in terms of nonadiabatic jump and rapid adiabatic passage phenomena.

  4. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    PubMed Central

    Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Stanley, H. Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses. PMID:21614201

  5. Quantum Phase Transition of 4He Confined in Nanoporous Media

    SciTech Connect

    Shirahama, Keiya

    2006-09-07

    4He confined in nanoporous media is an excellent model system for studying a strongly correlated Bose liquid and solid in a confinement potential. We studied superfluidity and liquid-solid phase transition of 4He confined in a porous Gelsil glass that had nanopores 2.5 nm in diameter. The obtained pressure-temperature phase diagram is fairly unprecedented: the superfluid transition temperature approaches zero at 3.4 MPa, and the freezing pressure is enhanced by approximately 1 MPa from the bulk one. These features indicate that the confined 4He undergoes a superfluid-nonsuperfluid-solid quantum phase transition at zero temperature. The nonsuperfluid phase may be a localized Bose-condensed state in which global phase coherence is destroyed by a strong correlation between the 4He atoms or by a random potential.

  6. Thermodynamic phase transitions in a frustrated magnetic metamaterial.

    PubMed

    Anghinolfi, L; Luetkens, H; Perron, J; Flokstra, M G; Sendetskyi, O; Suter, A; Prokscha, T; Derlet, P M; Lee, S L; Heyderman, L J

    2015-01-01

    Materials with interacting magnetic degrees of freedom display a rich variety of magnetic behaviour that can lead to novel collective equilibrium and out-of-equilibrium phenomena. In equilibrium, thermodynamic phases appear with the associated phase transitions providing a characteristic signature of the underlying collective behaviour. Here we create a thermally active artificial kagome spin ice that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory. We use low energy muon spectroscopy to probe the dynamic behaviour of the interacting nanomagnets and observe peaks in the muon relaxation rate that can be identified with the critical temperatures of the predicted phase transitions. This provides experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases. PMID:26387444

  7. Thermodynamic phase transitions in a frustrated magnetic metamaterial

    PubMed Central

    Anghinolfi, L.; Luetkens, H.; Perron, J.; Flokstra, M. G.; Sendetskyi, O.; Suter, A.; Prokscha, T.; Derlet, P. M.; Lee, S. L.; Heyderman, L. J.

    2015-01-01

    Materials with interacting magnetic degrees of freedom display a rich variety of magnetic behaviour that can lead to novel collective equilibrium and out-of-equilibrium phenomena. In equilibrium, thermodynamic phases appear with the associated phase transitions providing a characteristic signature of the underlying collective behaviour. Here we create a thermally active artificial kagome spin ice that is made up of a large array of dipolar interacting nanomagnets and undergoes phase transitions predicted by microscopic theory. We use low energy muon spectroscopy to probe the dynamic behaviour of the interacting nanomagnets and observe peaks in the muon relaxation rate that can be identified with the critical temperatures of the predicted phase transitions. This provides experimental evidence that a frustrated magnetic metamaterial can be engineered to admit thermodynamic phases. PMID:26387444

  8. Models for a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Franzese, G.; Giovambattista, N.; Malescio, G.; Sadr-Lahijany, M. R.; Scala, A.; Skibinsky, A.; Stanley, H. E.

    2002-02-01

    We use molecular dynamics simulations to study two- and three-dimensional models with the isotropic double-step potential which in addition to the hard core has a repulsive soft core of larger radius. Our results indicate that the presence of two characteristic repulsive distances (hard core and soft core) is sufficient to explain liquid anomalies and a liquid-liquid phase transition, but these two phenomena may occur independently. Thus liquid-liquid transitions may exist in systems like liquid metals, regardless of the presence of the density anomaly. For 2D, we propose a model with a specific set of hard core and soft core parameters, that qualitatively reproduces the phase diagram and anomalies of liquid water. We identify two solid phases: a square crystal (high density phase), and a triangular crystal (low density phase) and discuss the relation between the anomalies of liquid and the polymorphism of the solid. Similarly to real water, our 2D system may have the second critical point in the metastable liquid phase beyond the freezing line. In 3D, we find several sets of parameters for which two fluid-fluid phase transition lines exist: the first line between gas and liquid and the second line between high-density liquid (HDL) and low-density liquid (LDL). In all cases, the LDL phase shows no density anomaly in 3D. We relate the absence of the density anomaly with the positive slope of the LDL-HDL phase transition line.

  9. Electrically driven reversible insulator-metal phase transition in 1T-TaS2.

    PubMed

    Hollander, Matthew J; Liu, Yu; Lu, Wen-Jian; Li, Li-Jun; Sun, Yu-Ping; Robinson, Joshua A; Datta, Suman

    2015-03-11

    In this work, we demonstrate abrupt, reversible switching of resistance in 1T-TaS2 using dc and pulsed sources, corresponding to an insulator-metal transition between the insulating Mott and equilibrium metallic states. This transition occurs at a constant critical resistivity of 7 mohm-cm regardless of temperature or bias conditions and the transition time is significantly smaller than abrupt transitions by avalanche breakdown in other small gap Mott insulating materials. Furthermore, this critical resistivity corresponds to a carrier density of 4.5 × 10(19) cm(-3), which compares well with the critical carrier density for the commensurate to nearly commensurate charge density wave transition. These results suggest that the transition is facilitated by a carrier driven collapse of the Mott gap in 1T-TaS2, which results in fast (3 ns) switching.

  10. Paraelectric-antiferroelectric phase transition in achiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Pociecha, Damian; Gorecka, Ewa; Čepič, Mojca; Vaupotič, Nataša; Gomola, Kinga; Mieczkowski, Jozef

    2005-12-01

    Critical freezing of molecular rotation in an achiral smectic phase, which leads to polar ordering through the second order paraelectric-antiferroelectric (Sm-A→Sm-APA) phase transition is studied theoretically and experimentally. Strong softening of the polar mode in the Sm-A phase and highly intensive dielectric mode in the Sm-APA phase are observed due to weak antiferroelectric interactions in the system. In the Sm-APA phase the dielectric response behaves critically upon biasing by a dc electric field. Such a behavior is found general for the antiferroelectric smectic phase with significant quadrupolar interlayer coupling.

  11. Modeling liquid-liquid phase transitions and quasicrystal formation

    NASA Astrophysics Data System (ADS)

    Skibinsky, Anna

    In this thesis, studies which concern two different subjects related to phase transitions in fluids and crystalline solids are presented. Condensed matter formation, structure, and phase transitions are modeled using molecular dynamics simulations of simple discontinuous potentials with attractive and repulsive interactions. Novel phase diagrams are proposed for quasicrystals, crystals, and liquids. In the first part of the thesis, the formation of a quasicrystal in a two dimensional monodisperse system is investigated using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. It is found that for certain values of the square-well parameters more than one stable crystalline phase can form. By quenching the liquid phase at a very low temperature, an amorphous phase is obtained. When this the amorphous phase is heated, a quasicrystalline structure with five-fold symmetry forms. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, it is concluded that within a specific temperature range, the observed quasicrystal phase can be the stable phase. The second part of the thesis concerns a study of the liquid-liquid phase transition for a single-component system in three dimensions, interacting via an isotropic potential with a repulsive soft-core shoulder at short distance and an attractive well at an intermediate distance. The potential is similar to potentials used to describe such liquid systems as colloids, protein solutions, or liquid metals. It is shown that the phase diagram for such a potential can have two lines of first-order fluid-fluid phase transitions: one separating a gas and a low-density liquid (LDL), and another between the LDL and a high-density liquid (HDL). Both phase transition lines end in a critical point, a gas-LDL critical point and, depending on the potential parameters, either a gas-HDL critical point or a LDL-HDL critical point. A

  12. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  13. The ferroelectric phase transition of calcium barium niobate: experimental evidence of Smolenskii's model for diffuse phase transitions?

    NASA Astrophysics Data System (ADS)

    Heine, Urs; Voelker, Uwe; Betzler, Klaus; Burianek, Manfred; Muehlberg, Manfred

    2009-08-01

    We present investigations on temperature-dependent changes in the size distribution of ferroelectric domains in single crystals of the novel tungsten bronze type calcium barium niobate (CBN). Since its congruently melting composition has a relatively high ferroelectric phase transition temperature of about 265 °C, CBN can be considered as an interesting material for various future applications. Using k-space spectroscopy, both unpoled polydomain crystals and crystals poled at room temperature have been investigated in the vicinity of the ferroelectric phase transition. In unpoled CBN, an intermixture of domain-size dependent phase transitions has been observed, which can be described with the model for diffuse phase transitions established by Smolenskii.

  14. Microscopic analysis of order parameters in nuclear quantum phase transitions

    SciTech Connect

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.

    2009-12-15

    Microscopic signatures of nuclear ground-state shape phase transitions in Nd isotopes are studied using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. As a function of the physical control parameter, the number of nucleons, energy gaps between the ground state and the excited vibrational states with zero angular momentum, isomer shifts, and monopole transition strengths exhibit sharp discontinuities at neutron number N=90, which is characteristic of a first-order quantum phase transition.

  15. Electroweak phase transition in the U(1)' MSSM

    NASA Astrophysics Data System (ADS)

    Ahriche, Amine; Nasri, Salah

    2011-02-01

    In this work, we have investigated the nature of the electroweak phase transition in the U(1) extended minimal supersymmetric standard model without introducing any exotic fields. The effective potential has been estimated exactly at finite temperature taking into account the whole particle spectrum. For reasonable values of the lightest Higgs and neutralino, we found that the electroweak phase transition could be strongly first order due to: (1) the interactions of the singlet with the doublets in the effective potential, and (2) the evolution of the wrong vacuum that delays the transition.

  16. Phase Transition to Bundles of Flexible Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Huisman, B. A. H.; Bolhuis, P. G.; Fasolino, A.

    2008-05-01

    We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length much greater than the average gas phase length. We argue that the bundling transition is the supramolecular equivalent of the sublimation transition, which results from a weak chain-chain interaction. We provide a qualitative equation of state that gives physical insight beyond the specific values of the parameters used in our simulations.

  17. Electroweak phase transition in the U(1){sup '} MSSM

    SciTech Connect

    Ahriche, Amine; Nasri, Salah

    2011-02-15

    In this work, we have investigated the nature of the electroweak phase transition in the U(1) extended minimal supersymmetric standard model without introducing any exotic fields. The effective potential has been estimated exactly at finite temperature taking into account the whole particle spectrum. For reasonable values of the lightest Higgs and neutralino, we found that the electroweak phase transition could be strongly first order due to: (1) the interactions of the singlet with the doublets in the effective potential, and (2) the evolution of the wrong vacuum that delays the transition.

  18. Selective depiction of susceptibility transitions using Laplace-filtered phase maps.

    PubMed

    Bakker, Chris J G; de Leeuw, Hendrik; Seevinck, Peter R

    2012-06-01

    In this work, we aim to demonstrate the ability of Laplace-filtered three-dimensional (3D) phase maps to selectively depict the susceptibility transitions in an object. To realize this goal, it is first shown that both the Laplace derivative of the z component of the static magnetic field in an object and the Laplacian of the corresponding phase distribution may be expected to be zero in regions of constant or linearly varying susceptibility and to be nonzero when there is an abrupt change in susceptibility, for instance, at a single point, a ridge, an interface, an edge or a boundary. Next, a method is presented by which the Laplace derivative of a 3D phase map can be directly extracted from the complex data, without the need for phase unwrapping or subtraction of a reference image. The validity of this approach and of the theory behind it is subsequently demonstrated by simulations and phantom experiments with exactly known susceptibility distributions. Finally, the potential of the Laplace derivative analysis is illustrated by simulations with a Shepp-Logan digital brain phantom and experiments with a gel phantom containing positive and negative focal susceptibility deviations.

  19. Phase transitions in biogenic amorphous calcium carbonate.

    PubMed

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro. PMID:22492931

  20. Phase transition from poor to diverse ecosystems

    NASA Astrophysics Data System (ADS)

    Murase, Yohsuke; Shimada, Takashi; Yukawa, Satoshi; Ito, Nobuyasu

    A mathematical model of ecoevolution is studied. The model treats ecosystems as large dimensional dynamical systems. The preying interaction term between species have the scale invariant form of x i λ xj1-λ. In addition, simple rules for addition and elimination of species are included. This model is called the "scale-invariant" model. The model makes it possible to construct ecosystems with thousands of species with a totally random invasion process, although it is not impossible when the interaction terms are the quadratic form of xixj like Lotka-Volterra equation. We studied the relation between the number of species and the interspecies interactions. As a result, it is shown the model can describe both simple ecosystems and diverse ecosystems, because this model has two phases. In one phase, the number of species remains in finite range. In the other phase, the number of species grows without limit.

  1. Nature of phase transitions in Axelrod-like coupled Potts models in two dimensions

    NASA Astrophysics Data System (ADS)

    Gandica, Yerali; Chiacchiera, Silvia

    2016-03-01

    We study F coupled q -state Potts models in a two-dimensional square lattice. The interaction between the different layers is attractive to favor a simultaneous alignment in all of them, and its strength is fixed. The nature of the phase transition for zero field is numerically determined for F =2 ,3 . Using the Lee-Kosterlitz method, we find that it is continuous for F =2 and q =2 , whereas it is abrupt for higher values of q and/or F . When a continuous or a weakly first-order phase transition takes place, we also analyze the properties of the geometrical clusters. This allows us to determine the fractal dimension D of the incipient infinite cluster and to examine the finite-size scaling of the cluster number density via data collapse. A mean-field approximation of the model, from which some general trends can be determined, is presented too. Finally, since this lattice model has been recently considered as a thermodynamic counterpart of the Axelrod model of social dynamics, we discuss our results in connection with this one.

  2. Phase transition, thermodynamics properties and IR spectrum of α- and γ-RDX: First principles and MD studies

    NASA Astrophysics Data System (ADS)

    Yuan, Jiaonan; Ji, Guangfu; Chen, Xiangrong; Wei, Dongqing; Zhao, Feng; Wu, Qiang

    2016-01-01

    In present letter, based on density functional theory plus dispersion (DFT-D) and a self-consistent charge density-functional tight-binding (SCC-DFTB) method, the structural and electronic properties are reported, and the phase transition are investigated by analyzing its thermodynamics properties and IR spectrum of RDX. The anisotropy of α- and γ-RDX were discussed at 0-10 GPa. By fitting the third-order Birch-Murnaghan equation of states, the bulk modulus and its pressure derivative of RDX were determined. The α-RDX phase is found stable at ambient condition, however, under pressures, both the values of lattice constants a, b, c and the ΔEvdw at around 4 GPa show abrupt changes which indicate a structural transition occurred. By analyzing the linear compressibility of a, b, c axes at 0-8 GPa, one clearly see that the molecules in α-RDX phase underwent rotations and translational motion to their position in the γ-RDX phase at about 4 GPa, which validates the α-γ phase transition. The IR spectra of α-form and γ-form RDX was calculated by analyzing the trajectory of molecules motion, which also show the phase transition from the spectra changes. Employing the quasi-harmonic Debye model, the enthalpy and specific heat were investigated at various pressures of both phases. The condition of equal enthalpies in both phases also indicates the phase transition of α-form to γ-form at around 4 GPa. The variation of specific heat with temperature approaches to the classical Dulong-Petit's law at high temperature, while at low-temperature it obeys the Debye's T3 law.

  3. Structural phase transitions in low-dimensional ion crystals

    SciTech Connect

    Fishman, Shmuel; Chiara, Gabriele de; Calarco, Tommaso; Morigi, Giovanna

    2008-02-01

    A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente et al. [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.

  4. Spin-current probe for phase transition in an insulator.

    PubMed

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'Diaye, Alpha T; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z Q; Saitoh, Eiji

    2016-01-01

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices. PMID:27573443

  5. Spin-current probe for phase transition in an insulator

    PubMed Central

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'Diaye, Alpha T.; Tan, Ali; Uchida, Ken-ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z. Q.; Saitoh, Eiji

    2016-01-01

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices. PMID:27573443

  6. Spin-current probe for phase transition in an insulator

    DOE PAGES

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N’Diaye, Alpha T.; Tan, Ali; Uchida, Ken-ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; et al

    2016-08-30

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we present that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is amore » flux of spin without an electric charge and its transport reflects spin excitation. Additionally, we demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.« less

  7. Spin-current probe for phase transition in an insulator.

    PubMed

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'Diaye, Alpha T; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z Q; Saitoh, Eiji

    2016-01-01

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.

  8. Spin-current probe for phase transition in an insulator

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'diaye, Alpha T.; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z. Q.; Saitoh, Eiji

    2016-08-01

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.

  9. Exploring percolative landscapes: Infinite cascades of geometric phase transitions

    NASA Astrophysics Data System (ADS)

    Timonin, P. N.; Chitov, Gennady Y.

    2016-01-01

    The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2 D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters.

