Science.gov

Sample records for abrupt temperature increase

  1. Abrupt Atmospheric Methane Increases Associated With Hudson Strait Heinrich Events

    NASA Astrophysics Data System (ADS)

    Rhodes, R.; Brook, E.; Chiang, J. C. H.; Blunier, T.; Maselli, O. J.; McConnell, J. R.; Romanini, D.; Severinghaus, J. P.

    2015-12-01

    The drivers of abrupt climate change during the Last Glacial Period are not well understood. While Dansgaard-Oeschger (DO) cycles are thought to be linked to variations in the strength of the Atlantic Meridional Ocean Circulation (AMOC), it is not clear how or if Heinrich Events—extensive influxes of icebergs into the North Atlantic Ocean that impacted global climate and biogeochemistry—are related. An enduring problem is the difficultly in dating iceberg rafted debris deposits that typically lack foraminifera. Here we present an ultra-high resolution record of methane from the West Antarctic Ice Sheet Divide ice core at unprecedented, continuous temporal resolution from 67.2-9.8 ka BP, which we propose constrains the timing of Heinrich events. Our methane record essentially mirrors Greenland ice core stable isotope variability across D-O events, except during Heinrich stadials 1, 2, 4 and 5. Partway through these stadials only, methane increases abruptly and rapidly, as at the onset of a D-O event but Greenland temperature exhibits no equivalent response. Speleothem records exhibit signatures of drought in the Northern extra-tropics and intensified monsoonal activity over South America at these times. We use a simple heuristic model to propose that cold air temperatures and extensive sea ice in the North, resulting from Heinrich events, caused extreme reorganization of tropical hydroclimate. This involved curtailment of the seasonal northerly migration of tropical rain belts, leading to intensification of rainfall over Southern Hemisphere tropical wetlands, thus allowing production of excess methane relative to a 'normal' Greenland stadial. We note that this mechanism can operate if AMOC is already in a slowed state when a Heinrich event occurs, as paleo-evidence suggests it was. Heinrich events and associated sea ice cover would therefore act to prolong the duration of this AMOC state. Our findings place the big four Heinrich events of Hudson Strait origin

  2. Response of dominant wind wave fields to abrupt wind increase

    NASA Astrophysics Data System (ADS)

    Caulliez, Guillemette

    2013-04-01

    Over the last decades, significant progress has been made in modelling wave field development by wind observed at sea, based on more elaborated numerical schemes and refined parametrizations of wind energy input and wave dissipation. In such models, the wind wave growth in space or time is generally governed by the average wind speed evaluated at one reference level and the natural wind speed variability is neglected. However, the impact of this assumption is not really known, mainly because of the lack of appropriate observations. To revisit this question, we report a detailed laboratory investigation aimed at describing the dominant wave field evolution resulting from an abrupt local wind speed increase. The experiments were conducted in the large Marseille-Luminy wind wave tank for moderate to high wind conditions. At 23 m fetch, a contraction of the wind tunnel section by a convergent profile created a spatial wind speed acceleration over a distance of about 2 m. Downwind, the wind speed, enhanced by a factor 1.4, was kept constant up to the end of the water tank. The wind wave field development induced by such a "wind gust" was investigated at successive fetches by wave probes and compared to those observed at similar fetches for homogeneous wind conditions. When wind increases, these observations first revealed no dramatic change in the evolution of the dominant spectral peak with fetch. The dominant wave energy which increases slowly for constant wind conditions, follows the wind speed but with a significant space lag. For well-established gravity wave fields, the space relaxation scales which describe this evolution do not depend noticeably on wind, all the curves collapse into a single one when wave quantities are normalized by their value observed just upstream the convergent profile. The wave growth rate observed for the new equilibrium state can be described by the Hasselman et al. (1973) relationship but with an "equivalent'' shorter fetch since, in

  3. Abrupt increase in east Indonesian rainfall from flooding of the Sunda Shelf ˜9500 years ago

    NASA Astrophysics Data System (ADS)

    Griffiths, Michael L.; Drysdale, Russell N.; Gagan, Michael K.; Zhao, Jian-xin; Hellstrom, John C.; Ayliffe, Linda K.; Hantoro, Wahyoe S.

    2013-08-01

    We present a precisely dated, multi-proxy stalagmite record from Liang Luar Cave, Flores (southeast Indonesia) that reveals a rapid increase in Indonesian monsoon rainfall at ˜9.5 ka. A "ramp-fitting" method for detecting statistically significant inflections in a time-series was applied to the stalagmite δ18O, Mg/Ca, and Sr/Ca profiles to quantify the precise timing and magnitude of an abrupt increase in monsoon strength over a period of ˜350 years. Previously published lake-level records from the monsoon-affected Australian interior show a sudden intensification of the Australian monsoon at ˜14 ka. However, our records indicate that monsoon intensification in Flores occured ˜4-5 kyr later. The timing of the monsoon shift in Flores is synchronous with the rapid expansion of rainforest in northeast Australia and regional freshening of the southern Makassar Strait which, under present-day conditions, is sensitive to monsoon variability. The freshening of southern Makassar was coeval with an abrupt ˜1.5 °C cooling in the upper thermocline of the Timor Sea ˜9.5 ka, indicative of reduced surface heat transport by the Indonesian Throughflow (ITF) when the Java Sea opened during postglacial sea-level rise. This suggests that the abrupt increase in monsoon rainfall on Flores was not due to a change in the ITF - because a decrease in rainfall would be expected to accompany cooler local sea surface temperatures (SSTs) - but rather by the sudden increase in ocean surface area and/or temperature in the monsoon source region as the Sunda Shelf flooded during deglaciation. We propose that it was the abrupt intensification of the monsoon through the late deglaciation that maintained the subsequent structure of the ITF following the flooding of the Sunda Shelf at ˜9.5 ka.

  4. Hydrological response to an abrupt shift in surface air temperature over France in 1987/88

    NASA Astrophysics Data System (ADS)

    Brulebois, Etienne; Castel, Thierry; Richard, Yves; Chateau-Smith, Carmela; Amiotte-Suchet, Philippe

    2015-12-01

    During the last few decades, Europe has seen a faster increase of observed temperature than that simulated by models. The air temperature over Western Europe showed an abrupt shift at the end of the 1980s, still insufficiently documented. The aim of this study is to assess the characteristics of this shift and its potential impacts on the hydrological cycle over France. Such an assessment is essential for a better understanding of past and future climatic changes and their impact on water resources. A subset of 119 temperature, 122 rainfall, and 30 hydrometric stations was studied, over the entire French metropolitan territory. Several change-point detection tests were applied to temperature, rainfall and runoff time series. A shift in annual mean air temperature was detected in 1987/88, for more than 75% of the stations, and for both minimum and maximum temperatures. An abrupt increase of about 1 °C in minimum and maximum temperature provides evidence of this shift, which shows strong seasonality, with significant increases for DJF, MAM and JJA. Its detection is not affected by the length of the time series or any potential artefacts associated to the conditions of measurement. Cluster analysis of the rainfall stations was used to take account of regional variability in rainfall evolution. Two climate areas were obtained from this analysis: Mediterranean and temperate. No shift was detected in rainfall for either area. However, at annual and quarterly scales, several changes in runoff were observed between the periods 1969-87 and 1988-09. The significant changes occurred from January to July, in agreement with maximum increases in temperature. Evapotranspiration could well play a key role in these changes in the hydrological cycle, as a response to temperature increases in the watersheds studied.

  5. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    PubMed Central

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937

  6. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Ki; Park, Wonsun; Baringer, Molly O.; Gordon, Arnold L.; Huber, Bruce; Liu, Yanyun

    2015-06-01

    Global mean surface warming has stalled since the end of the twentieth century, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing from the atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing. Here, we analyse observations along with simulations from a global ocean-sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700 m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability.

  7. Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes

    NASA Astrophysics Data System (ADS)

    Dong, Buwen; Sutton, Rowan T.; Chen, Wei; Liu, Xiaodong; Lu, Riyu; Sun, Ying

    2016-09-01

    This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface warming, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Tmin), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964-93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol-radiation and aerosol-cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply

  8. Survival and Hsp70 Gene Expression in Plutella xylostella and Its Larval Parasitoid Diadegma insulare Varied between Slowly Ramping and Abrupt Extreme Temperature Regimes

    PubMed Central

    Bahar, Md Habibullah; Hegedus, Dwayne; Soroka, Juliana; Coutu, Cathy; Bekkaoui, Diana; Dosdall, Lloyd

    2013-01-01

    Background In nature, insects have evolved behavioural and physiological adaptations to cope with short term exposure to extreme temperatures. Extreme heat events may increase as a result of climate change; this in turn will affect insect population dynamics. We examined the effect of abrupt and ecologically relevant gradual exposure to high temperatures on the survival and hsp70 gene expression in diamondback moth (DBM) adults and the parasitoid Diadegmainsulare, as well as in parasitized and non-parasitized DBM larvae. Principal Findings Tolerance to high temperatures in DBM adults was higher than in D. insulare adults. There was no difference in the survival of DBM adults between abrupt and ramped increases from 25 to 38°C; however, at 40°C survival was higher when the temperature increased gradually. In contrast, more D. insulare adults survived when the temperature was ramped rather than shifted abruptly to both 38 and 40°C. There was no heat stress effect of up to 40°C on the survival of either parasitized or non-parasitized DBM larvae. In adults of both species, more hsp70 expression was observed when temperatures increased abruptly to 38°C compared to ramping. In contrast, at 40°C significantly more expression was found in insects exposed to the ramping rather than the abrupt regime. Hsp70 expression level was in agreement with adult survival data and appears to be a good indicator of stress levels. In parasitized and non-parasitized larvae, hsp70 expression was significantly higher after abrupt shifts compared to ramping at both temperatures. Conclusions/Significance Hsp70 gene expression was responsive to extreme temperatures in both DBM and D. insulare, which may underlie the ability of these insects to survive in extreme temperatures. Survival and hsp70 expression upon abrupt changes are distinctly different from those after ramping indicating that experimental protocol must be considered before extrapolating laboratory results to natural field

  9. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem.

    PubMed

    Thomson, Jordan A; Burkholder, Derek A; Heithaus, Michael R; Fourqurean, James W; Fraser, Matthew W; Statton, John; Kendrick, Gary A

    2015-04-01

    Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat-forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia--a relatively pristine subtropical embayment whose dominant, canopy-forming seagrass, Amphibolis antarctica, is a temperate species growing near its low-latitude range limit--as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal-borne video footage taken from the perspective of resident, seagrass-associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long-term, community-level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal-borne video and data-logging systems, can make an important contribution to this framework. PMID:25145694

  10. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem.

    PubMed

    Thomson, Jordan A; Burkholder, Derek A; Heithaus, Michael R; Fourqurean, James W; Fraser, Matthew W; Statton, John; Kendrick, Gary A

    2015-04-01

    Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat-forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia--a relatively pristine subtropical embayment whose dominant, canopy-forming seagrass, Amphibolis antarctica, is a temperate species growing near its low-latitude range limit--as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal-borne video footage taken from the perspective of resident, seagrass-associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long-term, community-level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal-borne video and data-logging systems, can make an important contribution to this framework.

  11. Possible mechanism of abrupt jump in winter surface air temperature in the late 1980s over the Northern Hemisphere

    PubMed Central

    Kim, Yeon‐Hee; Lau, William K. M.; Kim, Kyu‐Myong; Cho, Chun‐Ho

    2015-01-01

    Abstract Possible cause of an abrupt warming in winter mean surface air temperature in the midlatitudes of the Northern Hemisphere in the late 1980s is investigated using observation and reanalysis data. To determine the timing of abrupt warming, we use a regime shift index based on detection of the largest significant differences between the mean values of two contiguous periods. Results show that the abrupt warming occurred in association with a regime shift after the 1980's in which the zonal mean sea level pressure (SLP) is significantly increased (decreased) at the latitude 25–35°N (60–70°N), in the form of north‐south dipole‐like SLP anomaly spanning the subtropics and high latitude. The dipole SLP anomaly can be attributed to a northward expansion of Hadley cell, a poleward broadening and intensification of the Ferrel cell, coupled with a collapse of polar cell. During the abrupt warming, strong anomalous southerly warm advection at the surface was induced by an enhanced and expanded Ferrel circulation, in association with a northward and downward shift of maximum center of northward eddy heat flux over the midlatitudes. An intensification of polar jet subsequent to regime shift may be instrumental in sustaining the warming up to more than 5 years.

  12. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming.

    PubMed

    Picard, Martin; Zhang, Jiangwen; Hancock, Saege; Derbeneva, Olga; Golhar, Ryan; Golik, Pawel; O'Hearn, Sean; Levy, Shawn; Potluri, Prasanth; Lvova, Maria; Davila, Antonio; Lin, Chun Shi; Perin, Juan Carlos; Rappaport, Eric F; Hakonarson, Hakon; Trounce, Ian A; Procaccio, Vincent; Wallace, Douglas C

    2014-09-23

    Variation in the intracellular percentage of normal and mutant mitochondrial DNAs (mtDNA) (heteroplasmy) can be associated with phenotypic heterogeneity in mtDNA diseases. Individuals that inherit the common disease-causing mtDNA tRNA(Leu(UUR)) 3243A>G mutation and harbor ∼10-30% 3243G mutant mtDNAs manifest diabetes and occasionally autism; individuals with ∼50-90% mutant mtDNAs manifest encephalomyopathies; and individuals with ∼90-100% mutant mtDNAs face perinatal lethality. To determine the basis of these abrupt phenotypic changes, we generated somatic cell cybrids harboring increasing levels of the 3243G mutant and analyzed the associated cellular phenotypes and nuclear DNA (nDNA) and mtDNA transcriptional profiles by RNA sequencing. Small increases in mutant mtDNAs caused relatively modest defects in oxidative capacity but resulted in sharp transitions in cellular phenotype and gene expression. Cybrids harboring 20-30% 3243G mtDNAs had reduced mtDNA mRNA levels, rounded mitochondria, and small cell size. Cybrids with 50-90% 3243G mtDNAs manifest induction of glycolytic genes, mitochondrial elongation, increased mtDNA mRNA levels, and alterations in expression of signal transduction, epigenomic regulatory, and neurodegenerative disease-associated genes. Finally, cybrids with 100% 3243G experienced reduced mtDNA transcripts, rounded mitochondria, and concomitant changes in nuclear gene expression. Thus, striking phase changes occurred in nDNA and mtDNA gene expression in response to the modest changes of the mtDNA 3243G mutant levels. Hence, a major factor in the phenotypic variation in heteroplasmic mtDNA mutations is the limited number of states that the nucleus can acquire in response to progressive changes in mitochondrial retrograde signaling. PMID:25192935

  13. Placental genetic variations in circadian clock-related genes increase the risk of placental abruption

    PubMed Central

    Qiu, Chunfang; Gelaye, Bizu; Denis, Marie; Tadesse, Mahlet G; Enquobahrie, Daniel A; Ananth, Cande V; Pacora, Percy N; Salazar, Manuel; Sanchez, Sixto E; Williams, Michelle A

    2016-01-01

    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34-72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genome. PMID:27186326

  14. Transition process of abrupt climate change based on global sea surface temperature over the past century

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Hou, Wei; Feng, Guolin

    2016-05-01

    A new detection method has been proposed to study the transition process of abrupt climate change. With this method, the climate system transiting from one stable state to another can be verified clearly. By applying this method to the global sea surface temperature over the past century, several climate changes and their processes are detected, including the start state (moment), persist time, and end state (moment). According to the spatial distribution, the locations of climate changes mainly have occurred in the Indian Ocean and western Pacific before the middle twentieth century, in the 1970s in the equatorial middle-eastern Pacific, and in the middle and southern Pacific since the end of the twentieth century. In addition, the quantitative relationship between the transition process parameters is verified in theory and practice: (1) the relationship between the rate and stability parameters is linear, and (2) the relationship between the rate and change amplitude parameters is quadratic.

  15. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  16. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  17. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  18. Changes in body core temperatures and heat balance after an abrupt release of lower body negative pressure in humans

    NASA Astrophysics Data System (ADS)

    Tanabe, Minoru; Shido, Osamu

    1994-03-01

    Changes in body core temperature ( T cor) and heat balance after an abrupt release of lower body negative pressure (LBNP) were investigated in 5 volunteers under the following conditions: (1) an ambient temperature ( T a) of 20 °C or (2) 35 °C, and (3) T a of 25 °C with a leg skin temperature of 30°C or (4) 35°C. The leg skin temperature was controlled with water perfusion devices wound around the legs. Rectal ( T re), tympanic ( T ty) and esophageal ( T es) temperatures, skin temperatures (7 sites) and oxygen consumption were measured. The intensity of LBNP was adjusted so that the amount of blood pooled in the legs was the same under all conditions. When a thermal balance was attained during LBNP, application of LBNP was suddenly halted. The skin temperatures increased significantly after the release of LBNP under all conditions, while oxygen consumption hardly changed. The release of LBNP caused significant falls in T cor s under conditions (1) and (3), but lowered T cor s very slightly under conditions (2) and (4). The changes in T es were always more rapid and greater than those of T ty and T re. The falls in T ty and T re appeared to be explained by changes in heat balance, whereas the sharp drop of T es could not be explained especially during the first 8 min after the release of LBNP. The results suggest that a fall in T cor after a release of LBNP is attributed to an increase in heat loss due to reflexive skin vasodilation and is dependent on the temperature of venous blood returning from the lower body. It is presumed that T es may not be an appropriate indicator for T cor when venous return changes rapidly.

  19. Peak and Persistent Excess of Genetic Diversity Following an Abrupt Migration Increase

    PubMed Central

    Alcala, Nicolas; Streit, Daniela; Goudet, Jérôme; Vuilleumier, Séverine

    2013-01-01

    Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species’ lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population’s demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations. PMID:23307901

  20. Mysterious abrupt carbon-14 increase in coral contributed by a comet.

    PubMed

    Liu, Yi; Zhang, Zhao-feng; Peng, Zi-cheng; Ling, Ming-xing; Shen, Chuan-Chou; Liu, Wei-guo; Sun, Xiao-chun; Shen, Cheng-de; Liu, Ke-xin; Sun, Weidong

    2014-01-01

    A large and sudden increase in radiocarbon ((14)C) around AD 773 are documented in coral skeletons from the South China Sea. The (14)C increased by ~ 15‰ during winter, and remain elevated for more than 4 months, then increased and dropped down within two months, forming a spike of 45‰ high in late spring, followed by two smaller spikes. The (14)C anomalies coincide with an historic comet collision with the Earth's atmosphere on 17 January AD 773. Comas are known to have percent-levels of nitrogen by weight, and are exposed to cosmic radiation in space. Hence they may be expected to contain highly elevated (14)C/(12)C ratios, as compared to the Earth's atmosphere. The significant input of (14)C by comets may have contributed to the fluctuation of (14)C in the atmosphere throughout the Earth's history, which should be considered carefully to better constrain the cosmic ray fluctuation. PMID:24430984

  1. Mysterious abrupt carbon-14 increase in coral contributed by a comet.

    PubMed

    Liu, Yi; Zhang, Zhao-feng; Peng, Zi-cheng; Ling, Ming-xing; Shen, Chuan-Chou; Liu, Wei-guo; Sun, Xiao-chun; Shen, Cheng-de; Liu, Ke-xin; Sun, Weidong

    2014-01-01

    A large and sudden increase in radiocarbon ((14)C) around AD 773 are documented in coral skeletons from the South China Sea. The (14)C increased by ~ 15‰ during winter, and remain elevated for more than 4 months, then increased and dropped down within two months, forming a spike of 45‰ high in late spring, followed by two smaller spikes. The (14)C anomalies coincide with an historic comet collision with the Earth's atmosphere on 17 January AD 773. Comas are known to have percent-levels of nitrogen by weight, and are exposed to cosmic radiation in space. Hence they may be expected to contain highly elevated (14)C/(12)C ratios, as compared to the Earth's atmosphere. The significant input of (14)C by comets may have contributed to the fluctuation of (14)C in the atmosphere throughout the Earth's history, which should be considered carefully to better constrain the cosmic ray fluctuation.

  2. Mysterious abrupt carbon-14 increase in coral contributed by a comet

    PubMed Central

    Liu, Yi; Zhang, Zhao-feng; Peng, Zi-cheng; Ling, Ming-xing; Shen, Chuan-Chou; Liu, Wei-guo; Sun, Xiao-chun; Shen, Cheng-de; Liu, Ke-xin; Sun, Weidong

    2014-01-01

    A large and sudden increase in radiocarbon (14C) around AD 773 are documented in coral skeletons from the South China Sea. The 14C increased by ~ 15‰ during winter, and remain elevated for more than 4 months, then increased and dropped down within two months, forming a spike of 45‰ high in late spring, followed by two smaller spikes. The 14C anomalies coincide with an historic comet collision with the Earth's atmosphere on 17 January AD 773. Comas are known to have percent-levels of nitrogen by weight, and are exposed to cosmic radiation in space. Hence they may be expected to contain highly elevated 14C/12C ratios, as compared to the Earth's atmosphere. The significant input of 14C by comets may have contributed to the fluctuation of 14C in the atmosphere throughout the Earth's history, which should be considered carefully to better constrain the cosmic ray fluctuation. PMID:24430984

  3. Abrupt Sea Surface Temperature changes during The Last Glacial-Interglacial Transition in the Iberian margin: Sea Level implications

    NASA Astrophysics Data System (ADS)

    Rodrigues, Teresa; Grimalt, Joan; Abrantes, Fatima; Naughton, Filipa; Flores, José-Abel

    2010-05-01

    Uk'37-SST and organic terrestrial biomarkers were used to reconstruct Sea surface temperature (SST) and continental input in a shallow core (D13882) from the Tagus mud patch (Iberian margin) during last glacial and interglacial transition (LGIT). In the western Iberian margin the Heinrich 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface temperature conditions mediated by a marine warm phase that coincides with the Bolling-Allerod event (B-A) in the neighbor continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. However, SST values and amplitude of variation recorded in core D13882 differ from deep sea core MD03- 2699 and other available palaeoclimate sequences from this region. While the SST values from most deep sea cores reflect the latitudinal gradient detected on the Iberian Peninsula during H1 and B-A, the shallow core (D13882) SSTs are colder than the ones recorded in the deep sea. This suggests that a supplementary input of cold freshwater coming from the continent reached shallow areas. This hypothesis is supported by the high terrigenous biomarkers and total organic carbon content as well as by the dominance of tetra alkenone in the Tagus mud patch. Furthermore, the comparison of all western Iberia SST records suggest that the SST increase during the B-A event started 1,000 yr before the meltwater pulse 1A (mwp-1A) and attained maximum values during or slightly after this sea level rise episode. Conversely, the sharp SST increase in the Iberian margin during the YD/Holocene transition, is synchronous with the meltwater pulse 1B (mwp-1B). The decrease of continental input in the Tagus mud patch confirms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes of the western Iberian margin, in the adjacent landmasses and temperature in Greenland suggest that the mwp-1B, could have been initiated in the Northern

  4. Dephosphorylation of Photosystem II Reaction Center Proteins in Plant Photosynthetic Membranes as an Immediate Response to Abrupt Elevation of Temperature1

    PubMed Central

    Rokka, Anne; Aro, Eva-Mari; Herrmann, Reinhold G.; Andersson, Bertil; Vener, Alexander V.

    2000-01-01

    Kinetic studies of protein dephosphorylation in photosynthetic thylakoid membranes revealed specifically accelerated dephosphorylation of photosystem II (PSII) core proteins at elevated temperatures. Raising the temperature from 22°C to 42°C resulted in a more than 10-fold increase in the dephosphorylation rates of the PSII reaction center proteins D1 and D2 and of the chlorophyll a binding protein CP43 in isolated spinach (Spinacia oleracea) thylakoids. In contrast the dephosphorylation rates of the light harvesting protein complex and the 9-kD protein of the PSII (PsbH) were accelerated only 2- to 3-fold. The use of a phospho-threonine antibody to measure in vivo phosphorylation levels in spinach leaves revealed a more than 20-fold acceleration in D1, D2, and CP43 dephosphorylation induced by abrupt elevation of temperature, but no increase in light harvesting protein complex dephosphorylation. This rapid dephosphorylation is catalyzed by a PSII-specific, intrinsic membrane protein phosphatase. Phosphatase assays, using intact thylakoids, solubilized membranes, and the isolated enzyme, revealed that the temperature-induced lateral migration of PSII to the stroma-exposed thylakoids only partially contributed to the rapid increase in the dephosphorylation rate. Significant activation of the phosphatase coincided with the temperature-induced release of TLP40 from the membrane into thylakoid lumen. TLP40 is a peptidyl-prolyl cis-trans isomerase, which acts as a regulatory subunit of the membrane phosphatase. Thus dissociation of TLP40 caused by an abrupt elevation in temperature and activation of the membrane protein phosphatase are suggested to trigger accelerated repair of photodamaged PSII and to operate as possible early signals initiating other heat shock responses in chloroplasts. PMID:10938368

  5. Global Genome Response of Escherichia coli O157∶H7 Sakai during Dynamic Changes in Growth Kinetics Induced by an Abrupt Temperature Downshift

    PubMed Central

    King, Thea; Kocharunchitt, Chawalit; Gobius, Kari; Bowman, John P.; Ross, Tom

    2014-01-01

    Escherichia coli O157∶H7 is a mesophilic food-borne pathogen. We investigated the growth kinetics of E. coli O157∶H7 Sakai during an abrupt temperature downshift from 35°C to either 20°C, 17°C, 14°C or 10°C; as well as the molecular mechanisms enabling growth after cold stress upon an abrupt downshift from 35°C to 14°C in an integrated transcriptomic and proteomic analysis. All downshifts caused a lag period of growth before growth resumed at a rate typical of the post-shift temperature. Lag and generation time increased with the magnitude of the shift or with the final temperature, while relative lag time displayed little variation across the test range. Analysis of time-dependent molecular changes revealed, in keeping with a decreased growth rate at lower temperature, repression of genes and proteins involved in DNA replication, protein synthesis and carbohydrate catabolism. Consistent with cold-induced remodelling of the bacterial cell envelope, alterations occurred in the expression of genes and proteins involved in transport and binding. The RpoS regulon exhibited sustained induction confirming its importance in adaptation and growth at 14°C. The RpoE regulon was transiently induced, indicating a potential role for this extracytoplasmic stress response system in the early phase of low temperature adaptation during lag phase. Interestingly, genes previously reported to be amongst the most highly up-regulated under oxidative stress were consistently down-regulated. This comprehensive analysis provides insight into the molecular mechanisms operating during adaptation of E. coli to growth at low temperature and is relevant to its physiological state during chilling in foods, such as carcasses. PMID:24926786

  6. Abrupt temperature changes and contrasted hydrological responses during Greenland Stadial 1 in northern Iberia

    NASA Astrophysics Data System (ADS)

    Bartolomé, Miguel; Moreno, Ana; Sancho, Carlos; Stoll, Heather; Cacho, Isabel; Spötl, Christoph; Edwards, R. Lawrence; Cheng, Hai; Hellstrom, John

    2016-04-01

    Greenland Stadial 1 (GS-1) was the last of a long series of severe cooling episodes in the Northern Hemisphere during the last glacial period, whose origin is attributed to the complex interaction of intense weakening of the Atlantic Meridional Overturning Circulation, moderate negative radiative forcing and an altered atmospheric circulation (Renssen et al., 2015). As a result, marine and terrestrial records from the North Atlantic region indicate a cooling of several degrees, being larger in high latitudes (up to 4° C) and diminishing towards the southeast (0.5° C) (Heiri et al., 2014). Here, we present the first stalagmite record that covers the entire GS-1 period in Southern Europe, providing an excellent and independent chronological framework and a high-resolution climate reconstruction of this event (Bartolomé et al., 2015). The stalagmite is from Seso Cave from the central Pyrenees (42° 27'23.08''N, 0° 02'23.18''E, 794 m asl) where a 3-year monitoring survey, together with the analyses of actively growing modern stalagmites, allows climate proxies in stalagmites to be calibrated to the instrumental record. Thus, analysis of oxygen isotopes in a modern stalagmite from Seso Cave suggests a strong dependence on air temperature through its influence on rainfall δ18O, providing a reliable proxy for the temperature evolution during GS-1. According to these calculations, the δ18O change of 2.14‰ during GS-1 is considered to represent a 1.3 ° C drop of the annual temperature. Besides reflecting GS-1 cooling in the Pyrenees, the Seso Cave stalagmite is used here to investigate the timing and forcing of a mid-GS-1 climate transition previously reported from northern European records (Lane et al., 2012). δ13C and Mg/Ca of Seso samples show higher values between 12,920 y b2k and 12,500 y b2k, a gradual decrease until ca. 12,000 y b2k, and a period with lower values until the Holocene onset at 11,700 y b2k. This pattern, although still at low resolution due

  7. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers

    NASA Astrophysics Data System (ADS)

    Magee, Madeline R.; Wu, Chin H.; Robertson, Dale M.; Lathrop, Richard C.; Hamilton, David P.

    2016-05-01

    abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrupt change after 1994, which was related in part to the warm El Niño winter of 1997-1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994-2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modeling to better understand how these variables will respond in a future climate.

  8. Measured and modelled tritium concentrations in freshwater Barnes mussels (Elliptio complanata) exposed to an abrupt increase in ambient tritium levels.

    PubMed

    Yankovich, T L; Kim, S B; Baumgärtner, F; Galeriu, D; Melintescu, A; Miyamoto, K; Saito, M; Siclet, F; Davis, P

    2011-01-01

    To improve understanding of environmental tritium behaviour, the International Atomic Energy Agency (IAEA) included a Tritium and C-14 Working Group (WG) in its EMRAS (Environmental Modelling for Radiation Safety) program. One scenario considered by the WG involved the prediction of time-dependent tritium concentrations in freshwater mussels that were subjected to an abrupt increase in ambient tritium levels. The experimental data used in the scenario were obtained from a study in which freshwater Barnes mussels (Elliptio complanata) were transplanted from an area with background tritium concentrations to a small Canadian Shield lake that contains elevated tritium. The mussels were then sampled over 88 days, and concentrations of free-water tritium (HTO) and organically-bound tritium (OBT) were measured in the soft tissues to follow the build-up of tritium in the mussels over time. The HTO concentration in the mussels reached steady state with the concentration in lake water within one or two hours. Most models predicted a longer time (up to a few days) to equilibrium. All models under-predicted the OBT concentration in the mussels one hour after transplantation, but over-predicted the rate of OBT formation over the next 24h. Subsequent dynamics were not well modelled, although all participants predicted OBT concentrations that were within a factor of three of the observation at the end of the study period. The concentration at the final time point was over-predicted by all but one of the models. The relatively low observed concentration at this time was likely due to the loss of OBT by mussels during reproduction. PMID:20943295

  9. Measured and modelled tritium concentrations in freshwater Barnes mussels (Elliptio complanata) exposed to an abrupt increase in ambient tritium levels.

    PubMed

    Yankovich, T L; Kim, S B; Baumgärtner, F; Galeriu, D; Melintescu, A; Miyamoto, K; Saito, M; Siclet, F; Davis, P

    2011-01-01

    To improve understanding of environmental tritium behaviour, the International Atomic Energy Agency (IAEA) included a Tritium and C-14 Working Group (WG) in its EMRAS (Environmental Modelling for Radiation Safety) program. One scenario considered by the WG involved the prediction of time-dependent tritium concentrations in freshwater mussels that were subjected to an abrupt increase in ambient tritium levels. The experimental data used in the scenario were obtained from a study in which freshwater Barnes mussels (Elliptio complanata) were transplanted from an area with background tritium concentrations to a small Canadian Shield lake that contains elevated tritium. The mussels were then sampled over 88 days, and concentrations of free-water tritium (HTO) and organically-bound tritium (OBT) were measured in the soft tissues to follow the build-up of tritium in the mussels over time. The HTO concentration in the mussels reached steady state with the concentration in lake water within one or two hours. Most models predicted a longer time (up to a few days) to equilibrium. All models under-predicted the OBT concentration in the mussels one hour after transplantation, but over-predicted the rate of OBT formation over the next 24h. Subsequent dynamics were not well modelled, although all participants predicted OBT concentrations that were within a factor of three of the observation at the end of the study period. The concentration at the final time point was over-predicted by all but one of the models. The relatively low observed concentration at this time was likely due to the loss of OBT by mussels during reproduction.

  10. Turbulent heat transfer and fluid flow measurements downstream of abrupt expansions and in a cavity of a circular tube at a uniform wall temperature

    NASA Astrophysics Data System (ADS)

    Lee, Daehee

    An experimental investigation was made of the turbulent heat transfer and fluid flow in separated, recirculating and reattached regions created by an axisymmetric and asymmetric abrupt expansions and by an abrupt expansion followed by an abrupt contraction in a circular tube at a uniform wall temperature. The flow just upstream of the expansion was unheated and proved to be fully developed hydrodynamically at the entrance to the heated abrupt expansion region. Measurements were made with small to large diameter ratios of 0.4 and 0.533 and over the Reynolds numbers range of 4100 to 21900. The mean velocity and temperature profiles were measured downstream of an axisymmetric abrupt expansion. Heat transfer coefficients were determined both around the circumference of the tube and along its length. General results indicate a substantial augmentation in the heat transfer coefficients downstream of the flow separation caused by the high turbulence and mixing action, in spite of the mean velocity in the recirculating region being only a few percent of the downstream core flow velocity in the large tube.

  11. Abrupt transition to heightened poliomyelitis epidemicity in England and Wales, 1947-1957, associated with a pronounced increase in the geographical rate of disease propagation.

    PubMed

    Smallman-Raynor, M R; Cliff, A D

    2014-03-01

    The abrupt transition to heightened poliomyelitis epidemicity in England and Wales, 1947-1957, was associated with a profound change in the spatial dynamics of the disease. Drawing on the complete record of poliomyelitis notifications in England and Wales, we use a robust method of spatial epidemiological analysis (swash-backwash model) to evaluate the geographical rate of disease propagation in successive poliomyelitis seasons, 1940-1964. Comparisons with earlier and later time periods show that the period of heightened poliomyelitis epidemicity corresponded with a sudden and pronounced increase in the spatial rate of disease propagation. This change was observed for both urban and rural areas and points to an abrupt enhancement in the propensity for the geographical spread of polioviruses. Competing theories of the epidemic emergence of poliomyelitis in England and Wales should be assessed in the light of this evidence.

  12. Tracking abrupt climate shifts with stable isotopes: geochemical evidence for dynamic temperature, precipitation and seasonality regimes during the last deglaciation (8 to 15ka BP)

    NASA Astrophysics Data System (ADS)

    Candy, I.; Blockley, S.; Matthews, I.; Palmer, A.; Darvill, C.

    2012-12-01

    The interval between the Last Glacial Maximum (LGM) and the stabilisation of climatic conditions during the Holocene (ca 8ka BP) is well-known to have been punctuated with abrupt climatic shifts on a range of different time scales. This is clearly seen in the oxygen and deuterium isotope signal of the Greenland ice core records (e.g. NGRIP). How the magnitude and duration of these events translates across a region, such as western Europe, is however, unclear, primarily because many traditional proxies do not respond rapidly enough to provide a clear expression of abrupt climatic events. In this paper, we present a range of new oxygen and carbon isotopic records from lacustrine carbonate sequences, and a review of existing datasets, spanning the interval 8 to 15ka BP. These records lie on W-E and N-S transects across the British Isles allowing the spatial variability of the structure and magnitude of abrupt climatic events to be investigated. The oxygen isotopic signal is primarily driven by temperature and indicates that the climatic structure of abrupt events, such as the Lateglacial interstadial, is highly variable over relatively short spatial scales. Records from eastern Britain suggest patterns of warming and cooling in the Lateglacial interstadial (GI-1) comparable to those observed in Greenland, where a temperature maxima occurs early in GI-1. However records in western Britain provide evidence for more subdued climatic oscillations with peak temperatures occurring later in GI-1. Spatial variability in the isotopic expression of abrupt climatic events allows the role of different factors such as the position of the polar front, the influence of the thermohaline conveyer and the influence of maritime versus continental climates, to be investigated. This study also indicates that a major depletion event occurs in the δ18O value of lake carbonates during the early Holocene which affects all currently known sequences. This depletion event cannot be explained by

  13. Tracking abrupt climate shifts with stable isotopes in lacustrine sediments: geochemical evidence for dynamic temperature, precipitation and seasonality regimes during the last deglaciation (8 to 15ka BP)

    NASA Astrophysics Data System (ADS)

    Candy, Ian; Blockley, Simon; Matthews, Ian; Palmer, Adrian; Darvill, Chris

    2013-04-01

    The interval between the Last Glacial Maximum (L.G.M.) and the stabilisation of climatic conditions during the Holocene (ca 8ka BP) is well-known to have been punctuated with abrupt climatic shifts on a range of time scales. This is clearly seen in the oxygen and deuterium isotope signal of the Greenland ice core records (e.g. NGRIP). How the magnitude and duration of these events translates across a region, such as western Europe, is however, unclear, primarily because many traditional proxies do not respond rapidly enough to provide a clear expression of abrupt climatic events. In this paper we present a range of new oxygen and carbon isotopic records, and a review of existing datasets, from lacustrine carbonate sequences spanning the interval 8 to 15ka BP. These records lie on W-E and N-S transects across the British Isles allowing the spatial variability of the structure and magnitude of abrupt climatic events to be investigated. The oxygen isotopic signal is primarily driven by temperature and indicates that the climatic structure of abrupt events in this time interval, the Lateglacial interstadial for example, is highly variable over relatively small distances. Records from the east of Britain suggest patterns of warming and cooling in the Lateglacial interstadial comparable to that observable in Greenland (e.g. a temperature maximum occurring early in the interstadial), whilst record in the west provide evidence for more subdued climatic oscillations with peak temperatures occurring late in the interstadial. Spatial variability in the isotopic expression of abrupt climatic events allows the role of different factors; i.e. the position of the polar front, the influence of the thermohaline conveyer and the influence of maritime versus continental climates, to be investigated. This work also indicates that a major depletion event occurs in the δ18O value of lake carbonates during the early Holocene which effects all currently known sequences. This depletion

  14. Ice core measurements of 14CH4 constrain the sources of atmospheric methane increase during abrupt warming events of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Petrenko, V. V.; Severinghaus, J. P.; Smith, A.; Riedel, K.; Brook, E.; Schaefer, H.; Baggenstos, D.; Harth, C. M.; Hua, Q.; Dyonisius, M.; Buizert, C.; Schilt, A.; Faïn, X.; Mitchell, L.; Bauska, T. K.; Orsi, A. J.; Weiss, R. F.

    2015-12-01

    Thawing permafrost and marine methane hydrate destabilization in the Arctic and elsewhere have been proposed as large sources of methane to the atmosphere in the future warming world. To evaluate this hypothesis it is useful to ask whether such methane releases happened during past warming events. The two major abrupt warming events of the last deglaciation, Oldest Dryas - Bølling (OD-B, ≈ 14,500 years ago) and Younger Dryas - Preboreal (YD-PB; ≈11,600 years ago), were associated with large (up to 50%) increases in atmospheric methane (CH4) concentrations. The sources of these large warming-driven CH4 increases remain incompletely understood, with possible contributions from tropical and boreal wetlands, thawing permafrost as well as marine CH4 hydrates. We present a record of 14C of paleoatmospheric CH4 over the YD-PB transition from ancient ice outcropping at Taylor Glacier, Antarctica. 14C can unambiguously identify CH4 emissions from old, 14C-depleted sources, such as permafrost and CH4 hydrates. The only prior study of paleoatmospheric 14CH4 (from Greenland ice) suggested that wetlands were the main driver of the YD-PB CH4 increase, but the results were weakened by an unexpected and poorly understood 14CH4 component from in situ cosmogenic production directly in near-surface ice. In this new study, we have been able to accurately characterize and correct for the cosmogenic 14CH4 component. All samples from before, during and after the abrupt warming and associated CH4 increase yielded 14CH4 values that are consistent with 14C of atmospheric CO2 at that time, indicating a purely contemporaneous methane source. These measurements rule out the possibility of large CH4 releases to the atmosphere from methane hydrates or old permafrost carbon in response to the large and rapid YD-PB warming. To the extent that the characteristics of the YD-PB warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future

  15. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink

    NASA Astrophysics Data System (ADS)

    Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.

    2016-03-01

    The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.

  16. The last glacial-interglacial transition (LGIT) in the western mid-latitudes of the North Atlantic: Abrupt sea surface temperature change and sea level implications

    NASA Astrophysics Data System (ADS)

    Rodrigues, Teresa; Grimalt, Joan O.; Abrantes, Fátima; Naughton, Filipa; Flores, José-Abel

    2010-07-01

    High resolution reconstructions of sea surface temperature (U k'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C 37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse 1B. The decrease of continental input to the mud patch confirms a sea level rise in

  17. Effects of hypoxia or low PH on the alternation of canine ventricular action potentials following an abrupt increase in driving rate.

    PubMed

    Hirata, Y; Toyama, J; Yamada, K

    1980-02-01

    Effects of hypoxia or low extracellular pH on the alternation of ventricular action potentials occurring after an abrupt increase in driving rate (rate change induced alternation--RCI alternation) were studied using standard microelectrode methods in canine papillary muscle preparations. Under the control conditions the alternation always occurred after a rate change from 10 to 100 beats . min-1 or 60 to 200 beats . min-1, but it diminished rapidly during the faster rates. Under the hypoxic condition the degree of the RCI alternation gradually increased to the peak 20 to 60 min after the onset of the hypoxic perfusion and then decreased. The hypoxic perfusion caused an increase in beat-to-beat laternating change of the action potential configuration and a marked persistence of the phenomenon. In the initial stage of reoxygenation after 2 hours of the hypoxic perfusion, the RCI alternation transiently increased again. During hypoxia in six out of 15 preparations an unusual alternation of action potentials with an inverted phase occasionally occurred after the rate change from 60 to 200 beats . min-1. Acidic perfusion (pH = 6.0) had similar effects on the RCI alternation. It also caused an increase in beat-to-beat alternating change in the action potential configuration and a prolongation of the phenomenon. In the period when the RCI alternation was markedly increased, a steady-state alternation of action potentials spontaneously occurred at a constant drive rate under hypoxia or low pH. The mechanisms responsible for the RCI alternation of action potentials and the possible role of the phenomenon in the genesis of cardiac arrhythmias in the ischaemic heart are discussed.

  18. Scrotal cooling increases rectal temperature in man.

    PubMed

    Vash, Peter D; Engels, Thomas M; Kandeel, Fouad R; Greenway, Frank

    2002-02-01

    The aim of this study was to evaluate the effect of scrotal cooling on rectal temperature in man. Pilot studies suggested that immersing the scrotum in a 30 degrees C water bath increased rectal temperature, but immersing the scrotum in a 0 degree C water bath did not. Six healthy young men immersed their scrotums in a 35 degrees C water bath for 11 min followed by 21 min at 30 degrees C. Rectal temperature rose by 0.38 +/- 0.04 degrees C (P < 0.01) in response to the 30 degrees C water bath. Repetition of the study by immersing the hands instead of the scrotum in the water bath had no effect on rectal temperature. The scrotum appears to play a role in human temperature regulation.

  19. Analysis of abrupt transitions in ecological systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The occurrence and causes of abrupt transitions, thresholds, or regime shifts between ecosystem states are of great concern and the likelihood of such transitions is increasing for many ecological systems. General understanding of abrupt transitions has been advanced by theory, but hindered by the l...

  20. Pregnancy Complications: Placental Abruption

    MedlinePlus

    ... page It's been added to your dashboard . The placenta attaches to the wall of the uterus (womb) ... abruption is a serious condition in which the placenta separates from the wall of the uterus before ...

  1. Increased skin temperature during transcutaneous electrical stimulation.

    PubMed

    Abram, S E; Asiddao, C B; Reynolds, A C

    1980-01-01

    Conflicting reports have appeared in the literature concerning the effects of transcutaneous electrical nerve stimulation on skin temperature. This report studied 33 patients with chronic pain involving one extremity (13 upper, 20 lower) to determine whether changes in sympathetic tone, as reflected in skin temperature, occurred in response to electrical stimulation of painful areas. Stimulation was carried out for 20 to 45 minutes. Skin temperatures were measured from the thumbs or great toes of stimulated and contralateral extremities before and during stimulation. Skin temperature rose 2.5 +/- 0.7 (mean +/- SEM) in both the ipsilateral and contralateral extremity in patients who experienced relief of pain during stimulation. There was no significant change in skin temperature in patients who experienced no relief.

  2. Does increasing the temperature induce DNAPL migration?

    EPA Science Inventory

    Tetrachloroethylene, trichloroethylene, and chlorobenzene have been identified as contaminants in groundwater and are sometimes called Dense Non-Aqueous Phase Liquids (DNAPL). Thermal methods for remediation of contaminated soils and groundwater rely on raising the temperature o...

  3. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  4. Abrupt Impacts of Climate Change: Anticipating Surprises

    NASA Astrophysics Data System (ADS)

    White, James W. C.; Alley, Richard B.; Archer, David E.; Barnosky, Anthony D.; Dunlea, Edward; Foley, Jonathan; Fu, Rong; Holland, Marika M.; Lozier, M. Susan; Schmitt, Johanna; Smith, Laurence C.; Sugihara, George; Thompson, David W. J.; Weaver, Andrew J.; Wofsy, Steven C.

    2014-05-01

    Levels of carbon dioxide and other greenhouse gases in Earth's atmosphere are exceeding levels recorded in the past millions of years, and thus climate is being forced beyond the range of the recent geological era. Lacking concerted action by the world's nations, it is clear that the future climate will be warmer, sea levels will rise, global rainfall patterns will change, and ecosystems will be altered. However, there is still uncertainty about how we will arrive at that future climate state. Although many projections of future climatic conditions have predicted steadily changing conditions giving the impression that communities have time to gradually adapt, the scientific community has been paying increasing attention to the possibility that at least some changes will be abrupt, perhaps crossing a threshold or "tipping point" to change so quickly that there will be little time to react. This presentation will synopsize the new US National Research Council Report, Abrupt Impacts of Climate Change: Anticipating Surprises, highlighting areas of increased and decreased concern, as well as areas of new concern. Emphasis is placed on not only abrupt change in physical climate, but on abrupt changes in human and natural systems that can occur as a result of a slowly changing climate. The report calls for action now on an abrupt change early warning system (ACEWS) if societies are to be resilient to climate change.

  5. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models.

    PubMed

    Drijfhout, Sybren; Bathiany, Sebastian; Beaulieu, Claudie; Brovkin, Victor; Claussen, Martin; Huntingford, Chris; Scheffer, Marten; Sgubin, Giovanni; Swingedouw, Didier

    2015-10-27

    Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change. PMID:26460042

  6. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models

    PubMed Central

    Drijfhout, Sybren; Bathiany, Sebastian; Beaulieu, Claudie; Brovkin, Victor; Claussen, Martin; Huntingford, Chris; Scheffer, Marten; Sgubin, Giovanni; Swingedouw, Didier

    2015-01-01

    Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change. PMID:26460042

  7. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models.

    PubMed

    Drijfhout, Sybren; Bathiany, Sebastian; Beaulieu, Claudie; Brovkin, Victor; Claussen, Martin; Huntingford, Chris; Scheffer, Marten; Sgubin, Giovanni; Swingedouw, Didier

    2015-10-27

    Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change.

  8. The economics of abrupt climate change.

    PubMed

    Perrings, Charles

    2003-09-15

    The US National Research Council defines abrupt climate change as a change of state that is sufficiently rapid and sufficiently widespread in its effects that economies are unprepared or incapable of adapting. This may be too restrictive a definition, but abrupt climate change does have implications for the choice between the main response options: mitigation (which reduces the risks of climate change) and adaptation (which reduces the costs of climate change). The paper argues that by (i) increasing the costs of change and the potential growth of consumption, and (ii) reducing the time to change, abrupt climate change favours mitigation over adaptation. Furthermore, because the implications of change are fundamentally uncertain and potentially very high, it favours a precautionary approach in which mitigation buys time for learning. Adaptation-oriented decision tools, such as scenario planning, are inappropriate in these circumstances. Hence learning implies the use of probabilistic models that include socioeconomic feedbacks.

  9. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    NASA Astrophysics Data System (ADS)

    Zeng, Chang; Liao, XueYang; Li, RuGuan; Wang, YuanSheng; Chen, Yiqiang; Su, Wei; Liu, Yuan; Wang, Li Wei; Lai, Ping; Huang, Yun; En, YunFei

    2015-09-01

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Based on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.

  10. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    SciTech Connect

    Zeng, Chang; Liao, XueYang; Li, RuGuan; Wang, YuanSheng; Chen, Yiqiang Su, Wei; Liu, Yuan; Wang, Li Wei; Lai, Ping; Huang, Yun; En, YunFei

    2015-09-28

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Based on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.

  11. Recent increases in extreme temperature occurrence over land

    NASA Astrophysics Data System (ADS)

    Weaver, Scott J.; Kumar, Arun; Chen, Mingyue

    2014-07-01

    Recently observed global and U.S. temperature increases are probed from the perspective of several hundred climate realizations afforded by the availability of reforecast climate model runs from the NCEP Climate Forecast System Version 2. The large number of seasonal realizations with the observed time-varying CO2 affords a unique opportunity to explore the role of greenhouse gas changes on 3 month seasonal mean temperature increases, and specifically, whether they are the result of a shift in the mean temperature distribution or an increase in its variability. It is found that significant positive shifts in the temperature probability density function (PDF) occur primarily as the result of the time-varying CO2 included in the historical model runs, although a contribution from natural climate variability modes cannot be categorically excluded. The temperature PDF comparison further indicates that the increasing global and U.S. temperatures over the last 30 years are predominantly the result of shifts in the mean temperature distribution and not increasing temperature variability. As such, the likelihood of increases in the occurrence of warm temperature extremes will likely continue to increase worldwide, leading to significant impacts on many socioeconomic sectors such as agriculture and public health.