  10. First-order phase transitions in the real microcanonical ensemble

    NASA Astrophysics Data System (ADS)

    Schierz, Philipp; Zierenberg, Johannes; Janke, Wolfhard

    2016-08-01

    We present a simulation and data analysis technique to investigate first-order phase transitions and the associated transition barriers. The simulation technique is based on the real microcanonical ensemble where the sum of kinetic and potential energy is kept constant. The method is tested for the droplet condensation-evaporation transition in a Lennard-Jones system with up to 2048 particles at fixed density, using simple Metropolis-like sampling combined with a replica-exchange scheme. Our investigation of the microcanonical ensemble properties reveals that the associated transition barrier is significantly lower than in the canonical counterpart. Along the line of investigating the microcanonical ensemble behavior, we develop a framework for general ensemble evaluations. This framework is based on a clear separation between system-related and ensemble-related properties, which can be exploited to specifically tailor artificial ensembles suitable for first-order phase transitions.

  11. Solid–solid phase transitions via melting in metals

    PubMed Central

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-01-01

    Observing solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  12. First-order phase transitions in the real microcanonical ensemble.

    PubMed

    Schierz, Philipp; Zierenberg, Johannes; Janke, Wolfhard

    2016-08-01

    We present a simulation and data analysis technique to investigate first-order phase transitions and the associated transition barriers. The simulation technique is based on the real microcanonical ensemble where the sum of kinetic and potential energy is kept constant. The method is tested for the droplet condensation-evaporation transition in a Lennard-Jones system with up to 2048 particles at fixed density, using simple Metropolis-like sampling combined with a replica-exchange scheme. Our investigation of the microcanonical ensemble properties reveals that the associated transition barrier is significantly lower than in the canonical counterpart. Along the line of investigating the microcanonical ensemble behavior, we develop a framework for general ensemble evaluations. This framework is based on a clear separation between system-related and ensemble-related properties, which can be exploited to specifically tailor artificial ensembles suitable for first-order phase transitions. PMID:27627238

  13. Solid-solid phase transitions via melting in metals.

    PubMed

    Pogatscher, S; Leutenegger, D; Schawe, J E K; Uggowitzer, P J; Löffler, J F

    2016-04-22

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a 'real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  14. Solid-solid phase transitions via melting in metals

    NASA Astrophysics Data System (ADS)

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-04-01

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  15. Pressure-induced reversible phase transition in thiourea dioxide crystal

    SciTech Connect

    Wang, Qinglei; Yan, Tingting; Zhu, Hongyang; Cui, Qiliang; Zou, Bo E-mail: zoubo@jlu.edu.cn; Wang, Kai E-mail: zoubo@jlu.edu.cn

    2015-06-28

    The effect of high pressure on the crystal structure of thiourea dioxide has been investigated by Raman spectroscopy and angle-dispersive X-ray diffraction (ADXRD) in a diamond anvil cell up to 10.3 GPa. The marked changes in the Raman spectra at 3.7 GPa strongly indicated a structural phase transition associated with the distortions of hydrogen bonding. There were no further changes up to the maximum pressure of 10.3 GPa and the observed transition was completely reversible when the system was brought back to ambient pressure. This transition was further confirmed by the changes of ADXRD spectra. The high-pressure phase was indexed and refined to an orthorhombic structure with a possible space group Pbam. The results from the first-principles calculations suggested that this phase transition was mainly related to the changes of hydrogen-bonded networks in thiourea dioxide.

  16. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  17. Calorimetric studies of phase transitions in imidazolium perchlorate crystal

    NASA Astrophysics Data System (ADS)

    Przeslawski, J.; Czapla, Z.

    2006-06-01

    The first precise measurements of specific heat changes have been performed for a C3N2H5ClO4 crystal using an ac calorimeter. Phase transitions at about 373 and 219 K were revealed. The continuous second-order phase transition at 373 K to the ferroelectric phase is described by the Landau model using specific heat and linear birefringence data. The Landau expansion coefficients B and C are of the same order of magnitude as those obtained for hard ferroelectric materials. Thermal parameters (such as the excess enthalpy, ΔH, and the excess entropy, ΔS) of the continuous transition were estimated and discussed. During the first cooling, a distinct (~2 K) supercooling effect was observed at the discontinuous transition at about 219 K.

  18. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  19. Horava-Lifshitz early universe phase transition beyond detailed balance

    NASA Astrophysics Data System (ADS)

    Kheyri, F.; Khodadi, M.; Sepangi, H. R.

    2013-01-01

    The early universe is believed to have undergone a QCD phase transition to hadrons at about 10 μs after the big bang. We study such a transition in the context of the non-detailed balance Horava-Lifshitz theory by investigating the effects of the dynamical coupling constant λ in a flat universe. The evolution of the relevant physical quantities, namely the energy density ρ, temperature T, scale factor a and the Hubble parameter H is investigated before, during and after the phase transition, assumed to be of first order. Also, in view of the recent lattice QCD simulations data, we study a cross-over phase transition of the early universe whose results are based on two different sets of lattice data.

  20. Hydration-Induced Phase Transitions in Surfactant and Lipid Films.

    PubMed

    Björklund, Sebastian; Kocherbitov, Vitaly

    2016-05-31

    For several surfactant and lipid systems, it is crucial to understand how hydration influences the physical and chemical properties. When humidity changes, it affects the degree of hydration by adding or removing water molecules. In many cases, this process induces transitions between liquid crystalline phases. This phenomenon is of general interest for numerous applications simply because of the fact that humidity variations are ubiquitous. Of particular interest are hydration-induced phase transitions in amphiphilic films, which in many cases appear as the frontier toward a vapor phase with changing humidity. Considering this, it is important to characterize the film thickness needed for the formation of 3D liquid crystalline phases and the lyotropic phase behavior of this kind of film. In this work, we study this issue by employing a recently developed method based on the humidity scanning quartz crystal microbalance with dissipation monitoring (HS QCM-D), which enables continuous scanning of the film hydration. We investigate five surfactants films (DDAO, DTAC, CTAC, SDS, and n-octylβ-d-glucoside) and one lipid film (monoolein) and show that HS QCM-D enables the fast characterization of hydration-induced phase transitions with small samples. Film thicknesses range from tens to hundreds of nanometers, and clear phase transitions are observed in all cases. It is shown that phase transitions in films occur at the same water activities as for corresponding bulk samples. This allows us to conclude that surfactant and lipid films, with a thickness of as low as 50 nm, are in fact assembled as 3D-structured liquid crystalline phases. Furthermore, liquid crystalline phases of surfactant films show liquidlike behavior, which decreases the accuracy of the absorbed water mass measurement. On the other hand, the monoolein lipid forms more rigid liquid crystalline films, allowing for an accurate determination of the water sorption isotherm, which is also true for the

  1. Dispersion morphology diagrams for three-phase, [open quotes]microemulsion[close quotes] emulsions. 2. [open quotes]Disappearance[close quotes] of morphology-transition lines

    SciTech Connect

    Johnson, G.K. ); Dadyburjor, D.B. ); Smith, D.H. Univ. of Oklahoma, Norman, OK )

    1994-11-17

    The limits over which the oil-rich top phase (T), middle-phase microemulsion (M), or water-rich bottom phase (B) is the continuous phase in steady-state, three-phase macroemulsions have been determined by means of electrical conductivity measurements for the amphiphile/oil/[open quotes]water[close quotes] system C[sub 6]H[sub 13](OC[sub 2]H[sub 4])[sub 2]OH/n-tetradecane/aqueous 10 mM NaCl. Measurements were made at three different temperatures and apparent wettability conditions: (a) 45[degrees]C, wetting middle phase; (b) 25[degrees]C, no wetting phase; and (c) 12[degrees]C, wetting bottom phase. The results at 25[degrees]C were in accord with expectations from previous predictions and experiments; but for both two-phase and three-phase emulsions no abrupt, [open quotes]first-order[close quotes] transitions between M- and T-continuous emulsions at 45[degrees]C or between M- and B-continuous emulsions at 12[degrees]C were found. Instead, these changes of continuous phase appeared to occur smoothly and continuously between their respective single-phase and two-phase limits. It is not yet clear if the [open quotes]disappearance[close quotes] of first-order morphology transitions correlates with phase wettability transitions; the phenomenon suggests the possibility of bicontinuous two-phase and three-phase macroemulsions. 31 refs., 11 figs.

  2. Abrupt change of Antarctic moisture origin at the end of Termination II.

    PubMed

    Masson-Delmotte, V; Stenni, B; Blunier, T; Cattani, O; Chappellaz, J; Cheng, H; Dreyfus, G; Edwards, R L; Falourd, S; Govin, A; Kawamura, K; Johnsen, S J; Jouzel, J; Landais, A; Lemieux-Dudon, B; Lourantou, A; Marshall, G; Minster, B; Mudelsee, M; Pol, K; Röthlisberger, R; Selmo, E; Waelbroeck, C

    2010-07-01

    The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north-south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO(2) overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector.

  3. Dynamics and phase transitions in A 1C 60 compounds

    NASA Astrophysics Data System (ADS)

    Schober, H.; Renker, B.; Heid, R.; Tölle, A.

    1997-02-01

    We present an overview of extensive inelastic neutron scattering experiments carried out on powders of A 1C 60. The various phases leave strong fingerprints in the microscopic dynamics confirming the solid-state chemical reactions. The strong kinetic phase transitions can be followed in real time and turn out to be highly complex.

  4. Synchronization of Oscillators: An Ideal Introduction to Phase Transitions

    ERIC Educational Resources Information Center

    English, L. Q.

    2008-01-01

    The spontaneous synchronization of phase-coupled, non-identical oscillators is explored numerically via the famous Kuramoto model. The conditions for synchronization are examined as a function of the coupling network. I argue that such a numerical exploration provides a feasible way to introduce the topic of phase transitions early in the physics…

  5. Kinetics of silica-phase transitions

    SciTech Connect

    Duffy, C.J.

    1993-07-01

    In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain.

  6. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  7. Theoretical Predictions of Phase Transitions at Ultra-high Pressures

    NASA Astrophysics Data System (ADS)

    Boates, Brian

    2013-06-01

    We present ab initio calculations of the high-pressure phase diagrams of important planetary materials such as CO2, MgSiO3, and MgO. For CO2, we predict a series of distinct liquid phases over a wide pressure (P) and temperature (T) range, including a first-order transition to a dense polymer liquid. We have computed finite-temperature free energies of liquid and solid CO2 phases to determine the melting curve beyond existing measurements and investigate possible phase separation transitions. The interaction of these phase boundaries with the mantle geotherm will also be discussed. Furthermore, we find evidence for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and solid MgO, with a volume change of approximately 1.2 percent. The demixing transition is driven by the crystallization of MgO ? the reaction only occurs below the high-pressure MgO melting curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point near 364 GPa and 12,000 K.

  8. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  9. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  10. Some Thoughts on the Cosmological QCD Phase Transition

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. P.

    2008-12-01

    The cosmological QCD phase transitions may have taken place between 10-5 and 10-4 seconds in the early Universe offers us one of the most intriguing and fascinating questions in cosmology. In bag models, the phase transition is described by the first-order phase transition and the role played by the latent "heat" or energy released in the transition is highly nontrivial and is being classified as the first-order phase transition. In this presentation, we assume, first of all, that the cosmological QCD phase transition, which happened at a time between 10-5 sec and 10-4 sec or at the temperature of about 150 MeV and accounts for confinement of quarks and gluons to within hadrons, would be of first order. Of course, we may assume that the cosmological QCD phase transition may not be of the first order. To get the essence out of the first-order scenario, it is sufficient to approximate the true QCD vacuum as one of possibly degenerate vacua and when necessary we try to model it effectively via a complex scalar field with spontaneous symmetry breaking. On the other hand, we may use a real scalar field in describing the non-first-order QCD phase transition. In the first-order QCD phase transition, we could examine how and when "pasted" or "patched" domain walls are formed, how long such walls evolve in the long run, and we believe that the significant portion of dark matter could be accounted for in terms of such domain-wall structure and its remnants. Of course, the cosmological QCD phase transition happened in the way such that the false vacua associated with baryons and many other color-singlet objects did not disappear (that is, using the bag-model language, there are bags of radius 1.0 fermi for the baryons) - but the amount of the energy remained in the false vacua is negligible by comparison. The latent energy released due to the conversion of the false vacua to the true vacua, in the form of "pasted" or "patched" domain walls in the short run and their numerous

  11. Some Thoughts on the Cosmological QCD Phase Transition

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. P.

    The cosmological QCD phase transitions may have taken place between 10-5 s and 10-4 s in the early universe offers us one of the most intriguing and fascinating questions in cosmology. In bag models, the phase transition is described by the first-order phase transition and the role played by the latent "heat" or energy released in the transition is highly nontrivial and is being classified as the first-order phase transition. In this presentation, we assume, first of all, that the cosmological QCD phase transition, which happened at a time between 10-5 s and 10-4 s or at the temperature of about 150 MeV and accounts for confinement of quarks and gluons to within hadrons, would be of first-order. Of course, we may assume that the cosmological QCD phase transition may not be of the first-order. To get the essence out of the first-order scenario, it is sufficient to approximate the true QCD vacuum as one of possibly degenerate vacua and when necessary we try to model it effectively via a complex scalar field with spontaneous symmetry breaking. On the other hand, we may use a real scalar field in describing the non-first-order QCD phase transition. In the first-order QCD phase transition, we could examine how and when "pasted" or "patched" domain walls are formed, how long such walls evolve in the long run, and we believe that the significant portion of dark matter could be accounted for in terms of such domain-wall structure and its remnants. Of course, the cosmological QCD phase transition happened in the way such that the false vacua associated with baryons and many other color-singlet objects did not disappear (that is, using the bag-model language, there are bags of radius 1.0 fermi for the baryons) — but the amount of the energy remained in the false vacua is negligible by comparison. The latent energy released due to the conversion of the false vacua to the true vacua, in the form of "pasted" or "patched" domain walls in the short run and their numerous

  12. Topological phase transition in quasi-one dimensional organic conductors.

    PubMed

    Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing

    2015-01-01

    We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane's model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317

  13. Topological phase transition in quasi-one dimensional organic conductors

    NASA Astrophysics Data System (ADS)

    Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing

    2015-11-01

    We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices.

  14. Topological phase transition in quasi-one dimensional organic conductors

    PubMed Central

    Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing

    2015-01-01

    We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317

  15. Topological phase transitions in the gauged BPS baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-05-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P, H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V = V( P,H) at zero temperature, where V is the "volume", i.e., area of the solitons.

  16. Shear induced phase transitions induced in edible fats

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  17. High pressure structural phase transition in uranium monochalcogenides

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Kumari, Samiksha; Gupta, B. R. K.

    2010-01-01

    The pressure induced phase transition in uranium monochalcogenides, UX (X = S, Se, and Te) is studied by two-body potential approach. It is found that US, USe and UTe undergo a structural phase transition from NaCl (B1) type to CsCl (B2) type at 78.5, 21 and 9.5 GPa, respectively, which is in good agreement with the recent experimental data. In addition, second-order elastic constants (SOECs) (C 11, C 12 and C 14) have been calculated which can be used to establish the nature of the forces in these materials. The present study shows that the considered two-body potential model can be used to predict the phase transition pressure in UX compounds provided the strength and hardness parameters in B1 and B2 phases are different.

  18. Structural phase transition in ferroelectric glycine silver nitrate

    NASA Astrophysics Data System (ADS)

    Choudhury, Rajul Ranjan; Panicker, Lata; Chitra, R.; Sakuntala, T.

    2008-02-01

    The structural investigation of the ferroelectric phase transition in glycine silver nitrate has revealed that the transition at Tc=218 K is due to the displacement of the Ag + ions from the plane made by the carboxyl oxygens of glycine zwitterions coordinated to it. Since the transition takes place between two ordered structures the thermal anomaly at Tc is very weak, the transition enthalpy and transition entropy were found to be ΔH=6.6 J/mol and the transition entropy ΔS=0.03 J K mol respectively. These crystals are held together by a network of hydrogen bonds. In order to study these interactions the Raman spectrum of GSN was recorded and discussed in the light of ferroelectricity in glycine complexes in general.

  19. Phase transition and equation of state of paratellurite (TeO2) under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Mashimo, Tsutomu; Kawai, Nobuaki; Sekine, Toshimori; Zeng, Zhaoyi; Zhou, Xianming

    2016-07-01

    The Hugoniot data for TeO2 single crystals were obtained for pressures up to ˜85 GPa along both the <100> (a-axis) and <001> (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun or two-stage light gas gun. The Hugoniot-elastic limit of TeO2 was determined to be 3.3-4.3 GPa along the c-axes. The shock velocity (U s) versus particle velocity (U p) relation for TeO2 shows a kink around U p = 1.0 km s-1, which suggests a phase transition completes at ˜26 ± 2 GPa. The Hugoniot relations of the low and high pressure phase are given by U s = 3.13(5) + 1.10(6)U p for U p < 1.0 km s-1 and U s = 2.73(9) + 1.49(5)U p for U p > 1.0 km s-1, respectively. First-principles geometry optimizations based on the generalized gradient approximation after Perdew, Burke and Ernzerhof method were also performed on TeO2. It suggested that a continuous structure distortion occurs up to 22 GPa, and the lattice parameters b and c abruptly increase and decrease at 22 GPa, respectively, indicating a first-order phase transition to the cotunnite structure phase. The equation of state of the cotunnite phase TeO2 is discussed based on the experimental and simulation results.