  12. Recent Increases in Extreme Temperature Occurrence over Land

    NASA Astrophysics Data System (ADS)

    Weaver, S. J.; Kumar, A.; Chen, M.

    2014-12-01

    Recently observed global and U.S. temperature increases are probed from the perspective of several hundred climate realizations afforded by the availability of reforecast climate model runs from the NCEP Climate Forecast System Version 2 (CFSv2). The large number of seasonal realizations with the observed time varying CO2 affords a unique opportunity to explore the role of greenhouse gas changes on 3-month seasonal mean temperature increases, and specifically, whether they are the result of a shift in the mean temperature distribution or an increase in its variability. It is found that significant positive shifts in the temperature Probability Density Function (PDF) occurs primarily as the result of the time varying CO2 included in the historical model runs, although a contribution from natural climate variability modes cannot be categorically excluded. The temperature PDF comparison further indicates that the increasing global and U.S. temperatures over the last 30 years are predominantly the result of shifts in the mean temperature distribution and not increasing temperature variability. As such, the likelihood of increases in the occurrence of warm temperature extremes will likely continue to increase worldwide, leading to significant impacts on many socioeconomic sectors such as agriculture and public health.

  13. Abruptness of Cascade Failures in Power Grids

    NASA Astrophysics Data System (ADS)

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ``super-grids''.

  14. Abruptness of Cascade Failures in Power Grids

    PubMed Central

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into “super-grids”. PMID:24424239

  15. Abruptness of cascade failures in power grids.

    PubMed

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids". PMID:24424239

  16. Abruptness of cascade failures in power grids.

    PubMed

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-15

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids".

  17. Evaluation of temperature increase during in-office bleaching

    PubMed Central

    MONDELLI, Rafael Francisco Lia; SOARES, Ana Flávia; PANGRAZIO, Eugenio Gabriel Kegler; WANG, Linda; ISHIKIRIAMA, Sergio Kiyoshi; BOMBONATTI, Juliana Fraga Soares

    2016-01-01

    ABSTRACT The use of light sources in the bleaching process reduces the time required and promotes satisfactory results. However, these light sources can cause an increase in the pulp temperature. Objective The purpose of the present study was to measure the increase in intrapulpal temperature induced by different light-activated bleaching procedures with and without the use of a bleaching gel. Material and Methods A human maxillary central incisor was sectioned 2 mm below the cementoenamel junction. A K-type thermocouple probe was introduced into the pulp chamber. A 35% hydrogen peroxide bleaching gel was applied to the vestibular tooth surface. The light units used were a conventional halogen, a hybrid light (only LED and LED/Laser), a high intensity LED, and a green LED light. Temperature increase values were compared by two-way ANOVA and Tukey´s tests (p<0.05). Results There were statistically significant differences in temperature increases between the different light sources used and between the same light sources with and without the use of a bleaching gel. The presence of a bleaching gel generated an increase in intra-pulpal temperature in groups activated with halogen light, hybrid light, and high intensity LED. Compared to the other light sources, the conventional halogen lamp applied over the bleaching gel induced a significant increase in temperature (3.83±0.41°C). The green LED unit with and without gel application did not produce any significant intrapulpal temperature variations. Conclusion In the present study, the conventional halogen lamp caused the highest increase in intrapulpal temperature, and the green LED caused the least. There was an increase in temperature with all lights tested and the maximum temperature remained below the critical level (5.5°C). The addition of a bleaching gel led to a higher increase in intrapulpal temperatures. PMID:27119761

  18. Abrupt climate change: Mechanisms, patterns, and impacts

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    In the span of only a few decades, the global temperature can soar by more than a dozen degrees Celsius, a feat that 20 years ago was considered improbable, if not impossible. But recent research in the nascent field of rapid climate change has upended the dominant views of decades past. Focusing primarily on events during and after the most recent glaciation, from 80,000 years ago, the AGU monograph Abrupt Climate Change: Mechanisms, Patterns, and Impacts, edited by Harunur Rashid, Leonid Polyak, and Ellen Mosley-Thompson, explores the transient climate transitions that were only recently uncovered in climate proxies around the world. In this interview, Eos talks to Harunur Rashid about piecing together ancient climes, the effect of abrupt change on historical civilizations, and why younger researchers may be more worried about modern warming than their teachers.

  19. Predation life history responses to increased temperature variability.

    PubMed

    Barbosa, Miguel; Pestana, Joao; Soares, Amadeu M V M

    2014-01-01

    The evolution of life history traits is regulated by energy expenditure, which is, in turn, governed by temperature. The forecasted increase in temperature variability is expected to impose greater stress to organisms, in turn influencing the balance of energy expenditure and consequently life history responses. Here we examine how increased temperature variability affects life history responses to predation. Individuals reared under constant temperatures responded to different levels of predation risk as appropriate: namely, by producing greater number of neonates of smaller sizes and reducing the time to first brood. In contrast, we detected no response to predation regime when temperature was more variable. In addition, population growth rate was slowest among individuals reared under variable temperatures. Increased temperature variability also affected the development of inducible defenses. The combined effects of failing to respond to predation risk, slower growth rate and the miss-match development of morphological defenses supports suggestions that increased variability in temperature poses a greater risk for species adaptation than that posed by a mean shift in temperature.

  20. Increased temperature reduces herbivore host-plant quality.

    PubMed

    Bauerfeind, Stephanie S; Fischer, Klaus

    2013-11-01

    Globally increasing temperatures may strongly affect insect herbivore performance, as their growth and development is directly linked to ambient temperature as well as host-plant quality. In contrast to direct effects of temperature on herbivores, indirect effects mediated via thermal effects on host-plant quality are only poorly understood, despite having the potential to substantially impact performance and thereby to alter responses to the changing climatic conditions. We here use a full-factorial design to explore the direct (larvae were reared at 17 °C or 25 °C) and indirect effects (host plants were reared at 17 °C or 25 °C) of temperature on larval growth and life-history traits in the temperate-zone butterfly Pieris napi. Direct temperature effects reflected the common pattern of prolonged development and increased body mass at lower temperatures. At the higher temperature, efficiency of converting food into body matter was much reduced being accompanied by an increased food intake, suggesting compensatory feeding. Indirect temperature effects were apparent as reduced body mass, longer development time, an increased food intake, and a reduced efficiency of converting food into body matter in larvae feeding on plants grown at the higher temperature, thus indicating poor host-plant quality. The effects of host-plant quality were more pronounced at the higher temperature, at which compensatory feeding was much less efficient. Our results highlight that temperature-mediated changes in host-plant quality are a significant, but largely overlooked source of variation in herbivore performance. Such effects may exaggerate negative effects of global warming, which should be considered when trying to forecast species' responses to climate change.

  1. The role of increasing temperature variability in European summer heatwaves.

    PubMed

    Schär, Christoph; Vidale, Pier Luigi; Lüthi, Daniel; Frei, Christoph; Häberli, Christian; Liniger, Mark A; Appenzeller, Christof

    2004-01-22

    Instrumental observations and reconstructions of global and hemispheric temperature evolution reveal a pronounced warming during the past approximately 150 years. One expression of this warming is the observed increase in the occurrence of heatwaves. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small. Here we show that this framework fails to explain the record-breaking central European summer temperatures in 2003, although it is consistent with observations from previous years. We find that an event like that of summer 2003 is statistically extremely unlikely, even when the observed warming is taken into account. We propose that a regime with an increased variability of temperatures (in addition to increases in mean temperature) may be able to account for summer 2003. To test this proposal, we simulate possible future European climate with a regional climate model in a scenario with increased atmospheric greenhouse-gas concentrations, and find that temperature variability increases by up to 100%, with maximum changes in central and eastern Europe.

  2. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  3. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  4. Understanding Abrupt, Natural Climate Variability Post-Industrial Revolution from the Subtropical Eastern Pacific: A Novel High Resolution Alkenone-derived Sea Surface Temperature Record

    NASA Astrophysics Data System (ADS)

    Kelly, C. S.; O'Mara, N. A.; Herbert, T.; Abella-Gutiérrez, J. L.; Herguera, J. C.

    2015-12-01

    Despite the ocean's importance in global biogeochemical feedbacks and heat storage, there is still a paucity of decadally-resolved sea surface temperature (SST) records to complement lacustrine and dendrological records of recent paleoclimate. Natural climate variability on multidecadal timescales is dominated by internal ocean circulation dynamics and feedbacks, and it is therefore imperative to employ marine proxies to reconstruct high resolution climate change. The timescales of this ocean-induced natural climate variability can be broken down into a few characteristic climate modes. Pressing questions about these modes include their stationarity in frequency and amplitude over time, in addition to the hypothesis that anthropogenic climate change has altered their behavior in comparison to natural variability. To pursue these questions, we must discern and analyze suitable climate archives in regions where modes of interest dominate modern climate variability. The region of Baja California, Mexico exhibits exceptional teleconnection to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Local, dramatic effects of ENSO and PDO on the marine biology and economy underline the importance of regional paleoclimate records from the Baja peninsula. Here, we present a high-resolution alkenone-derived SST reconstruction from the Industrial Revolution through the year 2000 by analysis of laminated box and Kasten sediment cores at Site PCM 00-78 (25.18°N, 112.66°W) in the subtropical eastern Pacific at a depth of 540 meters. Our SST record corresponds with NOAA extended reconstructed sea surface temperature, providing a robust basis for organic geochemical marine climatic reconstructions on timescales usually accessible only through speleothems, coral density bands, tree rings, and the like. Accordingly, based on this comparison to the historical data we expect our SST record may provide a more robust record of inter and multidecadal

  5. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    PubMed

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development). PMID:26461029

  6. Large diurnal temperature range increases bird sensitivity to climate change

    PubMed Central

    Briga, Michael; Verhulst, Simon

    2015-01-01

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimentally manipulated foraging costs, reflecting a typical laboratory ‘easy’ foraging environment and a ‘hard’ semi-natural environment respectively. DTR increased mortality on days with low minimum temperature in the easy foraging environment, but on days with high minimum temperature in the semi-natural environment. Thus, in a natural environment DTR effects will become increasingly important in a warming world, something not detectable in an ‘easy’ laboratory environment. These effects were particularly apparent at young ages. Critical time window analyses showed that the effect of DTR on mortality is delayed up to three months, while effects of minimum temperature occurred within a week. These results show that daily temperature variability can substantially impact the population viability of endothermic species. PMID:26563993

  7. Large diurnal temperature range increases bird sensitivity to climate change.

    PubMed

    Briga, Michael; Verhulst, Simon

    2015-01-01

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimentally manipulated foraging costs, reflecting a typical laboratory 'easy' foraging environment and a 'hard' semi-natural environment respectively. DTR increased mortality on days with low minimum temperature in the easy foraging environment, but on days with high minimum temperature in the semi-natural environment. Thus, in a natural environment DTR effects will become increasingly important in a warming world, something not detectable in an 'easy' laboratory environment. These effects were particularly apparent at young ages. Critical time window analyses showed that the effect of DTR on mortality is delayed up to three months, while effects of minimum temperature occurred within a week. These results show that daily temperature variability can substantially impact the population viability of endothermic species. PMID:26563993

  8. Large diurnal temperature range increases bird sensitivity to climate change.

    PubMed

    Briga, Michael; Verhulst, Simon

    2015-11-13

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimentally manipulated foraging costs, reflecting a typical laboratory 'easy' foraging environment and a 'hard' semi-natural environment respectively. DTR increased mortality on days with low minimum temperature in the easy foraging environment, but on days with high minimum temperature in the semi-natural environment. Thus, in a natural environment DTR effects will become increasingly important in a warming world, something not detectable in an 'easy' laboratory environment. These effects were particularly apparent at young ages. Critical time window analyses showed that the effect of DTR on mortality is delayed up to three months, while effects of minimum temperature occurred within a week. These results show that daily temperature variability can substantially impact the population viability of endothermic species.

  9. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2016-05-01

    Recent experiments have demonstrated that the metamaterial approach is capable of a drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al -A l2O3 ENZ core-shell metamaterials. Here, we perform theoretical modeling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modeling and experimental results in both aluminum- and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium-, Mg B2- , and H2S -based metamaterial superconductors is evaluated. The Mg B2 -based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of a H2S -based metamaterial Tc appears to reach ˜250 K.

  10. Does temperature increase or decrease in adiabatic decompression of magma?

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Ghiorso, M. S.; Khan, T.

    2011-12-01

    We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.

  11. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninova, Vera N.; Yost, Bradley; Zander, Kathryn; Osofsky, M. S.; Kim, Heungsoo; Saha, Shanta; Greene, R. L.; Smolyaninov, Igor I.

    2014-12-01

    A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

  12. Approaching the Edge of Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Ramadhin, C.; Yi, C.

    2015-12-01

    The phenomenon of Abrupt Climate Change (ACC) became evident as paleoclimate data analyses began revealing that Earth's climate has the ability to rapidly switch from one state to the next in just a few decades after thresholds are crossed. Previously paleo-climatologists thought these switches were gradual but now there is growing concern to identify thresholds and the dominant feedback mechanisms that propel systems toward thresholds. Current human civilization relies heavily on climate stability and ACC threatens immense disruption with potentially disastrous consequences for all ecosystems. Therefore, prediction of the climate system's approach to threshold values would prove vital for the resilience of civilization through development of appropriate adaptation strategies when that shift occurs. Numerous studies now establish that earth systems are experiencing dramatic changes both by system interactions and anthropogenic sources adding urgency for comprehensive knowledge of tipping point identification. Despite this, predictions are difficult due to the immensity of interactions among feedback mechanisms. In this paper, we attempt to narrow this broad spectrum of critical feedback mechanisms by reviewing several publications on role of feedbacks in initiating past climate transitions establishing the most critical ones and significance in current climate changes. Using a compilation of paleoclimate datasets we compared the rates of deglaciations with that of glacial inceptions, which are approximately 5-10 times slower. We hypothesize that the critical feedbacks are unique to each type of transition such that warmings are dominated by the ice-albedo feedback while coolings are a combination of temperature - CO2 and temperature-precipitation followed by the ice-albedo feedbacks. Additionally, we propose the existence of a commonality in the dominant trigger feedbacks for astronomical and millennial timescale abrupt climate shifts and as such future studies

  13. Increased risk of muscle tears below physiological temperature ranges

    PubMed Central

    Scott, E. E. F.; Hamilton, D. F.; Wallace, R. J.; Muir, A. Y.

    2016-01-01

    Objectives Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. DOI: 10

  14. Increasing accuracy of high temperature and speed processes micropyrometry

    NASA Astrophysics Data System (ADS)

    Boronenko, M. P.; Gulyaev, P. Yu; Seregin, A. E.; Bebiya, A. G.

    2015-10-01

    The correction factor introduction in the method of measuring the brightness temperature of individual hot particles moving at speeds of 100-1140m/s with diameter above the diffraction limit of the OES, can solve the problem of the moving objects brightness pyrometry, increasing accuracy of at least 2.5%.

  15. Impact of increasing temperature on snowfall in Switzerland

    NASA Astrophysics Data System (ADS)

    Serquet, G.; Marty, C.; Rebetez, M.

    2012-04-01

    The exact impact of changing temperatures on snow amounts is extremely important for mountainous regions, not only for hydrological aspects but also for winter tourism and the leisure industry in winter ski resorts. However, the impact of increasing temperatures on snowfall amounts is difficult to measure because of the large natural variability of precipitation. In addition, the impact of increasing temperatures varies, depending on region and altitude. Moreover, the impact of the observed increasing trend in temperature on snowfall and snow cover has usually been investigated on a seasonal basis only. On a monthly basis, the relationship between this increase in temperature and snowfall is still largely unknown. Of particular concern are the autumn and spring months and variations with altitude. In order to isolate the impact of changing temperatures on snowfall from the impact of changes in the frequency and intensity of total precipitation, we analyzed the proportion of snowfall days compared to precipitation days for each month from November to April in Switzerland. Our analyses concern 52 meteorological stations located between 200 and 2700 m asl over a 48 year time span. Our results show clear decreasing trends in snowfall days relative to precipitation days for all months (November to April) during the study period 1961-2008. Moreover, the present conditions in December, January and February correspond to those measured in the 1960's in November and March. During the whole snow season, the snowfall ratios have been transferred in elevation by at least 300 m from 1961 to 2008. This means that with an expected temperature increase during the coming decades at least similar to the temperature rise of recent decades, we can assume an additional similar altitudinal transfer of the snowfall days relative to precipitation days ratios. The current situation in November and March could thus become the future situation in December, January and February. During the

  16. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton

    PubMed Central

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J.

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor (“brownification”) of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development). PMID:26461029

  17. Temperature increase in the fetus exposed to UHF RFID readers.

    PubMed

    Fiocchi, Serena; Parazzini, Marta; Liorni, Ilaria; Samaras, Theodoros; Ravazzani, Paolo

    2014-07-01

    Exposure to electromagnetic fields (EMFs) has prominently increased during the last decades due to the rapid development of new technologies. Among the various devices emitting EMFs, those based on Radio-frequency identification (RFID) technologies are used in all aspects of everyday life, and expose people unselectively. This scenario could pose a potential risk for some groups of the general population, such as pregnant women, who are expected to be possibly more sensitive to the thermal effects produced by EMF exposure. This is the first paper that addresses the estimation of temperature rise in two pregnant women models exposed to ultrahigh frequency RFID by computational techniques. Results show that the maximum temperature increase of the fetus and of the pregnancy-related tissues is relatively high (even about 0.7 °C), not too far from the known threshold of biological effects. However, this increase is confined to a small volume in the tissues.

  18. Increasing exfiltration from pervious concrete and temperature monitoring.

    PubMed

    Tyner, J S; Wright, W C; Dobbs, P A

    2009-06-01

    Pervious concrete typically has an infiltration rate far exceeding any expectation of precipitation rate. The limiting factor of a retention based pervious concrete system is often defined by how quickly the underlying soil subgrade will infiltrate the water temporarily stored within the concrete and/or aggregate base. This issue is of particular importance when placing a pervious concrete system on compacted fine textured soils. This research describes the exfiltration from twelve pervious concrete plots constructed on a compacted clay soil in eastern Tennessee, USA. Several types of treatments were applied to the clay soil prior to placement of the stone aggregate base and pervious concrete in an attempt to increase the exfiltration rate, including: 1) control--no treatment; 2) trenched--soil trenched and backfilled with stone aggregate; 3) ripped--soil ripped with a subsoiler; and 4) boreholes--placement of shallow boreholes backfilled with sand. The average exfiltration rates were 0.8 cm d(-1) (control), 4.6 cm d(-1) (borehole), 10.0 cm d(-1) (ripped), and 25.8 cm d(-1) (trenched). The trenched treatment exfiltrated fastest, followed by the ripped and then the borehole treatments, although the ripped and borehole treatments were not different from one another at the 5% level of significance. The internal temperature of the pervious concrete and aggregate base was monitored throughout the winter of 2006-2007. Although the temperature of the pervious concrete dropped below freezing 24 times, freezing concrete temperatures never coincided with free water being present in the large pervious concrete pores. The coldest recorded air temperature was -9.9 degrees C, and the corresponding coldest recorded pervious concrete temperature was -7.1 degrees C. The temperature of the pervious concrete lagged diurnal air temperature changes and was generally buffered in amplitude, particularly when free water was present since the addition of water increases the thermal

  19. Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum.

    PubMed

    Engert, Antonia; Chakrabarti, Shumon; Saul, Nadine; Bittner, Michal; Menzel, Ralph; Steinberg, Christian E W

    2013-02-01

    For organisms, temperature is one of the most important environmental factors and gains increasing importance due to global warming, since increasing temperatures may pose organisms close to their environmental tolerance limits and, thus, they may become more vulnerable to environmental stressors. We analyzed the temperature-dependence of the water-soluble antioxidant capacity of the cladoceran Moina macrocopa and evaluated its life trait variables with temperature (15, 20, 25, 30°C) and humic substance (HS) concentrations (0, 0.18, 0.36, 0.90, 1.79 mM DOC) as stressors. Temperatures below and above the apparent optimum (20°C) reduced the antioxidative capacity. Additions of HSs increased body length, but decreased mean lifespan at 15 and 20°C. There was no clear HS-effect on offspring numbers at 15, 20, and 30°C. At 25°C with increasing HS-concentration, lifespan was extended and offspring numbers increased tremendously, reaching 250% of the control. Although the applied HS preparation possesses estrogenic and antiandrogenic activities, a xenohormone mechanism does not seem plausible for the reproductive increase, because comparable effects did not occur at other temperatures. A more convincing explanation appears to be the mitohormesis hypothesis which states that a certain increase of reactive oxygen production leads to improved health and longevity and, with Moina, also to increased offspring numbers. Our results suggest that at least with the eurythermic M. macrocopa, a temperature above the optimum can be beneficial for several life trait variables, even when combined with a chemical stressor. Temperatures approximately 10°C above its optimum appear to adversely affect the lifespan and reproduction of M. macrocopa. This indicates that this cladoceran species seems to be able to utilize temperature as an ecological resource in a range slightly above its thermal optimum. PMID:23211326

  20. Enhanced sludge reduction in septic tanks by increasing temperature.

    PubMed

    Pussayanavin, Tatchai; Koottatep, Thammarat; Eamrat, Rawintra; Polprasert, Chongrak

    2015-01-01

    Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed.

  1. Abrupt climate shift in the Western Mediterranean Sea

    PubMed Central

    Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.

    2016-01-01

    One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected. PMID:26965790

  2. Abrupt climate shift in the Western Mediterranean Sea.

    PubMed

    Schroeder, K; Chiggiato, J; Bryden, H L; Borghini, M; Ben Ismail, S

    2016-01-01

    One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected. PMID:26965790

  3. Abrupt climate shift in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.

    2016-03-01

    One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected.

  4. An abrupt slowdown of Atlantic Meridional Overturning Circulation during 1915-1935 induced by solar forcing in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Lin, P.; Song, Y.; Yu, Y.; Liu, H.

    2014-06-01

    In this study, we explore an abrupt change of Atlantic Meridional Overturning Circulation (AMOC) apparent in the historical run simulated by the second version of the Flexible Global Ocean-Atmosphere-Land System model - Spectral Version 2 (FGOALS-s2). The abrupt change is noted during the period from 1915 to 1935, in which the maximal AMOC value is weakened beyond 6 Sv (1 Sv = 106 m3 s-1). The abrupt signal first occurs at high latitudes (north of 46° N), then shifts gradually to middle latitudes (∼35° N) three to seven years later. The weakened AMOC can be explained in the following. The weak total solar irradiance (TIS) during early twentieth century decreases pole-to-equator temperature gradient in the upper stratosphere. The North polar vortex is weakened, which forces a negative North Atlantic Oscillation (NAO) phase during 1905-1914. The negative phase of NAO induces anomalous easterly winds in 50-70° N belts, which decrease the release of heat fluxes from ocean to atmosphere and induce surface warming over these regions. Through the surface ice-albedo feedback, the warming may lead to continuously melting sea ice in Baffin Bay and Davis Strait, which results in freshwater accumulation. This can lead to salinity and density reductions and then an abrupt slowdown of AMOC. Moreover, due to increased TIS after 1914, the enhanced Atlantic northward ocean heat transport from low to high latitudes induces an abrupt warming of sea surface temperature or upper ocean temperature in mid-high latitudes, which can also weaken the AMOC. The abrupt change of AMOC also appears in the PiControl run, which is associated with the lasting negative NAO phases due to natural variability.

  5. Responding to bioterror concerns by increasing milk pasteurization temperature would increase estimated annual deaths from listeriosis.

    PubMed

    Stasiewicz, Matthew J; Martin, Nicole; Laue, Shelley; Gröhn, Yrjo T; Boor, Kathryn J; Wiedmann, Martin

    2014-05-01

    In a 2005 analysis of a potential bioterror attack on the food supply involving a botulinum toxin release into the milk supply, the authors recommended adopting a toxin inactivation step during milk processing. In response, some dairy processors increased the times and temperatures of pasteurization well above the legal minimum for high temperature, short time pasteurization (72 °C for 15 s), with unknown implications for public health. The present study was conducted to determine whether an increase in high temperature, short time pasteurization temperature would affect the growth of Listeria monocytogenes, a potentially lethal foodborne pathogen normally eliminated with proper pasteurization but of concern when milk is contaminated postpasteurization. L. monocytogenes growth during refrigerated storage was higher in milk pasteurized at 82 °C than in milk pasteurized at 72 °C. Specifically, the time lag before exponential growth was decreased and the maximum population density was increased. The public health impact of this change in pasteurization was evaluated using a quantitative microbial risk assessment of deaths from listeriosis attributable to consumption of pasteurized fluid milk that was contaminated postprocessing. Conservative estimates of the effect of pasteurizing all fluid milk at 82 °C rather than 72 °C are that annual listeriosis deaths from consumption of this milk would increase from 18 to 670, a 38-fold increase (8.7- to 96-fold increase, 5th and 95th percentiles). These results exemplify a situation in which response to a rare bioterror threat may have the unintended consequence of putting the public at increased risk of a known, yet severe harm and illustrate the need for a paradigm shift toward multioutcome risk benefit analyses when proposing changes to established food safety practices.

  6. Responding to bioterror concerns by increasing milk pasteurization temperature would increase estimated annual deaths from listeriosis.

    PubMed

    Stasiewicz, Matthew J; Martin, Nicole; Laue, Shelley; Gröhn, Yrjo T; Boor, Kathryn J; Wiedmann, Martin

    2014-05-01

    In a 2005 analysis of a potential bioterror attack on the food supply involving a botulinum toxin release into the milk supply, the authors recommended adopting a toxin inactivation step during milk processing. In response, some dairy processors increased the times and temperatures of pasteurization well above the legal minimum for high temperature, short time pasteurization (72 °C for 15 s), with unknown implications for public health. The present study was conducted to determine whether an increase in high temperature, short time pasteurization temperature would affect the growth of Listeria monocytogenes, a potentially lethal foodborne pathogen normally eliminated with proper pasteurization but of concern when milk is contaminated postpasteurization. L. monocytogenes growth during refrigerated storage was higher in milk pasteurized at 82 °C than in milk pasteurized at 72 °C. Specifically, the time lag before exponential growth was decreased and the maximum population density was increased. The public health impact of this change in pasteurization was evaluated using a quantitative microbial risk assessment of deaths from listeriosis attributable to consumption of pasteurized fluid milk that was contaminated postprocessing. Conservative estimates of the effect of pasteurizing all fluid milk at 82 °C rather than 72 °C are that annual listeriosis deaths from consumption of this milk would increase from 18 to 670, a 38-fold increase (8.7- to 96-fold increase, 5th and 95th percentiles). These results exemplify a situation in which response to a rare bioterror threat may have the unintended consequence of putting the public at increased risk of a known, yet severe harm and illustrate the need for a paradigm shift toward multioutcome risk benefit analyses when proposing changes to established food safety practices. PMID:24780323

  7. Low-latitude mountain glacier evidence for abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E. S.; Lin, P.; Davis, M. E.; Mashiotta, T. A.; Brecher, H. H.

    2004-12-01

    Clear evidence that a widespread warming of Earth's climate system is now underway comes from low latitude mountain glaciers. Proxy temperature histories reconstructed from ice cores, and the rapidly accelerating loss of both the total ice area and ice volume on a near global scale suggest that these glaciers responding to increasing rates of melting. In situ observations reveal the startling rates at which many tropical glaciers are disappearing. For example, the retreat of the terminus of the Qori Kalis Glacier in Peru is roughly 200 meters per year, 40 times faster than its retreat rate in 1978. Similarly, in 1912 the ice on Mount Kilimanjaro covered 12.1 km2, but today it covers only 2.6 km2. If the current rate of retreat continues, the perennial ice fields may disappear within the next few decades, making this the first time in the past 11,700 years that Kilimanjaro will be devoid of the ice that shrouds its summit. Tropical glaciers may be considered ``the canaries in the coal mine'' for the global climate system as they integrate and respond to key climatological variables, such as temperature, precipitation, cloudiness, humidity, and incident solar radiation. A composite of the decadally-averaged oxygen isotopic records from three Andean and three Tibetan ice cores extending back over the last two millennia shows an isotopic enrichment in the 20th century that suggests a large-scale warming is underway at lower latitudes. Multiple lines of evidence from Africa, the Middle East, Europe and South America indicate an abrupt mid-Holocene climate event in the low latitudes. If such an event were to occur now with a global human population of 6.3 billion people, the consequences could be severe. Clearly, we need to understand the nature and cause of abrupt climate events.

  8. A study of the early warning signals of abrupt change in the Pacific decadal oscillation

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Hou, Wei; Yan, Peng-Cheng; Zhang, Zhi-Sen; Wang, Kuo

    2015-08-01

    In recent years, the phenomenon of a critical slowing down has demonstrated its major potential in discovering whether a complex dynamic system tends to abruptly change at critical points. This research on the Pacific decadal oscillation (PDO) index has been made on the basis of the critical slowing down principle in order to analyze its early warning signal of abrupt change. The chaotic characteristics of the PDO index sequence at different times are determined by using the largest Lyapunov exponent (LLE). The relationship between the regional sea surface temperature (SST) background field and the early warning signal of the PDO abrupt change is further studied through calculating the variance of the SST in the PDO region and the spatial distribution of the autocorrelation coefficient, thereby providing the experimental foundation for the extensive application of the method of the critical slowing down phenomenon. Our results show that the phenomenon of critical slowing down, such as the increase of the variance and autocorrelation coefficient, will continue for six years before the abrupt change of the PDO index. This phenomenon of the critical slowing down can be regarded as one of the early warning signals of an abrupt change. Through calculating the LLE of the PDO index during different times, it is also found that the strongest chaotic characteristics of the system occurred between 1971 and 1975 in the early stages of an abrupt change (1976), and the system was at the stage of a critical slowing down, which proves the reliability of the early warning signal of abrupt change discovered in 1970 from the mechanism. In addition, the variance of the SST, along with the spatial distribution of the autocorrelation coefficient in the corresponding PDO region, also demonstrates the corresponding relationship between the change of the background field of the SST and the change of the PDO. Project supported by the National Natural Science Foundation of China (Grant Nos

  9. Abrupt plate accelerations shape rifted continental margins

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength–velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  10. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  11. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time. PMID:27437571

  12. Microbial response to increasing temperatures during winter in arable soils

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Potthoff, Martin; Joergensen, Rainer Georg

    2014-05-01

    Climate scenarios predict increasing temperatures and higher precipitation rates in late fall to early spring, both holding the potential to modify carbon and nutrient dynamics in soils by altering snow pack thickness and soil frost events. When soils are frozen, a small amount of unfrozen water allows microorganisms to remain active at temperatures down to -10 °C. We carried out a field experiment on the microbial use of maize straw. We compared soils of two different clay contents and used latitude as a proxy for climate. Microcosms with sieved soil were mixed with chopped maize leaf straw (C/N 17) at a rate of 1 mg C g-1 dry soil, un-amended microcosms served as control. Results indicated that C-mineralization rates were independent from clay content. However, the microbial use of maize derived nitrogen was only increased in the soil with 13% clay compared to 33% clay in the other soil. Microbial responses to climate changes can be expected to be very specific due to characteristics of the soil and/or the location.

  13. Temperature increase of 21st century mitigation scenarios

    SciTech Connect

    Van Vuuren, Detlef; Meinshausen, Malte; Plattner, Gian-Kasper; Joos, Fortunat; Strassmann, Kuno M.; Smith, Steven J.; Wigley, T. M.; Raper, S.; Riahi, Keywan; De La Chesnaye, Francisco; Den Elzen, Michel; Fujino, Junicho; Kejun, Jiang; Nakicenovic, Nebojsa; Paltsev, S.; Reilly, J. M.

    2008-10-06

    Estimates on 21st century global mean surface temperature increase have generally been based on scenarios that do not include climate policies. Newly developed multi-gas mitigation scenarios now allow the assessment of possible impacts of climate policies on projected warming ranges. By combing emission pathway results from multiple energy-economic models, we show that these mitigation scenarios result in a range of 21st century temperature increase of 0.5 to 4.2°C over 1990 levels as compared to 1.3-7.3 °C for the no-policy cases. About half the range is due to differences in the assumed stringency of the global climate policy and half is due to uncertainty in our understanding of the climate system, specifically, the carbon cycle and climate sensitivity. A minimum warming of about 0.5-2.7°C (avg. 1.3oC) remains for even the most stringent stabilization scenarios analyzed here - highlighting the need for both emission mitigation and adaptation policies.

  14. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Brander, Keith; Luczak, Christophe; Ibanez, Frederic

    2008-11-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.

  15. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  16. Temperature Increase due to the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Jafarov, E. E.; Schaefer, K. M.

    2015-12-01

    The Permafrost Carbon Feedback (PCF) is the amplification of anthropogenic warming due to carbon dioxide (CO2) and methane (CH4) emissions from thawing permafrost. It is estimated that permafrost-affected soils store two times more of the organic carbon that is currently available in the atmosphere. Thawing of near surface permafrost will lead to irreversible changes for environment including its feedback on the global temperatures. Previous studies of the PCF indicate emissions from thawing permafrost will start sometime in the middle of this century with a total of 120 ± 85 Gt of carbon by 2100, resulting in a global temperature increase of 0.29 ± 0.21 °C. The northern high latitudes will remain relatively cold and wet with slow permafrost degradation and even slower organic matter decay, resulting in a PCF that will persist for centuries. Few studies included projections beyond 2100, but those that did indicate 50% to 60% of the emissions will occur after. What will be the impact of the PCF on global climate beyond 2100? How much warming from the PCF have we already committed to, even if we reach the 2 °C warming target above pre-industrial levels by 2100?

  17. Towards Greenland Glaciation: cumulative or abrupt transition?

    NASA Astrophysics Data System (ADS)

    Tan, Ning; Dumas, Christophe; Ladant, Jean-Baptiste; Ramstein, Gilles; Contoux, Camille

    2016-04-01

    During the mid-Pliocene warming period (3-3.3 Ma BP), global annual mean temperature is warmer by 2-3 degree than pre-industrial. Greenland ice sheet volume is supposed to be a 50% reduction compared to nowadays [Haywood et al. 2010]. Around 2.7-2.6 Ma BP, just ~ 500 kyr after the warming peak of mid-Pliocene, there is already full Greenland Glaciation [Lunt et al. 2008]. How does Greenland ice sheet evolve from a half size to a glaciation level during 3 Ma - 2.5 Ma? Data show that there is a decreasing trend of atmospheric CO2 concentration from 3 Ma to 2.5 Ma [Seki et al.2010; Bartoli et al. 2011; Martinez et al. 2015]. However, a recent study [Contoux et al. 2015] suggests that a lowering of CO2 is not sufficient to initiate a perennial glaciation on Greenland and must be combined to low summer insolation, to preserve the ice sheet during insolation maximum, suggesting a cumulative process. In order to diagnose whether the ice sheet build-up is an abrupt event or a cumulative process, we carry on, for the first time, a transient simulation of climate and ice sheet evolutions from 3 Ma to 2.5 Ma. This strategy enables to investigate waxing and waning of the ice sheet during several orbital cycles. To reach this goal, we use a tri-dimensional interpolation method designed by Ladant et al. (2014) which combines the evolution of CO2 concentration, orbital parameters and Greenland ice sheet sizes in an off-line way by interpolating snapshots simulations. Thanks to this new method, we can build a transient like simulation through asynchronous coupling between GCM and ice sheet model. With this method, we may consistently answer the question of the build-up of Greenland: abrupt or cumulative process.

  18. Hydrogen-atmosphere induction furnace has increased temperature range

    NASA Technical Reports Server (NTRS)

    Caves, R. M.; Gresslin, C. H.

    1966-01-01

    Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.

  19. Increasing Precision Of Temperature Sensors Of Liquid H2

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1995-01-01

    Commercial silicon-diode temperature sensors intended for use in boiling or nearly boiling liquid hydrogen at temperatures near 37 degrees R recalibrated to greater precision by method involving careful attention to details of design, operation, and computation. Method based on fundamental electrical and thermodynamic principles and good engineering practice, also applicable to recalibration of other temperature sensors intended for use in other boiling or nearly boiling liquids.

  20. Can ice sheets trigger abrupt climatic change?

    SciTech Connect

    Hughes, T.

    1996-11-01

    The discovery in recent years of abrupt climatic changes in climate proxy records from Greenland ice cores and North Atlantic sediment cores, and from other sites around the world, has diverted attention from gradual insolation changes caused by Earth`s orbital variations to more rapid processes on Earth`s surface as forcing Quaternary climatic change. In particular, forcing by ice sheets has been quantified for a major ice stream that drained the Laurentide Ice Sheet along Hudson Strait. The history of these recent discoveries leading to an interest in ice sheets is reviewed, and a case is made that ice sheets may drive abrupt climatic change that is virtually synchronous worldwide. Attention is focused on abrupt inception and termination of a Quaternary glaciation cycle, abrupt changes recorded as stadials and interstadials within the cycle, abrupt changes in ice streams that trigger stadials and interstadials, and abrupt changes in the Laurentide Ice Sheet linked to effectively simultaneous abrupt changes in its ice streams. Remaining work needed to quantify further these changes is discussed. 90 refs., 14 figs.

  1. Seagrass tolerance to herbivory under increased ocean temperatures.

    PubMed

    Garthwin, Ruby G; Poore, Alistair G B; Vergés, Adriana

    2014-06-30

    Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2-3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change. PMID:23993389

  2. Seagrass tolerance to herbivory under increased ocean temperatures.

    PubMed

    Garthwin, Ruby G; Poore, Alistair G B; Vergés, Adriana

    2014-06-30

    Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2-3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change.

  3. Rated Temperature Of Silver/Zinc Batteries Is Increased

    NASA Technical Reports Server (NTRS)

    Hill, Derek P.

    1992-01-01

    Report shows silver-zinc batteries of specific commercial type (28 V, 20 A*h, Eagle-Picher Battery MAR 4546-5) operated safely at higher temperature than previously thought possible. Batteries operated to 239 degrees F (115 degrees C) without going into sustained thermal runaway. Operated 49 degrees F (27 degrees C) above previous maximum.

  4. Monsoon abrupt change and its dominant factors

    NASA Astrophysics Data System (ADS)

    Yao, Qiang; Fu, Conbin

    2010-05-01

    Abrupt changes of monsoon are apparent in the geological record of climate over various timescales. During Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. In this context, we regard monsoon as dissipative system, which has many characteristic times, to contrive various factors and corresponding mechanism dominated in monsoon's abrupt change. The abrupt change of monsoon over inter-decadal to century timescales may be resulting from different fluctuation's competition, which impose on the inner basic physic processes. In order to find out the key factors which control the monsoon's abrupt change, starting from the seminar works by Leith, who proposed to employ the Fluctuation-dissipation Response theory(FDR) to study the response of climatic systems to changes in the external forcing, many authors applied this relation to different geophysical problems, ranging from simplified models to general circulation models and to the covariance of satellite radiance spectra. The FDR has been originally developed in the framework of statistical mechanics of Hamiltonian systems, nevertheless a generalized FDR holds under rather general hypotheses, regardless of the Hamiltonian, or equilibrium nature of the system. Our work verify the FDR theory' applicability in monsoon systems, which demonstrates that it can reveal clear and fundamental factors that control monsoon's abrupt change. By making use of FDR theory, combined with observational data analysis, we have already seen how monsoon systems with many characteristics times, different correlation functions behave differently and a variety of timescales emerges, which correspond to the different decay times of the correlation functions. Via theoretical and data analysis, it is suggested that each monsoon system has experienced several significant abrupt changes in 20th century. The global main monsoon rainfall has undergone an obvious abrupt jump in the mid- and late 1970s

  5. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  6. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  7. Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases.

    PubMed

    Karvonen, Anssi; Rintamäki, Päivi; Jokela, Jukka; Valtonen, E Tellervo

    2010-11-01

    Global warming may impose severe risks for aquatic animal health if increasing water temperature leads to an increase in the incidence of parasitic diseases. Essentially, this could take place through a temperature-driven effect on the epidemiology of the disease. For example, higher temperature may boost the rate of disease spread through positive effects on parasite fitness in a weakened host. Increased temperature may also lengthen the transmission season leading to higher total prevalence of infection and more widespread epidemics. However, to date, general understanding of these relationships is limited due to scarcity of long-term empirical data. Here, we present one of the first long-term multi-pathogen data sets on the occurrence of pathogenic bacterial and parasitic infections in relation to increasing temperatures in aquatic systems. We analyse a time-series of disease dynamics on two fish farms in northern Finland from 1986 to 2006. We first demonstrate that the annual mean water temperature increased significantly on both farms over the study period and that the increase was most pronounced in the late summer (July-September). Second, we show that the prevalence of infection (i.e. proportion of fish tanks infected each year) increased with temperature. Interestingly, this pattern was observed in some of the diseases (Ichthyophthirius multifiliis, Flavobacterium columnare), whereas in the other diseases, the pattern was the opposite (Ichthyobodo necator) or absent (Chilodonella spp.). These results demonstrate the effect of increasing water temperature on aquatic disease dynamics, but also emphasise the importance of the biology of each disease, as well as the role of local conditions, in determining the direction and magnitude of these effects.

  8. Abrupt changes in North American climate during early Holocene times

    NASA Astrophysics Data System (ADS)

    Hu, F. S.; Slawinski, D.; Wright, H. E.; Ito, E.; Johnson, R. G.; Kelts, K. R.; McEwan, R. F.; Boedigheimer, A.

    1999-07-01

    Recent studies of the Greenland ice cores have offered many insights into Holocene climatic dynamics at decadal to century timescales. Despite the abundance of continental records of Holocene climate, few have sufficient chronological control and sampling resolution to compare with the Greenland findings. Butannually laminated sediments (varves) from lakes can provide high-resolution continental palaeoclimate data with secure chronologies. Here we present analyses of varved sediments from Deep Lake in Minnesota, USA. Trends in the stable oxygen-isotope composition of the sedimentary carbonate indicate a pronounced climate cooling from 8.9 to 8.3kyr before present, probably characterized by increased outbreaks of polar air, decreased precipitation temperatures, and a higher fraction of the annual precipitation falling as snow. The abrupt onset of this climate reversal, over several decades, was probably caused by a reorganization of atmospheric circulation and cooling of the Arctic airmass in summer that resulted from the final collapse of the Laurentide ice near Hudson Bay and the discharge of icebergs from the Quebec and Keewatin centres into the Tyrell Sea. The timing and duration of this climate reversal suggest that it is distinct from the prominent widespread cold snap that occurred 8,200 years ago in Greenland and other regions,,. No shifts in the oxygen-isotope composition of sediment carbonate occurred at 8.2kyr before present at Deep Lake, but varve thickness increased dramatically, probably as a result of increased deposition of aeolian dust. Taken together, our data suggest that two separate regional-scale climate reversals occurred between 9,000 and 8,000 years ago, and that they were driven by different mechanisms.

  9. The role of the thermohaline circulation in abrupt climate change.

    PubMed

    Clark, Peter U; Pisias, Nicklas G; Stocker, Thomas F; Weaver, Andrew J

    2002-02-21

    The possibility of a reduced Atlantic thermohaline circulation in response to increases in greenhouse-gas concentrations has been demonstrated in a number of simulations with general circulation models of the coupled ocean-atmosphere system. But it remains difficult to assess the likelihood of future changes in the thermohaline circulation, mainly owing to poorly constrained model parameterizations and uncertainties in the response of the climate system to greenhouse warming. Analyses of past abrupt climate changes help to solve these problems. Data and models both suggest that abrupt climate change during the last glaciation originated through changes in the Atlantic thermohaline circulation in response to small changes in the hydrological cycle. Atmospheric and oceanic responses to these changes were then transmitted globally through a number of feedbacks. The palaeoclimate data and the model results also indicate that the stability of the thermohaline circulation depends on the mean climate state.

  10. The role of the thermohaline circulation in abrupt climate change.

    PubMed

    Clark, Peter U; Pisias, Nicklas G; Stocker, Thomas F; Weaver, Andrew J

    2002-02-21

    The possibility of a reduced Atlantic thermohaline circulation in response to increases in greenhouse-gas concentrations has been demonstrated in a number of simulations with general circulation models of the coupled ocean-atmosphere system. But it remains difficult to assess the likelihood of future changes in the thermohaline circulation, mainly owing to poorly constrained model parameterizations and uncertainties in the response of the climate system to greenhouse warming. Analyses of past abrupt climate changes help to solve these problems. Data and models both suggest that abrupt climate change during the last glaciation originated through changes in the Atlantic thermohaline circulation in response to small changes in the hydrological cycle. Atmospheric and oceanic responses to these changes were then transmitted globally through a number of feedbacks. The palaeoclimate data and the model results also indicate that the stability of the thermohaline circulation depends on the mean climate state. PMID:11859359

  11. Abrupt tropical climate change: Past and present

    PubMed Central

    Thompson, Lonnie G.; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-01-01

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged δ18O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth’s climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, ≈5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world’s most populous regions. PMID:16815970

  12. Detection of abrupt changes in dynamic systems

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1984-01-01

    Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed.

  13. Abrupt tropical climate change: past and present.

    PubMed

    Thompson, Lonnie G; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-07-11

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged delta(18)O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth's climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, approximately 5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world's most populous regions.

  14. Maternal Sleep Duration and Complaints of Vital Exhaustion during Pregnancy is Associated with Placental Abruption

    PubMed Central

    Qiu, Chunfang; Sanchez, Sixto E.; Gelaye, Bizu; Enquobahrie, Daniel A.; Ananth, Cande V.; Williams, Michelle A.

    2014-01-01

    OBJECTIVE Sleep disorders are associated with cardiovascular complications and preterm delivery (PTD). Insufficient sleep results in metabolic alterations and increased inflammation, both known to contribute to placental abruption (abruption), a determinant of PTD. We examined associations of abruption with sleep duration and complaints of vital exhaustion. METHODS The study included 164 abruption cases and 160 controls in a multicenter study in Peru. Data on habitual sleep duration and vital exhaustion during the first 6 months of pregnancy were elicited during interviews conducted following delivery. Women were categorized according to short, normal and long sleep duration (≤6, 7-8 and ≥9 h); and frequency of feeling exhausted. Odds ratios (OR) and 95% confidence intervals (CI) were calculated. RESULTS Short and long sleep durations were associated with increased odds of abruption. The ORs of abruption in relation to short (≤6 h) and long (≥9 h) sleep duration were 2.0 (95%CI 1.1-3.7) and 2.1 (95%CI 1.1-4.1), compared with normal sleep duration (7-8 h). Complaints of vital exhaustion were also associated with abruption (OR=2.37; 95%CI 1.46-3.85), and were independent of sleep duration. CONCLUSION We extend the existing literature and support the thesis that maternal sleep habits and disorders should be assessed among pregnant women. PMID:24749793

  15. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions.

    PubMed

    Molina, Mario; Zaelke, Durwood; Sarma, K Madhava; Andersen, Stephen O; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-12-01

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of "dangerous anthropogenic interference" (DAI). Scientific and policy literature refers to the need for "early," "urgent," "rapid," and "fast-action" mitigation to help avoid DAI and abrupt climate changes. We define "fast-action" to include regulatory measures that can begin within 2-3 years, be substantially implemented in 5-10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO(2) GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO(2) emissions.

  16. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions

    PubMed Central

    Molina, Mario; Zaelke, Durwood; Sarma, K. Madhava; Andersen, Stephen O.; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-01-01

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of “dangerous anthropogenic interference” (DAI). Scientific and policy literature refers to the need for “early,” “urgent,” “rapid,” and “fast-action” mitigation to help avoid DAI and abrupt climate changes. We define “fast-action” to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO2 GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO2 emissions. PMID:19822751

  17. Response of fish to different simulated rates of water temperature increase

    SciTech Connect

    Wike, L.D.; Tuckfield, R.C.

    1992-08-01

    We initiated this study to define the limits of effluent-temperature rate increases during reactor restart, which will help minimize fish kills. We constructed an apparatus for exposing fish to various temperature-increase regimens and conducted two experiments based on information from system tests and scoping runs. In the rate experiment, we acclimated the fish to 20{degree}C, and then raised the temperature to 40{degree}C at varying rates. Because scoping runs and literature suggested that acclimation temperature may affect temperature-related mortality, we conducted an acclimation experiment. We acclimated the fish to various temperatures, then raised the temperatures to 39--40{degree}C at a rate of 2{degree}C every 12 hours. Based on the analysis of the data, we recommend temperature-increase rates during reactor restart of 2.5{degree}C every nine hours if ambient water temperatures are over 20{degree}C. If water temperatures are at or below 20{degree}C, we recommend temperature-increase rates of 2.5{degree}C every 12 hours. No regulation of temperature is required after effluent temperatures reach 40{degree}C. We recommend further studies, including expanded testing with the simulation system and behavioral and bioenergetic investigations that may further refine acceptable rates of effluent-temperature increases.