  20. Phase transition and equation of state of paratellurite (TeO2) under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Mashimo, Tsutomu; Kawai, Nobuaki; Sekine, Toshimori; Zeng, Zhaoyi; Zhou, Xianming

    2016-07-01

    The Hugoniot data for TeO2 single crystals were obtained for pressures up to ∼85 GPa along both the <100> (a-axis) and <001> (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun or two-stage light gas gun. The Hugoniot-elastic limit of TeO2 was determined to be 3.3–4.3 GPa along the c-axes. The shock velocity (U s) versus particle velocity (U p) relation for TeO2 shows a kink around U p = 1.0 km s‑1, which suggests a phase transition completes at ∼26 ± 2 GPa. The Hugoniot relations of the low and high pressure phase are given by U s = 3.13(5) + 1.10(6)U p for U p < 1.0 km s‑1 and U s = 2.73(9) + 1.49(5)U p for U p > 1.0 km s‑1, respectively. First-principles geometry optimizations based on the generalized gradient approximation after Perdew, Burke and Ernzerhof method were also performed on TeO2. It suggested that a continuous structure distortion occurs up to 22 GPa, and the lattice parameters b and c abruptly increase and decrease at 22 GPa, respectively, indicating a first-order phase transition to the cotunnite structure phase. The equation of state of the cotunnite phase TeO2 is discussed based on the experimental and simulation results.

  1. Abrupt percolation in small equilibrated networks

    NASA Astrophysics Data System (ADS)

    Matsoukas, Themis

    2015-05-01

    Networks can exhibit an abrupt transition in the form of a spontaneous self-organization of a sizable fraction of the population into a giant component of connected members. This behavior has been demonstrated in random graphs under suppressive rules that passively or actively attempt to delay the formation of the giant cluster. We show that suppressive rules are not a necessary condition for a sharp transition at the percolation threshold. Rather, a finite system with aggressive tendency to form a giant cluster may exhibit an instability at the percolation threshold that is relieved through an abrupt and discontinuous transition to the stable branch. We develop the theory for a class of equilibrated networks that produce this behavior and find that the discontinuous jump is especially pronounced in small networks but disappears when the size of the system is infinite.

  2. Mapping the QCD Phase Transition with Accreting Compact Stars

    SciTech Connect

    Blaschke, D.; Poghosyan, G.; Grigorian, H.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.

  3. Phase transitions in the assembly of multivalent signalling proteins

    SciTech Connect

    Li, Pilong; Banjade, Sudeep; Cheng, Hui-Chun; Kim, Soyeon; Chen, Baoyu; Guo, Liang; Llaguno, Marc; Hollingsworth, Javoris V.; King, David S.; Banani, Salman F.; Russo, Paul S.; Jiang, Qiu-Xing; Nixon, B. Tracy; Rosen, Michael K.

    2013-04-08

    Cells are organized on length scales ranging from angstrom to micrometers. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometer-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometer-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin1, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.

  4. Ab initio molecular dynamics study of ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Srinivasan, Varadharajan

    We have undertaken the first ever fully first-principles simulations of ferroelectric crystals at finite temperature with an aim to understand the nature of their phase transitions. In particular, we have studied the different aspects of phase transitions in two protypical ferroelectrics - PbTiO3 and KH2PO4. In PbTiO3, we have successfully reproduced the temperature-driven transition from a tetragonal to a cubic phase by using constant-pressure Car-Parrinello molecular dynamics. By defining suitable order parameters in terms of atomic displacements, we are able to monitor the approach of the cubic phase. Using a quasi-harmonic analysis, with the inclusion of a temperature dependent volume and the average thermal atomic displacements as the most basic effects of anharmonicity, we are also able to recover the softening of ferroelectric modes as well as other features seen in experiments. These observations confirm the predominantly displacive nature of the transition, while our simulations also indicate a possible build-up of disorder near the transition temperature. We have also studied the isotope effects in the ferroelectric transition in KH2PO4 by quantifying the temperature and mass dependence of the extent of delocalization of the hydrogens. Using a recently developed ab initio Open Path-integral Molecular Dynamics scheme we have calculated both the real and momentum-space distribution of the hydrogens in both protonated and deuterated KDP above and below their respective transition temperatures. We find that the two crystals not only involve different transition mechanisms but also the fluctuations above the transition temperature are of a qualitatively different nature.

  5. Pressure-induced phase transitions of indium selenide

    NASA Astrophysics Data System (ADS)

    Rasmussen, Anya Marie

    In2Se3 has potential as a phase-change material for memory applications. Understanding its phase diagram is important to achieve controlled switching between phases. Pressure-dependent phase transitions of In2Se3 bulk powders and nanowire samples were studied at room temperature and at elevated temperatures using synchrotron x-ray diffraction and diamond-anvil cells (DACs). alpha-In2Se3 transforms into the beta phase at 0.7 GPa, an order of magnitude lower than phase-transition critical pressures in typical semiconductors. The bulk moduli are reported and the c/a ratio for the beta phase is shown to have a highly nonlinear dependence on pressure. gamma-In2Se3, metastable under ambient conditions, transforms into to the high-pressure beta phase between 2.8 GPa and 3.2 GPa in bulk powder samples and at slightly higher pressures, between 3.2 GPa and 3.7 GPa in nanowire samples. While the gamma phase bulk modulus is similar to that of the beta phase, the decrease due to pressure in the unit cell parameter ratio, c/a, is less than half the decrease seen in the beta phase. Using high-temperature DACs, we investigated how elevated temperatures and pressures affect the crystal structure of In 2Se3. From these measurements, the high-pressure beta phase was found to be metastable. The high-pressure beta phase transitions into the high-temperature beta phase at temperatures above 380 °C.

  6. A comparison of observables for solid-solid phase transitions

    SciTech Connect

    Smilowitz, Laura B; Henson, Bryan F; Romero, Jerry J

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  7. Quantum phase transitions of spin chiral nanotubes

    NASA Astrophysics Data System (ADS)

    Matsumoto, Munehisa; Sakai, Toru; Sato, Masahiro; Takayama, Hajime; Todo, Synge

    2005-11-01

    Recently many interesting magnetic nanostructures have been fabricated and much attention is arising on the rich magnetic properties that originate in the quantum effects eminent in the nanoscale world. One of the peculiar aspects of the quantum effects is the spin excitation gap. In the spin- 1/2 low-dimensional systems, the spin gap often appears when the lattice dimerization or the frustration in the spin-spin interaction are introduced. In the present study, we investigate the ground-state property of the spin- 1/2 antiferromagnetic spin chiral nanotubes with the spatial modulation in the spin-spin interaction. The ground-state phase diagrams of them are determined by observing the behavior of the expectation value of the Lieb-Schultz-Mattis slow-twist operator calculated by the quantum Monte Carlo method with the continuous-time loop algorithm. We discuss the relation between the characteristic of the topology of the phase diagram and the chiral vector of the nanotubes.

  8. More is the Same; Phase Transitions and Mean Field Theories

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2009-12-01

    This paper is the first in a series that will look at the theory of phase transitions from the perspectives of physics and the philosophy of science. The series will consider a group of related concepts derived from condensed matter and statistical physics. The key technical ideas go under the names of "singularity", "order parameter", "mean field theory", "variational method", "correlation length", "universality class", "scale changes", and "renormalization". The first four of these will be considered here. In a less technical vein, the question here is how can matter, ordinary matter, support a diversity of forms. We see this diversity each time we observe ice in contact with liquid water or see water vapor (steam) come up from a pot of heated water. Different phases can be qualitatively different in that walking on ice is well within human capacity, but walking on liquid water is proverbially forbidden to ordinary humans. These differences have been apparent to humankind for millennia, but only brought within the domain of scientific understanding since the 1880s. A phase transition is a change from one behavior to another. A first order phase transition involves a discontinuous jump in some statistical variable. The discontinuous property is called the order parameter. Each phase transition has its own order parameter. The possible order parameters range over a tremendous variety of physical properties. These properties include the density of a liquid-gas transition, the magnetization in a ferromagnet, the size of a connected cluster in a percolation transition, and a condensate wave function in a superfluid or superconductor. A continuous transition occurs when the discontinuity in the jump approaches zero. This article is about statistical mechanics and the development of mean field theory as a basis for a partial understanding of phase transition phenomena. Much of the material in this review was first prepared for the Royal Netherlands Academy of Arts and

  9. Quantum phase transitions in holographic models of magnetism and superconductors

    SciTech Connect

    Iqbal, Nabil; Liu Hong; Mezei, Mark; Si Qimiao

    2010-08-15

    We study a holographic model realizing an 'antiferromagnetic' phase in which a global SU(2) symmetry representing spin is broken down to a U(1) by the presence of a finite electric charge density. This involves the condensation of a neutral scalar field in a charged anti-de Sitter black hole. We observe that the phase transition for both neutral and charged (as in the standard holographic superconductor) order parameters can be driven to zero temperature by a tuning of the UV conformal dimension of the order parameter, resulting in a quantum phase transition of the Berezinskii-Kosterlitz-Thouless-type. We also characterize the antiferromagnetic phase and an externally forced ferromagnetic phase by showing that they contain the expected spin waves with linear and quadratic dispersions, respectively.

  10. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  11. Non-equilibrium phase transitions in a liquid crystal.

    PubMed

    Dan, K; Roy, M; Datta, A

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min(-1), consistent with a glass transition, a clear peak for β ≤ 5 K min(-1) and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  12. Microrheology close to an equilibrium phase transition

    SciTech Connect

    Reinhardt, J.; Scacchi, A.; Brader, J. M.

    2014-04-14

    We investigate the microstructural and microrheological response to a tracer particle of a two-dimensional colloidal suspension under thermodynamic conditions close to a liquid-gas phase boundary. On the liquid side of the binodal, increasing the velocity of the (repulsive) tracer leads to the development of a pronounced cavitation bubble, within which the concentration of colloidal particles is strongly depleted. The tendency of the liquid to cavitate is characterized by a dimensionless “colloidal cavitation” number. On the gas side of the binodal, a pulled (attractive) tracer leaves behind it an extended trail of colloidal liquid, arising from downstream advection of a wetting layer on its surface. For both situations the velocity dependent friction is calculated.

  13. High-pressure phase transitions in adamantane

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V.; Garg, Alka B.; Godwal, B. K.; Sikka, S. K.

    2000-11-01

    We report angle dispersive X-ray diffraction (ADXRD) measurements on adamantane carried out at SPRING-8 to the pressures of 25 GPa. The tetragonal phase observed at 0.5 GPa remains stable up to 12.5 GPa. In this pressure range the intermolecular hydrogen separation reduces from 2.37 to1.87 Å with relative angle of rotation of the two molecules increasing from 8.5° to 10.5° in agreement with values from energy minimization. At 16 GPa, the diffraction pattern could be indexed either by a tetragonal or a monoclinic cell. Beyond 22 GPa only monoclinic cell indexes the patterns. The present findings corroborate the earlier Raman results.

  14. Structural transitions in condensed colloidal virus phases

    NASA Astrophysics Data System (ADS)

    Schmidt, Nathan; Barr, Steve; Udit, Andrew; Gutierrez, Leonardo; Nguyen, Thanh; Finn, M. G.; Luijten, Erik; Wong, Gerard

    2010-03-01

    Analogous to monatomic systems colloidal phase behavior is entirely determined by the interaction potential between particles. This potential can be tuned using solutes such as multivalent salts and polymers with varying affinity for the colloids to create a hierarchy of attractions. Bacteriophage viruses are a naturally occurring type of colloidal particle with characteristics difficult to achieve by laboratory synthesis. They are monodisperse, nanometers in size, and have heterogeneous surface charge distributions. We use the MS2 and Qbeta bacteriophages (diameters 27-28nm) to understand the interplay between different attraction mechanisms on nanometer-sized colloids. Small Angle X-ray Scattering (SAXS) is used to characterize the inter-particle interaction between colloidal viruses using several polymer species and different salt types.

  15. Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition

    SciTech Connect

    Luo, Da-Wei; Xu, Jing-Bo; Lin, Hai-Qing; Yao, Dao-Xin

    2011-12-15

    We study the dynamics of two initially correlated qubits coupled to their own separate spin baths modeled by an XY spin chain and find the explicit expression of the quantum discord for the system. A sudden transition is found to exist between classical and quantum decoherence by choosing certain initial states. We show that the sudden transition happens near the critical point, which provides an alternative way to characterize the quantum phase transition. Furthermore, we propose a scheme to prolong the transition time of the quantum discord by applying the bang-bang pulses.

  16. Structural phase transition and antiferromagnetic transition of Tb{sub 3}RuO{sub 7}

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro

    2014-12-15

    Magnetic properties and structural phase transition of terbium ruthenate Tb{sub 3}RuO{sub 7} are investigated through magnetic susceptibility, specific heat, high-temperature X-ray diffraction and differential scanning calorimetry measurements. The structural phase transition from space group P2{sub 1}nb to Cmcm has been observed at 402 K. Tb{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 17 K. In addition, another magnetic anomaly has been found at 10 K. Analysis of the magnetic specific heat for Tb{sub 3}RuO{sub 7} indicates that the magnetic transitions at 10 and 17 K are due to the magnetic ordering of Tb{sup 3+} and Ru{sup 5+} ions, respectively. - Graphical abstract: Temperature dependence of the magnetic specific heat divided by temperature (C{sub mag}/T) and the magnetic entropy (S{sub mag}) for Tb{sub 3}RuO{sub 7}. Two-step magnetic transition has been observed. - Highlights: • Tb{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 17 K. • Specific heat measurements confirmed the occurrence of two-step magnetic transition. • The phase transition from space group P2{sub 1}nb to Cmcm has been observed at 402 K.

  17. Collective Motion and Phase Transitions of Symmetric Camphor Boats

    NASA Astrophysics Data System (ADS)

    Heisler, Eric; Suematsu, Nobuhiko J.; Awazu, Akinori; Nishimori, Hiraku

    2012-07-01

    The motion of several self-propelled boats in a narrow channel displays spontaneous pattern formation and kinetic phase transitions. In contrast with previous studies on self-propelled particles, this model does not require stochastic fluctuations and it is experimentally accessible. By varying the viscosity in the system, it is possible to form either a stationary state, correlated or uncorrelated oscillations, or unidirectional flow. Here, we describe and analyze these self organized patterns and their transitions.

  18. High pressure phase transition in Pr-monopnictides

    SciTech Connect

    Raypuria, Gajendra Singh E-mail: gsraypuria@gmail.com; Gupta, Dinesh Chandra

    2015-06-24

    The Praseodymium-monopnictides compounds have been found to undergo transition from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm) using CTIP model. The calculated values of cohesive energy, lattice constant, phase transition pressure, relative volume collapse agree well with the available measured data and better than those computed by earlier workers.

  19. Phase Transition of Interacting Disordered Bosons in One Dimension

    NASA Astrophysics Data System (ADS)

    Ristivojevic, Zoran; Petković, Aleksandra; Le Doussal, Pierre; Giamarchi, Thierry

    2012-07-01

    Interacting bosons generically form a superfluid state. In the presence of disorder it can get converted into a compressible Bose glass state. Here we study such a transition in one dimension at moderate interaction using bosonization and renormalization group techniques. We derive the two-loop scaling equations and discuss the phase diagram. We find that the correlation functions at the transition are characterized by universal exponents in a finite region around the fixed point.

  20. Quantum phase transitions out of a Z2×Z2 topological phase

    NASA Astrophysics Data System (ADS)

    Jahromi, Saeed S.; Masoudi, S. Farhad; Kargarian, Mehdi; Schmidt, Kai Phillip

    2013-12-01

    We investigate the low-energy spectral properties and robustness of the topological phase of color code, which is a quantum spin model for the aim of fault-tolerant quantum computation, in the presence of a uniform magnetic field or Ising interactions, using high-order series expansion and exact diagonalization. In a uniform magnetic field, we find first-order phase transitions in all field directions. In contrast, our results for the Ising interactions unveil that for strong enough Ising couplings, the Z2×Z2 topological phase of color code breaks down to symmetry broken phases by first- or second-order phase transitions.