  18. The applicability of research on moving cut data-approximate entropy on abrupt climate change detection

    NASA Astrophysics Data System (ADS)

    Jin, Hongmei; He, Wenping; Liu, Qunqun; Wang, Jinsong; Feng, Guolin

    2016-04-01

    In this study, the performance of moving cut data-approximate entropy (MC-ApEn) to detect abrupt dynamic changes was investigated. Numerical tests in a time series model indicate that the MC-ApEn method is suitable for the detection of abrupt dynamic changes for three types of meteorological data: daily maximum temperature, daily minimum temperature, and daily precipitation. Additionally, the MC-ApEn method was used to detect abrupt climate changes in daily precipitation data from Northwest China and the Pacific Decadal Oscillation (PDO) index. The results show an abrupt dynamic change in precipitation in 1980 and in the PDO index in 1976. The times indicated for the abrupt changes are identical to those from previous results. Application of the analysis to observational data further confirmed the performance of the MC-ApEn method. Moreover, MC-ApEn outperformed the moving t test (MTT) and the moving detrended fluctuation analysis (MDFA) methods for the detection of abrupt dynamic changes in a simulated 1000-point daily precipitation dataset.

  19. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics

    PubMed Central

    Partin, J.W.; Quinn, T.M.; Shen, C.-C.; Okumura, Y.; Cardenas, M.B.; Siringan, F.P.; Banner, J.L.; Lin, K.; Hu, H.-M.; Taylor, F.W.

    2015-01-01

    Proxy records of temperature from the Atlantic clearly show that the Younger Dryas was an abrupt climate change event during the last deglaciation, but records of hydroclimate are underutilized in defining the event. Here we combine a new hydroclimate record from Palawan, Philippines, in the tropical Pacific, with previously published records to highlight a difference between hydroclimate and temperature responses to the Younger Dryas. Although the onset and termination are synchronous across the records, tropical hydroclimate changes are more gradual (>100 years) than the abrupt (10–100 years) temperature changes in the northern Atlantic Ocean. The abrupt recovery of Greenland temperatures likely reflects changes in regional sea ice extent. Proxy data and transient climate model simulations support the hypothesis that freshwater forced a reduction in the Atlantic meridional overturning circulation, thereby causing the Younger Dryas. However, changes in ocean overturning may not produce the same effects globally as in Greenland. PMID:26329911

  20. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.-C.; Okumura, Y.; Cardenas, M. B.; Siringan, F. P.; Banner, J. L.; Lin, K.; Hu, H.-M.; Taylor, F. W.

    2015-09-01

    Proxy records of temperature from the Atlantic clearly show that the Younger Dryas was an abrupt climate change event during the last deglaciation, but records of hydroclimate are underutilized in defining the event. Here we combine a new hydroclimate record from Palawan, Philippines, in the tropical Pacific, with previously published records to highlight a difference between hydroclimate and temperature responses to the Younger Dryas. Although the onset and termination are synchronous across the records, tropical hydroclimate changes are more gradual (>100 years) than the abrupt (10-100 years) temperature changes in the northern Atlantic Ocean. The abrupt recovery of Greenland temperatures likely reflects changes in regional sea ice extent. Proxy data and transient climate model simulations support the hypothesis that freshwater forced a reduction in the Atlantic meridional overturning circulation, thereby causing the Younger Dryas. However, changes in ocean overturning may not produce the same effects globally as in Greenland.

  1. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics.

    PubMed

    Partin, J W; Quinn, T M; Shen, C-C; Okumura, Y; Cardenas, M B; Siringan, F P; Banner, J L; Lin, K; Hu, H-M; Taylor, F W

    2015-09-02

    Proxy records of temperature from the Atlantic clearly show that the Younger Dryas was an abrupt climate change event during the last deglaciation, but records of hydroclimate are underutilized in defining the event. Here we combine a new hydroclimate record from Palawan, Philippines, in the tropical Pacific, with previously published records to highlight a difference between hydroclimate and temperature responses to the Younger Dryas. Although the onset and termination are synchronous across the records, tropical hydroclimate changes are more gradual (>100 years) than the abrupt (10-100 years) temperature changes in the northern Atlantic Ocean. The abrupt recovery of Greenland temperatures likely reflects changes in regional sea ice extent. Proxy data and transient climate model simulations support the hypothesis that freshwater forced a reduction in the Atlantic meridional overturning circulation, thereby causing the Younger Dryas. However, changes in ocean overturning may not produce the same effects globally as in Greenland.

  2. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis

    PubMed Central

    Tout, Jessica; Siboni, Nachshon; Messer, Lauren F.; Garren, Melissa; Stocker, Roman; Webster, Nicole S.; Ralph, Peter J.; Seymour, Justin R.

    2015-01-01

    Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2–3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2–3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems. PMID:26042096

  3. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes.

    PubMed

    Roussel, Erwan G; Cragg, Barry A; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S; Gorra, Roberta; Weightman, Andrew J; Parkes, R John

    2015-08-01

    The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple 'windows' within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, 'Bathyarchaeota') changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry. PMID:26207045

  4. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes

    PubMed Central

    Roussel, Erwan G.; Cragg, Barry A.; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S.; Gorra, Roberta; Weightman, Andrew J.; Parkes, R. John

    2015-01-01

    The impact of temperature (0–80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple ‘windows’ within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, ‘Bathyarchaeota’) changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry. PMID:26207045

  5. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes.

    PubMed

    Roussel, Erwan G; Cragg, Barry A; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S; Gorra, Roberta; Weightman, Andrew J; Parkes, R John

    2015-08-01

    The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple 'windows' within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, 'Bathyarchaeota') changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry.

  6. Assessing streamflow sensitivity to temperature increases in the Salmon River Basin, Idaho

    NASA Astrophysics Data System (ADS)

    Tang, Chunling; Crosby, Benjamin T.; Wheaton, Joseph M.; Piechota, Thomas C.

    2012-05-01

    Increased temperatures are occurring in the Salmon River Basin (SRB) of Idaho and are anticipated to continue increasing in the future, leading to complex changes in climate and water resources. To address these concerns, the objective of this study was to evaluate streamflow changes/sensitivity when temperatures increase. A hydrological model, the Variable Infiltration Capacity (VIC) model, was applied to simulate streamflow under thirty temperature increase scenarios (i.e., rising 0.1 °C per step to 3 °C). It was found that the annual mean streamflow decreased whenever temperatures increased in the SRB. Streamflow increases in winter and decreases in spring and summer but is barely affected by temperature in autumn. On a monthly basis, streamflow responses varied in response to rising temperatures. When temperature increased, the streamflow increase occurred from November to February, and it decreased from May to July. The analysis also discovered linear relationships between rising temperatures and streamflow changes throughout the year, with the exception of June and July, which revealed logarithmic correlations. Results obtained by daily streamflow analysis showed that center time occurred 10-30 d earlier when temperatures increased 2 °C and 15-45 d earlier when temperatures increased 3 °C. Finally, the Richards-Barker Index (R-B Index), a flashiness index, also increased with rising temperatures, and a higher R-B Index causes bank erosion problems. Changes in the streamflow due to the temperature increases have a significant implication both for the water management and ecological processes.

  7. Vertebrate blood cell volume increases with temperature: implications for aerobic activity.

    PubMed

    Gillooly, James F; Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures.

  8. Investigation of temperature increase associated with liquid deformations at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Kono, Susumu; Kaneko, Toshihiro; Ueno, Ichiro

    2015-11-01

    The bursting of thin liquid films has been investigated for over a century. Recently, the velocity field and heat generation process in a rupturing film were clarified by numerical studies. In the present study, we discuss the temperature increase due to heat generation in a rupturing film on the basis of the molecular kinetic theory on a microcanonical ensemble, and we estimate the value of the temperature increase. We attempted to generalize the approach for calculating the temperature increase in polyatomic molecules. In addition, we applied the calculation to thread retraction and derived the value of the temperature increase due to heat generation in the system.

  9. Continuous methane record of abrupt climate change 10-68 ka: sighting Heinrich events in the ice core record

    NASA Astrophysics Data System (ADS)

    Rhodes, Rachael; Brook, Edward; Chiang, John; Blunier, Thomas; Cheng, Hai; Edwards, R. Lawrence; Maselli, Olivia; McConnell, Joseph; Romanini, Daniele; Severinghaus, Jeffrey; Sowers, Todd; Stowasser, Christopher

    2014-05-01

    The Last Glacial period was punctuated by millennial scale abrupt climate changes - Dansgaard-Oeschger (D-O) cycles and Heinrich events. Controls on the magnitude and frequency of these climate perturbations, and how they may be inter-related, remain unclear. Specific problems include the difficulty of dating Heinrich sediment layers and local bias of key paleoclimate archives. We present a highly detailed and precise record of ice core methane (CH4), a globally integrated signal, which resolves climatic features in unprecedented resolution. Abrupt CH4 increases are resolved in Heinrich Stadials (HS) 1, 2, 4 and 5 where, in contrast to all D-O cycles, there are no concurrent abrupt changes in Greenland temperature. Using modern-day tropical rainfall variability as an analog, we propose that strong cooling in the North Atlantic severely restricted the northerly range of the Intertropical Convergence Zone (ITCZ), leading to an enhanced wet season over Southern Hemisphere tropical land areas, and consequently driving production of excess CH4 in tropical wetlands. Our findings place four Heinrich events firmly within ice core chronologies and suggest maximum durations of 778 to 1606 yr. CH4 anomalies are only associated with Heinrich events of Hudson Strait provenance, indicating that the tropical impacts of Heinrich events were not uniform.

  10. Abrupt percolation in small equilibrated networks

    NASA Astrophysics Data System (ADS)

    Matsoukas, Themis

    2015-05-01

    Networks can exhibit an abrupt transition in the form of a spontaneous self-organization of a sizable fraction of the population into a giant component of connected members. This behavior has been demonstrated in random graphs under suppressive rules that passively or actively attempt to delay the formation of the giant cluster. We show that suppressive rules are not a necessary condition for a sharp transition at the percolation threshold. Rather, a finite system with aggressive tendency to form a giant cluster may exhibit an instability at the percolation threshold that is relieved through an abrupt and discontinuous transition to the stable branch. We develop the theory for a class of equilibrated networks that produce this behavior and find that the discontinuous jump is especially pronounced in small networks but disappears when the size of the system is infinite.

  11. Deep-Sea Biodiversity Response to Abrupt Deglacial and Holocene Climate Changes

    NASA Astrophysics Data System (ADS)

    Yasuhara, M.

    2014-12-01

    High-resolution records of microfossil assemblages from deep-sea sediment cores covering the last 20,000 years in the North Atlantic Ocean were investigated to understand biotic responses to abrupt climate changes over decadal-centennial timescales. The results show pervasive control of deep-sea benthic species diversity by rapidly changing climate. Species diversity rapidly increased during abrupt stadial events during the last deglacial and the Holocene interglacial periods. These included the well-known Heinrich 1, the Younger Dryas, and the 8.2 ka events when the strength of Atlantic Meridional Overturning Circulation (AMOC) decreased. In addition, there is evidence for quasi-cyclic changes in biodiversity at a ~1500-year periodicity. Statistical analyses revealed that AMOC-driven bottom-water-temperature variability is a primary influence on deep-sea biodiversity. Our results may portend pervasive, synchronous and sudden ecosystem responses to human-induced changes to climate and ocean circulation in this century. Exceptionally highly resolved fossil records help us to understand past, present and future ecosystem responses to climate changes by bridging the gap between biological and palaeontological time-scales.

  12. Drivers and Dynamics of Ecological Responses to Abrupt Environmental Change on the Early Miocene Oregon Shelf

    NASA Astrophysics Data System (ADS)

    Belanger, C. L.

    2012-12-01

    We know that the biosphere responds to abrupt climate change, but know less about the dynamics of those changes and their proximal drivers. Studies of well-preserved fossil time-series spanning past climate events that utilize multiple environmental proxies and examine multiple taxonomic groups can provide critical insight into (a) the specific environmental factors to which the biota respond, (b) the rate and tempo of those responses, and (c) whether taxonomic groups respond similarly or differently to the same stresses. I examine the drivers and dynamics of ecological changes in continental shelf benthic foraminifera and molluscs from the Early Miocene Newport Member of the Astoria Formation in Oregon (20.3-16.3 mya), which spans a time of global warming leading into the Middle Miocene Climate Optimum. Stable isotope (δ18O) data from three species of benthic foraminifera from the Astoria sediments indicate that the region abruptly warmed by 2-4°C approximately 19 mya. In addition, δ13C values from epifaunal and infaunal foraminifera indicate an increase in productivity and organic carbon flux over time. Further, an increase in δ15N from bulk sediment and an increase in sedimentary laminations suggest oxygen levels declined. Multivariate analyses demonstrate a strong correlation between foraminiferal community metrics and δ15N suggesting that the foraminiferal community is tracking oxygenation levels while correlations to productivity changes appear indirect. Molluscan community metrics also have an approximately linear relationship to δ15N. Temperature itself had little direct influence on community composition. Changes in community composition and structure of both the foraminifera and the molluscs are abrupt relative to the duration of community states, but each group responds differently to the climate change. The foraminiferal community increases in the number of species and the evenness of species abundances while the molluscan community decreases in

  13. Climatic and Societal Causes for Abrupt Environmental Change in the Mediterranean During the Common Era

    NASA Astrophysics Data System (ADS)

    Mensing, S. A.; Tunno, I.; Sagnotti, L.; Florindo, F.; Noble, P. J.; Archer, C.; Zimmerman, S. R. H.; Pavón-Carrasco, F. J.; Cifnani, G.; Passigli, S.; Piovesan, G.

    2015-12-01

    We compare climatic and societal causes for abrupt environmental change for the last 2000 years in the Rieti Basin, central Italy using high-resolution sedimentary paleoenvironmental proxies, historical documents, and annually resolved independent climate reconstructions of temperature and precipitation. Pollen zones, identified from temporally constrained cluster analysis, coincide with historic periods developed from well-established ceramic sequences corresponding to the Roman Imperial through Late Antique (1 to 600 CE) Early Medieval (600 to 875 CE), Medieval through Late Medieval (875 to 1400 CE), Renaissance and Modern (1400 to 1725 CE), and Contemporary periods (1725 CE to present). Non-metric dimensional scaling (NMDS) ordination showed that each temporal period occupied a unique ecologic space suggesting that a new landscape was created during each successive historic period. During Roman time, between 1 and 500 CE, a modest decline in forest coincides with a positive phase of the North Atlantic Oscillation (NAO) and drier climate; however mesophyllous forest is preserved. Steep decline in forest cover between 850 and 950 CE coincides with positive temperature anomalies in Europe and a positive NAO. Although this would seem to suggest climate as a cause, temperature and precipitation changes are modest and the magnitude and rapidity of the vegetation change suggests climate played a small role. Archaeological evidence from across Europe identifies socioeconomic factors that produced forest clearing. In contrast, cooler temperatures and a negative NAO (increased ppt) appears to have been a catalyst for land abandonment and forest recovery in the 13th to 14th centuries. The NAO produces opposite effects on societies in the eastern and western Mediterranean with the negative phase in 1400 CE leading to cool wet climate and land abandonment in central Italy but an abrupt shift to drier conditions and change from sedentary village life to nomadism in Syria.

  14. Basic mechanism for abrupt monsoon transitions

    PubMed Central

    Levermann, Anders; Schewe, Jacob; Petoukhov, Vladimir; Held, Hermann

    2009-01-01

    Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R c, no conventional monsoon can develop; above R c, two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R c for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation. PMID:19858472

  15. Gradual and abrupt changes during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Ford, Heather L.; Sosdian, Sindia M.; Rosenthal, Yair; Raymo, Maureen E.

    2016-09-01

    During the Mid-Pleistocene Transition (MPT), the dominant glacial-interglacial cyclicity as inferred from the marine δ18O records of benthic foraminifera (δ18Obenthic) changed from 41 kyr to 100 kyr years in the absence of a comparable change in orbital forcing. Currently, only two Mg/Ca-derived, high-resolution bottom water temperature (BWT) records exist that can be used with δ18Obenthic records to separate temperature and ice volume signals over the Pleistocene. However, these two BWT records suggest a different pattern of climate change occurred over the MPT-a record from North Atlantic DSDP Site 607 suggests BWT decreased with no long-term trend in ice volume over the MPT, while South Pacific ODP Site 1123 suggests that BWT has been relatively stable over the last 1.5 Myr but that there was an abrupt increase in ice volume at ∼900 kyr. In this paper we attempt to reconcile these two views of climate change across the MPT. Specifically, we investigated the suggestion that the secular BWT trend obtained from Mg/Ca measurements on Cibicidoides wuellerstorfi and Oridorsalis umbonatus species from N. Atlantic Site 607 is biased by the possible influence of Δ[CO32-] on Mg/Ca values in these species by generating a low-resolution BWT record using Uvigerina spp., a genus whose Mg/Ca values are not thought to be influenced by Δ[CO32-]. We find a long-term BWT cooling of ∼2-3°C occurred from 1500 to ∼500 kyr in the N. Atlantic, consistent with the previously generated C. wuellerstorfi and O. umbonatus BWT record. We also find that changes in ocean circulation likely influenced δ18Obenthic, BWT, and δ18Oseawater records across the MPT. N. Atlantic BWT cooling starting at ∼1.2 Ma, presumably driven by high-latitude cooling, may have been a necessary precursor to a threshold response in climate-ice sheet behavior at ∼900 ka. At that point, a modest increase in ice volume and thermohaline reorganization may have caused enhanced sensitivity to the 100 kyr

  16. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction

    PubMed Central

    Claësson, Débora; Wang, Tobias; Malte, Hans

    2016-01-01

    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish. PMID:27766150

  17. Thermal discharge-created increasing temperatures alter the bacterioplankton composition and functional redundancy.

    PubMed

    Xiong, Jinbo; Xiong, Shangling; Qian, Peng; Zhang, Demin; Liu, Lian; Fei, Yuejun

    2016-12-01

    Elevated seawater temperature has altered the coupling between coastal primary production and heterotrophic bacterioplankton respiration. This shift, in turn, could influence the feedback of ocean ecosystem to climate warming. However, little is known about how natural bacterioplankton community responds to increasing seawater temperature. To investigate warming effects on the bacterioplankton community, we collected water samples from temperature gradients (ranged from 15.0 to 18.6 °C) created by a thermal flume of a coal power plant. The results showed that increasing temperatures significantly stimulated bacterial abundance, grazing rate, and altered bacterioplankton community compositions (BCCs). The spatial distribution of bacterioplankton community followed a distance similarity decay relationship, with a turnover of 0.005. A variance partitioning analysis showed that temperature directly constrained 2.01 % variation in BCCs, while temperature-induced changes in water geochemical and grazing rate indirectly accounted for 4.03 and 12.8 % of the community variance, respectively. Furthermore, the relative abundances of 24 bacterial families were linearly increased or decreased (P < 0.05 in all cases) with increasing temperatures. Notably, the change pattern for a given bacterial family was in concert with its known functions. In addition, community functional redundancy consistently decreased along the temperature gradient. This study demonstrates that elevated temperature, combined with substrate supply and trophic interactions, dramatically alters BCCs, concomitant with decreases in functional redundancy. The responses of sensitive assemblages are temperature dependent, which could indicate temperature departures. PMID:27620732

  18. County-level analysis of the impact of temperature and population increases on California wildfire data

    USGS Publications Warehouse

    Baltar, M.; Keeley, Jon E.; Schoenberg, F.P.

    2013-01-01

    The extent to which the apparent increase in wildfire incidence and burn area in California from 1990 to 2006 is affected by population and temperature increases is examined. Using generalized linear models with random effects, we focus on the estimated impacts of increases in mean daily temperatures and populations in different counties on wildfire in those counties, after essentially controlling for the overall differences between counties in their overall mean temperatures and populations. We find that temperature increase appears to have a significant positive impact on both total burn area and number of observed wildfires. Population growth appears to have a much less pronounced impact on total burn area than do annual temperature increases, and population growth appears to be negatively correlated with the total number of observed wildfires. These effects are especially pronounced in the winter season and in Southern California counties.

  19. Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, U.S.A.

    PubMed

    Elliott, Grant P

    2012-07-01

    Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad

  20. Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, U.S.A.

    PubMed

    Elliott, Grant P

    2012-07-01

    Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad

  1. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    NASA Astrophysics Data System (ADS)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  2. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-01

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  3. The Effects of Increased Body Temperature on Motor Control during Golf Putting.

    PubMed

    Mathers, John F; Grealy, Madeleine A

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed. PMID:27630588

  4. The Effects of Increased Body Temperature on Motor Control during Golf Putting

    PubMed Central

    Mathers, John F.; Grealy, Madeleine A.

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed.

  5. The Effects of Increased Body Temperature on Motor Control during Golf Putting

    PubMed Central

    Mathers, John F.; Grealy, Madeleine A.

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed. PMID:27630588

  6. Precise Temperature Measurement for Increasing the Survival of Newborn Babies in Incubator Environments

    PubMed Central

    Frischer, Robert; Penhaker, Marek; Krejcar, Ondrej; Kacerovsky, Marian; Selamat, Ali

    2014-01-01

    Precise temperature measurement is essential in a wide range of applications in the medical environment, however the regarding the problem of temperature measurement inside a simple incubator, neither a simple nor a low cost solution have been proposed yet. Given that standard temperature sensors don't satisfy the necessary expectations, the problem is not measuring temperature, but rather achieving the desired sensitivity. In response, this paper introduces a novel hardware design as well as the implementation that increases measurement sensitivity in defined temperature intervals at low cost. PMID:25494352

  7. Abrupt formation of isolated superconducting droplets in heavily disordered cuprates

    NASA Astrophysics Data System (ADS)

    Naqib, S. H.; Islam, R. S.

    2011-10-01

    The effect of controlled disorder on the superconducting transition temperature, Tc, resistivity, and the magnitude of the field-cooled ac susceptibility (ACS) has been investigated for Ca and Zn substituted Y123 (Y0.80Ca0.20Ba2(Cu1 - yZny)3O7 - δ) sintered compounds over a wide range of compositions. Ca was used to explore the overdoped side. The in-plane hole content, p, was changed by varying the oxygen deficiency (δ). Irrespective of the hole content, Tc decreased almost linearly with Zn, though the rate of suppression was strongly p dependent. The magnitude of the low-field, field-cooled ACS, on the other hand, decreased abruptly and significantly for the heavily disordered (y > 0.05) sintered compounds when p was decreased. More strikingly, the qualitative features of the field dependent ACS signal became identical for sintered and powdered samples, indicating a complete absence of coupling among superconducting grains in heavily disordered Y0.80Ca0.20Ba2(Cu1 - yZny)3O7 - δ. A non-monotonic and pronounced enhancement of the residual resistivity for samples with y > 0.05 lends further support to this picture. The abruptness of this 'isolated superconducting droplet' behavior points toward possible interplay among various length scales. We discuss the implications of these findings in detail in this paper.

  8. Increasing Temperatures in Mountainous Regions of the Western United States and Effects on Insect Outbreaks

    NASA Astrophysics Data System (ADS)

    Hicke, J. A.; Logan, J. A.; Powell, J.; Ojima, D. S.

    2004-12-01

    Global temperatures have increased over the last 100 years and are projected to continue to rise as a result of greater atmospheric carbon dioxide concentrations. However, temperatures at high elevations are not uniformly increasing. Instead, trends vary regionally and depend on the time period of interest. Climate, specifically temperature, plays a major role in regulating outbreaks of bark beetles by synchronizing attacks on host trees during favorable temperature conditions. In this study, we characterize patterns of temperature change over the last 100 years for mountainous regions in the western United States, utilizing the VEMAP gridded database but also considering additional sources (e.g., SNOTEL, HCN). Although temperatures at higher elevations have changed little over the long term, recent decades have experienced warming. Projected temperatures in this region continue to warm through 2100. We explored the effects of changing temperatures on the spatial patterns of mountain pine beetle outbreak using a phenology model that predicts potential infestation. We show that temperature conditions suitable for outbreak existed in the past 100 years for most locations occupied by a favored host, lodgepole pine. At lower elevations, projected warming resulted in reductions in potential outbreak area. At higher elevations, potential outbreak area increased as temperatures became more favorable, then decreased as conditions became too warm to support synchrony of beetle attack. The shifts in climatically suitable conditions for mountain pine beetle outbreak have significant implications for lodgepole pine, a species dependent on disturbance, as well as other high-elevation pine ecosystems that are susceptible to infestation.

  9. Measurements of retinal temperature increase during photodynamic therapy for choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Chen, Hongxia; Yang, Zaifu; Gu, Ying; Li, Xiaoxia; Zhao, Youquan; Zhang, Luyong; Qiu, Haixia

    2010-11-01

    To study the risk of retinal thermal injury from 532 nm laser during photodynamic therapy (PDT) for choroidal neovascularization (CNV) by measuring the retinal temperature increase of rabbit eyes. A microthermocouple technique was developed to measure retinal temperature increase during PDT in pigmented and non-pigmented rabbit eyes. The 532 nm laser exposures were performed with 100-s duration, 2-mm spot size, and retinal irradiance ranging from 400 to 1600 mW/cm2. A K-type microthermocouple was inserted through the sclerotomy and advanced until the tip reached the retina at the posterior pole. The thermocouple was connected a computer that recorded and analyzed retinal temperature data. The results showed that the retinal temperature increase during laser exposure was proportional to retinal irradiance with a particular spot diameter, exposure duration, wavelength, and fundus pigmentation. And the measured retinal temperature increases in pigmented rabbits were a little higher than those in albino rabbits under the same radiant condition. Retinal threshold irradiance required for visible lesions at laser wavelength of 532 nm with 2.0-mm spot size and 100-s duration was 1657 mW/cm2 in albino and 1003 mW/cm2 in pigmented rabbits, respectively, corresponding to retinal temperature increase of about 8 °C and 6 °C. The measured temperatures in albino and pigmented rabbit eyes were both lower than the model predictions, especially in pigmented rabbits. Therefore, further parameter modifying should be performed to obtain accuracy prediction of retinal temperature.

  10. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment.

    PubMed

    van Winden, Julia F; Reichart, Gert-Jan; McNamara, Niall P; Benthien, Albert; Damsté, Jaap S Sinninghe

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.

  11. Enhanced neuroendocrine response to insulin tolerance test performed under increased ambient temperature.

    PubMed

    Jezová, D; Kvetnanský, R; Nazar, K; Vigas, M

    1998-01-01

    The hypothesis that an increase in ambient temperature modulates neuroendocrine response in clinically used provocative pituitary function tests was verified. Healthy male volunteers were subjected to insulin tolerance tests in two randomized trials. In the first trial hypoglycemia was induced by a bolus injection of insulin (0.1 U per kg of BW, i.v.) at room temperature. In the second trial, the subjects were exposed to increased ambient temperature for 45 min before insulin injection and for 45 min thereafter. The environmental temperature was selected to increase body temperature less than 1C. Under conditions of increased temperature basal hormone levels as measured in antecubital venous blood samples failed to be modified and the hypoglycemia was less severe. Nevertheless, the responses of most (beta-endorphin, ACTH, prolactin, catecholamines), but not all (growth hormone, cortisol), hormones to hypoglycemia were exaggerated. The remarkable increase in ACTH and beta-endorphin release was not accompanied by concomitant increase of plasma cortisol response. The sympathetic-adrenomedullary system was significantly activated, which was manifested particularly by enhanced norepinephrine release. Growth hormone response to hypoglycemia was not modified, while that of prolactin was enhanced. Thus during evaluation of neuroendocrine function under clinical conditions, changes in ambient and body temperature should not be underestimated. PMID:9766253

  12. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish.

    PubMed

    Miller, G M; Kroon, F J; Metcalfe, S; Mundayi, P L

    2015-04-01

    Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures (28.5°C [+0.0°C], 30.0°C [-1.5°C] and 31.5°C [+3.0°C]) cross-factored with three CO2 levels (a current-day control [417 µatm] and moderate [644 µatm] and high [1134 µatm]) treatments consistent with the range of CO2 projections for the year 2100. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length, and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17β-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated. CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or Co2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17β-estradiol concentrations, suggesting that declines in reproduction with

  13. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish.

    PubMed

    Miller, G M; Kroon, F J; Metcalfe, S; Mundayi, P L

    2015-04-01

    Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures (28.5°C [+0.0°C], 30.0°C [-1.5°C] and 31.5°C [+3.0°C]) cross-factored with three CO2 levels (a current-day control [417 µatm] and moderate [644 µatm] and high [1134 µatm]) treatments consistent with the range of CO2 projections for the year 2100. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length, and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17β-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated. CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or Co2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17β-estradiol concentrations, suggesting that declines in reproduction with

  14. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  15. Elevated CO2 and temperature increase soil C losses from a soy-maize ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warming temperatures and increasing CO2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for three years within the 9th-11th ...

  16. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites.

    PubMed

    Poulin, R

    2006-01-01

    Global warming can affect the world's biota and the functioning of ecosystems in many indirect ways. Recent evidence indicates that climate change can alter the geographical distribution of parasitic diseases, with potentially drastic consequences for their hosts. It is also possible that warmer conditions could promote the transmission of parasites and raise their local abundance. Here I have compiled experimental data on the effect of temperature on the emergence of infective stages (cercariae) of trematode parasites from their snail intermediate hosts. Temperature-mediated changes in cercarial output varied widely among trematode species, from small reductions to 200-fold increases in response to a 10 degrees C rise in temperature, with a geometric mean suggesting an almost 8-fold increase. Overall, the observed temperature-mediated increases in cercarial output are much more substantial than those expected from basic physiological processes, for which 2- to 3-fold increases are normally seen. Some of the most extreme increases in cercarial output may be artefacts of the methods used in the original studies; however, exclusion of these extreme values has little impact on the preceding conclusion. Across both species values and phylogenetically independent contrasts, neither the magnitude of the initial cercarial output nor the shell size of the snail host correlated with the relative increase in cercarial production mediated by rising temperature. In contrast, the latitude from which the snail-trematode association originated correlated negatively with temperature-mediated increases in cercarial production: within the 20 degrees to 55 degrees latitude range, trematodes from lower latitudes showed more pronounced temperature-driven increases in cercarial output than those from higher latitudes. These results suggest that the small increases in air and water temperature forecast by many climate models will not only influence the geographical distribution of some

  17. Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthropogenic increases in atmospheric carbon dioxide concentration, [CO2], and subsequent increases in surface temperatures, are likely to impact the growth and yield of cereal crops. One means for yield reduction is for climate parameters to increase the occurrence of lodging. Using an in situ f...

  18. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback

    NASA Astrophysics Data System (ADS)

    Austin, Jay A.; Colman, Steven M.

    2007-03-01

    Lake Superior summer (July-September) surface water temperatures have increased approximately 2.5°C over the interval 1979-2006, equivalent to a rate of (11 +/- 6) × 10-2°C yr-1, significantly in excess of regional atmospheric warming. This discrepancy is caused by declining winter ice cover, which is causing the onset of the positively stratified season to occur earlier at a rate of roughly a half day per year. An earlier start of the stratified season significantly increases the period over which the lake warms during the summer months, leading to a stronger trend in mean summer temperatures than would be expected from changes in summer air temperature alone.

  19. North Pacific deglacial hypoxic events linked to abrupt ocean warming.

    PubMed

    Praetorius, S K; Mix, A C; Walczak, M H; Wolhowe, M D; Addison, J A; Prahl, F G

    2015-11-19

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition. The mechanisms driving this hypoxia remain under debate. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4-5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals, and enhanced (15)N/(14)N ratio of organic matter, collectively suggest association with high export production. A decrease in (18)O/(16)O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  20. North Pacific deglacial hypoxic events linked to abrupt ocean warming.

    PubMed

    Praetorius, S K; Mix, A C; Walczak, M H; Wolhowe, M D; Addison, J A; Prahl, F G

    2015-11-19

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition. The mechanisms driving this hypoxia remain under debate. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4-5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals, and enhanced (15)N/(14)N ratio of organic matter, collectively suggest association with high export production. A decrease in (18)O/(16)O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming. PMID:26581293

  1. Early warnings and missed alarms for abrupt monsoon transitions

    NASA Astrophysics Data System (ADS)

    Thomas, Z. A.; Kwasniok, F.; Boulton, C. A.; Cox, P. M.; Jones, R. T.; Lenton, T. M.; Turney, C. S. M.

    2015-12-01

    Palaeo-records from China demonstrate that the East Asian Summer Monsoon (EASM) is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesized that over these timescales, the EASM exhibits two stable states with bifurcation-type tipping points between them. Here we test this hypothesis by looking for early warning signals of past bifurcations in speleothem δ18O records from Sanbao Cave and Hulu Cave, China, spanning the penultimate glacial cycle. We find that although there are increases in both autocorrelation and variance preceding some of the monsoon transitions during this period, it is only immediately prior to the abrupt monsoon shift at the penultimate deglaciation (Termination II) that statistically significant increases are detected. To supplement our data analysis, we produce and analyse multiple model simulations that we derive from these data. We find hysteresis behaviour in our model simulations with transitions directly forced by solar insolation. However, signals of critical slowing down, which occur on the approach to a bifurcation, are only detectable in the model simulations when the change in system stability is sufficiently slow to be detected by the sampling resolution of the data set. This raises the possibility that the early warning "alarms" were missed in the speleothem data over the period 224-150 kyr and it was only at the monsoon termination that the change in the system stability was sufficiently slow to detect early warning signals.

  2. Vertebrate blood cell volume increases with temperature: implications for aerobic activity

    PubMed Central

    Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures. PMID:24765580

  3. The Effect of Temperature Increases on an Ant-Hemiptera-Plant Interaction.

    PubMed

    Sagata, Katayo; Gibb, Heloise

    2016-01-01

    Global temperature increases are significantly altering species distributions and the structure of ecological communities. However, the impact of temperature increases on multi- species interactions is poorly understood. We used an ant-Hemiptera-plant interaction to examine the potential outcomes of predicted temperature increases for each partner and for the availability of honeydew, a keystone resource in many forest ecosystems. We re-created this interaction in growth cabinets using predicted mean summer temperatures for Melbourne, Australia, for the years 2011 (23°C), 2050 (25°C) and 2100 (29°C), respectively, under an unmitigated greenhouse gas emission scenario. Plant growth and ant foraging activities increased, while scale insect growth, abundance and size, honeydew standing crop per tree and harvesting by ants decreased at 29°C, relative to lower temperatures (23 and 25°C). This led to decreased scale insect infestations of plants and reduced honeydew standing crop per tree at the highest temperature. At all temperatures, honeydew standing crop was lower when ants harvested the honeydew from scale insects, but the impact of ant harvesting was particularly significant at 29°C, where combined effects of temperature and ants reduced honeydew standing crop to below detectable levels. Although temperature increases in the next 35 years will have limited effects on this system, by the end of this century, warmer temperatures may cause the availability of honeydew to decline. Decline of honeydew may have far-reaching trophic effects on honeydew and ant-mediated interactions. However, field-based studies that consider the full complexity of ecosystems may be required to elucidate these impacts. PMID:27434232

  4. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.

    PubMed

    DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D

    2013-07-01

    Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions.

  5. The Effect of Temperature Increases on an Ant-Hemiptera-Plant Interaction

    PubMed Central

    Gibb, Heloise

    2016-01-01

    Global temperature increases are significantly altering species distributions and the structure of ecological communities. However, the impact of temperature increases on multi- species interactions is poorly understood. We used an ant-Hemiptera-plant interaction to examine the potential outcomes of predicted temperature increases for each partner and for the availability of honeydew, a keystone resource in many forest ecosystems. We re-created this interaction in growth cabinets using predicted mean summer temperatures for Melbourne, Australia, for the years 2011 (23°C), 2050 (25°C) and 2100 (29°C), respectively, under an unmitigated greenhouse gas emission scenario. Plant growth and ant foraging activities increased, while scale insect growth, abundance and size, honeydew standing crop per tree and harvesting by ants decreased at 29°C, relative to lower temperatures (23 and 25°C). This led to decreased scale insect infestations of plants and reduced honeydew standing crop per tree at the highest temperature. At all temperatures, honeydew standing crop was lower when ants harvested the honeydew from scale insects, but the impact of ant harvesting was particularly significant at 29°C, where combined effects of temperature and ants reduced honeydew standing crop to below detectable levels. Although temperature increases in the next 35 years will have limited effects on this system, by the end of this century, warmer temperatures may cause the availability of honeydew to decline. Decline of honeydew may have far-reaching trophic effects on honeydew and ant-mediated interactions. However, field-based studies that consider the full complexity of ecosystems may be required to elucidate these impacts. PMID:27434232

  6. Hot-Pack and 1-MHz Ultrasound Treatments Have an Additive Effect on Muscle Temperature Increase

    PubMed Central

    Draper, David O.; Harris, Shane T.; Schulthies, Shane; Durrant, Earlene; Knight, Kenneth L.; Ricard, Mark

    1998-01-01

    Objective: Therapeutic ultrasound is an effective deep heating modality commonly applied alone or after cooling or heating of the treatment area. The purpose of this study was to examine the tissue temperature rise in the human triceps surae muscle group after ultrasound with prior heating via a silicate gel hot pack. Design and Setting: This study was designed as a 2 × 2 × 3 factorial with repeated measures on two factors (depth and time). Independent variables were temperature of pack (hot and room temperature), depth of measurement (1 cm and 3 cm), and time (beginning, after pack application, and after ultrasound). The dependent variable was tissue temperature. Subjects were assigned to one of two treatment groups: ultrasound preceded by a 15-minute hot pack treatment or ultrasound preceded by a 15-minute application with a silicate gel pack at room temperature. Measurements were taken while subjects were treated in a university training room. Subjects: Twenty-one uninjured male and female college student volunteers were randomly assigned to one of the two pack groups. Measurements: The hot packs were stored in 75°C water. A 1-MHz ultrasound treatment was administered for 10 minutes at an intensity of 1.5 W/cm². Tissue temperature was measured every 30 seconds using 23-gauge hypodermic microprobes interfaced with a telethermometer and inserted 1 and 3 cm below the surface of anesthetized triceps surae muscle. Results: At both tissue depths, there was a 0.8°C greater increase in tissue temperature with hot packs and ultrasound. At 1 cm, ultrasound increased temperature 3.5°C after a 0.5°C rise during the room temperature-pack application, but only 0.6°C after a 3.8°C increase during hot-pack application. At 3 cm, ultrasound increased temperature 3.85°C following a slight (-0.26°C) decrease during the room temperature-pack application and 3.68°C after a 0.74°C increase during hot-pack application. Conclusions: Vigorous increases in deep muscle

  7. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, K.; Villafañe, V. E.; Helbling, E. W.

    2012-10-01

    Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 μatm) for more than 20 generations. Compared to the ambient CO2 level (390 μatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

  8. Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks

    NASA Astrophysics Data System (ADS)

    Ju, Rui-Ting; Zhu, Hai-Yan; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2015-10-01

    Although increases in mean temperature (MT) and extreme high temperature (EHT) can greatly affect population dynamics of insects under global warming, how concurrent changes in both MT and EHT affect invasive species is largely unknown. We used four thermal regimes to simulate the increases in summer temperature and compared their effects on the life-history traits of three geographical populations (Chongqing, Wuhan and Shanghai) of an invasive insect, Corythucha ciliata, in China. The four thermal regimes were control (i.e., natural or ambient), an increase in MT (IMT), an increase in EHT, and a combination of IMT + EHT. We found that the three warming regimes significantly increased the developmental rate but did not affect the survival, sex ratio, longevity, or fecundity of C. ciliata. Consequently, the intrinsic rate of natural increase (rm) was enhanced and the number of days required for population doubling (t) was reduced by the warming regimes. The demographic parameters did not significantly differ among the three populations. These results indicate that population size of C. ciliata may be enhanced by increases in both temperature means and extremes. The increases in summer temperature associated with climate change, therefore, would likely facilitate population outbreaks of some thermophilic invasive insects.

  9. Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks.

    PubMed

    Ju, Rui-Ting; Zhu, Hai-Yan; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2015-10-27

    Although increases in mean temperature (MT) and extreme high temperature (EHT) can greatly affect population dynamics of insects under global warming, how concurrent changes in both MT and EHT affect invasive species is largely unknown. We used four thermal regimes to simulate the increases in summer temperature and compared their effects on the life-history traits of three geographical populations (Chongqing, Wuhan and Shanghai) of an invasive insect, Corythucha ciliata, in China. The four thermal regimes were control (i.e., natural or ambient), an increase in MT (IMT), an increase in EHT, and a combination of IMT + EHT. We found that the three warming regimes significantly increased the developmental rate but did not affect the survival, sex ratio, longevity, or fecundity of C. ciliata. Consequently, the intrinsic rate of natural increase (rm) was enhanced and the number of days required for population doubling (t) was reduced by the warming regimes. The demographic parameters did not significantly differ among the three populations. These results indicate that population size of C. ciliata may be enhanced by increases in both temperature means and extremes. The increases in summer temperature associated with climate change, therefore, would likely facilitate population outbreaks of some thermophilic invasive insects.

  10. Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks.

    PubMed

    Ju, Rui-Ting; Zhu, Hai-Yan; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2015-01-01

    Although increases in mean temperature (MT) and extreme high temperature (EHT) can greatly affect population dynamics of insects under global warming, how concurrent changes in both MT and EHT affect invasive species is largely unknown. We used four thermal regimes to simulate the increases in summer temperature and compared their effects on the life-history traits of three geographical populations (Chongqing, Wuhan and Shanghai) of an invasive insect, Corythucha ciliata, in China. The four thermal regimes were control (i.e., natural or ambient), an increase in MT (IMT), an increase in EHT, and a combination of IMT + EHT. We found that the three warming regimes significantly increased the developmental rate but did not affect the survival, sex ratio, longevity, or fecundity of C. ciliata. Consequently, the intrinsic rate of natural increase (rm) was enhanced and the number of days required for population doubling (t) was reduced by the warming regimes. The demographic parameters did not significantly differ among the three populations. These results indicate that population size of C. ciliata may be enhanced by increases in both temperature means and extremes. The increases in summer temperature associated with climate change, therefore, would likely facilitate population outbreaks of some thermophilic invasive insects. PMID:26502826

  11. Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks

    PubMed Central

    Ju, Rui-Ting; Zhu, Hai-Yan; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2015-01-01

    Although increases in mean temperature (MT) and extreme high temperature (EHT) can greatly affect population dynamics of insects under global warming, how concurrent changes in both MT and EHT affect invasive species is largely unknown. We used four thermal regimes to simulate the increases in summer temperature and compared their effects on the life-history traits of three geographical populations (Chongqing, Wuhan and Shanghai) of an invasive insect, Corythucha ciliata, in China. The four thermal regimes were control (i.e., natural or ambient), an increase in MT (IMT), an increase in EHT, and a combination of IMT + EHT. We found that the three warming regimes significantly increased the developmental rate but did not affect the survival, sex ratio, longevity, or fecundity of C. ciliata. Consequently, the intrinsic rate of natural increase (rm) was enhanced and the number of days required for population doubling (t) was reduced by the warming regimes. The demographic parameters did not significantly differ among the three populations. These results indicate that population size of C. ciliata may be enhanced by increases in both temperature means and extremes. The increases in summer temperature associated with climate change, therefore, would likely facilitate population outbreaks of some thermophilic invasive insects. PMID:26502826

  12. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints. PMID:27488200

  13. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.

  14. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  15. Neurocognitive and Somatic Components of Temperature Increases during g-Tummo Meditation: Legend and Reality

    PubMed Central

    Kozhevnikov, Maria; Elliott, James; Shephard, Jennifer; Gramann, Klaus

    2013-01-01

    Stories of g-tummo meditators mysteriously able to dry wet sheets wrapped around their naked bodies during a frigid Himalayan ceremony have intrigued scholars and laypersons alike for a century. Study 1 was conducted in remote monasteries of eastern Tibet with expert meditators performing g-tummo practices while their axillary temperature and electroencephalographic (EEG) activity were measured. Study 2 was conducted with Western participants (a non-meditator control group) instructed to use the somatic component of the g-tummo practice (vase breathing) without utilization of meditative visualization. Reliable increases in axillary temperature from normal to slight or moderate fever zone (up to 38.3°C) were observed among meditators only during the Forceful Breath type of g-tummo meditation accompanied by increases in alpha, beta, and gamma power. The magnitude of the temperature increases significantly correlated with the increases in alpha power during Forceful Breath meditation. The findings indicate that there are two factors affecting temperature increase. The first is the somatic component which causes thermogenesis, while the second is the neurocognitive component (meditative visualization) that aids in sustaining temperature increases for longer periods. Without meditative visualization, both meditators and non-meditators were capable of using the Forceful Breath vase breathing only for a limited time, resulting in limited temperature increases in the range of normal body temperature. Overall, the results suggest that specific aspects of the g-tummo technique might help non-meditators learn how to regulate their body temperature, which has implications for improving health and regulating cognitive performance. PMID:23555572

  16. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, K.; Villafañe, V. E.; Helbling, E. W.

    2012-06-01

    Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PSII caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. As for photosynthetic carbon fixation, the rate increased with increasing temperature from 15 to 25 °C, regardless of their growth CO2 levels. In addition, UV-induced inhibition of photosynthesis was inversely correlated to temperature. The ratio of repair to UV-induced damage showed inverse relationship with increased NPQ, showing higher values under the ocean acidification condition against UV-B, reflecting that the increased pCO2 and lowered pH counteracted UV-B induced harm.

  17. Abrupt change of Antarctic moisture origin at the end of Termination II.

    PubMed

    Masson-Delmotte, V; Stenni, B; Blunier, T; Cattani, O; Chappellaz, J; Cheng, H; Dreyfus, G; Edwards, R L; Falourd, S; Govin, A; Kawamura, K; Johnsen, S J; Jouzel, J; Landais, A; Lemieux-Dudon, B; Lourantou, A; Marshall, G; Minster, B; Mudelsee, M; Pol, K; Röthlisberger, R; Selmo, E; Waelbroeck, C

    2010-07-01

    The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north-south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO(2) overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector.

  18. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm

    PubMed Central

    Gooding, Rebecca A.; Harley, Christopher D. G.; Tang, Emily

    2009-01-01

    Anthropogenic climate change poses a serious threat to biodiversity. In marine environments, multiple climate variables, including temperature and CO2 concentration ([CO2]), are changing simultaneously. Although temperature has well-documented ecological effects, and many heavily calcified marine organisms experience reduced growth with increased [CO2], little is known about the combined effects of temperature and [CO2], particularly on species that are less dependent on calcified shells or skeletons. We manipulated water temperature and [CO2] to determine the effects on the sea star Pisaster ochraceus, a keystone predator. We found that sea star growth and feeding rates increased with water temperature from 5 °C to 21 °C. A doubling of current [CO2] also increased growth rates both with and without a concurrent temperature increase from 12 °C to 15 °C. Increased [CO2] also had a positive but nonsignificant effect on sea star feeding rates, suggesting [CO2] may be acting directly at the physiological level to increase growth rates. As in past studies of other marine invertebrates, increased [CO2] reduced the relative calcified mass in sea stars, although this effect was observed only at the lower experimental temperature. The positive relationship between growth and [CO2] found here contrasts with previous studies, most of which have shown negative effects of [CO2] on marine species, particularly those that are more heavily calcified than P. ochraceus. Our findings demonstrate that increased [CO2] will not have direct negative effects on all marine invertebrates, suggesting that predictions of biotic responses to climate change should consider how different types of organisms will respond to changing climatic variables. PMID:19470464

  19. The abrupt onset of the modern South Asian Monsoon winds.

    PubMed

    Betzler, Christian; Eberli, Gregor P; Kroon, Dick; Wright, James D; Swart, Peter K; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A; Alonso-García, Montserrat; Bialik, Or M; Blättler, Clara L; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M; Pratiwi, Santi D; Reijmer, John J G; Reolid, Jesús; Slagle, Angela L; Sloss, Craig R; Su, Xiang; Yao, Zhengquan; Young, Jeremy R

    2016-07-20

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  20. The abrupt onset of the modern South Asian Monsoon winds

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Eberli, Gregor P.; Kroon, Dick; Wright, James D.; Swart, Peter K.; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A.; Alonso-García, Montserrat; Bialik, Or M.; Blättler, Clara L.; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M.; Pratiwi, Santi D.; Reijmer, John J. G.; Reolid, Jesús; Slagle, Angela L.; Sloss, Craig R.; Su, Xiang; Yao, Zhengquan; Young, Jeremy R.

    2016-07-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment’s content of particulate organic matter. A weaker ‘proto-monsoon’ existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  1. The abrupt onset of the modern South Asian Monsoon winds

    PubMed Central

    Betzler, Christian; Eberli, Gregor P.; Kroon, Dick; Wright, James D.; Swart, Peter K.; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A.; Alonso-García, Montserrat; Bialik, Or M.; Blättler, Clara L.; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M.; Pratiwi, Santi D.; Reijmer, John J. G.; Reolid, Jesús; Slagle, Angela L.; Sloss, Craig R.; Su, Xiang; Yao, Zhengquan; Young, Jeremy R.

    2016-01-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment’s content of particulate organic matter. A weaker ‘proto-monsoon’ existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system. PMID:27436574

  2. The abrupt onset of the modern South Asian Monsoon winds.

    PubMed

    Betzler, Christian; Eberli, Gregor P; Kroon, Dick; Wright, James D; Swart, Peter K; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A; Alonso-García, Montserrat; Bialik, Or M; Blättler, Clara L; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M; Pratiwi, Santi D; Reijmer, John J G; Reolid, Jesús; Slagle, Angela L; Sloss, Craig R; Su, Xiang; Yao, Zhengquan; Young, Jeremy R

    2016-01-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system. PMID:27436574

  3. Different effects of increased water temperature on egg production of Calanus finmarchicus and C. glacialis

    NASA Astrophysics Data System (ADS)

    Pasternak, A. F.; Arashkevich, E. G.; Grothe, U.; Nikishina, A. B.; Solovyev, K. A.