  1. Optical Sensor for Characterizing the Phase Transition in Salted Solutions

    PubMed Central

    Claverie, Rémy; Fontana, Marc D.; Duričković, Ivana; Bourson, Patrice; Marchetti, Mario; Chassot, Jean-Marie

    2010-01-01

    We propose a new optical sensor to characterize the solid-liquid phase transition in salted solutions. The probe mainly consists of a Raman spectrometer that extracts the vibrational properties from the light scattered by the salty medium. The spectrum of the O – H stretching band was shown to be strongly affected by the introduction of NaCl and the temperature change as well. A parameter SD defined as the ratio of the integrated intensities of two parts of this band allows to study the temperature and concentration dependences of the phase transition. Then, an easy and efficient signal processing and the exploitation of a modified Boltzmann equation give information on the phase transition. Validations were done on solutions with varying concentration of NaCl. PMID:22319327

  2. A MATLAB GUI to study Ising model phase transition

    NASA Astrophysics Data System (ADS)

    Thornton, Curtislee; Datta, Trinanjan

    We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.

  3. Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Hua; Hou, Yu-Long; Wang, Qing; Long, Zheng-Wen; Jing, Jian

    2014-12-01

    The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit.

  4. Phase transitions of black holes in massive gravity

    NASA Astrophysics Data System (ADS)

    Fernando, Sharmanthie

    2016-05-01

    In this paper, we have studied thermodynamics of a black hole in massive gravity in the canonical ensemble. The massive gravity theory in consideration here has a massive graviton due to Lorentz symmetry breaking. The black hole studied here has a scalar charge due to the massive graviton and is asymptotically anti-de Sitter (AdS). We have computed various thermodynamical quantities such as temperature, specific heat and free energy. Both the local and global stability of the black hole are studied by observing the behavior of the specific heat and the free energy. We have observed that there is a first-order phase transition between small (SBH) and large black hole (LBH) for a certain range of the scalar charge. This phase transition is similar to the liquid/gas phase transition at constant temperature for a van der Waals fluid. The coexistence curves for the SBH and LBH branches are also discussed in detail.

  5. Dark matter as the trigger of strong electroweak phase transition

    SciTech Connect

    Chowdhury, Talal Ahmed; Nemevšek, Miha; Senjanović, Goran; Zhang, Yue E-mail: miha@ictp.it E-mail: yuezhang@ictp.it

    2012-02-01

    In this paper, we propose a new possible connection between dark matter relic density and baryon asymmetry of the universe. The portal between standard model sector and dark matter not only controls the relic density and detections of dark matter, but also allows the dark matter to trigger the first order electroweak phase transition. We discuss systematically possible scalar dark matter candidates, starting from a real singlet to arbitrary high representations. We show that the simplest realization is provided by a doublet, and that strong first-order electroweak phase transition implies a lower bound on the dark matter direct detection rate. The mass of dark matter lies between 45 and 80 GeV, allowing for an appreciable invisible decay width of the Standard Model Higgs boson, which is constrained to be lighter than 130 GeV for the sake of the strong phase transition.

  6. Nonequilibrium Dynamics and Phase Transitions in Holographic Models.

    PubMed

    Janik, Romuald A; Jankowski, Jakub; Soltanpanahi, Hesam

    2016-08-26

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths. PMID:27610844

  7. Nanoscale Phase Transitions under Extreme Conditions within an Ion Track

    SciTech Connect

    Zhang, Jiaming; Lang, Maik; Ewing, Rodney C.; Devanathan, R.; Weber, William; Toulemonde, M.

    2011-01-31

    The dynamics of track development due to the passage of relativistic heavy ions through solids is a long-standing issue relevant to nuclear materials, age dating of minerals, space exploration, and nanoscale fabrication of novel devices. We have integrated experimental and simulation approaches to investigate nanoscale phase transitions under the extreme conditions created within single tracks of relativistic ions in Gd{sub 2}O{sub 3}(TiO{sub 2}){sub x} and Gd{sub 2}Zr{sub 2–x} Ti{sub x} O{sub 7}. Track size and internal structure depend on energy density deposition, irradiation temperature, and material composition. Based on the inelastic thermal spike model, molecular dynamics simulations follow the time evolution of individual tracks and reveal the phase transition pathways to the concentric track structures observed experimentally. Individual ion tracks have nanoscale core-shell structures that provide a unique record of the phase transition pathways under extreme conditions.

  8. Nonequilibrium Dynamics and Phase Transitions in Holographic Models

    NASA Astrophysics Data System (ADS)

    Janik, Romuald A.; Jankowski, Jakub; Soltanpanahi, Hesam

    2016-08-01

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths.

  9. Gravitational radiation from first-order phase transitions

    SciTech Connect

    Child, Hillary L.; Giblin, John T. Jr. E-mail: giblinj@kenyon.edu

    2012-10-01

    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.

  10. Structural phase transitions and photoluminescence properties of oxonitridosilicate phosphors under high hydrostatic pressure

    PubMed Central

    Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek; Li, Guogang; Liu, Ru-Shi

    2016-01-01

    Spectroscopic properties of a series of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) compounds has been studied under high hydrostatic pressure applied in a diamond anvil cell up to 200 kbar. At ambient pressure the crystal structures of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) are related to the ratio of strontium to barium and three different phases exists: orthorhombic Pbcn(0.78 ≤ x ≤ 0.98), triclinic P1 (0 < x ≤ 0.65) and triclinic P1 (0.65 < x < 0.78). It was found that Eu2+ luminescence reveals abrupt changes under pressure (decay time, energy and shape) which indicate the variation of the local symmetry and crystal field strength in Eu2+ sites. These changes are attributed to the reversible pressure-induced structural phase transitions of triclinic (Sr0.98-xBaxEu0.02)Si2O2N2 into orthorhombic structure. Pressure in which phase transition occurs decreases linearly with increasing of Ba composition in (Sr0.98-xBaxEu0.02)Si2O2N2 series. Additionally, very different pressure shifts of the Eu2+ luminescence in different phases of (Sr0.98-xBaxEu0.02)Si2O2N2:Eu from −40 cm−1/kbar to 0 cm−1/kbar have been observed. This effect is explained by different interaction of the Eu2+ 5d electron with the second coordination sphere around the impurity cations. PMID:27734847

  11. Structural phase transitions and photoluminescence properties of oxonitridosilicate phosphors under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek; Li, Guogang; Liu, Ru-Shi

    2016-10-01

    Spectroscopic properties of a series of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) compounds has been studied under high hydrostatic pressure applied in a diamond anvil cell up to 200 kbar. At ambient pressure the crystal structures of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) are related to the ratio of strontium to barium and three different phases exists: orthorhombic Pbcn(0.78 ≤ x ≤ 0.98), triclinic P1 (0 < x ≤ 0.65) and triclinic P1 (0.65 < x < 0.78). It was found that Eu2+ luminescence reveals abrupt changes under pressure (decay time, energy and shape) which indicate the variation of the local symmetry and crystal field strength in Eu2+ sites. These changes are attributed to the reversible pressure-induced structural phase transitions of triclinic (Sr0.98-xBaxEu0.02)Si2O2N2 into orthorhombic structure. Pressure in which phase transition occurs decreases linearly with increasing of Ba composition in (Sr0.98-xBaxEu0.02)Si2O2N2 series. Additionally, very different pressure shifts of the Eu2+ luminescence in different phases of (Sr0.98-xBaxEu0.02)Si2O2N2:Eu from ‑40 cm‑1/kbar to 0 cm‑1/kbar have been observed. This effect is explained by different interaction of the Eu2+ 5d electron with the second coordination sphere around the impurity cations.

  12. Phase transition in aluminous silica in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.

    2012-12-01

    Lower mantle basaltic lithologies contain 35-40% Mg-perovskite, 20-30% Ca-perovskite, 15-25% Al-rich phases (NAL and Ca-ferrite phases) and 15-20% silica-dominated phases. The Fe-rich Mg-perovskite makes basaltic material denser than peridotite throughout the lower mantle below 720 km depth, with important implications for mantle dynamics. Partial separation of subducted basaltic crust from depleted lithosphere might occur within the strongly heterogeneous D" zone. Further details on phase transitions and equation of states for the various minerals, however, are needed for more complete insights. The silica-dominated phases have considerable solubility of alumina [1]. We investigated silica with 4 and 6 wt% alumina to 120 GPa, using LH-DAC at the Extreme Conditions Beamline (P02.2) at PETRA-III, DESY. Powdered glass mixed with 10-15 wt% Pt-powder was compressed and heated in NaCl pressure media in Re-gaskets. The transition from the CaCl2-structured phase to seifertite (alpha-PbO2-structure) occurs at about 116 GPa at 2500 K. This is intermediate between the transition pressures of about 122 GPa and 100-113 GPa reported for similar temperatures for pure SiO2 [2] and a basalt composition [1], respectively. The CaCl2-structured silica phase crystallized along with seifertite, consistent with a binary phase loop trending towards lower pressure with increasing Al-content. The presence of an Al-rich Ca-ferrite phase (near the MgAl2O4-NaAlSiO4-join) in basaltic material indicates that the Al-solubility limits for the silica-dominated phases in basaltic compositions may be similar to those in the binary system SiO2-AlO1.5. Based on the X-ray pattern refinement, our samples show no significant volume change across the transition. Even so, the transition could be associated with a significant density change if the Al substitution mechanisms are different in CaCl2-structured phase and seifertite. The most likely situation is that Al-substitution occurs via O-vacancies in the

  13. Photon-induced phase transitions of individual electronic phase separated domains in manganites strips

    NASA Astrophysics Data System (ADS)

    Lin, Hanxuan; Zhang, Kai; Liu, Hao; Miao, Tian; Yu, Yang; Yin, Lifeng; Shen, Jian

    Effective photosensors should be built on materials whose properties depend sensitively on light. Manganites are one of the candidates, where light can trigger resistivity change by several orders of magnitude. Such dramatic change is often associated with photoinduced phase transitions of electronic phase separated (EPS) domains in manganites. Previous studies of the light effect all use macroscopic manganite samples, which consist of large numbers of EPS domains smearing out the photon-induced phase transitions. Here, we observe the signature of individual domains' photoinduced phase transition by macroscopic transport measurement of spatially confined manganites strips. Pronounced photon-induced resistivity jumps emerge in the warming process, which reveals the dynamics of the phase transitions of individual EPS domains upon interaction with light. Magnetic force microscope (MFM) has been used to investigate the mechanism of those resistivity jumps. Supervisor.

  14. The α–β phase transition in volcanic cristobalite

    PubMed Central

    Damby, David E.; Llewellin, Edward W.; Horwell, Claire J.; Williamson, Ben J.; Najorka, Jens; Cressey, Gordon; Carpenter, Michael

    2014-01-01

    Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α–β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α–β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al3+ and Na+ defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures. PMID:25242910

  15. Structural and topological phase transitions on the German Stock Exchange

    NASA Astrophysics Data System (ADS)

    Wiliński, M.; Sienkiewicz, A.; Gubiec, T.; Kutner, R.; Struzik, Z. R.

    2013-12-01

    We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing the FSE were found. The first transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the market’s state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kertész for the S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets.

  16. Dynamical quantum phase transitions in random spin chains

    NASA Astrophysics Data System (ADS)

    Vosk, Ronen; Altman, Ehud

    2014-03-01

    Quantum systems can exhibit a great deal of universality at low temperature due to the structure of ground states and the critical points separating distinct states. On the other hand, quantum time evolution of the same systems involves all energies and it is therefore thought to be much harder, if at all possible, to have sharp transitions in the dynamics. In this paper we show that phase transitions characterized by universal singularities do occur in the time evolution of random spin chains. The sharpness of the transitions and integrity of the phases owes to many-body localization, which prevents thermalization in these systems. Using a renormalization group approach, we solve the time evolution of random Ising spin chains with generic interactions starting from initial states of arbitrary energy. As a function of the Hamiltonian parameters, the system is tuned through a dynamical transition, similar to the ground state critical point, at which the local spin correlations establish true long range temporal order. As in ground state quantum phase transitions, the dynamical transition has unique signatures in the entanglemenent properties of the system.

  17. Scaling of entanglement close to a quantum phase transition.

    PubMed

    Osterloh, A; Amico, Luigi; Falci, G; Fazio, Rosario

    2002-04-11

    Classical phase transitions occur when a physical system reaches a state below a critical temperature characterized by macroscopic order. Quantum phase transitions occur at absolute zero; they are induced by the change of an external parameter or coupling constant, and are driven by quantum fluctuations. Examples include transitions in quantum Hall systems, localization in Si-MOSFETs (metal oxide silicon field-effect transistors; ref. 4) and the superconductor-insulator transition in two-dimensional systems. Both classical and quantum critical points are governed by a diverging correlation length, although quantum systems possess additional correlations that do not have a classical counterpart. This phenomenon, known as entanglement, is the resource that enables quantum computation and communication. The role of entanglement at a phase transition is not captured by statistical mechanics-a complete classification of the critical many-body state requires the introduction of concepts from quantum information theory. Here we connect the theory of critical phenomena with quantum information by exploring the entangling resources of a system close to its quantum critical point. We demonstrate, for a class of one-dimensional magnetic systems, that entanglement shows scaling behaviour in the vicinity of the transition point.

  18. Kinetics of Solid-Solid Phase Transition in Iron (u)

    SciTech Connect

    Schwartz, Cynthia, L

    2011-01-27

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy multi-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where rad iographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {micro}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {micro}m/5.251 km/s = 50 ns. Both Boettger1 & Jensen2 conclude that

  19. Cosmological phase transitions and their properties in the NMSSM

    NASA Astrophysics Data System (ADS)

    Kozaczuk, Jonathan; Profumo, Stefano; Haskins, Laurel Stephenson; Wainwright, Carroll L.

    2015-01-01

    We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or SU(2) directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and Δ β (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We estimate the wall velocity microphysically, taking into account the various sources of friction acting on the expanding bubble wall. Ultra-relativistic solutions to the bubble wall equations of motion typically exist when the electroweak phase transition features substantial supercooling. For somewhat weaker transitions, the bubble wall instead tends to be sub-luminal and, in fact, likely sub-sonic, suggesting that successful electroweak baryogenesis may indeed occur in regions of the NMSSM compatible with the Higgs discovery.

  20. Studies of phase transitions in the aripiprazole solid dosage form.

    PubMed

    Łaszcz, Marta; Witkowska, Anna

    2016-01-01

    Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III. PMID:26397209

  1. Studies of phase transitions in the aripiprazole solid dosage form.

    PubMed

    Łaszcz, Marta; Witkowska, Anna

    2016-01-01

    Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III.

  2. The quark-hadron phase transition and primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1987-01-01

    After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.

  3. Deceptive Signals of Phase Transitions in Small Magnetic Clusters

    NASA Astrophysics Data System (ADS)

    Stamerjohanns, Heinrich; Mülken, Oliver; Borrmann, Peter

    2002-02-01

    We present an analysis of the thermodynamic properties of small transition-metal clusters and show how the commonly used indicators of phase transitions such as peaks in the specific heat or magnetic susceptibility can lead to deceptive interpretations of the underlying physics. The analysis of the distribution of zeros of the canonical partition function in the whole complex temperature plane reveals the nature of the transition. We show that signals in the magnetic susceptibility at positive temperatures have their origin at zeros lying at negative temperatures.

  4. Beyond nuclear "pasta" : Phase transitions and neutrino opacity of new "pasta" phases

    NASA Astrophysics Data System (ADS)

    Alcain, P. N.; Giménez Molinelli, P. A.; Dorso, C. O.

    2014-12-01

    In this work, we focus on different length scales within the dynamics of nucleons in conditions according to the neutron star crust, with a semiclassical molecular dynamics model, studying isospin symmetric matter at subsaturation densities. While varying the temperature, we find that a solid-liquid phase transition exists, which can be also characterized with a morphology transition. For higher temperatures, above this phase transition, we study the neutrino opacity, and find that in the liquid phase, the scattering of low momenta neutrinos remain high, even though the morphology of the structures differ significatively from those of the traditional nuclear pasta.

  5. Mechanism for direct graphite-to-diamond phase transition

    PubMed Central

    Xie, Hongxian; Yin, Fuxing; Yu, Tao; Wang, Jian-Tao; Liang, Chunyong

    2014-01-01

    Using classical molecular dynamics with a more reliable reactive LCBOPII potential, we have performed a detailed study on the direct graphite-to-diamond phase transition. Our results reveal a new so-called “wave-like buckling and slipping” mechanism, which controls the transformation from hexagonal graphite to cubic diamond. Based on this mechanism, we have explained how polycrystalline cubic diamond is converted from hexagonal graphite, and demonstrated that the initial interlayer distance of compressed hexagonal graphite play a key role to determine the grain size of cubic diamond. These results can broaden our understanding of the high pressure graphite-to-diamond phase transition. PMID:25088720

  6. Gravitational waves from first-order cosmological phase transitions

    NASA Technical Reports Server (NTRS)

    Kosowsky, Arthur; Turner, Michael S.; Watkins, Richard

    1992-01-01

    A first-order cosmological phase transition that proceeds through the nucleation and collision of true-vacuum bubbles is a potent source of gravitational radiation. Possibilities for such include first-order inflation, grand-unified-theory-symmetry breaking, and electroweak-symmetry breaking. We have calculated gravity-wave production from the collision of two scalar-field vacuum bubbles, and, using an approximation based upon these results, from the collision of 20 to 30 vacuum bubbles. We present estimates of the relic background of gravitational waves produced by a first-order phase transition.

  7. Distribution of current in nonequilibrium diffusive systems and phase transitions.

    PubMed

    Bodineau, T; Derrida, B

    2005-12-01

    We consider diffusive lattice gases on a ring and analyze the stability of their density profiles conditionally to a current deviation. Depending on the current, one observes a phase transition between a regime where the density remains constant and another regime where the density becomes time dependent. Numerical data confirm this phase transition. This time dependent profile persists in the large drift limit and allows one to understand on physical grounds the results obtained earlier for the totally asymmetric exclusion process on a ring. PMID:16486013

  8. High pressure phase transition and elastic properties of americium telluride

    NASA Astrophysics Data System (ADS)

    Aynyas, Mahendra; Rukmangad, Aditi; Arya, B. S.; Sanyal, S. P.

    2013-06-01

    The structural and elastic properties of Americium Telluride (AmTe) have been investigated by using a modified inter-ionic potential theory (MIPT). This theory is capable of explaining first order phase transition with a crystallographic change NaCl to CsCl structure for this compound. The values of optimized lattice constant, phase transition pressure, zero pressure bulk modulus and second order elastic constants (C11, C44) agree well with their corresponding experimental data. Debye temperature (θD) is also calculated for this compound for the first time.

  9. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  10. The liquid to vapor phase transition in excited nuclei

    SciTech Connect

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  11. Mechanism for direct graphite-to-diamond phase transition.

    PubMed

    Xie, Hongxian; Yin, Fuxing; Yu, Tao; Wang, Jian-Tao; Liang, Chunyong

    2014-08-04

    Using classical molecular dynamics with a more reliable reactive LCBOPII potential, we have performed a detailed study on the direct graphite-to-diamond phase transition. Our results reveal a new so-called "wave-like buckling and slipping" mechanism, which controls the transformation from hexagonal graphite to cubic diamond. Based on this mechanism, we have explained how polycrystalline cubic diamond is converted from hexagonal graphite, and demonstrated that the initial interlayer distance of compressed hexagonal graphite play a key role to determine the grain size of cubic diamond. These results can broaden our understanding of the high pressure graphite-to-diamond phase transition.

  12. Coherence susceptibility as a probe of quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Jun; Cui, Jian; Zhang, Yu-Ran; Fan, Heng

    2016-08-01

    We introduce a coherence susceptibility method, based on the fact that it signals quantum fluctuations, for identifying quantum phase transitions, which are induced by quantum fluctuations. This method requires no prior knowledge of order parameter, and there is no need for careful considerations concerning the choice of a bipartition of the system. It can identify different types of quantum phase transition points exactly. At finite temperatures, where quantum criticality is influenced by thermal fluctuations, our method can pinpoint the temperature frame of quantum criticality, which perfectly coincides with recent experiments.

  13. Nontopological solitons as nucleation sites for cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Metaxas, D.

    2001-04-01

    I consider quantum field theories that admit charged nontopological solitons of the Q-ball type, and use the fact that in a first-order cosmological phase transition, below the critical temperature, there is a value of the soliton charge above which the soliton becomes unstable and expands, converting space to the true vacuum, much like a critical bubble in the case of ordinary tunneling. Using a simple model for the production rate of Q-balls through charge accretion during a random walk out of equilibrium, I calculate the probability for the formation of critical charge solitons and estimate the amount of supercooling needed for the phase transition to be completed.

  14. Liquid-Crystal Phase Transition Probed by Fluorescent Molecules

    NASA Astrophysics Data System (ADS)

    Hattori, Toshiaki; Hanai, Nobuhiko; Inouye, Hideyuki; Nakatsuka, Hiroki

    2001-08-01

    Phase transition of four liquid crystal materials have been studied by measuring the decay times of time-resolved intensity of fluorescence from two kind of dyes, malachite green and cryptocyanine, doped in these materials. It was found that the observed fluorescence lifetimes observed depend strongly on the doped molecules and that they change depending on the phase transition of the liquid-crystal materials. These results show that the fluorescence lifetime measurements are effective molecular probes for estimating the microscopic dynamics in these materials.

  15. Hadron-quark phase transition in dense stars

    SciTech Connect

    Grassi, F.

    1987-10-01

    An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a several quark flavor plasma and applied to the study of the hadron-quark phase transition inside a neutron star. 45 refs., 4 figs.

  16. Background field functional renormalization group for absorbing state phase transitions.

    PubMed

    Buchhold, Michael; Diehl, Sebastian

    2016-07-01

    We present a functional renormalization group approach for the active to inactive phase transition in directed percolation-type systems, in which the transition is approached from the active, finite density phase. By expanding the effective potential for the density field around its minimum, we obtain a background field action functional, which serves as a starting point for the functional renormalization group approach. Due to the presence of the background field, the corresponding nonperturbative flow equations yield remarkably good estimates for the critical exponents of the directed percolation universality class, even in low dimensions. PMID:27575107

  17. Background field functional renormalization group for absorbing state phase transitions

    NASA Astrophysics Data System (ADS)

    Buchhold, Michael; Diehl, Sebastian

    2016-07-01

    We present a functional renormalization group approach for the active to inactive phase transition in directed percolation-type systems, in which the transition is approached from the active, finite density phase. By expanding the effective potential for the density field around its minimum, we obtain a background field action functional, which serves as a starting point for the functional renormalization group approach. Due to the presence of the background field, the corresponding nonperturbative flow equations yield remarkably good estimates for the critical exponents of the directed percolation universality class, even in low dimensions.

  18. Cold dark matter and the cosmic phase transition

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash

    2016-01-01

    It is entirely plausible that during the primordial quark- hadron phase transition in the universe, microseconds after the Big Bang, supercooling takes place, accompanied by miniinflation. With µ/T ∼ 1 (µ is chemical potential), leading to a first order phase transition from quarks to hadrons; there will be relics in the form of quark nuggets, and, that they consist of Strange Quark Matter. The possibility that these SQM nuggets may well be the candidates of cold dark matter is critically examined. A cursory comparison with the neutron star is presented at the end.

  19. Phase transitions in traffic flow on multilane roads

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases—free flow, synchronized flow, and wide moving jams—occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  20. Phase transition and surface sublimation of a mobile Potts model.

    PubMed

    Bailly-Reyre, A; Diep, H T; Kaufman, M

    2015-10-01

    We study in this paper the phase transition in a mobile Potts model by the use of Monte Carlo simulation. The mobile Potts model is related to a diluted Potts model, which is also studied here by a mean-field approximation. We consider a lattice where each site is either vacant or occupied by a q-state Potts spin. The Potts spin can move from one site to a nearby vacant site. In order to study the surface sublimation, we consider a system of Potts spins contained in a recipient with a concentration c defined as the ratio of the number of Potts spins N(s) to the total number of lattice sites N(L)=N(x)×N(y)×N(z). Taking into account the attractive interaction between the nearest-neighboring Potts spins, we study the phase transitions as functions of various physical parameters such as the temperature, the shape of the recipient, and the spin concentration. We show that as the temperature increases, surface spins are detached from the solid phase to form a gas in the empty space. Surface order parameters indicate different behaviors depending on the distance to the surface. At high temperatures, if the concentration is high enough, the interior spins undergo a first-order phase transition to an orientationally disordered phase. The mean-field results are shown as functions of temperature, pressure, and chemical potential, which confirm in particular the first-order character of the transition. PMID:26565221

  1. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  2. Dynamical phase transition in the open Dicke model

    PubMed Central

    Klinder, Jens; Keßler, Hans; Wolke, Matthias; Mathey, Ludwig; Hemmerich, Andreas

    2015-01-01

    The Dicke model with a weak dissipation channel is realized by coupling a Bose–Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp–Lieb–Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions. PMID:25733892

  3. Kondo phase transitions of magnetic impurities in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fang, Tie-Feng; Sun, Qing-feng

    2013-02-01

    We propose carbon nanotubes (CNTs) with magnetic impurities as a versatile platform to achieve exciting Kondo physics, where the CNT bath is gapped by the spin-orbit interaction and renormalized by interference effects. While the strong-coupling phase is inaccessible for the special case of half-filled impurities in neutral armchair CNTs, the system in general can undergo quantum phase transitions to the Kondo ground state. The resultant position-specific phase diagrams are investigated upon variation of the CNT radius, chirality, and carrier doping, revealing several striking features, e.g., the existence of a maximal radius for nonarmchair CNTs to realize phase transitions, and an interference-induced suppression of the Kondo screening. We show that by tuning the Fermi energy via electrostatic gating, the quantum critical region can be experimentally accessed.

  4. Phase transitions in crowd dynamics of resource allocation.

    PubMed

    Ghosh, Asim; De Martino, Daniele; Chatterjee, Arnab; Marsili, Matteo; Chakrabarti, Bikas K

    2012-02-01

    We define and study a class of resource allocation processes where gN agents, by repeatedly visiting N resources, try to converge to an optimal configuration where each resource is occupied by at most one agent. The process exhibits a phase transition, as the density g of agents grows, from an absorbing to an active phase. In the latter, even if the number of resources is in principle enough for all agents (g<1), the system never settles to a frozen configuration. We recast these processes in terms of zero-range interacting particles, studying analytically the mean field dynamics and investigating numerically the phase transition in finite dimensions. We find a good agreement with the critical exponents of the stochastic fixed-energy sandpile. The lack of coordination in the active phase also leads to a nontrivial faster-is-slower effect.

  5. Theory of photoinduced phase transitions in itinerant electron systems

    NASA Astrophysics Data System (ADS)

    Yonemitsu, Kenji; Nasu, Keiichiro

    2008-08-01

    Theoretical progress in the research of photoinduced phase transitions is reviewed with closely related experiments. After a brief introduction of stochastic evolution in statistical systems and domino effects in localized electron systems, we treat photoinduced dynamics in itinerant-electron systems. Relevant interactions are required in the models to describe the fast and ultrafast charge-lattice-coupled dynamics after photoexcitations. First, we discuss neutral-ionic transitions in the mixed-stack charge-transfer complex, TTF-CA. When induced by intrachain charge-transfer photoexcitations, the dynamics of the ionic-to-neutral transition are characterized by a threshold behavior, while those of the neutral-to-ionic transition by an almost linear behavior. The difference originates from the different electron correlations in the neutral and ionic phases. Second, we deal with halogen-bridged metal complexes, which show metal, Mott insulator, charge-density-wave, and charge-polarization phases. The latter two phases have different broken symmetries. The charge-density-wave to charge-polarization transition is much more easily achieved than the reverse transition. This is clarified by considering microscopic charge-transfer processes. The transition from the charge-density-wave to Mott insulator phases and that from the Mott insulator to metal phases proceed much faster than those between the low-symmetry phases. Next, we discuss ultrafast, inverse spin-Peierls transitions in an organic radical crystal and alkali-TCNQ from the viewpoint of intradimer and interdimer charge-transfer excitations. Then, we study photogenerated electrons in the quantum paraelectric perovskite, SrTiO 3, which are assumed to couple differently with soft-anharmonic phonons and breathing-type high-energy phonons. The different electron-phonon couplings result in two types of polarons, a “super-paraelectric large polaron” with a quasi-global parity violation, and an “off-center-type self

  6. Magnetic phase transitions in epitaxial Fe/Cr superlattices

    SciTech Connect

    Fullerton, E.E.

    1995-07-01

    Fe/Cr superlattices exhibit a variety of intriguing magnetic properties not observed in bulk materials. Examples include oscillatory interlayer coupling and giant magnetoresistance. Growth of epitaxial superlattices allows the interlayer coupling and magnetic anisotropy to be tailored to probe rather subtle magnetic ordering transitions of thin-film antiferromagnets. The author discusses two such transitions, the surface spin-flop transition in Fe/Cr(211) superlattices and the Neel transition of thin Cr layers in proximity with Fe in Fe/Cr(001) superlattices. The surface spin-flop transition is a first-order, field-induced phase transition in antiferromagnets with uniaxial magnetic anisotropy and the field applied along the easy direction. In Fe/Cr(100) superlattices, the antiferromagnetic ordering of the Cr spacers results in anomalies in a variety of physical properties. The transition temperature is strongly Cr thickness dependent. A `transition-temperature shift exponent` is extracted from the data in the thick Cr regime (< 160 {angstrom}) and discussed in terms of a combination of finite-size and spin-frustration effects.

  7. Phase transitions of methane using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    El-Sheikh, S. M.; Barakat, K.; Salem, N. M.

    2006-03-01

    Using a short ranged Lennard-Jones interaction and a long ranged electrostatic potential, CH4under high pressure was modeled. Molecular dynamics simulations on small clusters (108 and 256molecules) were used to explore the phase diagram. Regarding phase transitions at different temperatures, our numerical findings are consistent with experimental results to a great degree. In addition, the hysteresis effect is displayed in our results.

  8. Phase transitions of methane using molecular dynamics simulations.

    PubMed

    El-Sheikh, S M; Barakat, K; Salem, N M

    2006-03-28

    Using a short ranged Lennard-Jones interaction and a long ranged electrostatic potential, CH4 under high pressure was modeled. Molecular dynamics simulations on small clusters (108 and 256 molecules) were used to explore the phase diagram. Regarding phase transitions at different temperatures, our numerical findings are consistent with experimental results to a great degree. In addition, the hysteresis effect is displayed in our results.

  9. Study of expansion tube problems with phase transition

    NASA Astrophysics Data System (ADS)

    Goncalves, E.; Zeidan, D.

    2012-09-01

    In this work, a compressible multiphase one-fluid Euler solver has been developed to study one-dimensional expansion problems with cavitation process. A new model for the mass transfer between phases is proposed, and its efficiency in predicting phase transition is evaluated. Numerical simulations are compared with reference solutions computed with the two-fluid models type. The results suggest that the present model exhibits good robustness and accuracy.

  10. Cooperativity or phase transition? Unfolding transition of DNA cationic surfactant complex

    NASA Astrophysics Data System (ADS)

    Mel'nikov, Sergey M.; Sergeyev, Vladimir G.; Yoshikawa, Kenichi; Takahashi, Hiroshi; Hatta, Ichiro

    1997-11-01

    We recently reported that single duplex DNA, with the size above the order of several tens kilobase pairs, undergoes a large discrete transition from an elongated coil into a collapsed globule with the addition of a cationic surfactant. In the present article, we describe the manner of the unfolding transition of compact long DNA, or globule DNA, complexed with cationic surfactants, cetyltrimethylammonium bromide (CTAB) and distearyldimethylammonium bromide (D18DAB), as is induced by the addition of sodium bromide. The conformational dynamics of individual single duplex T4DNA molecules was directly observed with the use of fluorescence microscopy. We found that on the level of individual DNAs, the salt-induced unfolding transition of the globules is largely discrete, or first-order phase transition for the both complexes with CTAB and D18DAB. On the other hand, for the ensemble average of the DNAs, the transition is discrete with CTAB but is continuous (sigmoidal) with D18DAB. The discreteness for the coil-globule transition in the ensemble of DNAs complexed with CTAB is attributed to the existence of the phase transition in whole over the bulk solution: the sphere-rod transition in surfactant micelles. On the other hand, for D18DAB such phase transition on the micelle structure in the bulk solution seems to be absent. In correspondence to such a large difference on the manner of the transition, x-ray diffraction analysis indicates marked difference on the structure of DNA complexes with CTAB and with D18DAB.

  11. First Order Phase Transitions in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ferrera, Antonio

    1996-01-01

    First order phase transitions occur via nucleation of bubbles of the new phase (true vacuum) in the old phase (false vacuum). The technique most widely used to compute the probability of bubble nucleation in a field theory phase transition is based on instanton methods in the context of the semiclassical approximation. At zero temperature in 3+1 dimensions the nucleation rate is dominated by the O(4) symmetric instanton, a sphere of radius R, while at temperatures TggR^ {-1} the decay is dominated by a "cylindrical" (static) instanton with O(3) invariance. There has been discussion in the literature as to whether the transition between these two regimens would be first order (discontinuity in the first derivative of the nucleation rate at the transition temperature Tc), or second order (continuity of the first derivative, but discontinuity of the second derivative at Tc). In the first part of the thesis we obtain the finite temperature solutions corresponding to the quantum and the thermal regimes, and compute their action as a function of the temperature for different values of the wall thickness in a varphi^4 potential, as a toy model for a transition in the early universe. Our results indicate that only for the cases of very large wall thickness a second order transition takes place, while for all the other cases a first order transition occurs. We also study the 2+l and l+l dimensional cases in two condensed matter cases. In the second part of the thesis we study the collision process for vacuum bubbles expanding in a plasma. The effects of the plasma are simulated by introducing a damping term in the equations of motion for a U(1) global field. We find that Lorentz-contracted spherically symmetric domain walls adequately describe the overdamped motion of the bubbles in the thin wall approximation, and study the process of collision and phase equilibration both numerically and analytically. With an analytical model for the phase propagation in 1+1 dimensions

  12. Solid-Solid Phase Transition Kinetics of FOX-7

    SciTech Connect

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-07-12

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transition shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.