    2013-09-01

    Two copepod species, Calanus finmarchicus (a widespread North Atlantic species) and C. glacialis (an Arctic species), are dominant in the zooplankton of Arctic seas. We hypothesized that the anticipated warming in the Arctic might have different effects on the arctic and boreal species. The effect of temperature on egg production rate (EPR) in these species at temperatures of 0, 2.5, 5, 7.5, and 10°C under contrasting feeding conditions was assessed in 5-day-long experiments. The EPR of the fed C. finmarchicus increased with temperature over the entire tested range. On the contrary, the EPR of C. glacialis increased only in the range of 0-5°C and dropped with further temperature growth. The difference in the influence of temperature on reproduction of these two species is statistically significant. Feeding conditions have a considerable effect on the C. finmarchicus EPR. The EPRs of the female C. glacialis that fed or starved for 5 days displayed no significant difference. These results suggest that the C. finmarchicus EPR increases with temperature under favorable feeding conditions, whereas the C. glacialis EPR decreases at a temperature over 5°C independently of the feeding conditions. This allows for prediction of the shift in abundances of these two species in pelagic communities of Arctic seas in the case of a warming scenario.

  4. Detrimental effect of temperature increase on the fitness of an amphibian ( Lissotriton helveticus)

    NASA Astrophysics Data System (ADS)

    Galloy, Valérie; Denoël, Mathieu

    2010-03-01

    Increases of global temperatures have resulted in measurable shifts in the distribution, phenology and survival of some plant and animal species. However, the mechanisms showing links between global warming and biodiversity declines remain unclear. The aim of this study was to examine whether a key parameter of fitness, i.e. offspring number, could be affected by a temperature increase. To this end, we compared egg-laying traits at naturally occurring temperatures (14 °C, 18 °C and 22 °C) in palmate newts, Lissotriton helveticus. Our study suggests that water temperature increase has a negative effect on the fecundity of female newts. Females lay half as many eggs at high temperatures as they do at low temperatures, which results in a lower number of hatchlings. This study shows that global warming would affect amphibian populations. It complements other studies in pointing out that changes in phenology may not be driven only by warmer earlier temperatures but also by counter-selection during late-breeding, particularly in long-term breeders such as newts. More experimental studies should be carried out to understand the complex consequences of global warming and the proximate mechanisms of amphibian decline.

  5. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    PubMed

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R 0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  6. Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles

    PubMed Central

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%–4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666

  7. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.

    PubMed

    Sett, Scarlett; Bach, Lennart T; Schulz, Kai G; Koch-Klavsen, Signe; Lebrato, Mario; Riebesell, Ulf

    2014-01-01

    Increasing atmospheric CO₂ concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO₂ gradient ranging from ∼0.5-250 µmol kg⁻¹ (i.e. ∼20-6000 µatm pCO₂) at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica). Both species showed CO₂-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO₂. CO₂ optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO₂ concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO₂ concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.

  8. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria.

    PubMed

    Schuster, C; Estrella, N; Menzel, A

    2014-03-01

    The impact of global warming on phenology has been widely studied, and almost consistently advancing spring events have been reported. Especially in alpine regions, an extraordinary rapid warming has been observed in the last decades. However, little is known about phenological phases over the whole vegetation period at high elevations. We observed 12 phenological phases of seven tree species and measured air temperature at 42 sites along four transects of about 1000 m elevational range in the years 2010 and 2011 near Garmisch-Partenkirchen, Germany. Site- and species-specific onset dates for the phenological phases were determined and related to elevation, temperature lapse rates and site-specific temperature sums. Increasing temperatures induced advanced spring and delayed autumn phases, in which both yielded similar magnitudes. Delayed leaf senescence could therefore have been underestimated until now in extending the vegetation period. Not only the vegetation period, but also phenological periods extended with increasing temperature. Moreover, sensitivity to elevation and temperature strongly depends on the specific phenological phase. Differences between species and groups of species (deciduous, evergreen, high elevation) were found in onset dates, phenological response rates and also in the effect of chilling and forcing temperatures. Increased chilling days highly reduced forcing temperature requirements for deciduous trees, but less for evergreen trees. The problem of shifted species associations and phenological mismatches due to species-specific responses to increasing temperature is a recent topic in ecological research. Therefore, we consider our findings from this novel, dense observation network in an alpine area of particular importance to deepen knowledge on phenological responses to climate change.

  9. Neuroprotection or Increased Brain Damage Mediated by Temperature in Stroke Is Time Dependent

    PubMed Central

    Rodríguez-Yáñez, Manuel; Arias, Susana; Fernández-Ferro, José; Gómez-Sánchez, José Carlos; Castillo, José

    2012-01-01

    The control of temperature during the acute phase of stroke may be a new therapeutic target that can be applied in all stroke patients, however therapeutic window or timecourse of the temperature effect is not well established. Our aim is to study the association between changes in body temperature in the first 72 hours and outcome in patients with ischemic (IS) and hemorrhagic (ICH) stroke. We prospectively studied 2931 consecutive patients (2468 with IS and 463 with ICH). Temperature was obtained at admission, and at 24, 48 and 72 hours after admission. Temperature was categorized as low (<36°C), normal (36–37°C) and high (>37°C). As the main variable, we studied functional outcome at 3 months determined by modified Rankin Scale. Temperature in stroke patients is higher than in controls, and increases gradually in the first 72 hours after stroke. A positive correlation between temperature and stroke severity determined by NIHSS was found at 24 and 48 hours, but not at admission or 72 hours. In a logistic regression model, high temperature was associated with poor outcome at 24 hours (OR 2.05, 95% CI 1.59–2.64, p<0.0001) and 48 hours (OR 1.93, 95% CI 1.08–2.34, p = 0.007), but not at admission or 72 hours. Temperature increases in patients with stroke in the first 72 hours, with the harmful effect of high temperature occurring in the first 48 hours. The neuroprotective effect of low temperature occurs within the first 24 hours from stroke onset. PMID:22363473

  10. Simulation of the effect of water-vapor increase on temperature in the stratosphere

    NASA Astrophysics Data System (ADS)

    Bi, Yun; Chen, Yuejuan; Zhou, Renjun; Yi, Mingjian; Deng, Shumei

    2011-07-01

    To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.

  11. Warmer temperatures increase disease transmission and outbreak intensity in a host-pathogen system.

    PubMed

    Elderd, Bret D; Reilly, James R

    2014-07-01

    While rising global temperatures are increasingly affecting both species and their biotic interactions, the debate about whether global warming will increase or decrease disease transmission between individuals remains far from resolved. This may stem from the lack of empirical data. Using a tractable and easily manipulated insect host-pathogen system, we conducted a series of field and laboratory experiments to examine how increased temperatures affect disease transmission using the crop-defoliating pest, the fall armyworm (Spodoptera frugiperda) and its species-specific baculovirus, which causes a fatal infection. To examine the effects of temperature on disease transmission in the field, we manipulated baculovirus density and temperature. As infection occurs when a host consumes leaf tissue on which the pathogen resides, baculovirus density was controlled by placing varying numbers of infected neonate larvae on experimental plants. Temperature was manipulated by using open-top chambers (OTCs). The laboratory experiments examined how increased temperatures affect fall armyworm feeding and development rates, which provide insight into how host feeding behaviour and physiology may affect transmission. Disease transmission and outbreak intensity, measured as the cumulative fraction infected during an epizootic, increased at higher temperatures. However, there was no appreciable change in the mean transmission rate of the disease, which is often the focus of empirical and theoretical research. Instead, the coefficient of variation (CV) associated with the transmission rate shrunk. As the CV decreased, heterogeneity in disease risk across individuals declined, which resulted in an increase in outbreak intensity. In the laboratory, increased temperatures increased feeding rates and decreased developmental times. As the host consumes the virus along with the leaf tissue on which it resides, increased feeding rate is likely to increase the probability of an individual

  12. Warmer temperatures increase disease transmission and outbreak intensity in a host-pathogen system.

    PubMed

    Elderd, Bret D; Reilly, James R

    2014-07-01

    While rising global temperatures are increasingly affecting both species and their biotic interactions, the debate about whether global warming will increase or decrease disease transmission between individuals remains far from resolved. This may stem from the lack of empirical data. Using a tractable and easily manipulated insect host-pathogen system, we conducted a series of field and laboratory experiments to examine how increased temperatures affect disease transmission using the crop-defoliating pest, the fall armyworm (Spodoptera frugiperda) and its species-specific baculovirus, which causes a fatal infection. To examine the effects of temperature on disease transmission in the field, we manipulated baculovirus density and temperature. As infection occurs when a host consumes leaf tissue on which the pathogen resides, baculovirus density was controlled by placing varying numbers of infected neonate larvae on experimental plants. Temperature was manipulated by using open-top chambers (OTCs). The laboratory experiments examined how increased temperatures affect fall armyworm feeding and development rates, which provide insight into how host feeding behaviour and physiology may affect transmission. Disease transmission and outbreak intensity, measured as the cumulative fraction infected during an epizootic, increased at higher temperatures. However, there was no appreciable change in the mean transmission rate of the disease, which is often the focus of empirical and theoretical research. Instead, the coefficient of variation (CV) associated with the transmission rate shrunk. As the CV decreased, heterogeneity in disease risk across individuals declined, which resulted in an increase in outbreak intensity. In the laboratory, increased temperatures increased feeding rates and decreased developmental times. As the host consumes the virus along with the leaf tissue on which it resides, increased feeding rate is likely to increase the probability of an individual

  13. Increasing testicular temperature by exposure to elevated ambient temperatures restores spermatogenesis in adult Utp14b (jsd) mutant (jsd) mice.

    PubMed

    Comish, P B; Liang, L Y; Yamauchi, Y; Weng, C C; Shetty, G; Naff, K A; Ward, M A; Meistrich, M L

    2015-03-01

    Because mutations in the human UTP14C gene are associated with male infertility, we sought to develop a method for fertility restoration in azoospermic mice with a mutation in the orthologous Utp14b(jsd) (jsd) gene that have spermatogonial arrest. The method is based on our observation that elevation of testicular temperatures restores spermatogonial differentiation in jsd mutant mice. To non-surgically raise intrascrotal temperatures we placed these mice in incubators at different elevated ambient temperatures. Exposure of jsd/jsd mice to ambient temperatures of 34.5 °C or 35.5 °C for 24 days increased the proportion of tubules with spermatocytes from 0% in untreated controls to over 80%. As those higher temperatures interfere with spermatid differentiation, the mice were then transferred to incubators at 32-32.5 °C for the next 24 days. These environments allowed differentiation to progress, resulting in up to 42% of tubules having late spermatids and about half of the mutant mice having spermatozoa in testicular suspensions. When these spermatozoa were used in intracytoplasmic sperm injection, all gave rise to viable healthy offspring with normal weight gain and fertility. The successful restoration of fertility in Utp14b mutant mice suggests that transient testicular warming might also be useful for spermatogenesis recovery in infertile men with UTP14C gene mutations.

  14. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation.

    PubMed

    Cavagnaro, M; Pinto, R; Lopresto, V

    2015-04-21

    Microwave thermal ablation (MTA) therapies exploit the local absorption of an electromagnetic field at microwave (MW) frequencies to destroy unhealthy tissue, by way of a very high temperature increase (about 60 °C or higher). To develop reliable interventional protocols, numerical tools able to correctly foresee the temperature increase obtained in the tissue would be very useful. In this work, different numerical models of the dielectric and thermal property changes with temperature were investigated, looking at the simulated temperature increments and at the size of the achievable zone of ablation. To assess the numerical data, measurement of the temperature increases close to a MTA antenna were performed in correspondence with the antenna feed-point and the antenna cooling system, for increasing values of the radiated power. Results show that models not including the changes of the dielectric and thermal properties can be used only for very low values of the power radiated by the antenna, whereas a good agreement with the experimental values can be obtained up to 20 W if water vaporization is included in the numerical model. Finally, for higher power values, a simulation that dynamically includes the tissue's dielectric and thermal property changes with the temperature should be performed.

  15. Do hotter temperatures increase the incidence of self-harm hospitalisations?

    PubMed

    Williams, Matt N; Hill, Stephen R; Spicer, John

    2016-01-01

    A relationship between air temperature and the incidence of suicide has been established in a number of previous studies. Interestingly, the relationship between geographical variation in temperature and suicide incidence has generally been found to be negative, while the relationship between temporal variation in temperature and suicide incidence has generally been found to be positive. It is less clear, however, how temperature relates to the incidence of self-harm. This topic is of particular importance given the presence of ongoing global warming. This study investigated the relationship between temperature and the incidence of self-harm resulting in hospitalisation in New Zealand. Self-harm hospitalisations by date and district for 1993-2009 were obtained from the Ministry of Health. Meteorological data was obtained from NIWA. Generalised linear mixed models were used to estimate the effects of three different components of variation in temperature: geographical, seasonal and irregular. Irregular (random) daily variation in temperature had a modest positive relationship with the incidence of acts of self-harm resulting in hospitalisation, with about 0.7% extra incidents for every 1 °C increase in temperature. However, there was no strong evidence for a positive effect of either seasonal or geographical variation in temperature. We conclude that temperature does appear to bear some relation to the incidence of self-harm, with irregular daily variation in temperature having a positive effect. However, inconsistencies in the effects of different components of variation in temperature make it challenging to accurately predict how global warming will influence the incidence of self-harm.

  16. Influence of choroidal perfusion on retinal temperature increase during retinal laser treatments

    NASA Astrophysics Data System (ADS)

    Herrmann, Katharina; Flöhr, Christian; Stalljohann, Jens; Apiou-Sbirlea, Gabriela; Kandulla, Jochen; Birngruber, Reginald; Brinkmann, Ralf

    2007-07-01

    In most retinal laser treatments the therapeutic effect is initiated by a transient temperature increase at and around the retinal pigment epithelium (RPE). Especially in long exposure time treatments like Transpupillary Thermotherapy (TTT) choroidal perfusion has a strong influence on the realized temperature at the fundus. The fundus blood circulation and therefore the heat dissipation is influenced by the intraocular pressure (IOP), which is investigated in the study presented here. In order to reduce the choroidal perfusion, the IOP is increased by injection of physiological saline solution into the eye of anaesthetized rabbits. The fundus is irradiated with 3.64 W/cm2 by means of a TTT-laser (λ = 810 nm) for t = 20 s causing a retinal temperature increase. Realtime temperature determination at the irradiated spot is achieved by a non invasive optoacoustic technique. Perfusion can be reduced by increasing IOP, which leads to different temperature increases when irradiating the retina. This should be considered for long time laser treatments.

  17. Myocardial infarction complicated by left ventricular thrombus and fatal thromboembolism following abrupt cessation of dabigatran.

    PubMed

    Weiler, Bethany; Marciniak, Ellen T; Reed, Robert M; McCurdy, Michael T

    2014-07-04

    Novel anticoagulants are increasingly utilised in lieu of warfarin to treat non-valvular atrial fibrillation. Their clinical use in other non-FDA approved settings is also increasing. We present a case in which a patient abruptly stopped taking dabigatran due to a small bowel obstruction and shortly thereafter suffered a myocardial infarction complicated by left ventricular thrombosis with fatal embolisation to the superior mesenteric artery. In this context, we discuss the possibility of a rebound phenomenon of hypercoagulability with abrupt cessation of novel anticoagulants.

  18. Cesarean Delivery for a Life-threatening Preterm Placental Abruption

    PubMed Central

    Okafor, II; Ugwu, EO

    2015-01-01

    Placental abruption is one of the major life-threatening obstetric conditions. The fetomaternal outcome of a severe placental abruption depends largely on prompt maternal resuscitation and delivery. A case of severe preterm placental abruption with intrauterine fetal death. Following a failed induction of labor with a deteriorating maternal condition despite resuscitation, emergency cesarean delivery was offered with good maternal outcome. Cesarean delivery could avert further disease progression and possible maternal death in cases of severe preterm placental abruption where vaginal delivery is not imminent. However, further studies are necessary before this could be recommended for routine clinical practice. PMID:27057388

  19. Climate warming may increase aphids' dropping probabilities in response to high temperatures.

    PubMed

    Ma, Gang; Ma, Chun-Sen

    2012-11-01

    Dropping off is considered an anti-predator behavior for aphids since previous studies have shown that it reduces the risk of predation. However, little attention is paid to dropping behavior triggered by other external stresses such as daytime high temperatures which are predicted to become more frequent in the context of climate warming. Here we defined a new parameter, drop-off temperature (DOT), to describe the critical temperature at which an aphid drops off its host plant when the ambient temperature increases gradually and slowly. Detailed studies were conducted to reveal effects of short-term acclimation (temperature, exposure time at high-temperature and starvation) on DOT of an aphid species, Sitobion avenae. Our objectives were to test if the aphids dropped off host plant to avoid high temperatures and how short-term acclimation affected the aphids' dropping behavior in response to heat stress. We suggest that dropping is a behavioral thermoregulation to avoid heat stress, since aphids started to move before they dropped off and the dropped aphids were still able to control their muscles prior to knockdown. The adults starved for 12 h had higher DOT values than those that were unstarved or starved for 6 h, and there was a trade-off between behavioral thermoregulation and energy acquisition. Higher temperatures and longer exposure times at high temperatures significantly lowered the aphids' DOT, suggested that the aphids avoid heat stress by dropping when exposed to high temperatures. Climate warming may therefore increase the aphids' dropping probabilities and consequently affect the aphids' individual development and population growth.

  20. Increased temperature mitigates the effects of ocean acidification in calcified green algae ( Halimeda spp.)

    NASA Astrophysics Data System (ADS)

    Campbell, Justin E.; Fisch, Jay; Langdon, Chris; Paul, Valerie J.

    2016-03-01

    The singular and interactive effects of ocean acidification and temperature on the physiology of calcified green algae ( Halimeda incrassata, H. opuntia, and H. simulans) were investigated in a fully factorial, 4-week mesocosm experiment. Individual aquaria replicated treatment combinations of two pH levels (7.6 and 8.0) and two temperatures (28 and 31 °C). Rates of photosynthesis, respiration, and calcification were measured for all species both prior to and after treatment exposure. Pre-treatment measurements revealed that H. incrassata displayed higher biomass-normalized rates of photosynthesis and calcification (by 55 and 81 %, respectively) relative to H. simulans and H. opuntia. Furthermore, prior to treatment exposure, photosynthesis was positively correlated to calcification, suggesting that the latter process may be controlled by photosynthetic activity in this group. After treatment exposure, net photosynthesis was unaltered by pH, yet significantly increased with elevated temperature by 58, 38, and 37 % for H. incrassata, H. simulans, and H. opuntia, respectively. Both pH and temperature influenced calcification, but in opposing directions. On average, calcification declined by 41 % in response to pH reduction, but increased by 49 % in response to elevated temperature. Within each pH treatment, elevated temperature increased calcification by 23 % (at pH 8.0) and 74 % (at pH 7.6). Interactions between pH, temperature, and/or species were not observed. This work demonstrates that, in contrast to prior studies, increased temperature may serve to enhance the metabolic performance (photosynthesis and calcification) of some marine calcifiers, despite elevated carbon dioxide concentrations. Thus, in certain cases, ocean warming may mitigate the negative effects of acidification.

  1. Electrophysiological Changes Correlated with Temperature Increases Induced by High-Intensity Focused Ultrasound Ablation

    PubMed Central

    Wu, Z.; Kumon, R. E.; Laughner, J. I.; Efimov, I. R.; Deng, C. X.

    2014-01-01

    To gain better understanding of the detailed mechanisms of high-intensity focused ultrasound (HIFU) ablation for cardiac arrhythmias, we investigated how the cellular electrophysiological (EP) changes were correlated with temperature increases and thermal dose (cumulative equivalent minutes [CEM43]) during HIFU application using Langendorff-perfused rabbit hearts. Employing voltage-sensitive dye di-4-ANEPPS, we measured the EP and temperature during HIFU using simultaneous optical mapping and infrared imaging. Both action potential amplitude (APA) and AP duration at 50% repolarization (APD50) decreased with temperature increases, and APD50 was more thermally sensitive than APA. EP and tissue changes were irreversible when HIFU-induced temperature increased above 52.3 ± 1.4 °C and log10(CEM43) above 2.16 ± 0.51 (n = 5), but were reversible when temperature was below 50.1 ± 0.8 °C and log10(CEM43) below −0.9 ± 0.3 (n = 9). EP and temperature/thermal dose changes were spatially correlated with HIFU induced tissue necrosis surrounded by a transition zone. PMID:25516446

  2. Historical Responsibility for Climate Change - from countries emissions to contribution to temperature increase

    NASA Astrophysics Data System (ADS)

    Krapp, Mario; Gütschow, Johannes; Rocha, Marcia; Schaeffer, Michiel

    2016-04-01

    The notion of historical responsibility is central to the equity debate and the measure of responsibility as a countries' share of historical global emissions remains one of the essential parameters in so-called equity proposals, which attempt to distribute effort among countries in an equitable manner. The focus of this contribution is on the historical contribution of countries, but it takes it one step further: its general objective lies on estimating countries' contribution directly to the change in climate. The historical responsibility is not based on cumulative emissions but instead measured in terms of the countries' estimated contribution to the increase in global-mean surface-air temperature. This is achieved by (1) compiling a historical emissions dataset for the period from 1850 until 2012 for each individual Kyoto-greenhouse gas and each UNFCCC Party using a consistent methodology and (2) applying those historical emissions to a revised version of the so-called Policy-maker Model put forward by the Ministry of Science and Technology of the Federative Republic of Brazil, which is a simple, yet powerful tool that allows historical GHG emissions of individual countries to be directly related to their effect on global temperature changes. We estimate that the cumulative GHG emissions until 2012 from the USA, the European Union and China contribute to a total temperature increase of about 0.50°C in 2100, which is equivalent to about 50% of the temperature increase from total global GHG emissions by that year (of about 1.0°C). Respectively, the USA, the European Union, and China are responsible for 20.2%, 17.3%, and 12.1% of global temperature increase in 2100. Russian historical emissions are responsible for 0.06°C temperature increase by 2100, ranking as the fourth largest contributor to temperature increase with 6.2% of the total contribution. India ranks fifth: Indian emissions to date would contribute to roughly 0.05°C of global mean temperature

  3. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley.

    PubMed

    Füllner, K; Temperton, V M; Rascher, U; Jahnke, S; Rist, R; Schurr, U; Kuhn, A J

    2012-05-01

    We have detailed knowledge from controlled environment studies on the influence of root temperature on plant performance, growth and morphology. However, in all studies root temperature was kept spatially uniform, which motivated us to test whether a vertical gradient in soil temperature affected development and biomass production. Roots of barley seedlings were exposed to three uniform temperature treatments (10, 15 or 20°C) or to a vertical gradient (20-10°C from top to bottom). Substantial differences in plant performance, biomass production and root architecture occurred in the 30-day-old plants. Shoot and root biomass of plants exposed to vertical temperature gradient increased by 144 respectively, 297%, compared with plants grown at uniform root temperature of 20°C. Additionally the root system was concentrated in the upper 10cm of the soil substrate (98% of total root biomass) in contrast to plants grown at uniform soil temperature of 20°C (86% of total root biomass). N and C concentrations in plant roots grown in the gradient were significantly lower than under uniform growth conditions. These results are important for the transferability of 'normal' greenhouse experiments where generally soil temperature is not controlled or monitored and open a new path to better understand and experimentally assess root-shoot interactions.

  4. Simulation of the effect of an increase in methane on air temperature

    NASA Astrophysics Data System (ADS)

    Bi, Yun; Chen, Yuejuan; Zhou, Renjun; Yi, Mingjian; Deng, Shumei

    2011-01-01

    The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experiment, with the methane volume mixing ratio increased by 10%, was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%, the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor. The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of solar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere.

  5. Precipitation response of monsoon low-pressure systems to an idealized uniform temperature increase

    NASA Astrophysics Data System (ADS)

    Sørland, Silje Lund; Sorteberg, Asgeir; Liu, Changhai; Rasmussen, Roy

    2016-06-01

    The monsoon low-pressure systems (LPSs) are one of the most rain-bearing synoptic-scale systems developing during the Indian monsoon. We have performed high-resolution, convection-permitting experiments of 10 LPS cases with the Weather Research and Forecasting regional model, to investigate the effect of an idealized uniform temperature increase on the LPS intensification and precipitation. Perturbed runs follow a surrogate climate change approach, in which a uniform temperature perturbation is specified, but the large-scale flow and relative humidity are unchanged. The differences between control and perturbed simulations are therefore mainly due to the imposed warming and moisture changes and their feedbacks to the synoptic-scale flow. Results show that the LPS precipitation increases by 13%/K, twice the imposed moisture increase, which is on the same order as the Clausius-Clapeyron relation. This large precipitation increase is attributed to the feedbacks in vertical velocity and atmospheric stability, which together account for the high sensitivity. In the perturbed simulations the LPSs have higher propagation speeds and are more intense. The storms intensification to the uniform temperature perturbation can be interpreted in terms of the conditional instability of second kind mechanism where the condensational heating increases along with low-level convergence and vertical velocity in response to temperature and moisture increases. As a result, the surface low deepens.

  6. Halogen and LED light curing of composite: temperature increase and Knoop hardness.

    PubMed

    Schneider, L F; Consani, S; Correr-Sobrinho, L; Correr, A B; Sinhoreti, M A

    2006-03-01

    This study assessed the Knoop hardness and temperature increase provided by three light curing units when using (1) the manufacturers' recommended times of photo-activation and (2) standardizing total energy density. One halogen--XL2500 (3M/ESPE)--and two light-emitting diode (LED) curing units--Freelight (3M/ESPE) and Ultrablue IS (DMC)--were used. A type-K thermocouple registered the temperature change produced by the composite photo-activation in a mold. Twenty-four hours after the photo-activation procedures, the composite specimens were submitted to a hardness test. Both temperature increase and hardness data were submitted to ANOVA and Tukey's test (5% significance). Using the first set of photo-activation conditions, the halogen unit produced a statistically higher temperature increase than did both LED units, and the Freelight LED resulted in a lower hardness than did the other curing units. When applying the second set of photo-activation conditions, the two LED units produced statistically greater temperature increase than did the halogen unit, whereas there were no statistical differences in hardness among the curing units.

  7. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  8. Elevated temperatures increase the toxicity of pesticide mixtures to juvenile coho salmon.

    PubMed

    Laetz, Cathy A; Baldwin, David H; Hebert, Vincent R; Stark, John D; Scholz, Nathaniel L

    2014-01-01

    Pesticide mixtures and elevated temperatures are parallel freshwater habitat stressors for Pacific salmon in the western United States. Certain combinations of organophosphate (OP) insecticides are known to synergistically increase neurotoxicity in juvenile salmon. The chemicals interact to potentiate the inhibition of brain acetylcholinesterase (AChE) and disrupt swimming behavior. The metabolic activation and detoxification of OPs involve temperature-sensitive enzymatic processes. Salmon are ectothermic, and thus the degree of synergism may vary with ambient temperature in streams, rivers, and lakes. Here we assess the influence of water temperature (12-21°C) on the toxicity of ethoprop and malathion, alone and in combination, to juvenile coho salmon (Oncorhynchus kisutch). A mixture of ethoprop (0.9 μg/L) and malathion (0.75 μg/L) produced synergistic AChE inhibition at 12°C, and the degree of neurotoxicity approximately doubled with a modest temperature increase to 18°C. Slightly lower concentrations of ethoprop (0.5 μg/L) combined with malathion (0.4 μg/L) did not inhibit brain AChE activity but did produce a temperature-dependent reduction in liver carboxylesterase (CaE). The activity of CaE was very sensitive to the inhibitory effects of ethoprop alone and both ethoprop-malathion combinations across all temperatures. Our findings are an example of how non-chemical habitat attributes can increase the relative toxicity of OP mixtures. Surface temperatures currently exceed water quality criteria in many western river segments, and summer thermal extremes are expected to become more frequent in a changing climate. These trends reinforce the importance of pollution reduction strategies to enhance ongoing salmon conservation and recovery efforts.

  9. Application of increased temperature from an exogenous source to enhance gene electrotransfer.

    PubMed

    Donate, Amy; Burcus, Niculina; Schoenbach, Karl; Heller, Richard

    2015-06-01

    The presence of increased temperature for gene electrotransfer has largely been considered negative. Many reports have published on the lack of heat from electrotransfer conditions to demonstrate that their effects are from the electrical pulses and not from a rise in temperature. Our hypothesis was to use low levels of maintained heat from an exogenous source to aid in gene electrotransfer. The goal was to increase gene expression and/or reduce electric field. In our study we evaluated high and low electric field conditions from 90 V to 45 V which had been preheated to 40 °C, 43 °C, or 45 °C. Control groups of non-heated as well as DNA only were included for comparison in all experiments. Luciferase gene expression, viability, and percent cell distribution were measured. Our results indicated a 2-4 fold increase in gene expression that is temperature and field dependent. In addition levels of gene expression can be increased without significant decreases in cell death and in the case of high electric fields no additional cell death. Finally, in all conditions percent cell distribution was increased from the application of heat. From these results, we conclude that various methods may be employed depending on the end user's desired goals. Electric field can be reduced 20-30% while maintaining or slightly increasing gene expression and increasing viability or overall gene expression and percent cell distribution can be increased with low viability.

  10. Anomalous Increase in Nematic-Isotropic Transition Temperature in Dimer Molecules Induced by a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Salili, S. M.; Tamba, M. G.; Sprunt, S. N.; Welch, C.; Mehl, G. H.; Jákli, A.; Gleeson, J. T.

    2016-05-01

    We have determined the nematic-isotropic transition temperature as a function of an applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15 K when subjected to a 22 T magnetic field. The increase is conjectured to be caused by a magnetic-field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers.

  11. Towards Greenland Glaciation: Cumulative or Abrupt Transition?

    NASA Astrophysics Data System (ADS)

    Tan, N.; Ramstein, G.; Contoux, C.; Ladant, J. B.; Dumas, C.; Donnadieu, Y.

    2014-12-01

    The insolation evolution [Laskar 2004] from 4 to 2.5 Ma depicts a series of three summer solstice insolation minima between 2.7 and 2.6 Ma, but there are other more important summer solstice minima notably around 3.82 and 3.05 Ma. On such a time span of more than 1 Ma, data shows that there are variations in the evolution of atmospheric CO2 concentration with a local maximum around 3 Ma [Seki et al.2010; Bartoli et al. 2011], before a decrease between 3 and 2.6 Ma. The latter, suggesting an abrupt ice sheet inception around 2.7 Ma, has been shown to be a major culprit for the full Greenland Glaciation [Lunt et al. 2008]. However, a recent study [Contoux et al. 2014, in review] suggests that a lowering of CO2 is not sufficient to initiate a glaciation on Greenland and must be combined to low summer insolation, with surviving ice during insolation maximum, suggesting a cumulative process in the first place, which could further lead to full glaciation at 2.7 Ma. Through a new tri-dimensional interpolation method implemented within the asynchronous coupling between an atmosphere ocean general circulation model (IPSL-CM5A) and an ice sheet model (GRISLI), we investigate the transient evolution of Greenland ice sheet during the Pliocene to diagnose whether the ice sheet inception is an abrupt event or rather a cumulative process, involving waxing and waning of the ice sheet during several orbital cycles. ReferencesBartoli, G., Hönisch, B., & Zeebe, R. E. (2011). Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26(4). Contoux C, Dumas C, Ramstein G, Jost A, Dolan A. M. (2014) Modelling Greenland Ice sheet inception and sustainability during the late Pliocene. (in review for Earth and Planetary Science Letters.).Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428

  12. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  13. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.

    PubMed

    Carey, Michael P; Zimmerman, Christian E

    2014-05-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  14. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    PubMed Central

    Carey, Michael P; Zimmerman, Christian E

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  15. Temperature increases during surface decontamination of titanium implants using CO2 laser.

    PubMed

    Mouhyi, J; Sennerby, L; Nammour, S; Guillaume, P; Van Reck, J

    1999-02-01

    The purpose of the present in vitro investigation was to measure temperature changes at the implant surface when using pulsed CO2 laser in a simulated implant surface decontamination protocol. Six threaded titanium implants were placed in a fresh resected pig mandible. A 4 x 4 mm defect was created buccally to each implant in order to expose the implant head and approximately 5 threads. Temperature changes were monitored by two thermocouples placed near the dehiscence and at the apical part of the implant. Several setting combinations of the CO2 laser with regard to output power, pulse width, pulse repetition rate and irradiation time were tested on dry and wet (distilled water) surfaces. Only minor temperature increases were measured when lasing wet titanium surfaces, while the temperature at dry surfaces exceeded the proposed thresholds for bone damage at clinically relevant settings. It is concluded that the CO2 laser when used on a wet implant surface in a pulsed mode at 8 W/10 ms/20 hz during 5 s induces a temperature increase of less than 3 degrees C. This would minimize the risk of temperature induced tissue damage as a result of lasing implant surfaces.

  16. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  17. Increasing Oxygen Radicals and Water Temperature Select for Toxic Microcystis sp

    PubMed Central

    Dziallas, Claudia; Grossart, Hans-Peter

    2011-01-01

    Pronounced rises in frequency of toxic cyanobacterial blooms are recently observed worldwide, particularly when temperatures increase. Different strains of cyanobacterial species vary in their potential to produce toxins but driving forces are still obscure. Our study examines effects of hydrogen peroxide on toxic and non-toxic (including a non-toxic mutant) strains of M. aeruginosa. Here we show that hydrogen peroxide diminishes chlorophyll a content and growth of cyanobacteria and that this reduction is significantly lower for toxic than for non-toxic strains. This indicates that microcystins protect from detrimental effects of oxygen radicals. Incubation of toxic and non-toxic strains of M. aeruginosa with other bacteria or without (axenic) at three temperatures (20, 26 and 32°C) reveals a shift toward toxic strains at higher temperatures. In parallel to increases in abundance of toxic (i.e. toxin gene possessing) strains and their actual toxin expression, concentrations of microcystins rise with temperature, when amounts of radicals are expected to be enhanced. Field samples from three continents support the influence of radicals and temperature on toxic potential of M. aeruginosa. Our results imply that global warming will significantly increase toxic potential and toxicity of cyanobacterial blooms which has strong implications for socio-economical assessments of global change. PMID:21980492

  18. Increasing oxygen radicals and water temperature select for toxic Microcystis sp.

    PubMed

    Dziallas, Claudia; Grossart, Hans-Peter

    2011-01-01

    Pronounced rises in frequency of toxic cyanobacterial blooms are recently observed worldwide, particularly when temperatures increase. Different strains of cyanobacterial species vary in their potential to produce toxins but driving forces are still obscure. Our study examines effects of hydrogen peroxide on toxic and non-toxic (including a non-toxic mutant) strains of M. aeruginosa. Here we show that hydrogen peroxide diminishes chlorophyll a content and growth of cyanobacteria and that this reduction is significantly lower for toxic than for non-toxic strains. This indicates that microcystins protect from detrimental effects of oxygen radicals. Incubation of toxic and non-toxic strains of M. aeruginosa with other bacteria or without (axenic) at three temperatures (20, 26 and 32°C) reveals a shift toward toxic strains at higher temperatures. In parallel to increases in abundance of toxic (i.e. toxin gene possessing) strains and their actual toxin expression, concentrations of microcystins rise with temperature, when amounts of radicals are expected to be enhanced. Field samples from three continents support the influence of radicals and temperature on toxic potential of M. aeruginosa. Our results imply that global warming will significantly increase toxic potential and toxicity of cyanobacterial blooms which has strong implications for socio-economical assessments of global change.

  19. Douglas-Fir Seedlings Exhibit Metabolic Responses to Increased Temperature and Atmospheric Drought

    PubMed Central

    Jansen, Kirstin; Du, Baoguo; Kayler, Zachary; Siegwolf, Rolf; Ensminger, Ingo; Rennenberg, Heinz; Kammerer, Bernd; Jaeger, Carsten; Schaub, Marcus; Kreuzwieser, Jürgen; Gessler, Arthur

    2014-01-01

    In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions. PMID:25436455

  20. Increase in the upper atmospheric temperature over tropospheric sources: Analysis of satellite measurements and numerical simulation

    NASA Astrophysics Data System (ADS)

    Kozak, L. V.; Pilipenko, S. G.; Motsyk, O. A.

    2015-09-01

    Variations in the temperature of the upper atmosphere caused by hurricanes are considered in this work on the basis of UARS satellite measurements. Analysis of the temperature variations shows that the temperature increases by 24-25 K in the mesopause over high-power tropospheric formations. Atmospheric gravity waves are considered a possible means of transferring disturbances from the Earth's lower to the upper atmosphere. The maximal amplitude of atmospheric gravity waves was detected at altitudes of about 90 km during numerical simulation of propagation of the waves in a nonisothermal windless atmosphere with an accounting for the viscosity and thermal conductivity. A key factor of their attenuation and propagation is the altitudinal temperature gradient.

  1. Increased temperature and entropy production in cancer: the role of anti-inflammatory drugs.

    PubMed

    Pitt, Michael A

    2015-02-01

    Some cancers have been shown to have a higher temperature than surrounding normal tissue. This higher temperature is due to heat generated internally in the cancer. The higher temperature of cancer (compared to surrounding tissue) enables a thermodynamic analysis to be carried out. Here I show that there is increased entropy production in cancer compared with surrounding tissue. This is termed excess entropy production. The excess entropy production is expressed in terms of heat flow from the cancer to surrounding tissue and enzymic reactions in the cancer and surrounding tissue. The excess entropy production in cancer drives it away from the stationary state that is characterised by minimum entropy production. Treatments that reduce inflammation (and therefore temperature) should drive a cancer towards the stationary state. Anti-inflammatory agents, such as aspirin, other non-steroidal anti-inflammatory drugs, corticosteroids and also thyroxine analogues have been shown (using various criteria) to reduce the progress of cancer.

  2. Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device

    NASA Astrophysics Data System (ADS)

    Bagryansky, P. A.; Shalashov, A. G.; Gospodchikov, E. D.; Lizunov, A. A.; Maximov, V. V.; Prikhodko, V. V.; Soldatkina, E. I.; Solomakhin, A. L.; Yakovlev, D. V.

    2015-05-01

    This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R =35 ) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660 ±50 eV with the plasma density being 0.7 ×1 019 m-3 ; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7 MW /54.5 GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability.

  3. Increased loss of soil-derived carbon in response to litter addition and temperature

    NASA Astrophysics Data System (ADS)

    Creamer, C.; Krull, E. S.; Sanderman, J.; Farrell, M.

    2013-12-01

    In order to predict the response of soil organic matter (SOM) to increasing temperatures, a mechanistic understanding of the interactions between OM quality, OM availability, and microbial community structure and function is needed. We used short-term incubations of 13C enriched (20 atom%) fresh and pre-incubated eucalyptus leaf litter in an Australian woodland soil to determine changes in allocation of C to various OM pools, as dictated by microbial activity, in response to temperature and substrate quality. The quantity and isotopic composition of microbial phospholipid fatty acids (PLFA) and dissolved organic C (DOC) were measured along with the quantity of dissolved inorganic and organic nitrogen at four destructive time points. The quantity and isotopic composition of respired CO2 was measured throughout the incubation. Although the temperature sensitivities of the two litters were similar (despite different chemical compositions), soil-C was significantly more temperature sensitive than litter-C. We also observed negative priming of soil-C in the fresh litter treatment and positive priming of soil-C in the pre-incubated litter treatment relative to the control (no litter addition). The extent of positive priming in the pre-incubated litter treatment also increased significantly with temperature. The quantity of soil-derived DOC was consistent between both litter treatments and the control, confirming that differences in soil-C availability were not controlling the observed differences in soil-C mineralization. In contrast, dissolved N was significantly higher in the pre-incubated litter treatment and increased with temperature, suggesting enhanced SOM decomposition in the pre-incubated litter treatment resulted in greater N cycling, production, or destabilization from SOM. The pre-incubated litter treatment also had greater proportions of PLFA that predominately cycled soil-derived OM (gram-positive bacteria), and increased in response to elevated temperature

  4. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC

  5. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC

  6. The Effect of Cold Temperature on Increased Exacerbation of Chronic Obstructive Pulmonary Disease: A Nationwide Study

    PubMed Central

    Ou, Shuo-Ming; Hsiao, Yi-Han; Li, Szu-Yuan; Wang, Shuu-Jiun; Yang, Albert C.; Chen, Tzeng-Ji; Perng, Diahn-Warng

    2013-01-01

    Background Seasonal variations in the acute exacerbation of chronic obstructive pulmonary disease (COPD) have been reported. However, the influence of air temperature and other meteorological factors on COPD exacerbation remains unclear. Methods National Health Insurance registry data from January 1, 1999 to December 1, 2009 and meteorological variables from the Taiwan Central Weather Bureau for the same period were analyzed. A case-crossover study design was used to investigate the association between COPD exacerbation and meteorological variables. Results A total of 16,254 cases who suffered from COPD exacerbation were enrolled. We found that a 1°C decrease in air temperature was associated with a 0.8% increase in the exacerbation rate on event-days (95% confidence interval (CI), 1.015–1.138, p = 0.015). With a 5°C decrease in mean temperature, the cold temperature (28-day average temperature) had a long-term effect on the exacerbation of COPD (odds ratio (OR), 1.106, 95% CI 1.063–1.152, p<0.001). In addition, elderly patients and those who did not receive inhaled medication tended to suffer an exacerbation when the mean temperature dropped 5°C. Higher barometric pressure, more hours of sunshine, and lower humidity were associated with an increase in COPD exacerbation. Conclusions This study demonstrated the effect of cold temperatures on the COPD exacerbation rate. Elderly patients and those without inhaled medicine before the exacerbation event were affected significantly by lower mean temperatures. A more comprehensive program to prevent cold stress in COPD patients may lead to a reduction in the exacerbations rate of COPD. PMID:23554858

  7. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    PubMed

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  8. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae

    PubMed Central

    Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; e Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  9. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    PubMed

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  10. The Necessity of Awareness of Early Symptoms of Placental Abruption Among Pregnant Japanese Women

    PubMed Central

    Suzuki, Shunji; Shinmura, Hiroki

    2016-01-01

    Background In 2012, the recommendation for immediate contact and visit to obstetric institutions by pregnant women was emphasized by The Japan Obstetric Compensation System for Cerebral Palsy (JOCSC). In this study, we examined whether or not the increased awareness has led to the improvement of perinatal outcomes of placental abruption managed at private clinics. Methods We reviewed the obstetric records of 38 singleton pregnant women complicated by placental abruption that developed at home, and were managed at private clinics from April 2008 through April 2016. Results The perinatal outcomes, specifically the rate of cases with ≥ 1 hour time interval between symptom onset and clinic visit, have not changed significantly after the intervention. Conclusion The provision of information regarding the early clinical symptoms associated with placental abruption in pregnant women has not been well documented in Japan. PMID:27540442

  11. An Extensive Study of Protein Phase Diagram Modification: Increasing Macromolecular Crystallizability by Temperature Screening

    SciTech Connect

    Lin, Yi-Bin; Zhu, Dao-Wei; Wang, Tao; Song, Jian; Zou, Yong-Shui; Zhang, Yong-Lian; Lin, Sheng-Xiang

    2009-02-23

    A new parameter 'relative crystallizability' for protein crystallization has been proposed, and its relationship with protein solubility and crystallization success has been studied (Zhu et al. J. Struct. Biol. 2006, 154, 297). Here we further construct the phase diagrams of a larger number of proteins, study the phase modification as a function of temperature, and establish the relationship between the nucleation zone area (S{sub N}) and crystallization success. The phase diagrams of 10 proteins were constructed and their S{sub N} were compared, demonstrating that temperature modifies the protein nucleation zone. Such modification can significantly enlarge the S{sub N} and increase protein crystallizability. For example, the S{sub N} of ribonuclease S and trypsin increases by 2.4- and 1.6-fold when the temperature moves to 277 K from 295 K, while at the same time the crystallization hits increase from 20.8% to 42.9% and 12.5% to 25%, respectively. S{sub N} of chymotrypsinogen A and concanavalin A increases by 1.6- and 1.7-fold (277 to 295 K), while the hits increase from 37.5% to 54.2% and 43.3% to 73.4%, respectively. Such an excellent agreement strongly supports the validity of protein 'relative crystallizability', and crystallization screening at several temperatures can significantly increase the success for most proteins. A new protein epididymal-specific lipocalin was crystallized by varying temperature, yielding quickly the first crystals, and complete data sets have been collected at 1.97 {angstrom}.

  12. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  13. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Watt, C. E. J.; Rae, I. J.; Fazakerley, A. N.; Kalmoni, N. M. E.; Freeman, M. P.; Boakes, P. D.; Nakamura, R.; Dandouras, I.; Kistler, L. M.; Jackman, C. M.; Coxon, J. C.; Carr, C. M.

    2014-12-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ~1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  14. Going, Going, Gone: Localizing Abrupt Offsets of Moving Objects

    ERIC Educational Resources Information Center

    Maus, Gerrit W.; Nijhawan, Romi

    2009-01-01

    When a moving object abruptly disappears, this profoundly influences its localization by the visual system. In Experiment 1, 2 aligned objects moved across the screen, and 1 of them abruptly disappeared. Observers reported seeing the objects misaligned at the time of the offset, with the continuing object leading. Experiment 2 showed that the…

  15. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum

    PubMed Central

    2010-01-01

    Background The extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome. Results Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings. Conclusions The specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology. PMID:20074347

  16. Cholinergic input to the supraoptic nucleus increases Fos expression and body temperature in rats.

    PubMed

    Takahashi, A; Ishimaru, H; Ikarashi, Y; Kishi, E; Maruyama, Y

    2001-06-01

    To examine the role played by cholinergic input and processes in the supraoptic nucleus (SON) in the control of body temperature and water intake in rats, we used microdialysis to stimulate and analyze SON without disturbing the behavior of unanesthetized rats. After microdialysis, we also investigated immunoreactivity for c-Fos protein in the brain as an index of neuronal activation. Stimulation with neostigmine, an acetylcholine esterase inhibitor, through the microdialysis probe increased the extracellular concentration of acetylcholine in the SON. This cholinergic stimulation dose-dependently increased body temperature but did not significantly change the water intake. The stimulation markedly increased c-Fos-like immunoreactivity (Fos-IR) in the SON and certain hypothalamic areas, including the paraventricular nucleus (PVN) and median preoptic nucleus (MnPO). Fos-IR was also evident in certain regions of the pons and brainstem, including the locus ceruleus (LC), area postrema (AP), and nucleus of the solitary tract (NTS). Addition of atropine, a muscarinic receptor antagonist, to the dialysis medium containing neostigmine attenuated the increase of Fos-IR and suppressed the neostigmine-induced responses in body temperature. These results suggest that cholinergic input and activation of the muscarinic cholinoceptive neurons in the SON contribute to the regulation of body temperature. Activation of noradrenergic pathways in the brainstem including LC and NTS may be involved in the thermoregulation mechanism.

  17. Impact of Climate and Fires on Abrupt Permafrost Thaw in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Reents, C.; Greenberg, J. A.; Hu, F.

    2015-12-01

    Thermo-erosion from abrupt permafrost thaw is a key pulse disturbance in the Arctic that may impact the global carbon cycle. Abrupt thaw can occur when the permafrost active layer expands in response to climate warming and/or increased wildfire activity. Understanding these drivers of thermo-erosion is necessary to anticipate feedbacks in the Arctic, where summer temperature and fire frequency are predicted to increase. We examine modern and late-Holocene thermo-erosion in high-fire (Noatak) and low-fire (North Slope) tundra ecoregions of Alaska using a combination of remote-sensing and paleo-records. Lakes with active thaw features were identified through Landsat-7 image classification and time-series analysis based on observed 0.52-0.60 μm reflectance peaks following slump formation. We identified 1067 and 1705 lakes with active features between CE 2000-2012 in the Noatak and North Slope ecoregions, respectively. The density of features was higher in the highly flammable Noatak (0.04 versus 0.01 features km-2, respectively), suggesting that warmer climate and/or fires likely promote high thermo-erosional activity at present. To assess modern signals of thermo-erosion and identify past events, we analyzed soil profiles and lake-sediment cores from both ecoregions using X-ray fluorescence. The ratios of Ca:K and Ca:Sr increased with depth in permafrost soils, were higher in soils from younger versus older slump surfaces, and were significantly correlated with the ratio of carbonate to feldspar and clay minerals in lake sediments (r=0.96 and 0.93, P<0.0001, n=15). We interpret past increases in Ca:K, Ca:Sr, and δ13C as enhanced weathering of carbonate-rich permafrost soils associated with thermo-erosion. At the North Slope site, we identified ten episodes of thermoerosion over the past 6000 years and found strong correspondence to summer temperature trends. Events were more frequent at the Noatak site, where 15 thermo-erosional episodes and 26 fires occurred over

  18. The influence of fatigue-induced increase in relative work rate on temperature regulation during exercise.

    PubMed

    Kacin, Alan; Golja, Petra; Tipton, Michael J; Eiken, Ola; Mekjavic, Igor B

    2008-05-01

    Heat-loss responses during steady-load exercise are affected by an increase in relative work rate induced by muscle ischaemia or hypoxaemia. The present study investigated whether progressive increases in perception of exertion and relative oxygen uptake %VO2peak which occur during prolonged steady-load exercise as a result of progressively increased peripheral fatigue, might also affect the regulation of heat loss responses and hence the exercise-induced increase in mean body temperature. Ten male subjects first performed a ramp-test to exhaustion on a cycle ergometer to evaluate their initial peak oxygen uptake (Control VO2peak). On a separate day, 120 min of cycling at constant power output corresponding to 60% of Control VO2peak was performed in thermoneutral environment (Ta = 23 degrees C, RH = 50%, wind speed = 5 m s(-1)). This was immediately followed by another maximal performance test (Fatigue VO2peak). During prolonged exercise, median (range) rating of perceived exertion for whole-body (RPEwb) increased (P < 0.01) from initial 3.5 (1-5) to 5.5 (5-9) at the end of exercise. Fatigue VO2peak and peak power output were 9 (5) and 10 (5)% lower (P < 0.01) when compared to control values. At the onset of exercise, heat production, mechanical efficiency, heat loss and mean body temperature increased towards asymptotic values, thereafter remained constant throughout the 120 min exercise, despite the concomitant progressive increase in relative work rate, as reflected in increased RPEwb and relative oxygen uptake. It is thus concluded that the increase in relative work rate induced predominantly by peripheral muscle fatigue affects neither the level of increase in mean body temperature nor the regulation of heat loss responses during prolonged steady-load exercise.