  13. Abundant rich phase transitions in step-skew products

    NASA Astrophysics Data System (ADS)

    Díaz, L. J.; Gelfert, K.; Rams, M.

    2014-09-01

    We study phase transitions for the topological pressure of geometric potentials of transitive sets. The sets considered are partially hyperbolic having a step-skew product dynamics over a horseshoe with one-dimensional fibres corresponding to the central direction. The sets are genuinely non-hyperbolic, containing intermingled horseshoes of different hyperbolic, behaviour (contracting and expanding centre). We construct for every k ⩾ 1 a diffeomorphism F with a transitive set Λ as above such that the pressure map P(t) = P(t φ) of the potential \\varphi= -log \\,\\Vert \\rmd F|_{E^c}\\Vert (Ec the central direction) defined on Λ has k rich phase transitions. This means that there are parameters tℓ, ℓ = 0, …, k - 1, where P(t) is not differentiable and this lack of differentiability is due to the coexistence of two equilibrium states of tℓ φ with positive entropy and different Birkhoff averages. Each phase transition is associated with a gap in the central Lyapunov spectrum of F on Λ.

  14. Nonequilibrium phase transition in compact stars through a violent shock

    NASA Astrophysics Data System (ADS)

    Mishustin, Igor; Mallick, Ritam; Nandi, Rana; Satarov, Leonid

    2015-05-01

    In this article we study the dynamics of a first-order phase transition from nucleonic to quark matter in neutron stars. Using standard equations of state for these two phases we find the density range where such a transition is possible. Then we study the transformation of the star assuming that the quark core is formed via a spherical shock wave. The thermodynamical conditions in the quark core are found from the conservation laws across the transition region. Their dependence on the density and velocity of the incoming nuclear matter are studied. It is found that the shock is especially violent in the beginning of the conversion process when the velocity of the in-falling matter is especially high. As the shock propagates further from the center, the front velocity first increases and reaches a maximum value when the incoming velocity is around 0.2 . Finally, the front velocity quickly goes to zero when incoming matter velocity approaches zero. We have shown that the density and pressure jumps are especially large in the beginning of the transition process. Such a shocklike phase transition in the compact star can manifest a neutrino burst and gravitational waves.

  15. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiHx, which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  16. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  17. Chern-Simons-Higgs transitions out of topological superconducting phases

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Nayak, Chetan

    2015-10-01

    In this study, we examine effective field theories of superconducting phases with topological order, making a connection to proposed realizations of exotic topological phases (including those hosting Ising and Fibonacci anyons) in superconductor-quantum Hall heterostructures. Our effective field theories for the non-Abelian superconducting states are non-Abelian Chern-Simons theories in which the condensation of vortices carrying non-Abelian gauge flux leads to the associated Abelian quantum Hall states. This Chern-Simons-Higgs condensation process is dual to the emergence of superconducting non-Abelian topological phases in coupled chain constructions. In such transitions, the chiral central charge of the system generally changes, so they fall outside the description of bosonic condensation transitions put forth by Bais and Slingerland [F. A. Bais and J. K. Slingerland, Phys. Rev. B 79, 045316 (2009), 10.1103/PhysRevB.79.045316] (though the two approaches agree when the described transitions coincide). Our condensation process may be generalized to Chern-Simons theories based on arbitrary Lie groups, always describing a transition from a Lie algebra to its Cartan subalgebra. We include several instructive examples of such transitions.

  18. Is there a sharp phase transition for deterministic cellular automata?

    NASA Astrophysics Data System (ADS)

    Wootters, William K.; Langton, Chris G.

    1990-09-01

    Previous work has suggested that there is a kind of phase transition between deterministic automata exhibiting periodic behavior and those exhibiting chaotic behavior. However, unlike the usual phase transitions of physics, this transition takes place over a range of values of the parameter rather than at a specific value. The present paper asks whether the transition can be made sharp, either by taking the limit of an infinitely large rule table, or by changing the parameter in terms of which the space of automata is explored. We find strong evidence that, for the class of automata we consider, the transition does become sharp in the limit of an infinite number of symbols, the size of the neighborhood being held fixed. Our work also suggests an alternative parameter in terms of which it is likely that the transition will become fairly sharp even if one does not increase the number of symbols. In the course of our analysis, we find that mean field theory, which is our main tool, gives surprisingly good predictions of the statistical properties of the class of automata we consider.

  19. Phase transitions in semisupervised clustering of sparse networks.

    PubMed

    Zhang, Pan; Moore, Cristopher; Zdeborová, Lenka

    2014-11-01

    Predicting labels of nodes in a network, such as community memberships or demographic variables, is an important problem with applications in social and biological networks. A recently discovered phase transition puts fundamental limits on the accuracy of these predictions if we have access only to the network topology. However, if we know the correct labels of some fraction α of the nodes, we can do better. We study the phase diagram of this semisupervised learning problem for networks generated by the stochastic block model. We use the cavity method and the associated belief propagation algorithm to study what accuracy can be achieved as a function of α. For k=2 groups, we find that the detectability transition disappears for any α>0, in agreement with previous work. For larger k where a hard but detectable regime exists, we find that the easy/hard transition (the point at which efficient algorithms can do better than chance) becomes a line of transitions where the accuracy jumps discontinuously at a critical value of α. This line ends in a critical point with a second-order transition, beyond which the accuracy is a continuous function of α. We demonstrate qualitatively similar transitions in two real-world networks. PMID:25493829

  20. Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Goyal, Ankit; Lakhotia, Harish

    2013-06-01

    Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.

  1. Phase transitions in number theory: from the birthday problem to Sidon sets.

    PubMed

    Luque, Bartolo; Torre, Iván G; Lacasa, Lucas

    2013-11-01

    In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed.

  2. Quantum phase transitions in spin-1 compass chains

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Kong, Long-Juan; You, Wen-Long

    2015-11-01

    The ground-state phase diagram and quantum phase transitions (QPTs) in a spin-1 compass chain are investigated by the infinite time-evolving block decimation (iTEBD) method. Various phases are discerned by energy densities, spin correlations and entanglement entropy. A generalized string correlator is found to be capable of describing the nonlocal string order in the disordered phase. Furthermore, in the noncritical disordered phase, the spin-spin correlations are found to decay exponentially. Except for a multicritical point ( J 1 = 0, J 2 = 0), the QPTs are determined to have second-order characters. In addition, the central charges on these critical phase boundaries are determined to be c = 1 / 2, therefore these QPTs belong to the Ising universality class.

  3. Gravitational phase transitions with an exclusion constraint in position space

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2014-01-01

    We discuss the statistical mechanics of a system of self-gravitating particles with an exclusion constraint in position space in a space of dimension d. The exclusion constraint puts an upper bound on the density of the system and can stabilize it against gravitational collapse. We plot the caloric curves giving the temperature as a function of the energy and investigate the nature of phase transitions as a function of the size of the system and of the dimension of space in both microcanonical and canonical ensembles. We consider stable and metastable states and emphasize the importance of the latter for systems with long-range interactions. For d ≤ 2, there is no phase transition. For d > 2, phase transitions can take place between a "gaseous" phase unaffected by the exclusion constraint and a "condensed" phase dominated by this constraint. The condensed configurations have a core-halo structure made of a "rocky core" surrounded by an "atmosphere", similar to a giant gaseous planet. For large systems there exist microcanonical and canonical first order phase transitions. For intermediate systems, only canonical first order phase transitions are present. For small systems there is no phase transition at all. As a result, the phase diagram exhibits two critical points, one in each ensemble. There also exist a region of negative specific heats and a situation of ensemble inequivalence for sufficiently large systems. We show that a statistical equilibrium state exists for any values of energy and temperature in any dimension of space. This differs from the case of the self-gravitating Fermi gas for which there is no statistical equilibrium state at low energies and low temperatures when d ≥ 4. By a proper interpretation of the parameters, our results have application for the chemotaxis of bacterial populations in biology described by a generalized Keller-Segel model including an exclusion constraint in position space. They also describe colloids at a fluid

  4. Strong Phase Transition within the U(1)-extended MSSM

    SciTech Connect

    Ahriche, Amine

    2010-10-31

    In this work, the electroweak phase transition (EWPT) strength has been investigated within the U(1) extended Minimal Supersymmetric Standard Model (UMSSM) without introducing any exotic fields. We found that the EWPT could be strongly first order for reasonable values of the lightest Higgs and neutralino masses.

  5. Cooling compact stars and phase transitions in dense QCD

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10-3 spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars.

  6. Nematic-columnar phase transition in oriented hard rectangles

    NASA Astrophysics Data System (ADS)

    Nath, Trisha; Dhar, Deepak; Rajesh, R.

    We consider an assembly of monodispersed hard rectangles of size 2 × d on a square lattice with only hard core interactions amongst them. The long axes of the rectangles can be oriented along the horizontal or vertical directions. For large enough aspect ratio, it is known that this system undergoes three phase transitions as the density (ρ) of rectangles is increased: first an isotropic-nematic transition (at ρ1*), second a nematic-columnar transition (at ρ2*), and third a columnar-sublattice transition (at ρ3*). In the nematic phase, only the orientational symmetry is broken. The columnar and sublattice phases correspond to additional broken translational symmetries along one (perpendicular to the nematic orientation) and both directions respectively. Interestingly, the critical value ρ2* remains finite, approximately 0 . 73 , even as d --> ∞ . We develop a systematic high density expansion for the surface tension between two differently-ordered columnar phases. Keeping only the first order perturbative correction term and setting this surface tension to zero, we get an estimate of ρ2* in excellent agreement with estimates from Monte Carlo simulations, for all d >= 2 .

  7. Fibrin polymerization as a phase transition wave: A mathematical model

    NASA Astrophysics Data System (ADS)

    Lobanov, A. I.

    2016-06-01

    A mathematical model of fibrin polymerization is described. The problem of the propagation of phase transition wave is reduced to a nonlinear Stefan problem. A one-dimensional discontinuity fitting difference scheme is described, and the results of one-dimensional computations are presented.

  8. Phase transitions in molecular crystals: looking backwards, glancing sideways

    NASA Astrophysics Data System (ADS)

    Dunitz, Jack D.

    2016-11-01

    After a gap of a quarter century, I try to look back on problems that I may have discussed in my Aminoff Award Lecture in 1990. It was entitled: Phase Transitions in Molecular Crystals; a Chemical Viewpoint. To the best of my knowledge, not much progress has been made with those problems since then.

  9. Phenomena of solid state grain boundaries phase transition in technology

    SciTech Connect

    Minaev, Y. A.

    2015-03-30

    The results of study the phenomenon, discovered by author (1971), of the phase transition of grain boundary by the formation of two-dimensional liquid or quasi-liquid films have been done. The described phenomena of the first order phase transition (two-dimensional melting) at temperatures 0.6 – 0.9 T{sub S0} (of the solid state melting point) is a fundamental property of solid crystalline materials, which has allowed to revise radically scientific representations about a solid state of substance. Using the mathematical tools of the film thermodynamics it has been obtained the generalized equation of Clausius - Clapeyron type for two-dimensional phase transition. The generalized equation has been used for calculating grain boundary phase transition temperature T{sub Sf} of any metal, which value lies in the range of (0.55…0.86) T{sub S0}. Based on these works conclusions the develop strategies for effective forming of coatings (by thermo-chemical processing) on surface layers of functional alloys and hard metals have been made. The short overview of the results of some graded alloys characterization has been done.

  10. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGES

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  11. Quantum phase transitions with parity-symmetry breaking and hysteresis

    NASA Astrophysics Data System (ADS)

    Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.

    2016-09-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.

  12. Phase Transition Behavior in a Neutral Evolution Model

    NASA Astrophysics Data System (ADS)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  13. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    PubMed

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-01

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced.

  14. Aggregation and folding phase transitions of RNA molecules

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2007-03-01

    RNA is a biomolecule that is involved in nearly all aspects of cellular functions. In order to perform many of these functions, RNA molecules have to fold into specific secondary structures. This folding is driven by the tendency of the bases to form Watson-Crick base pairs. Beyond the biological importance of RNA, the relatively simple rules for structure formation of RNA make it a very interesting system from the statistical physics point of view. We will present examples of phase transitions in RNA secondary structure formation that are amenable to analytical descriptions. A special focus will be on aggregation between several RNA molecules which is important for some regulatory circuits based on RNA structure, triplet repeat diseases like Huntington's, and as a model for prion diseases. We show that depending on the relative strength of the intramolecular and the intermolecular base pairing, RNA molecules undergo a transition into an aggregated phase and quantitatively characterize this transition.

  15. Concentration fluctuations and phase transitions in coupled modulated bilayers

    NASA Astrophysics Data System (ADS)

    Hirose, Yuichi; Komura, Shigeyuki; Andelman, David

    2012-08-01

    We consider the formation of finite-size domains in lipid bilayers consisting of saturated and hybrid lipids. First, we describe a monolayer model that includes a coupling between a compositional scalar field and a two-dimensional vectorial order parameter. Such a coupling yields an effective two-dimensional microemulsion free energy for the lipid monolayer, and its characteristic length of compositional modulations can be considered as the origin of finite-size domains in biological membranes. Next, we consider a coupled bilayer composed of two modulated monolayers and discuss the static and dynamic properties of concentration fluctuations above the transition temperature. We also investigate the micro-phase separation below the transition temperature and compare the micro-phase separated structures with statics and dynamics of concentration fluctuations above the transition.

  16. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    PubMed

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-01

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced. PMID:26859609

  17. High pressure phase transition in group III nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Verma, S.; Kaurav, Netram; Choudhary, K. K.

    2016-05-01

    Using an effective interionic interaction potential (EIOP), the pressure induced structural phase transformation from ZnS-type (B3) to NaCl-type (B1) structure in group III Post-Transition Metal Nitrides [TMN; TM=Ga and Tl] were investigated. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  18. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    SciTech Connect

    Zurek, Wojciech H.; Del Campo, Adolfo

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  19. Theory of bent-core liquid-crystal phases and phase transitions

    NASA Astrophysics Data System (ADS)

    Lubensky, T. C.; Radzihovsky, Leo

    2002-09-01

    We study phases and phase transitions that can take place in the recently discovered bow-shaped or bent-core liquid-crystal molecules. We show that to completely characterize phases exhibited by such bent-core molecules a third-rank tensor Tijk order parameter is necessary in addition to the vector and the nematic (second-rank) tensor order parameters. We present an exhaustive list of possible liquid phases, characterizing them by their space-symmetry group and order parameters, and catalog the universality classes of the corresponding phase transitions that we expect to take place in such bent-core molecular liquid crystals. In addition to the conventional liquid-crystal phases such as the nematic phase, we predict the existence of other liquid phases, including the spontaneously chiral nematic (NT+2)* and chiral polar (VT+2)* phases, the orientationally ordered but optically isotropic tetrahedratic T phase, and a nematic NT phase with D2d symmetry that is neither uniaxial nor biaxial. Interestingly, the isotropic-tetrahedratic transition is continuous in mean-field theory, but is likely driven first order by thermal fluctuations. We conclude with a discussion of smectic analogs of these phases and their experimental signatures.

  20. Theory of bent-core liquid-crystal phases and phase transitions.

    PubMed

    Lubensky, T C; Radzihovsky, Leo

    2002-09-01

    We study phases and phase transitions that can take place in the recently discovered bow-shaped or bent-core liquid-crystal molecules. We show that to completely characterize phases exhibited by such bent-core molecules a third-rank tensor T(ijk) order parameter is necessary in addition to the vector and the nematic (second-rank) tensor order parameters. We present an exhaustive list of possible liquid phases, characterizing them by their space-symmetry group and order parameters, and catalog the universality classes of the corresponding phase transitions that we expect to take place in such bent-core molecular liquid crystals. In addition to the conventional liquid-crystal phases such as the nematic phase, we predict the existence of other liquid phases, including the spontaneously chiral nematic (N(T)+2)(*) and chiral polar (V(T)+2)(*) phases, the orientationally ordered but optically isotropic tetrahedratic T phase, and a nematic N(T) phase with D(2d) symmetry that is neither uniaxial nor biaxial. Interestingly, the isotropic-tetrahedratic transition is continuous in mean-field theory, but is likely driven first order by thermal fluctuations. We conclude with a discussion of smectic analogs of these phases and their experimental signatures. PMID:12366133

  1. a Mathematical Description of the Critical Point in Phase Transitions

    NASA Astrophysics Data System (ADS)

    Bilge, Ayse Humeyra; Pekcan, Onder

    2013-10-01

    Let y(x) be a smooth sigmoidal curve, y(n) be its nth derivative and {xm,i} and {xa,i}, i = 1,2,…, be the set of points where respectively the derivatives of odd and even order reach their extreme values. We argue that if the sigmoidal curve y(x) represents a phase transition, then the sequences {xm,i} and {xa,i} are both convergent and they have a common limit xc that we characterize as the critical point of the phase transition. In this study, we examine the logistic growth curve and the Susceptible-Infected-Removed (SIR) epidemic model as typical examples of symmetrical and asymmetrical transition curves. Numerical computations indicate that the critical point of the logistic growth curve that is symmetrical about the point (x0, y0) is always the point (x0, y0) but the critical point of the asymmetrical SIR model depends on the system parameters. We use the description of the sol-gel phase transition of polyacrylamide-sodium alginate (SA) composite (with low SA concentrations) in terms of the SIR epidemic model, to compare the location of the critical point as described above with the "gel point" determined by independent experiments. We show that the critical point tc is located in between the zero of the third derivative ta and the inflection point tm of the transition curve and as the strength of activation (measured by the parameter k/η of the SIR model) increases, the phase transition occurs earlier in time and the critical point, tc, moves toward ta.