  19. High temperature decreases the PIC / POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Gerecht, A. C.; Šupraha, L.; Edvardsen, B.; Probert, I.; Henderiks, J.

    2014-07-01

    Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon through photosynthesis (POC production) and into particulate inorganic carbon through calcification (PIC production). As calcification produces a net release of CO2, the ratio of PIC to POC production determines whether coccolithophores act as a source (high PIC / POC) or a sink (low PIC / POC) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and high temperature on the physiology and the PIC / POC ratio of two subspecies of Coccolithus pelagicus. This large and heavily calcified species is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. One of the subspecies was subjected to a 5 °C temperature increase from 10 °C to 15 °C, which did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. This temperature increase reduced the PIC / POC ratio by 40-60%, whereas the PIC / POC ratio did not differ between P-limited and nutrient-replete cultures when the subspecies were grown near their respective isolation temperature. Both P-limitation and elevated temperature significantly increased coccolith malformations. Our results suggest that a temperature increase may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C

  20. Seasonal increase in sea temperature triggers pancreas disease outbreaks in Norwegian salmon farms.

    PubMed

    Stene, A; Bang Jensen, B; Knutsen, Ø; Olsen, A; Viljugrein, H

    2014-08-01

    Pancreas disease (PD) is a viral disease causing negative impacts on economy of salmon farms and fish welfare. Its transmission route is horizontal, and water transport by ocean currents is an important factor for transmission. In this study, the effect of temperature changes on PD dynamics in the field has been analysed for the first time. To identify the potential time of exposure to the virus causing PD, a hydrodynamic current model was used. A cohort of salmon was assumed to be infected the month it was exposed to virus from other infective cohorts by estimated water contact. The number of months from exposure to outbreak defined the incubation period, which was used in this investigation to explore the relationship between temperature changes and PD dynamics. The time of outbreak was identified by peak in mortality based on monthly records from active sites. Survival analysis demonstrated that cohorts exposed to virus at decreasing sea temperature had a significantly longer incubation period than cohorts infected when the sea temperature was increasing. Hydrodynamic models can provide information on the risk of being exposed to pathogens from neighbouring farms. With the knowledge of temperature-dependent outbreak probability, the farmers can emphasize prophylactic management, avoid stressful operations until the sea temperature is decreasing and consider removal of cohorts at risk, if possible.

  1. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.

    PubMed

    Kimberly, David A; Salice, Christopher J

    2014-07-01

    The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects.

  2. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.

    PubMed

    Augspurger, Carol K

    2013-01-01

    Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost < or = -1.7 degrees C occurred after bud-break in 14 of the 20 years of observation. Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature < or = -6.1 degrees C with (3) a period of 16-33 days between the extremes. In the long-term record, 10 of 124 years met these conditions, but the yearly probability of frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to < or = -1.7 degrees C in April and an interval of 16-37 days, 31 of 124 years met the conditions, and the yearly damage probability increased significantly to 0.19 for 1889-1979 and 0.42 for 1980-2012. In this forest, the combination of warming trends and temperature variability (extremes) associated with climate change is having ecologically important effects, making previously rare frost damage events more common. PMID:23600239

  3. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.

    PubMed

    Augspurger, Carol K

    2013-01-01

    Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost < or = -1.7 degrees C occurred after bud-break in 14 of the 20 years of observation. Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature < or = -6.1 degrees C with (3) a period of 16-33 days between the extremes. In the long-term record, 10 of 124 years met these conditions, but the yearly probability of frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to < or = -1.7 degrees C in April and an interval of 16-37 days, 31 of 124 years met the conditions, and the yearly damage probability increased significantly to 0.19 for 1889-1979 and 0.42 for 1980-2012. In this forest, the combination of warming trends and temperature variability (extremes) associated with climate change is having ecologically important effects, making previously rare frost damage events more common.

  4. Interaction of Temperature and Photoperiod Increases Growth and Oil Content in the Marine Microalgae Dunaliella viridis.

    PubMed

    Srirangan, Soundarya; Sauer, Marie-Laure; Howard, Brian; Dvora, Mia; Dums, Jacob; Backman, Patrick; Sederoff, Heike

    2015-01-01

    Eukaryotic marine microalgae like Dunaliella spp. have great potential as a feedstock for liquid transportation fuels because they grow fast and can accumulate high levels of triacylgycerides with little need for fresh water or land. Their growth rates vary between species and are dependent on environmental conditions. The cell cycle, starch and triacylglycerol accumulation are controlled by the diurnal light:dark cycle. Storage compounds like starch and triacylglycerol accumulate in the light when CO2 fixation rates exceed the need of assimilated carbon and energy for cell maintenance and division during the dark phase. To delineate environmental effects, we analyzed cell division rates, metabolism and transcriptional regulation in Dunaliella viridis in response to changes in light duration and growth temperatures. Its rate of cell division was increased under continuous light conditions, while a shift in temperature from 25 °C to 35 °C did not significantly affect the cell division rate, but increased the triacylglycerol content per cell several-fold under continuous light. The amount of saturated fatty acids in triacylglycerol fraction was more responsive to an increase in temperature than to a change in the light regime. Detailed fatty acid profiles showed that Dunaliella viridis incorporated lauric acid (C12:0) into triacylglycerol after 24 hours under continuous light. Transcriptome analysis identified potential regulators involved in the light and temperature-induced lipid accumulation in Dunaliella viridis. PMID:25992838

  5. Interaction of Temperature and Photoperiod Increases Growth and Oil Content in the Marine Microalgae Dunaliella viridis

    PubMed Central

    Howard, Brian; Dvora, Mia; Dums, Jacob; Backman, Patrick; Sederoff, Heike

    2015-01-01

    Eukaryotic marine microalgae like Dunaliella spp. have great potential as a feedstock for liquid transportation fuels because they grow fast and can accumulate high levels of triacylgycerides with little need for fresh water or land. Their growth rates vary between species and are dependent on environmental conditions. The cell cycle, starch and triacylglycerol accumulation are controlled by the diurnal light:dark cycle. Storage compounds like starch and triacylglycerol accumulate in the light when CO2 fixation rates exceed the need of assimilated carbon and energy for cell maintenance and division during the dark phase. To delineate environmental effects, we analyzed cell division rates, metabolism and transcriptional regulation in Dunaliella viridis in response to changes in light duration and growth temperatures. Its rate of cell division was increased under continuous light conditions, while a shift in temperature from 25°C to 35°C did not significantly affect the cell division rate, but increased the triacylglycerol content per cell several-fold under continuous light. The amount of saturated fatty acids in triacylglycerol fraction was more responsive to an increase in temperature than to a change in the light regime. Detailed fatty acid profiles showed that Dunaliella viridis incorporated lauric acid (C12:0) into triacylglycerol after 24 hours under continuous light. Transcriptome analysis identified potential regulators involved in the light and temperature-induced lipid accumulation in Dunaliella viridis. PMID:25992838

  6. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species.

    PubMed

    Ferrier-Pagès, Christine; Richard, Cécile; Forcioli, Didier; Allemand, Denis; Pichon, Michel; Shick, J Malcolm

    2007-08-01

    Experiments were performed on coral species containing clade A (Stylophora pistillata, Montipora aequituberculata) or clade C (Acropora sp., Pavona cactus) zooxanthellae. The photosynthetic efficiency (F(v)/F(m)) of the corals was first assessed during a short-term increase in temperature (from 27 degrees C to 29 degrees C, 32 degrees C, and 34 degrees C) and acute exposure to UV radiation (20.5 W m(-2) UVA and 1.2 W m(-2) UVB) alone or in combination. Increasing temperature to 34 degrees C significantly decreased the F(v)/F(m) in S. pistillata and M. aequituberculata. Increased UV radiation alone significantly decreased the F(v)/F(m) of all coral species, even at 27 degrees C. There was a combined effect of temperature and UV radiation, which reduced F(v)/F(m) in all corals by 25% to 40%. During a long-term exposure to UV radiation (17 days) the F(v)/F(m) was significantly reduced after 3 days' exposure in all species, which did not recover their initial values, even after 17 days. By this time, all corals had synthesized mycosporine-like amino acids (MAAs). The concentration and diversity of MAAs differed among species, being higher for corals containing clade A zooxanthellae. Prolonged exposure to UV radiation at the nonstressful temperature of 27 degrees C conferred protection against independent, thermally induced photoinhibition in all four species. PMID:17679722

  7. High temperature increases the masculinization rate of the all-female (XX) rainbow trout "Mal" population.

    PubMed

    Valdivia, Karina; Jouanno, Elodie; Volff, Jean-Nicolas; Galiana-Arnoux, Delphine; Guyomard, René; Helary, Louise; Mourot, Brigitte; Fostier, Alexis; Quillet, Edwige; Guiguen, Yann

    2014-01-01

    Salmonids are generally considered to have a robust genetic sex determination system with a simple male heterogamety (XX/XY). However, spontaneous masculinization of XX females has been found in a rainbow trout population of gynogenetic doubled haploid individuals. The analysis of this masculinization phenotype transmission supported the hypothesis of the involvement of a recessive mutation (termed mal). As temperature effect on sex differentiation has been reported in some salmonid species, in this study we investigated in detail the potential implication of temperature on masculinization in this XX mal-carrying population. Seven families issued from XX mal-carrying parents were exposed from the time of hatching to different rearing water temperatures ((8, 12 and 18°C), and the resulting sex-ratios were confirmed by histological analysis of both gonads. Our results demonstrate that masculinization rates are strongly increased (up to nearly two fold) at the highest temperature treatment (18°C). Interestingly, we also found clear differences between temperatures on the masculinization of the left versus the right gonads with the right gonad consistently more often masculinized than the left one at lower temperatures (8 and 12°C). However, the masculinization rate is also strongly dependent on the genetic background of the XX mal-carrying families. Thus, masculinization in XX mal-carrying rainbow trout is potentially triggered by an interaction between the temperature treatment and a complex genetic background potentially involving some part of the genetic sex differentiation regulatory cascade along with some minor sex-influencing loci. These results indicate that despite its rather strict genetic sex determinism system, rainbow trout sex differentiation can be modulated by temperature, as described in many other fish species.

  8. Modelling forest growth and carbon storage in response to increasing CO2 and temperature

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Miko U. F.

    1999-11-01

    The response of plant growth to increasing climate change remains one of the unresolved issues in understanding the future of the terrestrial biosphere. It was investigated here by using the comprehensive forest growth model CenW 1.0.5 which integrates routines for the fluxes of carbon and water, interception of radiation and the cycling of nutrients. It was run with water and/or nutrient limitations on a background of naturally observed climate at Canberra, Australia. It was parameterised for Pinus radiata, the commercially most important plantation species in Australia. The simulations showed that under water-limited conditions, forest growth was highly sensitive to doubling CO2,with growth increases of over 50% on average and even greater increases in dry years. In contrast, when water supply was adequate, but nutrients were limiting, growth increases were smaller, with an initial increase of about 15% during the first year after CO2 was doubled. This growth increase diminished further over subsequent years so that after 20years, there was virtually no remaining effect. This diminishing response was due to developing nutrient limitations caused by extra carbon input which immobilised nutrients in the soil. When both water and nutrients were adequate, growth was increased by about 15 20% with no decrease over time. Increasing ambient temperature had a positive effect on growth under nutrient limited conditions by stimulating nitrogen mineralisation rates, but had very little effect when nutrients were non-limiting. Responses were qualitatively similar when conditions were changed gradually. In response to increasing CO2 by 2µmol mol-1year-1 over 50years, growth was increased by only 1% under nutrient-limited condition but by 16% under water-limited conditions. When temperature and CO2

  9. Detectability of the effects of a hypothetical temperature increase on the Thornthwaite moisture index

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    1991-01-01

    Climatic changes that result from increasing concentrations of atmospheric carbon dioxide may affect the availability of water for vegetation, groundwater recharge, runoff, and human consumption. Most studies of the effects of climatic change on water resources focus on changes in mean characteristics of hydrologic variables and do not consider the effects of these changes amid natural climatic variability. In this study, the Thornthwaite moisture index, an index of the supply of water in an area (precipitation) relative to the climatic demand for water (potential evapotranspiration), was used to examine the effects of a hypothetical increase in air temperature on moisture conditions in the United States. The effects of a gradual increase in air temperature at the rate of 4??C per 100 years, with no accompanying change in precipitation, was used to induce a change in Thornthwaite moisture index values for the United States in order to: (i) determine the relation between natural variability in climate and the time needed for significant trends in the moisture index to occur in response to hypothetical warming; (ii) identify the characteristics of areas (e.g. wet/cool, hot/dry etc.) that are most likely to be the first to experience significant changes in the moisture index given the hypothetical temperature increase. The increased temperature resulted in increased potential evapotranspiration and a decrease in the moisture index across the United States. Decreases in the moisture index were greatest in cool/wet regions and least in hot/dry regions. The time required to detect significant trends in the moisture index was a function of both the magnitude of change in the moisture index and the natural year-to-year variability of the moisture index. In general, when the ratio of the magnitude of change in the moisture index to the magnitude of variability was large, the time required to detect significant trends was short. This ratio was largest in cool/wet regions

  10. The effect of increased temperature and altered precipitation on plants in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Wertin, T. M.; Reed, S.; Belnap, J.

    2011-12-01

    Projected changes in climate are expected to strongly affect arid and semi-arid landscapes where plant communities are assumed to already experience high temperatures and low water availability. Here we investigated the effect of elevated temperature and altered precipitation regimes on plant physiology, community composition, phenology and growth on the Colorado Plateau. The ecosystem is dominated by the native perennial grasses Pleuraphis jamesii and Achnatherum hymenoides and the shrub Atriplex confertifolia and has well-formed biological soil crusts. The invasive annual grass Bromus tectorum is also present. In 2005, five blocks of four 2m by 2.5m plots were established, and within each block plots were randomly assigned to ambient or elevated temperature (soil surface temperature of +2°C above ambient) and ambient or elevated precipitation (1.5 mm precipitation pulses applied three times weekly during summer) in full-factorial. In 2009 the temperature treatment was increased to +4°C. Additionally, five new blocks were established with the plots randomly assigned ambient or elevated temperature (again, +2°C was used) and ambient or elevated precipitation (summertime large bi-weekly watering to counteract negative effects the lamps may have had on soil moisture) in full-factorial. Throughout 2010 and 2011 the phenological state of the dominate plant species was recorded weekly. At the end of May 2010 and 2011 biomass accumulation, reproductive output and vegetative cover were assessed. Additionally, diurnal foliar gas exchange, foliar fluorescence and xylem pressure potential were measured on the dominant plant species three times throughout the spring and summer of 2011. Elevated temperature had no effect on carbon fixation or foliar physiology of A. confertifolia or P. jamesii, though A. hymenoides carbon fixation was negatively affected by elevated temperature with the +4°C treatment causing a greater reduction in fixation than the +2°C treatment. The

  11. PULPAL TEMPERATURE INCREASE WITH HIGH-SPEED HANDPIECE, ER:YAG LASER AND ULTRASOUND TIPS

    PubMed Central

    Mollica, Fernanda Brandão; Camargo, Fernanda Pelogia; Zamboni, Sandra Costa; Pereira, Sarina Maciel Braga; Teixeira, Symone Cristina; Nogueira, Lafayette

    2008-01-01

    The aim of this study was to compare intrapulpal temperature increase produced by high-speed handpiece, Er:YAG laser and CVDentus ultrasound tips during cavity preparation. Thirty bovine mandibular incisors with an enamel/dentin thickness of 4 mm at buccal surface had their roots amputated and were allocated to the following groups (n=10): Group I- high-speed handpiece; Group II- noncontact Er:YAG laser (250 mJ/4Hz); and Group III- CVDentus ultrasouns tips. All devices were used with water cooling. Class V cavities were prepared to a depth of 3.5 mm, measured with a periodontal probe. A type T thermocouple was placed inside the pulp chamber to determine the temperature increase (°C), which was recorded by a data acquisition system ADS 2000 IP (Lynx Technology) linked to a notebook computer. Data were analyzed statistically by oneway ANOVA and Tukey's test (p=0.05). The mean temperature rises were: 1.10°C (±0.56) for Group I, 0.84°C (±0.55) for Group II, and 3.00°C (± 1.34) for Group III. There were no statistically significant differences (p>0.05) between Groups I and II, but both of them differed significantly from Group III (p<0.05). In conclusion, the use of Er:YAG laser and high-speed handpiece for cavity preparation resulted in similar temperature increase. Although ultrasound tips generated significantly higher intrapulpal temperature increase, it remained below the critical value of 5.5°C and may be considered safe for use. PMID:19089220

  12. The potential impacts of increasing temperatures on old-growth forest biomass density

    NASA Astrophysics Data System (ADS)

    Larjavaara, M.; Muller-Landau, H. C.

    2012-04-01

    climates, the high maintenance cost lowers the ratio of GPP to maintenance cost, and makes it energetically impossible to support very large trunks. In continental temperate climates, warm summers and cold winters lower the GPP to maintenance cost ratio, and thus old-growth forest biomass. Our predictions explained 50% of global variation in old-growth forest biomass density in an independent dataset. In this paper, we use our previously fitted models of temperature effects on GPP and maintenance costs to project the impacts of increasing temperatures on old-growth forest biomass in humid climates. Model projections suggest that old-growth biomass per area of forest will increase significantly in temperate and boreal climates due to longer growing seasons, and decrease significantly in tropical climates due to the increasing energetic costs of temperatures above 30˚C. Field measurements have found, on average, increasing old-growth forest biomass worldwide, in agreement with our projections for temperate and boreal forests but contrary to our projections for tropical forests. Our projections do not consider the impacts of increasing atmospheric carbon dioxide and increasing nitrogen deposition, which are both likely to positively impact old-growth forest biomass, and may outweigh the negative impacts of temperature alone in tropical forests.

  13. Monitoring of vulcanization process using measurement of electrical properties during linear increasing temperature

    NASA Astrophysics Data System (ADS)

    Seliga, E.; Bošák, O.; Koštial, P.; Dvořák, Z.; Kubliha, M.; Minárik, S.; Labaš, V.

    2015-04-01

    The article presents the possibilities of diagnostics of irreversible chemical reaction - vulcanization in case of laboratory prepared rubber mixture based on styrene - butadiene (SBR) using measurements of selected physical parameters. Our work is focused on the measurement of current rheologic parameters (torque at defined shear deformation) and selected electrical parameters (DC conductivity) during linear increasing temperature. The individual steps of vulcanization are well identified by means of measurements of rheologic parameters, while significantly affecting the value of the electrical conductivity. The value of the electrical conductivity increases with the increasing of rate of the crossbridging reactions during vulcanization. The rate of the heating affects both types of measurements. When the rate of the heating is increasing the temperature of the beginning of networking step of reactions and also the rate of vulcanization grow. The sensitivity of the both types of measurements allows a good mathematical description of the temperature dependence of the torque and the electric conductivity during the vulcanization of rubber mixtures based on SBR.

  14. Degradation increase responses of priming effects to temperature in Tibetan alpine grasslands

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Li, Qianru; Schleuss, Per; Hua, Ouyang; Kuzyakov, Yakov

    2016-04-01

    Kobresia grassland in Tibet plateau, with a rich storage of soil organic carbon (SOC), is very important to both ecosystem function and the livelihoods of local pastoral communities. But its intensive degradation in recent decades has led to unclear consequences for SOC stocks and dynamics. Kobresia grassland acts as a critical "first response region" to climate change, where the SOC decomposition is highly sensitive to temperature, and can produce positive C climate feedback. Priming effects, induced by inputs of labile organic carbon (LOC), can also affect SOC dynamic. Therefore, knowledge about how the priming effects response to temperature, and how their interactions affect SOC decomposition are central to understanding the carbon cycle of Tibet plateau under global warming. To this ends, we conducted a laboratory incubation experiment with the non-degraded soil collected from intact Kobresia patches, and degraded soil collected from crust patches, labeled with 14C-glucose in high/low level and incubated under 0 °C, 10 °C and 20 °C for 80 days. Cumulated CO2 emission increased significantly with temperature. Degraded soil showed lower CO2 emission at 0 °C, but significant higher CO2 emission at higher temperature compared to that of non-degraded soil. Priming positively responded to increasing temperature, with 78.9% increment in degraded soil and 12.9% in non-degraded soil on average, and at 20 °C, it was significant higher in degraded soil than non-degraded soil. Low-level glucose input led to the positive priming effects, while high-level glucose induced the negative priming. Higher temperature led to higher microbial activity (i.e., qCO2) and enzyme activity (i.e., β-glucosidases, chitinase, cellobiohydrolase and Xylosidase). Vmax of enzyme was significantly higher in degraded soil than in non-degraded soil, exhibiting a positive linear regression with priming effects. In conclusion, increase in temperature improved priming effects via higher microbe

  15. Increased Susceptibility to Aphids of Flowering Wheat Plants Exposed to Low Temperatures.

    PubMed

    Lacoste, C; Nansen, C; Thompson, S; Moir-Barnetson, L; Mian, A; McNee, M; Flower, K C

    2015-06-01

    Frost is known to directly affect flowering wheat plants (Triticum aestivum L.) and lead to reduced grain yield. Additionally, it may increase wheat susceptibility to economically important pests, such as aphids (Hemiptera: Aphididae). Wheat plants at flowering stage were exposed to one of the three temperature treatments: ambient (11-12°C), 0°C, and -3°C for 60 min. Preference (3-choice) and performance (no-choice) bioassays with aphids (Rhopalosiphum padi L.) were conducted 1, 3, 6, and 12 d after temperature treatments to assess effects of temperature-induced stress over time. As an initial feasibility study of using remote sensing technologies to detect frost-induced stress in flowering wheat plants, hyperspectral imaging data were acquired from wheat plants used in preference bioassays. Element analysis of wheat plants was included to determine the effect of temperature-induced stress on the nutritional composition of flowering wheat plants. The results from this study support the following cause-effect scenario: a 60-min exposure to low temperatures caused a significant decrease in potassium and copper content of wheat plants 6 d after temperature exposure, and it coincided with a marked increase in preference by aphids of wheat plants. The preference exhibited by aphids correlated positively with performance of aphids, so the preference-performance hypothesis was confirmed and possibly driven by potassium and copper content of wheat plants. In addition, we demonstrated that hyperspectral imaging data can be used to detect frost-induced susceptibility to aphid infestation in flowering wheat plants. These findings justify further research into airborne remote sensing of frost-induced stress and the possible secondary effects on crop susceptibility to arthropod pests.

  16. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2012-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. For this purpose the acoustic analogy of Morris and Miller is examined. To isolate the relevant physics, the scaling of BBSAN at the peak intensity level at the sideline ( = 90 degrees) observer location is examined. Scaling terms are isolated from the acoustic analogy and the result is compared using a convergent nozzle with the experiments of Bridges and Brown and using a convergent-divergent nozzle with the experiments of Kuo, McLaughlin, and Morris at four nozzle pressure ratios in increments of total temperature ratios from one to four. The equivalent source within the framework of the acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green s function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for the accurate saturation of BBSAN with increasing stagnation temperature. This is a minor change to the source model relative to the previously developed models. The full development of the scaling term is shown. The sources and vector Green s function solver are informed by steady Reynolds-Averaged Navier-Stokes solutions. These solutions are examined as a function of stagnation temperature at the first shock wave shear layer interaction. It is discovered that saturation of BBSAN with increasing jet stagnation temperature occurs due to a balance between the amplification of the sound propagation through the shear layer and the source term scaling.A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity

  17. Sea-level response to abrupt ocean warming of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank

    2016-04-01

    Antarctica's contribution to global sea-level rise increases steadily. A fundamental question remains whether the ice discharge will lead to marine ice sheet instability (MISI) and collapse of certain sectors of the ice sheet or whether ice loss will increase linearly with the warming trends. Therefore, we employ a newly developed ice sheet model of the Antarctic ice sheet, called f.ETISh (fast Elementary Thermomechanical Ice Sheet model) to simulate ice sheet response to abrupt perturbations in ocean and atmospheric temperature. The f.ETISh model is a vertically integrated hybrid (SSA/SIA) ice sheet model including ice shelves. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition either coherent with power-law basal sliding (Pollard & Deconto (2012) based on Schoof (2007)) or according to Coulomb basal friction (Tsai et al., 2015), both taking into account ice-shelf buttressing. Model initialization is based on optimization of the basal friction field. Besides the traditional MISMIP tests, new tests with respect to MISI in plan-view models have been devised. The model is forced with stepwise ocean and atmosphere temperature perturbations. The former is based on a parametrised sub-shelf melt (limited to ice shelves), while the latter is based on present-day mass balance/surface temperature and corrected for elevation changes. Surface melting is introduced using a PDD model. Results show a general linear response in mass loss to ocean warming. Nonlinear response due to MISI occurs under specific conditions and is highly sensitive to the basal conditions near the grounding line, governed by both the initial conditions and the basal sliding/deformation model. The Coulomb friction model leads to significantly higher

  18. Distinctions in the Raman Spectroscopy Features of WO3 Materials with Increasing Temperature

    NASA Astrophysics Data System (ADS)

    Garcia-Sanchez, Raul F.; Misra, Prabhakar

    2014-06-01

    Metal oxides are widely used in gas sensor applications due to their low cost, easy production and selectivity. Tungsten Oxide (WO3) is one of the most used metal oxides in the detection of Nitrogen gases (NOx). The purpose of this research is to determine if the Raman features of a metal oxide gas sensor can serve as tools to make estimates regarding the sensor capabilities related to the target gases. This research will be used for gas sensing of oxidizing/reducing toxic gases (i.e. H2S, NOx, SO2, etc.) and finding the effect that temperature, gas concentration, type of gas, exposure time and other variables have on the Raman spectra of metal oxides. In this experiment, the temperature was increased from 30-160 °C and the Raman data was taken using a 780 nm infrared laser. In two of the samples, WO3 on Silicon substrate and WO3 nanopowder, we found vibrational modes at 807, 716 and 271 cm-1, which are indicators of a monoclinic WO3 structure. The WO3 nanowires samples exhibit the O-W-O bond stretching feature is present and asymmetric stretching of the W-O bonds occurs, resulting in a 750 cm-1 band. The intensity of Raman features such as 750 cm-1 for nanowires and 492 and 670 cm-1 for WO3 on Silicon substrate begins to decay as temperature increases. Additionally, the vibrational modes related to O-H and W-OH become more pronounced as temperature increases due to those bonds reacting more strongly to the temperature change than the normal W-O bonds related to the original lattice structure. Finally, all samples have low-frequency phonon mode markers associated with temperature change, and in most cases these change as temperature increases. The understanding of the thermal effects will help develop theoretical models for the identification of specific metal oxide-gas relationships and provide a supplemental way of observing gas adsorption in addition to current conductivity measurements.

  19. Greenland temperature response to climate forcing during the last deglaciation.

    PubMed

    Buizert, Christo; Gkinis, Vasileios; Severinghaus, Jeffrey P; He, Feng; Lecavalier, Benoit S; Kindler, Philippe; Leuenberger, Markus; Carlson, Anders E; Vinther, Bo; Masson-Delmotte, Valérie; White, James W C; Liu, Zhengyu; Otto-Bliesner, Bette; Brook, Edward J

    2014-09-01

    Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon. PMID:25190795

  20. Greenland temperature response to climate forcing during the last deglaciation.

    PubMed

    Buizert, Christo; Gkinis, Vasileios; Severinghaus, Jeffrey P; He, Feng; Lecavalier, Benoit S; Kindler, Philippe; Leuenberger, Markus; Carlson, Anders E; Vinther, Bo; Masson-Delmotte, Valérie; White, James W C; Liu, Zhengyu; Otto-Bliesner, Bette; Brook, Edward J

    2014-09-01

    Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.

  1. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-01

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  2. High temperature decreases the PIC / POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Gerecht, A. C.; Šupraha, L.; Edvardsen, B.; Probert, I.; Henderiks, J.

    2014-01-01

    Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon (POC) through photosynthesis and into particulate inorganic carbon (PIC) through calcification. As calcification produces a net release of CO2, the ratio of PIC / POC determines whether coccolithophores act as a source (PIC / POC > 1) or a sink (PIC / POC < 1) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and temperature stress on the physiology and PIC / POC ratios of two subspecies of Coccolithus pelagicus. This large and heavily calcified species (PIC / POC generally > 1.5) is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. A 5 °C temperature increase did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. The PIC / POC ratios did not differ between P-limited and nutrient-replete cultures, but at elevated temperature (from 10 to 15 °C) PIC / POC ratios decreased by 40-60%. Our results suggest that elevated temperature may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C. pelagicus may decrease its calcification rate relative to photosynthesis, resulting in PIC / POC ratios < 1 and favouring CO2-sequestration over release. Phosphorus limitation by itself is unlikely to cause changes in the PIC / POC

  3. Increasing temperature forcing reduces the Greenland Ice Sheet's response time scale

    NASA Astrophysics Data System (ADS)

    Applegate, Patrick J.; Parizek, Byron R.; Nicholas, Robert E.; Alley, Richard B.; Keller, Klaus

    2015-10-01

    Damages from sea level rise, as well as strategies to manage the associated risk, hinge critically on the time scale and eventual magnitude of sea level rise. Satellite observations and paleo-data suggest that the Greenland Ice Sheet (GIS) loses mass in response to increased temperatures, and may thus contribute substantially to sea level rise as anthropogenic climate change progresses. The time scale of GIS mass loss and sea level rise are deeply uncertain, and are often assumed to be constant. However, previous ice sheet modeling studies have shown that the time scale of GIS response likely decreases strongly with increasing temperature anomaly. Here, we map the relationship between temperature anomaly and the time scale of GIS response, by perturbing a calibrated, three-dimensional model of GIS behavior. Additional simulations with a profile, higher-order, ice sheet model yield time scales that are broadly consistent with those obtained using the three-dimensional model, and shed light on the feedbacks in the ice sheet system that cause the time scale shortening. Semi-empirical modeling studies that assume a constant time scale of sea level adjustment, and are calibrated to small preanthropogenic temperature and sea level changes, may underestimate future sea level rise. Our analysis suggests that the benefits of reducing greenhouse gas emissions, in terms of avoided sea level rise from the GIS, may be greatest if emissions reductions begin before large temperature increases have been realized. Reducing anthropogenic climate change may also allow more time for design and deployment of risk management strategies by slowing sea level contributions from the GIS.

  4. In utero heat stress increases postnatal core body temperature in pigs.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Seibert, J T; Ross, J W; Lucy, M C; Safranski, T J; Elsasser, T H; Kahl, S; Rhoads, R P; Baumgard, L H

    2015-09-01

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.

  5. In utero heat stress increases postnatal core body temperature in pigs.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Seibert, J T; Ross, J W; Lucy, M C; Safranski, T J; Elsasser, T H; Kahl, S; Rhoads, R P; Baumgard, L H

    2015-09-01

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics. PMID:26440331

  6. Skin temperature increase caused by a mobile phone: a methodological infrared camera study.

    PubMed

    Straume, Aksel; Oftedal, Gunnhild; Johnsson, Anders

    2005-09-01

    Mobile phone users often complain about burning sensations or a heating of the ear region. The increase in temperature may be due to thermal insulation by the phone, heating of the mobile phone resulting from its electrical power dissipation, and radio frequency (RF) exposure. The main objective of this study was to use infrared (IR) camera techniques to find how much each of these factors contributes to the increase in skin temperature resulting from the use of one GSM 900 phone. One subject, a healthy male, took part in the study. He was holding the phone in a normal position when the phone was switched off, when it was switched on but with the antenna replaced by a 50 Omega load to eliminate the RF exposure, and when it was transmitting RF fields. The output power could be fixed, and the minimal and the maximal power levels of the phone were used. The study was designed as a double blind experiment. The changes in temperature after 15 and 30 min of mobile phone use were calculated on the exposed side of the head relative to the unexposed side. The insulation and the electrical power dissipation led to statistically significant rises in the skin temperature, while the RF exposure did not.

  7. Short-term responses of unicellular planktonic eukaryotes to increases in temperature and UVB radiation

    PubMed Central

    2012-01-01

    Background Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. Results We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 μm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. Conclusions This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs. PMID:22966751

  8. Significant increase of Curie temperature in nano-scale BaTiO3

    NASA Astrophysics Data System (ADS)

    Li, Yueliang; Liao, Zhenyu; Fang, Fang; Wang, Xiaohui; Li, Longtu; Zhu, Jing

    2014-11-01

    The low Curie temperature (Tc = 130 °C) of bulk BaTiO3 greatly limits its applications. In this work, the phase structures of BaTiO3 nanoparticles with sizes ranging from 2.5 nm to 10 nm were studied at various temperatures by using aberration-corrected transmission electron microscopy (TEM) equipped with an in-situ heating holder. The results implied that each BaTiO3 nanoparticle was composed of different phases, and the ferroelectric ones were observed in the shells due to the complicated surface structure. The ferroelectric phases in BaTiO3 nanoparticles remained at 600 °C, suggesting a significant increase of Tc. Based on the in-situ TEM results and the data reported by others, temperature-size phase diagrams for BaTiO3 particles and ceramics were proposed, showing that the phase transition became diffused and the Tc obviously increased with decreasing size. The present work sheds light on the design and fabrication of advanced devices for high temperature applications.

  9. Significant increase of Curie temperature in nano-scale BaTiO{sub 3}

    SciTech Connect

    Li, Yueliang; Liao, Zhenyu; Fang, Fang; Zhu, Jing; Wang, Xiaohui; Li, Longtu

    2014-11-03

    The low Curie temperature (T{sub c} = 130 °C) of bulk BaTiO{sub 3} greatly limits its applications. In this work, the phase structures of BaTiO{sub 3} nanoparticles with sizes ranging from 2.5 nm to 10 nm were studied at various temperatures by using aberration-corrected transmission electron microscopy (TEM) equipped with an in-situ heating holder. The results implied that each BaTiO{sub 3} nanoparticle was composed of different phases, and the ferroelectric ones were observed in the shells due to the complicated surface structure. The ferroelectric phases in BaTiO{sub 3} nanoparticles remained at 600 °C, suggesting a significant increase of T{sub c}. Based on the in-situ TEM results and the data reported by others, temperature-size phase diagrams for BaTiO{sub 3} particles and ceramics were proposed, showing that the phase transition became diffused and the T{sub c} obviously increased with decreasing size. The present work sheds light on the design and fabrication of advanced devices for high temperature applications.

  10. Higher temperature variability increases the impact of Batrachochytrium dendrobatidis and shifts interspecific interactions in tadpole mesocosms

    PubMed Central

    Hamilton, Phineas T; Richardson, Jean ML; Govindarajulu, Purnima; Anholt, Bradley R

    2012-01-01

    The emergence of amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd) has led to the decline and extinction of numerous amphibian species. Multiple studies have observed links between climatic factors and amphibian declines apparently caused by Bd. Using outdoor experimental mesocosms, we tested the response of red-legged frog (Rana aurora) tadpoles to increased variation in temperature, a component of climate linked to amphibian declines, and Bd exposure. We included tadpoles of a sympatric competitor species, Pacific chorus frog (Pseudacris regilla), in a fully factorial design to test the effects of Bd and temperature on interspecific interactions. We found that higher variation in temperature had numerous effects in mesocosms, including interacting with Bd presence to decrease the condition of R. aurora, shifting the relative performance of competing P. regilla and R. aurora, and accelerating the development of P. regilla relative to R. aurora. Our results demonstrate that increased variation in temperature can affect amphibians in multiple ways that will be contingent on ecological context, including the presence of Bd and competing species. PMID:23145331

  11. Diagnostic Performance of Ultrasonography for Detection of Abruption and Its Clinical Correlation and Maternal and Foetal Outcome

    PubMed Central

    Vaswani, Babita Prakash; Patange, R.P.; Laddad, Manisha Manish; Bhosale, Rajashree Babasaheb

    2016-01-01

    Introduction Placental abruption complicates about 1% of singleton pregnancies and is an important cause of perinatal mortality and morbidity. Though sensitivity and reliability of ultrasound are poor for detecting or excluding placental abruption, because of the advances in ultrasound resolution, imaging and interpretation, sensitivity of ultrasound is better than what was reported previously. Aim To determine the diagnostic performance of Ultrasonography (USG) for the detection of placental abruption and whether sonographic results correlate with maternal and foetal management and outcome. Materials and Methods Thirty patients with clinical diagnosis of placental abruption were studied in the Obstetrics and Gynaecology Department of Krishna Institute of Medical Sciences, over a period of 6 months. These patients underwent ultrasonography for confirmation. Obstetric and neonatal outcome and sonographic results were compared and reviewed. Sonographic sensitivity and specificity and positive and negative predictive values were calculated. Results Incidence of abruption in present study was 1.56% (28 patients out of 1786 total deliveries). Sensitivity of ultrasonography in the diagnosis of abruption was 57% (CI 37.15%-75.57%) while its specificity was 100% (CI 15.81%-100%) with a positive predictive value of 100% (CI 79.42%-100%) and a 14% (CI 1.78% - 42.83%) negative predictive value. An 87.5% of patients(14 out of 16) with a positive USG finding of abruption had Intrauterine foetal Death (IUD)/still birth while 91.6% of patients (11 out of 12) with negative USG findings of abruption gave birth to babies who required NICU admission. Conclusion Sonography is not sensitive for the detection of placental abruption but it is highly specific. Positive sonographic findings are associated with increased maternal morbidity, require more aggressive obstetric management and it is associated with worse perinatal outcome. In case of a negative USG finding, but a strong clinical

  12. Survival and population size of a resident bird species are declining as temperature increases.

    PubMed

    Santisteban, Leonard; Benkman, Craig W; Fetz, Trevor; Smith, Julie W

    2012-03-01

    1. A large number of migratory bird species appear to be declining as the result of climate change, but whether resident bird species have or will be adversely affected by climate change is less clear. We focus on the South Hills crossbill (Loxia curvirostra complex), which is endemic to about 70 km(2) of Rocky Mountain lodgepole pine (Pinus contorta latifolia) forest in southern Idaho, USA. 2. Our results indicate that the South Hills crossbill has declined by over 60% between 2003 and 2008, and that decreasing adult survival drives this population decline. 3. We evaluated the relative support for multiple hypotheses linking crossbill survival to climate, an ectoparasitic mite (scaly-leg mites Knemidokoptes jamaicensis), and the recent emergence of West Nile virus. Changes in adult apparent survival rate were closely associated with average spring and annual temperatures, and with high temperatures (≥32 °C) during summer, which have increased during the last decade. In contrast, there was little evidence that scaly-leg mites or West Nile virus contributed to recent declines in adult survival. 4. The most probable mechanism causing the decline in adult survival and population size is a decrease in the availability of their primary food resource, seeds in serotinous pine cones. Cone production has declined with increasing annual temperatures, and these cones appear to be prematurely opening owing to increasingly hot summer conditions releasing their seeds and reducing the carrying capacity for crossbills later in the year. 5. In light of regional climate change forecasts, which include an increase in both annual temperature and hot days (>32 °C), and the likely disappearance of lodgepole pine from southern Idaho by the end of this century, additional research is needed to determine how to maintain lodgepole pine forests and their supply of seeds to conserve one of the few bird species endemic to the continental United States.

  13. Survival and population size of a resident bird species are declining as temperature increases.

    PubMed

    Santisteban, Leonard; Benkman, Craig W; Fetz, Trevor; Smith, Julie W

    2012-03-01

    1. A large number of migratory bird species appear to be declining as the result of climate change, but whether resident bird species have or will be adversely affected by climate change is less clear. We focus on the South Hills crossbill (Loxia curvirostra complex), which is endemic to about 70 km(2) of Rocky Mountain lodgepole pine (Pinus contorta latifolia) forest in southern Idaho, USA. 2. Our results indicate that the South Hills crossbill has declined by over 60% between 2003 and 2008, and that decreasing adult survival drives this population decline. 3. We evaluated the relative support for multiple hypotheses linking crossbill survival to climate, an ectoparasitic mite (scaly-leg mites Knemidokoptes jamaicensis), and the recent emergence of West Nile virus. Changes in adult apparent survival rate were closely associated with average spring and annual temperatures, and with high temperatures (≥32 °C) during summer, which have increased during the last decade. In contrast, there was little evidence that scaly-leg mites or West Nile virus contributed to recent declines in adult survival. 4. The most probable mechanism causing the decline in adult survival and population size is a decrease in the availability of their primary food resource, seeds in serotinous pine cones. Cone production has declined with increasing annual temperatures, and these cones appear to be prematurely opening owing to increasingly hot summer conditions releasing their seeds and reducing the carrying capacity for crossbills later in the year. 5. In light of regional climate change forecasts, which include an increase in both annual temperature and hot days (>32 °C), and the likely disappearance of lodgepole pine from southern Idaho by the end of this century, additional research is needed to determine how to maintain lodgepole pine forests and their supply of seeds to conserve one of the few bird species endemic to the continental United States. PMID:22010811

  14. Zooplankton responses to increasing sea surface temperatures in the southeastern Australia global marine hotspot

    NASA Astrophysics Data System (ADS)

    Kelly, Paige; Clementson, Lesley; Davies, Claire; Corney, Stuart; Swadling, Kerrie

    2016-10-01

    Southeastern Australia is a 'hotspot' for oceanographic change. Here, rapidly increasing sea surface temperatures, rising at more than double the global trend, are largely associated with a southerly extension of the East Australian Current (EAC) and its eddy field. Maria Island, situated at the southern end of the EAC extension at 42°S, 148°E, has been used as a site to study temperature-driven biological trends in this region of accelerated change. Zooplankton have short life cycles (usually < 1 year) and are highly sensitive to environmental change, making them an ideal indicator of the biological effects of an increased southward flow of the EAC. Data from in-situ net drops and the Continuous Plankton Recorder (CPR), collected since 2009, together with historical zooplankton abundance data, have been analysed in this study. Like the North Atlantic, zooplankton communities of southeastern Australia are responding to increased temperatures through relocation, long-term increases in warm-water species and a shift towards a zooplankton community dominated by small copepods. The biological trends present evidence of extended EAC influence at Maria Island into autumn and winter months, which has allowed for the rapid establishment of warm-water species during these seasons, and has increased the similarity between Maria Island and the more northerly Port Hacking zooplankton community. Generalised Linear Models (GLM) suggest the high salinity and low nutrient properties of EAC-water to be the primary drivers of increasing abundances of warm-water species off southeastern Australia. Changes in both the species composition and size distribution of the Maria Island zooplankton community will have effects for pelagic fisheries. This study provides an indication of how zooplankton communities influenced by intensifying Western Boundary currents may respond to rapid environmental change.

  15. Decadal increase in seagrass biomass and temperature at the CARICOMP site in Bocas del Toro, Panama.

    PubMed

    López-Calderón, Jorge M; Guzmán, Hector M; Jácome, Gabriel E; Barnes, Penélope A G

    2013-12-01

    The Caribbean Coastal Marine Productivity Program (CARICOMP) was launched in 1993 to study regional long-term interactions between land and sea, taking standardized measurements of productivity and biomass of mangroves, coral reefs and seagrasses. Since 1999 continuous measurements of seagrass (Thalassia testudinum) parameters as well as environmental data have been recorded in Caribbean Panama. Replicate stations were selected near the Smithsonian Tropical Research Institute in Bocas del Toro. Sediment cores and quadrants were placed there to estimate biomass and productivity, respectively. Mean values for productivity, standing crop, turnover rate, total dry biomass, and Leaf Area Index were 1.74 gDW/m2/d, 66.6 gDW/m2, 2.62%/d, 1481 gDW/m2, and 4.65, respectively. Total dry biomass (shoots, rhizomes and roots) and LAI of T. testudinum increased significantly during the study period. Mean values for total rainfall, Secchi disk depth, sea surface temperature, and salinity were 3498 mm, 8.24 m, 28.79 degrees C, and 32.26 psu, respectively. Sea surface temperature was the only environmental variable with a statistically significant change, increasing from 1999 to 2010. Correlation between sea surface temperature and 7 testudinum parameters (total biomass and LAI) were both positive and significant. Human population has increased dramatically over the last ten years in Bocas del Toro region, increasing pressure (deforestation, runoff, wastewater) over coastal ecosystems (seagrasses, mangroves, coral reefs). Change in the abundance of 7 testudinum may be linked to ocean warming, as a consequence to satisfy plant's metabolic requirements, although other local factors need to be analyzed (reduced grazing and increased eutrophication). A further warming of the ocean could have a negative effect on T. testudinum population, increasing respiratory demands and microbial metabolism.

  16. The response of soil organic matter decomposition and carbon cycling to temperature increase and nitrogen addition

    NASA Astrophysics Data System (ADS)

    Choi, I.; Kang, M.; Choi, J.

    2012-12-01

    Global warming caused by greenhouse effects has raised the worldwide air temperature by 1.4~5.8°C from the pre-industrial level. It has been known that the enhanced air temperature leads to increase the rate of soil organic matter decomposition. The enhanced soil organic matter decomposition could increase the emission of GHG (Green House Gas-mostly CO2, CH4) from the terrestrial ecosystem. GHG emission from the decomposition of soil organic matter can be affected by N deposition. N deposition of Asia has significantly grown from 1000mg N m2yr-1 to 2000mg N m2yr-1during the period of 1990s. It is expected that large area of South and East Asia will receive as large as 5000mg N m2yr-1of nitrogen in the future. Therefore, it is interesting to investigate the effects of global change factors, such as elevated temperature and N deposition on GHG emission from the terrestrial ecosystem. Growth chamber experiments were conducted under the enhanced air temperature and N addition (controlled at 10°C(30°C), 20°C(40°C) from ambient air temperature 18°C/23°C(day/night)) and GHG(CH4,CO2)was measured using gas chromatograph. Since combined changes in temperature and N deposition are sensitive to litter quantity and quality, especially C:N ratio of organic material, we select three sites with different C:N ratio (rice paddy, forest, wetland) in the southern part of Han river in Korea. Our results show that, for the case of rice paddy and forest, CO2 flux at 30°C was higher than at 40°C. However, wetland soil produces higher CO2 flux at 40°C than at 30°C. While CH4 flux was not detected at 30°C for all of three soils, only wetland soil produced CH4 flux at 40°C. Every flux under the condition of N addition was higher than that of N limitation. The GHG fluxes clearly related to the temperature, N concentration difference and soil types. Long term laboratory experiments are needed in three different soil types to determine how different soil type affects GHG by

  17. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. To isolate the relevant physics, the scaling of BBSAN peak intensity level at the sideline observer location is examined. The equivalent source within the framework of an acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green's function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for saturation of BBSAN with increasing stagnation temperature. The sources and vector Green's function have arguments involving the steady Reynolds- Averaged Navier-Stokes solution of the jet. It is proposed that saturation of BBSAN with increasing jet temperature occurs due to a balance between the amplication of the sound propagation through the shear layer and the source term scaling.

  18. Abrupt carbon release at the onset of the Bølling/Allerød: Permafrost thawing with inter-hemispheric impact

    NASA Astrophysics Data System (ADS)

    Köhler, Peter; Knorr, Gregor; Bard, Edouard

    2014-05-01

    Atmospheric carbon dioxide (CO2) during the last deglaciation (~18-10 kyr BP) switched around 14.6 kyr BP from a rather gradual rise to an abrupt jump, which is recorded in ice cores as an increase of 10 ppmv in less than two centuries. So far the source of that CO2 excursion could not be identified and the climatic implications are largely unknown. Here we use highly resolved U/Th dated atmospheric Δ14C from Tahiti corals as independent age control for CO2 changes. This provides a temporal framework to show that the northern high latitude warming into the Bølling/Allerød occurred quasi-synchronous to this CO2 rise within a few decades. Furthermore we show that an abrupt release (within two centuries) of long-term immobile nearly 14C-free carbon (~125 PgC) from thawing permafrost might explain the observed anomalies in atmospheric CO2 and Δ14C, in line with CH4 and biomarker records from ice and sediment cores. In transient climate simulations we show that the abrupt carbon release in the northern high latitudes and associated CO2 changes bear the potential to modulate Antarctic temperature. These findings are in agreement with the observed onset of the Antarctic Cold Reversal about two centuries after the beginning of the Bølling/Allerød, as detected in independent annual layer-counted ice cores from both hemispheres. Based on the timing, magnitude, origin and the inter-hemispheric impact we speculate that this abrupt deglacial release of long-term stored carbon via thawing permafrost might have provided the final push out of the last ice age.

  19. Projected increases in near-surface air temperature over Ontario, Canada: a regional climate modeling approach

    NASA Astrophysics Data System (ADS)

    Wang, Xiuquan; Huang, Guohe; Liu, Jinliang

    2015-09-01

    As the biggest economy in Canada, the Province of Ontario is now suffering many consequences caused by or associated with global warming, such as frequent and intense heat waves, floods, droughts, and wind gust. Planning of mitigation and adaptation strategies against the changing climate, which requires a better understanding of possible future climate outcomes over the Province in the context of global warming, is of great interest to local policy makers, stakeholders, and development practitioners. Therefore, in this study, high-resolution projections of near-surface air temperature outcomes including mean, maximum, and minimum daily temperature over Ontario are developed, aiming at investigating how the global warming would affect the local climatology of the major cities as well as the spatial patterns of air temperature over the entire Province. The PRECIS modeling system is employed to carry out regional climate ensemble simulations driven by the boundary conditions of a five-member HadCM3-based perturbed-physics ensemble (i.e., HadCM3Q0, Q3, Q10, Q13, and Q15). The ensemble simulations are then synthesized through a Bayesian hierarchical model to develop probabilistic projections of future temperature outcomes with consideration of some uncertain parameters involved in the regional climate modeling process. The results suggest that there would be a consistent increasing trend in the near-surface air temperature with time periods from 2030s to 2080s. The most likely mean temperature in next few decades (i.e., 2030s) would be [-2, 2] °C in northern Ontario, [2, 6] °C in the middle, and [6, 12] °C in the south, afterwards the mean temperature is likely to keep rising by ~ 2 °C per 30-years period. The continuous warming across the Province would drive the lowest mean temperature up to 2 °C in the north and the highest mean temperature up to 16 °C in the south. In addition, the spread of the most likely ranges of future outcomes shows a consistent

  20. Impact of forest cover on increases in temperature under the canopy

    NASA Astrophysics Data System (ADS)

    Rebetez, M.; Renaud, V.,; Von Arx, G.; Dobbertin, M.

    2012-04-01

    Many physical and biological natural systems are changing their seasonal timing due to increases in temperature. Our observations of open-site and below-canopy climatic conditions from 14 sites in Switzerland based on LWF data (Long-term Forest Ecosystem Research) show that there is an important impact of forest cover on temperature under the canopy. This impact strongly differs between daily minimum and maximum temperature, and also depends on season, altitude or forest types. Our results show that the general moderating effect of canopy on below-canopy microclimate was strongest during the growing season, particularly in summer, and depended in a complex way on the general weather situation. It was often strongest during extraordinary warm and dry periods, thus creating relatively stable conditions for plants and regenerating trees under the canopy. The Swiss LWF sites represent different regions, orientations and elevations, from the Jura Mountains to the southern side of the Alps, composed of deciduous, coniferous and mixed forests. Meteorological measurements were carried out under the canopy at the observation plots, and in open areas outside the forest plots. We compared air temperature differences between open-site and below-canopy, relating them to air humidity and other meteorological parameters as well as to site specific conditions. Our results illustrate the moderating effects of different forest ecosystems on temperatures. They show that the cooling impact of the forest on daily maximum temperatures is predominantly determined by the forest composition and by the dominant tree species, i.e. factors strongly linked to the degree of canopy closure, causing greater differences during warmer periods. For daily minimum temperatures (warmer temperatures under the canopy), the differences were greater in conifer forests, the determining factor appearing to be linked more to slope orientation. The most efficient ecosystems for providing a cool shelter during

  1. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar Ice

    PubMed

    Severinghaus; Brook

    1999-10-29

    The last glacial period was terminated by an abrupt warming event in the North Atlantic approximately 15,000 years before the present, and warming events of similar age have been reported from low latitudes. Understanding the mechanism of this termination requires that the precise relative timing of abrupt climate warming in the tropics versus the North Atlantic be known. Nitrogen and argon isotopes in trapped air in Greenland ice show that the Greenland Summit warmed 9 +/- 3 degrees C over a period of several decades, beginning 14,672 years ago. Atmospheric methane concentrations rose abruptly over a approximately 50-year period and began their increase 20 to 30 years after the onset of the abrupt Greenland warming. These data suggest that tropical climate became warmer or wetter (or both) approximately 20 to 80 years after the onset of Greenland warming, supporting a North Atlantic rather than a tropical trigger for the climate event.

  2. Internal temperature increase during photothermal tumour ablation in mice using gold nanorods.

    PubMed

    Mooney, R; Schena, E; Zhumkhawala, A; Aboody, K S; Berlin, J M

    2015-01-01

    Laser ablation (LA) is gaining large acceptance in the treatment of tumor. One of the main risks of this treatment is damaging the healthy tissue around the tumor. Among the solutions proposed to improve the selectivity of the LA and to localize heating to tumor tissue, the use of gold nanoparticles is one of the most promising. The aim of this work is threefold: i) to measure the temperature increase within the tumor during plasmonic photothermal therapy using gold nanorods; ii) to investigate the influence of nanorods concentration and laser settings on both the intra-tumoral temperature and the tumor surface temperature; iii) and to establish the nanorods concentrations able to cause tumor resorption at a defined laser settings. Two sets of trials were performed: i) 16 mice were divided in four groups with different treatment time (i.e., 5 min, 2 min, 1 min, and 30s), with constant gold nanorods amount (i.e., 12.5 μg) and laser power (i.e., 3 W·cm(-2)); ii) 16 mice were divided in four groups treated with different amount of gold nanorods (i.e., control, 12.5 μg, 25 μg, 50 μg) for 5 min at 2 W·cm(-2). Results show significant differences between internal and surface temperatures. We also demonstrate that this temperature difference increases with nanoparticle concentrations, decreases with laser power, and is not influenced by treatment time. This information is critical to improve the theoretical models that will guide future study designs in sensitive orthotopic tumor models. PMID:26736815

  3. Methane emissions of rice increased by elevated carbon dioxide and temperature.

    PubMed

    Allen, Leon H; Albrecht, Stephan L; Colón-Guasp, Wilfredo; Covell, Stephen A; Baker, Jeffrey T; Pan, Deyun; Boote, Kenneth J

    2003-01-01

    Methane (CH4) effluxes by paddy-culture rice (Oryza sativa L.) contribute about 16% of the total anthropogenic emissions. Since radiative forcing of CH4 at current atmospheric concentrations is 21 times greater on a per mole basis than that of carbon dioxide (CO2), it is imperative that the impact of global change on rice CH4 emissions be evaluated. Rice (cv. IR72) was planted in sunlit, closed-circulation, controlled-environment chambers in which CH4 efflux densities were measured daily. The CO2 concentration was maintained at either 330 or 660 micromol mol(-1). Air temperatures were controlled to daily maxima and minima of 32/23, 35/26, and 38/29 degrees C at each CO2 treatment. Emissions of CH4 each day were determined during a 4-h period after venting and resealing the chambers at 0800 h. Diurnal CH4 effluxes on 77, 98, and 119 d after planting (DAP) were obtained similarly at 4-h intervals. Emissions over four-plant hills and over flooded bare soil were measured at 53, 63, and 100 DAP. Emissions were negligible before 40 DAP. Thereafter, emissions were observed first in high-CO2, high-temperature treatments and reached a sustained maximum efflux density of about 7 mg m(-2) h(-1) (0.17 g m(-2) d(-1)) near the end of the growing season. Total seasonal CH4 emission was fourfold greater for high-CO2, high-temperature treatments than for the low-CO2, low-temperature treatment, probably due to more root sloughing or exudates, since about sixfold more acetate was found in the soil at 71 DAP. Both rising CO2 and increasing temperatures could lead to a positive feedback on global warming by increasing the emissions of CH4 from rice. PMID:14674519

  4. Methane emissions of rice increased by elevated carbon dioxide and temperature.

    PubMed

    Allen, Leon H; Albrecht, Stephan L; Colón-Guasp, Wilfredo; Covell, Stephen A; Baker, Jeffrey T; Pan, Deyun; Boote, Kenneth J

    2003-01-01

    Methane (CH4) effluxes by paddy-culture rice (Oryza sativa L.) contribute about 16% of the total anthropogenic emissions. Since radiative forcing of CH4 at current atmospheric concentrations is 21 times greater on a per mole basis than that of carbon dioxide (CO2), it is imperative that the impact of global change on rice CH4 emissions be evaluated. Rice (cv. IR72) was planted in sunlit, closed-circulation, controlled-environment chambers in which CH4 efflux densities were measured daily. The CO2 concentration was maintained at either 330 or 660 micromol mol(-1). Air temperatures were controlled to daily maxima and minima of 32/23, 35/26, and 38/29 degrees C at each CO2 treatment. Emissions of CH4 each day were determined during a 4-h period after venting and resealing the chambers at 0800 h. Diurnal CH4 effluxes on 77, 98, and 119 d after planting (DAP) were obtained similarly at 4-h intervals. Emissions over four-plant hills and over flooded bare soil were measured at 53, 63, and 100 DAP. Emissions were negligible before 40 DAP. Thereafter, emissions were observed first in high-CO2, high-temperature treatments and reached a sustained maximum efflux density of about 7 mg m(-2) h(-1) (0.17 g m(-2) d(-1)) near the end of the growing season. Total seasonal CH4 emission was fourfold greater for high-CO2, high-temperature treatments than for the low-CO2, low-temperature treatment, probably due to more root sloughing or exudates, since about sixfold more acetate was found in the soil at 71 DAP. Both rising CO2 and increasing temperatures could lead to a positive feedback on global warming by increasing the emissions of CH4 from rice.

  5. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it

  6. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    PubMed Central

    Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213

  7. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests.

    PubMed

    Bothwell, Lori D; Selmants, Paul C; Giardina, Christian P; Litton, Creighton M

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q 10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5-2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  8. Evidence of both phenological and range shifts in birds in response to increasing temperature in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Cooney, Tom; Stirnemann, Rebecca; O'Halloran, John

    2010-05-01

    It is well established that the timing of arrival of long-distance migrant birds in spring is advancing throughout Europe and that this response is, at least in part, due to an increase in temperature in line with current global warming. In Ireland, we have seen a number of sub-Saharan species, such as, barn swallow (Hirundo rustica), northern wheatear (Oenanthe oenanthe) and sand martin (Riparia riparia) advance their arrival time over a 31-year period. In addition, a medium-distance winter migrant, the whooper swan (Cygnus cygnus), has significantly advanced its spring departure time from its wintering ground in Ireland. Furthermore, a number of species, such as the little egret (Egretta garzetta), more typically associated with a warmer climate than Ireland, was considered to be a ‘rare visitor' up to 1990 and has now begun to breed and to establish a population on the island. All of these phenological and range shifts have been correlated with various temperature variables. The consequences of early arrival at wintering and breeding grounds could result in increased fitness but only if an appropriate food resource is in adequate supply at the new earlier time. If temperatures continue to rise as predicted, the status of some bird species in Ireland may change from ‘rare' to ‘common' or from ‘visitor' to ‘resident' with a possible concurrent increase in population size. Equally, the opposite trend may occur, for birds that prefer cold temperatures, whereby we may see a decrease in population size followed by the loss of certain species.

  9. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning natural gas

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    An annular gas turbine combustor was tested with heated natural gas fuel to determine the effect of increasing fuel temperature on the formation of oxides of nitrogen. Fuel temperatures ranged from ambient to 800 K (980 F). Combustor pressure was 6 atmospheres and the inlet air temperature ranged from 589 to 894 K (600 to 1150 F). The NOx emission index increased with fuel temperature at a rate of 4 to 9 percent per 100 K (180 F), depending on the inlet air temperature. The rate of increase in NOx was lowest at the highest inlet air temperature tested.

  10. Projected Increase in Diurnal and Inter-Diurnal Variations of European Summer Temperatures

    NASA Astrophysics Data System (ADS)

    Cattiaux, J.; Douville, H.; Schoetter, R.; Parey, S.; Yiou, P.

    2014-12-01

    The current European warming is expected to be associated with an increased temperature variability in summer, particularly at the daily time-scale. Such an increase would affect hot extremes and accentuate the societal and environmental impacts caused by the mean warming. Here we investigate future changes in the short-term variability of European summer temperatures using two indices that have been seldom documented so far: the variations within one day (diurnal temperature range, DTR) and the variations from one day to the next (inter-diurnal temperature variability, ITV). These rapid variations represent key issues for impact communities, in particular energy providers vulnerable to sudden surges in electricity demand. Besides, the ITV provides a measure of daily variability that is not disturbed by longer-term variations in the mean (e.g., seasonal cycle and/or a multi-year trend), whereas traditional measures such as standard deviation or variance are. We use 21st-century projections performed by 34 models of the CMIP5 ensemble under the three RCP 2.6, 4.5 and 8.5 scenarios. Models are evaluated over the present-day period against the E-OBS dataset. In Europe, both indices of summer temperature variability are projected to increase, with a rather good model agreement on the sign, while uncertainties remain on the amplitude. In particular, we show that extremely high day-to-day and/or diurnal temperature variations are expected to occur more frequently. We highlight the singularity of the European area, since ITV and DTR changes do not systematically coincide over other regions (e.g., the U.S). Then we investigate the physical processes underlying these ITV and DTR changes in the CMIP5 projections. The respective contributions of the summer drying of European soils, the reduction in cloud cover and the changes in large-scale dynamics are estimated. Finally, the possibility of reducing model uncertainties through constraints emerging from both present

  11. Students' Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures.

    PubMed

    Bidassey-Manilal, Shalin; Wright, Caradee Y; Engelbrecht, Jacobus C; Albers, Patricia N; Garland, Rebecca M; Matooane, Mamopeli

    2016-01-01

    Temperatures in Africa are expected to increase by the end of the century. Heat-related health impacts and perceived health symptoms are potentially a problem, especially in public schools with limited resources. Students (n = 252) aged ~14-18 years from eight high schools completed an hourly heat-health symptom log over 5 days. Data loggers measured indoor classroom temperatures. A high proportion of students felt tired (97.2%), had low concentration (96.8%) and felt sleepy (94.1%) during at least one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ≥32 °C and students who felt tired and found it hard to breathe. Consistently higher indoor classroom temperatures were observed in classrooms constructed of prefabricated asbestos sheeting with corrugated iron roof and converted shipping container compared to brick classrooms. Longitudinal studies in multiple seasons and different classroom building types are needed. PMID:27338423

  12. Students’ Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures

    PubMed Central

    Bidassey-Manilal, Shalin; Wright, Caradee Y.; Engelbrecht, Jacobus C.; Albers, Patricia N.; Garland, Rebecca M.; Matooane, Mamopeli

    2016-01-01

    Temperatures in Africa are expected to increase by the end of the century. Heat-related health impacts and perceived health symptoms are potentially a problem, especially in public schools with limited resources. Students (n = 252) aged ~14–18 years from eight high schools completed an hourly heat-health symptom log over 5 days. Data loggers measured indoor classroom temperatures. A high proportion of students felt tired (97.2%), had low concentration (96.8%) and felt sleepy (94.1%) during at least one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ≥32 °C and students who felt tired and found it hard to breathe. Consistently higher indoor classroom temperatures were observed in classrooms constructed of prefabricated asbestos sheeting with corrugated iron roof and converted shipping container compared to brick classrooms. Longitudinal studies in multiple seasons and different classroom building types are needed. PMID:27338423

  13. Influence of increasing combustion temperature on the AMS 14C dating of modern crop phytoliths

    PubMed Central

    Yin, Jinhui; Yang, Xue; Zheng, Yonggang

    2014-01-01

    Several attempts have been made to directly date phytoliths, but most 14C results are not consistent with other independent chronologies. Due to the limited dataset, there is not a clear explanation for these discrepancies. Herein, we report the 14C ages of phytolith-occluded carbon (PhytOC) from contemporary rice and millet crops that were combusted at different temperatures to investigate the relationship between the combustion temperature and resulting 14C age. Our results show that the 14C age of PhytOC increases directly with combustion temperature (up to 1100°C) and results in age overestimations of hundreds of years. Considerably older ages are observed at higher temperatures, suggesting that it may be possible to distinguish between two fractions of organic carbon in phytoliths: labile and recalcitrant carbon. These findings challenge the assumption that PhytOC is homogeneous, an assumption made by those who have previously attempted to directly date phytoliths using 14C. PMID:25288281

  14. Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device.

    PubMed

    Bagryansky, P A; Shalashov, A G; Gospodchikov, E D; Lizunov, A A; Maximov, V V; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Yakovlev, D V

    2015-05-22

    This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R=35) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660±50  eV with the plasma density being 0.7×10^{19}  m^{-3}; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7  MW/54.5  GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability. PMID:26047233

  15. Students' Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures.

    PubMed

    Bidassey-Manilal, Shalin; Wright, Caradee Y; Engelbrecht, Jacobus C; Albers, Patricia N; Garland, Rebecca M; Matooane, Mamopeli

    2016-01-01

    Temperatures in Africa are expected to increase by the end of the century. Heat-related health impacts and perceived health symptoms are potentially a problem, especially in public schools with limited resources. Students (n = 252) aged ~14-18 years from eight high schools completed an hourly heat-health symptom log over 5 days. Data loggers measured indoor classroom temperatures. A high proportion of students felt tired (97.2%), had low concentration (96.8%) and felt sleepy (94.1%) during at least one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ≥32 °C and students who felt tired and found it hard to breathe. Consistently higher indoor classroom temperatures were observed in classrooms constructed of prefabricated asbestos sheeting with corrugated iron roof and converted shipping container compared to brick classrooms. Longitudinal studies in multiple seasons and different classroom building types are needed.

  16. Greater effect of increasing shrub height on winter versus summer soil temperature

    NASA Astrophysics Data System (ADS)

    Paradis, Mélissa; Lévesque, Esther; Boudreau, Stéphane

    2016-08-01

    Shrub expansion is increasingly observed in arctic and subarctic environments. The development of shrub structure may significantly impact the abiotic environment at the local scale. Our objective was to reconstruct the development of the vertical structure of Betula glandulosa Michx. and to evaluate its effects on winter and summer soil temperature and on snow depth. Stratified sampling of the shrub revealed that shrub biomass distribution followed a similar pattern in stands of contrasting heights. Woody biomass was maximal in the lower stratum and relatively stable in the intermediate strata, while the foliar biomass tracked the vertical development of the shrub structure. Dendrochronological analysis revealed that shrub stands are relatively young; most of the dominant stems started their development after 1990. Shrub height was positively associated with both the dominant stem age and its vertical growth rate. Temperature differences among sites were greater during winter (ca 10 °C) than during summer (ca 2 °C), while the sum of freezing degree-days varied from 680 °C to 2125 °C. Shrub height was the most plausible variable explaining snow depth, winter ground level temperature and the sum of freezing degree-days. However, woody biomass in the 30–40 cm strata best explained summer ground level temperature. Our results suggest that the development of a shrub structure will have far-reaching consequences on the abiotic environment of subarctic ecosystems.

  17. Development and evaluation of a HEPA filter for increased strength and resistance to elevated temperature

    SciTech Connect

    Gilbert, H.; Bergman, W.; Fretthold, J.K.

    1992-12-31

    We have developed an improved HEPA filter for increased strength and resistance to elevated temperature to improve the reliability of HEPA filters under accident conditions. The improvements to the HEPA filter consist of a silicone rubber sealant and a new HEPA medium reinforced with a glass cloth. Several prototype filters were built and evaluated for temperature and pressure resistance and resistance to rough handling. The temperature resistance test consisted of exposing the HEPA filter to 1,000 scan at 700 degrees F for five minutes. The pressure resistance test consisted of exposing the HEPA filter to a differential pressure of 10 in. w.g. using a water saturated air flow at 95 degrees F. For the rough handling test, we used a vibrating machine designated the Q110. DOP filter efficiency tests were performed before and after each of the environmental tests. In addition to following the standard practice of using a separate new filter for each environmental test, we also subjected the same filter to the elevated temperature test followed by the pressure resistance test. The efficiency test results show that the improved HEPA filter is significantly better than the standard HEPA filter.

  18. Greater effect of increasing shrub height on winter versus summer soil temperature

    NASA Astrophysics Data System (ADS)

    Paradis, Mélissa; Lévesque, Esther; Boudreau, Stéphane

    2016-08-01

    Shrub expansion is increasingly observed in arctic and subarctic environments. The development of shrub structure may significantly impact the abiotic environment at the local scale. Our objective was to reconstruct the development of the vertical structure of Betula glandulosa Michx. and to evaluate its effects on winter and summer soil temperature and on snow depth. Stratified sampling of the shrub revealed that shrub biomass distribution followed a similar pattern in stands of contrasting heights. Woody biomass was maximal in the lower stratum and relatively stable in the intermediate strata, while the foliar biomass tracked the vertical development of the shrub structure. Dendrochronological analysis revealed that shrub stands are relatively young; most of the dominant stems started their development after 1990. Shrub height was positively associated with both the dominant stem age and its vertical growth rate. Temperature differences among sites were greater during winter (ca 10 °C) than during summer (ca 2 °C), while the sum of freezing degree-days varied from 680 °C to 2125 °C. Shrub height was the most plausible variable explaining snow depth, winter ground level temperature and the sum of freezing degree-days. However, woody biomass in the 30-40 cm strata best explained summer ground level temperature. Our results suggest that the development of a shrub structure will have far-reaching consequences on the abiotic environment of subarctic ecosystems.

  19. TRH decreases food intake and increases water intake and body temperature in rats.

    PubMed

    Choi, Yang-Ho; Hartzell, Diane; Azain, Michael J; Baile, Clifton A

    2002-09-01

    Thyrotropin-releasing hormone (TRH) is a key regulator of the hypothalamus-pituitary-thyroid axis, which plays an important role in energy homeostasis and is involved in the regulation of feeding behavior. In the present study, we investigated the effects of acute and chronic TRH treatment on water intake, body temperature and feeding behavior in rats. TRH (0, 4, 16 and 64 mg/kg) was injected subcutaneously twice a day (06:00 and 18:00 h) in rats fed ad libitum. TRH decreased food and water intake in the first few hours (P < .05). There was a small reduction in food intake over the 24-h period, but body weight was not affected (P < .05). When TRH was injected at a dose of 32 mg/kg twice a day (06:00 and 18:00 h) for 5 days, T(3) and T(4) concentrations were increased (P < .05). TRH increased body temperature for 2 h after injection. Water intake was markedly increased (P < .05), but there was no effect on food intake or body weight. These results show that whereas a single injection of TRH decreases short-term food and water intake in rats, repeated daily treatments stimulate water intake but not food intake, and, thus, the increase in water consumption is mediated independently of food intake under these conditions.

  20. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    USGS Publications Warehouse

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  1. Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures

    PubMed Central

    2015-01-01

    In this Letter we report on the exploration of axial metal/semiconductor (Al/Ge) nanowire heterostructures with abrupt interfaces. The formation process is enabled by a thermal induced exchange reaction between the vapor–liquid–solid grown Ge nanowire and Al contact pads due to the substantially different diffusion behavior of Ge in Al and vice versa. Temperature-dependent I–V measurements revealed the metallic properties of the crystalline Al nanowire segments with a maximum current carrying capacity of about 0.8 MA/cm2. Transmission electron microscopy (TEM) characterization has confirmed both the composition and crystalline nature of the pure Al nanowire segments. A very sharp interface between the ⟨111⟩ oriented Ge nanowire and the reacted Al part was observed with a Schottky barrier height of 361 meV. To demonstrate the potential of this approach, a monolithic Al/Ge/Al heterostructure was used to fabricate a novel impact ionization device. PMID:26052733

  2. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin.

    PubMed

    Rietveld, P L; Wilkinson, C; Franssen, H M; Balk, P A; van der Plas, L H; Weisbeek, P J; Douwe de Boer, A

    2000-03-01

    Tulip (Tulipa gesneriana L.) is a bulbous plant species that requires a period of low temperature for proper growth and flowering. The mechanism of sensing the low temperature period is unknown. The study presented in this paper shows that the essential developmental change in tulip bulbs during cold treatment is an increase in sensitivity to the phytohormone auxin. This is demonstrated using a model system consisting of isolated internodes grown on tissue culture medium containing different combinations of the phytohormones auxin and gibberellin. Using mathematical modelling, equations taken from the field of enzyme kinetics were fitted through the data. By doing so it became apparent that longer periods of low temperature resulted in an increased maximum response at a lower auxin concentration. Besides the cold treatment, gibberellin also enhances the response to auxin in the internodes in this in vitro system. A working model describing the relationship between the cold requirement, gibberellin action and auxin sensitivity is put forward. Possible analogies with other cold-requiring processes such as vernalization and stratification, and the interaction of auxin and gibberellin in the stalk elongation process in other plant species are discussed.

  3. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption.

    PubMed

    Russell, Bayden D; Connell, Sean D; Findlay, Helen S; Tait, Karen; Widdicombe, Stephen; Mieszkowska, Nova

    2013-01-01

    Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term. PMID:23980241

  4. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption

    PubMed Central

    Russell, Bayden D.; Connell, Sean D.; Findlay, Helen S.; Tait, Karen; Widdicombe, Stephen; Mieszkowska, Nova

    2013-01-01

    Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term. PMID:23980241

  5. Abrupt climate change and the decline of Indus urbanism

    NASA Astrophysics Data System (ADS)

    Hodell, D. A.; Dixit, Y.; Petrie, C. A.

    2012-12-01

    Climate change has been suggested as a cause for the decline of the cities of the Indus Civilization, which is believed to have begun ~4.0 to 3.9 ky B.P. Previous studies have centered on paleoclimatic records obtained from areas outside the geographic limits of the Indus Civilization, raising questions about their suitability for evaluating past climate-cultural linkages. Here we report a detailed climate record from paleolake Kotla Dahar, Haryana (28°00'095'' N, 76°57'173'' E), located at the eastern edge of the distribution of Indus settlements and ~100km to the east of the city-site of Rakhigarhi in NW India. Regional hydrologic changes are inferred using oxygen-isotope measurements of gastropod aragonite from a 2.88-m sediment section. A permanent ~4‰ increase in δ18O of shell aragonite occurred at ~4.1±0.1 ky B.P., marking an abrupt increase in evaporation/precipitation in the lake catchment. These data provide evidence for a weakening of the monsoon and shift toward drier climate on the plains of northwest (NW) India at ~4.1±0.1 ky B.P. Decreased monsoon rainfall at this time may have been linked to increased ENSO variability, and supports a possible role of climate in the transformation of the Indus Civilization from an urbanized (mature or urban Indus) to a rural (post-urban) society.

  6. Abrupt climate change in the computer: Is it real?

    PubMed Central

    Stocker, Thomas F.; Marchal, Olivier

    2000-01-01

    Models suggest that dramatic changes in the ocean circulation are responsible for abrupt climate changes during the last ice age and may possibly alter the relative climate stability of the last 10,000 years. PMID:10677468

  7. The Role of the Tropics in Abrupt Climate Changes

    SciTech Connect

    Fedorov, Alexey

    2013-12-07

    Topics addressed include: abrupt climate changes and ocean circulation in the tropics; what controls the ocean thermal structure in the tropics; a permanent El Niño in paleoclimates; the energetics of the tropical ocean.

  8. Bacteria increase arid-land soil surface temperature through the production of sunscreens.

    PubMed

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; Nunes da Rocha, Ulisses; Northen, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2016-01-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparent and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. PMID:26785770

  9. Bacteria increase arid-land soil surface temperature through the production of sunscreens

    PubMed Central

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; Nunes da Rocha, Ulisses; Northen, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2016-01-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparent and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. PMID:26785770

  10. Noise Temperature Increase Effect on Total Outage Analysis of an Interfered Satellite Link

    NASA Astrophysics Data System (ADS)

    Sakarellos, Vassileios K.; Panagopoulos, Athanasios D.; Kanellopoulos, John D.

    2008-01-01

    The ever increasing demand for bandwidth and multimedia services has led to the employment of Ka and V band in modern satellite communication networks. In these frequency bands, rain attenuation is the most dominant fading mechanism deteriorating the performance of the Earth-space links. Moreover, interference due to propagation phenomena increases the outage time of the satellite links and should be taken into account for the reliable design of a satellite communication network. In this paper, a physical propagation model for the prediction of carrier-to-noise plus interference ratio statistics of a broadband satellite link incorporating the receiver noise temperature increase due to rain, is presented The obtained numerical results highlight the significance of the latter effect and investigate the impact of various operational, geometrical and climatic parameters in the total outage analysis. Some simple mathematical formulas for the prediction of the carrier-to-noise plus interference ratio, based on the above theoretical results, are also presented.

  11. Status Cataplecticus Precipitated by Abrupt Withdrawal of Venlafaxine

    PubMed Central

    Wang, Janice; Greenberg, Harly

    2013-01-01

    Status cataplecticus is a rare manifestation of narcolepsy with cataplexy episodes recurring for hours or days, without a refractory period, in the absence of emotional triggers. This case highlights a narcoleptic patient who developed status cataplecticus after abrupt withdrawal of venlafaxine. Citation: Wang J; Greenberg H. Status cataplecticus precipitated by abrupt withdrawal of venlafaxine. J Clin Sleep Med 2013;9(7):715-716. PMID:23853567

  12. Interactive effects of contaminants and climate-related stressors: high temperature increases sensitivity to cadmium.

    PubMed

    Kimberly, David A; Salice, Christopher J

    2013-06-01

    An emerging issue in environmental toxicology is in understanding how climate change will alter responses of organisms to chemical contaminants. The objective of the present study was to characterize the interactive effects of cadmium and elevated temperature on life-stage-specific responses in the freshwater snail Physa pomilia. We exposed developing eggs, juveniles, and adults to Cd (5 µg/L, 15 µg/L, and 25 µg/L for eggs, and 250 µg/L for juveniles and adults) and 2 temperatures of 25 °C (control) and 35 °C (upper range of tolerance). In the absence of Cd, time to hatch was shorter at 35 °C compared with 25 °C, demonstrating a stimulatory effect of the higher temperature. However, when egg masses were reared at 35 °C and exposed to Cd, hatching success was significantly lower, and time-to-hatching was significantly longer. The effects of the higher temperature and Cd on newly hatched neonate survival were additive, except at the highest Cd concentration, at which effects of the 2 stressors were greater than additive. Overall, within the combined stressor treatments, adult snails generally survived significantly longer than did juvenile snails, and both were more tolerant than developing snails. Many climate projection models predict future increases in global temperatures. The present study shows that combined stressors may produce greater-than-additive effects, challenging predictive power. More studies are needed to better characterize the interactive effects of chemical contaminants and stressors related to climate change.

  13. Increasing temperature speeds intracellular PO2 kinetics during contractions in single Xenopus skeletal muscle fibers.

    PubMed

    Koga, S; Wüst, R C I; Walsh, B; Kindig, C A; Rossiter, H B; Hogan, M C

    2013-01-01

    Precise determination of the effect of muscle temperature (T(m)) on mitochondrial oxygen consumption kinetics has proven difficult in humans, in part due to the complexities in controlling for T(m)-related variations in blood flow, fiber recruitment, muscle metabolism, and contractile properties. To address this issue, intracellular Po(2) (P(i)(O(2))) was measured continuously by phosphorescence quenching following the onset of contractions in single Xenopus myofibers (n = 24) while controlling extracellular temperature. Fibers were subjected to two identical contraction bouts, in random order, at 15°C (cold, C) and 20°C (normal, N; n = 12), or at N and 25°C (hot, H; n = 12). Contractile properties were determined for every contraction. The time delay of the P(i)(O(2)) response was significantly greater in C (59 ± 35 s) compared with N (35 ± 26 s, P = 0.01) and H (27 ± 14 s, P = 0.01). The time constant for the decline in P(i)(O(2)) was significantly greater in C (89 ± 34 s) compared with N (52 ± 15 s; P < 0.01) and H (37 ± 10 s; P < 0.01). There was a linear relationship between the rate constant for P(i)(O(2)) kinetics and T(m) (r = 0.322, P = 0.03). Estimated ATP turnover was significantly greater in H than in C (P < 0.01), but this increased energy requirement alone with increased T(m) could not account for the differences observed in P(i)(O(2)) kinetics among conditions. These results demonstrate that P(i)(O(2)) kinetics in single contracting myofibers are dependent on T(m), likely caused by temperature-induced differences in metabolic demand and by temperature-dependent processes underlying mitochondrial activation at the start of muscle contractions.

  14. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature.

    PubMed

    Matozzo, Valerio; Chinellato, Andrea; Munari, Marco; Finos, Livio; Bressan, Monica; Marin, Maria Gabriella

    2012-01-01

    Water acidification, temperature increases and changes in seawater salinity are predicted to occur in the near future. In such a global climate change (GCC) scenario, there is growing concern for the health status of both wild and farmed organisms. Bivalve molluscs, an important component of coastal marine ecosystems, are at risk. At the immunological level, the ability of an organism to maintain its immunosurveillance unaltered under adverse environmental conditions may enhance its survival capability. To our knowledge, only a few studies have investigated the effects of changing environmental parameters (as predicted in a GCC scenario) on the immune responses of bivalves. In the present study, the effects of both decreased pH values and increased temperature on the important immune parameters of two bivalve species were evaluated for the first time. The clam Chamelea gallina and the mussel Mytilus galloprovincialis, widespread along the coast of the Northwestern Adriatic Sea, were chosen as model organisms. Bivalves were exposed for 7 days to three pH values (8.1, 7.7 and 7.4) at two temperatures (22 and 28°C). Three independent experiments were carried out at salinities of 28, 34 and 40 PSU. The total haemocyte count, Neutral Red uptake, haemolymph lysozyme activity and total protein levels were measured. The results obtained demonstrated that tested experimental conditions affected significantly most of the immune parameters measured in bivalves, even if the variation pattern of haemocyte responses was not always linear. Between the two species, C. gallina appeared more vulnerable to changing pH and temperature than M. galloprovincialis. Overall, this study demonstrated that climate changes can strongly affect haemocyte functionality in bivalves. However, further studies are needed to clarify better the mechanisms of action of changing environmental parameters, both individually and in combination, on bivalve haemocytes.

  15. Spatiotemporal variability of increasing temperature impacts on grassland vegetation along an elevation transect in the Alps

    NASA Astrophysics Data System (ADS)

    Niedrist, Georg; Obojes, Nikolaus; Bertoldi, Giacomo; Della Chiesa, Stefano; Tasser, Erich; Tappeiner, Ulrike

    2013-04-01

    Different manipulative approaches have been developed to study and quantify impacts of temperature increase on grassland ecosystems. Many of them share the problem of unwanted effects on the surrounding microclimatic conditions. Transplantation of grassland mesocosms along elevation gradients can be a realistic alternative, although with some restrictions. Here we present 3 years of data from a double-transplant-experiment, were 70*70*20cm grassland turves were transplanted at two elevations from 2000m to 1500m a.s.l. and from 1500m to 1000m a.s.l. respectively, along an inner-alpine elevation gradient in the Vinschgau Valley (South Tyrol, I). All donor and receiving sites are comparable regarding land use (meadows), soil conditions or exposition and are located within a few km's distance ensuring comparable weather conditions apart from the intended air temperature (0.54°K/100m) and annual precipitation (20mm/100m) lapse rate. Phytodiversity and above ground net primary production (ANPP) of the transplanted mesocosms were assessed and compared with locally transplanted monoliths of the respective donor site. Furthermore, growth dynamics was continuously observed throughout the vegetation season with a non-destructive method based on measurement of light (photosynthetic active radiation) extinction within the canopy. After 3 years no significant changes in absolute species numbers has been detected at all, whereas slight variations have been observed regarding species composition. Those shifts could be differentiated both to transplantation artifacts and effects of the elevated temperature. Total aboveground phytomass, unsurprisingly, showed higher values on transplanted (lower) mesocosms, however: data from single cuts and growth rate analysis reveal differing effects between the two transplantation steps as well as over the course of the vegetation period. Transplanted plots from 2000m to 1500m showed continuously higher productivity from spring to autumn

  16. Bacterial production of sunscreen pigments increase arid land soil surface temperature

    NASA Astrophysics Data System (ADS)

    Couradeau, Estelle; Karaoz, Ulas; Lim, HsiaoChien; Nunes da Rocha, Ulisses; Northern, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2015-04-01

    Biological Soil Crusts (BSCs) are desert top soils formations built by complex microbial communities and dominated by the filamentous cyanobacterium Microcoleus sp. BSCs cover extensive desert areas where they correspond to millimeters size mantles responsible of soil stability and fertility. Despite their ecological importance, little is known about how these communities will endure climate change. It has been shown in North America that different species of Microcoleus showed distinct temperature preferences and that their continental biogeography may be susceptible to small changes in temperature with unknown consequences for the ecosystem function. Using a combination of physical, biochemical and microbiological analyses to characterize a successional gradient of crust maturity from light to dark BSCs (Moab, Utah) we found that the concentration of scytonemin (a cyanobacterial sunscreen pigment) increased with crust maturity. We also confirmed that scytonemin was by far the major pigment responsible of light absorption in the visible spectrum in BSCs, and is then responsible of the darkening of the BSCs (i.e decrease of albedo) with maturity. We measured the surface temperature and albedo and found, as predicted, a negative linear relationship between these two parameters. The decrease in albedo across the gradient of crust maturity corresponded to an increase in surface temperature up to 10° C. Upon investigation of microbial community composition using SSU rRNA gene analysis, we demonstrate that warmer crust surface temperatures (decreased albedo) are associated with a replacement of the dominant cyanobacterium; the thermosensitive Microcoleus sp. being replaced by a thermotolerant Microcoleus sp. in darker BSCs. This study supports at the local scale a finding previously made at the continental scale, but also sheds light on the importance of scytonemin as a significant warmer of soils with important consequences for BSC composition and function. Based on

  17. Ocean surface conditions on the SE Greenland shelf during the last millennium - from abrupt changes to centennial variability

    NASA Astrophysics Data System (ADS)

    Miettinen, Arto; Divine, Dmitry; Husum, Katrine; Koç, Nalan; Jennings, Anne

    2016-04-01

    August sea surface temperatures (aSST) and April sea-ice concentrations (aSIC) covering the last 2900 years have been reconstructed in order to investigate the variability of summer surface conditions along possible forcing factors on the SE Greenland shelf. In this diatom-based study, we focus on the interval ca. 870-1910 Common Era (CE) reconstructed at a high temporal resolution of 3-8 years. The results demonstrate both abrupt changes and a clear centennial-bicentennial variability for the last millennium. The Medieval Climate Anomaly (MCA) between 1000 and 1200 CE represents the warmest ocean surface conditions of the SE Greenland shelf over the late Holocene (880 BCE-1910 CE). MCA in the current record is characterized by abrupt, decadal to multidecadal changes, such as an abrupt warming of ~2.4 °C in 55 years around 1000 CE. Temperature changes of these magnitudes are rarely observed in other proxy records from the North Atlantic. Compared to regional air temperature reconstructions, our results indicate a lag of about 50 years in ocean surface warming either due to increased freshwater discharge from the Greenland ice sheet or intensified sea-ice export from the Arctic as a response to atmospheric warming at the beginning of the MCA. A cool phase, from 1200-1890 CE, associated with the Little Ice Age (LIA), ends with the rapid warming of aSST and diminished aSIC in the early 20th century. The phases of warm aSST and aSIC minima on the SE Greenland shelf and solar minima of the last millennium are antiphased, suggesting that solar forcing possibly amplified by atmospheric forcing has been behind the aSST variability on the SE Greenland over the last millennium. The results might indicate decreased sea ice formation on the SE Greenland shelf due to diminished freshwater input from the Greenland Ice Sheet during the cold climate periods. The results show that the SE Greenland shelf is a climatologically sensitive area where extremely rapid changes are

  18. Effects of small temperature increase and subchronic acid stress on juvenile rainbow trout during winter

    SciTech Connect

    D`Cruz, L.M.; Morgan, I.J.; Wood, C.M.

    1995-12-31

    Increasing water temperatures, as predicted by global warming are potentially problematic to freshwater fish, whose body temperature is set by their environment. In addition, fish living in softwater lakes face the detrimental effects of acid rain. To determine the cost of living in a warmer climate, two ninety day exposures were conducted during the winter in softwater. In the first exposure, fish were fed to satiation twice daily, while in the second exposure, fish were fed 1% of their wet body weight every four days. Monthly sampling was conducted to determine while body energy reserves: protein, lipids and carbohydrates, and changes in plasma Na and Cl concentrations. Oxygen consumption and nitrogen waste excretion rates were also measured. Fish exposed to acid and fed to satiation showed no ionoregulatory disturbances, an atypical result. Moreover, fish exposed to pH 5.2 had increased appetites, resulting in increased growth. In comparison, fish in the second exposure that were fed a limited ration and exposed to pH 5.2 had a greater mortality rate and lower plasma Na and Cl concentrations, with greater detrimental effects observed in fish exposed to +2 C above ambient. The findings suggest that NaCl present in commercial fish food may compensate for bronchial ion loss during acid exposure, as a result of a stimulation of appetite.

  19. Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering

    NASA Astrophysics Data System (ADS)

    Al-Amin, M.; Murphy, J. D.

    2016-06-01

    We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo in situ way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poor wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 μs to 38.7 μs. The lifetime of top wafers is improved from 12.1 μs to 23.8 μs under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.

  20. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    PubMed

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  1. Increasing positive trend in the Antarctic sea ice extent and associated surface temperature changes

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    2015-12-01

    The maximum extent of the Antarctic sea ice in 2014 was more than 20 x 106 km2 which is likely the highest during the satellite era. The updated historical record of the sea ice cover, as derived from multichannel passive microwave data, now shows a trend of 2.05 ± 0.18% per decade and 2.70 ± 0.20 % per decade for ice extent and ice area, respectively. This indicates not only a continuation of the positive trend but also a slight increase in the trends reported previously. A newly enhanced sea ice concentration data actually yield slightly more modest trends in the sea ice extent and ice area of 1.55 ± 0.17 % per decade and 2.40 ± 0.20 % per decade, respectively. The difference is mainly due to an improved matching of calibrations in the enhanced data for the different satellite sensors that provide the historical time series. The updated data also show regional shifts in the trends with a decrease in the positive trend in the Ross Sea, a decrease in the negative trend in the Bellingshausen/Amundsen Seas, and an increase in the positive trend in the other sectors. Such shifts undermine the previous hypothesis that the positive trend of Antarctic sea ice is primarily caused by increases in ice production in the Ross Sea. On the other hand, it is observed that surface temperatures for the same period, as derived from satellite data, show a general cooling in areas near the ice margin. Surface temperatures are also shown to be highly correlated with the extent of the sea ice cover. Such results suggests that the assimilation of satellite surface temperature data in numerical climate models may be needed to improve the performance of these models and enable better agreements with the observed trends of sea ice in the Southern Hemisphere.

  2. Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Mikielewicz, Jarosław

    2011-12-01

    In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.

  3. Estimate of the fetal temperature increase due to UHF RFID exposure.

    PubMed

    Fiocchi, S; Markakis, I A; Liorni, I; Parazzini, M; Samaras, T; Ravazzani, P

    2013-01-01

    Exposure from electromagnetic (EM) devices has increased during the last decades due to the rapid development of new technologies. Among them, radiofrequency identification (RFID) applications are used in almost every aspect of everyday life, which could expose people unselectively. This scenario could pose potential risks for certain groups of general population, such as pregnant women, who are more sensitive to thermal effects produced by EM exposure. In this paper, the temperature rise at the steady state in two pregnant women models exposed to UHF RFID has been assessed. Results show that heating of tissues is far from the threshold of biological effects indicated by radiation protection guidelines.

  4. Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus).

    PubMed

    Simčič, Tatjana; Jesenšek, Dušan; Brancelj, Anton

    2015-08-01

    Climate change may result in future alterations in thermal regime which could markedly affect the early developmental stages of cold water fish due to their expected high sensitivity to increasing temperature. In the present study, the effect of temperature increase of 2, 4 and 6°C on the oxygen consumption rate (R), the activity of respiratory electron transport system (ETS) and oxidative stress have been studied in four developmental stages of the marble trout (Salmo marmoratus)-eyed eggs, yolk-sac larvae and juveniles of 1 and 3 months. Oxygen consumption rate and ETS activity increased with level of development and with temperature in all four stages. ETS/R ratios decreased during development and correlated with temperature in eyed eggs, larvae and juveniles of 1 month, but not in juveniles of 3 months. Low ETS/R ratios at higher temperatures indicate stress response in eyed eggs, the most temperature sensitive developmental stage. Catalase (CAT) and glutathione reductase (GR) activities increased during development, but responded differently to elevated temperature in the different developmental stages. Stress in eyed eggs, caused by higher temperatures, resulted in increased oxygen consumption rate and increased activities of CAT and GR. Larvae were sensitive to increased temperature only at the highest experimental temperature of 16°C. Increased temperature did not stress the metabolism of the juveniles, since they were able to compensate their metabolic activity. The earlier developmental stages of marble trout are thus more sensitive to temperature increase than juveniles and therefore more endangered by higher water temperatures. This is the first report connecting oxygen consumption, ETS activity and ETS/R ratio with the activities of antioxidant enzymes in relation to increased temperature in salmonids. PMID:25935664

  5. Increased seasonality in Middle East temperatures during the last interglacial period.

    PubMed

    Felis, Thomas; Lohmann, Gerrit; Kuhnert, Henning; Lorenz, Stephan J; Scholz, Denis; Pätzold, Jürgen; Al-Rousan, Saber A; Al-Moghrabi, Salim M

    2004-05-13

    The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate. Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales, which would have led to corresponding changes in the seasonal temperature cycle. Here we present seasonally resolved proxy records using corals from the northernmost Red Sea, which record climate during the last interglacial period, the late Holocene epoch and the present. We find an increased seasonality in the temperature recorded in the last interglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation, a climate oscillation that strongly influences winter temperatures and precipitation in the North Atlantic region. From our coral records and simulations with a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index state of the North Atlantic Oscillation during the last interglacial period, which is consistent with European proxy records, contributed to the larger amplitude of the seasonal cycle in the Middle East.

  6. Increased operational temperature of Cr2O3-based spintronic devices

    NASA Astrophysics Data System (ADS)

    Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian

    Spintronic devices have been considered a promising path to revolutionizing the current data storage and memory technologies. This work is an effort to utilize voltage-controlled boundary magnetization of the magnetoelectric chromia (Cr2O3) to be implemented into a spintronic device. The electric switchable boundary magnetization of chromia can be used to voltage-control the magnetic states of an adjacent ferromagnetic layer. For this technique to be utilized in a spintronic device, the antiferromagnetic ordering temperature of chromia must be enhanced above the bulk value of TN = 307K. Previously, based on first principle calculations, boron doped chromia thin films were fabricated via pulsed laser deposition showing boundary magnetization at elevated temperatures. Measurements of the boundary magnetization were also corroborated by spin polarized inverse photoemission spectroscopy. Exchange bias of B-doped chromia was also investigated using magneto-optical Kerr effect, showing an increased blocking temperature from 307K. Further boundary magnetization measurements and spin polarized inverse photoemission measurements indicate the surface magnetization to an in-plane orientation from the standard perpendicular orientation. This project was supported by the SRC through CNFD, an SRC-NRI Center under Task ID (2398.001) and by C-SPIN, part of STARnet, sponsored by MARCO and DARPA (No. SRC 2381.001).

  7. Increased seasonality in Middle East temperatures during the last interglacial period.

    PubMed

    Felis, Thomas; Lohmann, Gerrit; Kuhnert, Henning; Lorenz, Stephan J; Scholz, Denis; Pätzold, Jürgen; Al-Rousan, Saber A; Al-Moghrabi, Salim M

    2004-05-13

    The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate. Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales, which would have led to corresponding changes in the seasonal temperature cycle. Here we present seasonally resolved proxy records using corals from the northernmost Red Sea, which record climate during the last interglacial period, the late Holocene epoch and the present. We find an increased seasonality in the temperature recorded in the last interglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation, a climate oscillation that strongly influences winter temperatures and precipitation in the North Atlantic region. From our coral records and simulations with a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index state of the North Atlantic Oscillation during the last interglacial period, which is consistent with European proxy records, contributed to the larger amplitude of the seasonal cycle in the Middle East. PMID:15141207

  8. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, Greg A.; Minor, Rebecca L.; Allen, Nathan A.; Cronin, Alex D.; Brooks, Adria E.; Pavao-Zuckerman, Mitchell A.

    2016-10-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

  9. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    PubMed Central

    Barron-Gafford, Greg A.; Minor, Rebecca L.; Allen, Nathan A.; Cronin, Alex D.; Brooks, Adria E.; Pavao-Zuckerman, Mitchell A.

    2016-01-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations. PMID:27733772

  10. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  11. The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations

    NASA Technical Reports Server (NTRS)

    Brasseur, G.; Derudder, A.

    1987-01-01

    The response of the atmosphere to emissions of chlorofluorocarbons (CFCs) and other chlorocarbons, and to increasing concentrations of other radiatively active trace gases such as CO2, CH4, and N2O is calculated by a coupled chemical-radiative transport one-dimensional model. It is shown that significant reductions in the ozone concentration and in the temperature are expected in the upper stratosphere as a result of increasing concentrations of active chlorine produced by photodecomposition of the CFCs. The ozone content is expected to increase in the troposphere, as a consequence of increasing concentrations of methane and nitrogen oxides. Due to enhanced greenhouse effects, the Earth's surface should warm up by several degrees. The amplitude and even the sign of future changes in the ozone column are difficult to predict as they are strongly scenario-dependent. An early detection system to prevent noticeable ozone changes as a result of increasing concentrations of source gases should thus be based on a continuous monitoring of the ozone amount in the upper stratosphere rather than on measurements of the ozone column only. Measurements of NOx, Clx, and HOx are also required for unambiguous trend detection and interpretation.