  2. P T phase transition in multidimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Weir, David J.

    2012-10-01

    Non-Hermitian P T-symmetric quantum-mechanical Hamiltonians generally exhibit a phase transition that separates two parametric regions, (i) a region of unbroken P T symmetry in which the eigenvalues are all real, and (ii) a region of broken P T symmetry in which some of the eigenvalues are complex. This transition has recently been observed experimentally in a variety of physical systems. Until now, theoretical studies of the P T phase transition have generally been limited to one-dimensional models. Here, four nontrivial coupled P T-symmetric Hamiltonians, H=\\textstyle {\\frac{1}{2}}p^2+\\textstyle {\\frac{1}{2}}x^2+\\textstyle {\\frac{1}{2}}q^2+\\textstyle {\\frac{1}{2}}y^2+igx^2y, H=\\textstyle {\\frac{1}{2}}p^2+\\textstyle {\\frac{1}{2}}x^2+\\textstyle {\\frac{1}{2}}q^2+y^2+igx^2y, H=\\textstyle {\\frac{1}{2}}p^2+\\textstyle {\\frac{1}{2}}x^2+\\textstyle {\\frac{1}{2}}q^2+\\textstyle {\\frac{1}{2}}y^2+\\textstyle {\\frac{1}{2}}r^2+\\textstyle {\\frac{1}{2}}z^2+igxyz, and H=\\textstyle {\\frac{1}{2}}p^2+ \\textstyle {\\frac{1}{2}}x^2+\\textstyle {\\frac{1}{2}}q^2+y^2+\\textstyle {\\frac{1}{2}}r^2+\\textstyle {\\frac{3}{2}}z^2+igxyz are examined. Based on extensive numerical studies, this paper conjectures that all four models exhibit a phase transition. The transitions are found to occur at g ≈ 0.1, g ≈ 0.04, g ≈ 0.1 and g ≈ 0.05. These results suggest that the P T phase transition is a robust phenomenon not limited to systems having one degree of freedom.

  3. Discontinuous phase transition in a dimer lattice gas

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald

    2012-05-01

    I study a dimer model on the square lattice with nearest neighbor exclusion as the only interaction. Detailed simulations using tomographic entropic sampling show that as the chemical potential is varied, there is a strongly discontinuous phase transition, at which the particle density jumps by about 18% of its maximum value, 1/4. The transition is accompanied by the onset of orientational order, to an arrangement corresponding to the {1/2, 0, 1/2} structure identified by Phares et al. [Physica B 409, 1096 (2011)] in a dimer model with finite repulsion at fixed density. Using finite-size scaling and Binder's cumulant, the expected scaling behavior at a discontinuous transition is verified in detail. The discontinuous transition can be understood qualitatively given that the model possesses eight equivalent maximum-density configurations, so that its coarse-grained description corresponds to that of the q = 8 Potts model.

  4. Fidelity at Berezinskii-Kosterlitz-Thouless quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Sun, G.; Kolezhuk, A. K.; Vekua, T.

    2015-01-01

    We clarify the long-standing controversy concerning the behavior of the ground-state fidelity in the vicinity of a quantum phase transition of the Berezinskii-Kosterlitz-Thouless type in one-dimensional systems. Contrary to the prediction based on the Gaussian approximation of the Luttinger-liquid approach, it is shown that the fidelity susceptibility does not diverge at the transition but has a cusplike peak χc-χ (λ ) ˜√{| λc-λ | } , where λ is a parameter driving the transition and χc is the peak value at the transition point λ =λc . Numerical claims of the logarithmic divergence of fidelity susceptibility with the system size (or temperature) are explained by logarithmic corrections due to marginal operators, which is supported by numerical calculations for large systems.

  5. Exploring Symmetry Breaking at the Dicke Quantum Phase Transition

    SciTech Connect

    Baumann, K.; Mottl, R.; Brennecke, F.; Esslinger, T.

    2011-09-30

    We study symmetry breaking at the Dicke quantum phase transition by coupling a motional degree of freedom of a Bose-Einstein condensate to the field of an optical cavity. Using an optical heterodyne detection scheme, we observe symmetry breaking in real time and distinguish the two superradiant phases. We explore the process of symmetry breaking in the presence of a small symmetry-breaking field and study its dependence on the rate at which the critical point is crossed. Coherent switching between the two ordered phases is demonstrated.

  6. Impact of Phase Transitions on P Wave Velocities

    SciTech Connect

    D Weidner; L Li

    2011-12-31

    In regions where a high pressure phase is in equilibrium with a low pressure phase, the bulk modulus defined by the P-V relationship is greatly reduced. Here we evaluate the effect of such transitions on the P wave velocity. A model, where cation diffusion is the rate limiting factor, is used to project laboratory data to the conditions of a seismic wave propagating in the two-phase region. We demonstrate that for the minimum expected effect there is a significant reduction of the seismic velocity, as large as 10% over a narrow depth range.

  7. Phase transition in a stochastic prime-number generator.

    PubMed

    Luque, Bartolo; Lacasa, Lucas; Miramontes, Octavio

    2007-07-01

    We introduce a stochastic algorithm that acts as a prime-number generator. The dynamics of this algorithm gives rise to a continuous phase transition, which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing-down phenomenon is also outlined.

  8. Model of High Temperature Phase Transitions in Metals

    NASA Astrophysics Data System (ADS)

    Filippov, E. S.

    2016-04-01

    On the basis of the assumption of the electron density fluctuation at the band degradation, a calculation parameter (the radius R) of the half-width of the probability distribution over the coordinate R is identified at the level of the maximum electron density fluctuation (at a maximum of the Gaussian function). Based on an analysis of the crystallization process and high polymorphic transformations bcc → fcc, the reasons for the formation of bcc, fcc, hexagonal, and tetragonal structures from the liquid phase, as well as for the high temperature bcc → hcp transition in the solid phase are established using the calculated parameter (the radius R) in the solid and liquid phases.

  9. Quantum phases and phase transitions of frustrated hard-core bosons on a triangular ladder

    NASA Astrophysics Data System (ADS)

    Mishra, Tapan; Pai, Ramesh V.; Mukerjee, Subroto; Paramekanti, Arun

    2013-05-01

    Kinetically frustrated bosons at half filling in the presence of a competing nearest-neighbor repulsion support a wide supersolid regime on the two-dimensional triangular lattice. We study this model on a two-leg ladder using the finite-size density-matrix renormalization-group method, obtaining a phase diagram which contains three phases: a uniform superfluid (SF), an insulating charge density wave (CDW) crystal, and a bond ordered insulator (BO). We show that the transitions from SF to CDW and SF to BO are continuous in nature, with critical exponents varying continuously along the phase boundaries, while the transition from CDW to BO is found to be first order. The phase diagram is also found to contain an exactly solvable Majumdar Ghosh point, and reentrant SF to CDW phase transitions.

  10. Geometry-induced phase transition in fluids: capillary prewetting.

    PubMed

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  11. Jasmonate regulates juvenile-to-adult phase transition in rice.

    PubMed

    Hibara, Ken-Ichiro; Isono, Miyako; Mimura, Manaki; Sentoku, Naoki; Kojima, Mikiko; Sakakibara, Hitoshi; Kitomi, Yuka; Yoshikawa, Takanori; Itoh, Jun-Ichi; Nagato, Yasuo

    2016-09-15

    Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change. PMID:27578792

  12. Rescuing a Quantum Phase Transition with Quantum Noise

    NASA Astrophysics Data System (ADS)

    Zhang, Gu; Novais, Eduardo; Baranger, Harold

    We show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid correlations, rather than destroying quantum effects as is typical. The system consists of two quantum dots in series with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic environment (noise). The similarity to the two impurity Kondo model suggests that there will be a quantum phase transition between a Kondo phase and a local singlet phase. However, this transition is destabilized by charge tunneling between the two leads. Our main result is that sufficiently strong quantum noise suppresses this charge transfer and leads to stabilization of the quantum phase transition. We present the phase diagram, the ground state degeneracy at the four fixed points, and the leading temperature dependence of the conductance near these points. Partially supported by (1) the U.S. DOE, Division of Materials Sciences and Engineering, under Grant No. DE-SC0005237 and (2) FAPESP (BRAZIL) under Grant 2014/26356-9.

  13. Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity

    PubMed Central

    2014-01-01

    We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS-shell of PbS/CdS core/shell nanocrystals formed by cationic exchange. The chemical composition profile of the core/shell nanocrystals with different dimensions is determined by means of anomalous small-angle X-ray scattering with subnanometer resolution and is compared to X-ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thickness. PMID:25673918

  14. Abrupt tropical climate change: Past and present

    PubMed Central

    Thompson, Lonnie G.; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-01-01

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged δ18O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth’s climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, ≈5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world’s most populous regions. PMID:16815970

  15. Abrupt tropical climate change: past and present.

    PubMed

    Thompson, Lonnie G; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-07-11

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged delta(18)O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth's climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, approximately 5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world's most populous regions.

  16. Characterization of quantum phase transition using holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2016-06-01

    The entanglement exhibits extremal or singular behavior near quantum critical points (QCPs) in many condensed matter models. These intriguing phenomena, however, still call for a widely accepted understanding. In this paper we study this issue in holographic framework. We investigate the connection between the holographic entanglement entropy (HEE) and the quantum phase transition (QPT) in a lattice-deformed Einstein-Maxwell-Dilaton theory. Novel backgrounds exhibiting metal-insulator transitions (MIT) have been constructed in which both metallic phase and insulating phase have vanishing entropy density in zero temperature limit. We find that the first order derivative of HEE with respect to lattice parameters exhibits extremal behavior near QCPs. We propose that it would be a universal feature that HEE or its derivatives with respect to system parameters can characterize QPT in a generic holographic system. Our work opens a window for understanding the relation between entanglement and the QPT from a holographic perspective.

  17. Four-dimensional ultrafast electron microscopy of phase transitions.

    PubMed

    Grinolds, Michael S; Lobastov, Vladimir A; Weissenrieder, Jonas; Zewail, Ahmed H

    2006-12-01

    Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space-charge effects. Here, we demonstrate the ability to obtain sequences of snapshots ("movies") with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal-insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves. PMID:17130445

  18. Dissipation-induced quantum phase transition in a quantum box

    NASA Astrophysics Data System (ADS)

    Borda, László; Zaránd, Gergely; Simon, Pascal

    2005-10-01

    In a recent work, Le Hur has shown, using perturbative arguments, that dissipative coupling to gate electrodes may play an important role in a quantum box near its degeneracy point [K. Le Hur, Phys. Rev. Lett. 92, 196804 (2004)]: While quantum fluctuations of the charge of the dot tend to round Coulomb blockade charging steps of the box, strong enough dissipation suppresses these fluctuations and leads to the reappearance of sharp charging steps. In the present paper, we study this quantum phase transition in detail using bosonization and the numerical renormalization group in the limit of vanishing level spacing and map out the phase diagram using these nonperturbative methods. We also discuss the properties of the renormalized lead-dot conductance in the vicinity of the phase transition and determine the scaling properties of the dynamically generated crossover scale analytically.

  19. Quantum information-geometry of dissipative quantum phase transitions.

    PubMed

    Banchi, Leonardo; Giorda, Paolo; Zanardi, Paolo

    2014-02-01

    A general framework for analyzing the recently discovered phase transitions in the steady state of dissipation-driven open quantum systems is still lacking. To fill this gap, we extend the so-called fidelity approach to quantum phase transitions to open systems whose steady state is a Gaussian fermionic state. We endow the manifold of correlation matrices of steady states with a metric tensor g measuring the distinguishability distance between solutions corresponding to a different set of control parameters. The phase diagram can then be mapped out in terms of the scaling behavior of g and connections with the Liouvillean gap and the model correlation functions unveiled. We argue that the fidelity approach, thanks to its differential-geometric and information-theoretic nature, provides insights into dissipative quantum critical phenomena as well as a general and powerful strategy to explore them. PMID:25353417

  20. Quantum information-geometry of dissipative quantum phase transitions.

    PubMed

    Banchi, Leonardo; Giorda, Paolo; Zanardi, Paolo

    2014-02-01

    A general framework for analyzing the recently discovered phase transitions in the steady state of dissipation-driven open quantum systems is still lacking. To fill this gap, we extend the so-called fidelity approach to quantum phase transitions to open systems whose steady state is a Gaussian fermionic state. We endow the manifold of correlation matrices of steady states with a metric tensor g measuring the distinguishability distance between solutions corresponding to a different set of control parameters. The phase diagram can then be mapped out in terms of the scaling behavior of g and connections with the Liouvillean gap and the model correlation functions unveiled. We argue that the fidelity approach, thanks to its differential-geometric and information-theoretic nature, provides insights into dissipative quantum critical phenomena as well as a general and powerful strategy to explore them.

  1. The time of a photoinduced spin-Peierls phase transition

    SciTech Connect

    Semenov, A. L.

    2015-02-15

    The time τ of the spin-Peierls phase transition is analyzed theoretically as a function of the duration τ{sub p} of the exciting light pulse and the average number x{sub 0} of absorbed photons per magnetic ion after the transmission of the pulse. It is shown that the phase transition occurs at x{sub 0} > x{sub c}. The critical value x{sub c} is determined as a function of the duration τ{sub p} of the light pulse. A photoinduced variation in the optical reflection coefficient R is calculated as a function of time t. The results of calculation are compared with experimental data on ultrafast photoinduced melting of the low-temperature spin-Peierls phase into potassium tetracyanoquinodimethan (K-TCNQ)

  2. Structural Phase Transitions by Design in Monolayer Alloys.

    PubMed

    Duerloo, Karel-Alexander N; Reed, Evan J

    2016-01-26

    Two-dimensional monolayer materials are a highly anomalous class of materials under vigorous exploration. Mo- and W-dichalcogenides are especially unusual two-dimensional materials because they exhibit at least three different monolayer crystal structures with strongly differing electronic properties. This intriguing yet poorly understood feature, which is not present in graphene, may support monolayer phase engineering, phase change memory and other applications. However, knowledge of the relevant phase boundaries and how to engineer them is lacking. Here we show using alloy models and state-of-the-art density functional theory calculations that alloyed MoTe2-WTe2 monolayers support structural phase transitions, with phase transition temperatures tunable over a large range from 0 to 933 K. We map temperature-composition phase diagrams of alloys between pure MoTe2 and pure WTe2, and benchmark our methods to analogous experiments on bulk materials. Our results suggest applications for two-dimensional materials as phase change materials that may provide scale, flexibility, and energy consumption advantages. PMID:26647117

  3. 2D ice from first principles: structures and phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.

  4. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  5. Liquid-liquid phase transition in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Sastry, Srikanth; Austen Angell, C.

    2003-11-01

    Silicon in its liquid and amorphous forms occupies a unique position among amorphous materials. Obviously important in its own right, the amorphous form is structurally close to the group of 4-4, 3-5 and 2-6 amorphous semiconductors that have been found to have interesting pressure-induced semiconductor-to-metal phase transitions. On the other hand, its liquid form has much in common, thermodynamically, with water and other `tetrahedral network' liquids that show density maxima. Proper study of the `liquid-amorphous transition', documented for non-crystalline silicon by both experimental and computer simulation studies, may therefore also shed light on phase behaviour in these related materials. Here, we provide detailed and unambiguous simulation evidence that the transition in supercooled liquid silicon, in the Stillinger-Weber potential, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar. In addition we present evidence to support the relevance of spinodal divergences near such a transition, and the prediction that the transition marks a change in the liquid dynamic character from that of a fragile liquid to that of a strong liquid.