  12. Evidence of increasing drought severity caused by temperature rise in southern Europe

    NASA Astrophysics Data System (ADS)

    Vicente-Serrano, Sergio M.; Lopez-Moreno, Juan-I.; Beguería, Santiago; Lorenzo-Lacruz, Jorge; Sanchez-Lorenzo, Arturo; García-Ruiz, José M.; Azorin-Molina, Cesar; Morán-Tejeda, Enrique; Revuelto, Jesús; Trigo, Ricardo; Coelho, Fatima; Espejo, Francisco

    2014-04-01

    We use high quality climate data from ground meteorological stations in the Iberian Peninsula (IP) and robust drought indices to confirm that drought severity has increased in the past five decades, as a consequence of greater atmospheric evaporative demand resulting from temperature rise. Increased drought severity is independent of the model used to quantify the reference evapotranspiration. We have also focused on drought impacts to drought-sensitive systems, such as river discharge, by analyzing streamflow data for 287 rivers in the IP, and found that hydrological drought frequency and severity have also increased in the past five decades in natural, regulated and highly regulated basins. Recent positive trend in the atmospheric water demand has had a direct influence on the temporal evolution of streamflows, clearly identified during the warm season, in which higher evapotranspiration rates are recorded. This pattern of increase in evaporative demand and greater drought severity is probably applicable to other semiarid regions of the world, including other Mediterranean areas, the Sahel, southern Australia and South Africa, and can be expected to increasingly compromise water supplies and cause political, social and economic tensions among regions in the near future.

  13. Evolution of grain boundary conduction with increasing temperature in pure and Ti doped Co ferrite materials

    SciTech Connect

    Vaithyanathan, V.; Patro, L. N. E-mail: kkamalabharathi@gmail.com; Kodam, Ugendar; Tan, H.; Inbanathan, S. S. R.; Kamala Bharathi, K. E-mail: kkamalabharathi@gmail.com

    2015-09-21

    We report on the structural, temperature, and frequency dependent impedance studies of Ti doped cobalt ferrite material (CoFe{sub 1.95}Ti{sub 0.05}O{sub 4}) in comparison with the pure CoFe{sub 2}O{sub 4}. XRD and Raman spectroscopy studies confirm the inverse spinel crystallization of the materials with space group of Fd-3 m. Scanning electron microscope images shows the microcrystalline nature of the particles. Homogeneity, stoichiometry, and ionic states of the ions in the composition were confirmed by energy dispersive X-ray analysis and X-ray photoelectron spectroscopic studies. Temperature and frequency dependent real (Z′) and imaginary (Z″) part of the impedance shows the existence of relaxation processes and their distribution in CoFe{sub 2}O{sub 4} and CoFe{sub 1.95}Ti{sub 0.05}O{sub 4} materials. Complex impedance spectroscopy studies at low temperatures shows that the conductivity in these materials is predominantly due to the intrinsic bulk grains. With increasing the temperature, evolution of grain boundary conduction is clearly seen through the appearance of a second semi-circle in the complex impedance plots. Room temperature total dc conductivity of both CoFe{sub 2}O{sub 4} and CoFe{sub 1.95}Ti{sub 0.05}O{sub 4} materials is found to be 5.78 × 10{sup −8} and 1.61 × 10{sup −7} S/cm, respectively. Temperature variation of dc electrical conductivity follows the Arrhenius relationship and the activation energies for CoFe{sub 2}O{sub 4} corresponding to grain (0.55 eV for CoFe{sub 2}O{sub 4}), grain boundary (0.52 eV), and total conduction (0.54 eV) are discussed. Observation of well distinguishable grain and grain boundary conductions and the low conductivity values in CoFe{sub 2}O{sub 4} and CoFe{sub 1.95}Ti{sub 0.05}O{sub 4} materials indicates that these materials are promising candidates for the high frequency applications.

  14. A comparison of two methods for detecting abrupt changes in the variance of climatic time series

    NASA Astrophysics Data System (ADS)

    Rodionov, Sergei N.

    2016-06-01

    Two methods for detecting abrupt shifts in the variance - Integrated Cumulative Sum of Squares (ICSS) and Sequential Regime Shift Detector (SRSD) - have been compared on both synthetic and observed time series. In Monte Carlo experiments, SRSD outperformed ICSS in the overwhelming majority of the modeled scenarios with different sequences of variance regimes. The SRSD advantage was particularly apparent in the case of outliers in the series. On the other hand, SRSD has more parameters to adjust than ICSS, which requires more experience from the user in order to select those parameters properly. Therefore, ICSS can serve as a good starting point of a regime shift analysis. When tested on climatic time series, in most cases both methods detected the same change points in the longer series (252-787 monthly values). The only exception was the Arctic Ocean sea surface temperature (SST) series, when ICSS found one extra change point that appeared to be spurious. As for the shorter time series (66-136 yearly values), ICSS failed to detect any change points even when the variance doubled or tripled from one regime to another. For these time series, SRSD is recommended. Interestingly, all the climatic time series tested, from the Arctic to the tropics, had one thing in common: the last shift detected in each of these series was toward a high-variance regime. This is consistent with other findings of increased climate variability in recent decades.

  15. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.

    PubMed

    Boulton, Chris A; Lenton, Timothy M

    2015-09-15

    Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.

  16. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change

    PubMed Central

    Boulton, Chris A.; Lenton, Timothy M.

    2015-01-01

    Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency––i.e., “redder”––variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900–present), as indicated by a robust increase in autocorrelation. This “reddening” of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent “regime shifts.” Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems. PMID:26324900

  17. Plasma Stress Responses in Juvenile Red-Spotted Grouper (Epinephelus akaara) exposed to Abrupt Salinity Decrease

    PubMed Central

    Lee, Jang-Won; Kim, Hyung Bae; Baek, Hea Ja

    2016-01-01

    The objective of the current study was to determine acute plasma stress responses in two size groups of juvenile Epinephelus akaara (average body weight: 8.4±2.1 and 3.3±0.6 g; 150 and 120 days after hatch, respectively) exposed to abrupt salinity drops (from 34 practical salinity unit, PSU seawater to 18, 10 PSU (experiment 1) or 26, 18, 10 PSU (experiment 2), respectively). Plasma glucose, glutamic oxalate transaminase, glutamic pyruvate transaminase, red blood cell counts, and gill histology were determined during 72 h exposure. Significantly increased plasma glucose, glutamic oxalate transaminase levels, and red blood cell counts were observed in fish exposed to 18 or 10 PSU. Histological changes, such as hyperplasia and lifting of epithelium in the gill secondary lamellae, were also observed in fish exposed to 18 or 10 PSU at 72 h post-drop. E. akaara exposed to sudden salinity drops to 18 or 10 PSU still seems to undergo the primary adjustment phase before fish reaches a new homeostasis, whereas fish exposed to 26 PSU seems to mount osmotic changes. Therefore, the no observed adverse effect levels for 72 h acute salinity challenge was 26 PSU in our study, and salinity drop to 18 PSU and below can possibly cause acute adverse effect, in which fish could be vulnerable to additional stresses such as a temperature changes or handling stress. PMID:27796000

  18. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures

    PubMed Central

    Wilkins, Laetitia G. E.; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus

    2015-01-01

    The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area. PMID:26611640

  19. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures.

    PubMed

    Wilkins, Laetitia G E; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus

    2015-11-27

    The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.

  20. Space-dependent temperature increase in human skin subsurface chromophores immediately following pulsed laser exposure

    NASA Astrophysics Data System (ADS)

    Nelson, J. Stuart; Milner, Thomas E.; Tanenbaum, B. S.; Goodman, Dennis M.

    1996-01-01

    Specifying the distribution of laser energy within a tissue is the first step toward understanding and capitalizing on a variety of laser-tissue interactions. Whether photothermal, photochemical, or photomechanical in nature, laser-tissue interactions begin with the absorption of photon energy. The spatial distribution of photon absorption specifies the required laser exposure to be delivered and the extent of subsequent therapeutic action. Using infrared tomography (IRT), the broad, long term objective of this research is the development of a three-dimensional tomographic reconstruction algorithm (TRA) as a means to determine the: (1) initial space-dependent temperature increase in subsurface chromophores [(Delta) TCHR((xi) ,(eta) ,(zetz) ,t equals 0)] immediately following pulsed laser exposure; and (2) depths and physical dimensions of discrete subsurface chromophores. Analysis of the recorded time sequence of infrared emission images [(Delta) MCHR(x,y,t)] by longitudinal inversion and lateral deconvolution algorithms provides a direct means to determine the depths and physical dimensions of subsurface chromophores. Although our research is being shared with workers in a variety of disciplines, and pertinent to many clinical applications involving laser-induced photothermal mechanisms, we are particularly interested in addressing the problems associated with determination of the initial space-dependent temperature increase in subsurface chromophores in human skin in general, and port wine stain (PWS) blood vessels in particular.

  1. Abrupt Holocene climate change as an important factor for human migration in West Greenland

    PubMed Central

    D’Andrea, William J.; Huang, Yongsong; Fritz, Sherilyn C.; Anderson, N. John

    2011-01-01

    West Greenland has had multiple episodes of human colonization and cultural transitions over the past 4,500 y. However, the explanations for these large-scale human migrations are varied, including climatic factors, resistance to adaptation, economic marginalization, mercantile exploration, and hostile neighborhood interactions. Evaluating the potential role of climate change is complicated by the lack of quantitative paleoclimate reconstructions near settlement areas and by the relative stability of Holocene temperature derived from ice cores atop the Greenland ice sheet. Here we present high-resolution records of temperature over the past 5,600 y based on alkenone unsaturation in sediments of two lakes in West Greenland. We find that major temperature changes in the past 4,500 y occurred abruptly (within decades), and were coeval in timing with the archaeological records of settlement and abandonment of the Saqqaq, Dorset, and Norse cultures, which suggests that abrupt temperature changes profoundly impacted human civilization in the region. Temperature variations in West Greenland display an antiphased relationship to temperature changes in Ireland over centennial to millennial timescales, resembling the interannual to multidecadal temperature seesaw associated with the North Atlantic Oscillation. PMID:21628586

  2. Temporally increasing spatial synchrony of North American temperature and bird populations

    NASA Astrophysics Data System (ADS)

    Koenig, Walter D.; Liebhold, Andrew M.

    2016-06-01

    The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics. So far, however, little attention has been given to temporal changes in spatial synchrony--the coincident change in abundance or value across the landscape--despite the importance of environmental synchrony as a driver of population trends and the central role of environmental variability in population rescue and extinction. Here we demonstrate that across North America, spatial synchrony of a significant proportion of 49 widespread North American wintering bird species has increased over the past 50 years--the period encompassing particularly intense anthropogenic effects in climate--paralleling significant increases in spatial synchrony of mean maximum air temperature. These results suggest the potential for increased spatial synchrony in environmental factors to be affecting a wide range of ecological phenomena. These effects are likely to vary, but for North American wildlife species, increased spatial synchrony driven by environmental factors may be the basis for a previously unrecognized threat to their long-term persistence in the form of more synchronized population dynamics reducing the potential for demographic rescue among interacting subpopulations.

  3. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Loschetter, Annick

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value and to the one of high probability value: the latter value generally supports the call for evacuation. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to >70% could be identified up 4 hours in advance, ~2.5 days before the evacuation call (decided for an eruption probability >80% during the MESIMEX exercise). This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  4. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Loschetter, A.

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to > 70% could be identified up to 1-3 h in advance. This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  5. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish.

    PubMed

    Johansen, J L; Messmer, V; Coker, D J; Hoey, A S; Pratchett, M S

    2014-04-01

    Large-bodied fish are critical for sustaining coral reef fisheries, but little is known about the vulnerability of these fish to global warming. This study examined the effects of elevated temperatures on the movement and activity patterns of the common coral trout Plectropomus leopardus (Serranidae), which is an important fishery species in tropical Australia and throughout the Indo West-Pacific. Adult fish were collected from two locations on Australia's Great Barrier Reef (23°S and 14°S) and maintained at one of four temperatures (24, 27, 30, 33 °C). Following >4 weeks acclimation, the spontaneous swimming speeds and activity patterns of individuals were recorded over a period of 12 days. At 24-27 °C, spontaneous swimming speeds of common coral trout were 0.43-0.45 body lengths per second (bls(-1)), but dropped sharply to 0.29 bls(-1) at 30 °C and 0.25 bls(-1) at 33 °C. Concurrently, individuals spent 9.3-10.6% of their time resting motionless on the bottom at 24-27 °C, but this behaviour increased to 14.0% at 30 °C and 20.0% of the time at 33 °C (mean ± SE). The impact of temperature was greatest for smaller individuals (<45 cm TL), showing significant changes to swimming speeds across every temperature tested, while medium (45-55 cm TL) and large individuals (>55 cm TL) were first affected by 30 °C and 33 °C, respectively. Importantly, there was some indication that populations can adapt to elevated temperature if presented with adequate time, as the high-latitude population decreased significantly in swimming speeds at both 30 °C and 33 °C, while the low-latitude population only showed significant reductions at 33 °C. Given that movement and activity patterns of large mobile species are directly related to prey encounter rates, ability to capture prey and avoid predators, any reductions in activity patterns are likely to reduce overall foraging and energy intake, limit the energy available for growth and reproduction, and affect the fitness and

  6. When will European countries exceed the 2°C temperature increase?

    NASA Astrophysics Data System (ADS)

    Caminade, C.; Morse, A. P.

    2012-04-01

    Climatologists all agree that an increase of 2°C at global scale could have serious socio-economic consequences for the future. The Cancun agreement in 2010 officially stated that "With a view to reducing global greenhouse gas emissions so as to hold the increase in global average temperature below 2 °C above pre- industrial levels . . . Parties should take urgent action to meet this long-term goal." Recent studies highlighted that this threshold is likely to be reached by 2060 at global scale if we follow the higher greenhouse gases emission scenarios. However, this threshold might be crossed earlier over lands, by 2040, for Europe, Asia, North Africa and Canada. This study aims to highlight when this threshold might be reached at the country level for members states of the European Union. A large ensemble of regional climate model simulations driven by the SRESA1B emission scenario carried out within the ENSEMBLES project framework for the European continent is employed to achieve such a task. Results corroborate that the European continent is likely to warm faster than the global average temperatures, with the multi-model ensemble mean crossing the 2°C threshold by 2045-2055. Regionally, Eastern Europe, Scandinavia and the Mediterranean basin are likely to cross that threshold earlier than northwestern/central Europe. As an example of these regional differences, Cyprus is likely to experience a 2°C increase during the mid 2040s while this might happen over Ireland during the late 21st century.

  7. Wildfire responses to abrupt climate change in North America.

    PubMed

    Marlon, J R; Bartlein, P J; Walsh, M K; Harrison, S P; Brown, K J; Edwards, M E; Higuera, P E; Power, M J; Anderson, R S; Briles, C; Brunelle, A; Carcaillet, C; Daniels, M; Hu, F S; Lavoie, M; Long, C; Minckley, T; Richard, P J H; Scott, A C; Shafer, D S; Tinner, W; Umbanhowar, C E; Whitlock, C

    2009-02-24

    It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial-interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.

  8. Abrupt changes in rainfall during the twentieth century

    NASA Astrophysics Data System (ADS)

    Narisma, G.; Foley, J.; Licker, R.; Ramankutty, N.

    2007-12-01

    A sudden change in climate is brought about by complex interactions in the climate system, including interactions between land and atmosphere, that can give rise to strong positive feedback mechanisms. Paleoclimatic studies have shown that abrupt climate changes have happened in the geologic past. Studies of future climate change under global warming scenarios indicate the possibility of the sudden collapse of the thermohaline circulation, which will have major implications for the climate of Europe. However, abrupt climatic changes are not events of the geologic past or a computer-simulated future: they have occurred in recent history and have had serious consequences on society and the environment. The prolonged Sahel drought in the late 1960s and the Dust Bowl of the 1930s are examples of abrupt climatic changes of the twentieth century. Apart from these events, however, there has been no systematic survey of recent climate history to determine the prevalence of abrupt climatic changes. Given the potential cost of these abrupt changes, there is a need to investigate historical records for evidence of other sudden climatic changes in the more recent past. Here we analyze the Climate Research Unit global historical rainfall observations (covering the years 1901-2000) using wavelet analysis to detect regions that have undergone large, sudden decreases in rainfall. We show that in the twentieth century, aside from the Sahel and the US midwest, at least 30 regions in the world have experienced sudden climatic changes. These events are statistically significant at the 99 percent level, are persistent for at least ten years, and most have magnitudes of change that are 10 percent lower than the climatological normal (1901-2000 rainfall average). We also illustrate some of the potential consequences of these abrupt changes and show that these events had major impacts on social and environmental conditions. Interestingly, these regions of abrupt precipitation changes are

  9. Abrupt seasonal variation of the ITCZ and the Hadley circulation

    NASA Astrophysics Data System (ADS)

    Hu, Yongyun; Li, Dawei; Liu, Jiping

    2007-09-01

    Using Global Precipitation Climatology Project (GPCP) daily data, we show that the seasonal migration of the global zonal-mean intertropical convergence zone (ITCZ) is not smooth, but jumps from the winter hemisphere to the summer hemisphere. The abrupt migration is within 10 days. Detailed analyses reveal that the phenomenon of the abrupt seasonal migration of the ITCZ mainly exists over particular tropical domains, such as Indian Ocean, western and central Pacific, and South America, which gives the rise of the jump of the global zonal-mean ITCZ. Because the ITCZ constitutes the ascending branch of the Hadley circulation, we also examine whether there exists such an abrupt seasonal change in the Hadley circulation. It is found that the intensity of the Hadley cells evolves smoothly with time. However, the horizontal scales of the Hadley cells demonstrate abrupt seasonal changes, corresponding to the abrupt seasonal migration of the global ITCZ. The winter cell extends rapidly across the equator, while the summer cell rapidly narrows. This suggests that the solsticial cell is the dominant component of the Hadley circulation, and that the equinoctial symmetric pattern is ephemeral.

  10. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub.

    SciTech Connect

    Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent

    2004-01-10

    Kwit, C., D. J. Levey; C. H. Greenberg, S. F. Pearson, J.P. McCarty, and S. Sargent. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia. 139:30-34. Abstract: We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December and January. Mean time to fruit removal within study plots was positively correlated with mean winter temperatures, thereby supporting our hypothesis. This result, combined with the generally low availability of winter arthropods, suggests that fruit abundance may play a role in determining winter survivorship and distribution of permanent resident and short-distance migrant birds. From the plant's perspective, it demonstrates inter-annual variation in the temporal component of seed dispersal, with possible consequences for post-dispersal seed and seedling ecology.

  11. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate.

    PubMed

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-09-21

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance.

  12. Bacteria increase arid-land soil surface temperature through the production of sunscreens

    DOE PAGES

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; Nunes da Rocha, Ulisses; Northen, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2016-01-20

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparentmore » and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. In conclusion, these results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.« less

  13. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate.

    PubMed

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  14. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    PubMed Central

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  15. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. PMID:26563596

  16. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU.

  17. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  18. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.

    2004-01-01

    In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  19. Temperature Increase Dependence on Ultrasound Attenuation Coefficient in Innovative Tissue-mimicking Materials

    NASA Astrophysics Data System (ADS)

    Cuccaro, R.; Magnetto, C.; Albo, P. A. Giuliano; Troia, A.; Lago, S.

    Although high intensity focused ultrasound beams (HIFU) have found rapid agreement in clinical environment as a tool for non invasive surgical ablation and controlled destruction of cancer cells, some aspects related to the interaction of ultrasonic waves with tissues, such as the conversion of acoustic energy into heat, are not thoroughly understood. In this work, innovative tissue-mimicking materials (TMMs), based on Agar and zinc acetate, have been used to conduct investigations in order to determine a relation between the sample attenuation coefficient and its temperature increase measured in the focus region when exposed to an HIFU beam. An empirical relation has been deduced establishing useful basis for further processes of validations of numerical models to be adopted for customizing therapeutic treatments.

  20. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor. PMID:14739457

  1. Increased production of cellulase of Trichoderma sp. By pH cycling and temperature profiling

    SciTech Connect

    Mukhopadhyay, S.N.; Malik, R.K.

    1980-01-01

    Cultivation of Trichoderma reesei QM 9414 on 3% cellulose medium (C/N ratio equal to 8.5) produced 4.5 IU/mL cellulase in 180 h at a cell growth of 8.0 g/L. It corresponded to an average cellulase productivity of 25.0 IU/L/h. In the same medium 9.5 g/L cell mass, 6.2 IU/mL cellulase, and 38.75 IU/L/h cellulase productivity could be obtained using pH cycling during cultivation. Cell mass, cellulase yield, and productivity were further increased to 10,0 g/L, 7.2 IU/mL, and 44.0 IU/L/h (4.5 IU/g cell/h), respectively, by simultaneous pH cycling and temperature profiling. Results are described.

  2. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates.

    PubMed

    Williams, Caroline M; Szejner-Sigal, Andre; Morgan, Theodore J; Edison, Arthur S; Allison, David B; Hahn, Daniel A

    2016-07-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving "Beyond the Mean". PMID:27103615

  3. A two-fold increase of carbon cycle sensitivity to tropical temperature variations.

    PubMed

    Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping

    2014-02-13

    Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.

  4. The Effect of Increased Temperatures and Ultraviolet Radiation on Dissolved Oxygen in Ecosystems Primarily Comprised of "Euglena"

    ERIC Educational Resources Information Center

    Carpenter, Matt

    2009-01-01

    The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…

  5. International policy implications of abrupt climate change scenarios

    SciTech Connect

    Molitor, M.R.

    1997-12-31

    New theoretical and empirical evidence supports the view that in the recent past [Holocene] abrupt climate changes occurred over very short [decadal] time periods. One leading possibility of future changes involves the North Atlantic Ocean conveyor that transfers warm surface waters from the equator to northern latitudes and helps maintain Europe`s climate. The predicted abrupt climate change scenario theorizes that the conveyor may be modified as a result of disruption of the thermohaline circulation driving North, Atlantic Deep Water. This would lead, the theory contends, to a rapid cooling of Europe`s climate. In light of the EPCC`s 1995 Second Assessment Report conclusion that there is a {open_quotes}discernible{close_quotes} human influence on the global climate system, there are many emerging questions concerning possible abrupt climate change scenarios.

  6. Sea-ice switches and abrupt climate change.

    PubMed

    Gildor, Hezi; Tziperman, Eli

    2003-09-15

    We propose that past abrupt climate changes were probably a result of rapid and extensive variations in sea-ice cover. We explain why this seems a perhaps more likely explanation than a purely thermohaline circulation mechanism. We emphasize that because of the significant influence of sea ice on the climate system, it seems that high priority should be given to developing ways for reconstructing high-resolution (in space and time) sea-ice extent for past climate-change events. If proxy data can confirm that sea ice was indeed the major player in past abrupt climate-change events, it seems less likely that such dramatic abrupt changes will occur due to global warming, when extensive sea-ice cover will not be present.

  7. Sea-ice switches and abrupt climate change.

    PubMed

    Gildor, Hezi; Tziperman, Eli

    2003-09-15

    We propose that past abrupt climate changes were probably a result of rapid and extensive variations in sea-ice cover. We explain why this seems a perhaps more likely explanation than a purely thermohaline circulation mechanism. We emphasize that because of the significant influence of sea ice on the climate system, it seems that high priority should be given to developing ways for reconstructing high-resolution (in space and time) sea-ice extent for past climate-change events. If proxy data can confirm that sea ice was indeed the major player in past abrupt climate-change events, it seems less likely that such dramatic abrupt changes will occur due to global warming, when extensive sea-ice cover will not be present. PMID:14558902

  8. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  9. HSP70 production patterns in coastal and estuarine organisms facing increasing temperatures

    NASA Astrophysics Data System (ADS)

    Madeira, D.; Narciso, L.; Cabral, H. N.; Vinagre, C.; Diniz, M. S.

    2012-10-01

    Heat shock proteins are important components in the cellular defense against proteotoxic stress. This work aimed to reveal HSP70 (hsc70 plus hsp70) expression patterns in several marine species (fish, crabs and shrimps) within a community along a temperature gradient and at the upper thermal limit. The organisms were collected in the Tagus estuary and adjacent shore (in Cabo Raso), Portugal. Exposure trials were performed using the critical thermal maximum (CTMax) method in order to recreate a stress gradient of ecological relevance. Protein analysis was performed using an enzyme linked immunosorbent assay (ELISA). Organisms within each community (estuary, coast; subtidal, intertidal, supratidal) responded in several different ways: no change in HSP70 levels, an increase in HSP70 levels, or increases and decreases in HSP70 levels. These patterns of response occurred independently of taxa, CTMax and habitat type. Magnitude of expression relates to the habitat's thermal conditions. Species from highly variable and hot habitats i.e. intertidal/supratidal zone, and living in greater shore heights produce higher amounts of HSP70. Demersal and subtidal species inhabit colder and more stable waters thus they seem to have a slower heat shock response. No clear pattern was observed for species of the same group (fish, crabs and shrimps) or congeneric species. HSP70 expression showed high intraspecific variability potentially due to genetic traits, environmental traits and condition status.

  10. Inhaled vasopressin increases sociability and reduces body temperature and heart rate in rats.

    PubMed

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; McGregor, Iain S

    2014-08-01

    The neuropeptides vasopressin (AVP) and oxytocin (OT) have therapeutic potential across a range of psychiatric disorders. However, there is uncertainty about the effectiveness of the intranasal route of administration that is often used to deliver these neuropeptides. Recent preclinical studies, typically involving anesthetized or restrained animals, have assessed intranasal AVP or OT effects, and have obtained somewhat inconsistent results. Here we obtained intranasal administration of AVP in rats by nebulizing the peptide (1ml of 5 or 10mg/ml solution) into a small enclosed chamber over a 2min period in which well-habituated, unanesthetized, unrestrained, rats were placed. Rats were immediately removed from the chamber and tested in the social interaction test, or assessed for changes in heart rate and body temperature using biotelemetry. Results showed that rats exposed to nebulized AVP (5 or 10mg/ml) showed increased social proximity (adjacent lying) and decreased anogenital sniffing in the social interaction test. Biotelemetry showed substantial and long lasting (>1h) hypothermic and bradycardic effects of nebulized AVP. These behavioral and physiological effects of nebulized AVP mimic those observed in recent studies with peripherally injected AVP. Plasma AVP concentrations were substantially increased 10min after nebulized AVP, producing levels above those seen with a behaviorally effective injected dose of AVP (0.005mg/kg intraperitoneal). This study thus provides a novel and effective method for neuropeptide administration to rodents. PMID:24882157

  11. Inhaled vasopressin increases sociability and reduces body temperature and heart rate in rats.

    PubMed

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; McGregor, Iain S

    2014-08-01

    The neuropeptides vasopressin (AVP) and oxytocin (OT) have therapeutic potential across a range of psychiatric disorders. However, there is uncertainty about the effectiveness of the intranasal route of administration that is often used to deliver these neuropeptides. Recent preclinical studies, typically involving anesthetized or restrained animals, have assessed intranasal AVP or OT effects, and have obtained somewhat inconsistent results. Here we obtained intranasal administration of AVP in rats by nebulizing the peptide (1ml of 5 or 10mg/ml solution) into a small enclosed chamber over a 2min period in which well-habituated, unanesthetized, unrestrained, rats were placed. Rats were immediately removed from the chamber and tested in the social interaction test, or assessed for changes in heart rate and body temperature using biotelemetry. Results showed that rats exposed to nebulized AVP (5 or 10mg/ml) showed increased social proximity (adjacent lying) and decreased anogenital sniffing in the social interaction test. Biotelemetry showed substantial and long lasting (>1h) hypothermic and bradycardic effects of nebulized AVP. These behavioral and physiological effects of nebulized AVP mimic those observed in recent studies with peripherally injected AVP. Plasma AVP concentrations were substantially increased 10min after nebulized AVP, producing levels above those seen with a behaviorally effective injected dose of AVP (0.005mg/kg intraperitoneal). This study thus provides a novel and effective method for neuropeptide administration to rodents.

  12. Abrupt change of Antarctic moisture origin at the end of Termination II

    PubMed Central

    Masson-Delmotte, V.; Stenni, B.; Blunier, T.; Cattani, O.; Chappellaz, J.; Cheng, H.; Dreyfus, G.; Edwards, R. L.; Falourd, S.; Govin, A.; Kawamura, K.; Johnsen, S. J.; Jouzel, J.; Landais, A.; Lemieux-Dudon, B.; Lourantou, A.; Marshall, G.; Minster, B.; Mudelsee, M.; Pol, K.; Röthlisberger, R.; Selmo, E.; Waelbroeck, C.

    2010-01-01

    The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north–south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO2 overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector. PMID:20566887

  13. Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011

    NASA Astrophysics Data System (ADS)

    Seiki, Ayako; Katsumata, Masaki; Horii, Takanori; Hasegawa, Takuya; Richards, Kelvin J.; Yoneyama, Kunio; Shirooka, Ryuichi

    2013-10-01

    The cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) was conducted to capture atmospheric and oceanic characteristics of the Madden-Julian Oscillation (MJO) in the central Indian Ocean from late 2011 to early 2012. During CINDY2011, the research vessel (R/V) MIRAI stayed at 8°S, 80.5°E for two months during the special observing period (SOP). Intraseasonal convection associated with the MJO was organized in the central Indian Ocean in late October and late November during the SOP. In the middle of November, both sea surface temperature (SST) and mixed layer temperature decreased suddenly when cold low salinity water intruded into the upper layer around the R/V MIRAI. This intrusion was accompanied by a surface current change from southwestward to westward/west-northwestward associated with the passage of the annual oceanic downwelling Rossby wave. The mixed layer heat budget analysis shows that horizontal advection plays an important role in the abrupt cooling whereas the net surface heat flux cannot account for the cooling. This is an interesting result because the associated downwelling Rossby wave is usually considered to increase SST through a reduction of entrainment cooling. In addition, for the second MJO event convection was activated around 20 November over the central north and equatorial Indian Ocean but not in the south. It is suggested that the cooler surface waters (as seen at the location of the R/V MIRAI) tended to suppress the initial atmospheric convection, resulting in the lagged convective onset in the end of November over the central south Indian Ocean.

  14. Factor V Leiden, Prothrombin and MTHFR Mutation in Patients with Preeclamsia, Intrauterine Growth Restriction and Placental Abruption

    PubMed Central

    Livrinova, Vesna; Lega, Marija Hadzi; Dimcheva, Anita Hristova; Samardziski, Igor; Isjanovska, Rozalinda

    2015-01-01

    BACKGROUND: Factor V Leiden, Prothrombin and MTHFR gene mutation, could have an influence in pregnancy with adverse outcome Preeclamsia, IUGR and Placental abruption. AIM: The aim of this study is to investigate the presence of above mentioned inherited thrombophilias and its statistical significance, distribution among the complicated and normal pregnancy, and relative risk for carrier of mutation to develop preeclampsia, IUGR and placental abruption. MATERIAL AND METHODS: Prospective cohort study is implemented at University Clinic for Obstetric and Gynecology in Skopje, Republic of Macedonia. The study included 109 delivered patients: 40 with preeclapmsia, 22 with IUGR, 17 with placental abruption and 30 as control group with normal pregnancy. The amount of 3 ml venous blood has been used for detection of these point mutations using ThromboStrip -Opegen, QIAGEN kit manufactured for thrombotic risk. RESULTS: The highest frequency was found: in the group with preeclampsia 35% were MTHFR homozygous, IUGR -MTHFR heterozygous 45%, Placental abruption- 52.9% MTHFR heterozygous, and in the control group without thrombophilia 56.7%. There were combined thrombophilia in 3 patients. There aren`t statistical significance in presence of thrombophilia among groups (p > 0.05). Statistical significance (p < 0.05) was found between carriers of MTHFR homozygous in preeclampsia and group with placental abruption and control group. Relative risk in IUGR group for MTHFR homozygous was 5.54 (1.37abruption for Factor V Leiden heterozygous was 4.50 (0.47increase the risk for development of IUGR and mutation of Factor V Leiden for placental abruption. Further investigations with more patients are warranted. PMID:27275292

  15. Tracing Thermohaline Circulation Slowdown by Temperature Increase of the Intermediate-depth Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ruhlemann, C.; Mulitza, S.; Lohmann, G.; Paul, A.; Prange, M.; Wefer, G.

    2002-12-01

    Climate modeling studies predict that under a global greenhouse-gas warming situation the ocean's thermohaline circulation (THC) might weaken or even shut down. The detailed conditions for such an event are not well understood, it is however likely that a more or less complete collapse of the thermohaline circulation could be triggered by changes in surface conditions leading to fresher and/or warmer sea surface in high latitudes. Current observations indicate a freshening of the North Atlantic and concomitant reduction in the Iceland-Scotland overflow suggesting that a change of the THC might already be in progress. The North Atlantic, however, is a region that undergoes considerable hydrographic variations on annual to decadal timescales. Hence, additional observations from locations other than the North Atlantic, that allow for the early detection of THC change are required. We used benthic foraminiferal oxygen isotope ratios from two sediment cores recovered at 426 m and 1299 m water depth in the eastern and western tropical Atlantic to show that strong reductions in thermohaline overturning during the last deglaciation were associated with rapid and intense warming of intermediate-depth waters. A climate model simulation revealed that a similar temperature pattern is expected for a reduction in modern thermohaline overturning in response to changes in the North Atlantic freshwater budget. We suggest that a temperature increase of tropical Atlantic mid-depth waters, as it is already observed for the past century, could serve as a sensitive indicator of THC slowdown with a high signal-to-noise ratio.

  16. Abrupt Holocene climate change and potential response to solar forcing in western Canada

    NASA Astrophysics Data System (ADS)

    Gavin, Daniel G.; Henderson, Andrew C. G.; Westover, Karlyn S.; Fritz, Sherilyn C.; Walker, Ian R.; Leng, Melanie J.; Hu, Feng Sheng

    2011-05-01

    Several abrupt climate events during the Holocene, including the widely documented oscillation at 8.2 thousand years before present (ka), are attributed to changes in the North Atlantic thermohaline circulation. Additional mechanisms, such as interactions between atmospheric circulation, ice-sheet dynamics, and the influence of solar irradiance, also have been proposed to explain abrupt climatic events, but evidence remains elusive. This study presents evidence from multi-proxy analyses on the Holocene sediments of Eleanor Lake, interior British Columbia. Climatic inferences from our decadal-resolution record of biogenic silica (BSi) abundance are supported by changes in diatom and pollen assemblages from the same core and correlations with existing regional climate records. The BSi record reveals abrupt and persistent climatic shifts at 10.2, 9.3, and 8.5 ka, the latter two of which are coeval with major collapses of the Laurentide Ice Sheet. The record also reveals a short-term cooling at 8.2 ka that is distinct from the 8.5 ka event and similar in magnitude to several other late-Holocene coolings. BSi is correlated with solar-irradiance indices ( r = 0.43-0.61), but the correlation is opposite in sign to that expected from direct solar forcing and weakens after 8 ka. Possible mechanisms causing the abrupt and persistent climate changes of the early Holocene include 1) sudden losses of ice and proglacial lake extent, causing a shift in the meridional structure of atmospheric circulation, 2) a possible link between solar minima and El Niño-like conditions that are correlated with warm spring temperature in interior British Columbia, and 3) the influence of solar irradiance variability on the position of the polar jet, possibly via effects on the strength of the glacial anticyclone.

  17. Abrupt shutdown of the Atlantic meridional overturning circulation and rainfall patterns in Mexico

    NASA Astrophysics Data System (ADS)

    Martinez-Lopez, B.; Garcia, C. Gay

    2010-03-01

    Abrupt shutdown of the Atlantic meridional overturning circulation and rainfall patterns in Mexico. Model simulations agree that the warming and the resulting freshening of the surface waters will significantly reduce deep water formation in the Labrador Sea during the next decades. A complete collapse of the Atlantic meridional overturning circulation (AMOC) would be associated with a strong cooling of several degrees in the North Atlantic region (Winton 2003). The future response of the AMOC, however, is predictable only within a broad range due to the existence of a critical threshold in the system and the large uncertainty about both the location of this threshold on the freshwater axis and the freshwater forcing (Zickfeld et al., 2007). According to Meehl et al. (2007), the probability of an abrupt slowdown or shutdown of the AMOC triggered by greenhouse gas forcing is low, but it is considered a high-impact event (Wood et al., 2003). An abrupt change in the AMOC could occur so unexpectedly and quickly that natural systems would have difficulty adapting to them (NRC, 2002). In this work we use coupled ocean-atmosphere models to asses the response of rainfall patterns in Mexico to an abrupt shutdown of the AMOC. First, a cooling pattern, triggered by a freshwater flux perturbation in the North Atlantic, is simulated by an isopycnic ocean model coupled to an atmospheric energy balance model. Then, this anomalous surface temperature pattern is used as a surface boundary condition for a numerical experiment performed using the simplified global atmospheric circulation model PUMA (Portable University Model of the Atmosphere; Fraedrich et al., 1998), which compute the perturbed rainfall patterns in Mexico.

  18. Abrupt climate change in West Antarctica and Greenland during the last deglacial warming

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Steig, E. J.; Brook, E.; Buizert, C.; Conway, H.; Ding, Q.; Markle, B. R.; McConnell, J. R.; Pedro, J. B.; Schoenemann, S. W.; Severinghaus, J. P.; Sigl, M.; Sowers, T. A.; Taylor, K.; Waddington, E. D.

    2013-12-01

    The WAIS Divide ice core is the first Southern Hemisphere record with precision similar to ice cores from Greenland. The annually resolved timescale and small gas-age ice-age difference allow the phasing of climate change in the two hemispheres to be compared with unprecedented precision. We focus on the three abrupt climate changes in Greenland during the deglacial transition and the corresponding changes at WAIS Divide. The onset of the Antarctic Cold Reversal (ACR) is clearly defined in the WAIS Divide record and lagged the Bolling-Allerod (BA) warming by 150×50 years. The phasing of the other two abrupt climate changes cannot be distinguished from synchronous with an uncertainty of ~200 years because the transitions from warming to cooling (or cooling to warming) are not distinct in the WAIS Divide record. The lead-lag relationships of no more than a couple centuries confirm the tight coupling between hemispheres during the deglaciation. The independent timescale of WAIS Divide confirms that meltwater Pulse 1a began near-coincident with the BA and ACR although the lack of direct synchronization between the annually dated ice-core imescales and the radiometrically dated coral timescale prevents the phasing from being known to better than a couple of centuries. A new observation from WAIS Divide is that accumulation increased ~40% between 12.0 and 11.6 ka, with the accumulation increase ending approximately coincident with the warming at the end of the Younger Dryas in Greenland. Other Antarctic ice cores lack timescales with sufficient resolution to identify such abrupt changes so it is unclear how much of Antarctica was affected by the increased accumulation rates. The inter-hemispheric relationships are often limited to a discussion of warming, but the WAIS Divide records suggests that the moisture transport may be another important constraint on the mechanisms that drive abrupt climate change.

  19. Transient Simulation of the Evolution and Abrupt Change of Northern Africa Atmosphere-Ocean-Terrestrial Ecosystem in the Holocene: What causes the abrupt change?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Wang, Y.; Gallimore, R.; Gasse, F.; Johnson, T.; Demenocal, P.; Adkins, J.; Notaro, M.; Prentice, C.; Kutzbach, J.; Jacob, R.; Behling, P.; Ong, E.; Wang, L.

    2006-12-01

    We present the first synchronously coupled transient simulation of the evolution of northern Africa climate- ecosystem for the last 6500 years in a global general circulation ocean-atmosphere-terrestrial ecosystem model. The model successfully simulated the major abrupt vegetation collapse in the southern Sahara at about 5ka, consistent with the proxy records. Local precipitation, however, shows a much more gradual decline with time. The vegetation change in northern Africa is clearly driven by local precipitation decline and strong precipitation variability. In contrast, the change of precipitation is dominated by internal climate variability and a gradual monsoonal climate response to orbital forcing. In addition, some minor vegetation changes are also simulated in different regions across northern Africa. The model simulated a reduced seasonal cycle of SST and a gradual annual mean surface cooling in the subtropical North Atlantic towards the latest Holocene. The SST response is caused largely by the insolation forcing, while the annual mean cooling is also reinforced by the increased coastal upwelling near the east boundary. The increased upwelling results from a southward retreat of the North Africa monsoon system, and, in turn, an increased northeasterly trade wind. The simulated changes of SST and upwelling are also largely consistent with recent marine proxy records, albeit with a weaker magnitude in the model. A further analysis of the mechanism of the abrupt vegetation collapse suggests that the abrupt vegetation collapse is caused by a strong decadal climate variability in a stable climate-ecosystem, rather than a positive vegetation-climate feedback on a multi-equilibrium system. We propose that strong climate variability can induce a dramatic vegetation collapse with a gradual reduction in precipitation during the mid-Holocene. Our study highlights climate variability as a critical forcing for the vegetation collapse in both models and the real world.

  20. Characterizing abrupt changes in the stock prices using a wavelet decomposition method

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2007-09-01

    Abrupt changes in the stock prices, either upwards or downwards, are usually preceded by an oscillatory behavior with frequencies that tend to increase as the moment of transition becomes closer. The wavelet decomposition methods may be useful for analysis of this oscillations with varying frequencies, because they provide simultaneous information on the frequency (scale) and localization in time (translation). However, in order to use the wavelet decomposition, certain requirements have to be satisfied, so that the linear and cyclic trends are eliminated by standard least squares techniques. The coefficients obtained by the wavelet decomposition can be represented in a graphical form. A threshold can then be established to characterize the likelihood of a short-time abrupt change in the stock prices. Actual data from the São Paulo Stock Exchange (Bolsa de Valores de São Paulo) were used in this work to illustrate the proposed method.

  1. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae).

    PubMed

    Jochum, Gera M; Mudge, Kenneth W; Thomas, Richard B

    2007-05-01

    The response of understory species to elevated temperatures is not well understood but is important because these plants are highly sensitive to their growth conditions. Three-year-old plants of Panax quinquefolius, an understory herb endemic to the eastern deciduous forests of North America, were grown in a greenhouse at 25/20°C (day/night) or 30/25°C for one growing season and analyzed each month. Plants grown at high temperatures had an early onset of leaf senescence and therefore accumulated less carbon. From May to July, P. quinquefolius grown at high temperatures had decreased photosynthesis (52%), stomatal conductance (60%), and root and total biomass (33% and 28%, respectively) compared to plants grown at low temperatures. As P. quinquefolius prepared to overwinter, plants grown at high temperatures had less root biomass (53%) than plants in low temperatures. The amount of storage-root ginsenosides was unaffected by temperature, and differences in storage root size may explain why plants grown at high temperatures had greater concentrations of storage root ginsenosides (49%) than plants grown at low temperatures. Panax quinquefolius is clearly sensitive to a 5°C increase in temperature, and therefore other understory species may be negatively impacted by future increases in global temperature.

  2. Declining pine growth in Central Spain coincides with increasing diurnal temperature range since the 1970s

    NASA Astrophysics Data System (ADS)

    Büntgen, Ulf; Martínez-Peña, Fernando; Aldea, Jorge; Rigling, Andreas; Fischer, Erich M.; Camarero, J. Julio; Hayes, Michael J.; Fatton, Vincent; Egli, Simon

    2013-08-01

    Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May-July diurnal temperature range (r = 0.84; p < 0.00011956-2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.

  3. Increased production of cellulase of Trichoderma sp. by pH cycling and temperature profiling

    SciTech Connect

    Mukhopadhyay, S.N.; Malik, R.K.

    1980-11-01

    Cultivation of Trichoderma reesei QM 9414 on 3% (w/v) cellulose medium (C/N ratio equal to 8.5) produced 4.5 IU/ml cellulase in 180 hr at a cell growth of 8.0 g/liter (0.266 g cell/g cellulose). It corresponded to an average cellulase productivity 25.0 IU/liter/hr (3.5 IU/g cell/hr. In the same medium 9.5 g/liter cell mass (0.316 g cell/g cellulose), 6.2 IU/ml cellulase, and 38.75 IU/liter/hr (4.0 IU/g cell/hr) cellulase productivity could be obtained using pH cycling condition during cultivation. Cell mass, cellulase yield, and productivity were further increased to 10.0 g/liter, 7.2 IU/ml and 44.0 IU/liter/hr (4.5 IU/g cell/hr), respectively, by simultaneous pH cycling and temperature profiling strategy. Results are described.

  4. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.

    PubMed

    Lockwood, C J; Paidas, M; Murk, W K; Kayisli, U A; Gopinath, A; Huang, S J; Krikun, G; Schatz, F

    2009-11-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Among the cell types at the maternal fetal interface at term, TF expression is highest in decidual cells indicating that this TF meets the hemostatic demands of labor and delivery. TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggesting that the maintenance of elevated circulating progesterone provides hemostatic protection and that abruption-generated thrombin acts in an autocrine/paracrine fashion on decidual cells to promote hemostasis via enhanced TF expression.

  5. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption

    PubMed Central

    Lockwood, C.J.; Paidas, M.; Murk, W.K.; Kayisli, U.A.; Gopinath, A.; Krikun, G.; Huang, S.J.; Schatz, F.

    2009-01-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Our recent observations that: 1) among the cell types at the maternal fetal interface at term TF expression is highest in decidual cells indicates that this TF meets the hemostatic demands of labor and delivery; 2) TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggest that maintenance of elevated circulating progesterone at term provides hemostatic protection, whereas abruption-generated thrombin can act in autocrine/paracrine fashion on DCs to promote hemostasis via enhanced TF expression. PMID:19720393

  6. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  7. Abrupt climate change and thermohaline circulation: mechanisms and predictability.

    PubMed

    Marotzke, J

    2000-02-15

    The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.

  8. Abrupt changes in the dynamics of quantum disentanglement

    SciTech Connect

    Lastra, F.; Romero, G.; Lopez, C. E.; Retamal, J. C.; Franca Santos, M.

    2007-06-15

    The evolution of the lower bound of entanglement proposed by Chen et al. [Phys. Rev. Lett. 95, 210501 (2005)] in high-dimensional bipartite systems under dissipation is studied. Discontinuities for the time derivative of this bound are found depending on the initial conditions for entangled states. These abrupt changes along the evolution of the entanglement bound appear as precursors of sudden death.

  9. Abrupt climate change and thermohaline circulation: mechanisms and predictability.

    PubMed

    Marotzke, J

    2000-02-15

    The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood. PMID:10677464

  10. Mechanisms of abrupt climate change of the last glacial period

    NASA Astrophysics Data System (ADS)

    Clement, Amy C.; Peterson, Larry C.

    2008-12-01

    More than a decade ago, ice core records from Greenland revealed that the last glacial period was characterized by abrupt climate changes that recurred on millennial time scales. Since their discovery, there has been a large effort to determine whether these climate events were a global phenomenon or were just confined to the North Atlantic region and also to reveal the mechanisms that were responsible for them. In this paper, we review the available paleoclimate observations of abrupt change during the last glacial period in order to place constraints on possible mechanisms. Three different mechanisms are then reviewed: ocean thermohaline circulation, sea ice feedbacks, and tropical processes. Each mechanism is tested for its ability to explain the key features of the observations, particularly with regard to the abruptness, millennial recurrence, and geographical extent of the observed changes. It is found that each of these mechanisms has explanatory strengths and weaknesses, and key areas in which progress could be made in improving the understanding of their long-term behavior, both from observational and modeling approaches, are suggested. Finally, it is proposed that a complete understanding of the mechanisms of abrupt change requires inclusion of processes at both low and high latitudes, as well as the potential for feedbacks between them. Some suggestions for experimental approaches to test for such feedbacks with coupled climate models are given.

  11. Response of atmospheric CO2 to the abrupt cooling event 8200 years ago

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Brook, E.; Buizert, C.

    2013-12-01

    The abrupt cooling event 8200 years ago (8.2 ka event) is the most prominent centennial scale climate event during the Holocene and was likely caused by a reduction in the Atlantic meridional overturning circulation (AMOC). Atmospheric CO2 records for this event may help us understand climate-carbon cycle feedbacks under interglacial conditions, which are important for understanding future climate, but existing ice core records do not provide enough detail and natural smoothing of the CO2 time series by diffusion and gradual bubble close-off in the firn layer (unconsolidated snow layer in the top of ice sheets) limits their resolution. Studies of leaf stomata records suggest a CO2 decrease of up to ~25 ppm during the 8.2 ka event, but relatively large uncertainties in reconstructed CO2 levels from leaves and dating make firm conclusions difficult. Here we present a new CO2 record from the Siple Dome ice core, Antarctica, that covers 7.4-9.0 ka with 8- to 16-year resolution. The relatively high snow accumulation rate at Siple Dome results minimizes smoothing relative to other records and the timing of the 8.2 ka event is precisely constrained by a CH4 record from the same core. We observe a small, ~2 ppm, increase of atmospheric CO2 during the 8.2 ka event. The increase is not remarkable when compared to other centennial variations in the Holocene that are not linked to large temperature changes. Our results imply that the sensitivity of atmospheric CO2 to the primarily northern hemisphere cooling of the 8.2 ka event was limited.

  12. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  13. From Abrupt Change to the Future (Hans Oeschger Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Stocker, T.

    2009-04-01

    The award of the Oeschger Medal 2009 is a particular honor and pleasure for me as I was given the chance to take over from Hans Oeschger the lead of a wonderful Institute at the University of Bern in 1993. Very apprehensive first, in front of the huge expectations and challenges, I quickly found dear colleagues, close collaborators and extremely supportive staff who all dedicated their time and creativity to work for the common goal of better understanding the Earth System, its variations in the past and its sensitivity to perturbations that man is inflicting on it today. Although met with innate skepticism first by the experimental physicists, our efforts in modelling, particularly the approach of using climate models of reduced complexity, quickly paid off and provided added value to the hard won data and measurements from polar ice cores. It is clear that modelling in such a diverse environment is so much more stimulating and enriching than working on a sophisticated parameterisation in a big modelling centre. Simple models have suggested that the Earth System may have limited stability and that rather fundamental changes could be triggered by the increase of greenhouse gases. However, it is the unique results from polar ice cores, particularly from Greenland that showed that, indeed, the Earth System has limited stability and can react in extremely abrupt ways to changes in forcing. Likewise, the Antarctic ice cores have provided one of the corner stones of our knowledge about climate change: Concentrations of CO2 are today 29% higher than ever during the last 800,000 years. These two fundamental insights from the paleoclimatic archive call for accelerated research into the sensitivity of the climate system and its components to perturbations, as well as the investigation of feedback mechanisms in the biogeochemical cycles that are disturbed by the input of CO2 into the atmosphere by burning fossil fuels and land use change. Our research has only scratched the

  14. Can Personal Exposures to Higher Nighttime and Early Morning Temperatures Increase Blood Pressure?

    EPA Science Inventory

    Environmental temperatures are inversely related to BP; however, the effects of short-term temperature changes within a 24-hour period and measured with high accuracy at the personal level have not been described. Fifty-one nonsmoking patients living in the Detroit area had up to...

  15. In utero heat stress increases postnatal core body temperature in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well-understood. Objectives were to characterize future temperature indices and bioenergetic markers in pigs originating from differing in utero...

  16. Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation.

    PubMed

    Postmus, Jarne; Canelas, André B; Bouwman, Jildau; Bakker, Barbara M; van Gulik, Walter; de Mattos, M Joost Teixeira; Brul, Stanley; Smits, Gertien J

    2008-08-29

    A major challenge in systems biology lies in the integration of processes occurring at different levels, such as transcription, translation, and metabolism, to understand the functioning of a living cell in its environment. We studied the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae and investigated the regulatory mechanisms underlying this increase. We used glucose-limited chemostat cultures to separate regulatory effects of temperature from effects on growth rate. Growth at increased temperature (38 degrees C versus 30 degrees C) resulted in a strongly increased glycolytic flux, accompanied by a switch from respiration to a partially fermentative metabolism. We observed an increased flux through all enzymes, ranging from 5- to 10-fold. We quantified the contributions of direct temperature effects on enzyme activities, the gene expression cascade and shifts in the metabolic network, to the increased flux through each enzyme. To do this we adapted flux regulation analysis. We show that the direct effect of temperature on enzyme kinetics can be included as a separate term. Together with hierarchical regulation and metabolic regulation, this term explains the total flux change between two steady states. Surprisingly, the effect of the cultivation temperature on enzyme catalytic capacity, both directly through the Arrhenius effect and indirectly through adapted gene expression, is only a moderate contribution to the increased glycolytic flux for most enzymes. The changes in flux are therefore largely caused by changes in the interaction of the enzymes with substrates, products, and effectors.

  17. ON THE PROBABLE EXISTENCE OF AN ABRUPT MAGNETIZATION IN THE UPPER CHROMOSPHERE OF THE QUIET SUN

    SciTech Connect

    Stepan, JirI; Trujillo Bueno, Javier E-mail: jtb@iac.es

    2010-03-10

    We report on a detailed radiative transfer modeling of the observed scattering polarization in the H{alpha} line, which allows us to infer quantitative information on the magnetization of the quiet solar chromosphere. Our analysis suggests the presence of a magnetic complexity zone with a mean field strength (B) > 30 G lying just below the sudden transition region to the coronal temperatures. The chromospheric plasma directly underneath is very weakly magnetized, with (B) {approx} 1 G. The possible existence of this abrupt change in the degree of magnetization of the upper chromosphere of the quiet Sun might have large significance for our understanding of chromospheric (and, therefore, coronal) heating.

  18. Increase in Ty1 cDNA Recombination in Yeast sir4 Mutant Strains at High Temperature

    PubMed Central

    Radford, Sarah J.; Boyle, Meredith L.; Sheely, Catherine J.; Graham, Joel; Haeusser, Daniel P.; Zimmerman, Leigh; Keeney, Jill B.

    2004-01-01

    Transposition of the Ty1 element of the yeast Saccharomyces cerevisiae is temperature sensitive. We have identified a null allele of the silent information regulator gene SIR4 as a host mutant that allows for transposition at high temperature. We show that the apparent increase in transposition activity in sir4 mutant strains at high temperature is dependent on the RAD52 gene and is thus likely resulting from an increase in Ty1 cDNA recombination, rather than in IN-mediated integration. General cellular recombination is not increased at high temperature, suggesting that the increase in recombination at high temperature in sir4 mutants is specific for Ty1 cDNA. Additionally, this high-temperature Ty1 recombination was found to be dependent on functional Sir2p and Sir3p. We speculate that the increase in recombination seen in sir4 mutants at high temperature may be due to changes in chromatin structure or Ty1 interactions with chromosomal structures resulting in higher recombination rates. PMID:15454529

  19. No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature

    NASA Astrophysics Data System (ADS)

    Sweeney, Colm; Dlugokencky, Edward; Miller, Charles E.; Wofsy, Steven; Karion, Anna; Dinardo, Steve; Chang, Rachel Y.-W.; Miller, John B.; Bruhwiler, Lori; Crotwell, Andrew M.; Newberger, Tim; McKain, Kathryn; Stone, Robert S.; Wolter, Sonja E.; Lang, Patricia E.; Tans, Pieter

    2016-06-01

    Continuous measurements of atmospheric methane (CH4) mole fractions measured by NOAA's Global Greenhouse Gas Reference Network in Barrow, AK (BRW), show strong enhancements above background values when winds come from the land sector from July to December from 1986 to 2015, indicating that emissions from arctic tundra continue through autumn and into early winter. Twenty-nine years of measurements show little change in seasonal mean land sector CH4 enhancements, despite an increase in annual mean temperatures of 1.2 ± 0.8°C/decade (2σ). The record does reveal small increases in CH4 enhancements in November and December after 2010 due to increased late-season emissions. The lack of significant long-term trends suggests that more complex biogeochemical processes are counteracting the observed short-term (monthly) temperature sensitivity of 5.0 ± 3.6 ppb CH4/°C. Our results suggest that even the observed short-term temperature sensitivity from the Arctic will have little impact on the global atmospheric CH4 budget in the long term if future trajectories evolve with the same temperature sensitivity.

  20. Placental abruption and perinatal mortality with preterm delivery as a mediator: disentangling direct and indirect effects.

    PubMed

    Ananth, Cande V; VanderWeele, Tyler J

    2011-07-01

    The authors use recent methodology in causal inference to disentangle the direct and indirect effects that operate through a mediator in an exposure-response association paradigm. They demonstrate how total effects can be partitioned into direct and indirect effects even when the exposure and mediator interact. The impact of bias due to unmeasured confounding on the exposure-response association is assessed through a series of sensitivity analyses. These methods are applied to a problem in perinatal epidemiology to examine the extent to which the effect of abruption on perinatal mortality is mediated through preterm delivery. Data on over 26 million US singleton births (1995-2002) were utilized. Risks of mortality among abruption and nonabruption births were 102.7 and 6.2 per 1,000 births, respectively. Risk ratios of the natural direct and indirect (preterm delivery-mediated) effects of abruption on mortality were 10.18 (95% confidence interval: 9.80, 10.58) and 1.35 (95% confidence interval: 1.33, 1.38), respectively. The proportion of increased mortality risk mediated through preterm delivery was 28.1%, with even higher proportions associated with deliveries at earlier gestational ages. Sensitivity analyses underscore that the qualitative conclusions of some mediated effects and substantial direct effects are reasonably robust to unmeasured confounding of a fairly considerable magnitude.

  1. Metabolic Scope and Interspecific Competition in Sculpins of Greenland Are Influenced by Increased Temperatures Due to Climate Change

    PubMed Central

    Seth, Henrik; Gräns, Albin; Sandblom, Erik; Olsson, Catharina; Wiklander, Kerstin; Johnsson, Jörgen I.; Axelsson, Michael

    2013-01-01

    Ongoing climate change has led to an increase in sea surface temperatures of 2–4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.e. the physiological capacity to undertake aerobically challenging activities. Any temperature increase may thus disrupt species-specific temperature adaptations, at both the molecular level as well as in behavior, and concomitant species differences in the temperature sensitivity may shift the competitive balance among coexisting species. We investigated the influence of temperature on metabolic scope and competitive ability in three species of marine sculpin that coexist in Greenland coastal waters. Since these species have different distribution ranges, we hypothesized that there should be a difference in their physiological response to temperature; hence we compared their metabolic scope at three temperatures (4, 9 and 14°C). Their competitive ability at the ambient temperature of 9°C was also tested in an attempt to link physiological capacity with behaviour. The Arctic staghorn sculpin, the species with the northernmost distribution range, had a lower metabolic scope in the higher temperature range compared to the other two species, which had similar metabolic scope at the three temperatures. The Arctic staghorn sculpin also had reduced competitive ability at 9°C and may thus already be negatively affected by the current ocean warming. Our results suggest that climate change can have effects on fish physiology and interspecific competition, which may alter the species composition of the Arctic fish fauna. PMID:23690960

  2. Metabolic scope and interspecific competition in sculpins of Greenland are influenced by increased temperatures due to climate change.

    PubMed

    Seth, Henrik; Gräns, Albin; Sandblom, Erik; Olsson, Catharina; Wiklander, Kerstin; Johnsson, Jörgen I; Axelsson, Michael

    2013-01-01

    Ongoing climate change has led to an increase in sea surface temperatures of 2-4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.e. the physiological capacity to undertake aerobically challenging activities. Any temperature increase may thus disrupt species-specific temperature adaptations, at both the molecular level as well as in behavior, and concomitant species differences in the temperature sensitivity may shift the competitive balance among coexisting species. We investigated the influence of temperature on metabolic scope and competitive ability in three species of marine sculpin that coexist in Greenland coastal waters. Since these species have different distribution ranges, we hypothesized that there should be a difference in their physiological response to temperature; hence we compared their metabolic scope at three temperatures (4, 9 and 14°C). Their competitive ability at the ambient temperature of 9°C was also tested in an attempt to link physiological capacity with behaviour. The Arctic staghorn sculpin, the species with the northernmost distribution range, had a lower metabolic scope in the higher temperature range compared to the other two species, which had similar metabolic scope at the three temperatures. The Arctic staghorn sculpin also had reduced competitive ability at 9°C and may thus already be negatively affected by the current ocean warming. Our results suggest that climate change can have effects on fish physiology and interspecific competition, which may alter the species composition of the Arctic fish fauna.

  3. Arctic Ocean freshwater as a trigger for abrupt climate change

    NASA Astrophysics Data System (ADS)

    Bradley, Raymond; Condron, Alan; Coletti, Anthony

    2016-04-01

    The cause of the Younger Dryas cooling remains unresolved despite decades of debate. Current arguments focus on either freshwater from Glacial Lake Agassiz drainage through the St Lawrence or the MacKenzie river systems. High resolution ocean modeling suggests that freshwater delivered to the North Atlantic from the Arctic Ocean through Fram Strait would have had more of an impact on Atlantic Meridional Overturning Circulation (AMOC) than freshwater from the St Lawrence. This has been interpreted as an argument for a MacKenzie River /Lake Agassiz freshwater source. However, it is important to note that although the modeling identifies Fram Strait as the optimum location for delivery of freshwater to disrupt the AMOC, this does not mean the freshwater source came from Lake Agassiz. Another potential source of freshwater is the Arctic Ocean ice cover itself. During the LGM, ice cover was extremely thick - many tens of meters in the Canada Basin (at least), resulting in a hiatus in sediment deposition there. Extreme ice thickness was related to a stagnant circulation, very low temperatures and continuous accumulation of snow on top of a base of sea-ice. This resulted in a large accumulation of freshwater in the Arctic Basin. As sea-level rose and a more modern circulation regime became established in the Arctic, this freshwater was released from the Arctic Ocean through Fram Strait, leading to extensive sea-ice formation in the North Atlantic (Greenland Sea) and a major reduction in the AMOC. Here we present new model results and a review of the paleoceanographic evidence to support this hypothesis. The bottom line is that the Arctic Ocean was likely a major player in causing abrupt climate change in the past, via its influence on the AMOC. Although we focus here on the Younger Dryas, the Arctic Ocean has been repeatedly isolated from the world ocean during glacial periods of the past. When these periods of isolation ended, it is probable that there were significant

  4. Abrupt Climate Change Caused by Global Fires from a Large Meteor Impact

    NASA Astrophysics Data System (ADS)

    Bardeen, C.; Toon, O. B.; Garcia, R. R.; Otto-Bliesner, B. L.; Wolf, E. T.

    2015-12-01

    Global or near-global fires like those that are thought to have occurred after the Chicxulub asteroid impact are associated with abrupt climate change and the K-Pg mass extinction event. Using the Community Earth System Model (CESM), a three-dimensional coupled climate model with interactive chemistry, we have simulated the climate response to global fires assuming a burden of 70,000 Tg, as estimated from the K-Pg layer sediments by Wolbach et al. (1988). Soot aerosols are lofted by solar heating and remain in the atmosphere for about 6 years, warming the stratosphere by more than 240 K and suppressing completely solar radiation at the surface for 2 years. Global average land surface temperatures cool by -28 K after 3 years and ocean temperatures by -11 K after 4 years. Precipitation is reduced by 80 % for 5 years, and the ozone column is reduced by 80 % for 4 years. The tropical tropopause cold point disappears for a few years, leading to water vapor mixing ratios of > 1000 ppmv in the stratosphere. There is a rapid recovery around year 6, when the soot is removed by wet deposition as stratospheric water condenses and precipitates, but this is followed by a peak in the UV Index in the tropics of over 40 before stratospheric ozone recovers. Ocean temperature cools by more than -2 K to a depth of 300 m, and sea ice develops in the Black Sea, Caspian Sea, and Baltic Sea. Global fires, two years of darkness, extreme surface cooling, significant ocean cooling, increases in sea ice extent and a large short-term increase in UV Index would have been catastrophic for many life forms. This work is the first step in an effort to simulate the climatic effects of all of the aerosols and gases that may have been generated by the Chicxulub impact in a model that has been configured for late-Cretaceous conditions to help assess the role of the Chicxulub impact in the K-Pg extinction.

  5. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests

    PubMed Central

    Connell, Sean D.; Russell, Bayden D.

    2010-01-01

    Predictions about the ecological consequences of oceanic uptake of CO2 have been preoccupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks the direct effects of CO2 on non-calcareous taxa, particularly those that play critical roles in ecosystem shifts. We used two experiments to investigate whether increased CO2 could exacerbate kelp loss by facilitating non-calcareous algae that, we hypothesized, (i) inhibit the recovery of kelp forests on an urbanized coast, and (ii) form more extensive covers and greater biomass under moderate future CO2 and associated temperature increases. Our experimental removal of turfs from a phase-shifted system (i.e. kelp- to turf-dominated) revealed that the number of kelp recruits increased, thereby indicating that turfs can inhibit kelp recruitment. Future CO2 and temperature interacted synergistically to have a positive effect on the abundance of algal turfs, whereby they had twice the biomass and occupied over four times more available space than under current conditions. We suggest that the current preoccupation with the negative effects of ocean acidification on marine calcifiers overlooks potentially profound effects of increasing CO2 and temperature on non-calcifying organisms. PMID:20053651

  6. Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.; Bayukov, O. A.; Vorotynov, A. M.; Volochaev, M. N.; Dubrovskiy, A. A.

    2016-09-01

    The results of the investigation into the effect of low-temperature annealing of a powder of nanoparticles of bacterial ferrihydrite on its magnetic properties have been presented. It has been found that an increase in the time (up to 240 h) and temperature (in the range from 150 to 200°C) of annealing leads to a monotonic increase in the superparamagnetic blocking temperature, the coercive force, and the threshold field of the opening of the magnetic hysteresis loop (at liquid-helium temperatures), as well as to an increase in the magnetic resonance line width at low temperatures and in the magnetic susceptibility at room temperature. At the same time, according to the results of the analysis of the Mössbauer spectra, the annealing of ferrihydrite does not lead to the formation of new iron oxide phases. Most of these features are well consistent with the fact that the low-temperature annealing of ferrihydrite causes an increase in the size of nanoparticles, which is confirmed by the results of transmission electron microscopy studies.

  7. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    PubMed

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects.

  8. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, J.D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  9. Iceberg discharges and oceanic circulation changes during glacial abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Alvarez-Solas, Jorge; Robinson, Alexander; Banderas, Rubén; Montoya, Marisa

    2015-04-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted debris in the North Atlantic Ocean during the last glacial period. These are interpreted as massive iceberg discharges mainly from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence points to an active role of the oceanic circulation. Here we will present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model. Two mechanisms producing iceberg discharges are compared. First, we reproduce the classic binge-purge by which the iceberg surges are produced thanks to the existence of an internal thermo-mechanical feedback that allows the ice sheet to behave under an oscillatory regime. Second, our ice-sheet model is forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. In this case, the model generates a time series of iceberg calving that agrees with ice-rafted debris records over the past 80 ka. We compare the two theories and discuss their advantages and weaknesses in terms of both the robustness of the physics on which they are based and their comparison with proxies. This comparison highlights the importance of considering past oceanic circulation changes in order to understand the ice-sheet dynamics. However, the ultimate processes determining abrupt changes in the Atlantic Meridional Overturning Circulation (AMOC) remain elusive. Therefore we will also analyze several proposed mechanisms that aims to explain such AMOC reorganizations, focusing on those that do not require freshwater flux forcing.

  10. An abrupt and prominent climatic reversal at 9.2 ka in the northeastern North America

    NASA Astrophysics Data System (ADS)

    Hou, J.; Huang, Y.; Shuman, B. N.; Oswald, W.; Foster, D. R.

    2008-12-01

    Continental climate during the early Holocene (from 10 to 7 ka) is characterized by multiple abrupt climatic reversals such as the well-known 8.2 ka event that has been observed worldwide and attributed to the terminal collapse of the Laurentide Ice Sheet (LIS) in the North American continent. However, many episodes of meltwater releases occurred prior to the final collapse of LIS, their impact on the continental climate is much less understood. We present in this paper decadal-scale hydrogen isotopic records of aquatic and terrestrial plant biomarkers from Blood Pond, Massachusetts during the early Holocene. Our isotopic records infer a cooling of 3~4 degree between 9.3 and 9.1 ka against the millennial scale climate background, mainly induced by changes in precipitation seasonality. In comparison, the 8.2 ka event displays smaller amplitude of temperature cooling of 1~2 degree at our southern New England site. We interpret our observed climatic reversal at ~ 9.2 ka as representing increased proportion of winter precipitation in conjunction with a drier and cooler summer, triggered by slowdown in thermohaline circulation as a result of freshwater release from the proglacial lakes. We attribute the difference in climate response at 8.2 ka and 9.2 ka events to the configuration of LIS, with 9.2 ka LIS having a much stronger blocking effect on the moisture from the Gulf of Mexico during the summer. Our data suggest that the seasonality of the precipitation at the southern New England was highly sensitive to meltwater releases, especially prior to the final collapse of the LIS.

  11. DOES CRITICAL MASS DECREASE AS TEMPERATURE INCREASES: A REVIEW OF FIVE BENCHMARK EXPERIMENTS THAT SPAN A RANGE OF ELEVATED TEMPERATURES AND CRITICAL CONFIGURATIONS

    SciTech Connect

    Yates, K.

    2009-06-10

    conditions examined, modeling of the systems at room temperature is conservative as compared to modeling the systems at elevated temperatures, it is possible to design a system in which the critical mass at room temperature is non-conservative compared to a system at elevated temperatures. As the temperature of the systems evaluated in this review was increased, the system's overall {alpha}{sub T} was negative at elevated temperatures. Furthermore, the review demonstrates that to accurate asses the effect of increased temperature on a system's k{sub eff}, changes in fissile, moderator, cladding, and, in some cases, structural material cross sections must be combined with other factors that influence reactivity, such as volumetric thermal expansion of fissile, moderating, reflector, and other interacting media. Altering the microscopic cross sections of fissile and moderating regions for temperature changes, without adjusting the corresponding densities at elevated temperatures can lead to an incorrect assessment of the impact of elevated temperature on a fissile system.

  12. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    PubMed Central

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-01-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage. PMID:22029369

  13. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-10-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage.

  14. Intramammary infections and milk leakage following gradual or abrupt cessation of milking.

    PubMed

    Gott, P N; Rajala-Schultz, P J; Schuenemann, G M; Proudfoot, K L; Hogan, J S

    2016-05-01

    The objective of this study was to evaluate the effect of milking cessation method (abrupt or gradual) and daily milk yield before dry-off on milk leakage following dry-off and intramammary infections (IMI) at calving. Data from 1,086 quarters of 285 cows from 5 Ohio dairy herds were analyzed. All cows that were due to be dried off within a week were assigned to the same study group to facilitate management. Abrupt-cessation cows kept the farm's regular milking schedule through dry-off, and gradual-cessation cows were milked once daily for the final week of lactation. Aseptic technique was used to collect quarter foremilk samples at the time of enrollment (7 to 14 d before expected dry-off), the final milking before dry-off (D-O), and within 7 d of calving. Cows in the gradual-cessation group were observed for milk leakage during the period of once-daily milking. In the only herd that did not use internal teat sealants at dry-off, milk leakage after dry-off was recorded in both abrupt and gradual groups. Gradual cessation decreased milk production by 33.4% during the final week of lactation, causing milk yield at D-O to be lower for these cows compared with abrupt-cessation cows (13.2 vs. 19.8kg/d, respectively). Logistic regression models were used to model the probability of a quarter being infected at calving with any pathogen, accounting for clustering of quarters within cows and cows within herds. The final model investigating the probability of IMI at calving was stratified by parity of cows at the time of dry-off (primiparous and multiparous). Among quarters of cows that ended their first lactation, abrupt cessation of milking before dry-off and milk leakage after dry-off were associated with an increased risk of IMI at calving. Among quarters of multiparous cows, on the other hand, gradual cessation of milking before dry-off, presence of IMI at D-O, and thrice-daily milking during lactation increased the odds of IMI at calving. These results indicate that

  15. Time series modelling of increased soil temperature anomalies during long period

    NASA Astrophysics Data System (ADS)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  16. Zirconium-in-Rutile thermometry: increasing resolution of temperatures in the Dulan ultrahigh-pressure region, northwest China

    NASA Astrophysics Data System (ADS)

    Regel, M. E.; Mattinson, C. G.

    2012-12-01

    The North Qaidam ultrahigh-pressure (UHP) terrane in northwestern China contains the approximately 140 km2 Dulan UHP region, with UHP eclogites outcropping in the east and high-pressure (HP) granulites outcropping in the west. Zirconium (Zr)-in-Rutile (Rt) thermometry of six representative samples (five eclogites and one granulite) was completed to determine the spatial variation of temperatures within the east-west oriented Dulan UHP belt. Previous Fe2+-Mg exchange thermometry from the Dulan UHP and HP rocks provides a temperature range of 620 - 930 °C, however; the large range of temperatures and large uncertainty prevented a detailed understanding of P-T histories and exhumation paths. Peak eclogite pressures have been estimated at 26-32 kbars, and granulite pressures at ~14 kbars. 20 - 40 electron microprobe spots from both matrix and inclusion Rt crystals were selected from polished thin sections. Fe content increases weakly with temperature, while Si decreases weakly with increasing temperature. Cr and Nb do not show consistent temperature trends. Inclusion rutiles in two samples record temperatures ~40-50 °C lower than matrix rutiles of the same samples. This preservation of prograde metamorphic conditions suggests that the temperatures increased during development of the peak eclogite assemblage. Inclusion rutile temperatures in four samples match the matrix rutile, suggesting recrystallization of the eclogites during peak metamorphic conditions. The granulite shows two temperature populations: 1) ~800 °C, and 2) ~750 - 800 °C. The lower temperature rutiles are located near a retrogressed fracture filled with secondary minerals. From the east to the west, the eclogites show peak temperatures of 670 °C, 662 °C, 691 °C, and 711 °C, respectively, while the granulite sample has an average peak temperature of ~800 °C. The UHP eclogites preserve a small temperature gradient, but the temperature discontinuity between the UHP eclogites in the east and the

  17. A ``triple sea-ice state'' mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Sayag, Roiy; Tziperman, Eli

    2004-09-01

    Abrupt, switch-like, changes in sea ice cover are proposed as a mechanism for the large-amplitude abrupt warming that seemed to have occurred after each Heinrich event. Sea ice changes are also used to explain the colder-than-ambient glacial conditions around the time of the glacier discharge. The abrupt warming events occur in this mechanism, owing to rapid sea ice melting which warmed the atmosphere via the strong sea ice albedo and insulating feedbacks. Such abrupt sea ice changes can also account for the warming observed during Dansgaard-Oeschger events. The sea ice changes are caused by a weak (order of 5 Sv) response of the thermohaline circulation (THC) to glacier discharges. The main point of this work is therefore that sea ice may be thought of as a very effective amplifier of a weak THC variability, explaining the abrupt temperature changes over Greenland. Synchronous ice sheet collapses from different ice sheets around the North Atlantic, indicated by some proxy records, are shown to be possible via the weak coupling between the different ice sheets by the atmospheric temperature changes caused by the sea ice changes. This weak coupling can lead to a "nonlinear phase locking" of the different ice sheets which therefore discharge synchronously. It is shown that the phase locking may also lead to "precursor" glacier discharge events from smaller ice sheets before the Laurentide Ice Sheet discharges. The precursor events in this mechanism are the result rather than the cause of the major glacier discharges from the Laurentide Ice Sheet.

  18. Abruptly autofocusing terahertz waves with meta-hologram.

    PubMed

    He, Jingwen; Wang, Sen; Xie, Zhenwei; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-06-15

    An abruptly autofocusing ring-Airy beam is demonstrated in the terahertz (THz) waveband with a meta-hologram. The designed meta-hologram is composed of gold C-shaped slot antennas, which can realize both phase and amplitude modulation of the incident THz wave. A THz holographic imaging system is utilized to measure the generated ring-Airy beam; an abrupt focus following a parabolic trajectory is subsequently observed. THz ring-Airy beams with different parameters are also generated and investigated. This method can be expanded to other wavebands, such as the visible band, for which the meta-hologram can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders.

  19. Abruptly autofocusing terahertz waves with meta-hologram.

    PubMed

    He, Jingwen; Wang, Sen; Xie, Zhenwei; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-06-15

    An abruptly autofocusing ring-Airy beam is demonstrated in the terahertz (THz) waveband with a meta-hologram. The designed meta-hologram is composed of gold C-shaped slot antennas, which can realize both phase and amplitude modulation of the incident THz wave. A THz holographic imaging system is utilized to measure the generated ring-Airy beam; an abrupt focus following a parabolic trajectory is subsequently observed. THz ring-Airy beams with different parameters are also generated and investigated. This method can be expanded to other wavebands, such as the visible band, for which the meta-hologram can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders. PMID:27304289

  20. Recommended Experimental Procedures for Evaluation of Abrupt Wing Stall Characteristics

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Hall, R. M.; Owens, D. B.; Lamar, J. E.; McMillin, S. N.

    2003-01-01

    This paper presents a review of the experimental program under the Abrupt Wing Stall (AWS) Program. Candidate figures of merit from conventional static tunnel tests are summarized and correlated with data obtained in unique free-to-roll tests. Where possible, free-to-roll results are also correlated with flight data. Based on extensive studies of static experimental figures of merit in the Abrupt Wing Stall Program for four different aircraft configurations, no one specific figure of merit consistently flagged a warning of potential lateral activity when actual activity was seen to occur in the free-to-roll experiments. However, these studies pointed out the importance of measuring and recording the root mean square signals of the force balance.

  1. [Traumatic abruption of the placenta with disseminated intravascular coagulation].

    PubMed

    Benz, R; Malär, A-U; Benz-Wörner, J; Scherer, M; Hodel, M; Gähler, A; Haberthür, C; Konrad, C

    2012-10-01

    Trauma in pregnancy is infrequent and a systematic primary strategy constitutes a real challenge for the interdisciplinary team. With a high fetal mortality rate and a substantial maternal mortality rate traumatic placental abruption is a severe emergency which every anesthetist should be aware of. After hemodynamic stabilization of the mother and control of the viability of the fetus the therapy of traumatic placental abruption consists mostly of an immediate caesarean section. Coagulopathy by depletion of coagulation factors as well as disseminated intravascular coagulation (DIC) have to be expected and consequently a massive blood loss must be anticipated. Thrombelastography provides assistance for fast differential diagnosis and goal-directed treatment of the disturbed sections of the coagulation cascade.

  2. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  3. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  4. Variation among genotypes in responses to increasing temperature in a marine parasite: evolutionary potential in the face of global warming?

    PubMed

    Berkhout, Boris W; Lloyd, Melanie M; Poulin, Robert; Studer, Anja

    2014-11-01

    Climates are changing worldwide, and populations are under selection to adapt to these changes. Changing temperature, in particular, can directly impact ectotherms and their parasites, with potential consequences for whole ecosystems. The potential of parasite populations to adapt to climate change largely depends on the amount of genetic variation they possess in their responses to environmental fluctuations. This study is, to our knowledge, the first to look at differences among parasite genotypes in response to temperature, with the goal of quantifying the extent of variation among conspecifics in their responses to increasing temperature. Snails infected with single genotypes of the trematode Maritrema novaezealandensis were sequentially acclimatised to two different temperatures, 'current' (15°C) and 'elevated' (20°C), over long periods. These temperatures are based on current average field conditions in the natural habitat and those predicted to occur during the next few decades. The output and activity of cercariae (free-swimming infective stages emerging from snails) were assessed for each genotype at each temperature. The results indicate that, on average, both cercarial output and activity are higher at the elevated acclimation temperature. More importantly, the output and activity of cercariae are strongly influenced by a genotype-by-temperature interaction, such that different genotypes show different responses to increasing temperature. Both the magnitude and direction (increase or decrease) of responses to temperature varied widely among genotypes. Therefore, there is much potential for natural selection to act on this variation, and predicting how the trematode M. novaezealandensis will respond to the climate changes predicted for the next century will prove challenging.

  5. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature

    SciTech Connect

    Ziska, L.H.; Namuco, O.; Moya, T.; Quilang, J.

    1997-01-01

    Although the response of rice (Oryza sativa L.) to increasing atmospheric CO{sub 2} concentration and air temperature has been examined at the greenhouse or growth chamber level, no field studies have been conducted under the tropical, irrigated conditions where the bulk of the world`s rice is grown. At the International Rice Research Institute, rice (cv. IR 72) was grown from germination until maturity for the 1994 wet and 1995 dry seasons at three different CO{sub 2} concentrations (ambient, ambient + 200, and ambient + 300 {mu}L L{sup {minus}1}) resulted in a significant increase in total plant biomass (+31%, +40%) and crop yield (+15%, + 27%) compared with the ambient control. The increase in crop yield was associated with an increase in the number of panicles per square meter and a greater percentage of filled spikelets. Simultaneous increases in CO{sub 2} and air temperature did not alter the biomass at maturity (relative to elevated CO{sub 2} alone), but plant development was accelerated at the higher growth temperature regardless of CO{sub 2} concentration. Grain yield, however, became insensitive to CO{sub 2} concentration at the higher growth temperature. Increasing both CO{sub 2} and air temperature also reduced grain quality (e.g., protein content). The combination of CO{sub 2} and temperature effects suggests that, in warmer regions (i.e., >34{degrees}C) where rice is grown, quantitative and qualitative changes in rice supply are possible if both CO{sub 2} and air temperature continue to increase. 24 refs., 6 figs., 4 tabs.

  6. Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age.

    PubMed

    Hendy, Erica J; Gagan, Michael K; Alibert, Chantal A; McCulloch, Malcolm T; Lough, Janice M; Isdale, Peter J

    2002-02-22

    A 420-year history of strontium/calcium, uranium/calcium, and oxygen isotope ratios in eight coral cores from the Great Barrier Reef, Australia, indicates that sea surface temperature and salinity were higher in the 18th century than in the 20th century. An abrupt freshening after 1870 occurred simultaneously throughout the southwestern Pacific, coinciding with cooling tropical temperatures. Higher salinities between 1565 and 1870 are best explained by a combination of advection and wind-induced evaporation resulting from a strong latitudinal temperature gradient and intensified circulation. The global Little Ice Age glacial expansion may have been driven, in part, by greater poleward transport of water vapor from the tropical Pacific.

  7. Exercise-induced increase in core temperature does not disrupt a behavioral measure of sleep.

    PubMed

    O'Connor, P J; Breus, M J; Youngstedt, S D

    1998-06-01

    On separate nights 90 to 30 min before typical bedtime, eight physically active men completed three conditions: seated rest, low-intensity and moderate-intensity cycle exercise. Low-and moderate-intensity exercise had no significant effect on sleep onset latency, the number of awakenings, total sleep time or sleep efficiency as measured by the Sleep Assessment Device. Mean core body temperature was higher during sleep after moderate intensity (36.80+/-0.02 degrees C) exercise compared to both the low-intensity exercise (36.67+/-0.02 degrees C) and rest (36.51+/-0.02 degrees C) conditions. It is concluded that a 1-h bout of moderate-intensity exercise performed shortly before bed elevates core body temperature before and during sleep; however, this elevated temperature does not disrupt behavioral measures of sleep obtained in the home environment in physically active male college students who were somewhat sleep deprived. PMID:9748085

  8. A randomized, controlled trial of NRT-aided gradual vs. abrupt cessation in smokers actively trying to quit.

    PubMed

    Hughes, John R; Solomon, Laura J; Livingston, Amy E; Callas, Peter W; Peters, Erica N

    2010-09-01

    Most smoking cessation programs advise abrupt rather than gradual cessation. We conducted a randomized, controlled trial of gradual cessation (n=297) vs. abrupt cessation (n=299) vs. minimal treatment (n=150) among smokers who wanted to quit now and preferred to quit gradually. Participants were recruited via newspaper and radio advertisements. The gradual and abrupt conditions received five phone calls (total=90 min) and the minimal treatment condition received two calls (25 min total). The gradual condition received nicotine lozenge (via mail) to reduce smoking prior to their quit date. After the quit day, all participants received lozenge. The primary outcome was prolonged abstinence from 2 weeks post-quit day through 6 months. Prior to the quit day, the gradual condition decreased cigarettes/day by 54%, whereas the other two conditions decreased by 1% and 5%. Prolonged abstinence rates (CO<10 ppm) did not differ among gradual, abrupt and minimal treatment conditions (4%, 7% and 5%), nor did 7-day point prevalence rates (7%, 11% and 11%). Fewer smokers in the gradual condition (48%) made a quit attempt than in the abrupt (64%) or minimal (60%) conditions (p<.001). In the gradual condition, every week delay to the quit date increased the probability of lapsing by 19% (p<.001). We conclude that among smokers who want to stop gradually in the near future, gradual cessation with nicotine pre-treatment does not produce higher quit rates than abrupt cessation. One liability of gradual reduction may be that it allows smokers to delay their quit date. PMID:20537810

  9. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.

    PubMed

    Ferreira, Verónica; Gonçalves, Ana Lúcia; Canhoto, Cristina

    2012-01-01

    Aquatic hyphomycetes, a group of polyphyletic fungi, have been reported in streams contaminated with metals. This tolerance to metal contamination however can result in limited performance and limited ability to cope with additional environmental change. The predicted increase in water temperature, as a consequence of global warming, will have an additional effect on many streams. The sensitivity to temperature of strains of three aquatic hyphomycete species isolated from a metal-contaminated stream and an uncontaminated stream was assessed by determining their radial growth and activity (conidial production, oxygen consumption, mycelial biomass accumulation, fine particulate organic matter [FPOM] production, and microbial induced leaf mass loss) at 13 C (present water temperature in autumn) and at 18 C (predicted water temperature under global warming). Growth and reproductive activity generally were depressed for the strains isolated from the metal-contaminated stream when compared with those isolated from the unpolluted stream. These differences however were not translated into differences in FPOM production and leaf-litter mass loss, indicating that the strains isolated from the contaminated stream can decompose leaf litter similar to those of the reference stream. The 5 C increase in temperature stimulated fungal activity and litter decomposition, irrespective of species and strain. This might have strong effect on aquatic food-web and ecosystem functioning under global warming because increases in litter decomposition might lead to food shortage for higher trophic levels. The sensitivity to temperature depended on the response variable, species and strain. FPOM production was the variable most sensitive to temperature across strains and species and that for which temperature sensitivities differed most between strains. Fungal tolerance to metal contamination affects the extent to which its functions are stimulated by an increase in temperature, constituting

  10. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.

    PubMed

    Ferreira, Verónica; Gonçalves, Ana Lúcia; Canhoto, Cristina

    2012-01-01

    Aquatic hyphomycetes, a group of polyphyletic fungi, have been reported in streams contaminated with metals. This tolerance to metal contamination however can result in limited performance and limited ability to cope with additional environmental change. The predicted increase in water temperature, as a consequence of global warming, will have an additional effect on many streams. The sensitivity to temperature of strains of three aquatic hyphomycete species isolated from a metal-contaminated stream and an uncontaminated stream was assessed by determining their radial growth and activity (conidial production, oxygen consumption, mycelial biomass accumulation, fine particulate organic matter [FPOM] production, and microbial induced leaf mass loss) at 13 C (present water temperature in autumn) and at 18 C (predicted water temperature under global warming). Growth and reproductive activity generally were depressed for the strains isolated from the metal-contaminated stream when compared with those isolated from the unpolluted stream. These differences however were not translated into differences in FPOM production and leaf-litter mass loss, indicating that the strains isolated from the contaminated stream can decompose leaf litter similar to those of the reference stream. The 5 C increase in temperature stimulated fungal activity and litter decomposition, irrespective of species and strain. This might have strong effect on aquatic food-web and ecosystem functioning under global warming because increases in litter decomposition might lead to food shortage for higher trophic levels. The sensitivity to temperature depended on the response variable, species and strain. FPOM production was the variable most sensitive to temperature across strains and species and that for which temperature sensitivities differed most between strains. Fungal tolerance to metal contamination affects the extent to which its functions are stimulated by an increase in temperature, constituting

  11. Effect of the rate of temperature increase on water quality during heating in electromagnetic- and gas-heated pans.

    PubMed

    Hiratsuka, Hiroshi; Sasaki, Ken

    2004-04-01

    More rapid increases in the pH value and hardness during electromagnetic heating of a pan of water were observed than when the pan was heated by LNG or LPG. The water quality changed universally in several tap water samples across Japan. This quality change was closely correlated with the rate of temperature increase, irrespective of heating by electromagnetic induction, LNG or LPG.

  12. Increased shock sensitivity of the insensitive explosive LX-17 at high temperatures

    SciTech Connect

    Lee, R.S.; Chau, H.H.

    1994-05-01

    Explosive formulations based on TATB (1.3.5-trichloro-2,4,6-trinitrobenzene) have proven to be remarkably insensitive to shock and thermal stimuli. However, hazards to an insensitive high explosive (IHE) charge do not always confine themselves to a single stimulus. In the study reported here, we have investigated the response of the LLNL explosive LX-17 (92.5%/7.5% TATB/Kel-F 800) to shock when the explosive is at an elevated temperature. The motivation for the work was to learn the extent to which the shock initiation threshold and critical initiation area of LX-17 are lowered by exposure to elevated temperature.

  13. Numerical simulation of heat transfer to separation tio2/water nanofluids flow in an asymmetric abrupt expansion

    NASA Astrophysics Data System (ADS)

    Oon, Cheen Sean; Nee Yew, Sin; Chew, Bee Teng; Salim Newaz, Kazi Md; Al-Shamma'a, Ahmed; Shaw, Andy; Amiri, Ahmad

    2015-05-01

    Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT) is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water.

  14. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    SciTech Connect

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.; Monroe, Jennifer L.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in this study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.

  15. Response of seafloor ecosystems to abrupt global climate change

    PubMed Central

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-01-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L−1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  16. Response of seafloor ecosystems to abrupt global climate change

    NASA Astrophysics Data System (ADS)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mLṡL-1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  17. Response of seafloor ecosystems to abrupt global climate change.

    PubMed

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L(-1) [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  18. A Rare Cause of Placental Abruption: Uterine Torsion.

    PubMed

    Ulu, Ipek; Güneş, Muhammed Siraç; Kiran, Gürkan; Gülşen, Mehmet Serdar

    2016-01-01

    Uterine torsion is defined as a rotation on its long axis and it is a dangerous, unexpected obstetric emergency. We report a case of uterine torsion at 32 weeks of gestation in a singleton pregnancy. A 37-year-old woman with multiple prior cesarean deliveries referred to emergency unit of our hospital at 32 weeks of gestation with severe abdominal pain and mild vaginal bleeding. Ultrasonography showed a single fetus in vertex position, with a normal amniotic fluid. Fetal biometer was appropriate for 32 weeks of gestation. Placental location was anterior with a subchorionic hypoechogenic small area which was suspected to be a sign of placental abruption. An emergency cesarean section was performed under general anesthesia. The 180° uterine torsion was diagnosed and it was not possible to perform detorsion of the gravid uterus by exteriorization by pfannenstiel incision. Posterior hysterotomy was performed and a male baby of 1830 grams weight was delivered. The newborn was transported to Neonatal Intensive Care Unit (NICU) of another hospital and discharged within two weeks. Patient recovered well and was discharged on second postoperation day. Uterine torsion is a very rare and life threatening situation. In unexpected cases posterior low transuerse hysterotomy is generally performed and it is suggested as a safe choice when detorsion was not accomplished. It is not easy to keep in mind the possibility of uterine torsion in cases of abdominal pain during pregnancy. Because it generally causes abruption, management of abruption is vitally important to prevent fetal mortality. PMID:26894131

  19. Response of seafloor ecosystems to abrupt global climate change.

    PubMed

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L(-1) [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  20. Maintaining warm, trusting relationships with brands: increased temperature perceptions after thinking of communal brands.

    PubMed

    IJzerman, Hans; Janssen, Janneke A; Coan, James A

    2015-01-01

    Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of "grounded social cognition". It then leverages a large sample (total N = 2,552) toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively) perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant) relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective.

  1. Maintaining warm, trusting relationships with brands: increased temperature perceptions after thinking of communal brands.

    PubMed

    IJzerman, Hans; Janssen, Janneke A; Coan, James A

    2015-01-01

    Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of "grounded social cognition". It then leverages a large sample (total N = 2,552) toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively) perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant) relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective. PMID:25915686

  2. Maintaining Warm, Trusting Relationships with Brands: Increased Temperature Perceptions after Thinking of Communal Brands

    PubMed Central

    IJzerman, Hans; Janssen, Janneke A.; Coan, James A.

    2015-01-01

    Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of “grounded social cognition”. It then leverages a large sample (total N = 2,552) toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively) perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant) relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective. PMID:25915686

  3. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions.

    PubMed

    Case, Sean D C; Gómez-Muñoz, Beatriz; Magid, Jakob; Jensen, Lars Stoumann

    2016-07-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be of importance for the value of the biosolids when used to fertilise crops. We sourced AD biosolids from a Danish waste water treatment plant (WWTP) and dried it in the laboratory at 70, 130, 190 or 250 °C to >95 % dry matter content. Also, we sourced biosolids from the WWTP dried using its in-house thermal drying process (input temperature 95 °C, thermal fluid circuit temperature 200 °C, 95 % dry matter content). The drying process reduced the ammonium content of the biosolids and reduced it further at higher drying temperatures. These findings were attributed to ammonia volatilisation. The percentage of mineralisable organic N fraction (min-N) in the biosolids, and nitrous oxide (N2O) and carbon dioxide (CO2) production were analysed 120 days after addition to soil. When incubated at soil field capacity (pF 2), none of the dried biosolids had a greater min-N than the AD biosolids (46.4 %). Min-N was lowest in biosolids dried at higher temperatures (e.g. 19.3 % at 250 °C vs 35.4 % at 70 °C). Considering only the dried biosolids, min-N was greater in WWTP-dried biosolids (50.5 %) than all of the laboratory-dried biosolids with the exception of the 70 °C-dried biosolids. Biosolid carbon mineralisation (CO2 release) and N2O production was also the lowest in treatments of the highest drying temperature, suggesting that this material was more recalcitrant. Overall, thermal drying temperature had a significant influence on N availability from the AD biosolids, but drying did not improve the N availability of these biosolids in any case. PMID:27068895

  4. Microbial community responses to temperature increase the potential for soil carbon losses under climate change.

    NASA Astrophysics Data System (ADS)

    Hartley, Iain; Karhu, Kristiina; Auffret, Marc; Hopkins, David; Prosser, Jim; Singh, Brajesh; Subke, Jens-Arne; Wookey, Philip; Ågren, Göran

    2014-05-01

    There are concerns that global warming may stimulate decomposition rates in soils, with the extra CO2 released representing a positive feedback to climate change. However, there is growing recognition that adaptation of soil microbial communities to temperature changes may alter the potential rate of carbon release. Critically, recent studies have produced conflicting results in terms of whether the medium-term soil microbial community response to temperature reduces (compensatory thermal adaptation) or enhances (enhancing thermal adaptation) the instantaneous direct positive effects of temperature on microbial activity. This lack of understanding adds considerably to uncertainty in predictions of the magnitude and direction of carbon-cycle feedbacks to climate change. In this talk, I present results from one of the most extensive investigations ever undertaken into the role that microbial adaptation plays in controlling the temperature sensitivity of decomposition. Soils were collected from a range of ecosystem types, representing a thermal gradient from the Arctic to the Amazon. Our novel soil-cooling approach minimises issues associated with substrate depletion in warming studies, but still tests whether adaptation enhances or reduces the direct impact of temperature changes on microbial activity. We also investigated the mechanisms underlying changes in microbial respiration by quantifying changes in microbial community composition, microbial biomass, mass-specific activity, carbon-use efficiency, and enzyme activities. Our results indicate that enhancing responses are much more common than compensatory thermal acclimation, with the latter being observed in less than 10% of cases. However, identifying the mechanisms underlying enhancing and compensatory adaptation remained elusive. No consistent changes were observed in terms of mass-specific activity, biomass or enzyme activity, indicating that current theory is inadequate in explaining observed patterns

  5. Ostracod body size trends do not follow either Bergmann's rule or Cope's rule during periods of constant temperature increase

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Seshadri, P.; Amin, V.; Heim, N. A.; Payne, J.

    2013-12-01

    Over time, organisms have adapted to changing environments by evolving to be larger or smaller. Scientists have described body-size trends using two generalized theories. Bergmann's rule states that body size is inversely related to temperature, and Cope's rule establishes an increase over time. Cope's rule has been hypothesized as a temporal manifestation of Bergmann's rule, as the temperature of the Earth has consistently decreased over time and mean body size has increased. However, during times of constant temperature increase, Bergmann's rule and Cope's rule predict opposite effects on body size. Our goal was to clarify this relationship using both accessible proxies of historic temperature - atmospheric CO2 levels and paleo-latitude. We measured ostracod lengths throughout the Paleozoic and Mesozoic eras (using the Catalogue of Ostracoda) and utilized ostracod latitudinal information from the Paleobiology Database. By closely studying body-size trends during four time periods of constant CO2 increase across spectrums of time and latitude, we were able to compare the effects of Cope's and Bergmann's rule. The correlation, p-values, and slopes of each of our graphs showed that there is no clear relationship between body size and each of these rules in times of temperature increase, both latitudinally and temporally. Therefore, both Cope's and Bergmann's rule act on marine ostracods and no rule is dominant, though our results more strongly disprove the latitudinal variation in ostracod size.

  6. Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes

    NASA Astrophysics Data System (ADS)

    Fuchs, Andrea; Lyautey, Emilie; Montuelle, Bernard; Casper, Peter

    2016-05-01

    Global warming is expected to raise temperatures in freshwater lakes, which have been acknowledged to contribute up to 10% of the atmospheric methane concentrations. Increasing temperature enhances methane production and oxidation rates, but few studies have considered the balance between both processes at experimentally higher temperatures within lake sediments. The temperature dependence of methane concentrations, methane production rates, and methanogenic (mcrA) and methanotrophic (pmoA) community size was investigated in intact sediment cores incubated with aerobic hypolimnion water at 4, 8, and 12°C over 3 weeks. Sediment cores of 25 cm length were collected at two temperate lakes—Lake Stechlin (Germany; mesotrophic-oligotrophic, maximum depth 69.5 m) and Lake Geneva (France/Switzerland; mesotrophic, maximum depth 310 m). While methane production rates in Lake Stechlin sediments did not change with increasing temperatures, methane concentrations decreased significantly. In contrast, methane production rates increased in 20-25 cm in Lake Geneva sediments with increasing temperatures, but methane concentrations did not differ. Real-time PCR demonstrated the methanogenic and methanotrophic community size remained stable independently of the incubation temperature. Methane concentrations as well as community sizes were 1-2 orders of magnitude higher in Lake Stechlin than in Lake Geneva, while potential methane production rates after 24 h were similar in both lakes, with on average 2.5 and 1.9 nmol g-1 DW h-1, respectively. Our results suggest that at higher temperatures methane oxidation could balance, and even exceed, methane production. This suggests that anaerobic methane oxidation could be involved in the methane balance at a more important rate than previously anticipated.

  7. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons

    PubMed Central

    Scofield, Vinicius; Jacques, Saulo M. S.; Guimarães, Jean R. D.; Farjalla, Vinicius F.

    2015-01-01

    Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP), bacterioplankton respiration (BR) and bacterial growth efficiency (BGE) in tropical coastal lagoons. We used a factorial design with three levels of water temperature (25, 30, and 35°C) and four levels of N and/or P additions (Control, N, P, and NP additions) in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~4% in BR, a decrease of ~0.9% in BP, and a decrease of ~4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on Dissolved Organic Carbon (DOC) concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P, and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different

  8. Potential changes in bacterial metabolism associated with increased water