  6. Phase transitions in rare earth tellurides under pressure.

    PubMed

    Petit, L; Svane, A; Lüders, M; Szotek, Z; Vaitheeswaran, G; Kanchana, V; Temmerman, W M

    2014-07-01

    Using first-principles calculations we have studied the valence and structural transitions of the rare earth monotellurides RTe (R = Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) under pressure. The self-interaction corrected local spin-density approximation is used to establish the ground state valence configuration as a function of volume for the RTe in both the NaCl (B1) and CsCl (B2) structures. We find that in ambient conditions all the RTe are stabilized in the B1 structure. A trivalent (R(3+)) rare earth ground state is predicted for the majority of the RTe, with the exception of SmTe, EuTe, DyTe, TmTe and YbTe, where the fully localized divalent (R(2+)) rare earth configuration is found to be energetically most favourable. Under pressure, the trivalent RTe undergo structural transitions to the B2 structure without associated valence transition. The divalent RTe on the other hand are characterized by a competition between the structural and electronic degrees of freedom, and it is the degree of f-electron delocalization that determines the sequence of phase transitions. In EuTe and YbTe, where respectively the half-filled and filled shells result in a very stable divalent configuration, we find that it is the structural B1 → B2 transition that occurs first, followed by the R(2+) → R(3+) valence transition at even higher pressures. In SmTe, DyTe and TmTe, the electronic transition occurs prior to the structural transition. With the exception of YbTe, the calculated transition pressures are found to be in good agreement with experiment.

  7. Influence of pions on the hadron-quark phase transition

    SciTech Connect

    Lourenco, O.; Dutra, M.; Frederico, T.; Malheiro, M.; Delfino, A.

    2013-05-06

    In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T{sub 0}) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T{sub 0}, namely, T{sub 0}= 270 MeV and T{sub 0}= 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.

  8. Partial information, market efficiency, and anomalous continuous phase transition

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Zheng, Wenzhi; Huang, Jiping

    2014-04-01

    It is a common belief in economics and social science that if there is more information available for agents to gather in a human system, the system can become more efficient. The belief can be easily understood according to the well-known efficient market hypothesis. In this work, we attempt to challenge this belief by investigating a complex adaptive system, which is modeled by a market-directed resource-allocation game with a directed random network. We conduct a series of controlled human experiments in the laboratory to show the reliability of the model design. As a result, we find that even under a small information concentration, the system can still almost reach the optimal (balanced) state. Furthermore, the ensemble average of the system’s fluctuation level goes through a continuous phase transition. This behavior means that in the second phase if too much information is shared among agents, the system’s stability will be harmed instead, which differs from the belief mentioned above. Also, at the transition point, the ensemble fluctuations of the fluctuation level remain at a low value. This phenomenon is in contrast to the textbook knowledge about continuous phase transitions in traditional physical systems, namely, fluctuations will rise abnormally around a transition point since the correlation length becomes infinite. Thus, this work is of potential value to a variety of fields, such as physics, economics, complexity science, and artificial intelligence.

  9. Gravitational waves from a very strong electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-05-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.

  10. Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Scott, Adam; King, Dawn; Bahar, Sonya

    2013-03-01

    An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation

  11. 78 FR 30951 - SBIR/STTR Phase I to Phase II Transition Benchmarks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... INFORMATION: Section 4(a)(3)(iii) of the SBIR Policy Directive (77 FR 46806) and the STTR Policy Directive (77 FR 46855) require each agency to establish an SBA-approved Phase I-Phase II Transition Rate benchmark... benchmarks can take effect. As a result, on October 16, 2012, at 77 FR 63410, SBA published the...

  12. Ultrafast dynamics during the photoinduced phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  13. Atmospheric Convection as a Continuous Phase Transition:. Further Evidence

    NASA Astrophysics Data System (ADS)

    Peters, Ole; Neelin, J. David

    We present further methods to investigate in how far atmospheric precipitation can be described as a continuous phase transition. Previous work has shown a scale-free range in the rainfall event size distribution and a suggestive power-law pickup in the rain rate above a critical level of instability. Here we examine an additional technique for estimating critical parameters, we investigate the rain rate pickup for an example of an extreme event, namely satellite observations of Hurricane Katrina, and develop an analysis of fluctuations in the rain rate to estimate uncertainties in the tuning parameters relevant for the transition.

  14. Quantum Phase Transitions across a p-Wave Feshbach Resonance

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Radzihovsky, L.; Andreev, A. V.

    2005-06-01

    We study a single-species polarized Fermi gas tuned across a narrow p-wave Feshbach resonance. We show that in the course of a Bose-Einstein condensation (BEC)-BCS crossover, the system can undergo a magnetic-field-tuned quantum phase transition from a px-wave to a px+ipy-wave superfluid. The latter state, that spontaneously breaks time-reversal symmetry, furthermore undergoes a topological px+ipy to px+ipy transition at zero chemical potential μ. In two dimensions, for μ>0 it is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian excitations familiar from fractional quantum Hall systems.

  15. A Phase Transition for Circle Maps and Cherry Flows

    NASA Astrophysics Data System (ADS)

    Palmisano, Liviana

    2013-07-01

    We study C 2 weakly order preserving circle maps with a flat interval. The main result of the paper is about a sharp transition from degenerate geometry to bounded geometry depending on the degree of the singularities at the boundary of the flat interval. We prove that the non-wandering set has zero Hausdorff dimension in the case of degenerate geometry and it has Hausdorff dimension strictly greater than zero in the case of bounded geometry. Our results about circle maps allow to establish a sharp phase transition in the dynamics of Cherry flows.

  16. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  17. Computer Simulations of Phase Transitions in Potts Models

    NASA Astrophysics Data System (ADS)

    Challa, Murty S. S.

    Methods are developed to identify and characterize first-order and Kosterlitz-Thouless transitions through computer simulations. Finite-size effects at temperature-driven first -order transitions are analyzed by introducing a double -Gaussian approximation for the probability distribution of the internal energy and predictions are made for various moments of the distribution. It is found that all finite -size effects vary as the volume, L('d). The predictions are tested by simulating the 10-state Potts model in two dimensions which has a known first-order transition in zero-field. Extensive Monte Carlo simulations were performed on the Cyber 205 with L = 18 to 50 and using between 1 x 10('6) and 40 x 10('6) MCS per data point. The results are in good agreement with the Gaussian formalism enabling accurate estimates of various thermodynamic quantities of the model. The analysis is applied to an Ising model with competing interactions on a triangular lattice and the first-order transition in this model is confirmed. The Kosterlitz-Thouless transitions in the 6-state vector Potts model are studied through Monte Carlo simulations on the Cyber 750 using lattices of size 4 x 4 to 72 x 72 and up to 200,000 MCS. Two independent methods--finite -size scaling and a cumulant method--were used to analyze the data. Both methods identify the two Kosterlitz-Thouless transitions separating a low-temperature ordered phase, a high-temperature disordered phase and an intermediate with xy-like phase. The phase transitions occur at kT(,1)/J = 0.68 (+OR-) 0.02 and kT(,2)/J = 0.92 (+OR-) 0.01. The susceptibility is infinite in the intermediate phase and the exponent (eta) varies between 0.100 at T(,1) and 0.275 at T(,2). The results are in good agreement with theoretical predictions and are shown to be more accurate than previous simulational treatments.

  18. Serotonin enhances solitariness in phase transition of the migratory locust

    PubMed Central

    Guo, Xiaojiao; Ma, Zongyuan; Kang, Le

    2013-01-01

    The behavioral plasticity of locusts is a striking trait presented during the reversible phase transition between solitary and gregarious individuals. However, the results of serotonin as a neurotransmitter from the migratory locust Locusta migratoria in phase transition showed an alternative profile compared to the results from the desert locust Schistocerca gregaria. In this study, we investigated the roles of serotonin in the brain during the phase change of the migratory locust. During the isolation of gregarious nymphs, the concentration of serotonin in the brain increased significantly, whereas serotonin receptors (i.e., 5-HT1, 5-HT2, and 5-HT7) we identified here showed invariable expression patterns. Pharmacological intervention showed that serotonin injection in the brain of gregarious nymphs did not induced the behavioral change toward solitariness, but injection of this chemical in isolated gregarious nymphs accelerated the behavioral change from gregarious to solitary phase. During the crowding of solitary nymphs, the concentration of serotonin in the brain remained unchanged, whereas 5-HT2 increased after 1 h of crowding and maintained stable expression level thereafter. Activation of serotonin-5-HT2 signaling with a pharmaceutical agonist inhibited the gregariousness of solitary nymphs in crowding treatment. These results indicate that the fluctuations of serotonin content and 5-HT2 expression are results of locust phase change. Overall, this study demonstrates that serotonin enhances the solitariness of the gregarious locusts. Serotonin may regulate the withdrawal-like behavioral pattern displayed during locust phase change and this mechanism is conserved in different locust species. PMID:24109441

  19. High-pressure phase transitions in rubidium and caesium hydroxides.

    PubMed

    Hermann, Andreas

    2016-06-28

    A computational investigation of the high-pressure phase sequence of the heaviest alkali hydroxides, RbOH and CsOH, shows that the phase diagram of both compounds is richer than hitherto thought. First-principles calculations suggest, based on energetics and comparisons to experimental diffraction and spectroscopy signatures, that the high-pressure phase RbOH-VI, stable above 6 GPa in experiment, should be assigned the KOH-VI structure type, and features localised hydrogen-bonded (OH)4 units. Meanwhile, a new high-pressure phase CsOH-VII is predicted to be stable above 10 GPa in an isosymmetric phase transition that, like RbOH-VI, marks the transition from layered to three-dimensional network structures under increased compression. Both new phases highlight an unexpected flexibility of hydrogen bond network formation in a series of compounds that seemingly only vary in the cation size, and potential consequences for similar systems, such as water-carrying minerals, are discussed briefly. PMID:27271485

  20. Experimental observation of defect pair separation triggering phase transitions

    NASA Astrophysics Data System (ADS)

    Cordin, M.; Lechner, B. A. J.; Duerrbeck, S.; Menzel, A.; Bertel, E.; Redinger, J.; Franchini, C.

    2014-03-01

    First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality.

  1. Structural phase transition and electronic properties in samarium chalcogenides

    NASA Astrophysics Data System (ADS)

    Panwar, Y. S.; Aynyas, Mahendra; Pataiya, J.; Sanyal, Sankar P.

    2016-05-01

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a0), bulk modulus (B0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  2. Phase transitions and separations in a distorted liquid crystalline mixture.

    PubMed

    Kasch, Nicholas; Dierking, Ingo

    2015-08-14

    A theoretical method is proposed for modelling phase transitions and phase ranges in a multi-component liquid crystalline mixture where the liquid crystal structure is distorted and defects are formed. This method employs the Maier-Saupe and Kobayashi-McMillan theories of liquid crystalline ordering and the Flory-Huggins theory of mixtures. It builds on previous work on mixed systems that can form smectic-A and nematic phases by incorporating "distortion factors" into the expression for the local free energy of the mixture, which account for the effects of a deviation of the liquid crystal structure from the uniform nematic and smectic-A states. The method allows a simple description of chiral defect phases such as the blue phase and the twist grain boundary phase. In a previous work, it was shown that a model of the blue phase along these lines could effectively explain the observed effect whereby an added guest compound can stabilize the phase by separating into the high energy defect regions of the structure. It is shown here that with the correct choice of guest material a similar effect could be observed for the twist grain boundary phase.

  3. Phase transitions and separations in a distorted liquid crystalline mixture

    NASA Astrophysics Data System (ADS)

    Kasch, Nicholas; Dierking, Ingo

    2015-08-01

    A theoretical method is proposed for modelling phase transitions and phase ranges in a multi-component liquid crystalline mixture where the liquid crystal structure is distorted and defects are formed. This method employs the Maier-Saupe and Kobayashi-McMillan theories of liquid crystalline ordering and the Flory-Huggins theory of mixtures. It builds on previous work on mixed systems that can form smectic-A and nematic phases by incorporating "distortion factors" into the expression for the local free energy of the mixture, which account for the effects of a deviation of the liquid crystal structure from the uniform nematic and smectic-A states. The method allows a simple description of chiral defect phases such as the blue phase and the twist grain boundary phase. In a previous work, it was shown that a model of the blue phase along these lines could effectively explain the observed effect whereby an added guest compound can stabilize the phase by separating into the high energy defect regions of the structure. It is shown here that with the correct choice of guest material a similar effect could be observed for the twist grain boundary phase.

  4. Higher-order phase transitions on financial markets

    NASA Astrophysics Data System (ADS)

    Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.

    2010-08-01

    Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched

  5. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  6. Pressure induced structural phase transition in IB transition metal nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  7. Pressure induced structural phase transition in IB transition metal nitrides compounds

    SciTech Connect

    Soni, Shubhangi; Kaurav, Netram Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  8. Millennial-Scale Abrupt Changes in Strength of the Monsoons During the Last Glacial: Event Sequence During Low Latitude Stadial/Interstadial Transitions

    NASA Astrophysics Data System (ADS)

    Higginson, M. J.; Altabet, M. A.; Wincze, L.; Herbert, T. D.; Murray, D. W.; Murray, R. W.

    2003-12-01

    dominant during maximum interstadial-like conditions. However, each interval was separated by a distinct `inter-monsoon' mode, indicated by a higher continental dust flux but warmer SST. Proxy records for changing bottom-water oxygenation show near-identical results down to the mm-scale, but hint at increased export production leading the onset of anoxia during the stadial/inter-stadial transition. The coherence of all sedimentary signals depicts a wholesale reorganization of the Arabian Sea climate and marine ecosystem over approximately 200 years, an interval that may be associated with monsoon modulation by small oscillations in solar irradiance.

  9. A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

  10. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    PubMed

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  11. Shape phase transitions in odd-A nuclei

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2008-11-11

    We investigate shape phase transitions in odd nuclei within the Interacting Boson Fermion Model. Special attention is given to the case of the transition from the vibrational behaviour to the stable axial deformation. The odd particle is assumed to be moving in the three single particle orbitals j = 1/2,3/2,5/2 with a boson-fermion Hamiltonian that leads to the occurrence of the SU{sup BF}(3) boson-fermion symmetry when the boson part approaches the SU(3) condition. Both energy spectra and electromagnetic transitions show characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The role of the additional particle in characterizing the properties of the critical points in finite quantal systems is investigated by resorting to the formalism based on the intrinsic frame.

  12. On signals of phase transitions in salmon population dynamics.

    PubMed

    Krkošek, Martin; Drake, John M

    2014-06-01

    Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon (Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon (Oncorhynchus gorbuscha) exhibited increased variability and autocorrelation in populations that had a growth parameter, r, close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon (Oncorhynchus nerka) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon (Oncorhynchus keta) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r. These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions. PMID:24759855

  13. Multiple phase transitions in rare earth tetraborides at low temperature

    NASA Astrophysics Data System (ADS)

    Fisk, Z.; Maple, M. B.; Johnston, D. C.; Woolf, L. D.

    1981-09-01

    We report the temperature dependence of the magnetic susceptibility of single crystals of PrB 4, GdB 4, TbB 4, HoB 4 and TmB 4, both parallel and perpendicular to the tetragonal c-axis. We also present low temperature resistance measurements on crytals of GdB 4 through TmB 4. Two magnetic phase transitions are found for TbB 4, DyB 4, HoB 4 and TmB 4. For the latter two compounds, the lower transitions appear to be first order. For HoB 4, we have measured the low temperature specific heat. The lower transition in TbB 4 and HoB 4 is rapidly depressed upon dilution with YB 4.

  14. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  15. Two Dimensional Ice from First Principles: Structures and Phase Transitions.

    PubMed

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J; Salzmann, Christoph G; Michaelides, Angelos

    2016-01-15

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here, we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression, the pentagonal structure becomes the most stable and persists up to ∼2  GPa, at which point the square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and the width.

  16. Employment, Production and Consumption model: Patterns of phase transitions

    NASA Astrophysics Data System (ADS)

    Lavička, H.; Lin, L.; Novotný, J.

    2010-04-01

    We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.

  17. Topological phase transitions in the golden string-net model.

    PubMed

    Schulz, Marc Daniel; Dusuel, Sébastien; Schmidt, Kai Phillip; Vidal, Julien

    2013-04-01

    We examine the zero-temperature phase diagram of the two-dimensional Levin-Wen string-net model with Fibonacci anyons in the presence of competing interactions. Combining high-order series expansions around three exactly solvable points and exact diagonalizations, we find that the non-Abelian doubled Fibonacci topological phase is separated from two nontopological phases by different second-order quantum critical points, the positions of which are computed accurately. These trivial phases are separated by a first-order transition occurring at a fourth exactly solvable point where the ground-state manifold is infinitely many degenerate. The evaluation of critical exponents suggests unusual universality classes. PMID:25167030

  18. Two Dimensional Ice from First Principles: Structures and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    2016-01-01

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here, we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression, the pentagonal structure becomes the most stable and persists up to ˜2 GPa , at which point the square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and the width.

  19. Two Dimensional Ice from First Principles: Structures and Phase Transitions.

    PubMed

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J; Salzmann, Christoph G; Michaelides, Angelos

    2016-01-15

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here, we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression, the pentagonal structure becomes the most stable and persists up to ∼2  GPa, at which point the square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and the width. PMID:26824547

  20. Phase transitions in the sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.