Science.gov

Sample records for abs resin manufacturing

  1. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  2. Process for manufacturing a petroleum resin

    SciTech Connect

    Iwashita, T.; Nagano, M.; Tanaka, K.

    1981-08-11

    The present invention relates to a process for manufacturing a petroleum resin wherein a fraction (Component a) containing an aromatic hydrocarbon obtained by cracking of petroleum and a thermally polymerized oil (Component b) obtained by previously thermal-polymerizing the component a are mixed and then the mixture of the components a and B is subjected to polymerization by employing a Friedel-Crafts catalyst. It is also directed to propose a petroleum resin of a superior quality having a softening point optionally in a range of 30-120/sup 0/C and various bromine value in such a manner that a mixing ratio of the components a and B is properly adjusted.

  3. 78 FR 3917 - Certain Rubber Resins & Processes for Manufacturing Same; Commission Determination Not To Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Rubber Resins & Processes for Manufacturing Same; Commission Determination Not To Review... importation into the United States of certain rubber resins by reason of misappropriation of trade...

  4. 40 CFR 63.524 - Standards for wet strength resins manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards for wet strength resins... Polyamides Production § 63.524 Standards for wet strength resins manufacturers. (a) Owners or operators of... strength resins produced; or (2) Comply with the requirements of subpart H of this part to...

  5. 40 CFR 63.523 - Standards for basic liquid resins manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards for basic liquid resins manufacturers. 63.523 Section 63.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polyamides Production § 63.523 Standards for basic liquid resins manufacturers. (a) Owners or operators...

  6. 40 CFR 63.523 - Standards for basic liquid resins manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards for basic liquid resins manufacturers. 63.523 Section 63.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polyamides Production § 63.523 Standards for basic liquid resins manufacturers. (a) Owners or operators...

  7. 40 CFR 63.523 - Standards for basic liquid resins manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards for basic liquid resins manufacturers. 63.523 Section 63.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polyamides Production § 63.523 Standards for basic liquid resins manufacturers. (a) Owners or operators...

  8. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, Jr., Thomas M.; Wells, Barbara J.

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  9. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  10. Fact Sheets: Air Toxics Rules for the Manufacture of Amino/Phenolic Resins

    EPA Pesticide Factsheets

    This page contains a December 1999 fact sheet for the proposed National Emission Standards for Hazardous Air Pollutants (NESHAP): Manufacture of Amino/Phenolic Resins and a September 2014 fact sheet with information regarding the final NESHAP

  11. U.S. EPA requires Fairfield, Calif. resin manufacturer to protect waterways from oil spills

    EPA Pesticide Factsheets

    SAN FRANCISCO - Today, the U.S. Environmental Protection Agency reached a settlement with Sunpol Resins & Polymers, Inc., to resolve federal Clean Water Act violations at its manufacturing facility in Fairfield, California. Sunpol will pay a $41,600 p

  12. Is the bond between acrylic resin denture teeth and denture base resin stronger if they are both made by the same manufacturer?

    PubMed

    Patil, Reshma; Juszczyk, Andrzej S; Radford, David R; Clark, Robert K F

    2010-03-01

    A previous study suggested that a stronger bond may be achieved between acrylic resin denture base material and acrylic denture teeth when both are made by the same manufacturer. Three denture base acrylic resins from three different manufacturers were bonded to three different acrylic resin denture teeth, one of which was manufactured by each of the manufacturers of the base material. In each group there was a trend that the bond strength achieved between the teeth and base material from the same manufacturer was higher than the unmatched pairs but statistical significance was not achieved.

  13. Composite manufacturing: Simulation of 3-D resin transfer molding

    NASA Astrophysics Data System (ADS)

    Tan, Cheng Ping

    1998-10-01

    A technique was developed for simulating the resin transfer molding (RTM) process. The major feature of the technique is a computational steering system that enables the user to make changes during the simulation. Specifically, at any instance, the user can inspect the progress of the resin front. On the basis of the observed resin front position, the user can, as needed, change the port and vent locations, open and close ports and vents, adjust the inlet and exit pressures or flow rates, and reorient the mold with respect to the gravitational field. Additionally, the user can "rewind" the simulator to any previous time in the mold filling process, make any of the above changes and then continue the simulation. The technique is augmented by a computer code which has three main components, the Simulator, the Graphics User Interface (GUI), and the Global Data Storage. The Simulator is a finite element code that calculates the resin flow inside the fiber preform. The GUI serves as the interface between the user and the Simulator; it provides the commands to the Simulator and displays the results. The Global Data Storage is the module that manages the exchange of data between the GUI and the Simulator. The computer code (designated as SUPERTMsb-3D) is suitable for simulating the resin flow inside two-dimensional as well as three-dimensional fiber preforms of arbitrary shapes. The use of this computer code is illustrated through sample problems. These problems demonstrate how (with this code) the designer can establish the port and vent locations, opening and closing sequences of ports and vents such that the fiber preform is filled completely in the shortest time with the fewest number of vents.

  14. The 2-alkyl-2H-indazole regioisomers of synthetic cannabinoids AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA are possible manufacturing impurities with cannabimimetic activities.

    PubMed

    Longworth, Mitchell; Banister, Samuel D; Mack, James B C; Glass, Michelle; Connor, Mark; Kassiou, Michael

    Indazole-derived synthetic cannabinoids (SCs) featuring an alkyl substituent at the 1-position and l-valinamide at the 3-carboxamide position (e.g., AB-CHMINACA) have been identified by forensic chemists around the world, and are associated with serious adverse health effects. Regioisomerism is possible for indazole SCs, with the 2-alkyl-2H-indazole regioisomer of AB-CHMINACA recently identified in SC products in Japan. It is unknown whether this regiosiomer represents a manufacturing impurity arising as a synthetic byproduct, or was intentionally synthesized as a cannabimimetic agent. This study reports the synthesis, analytical characterization, and pharmacological evaluation of commonly encountered indazole SCs AB-CHMINACA, AB-FUBINACA, AB-PINACA, 5F-AB-PINACA and their corresponding 2-alkyl-2H-indazole regioisomers. Both regioisomers of each SC were prepared from a common precursor, and the physical properties, (1)H and (13)C nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry, and ultraviolet-visible spectroscopy of all SC compounds are described. Additionally, AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA were found to act as high potency agonists at CB1 (EC50 = 2.1-11.6 nM) and CB2 (EC50 = 5.6-21.1 nM) receptors in fluorometric assays, while the corresponding 2-alkyl-2H-indazole regioisomers demonstrated low potency (micromolar) agonist activities at both receptors. Taken together, these data suggest that 2-alkyl-2H-indazole regioisomers of AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA are likely to be encountered by forensic chemists and toxicologists as the result of improper purification during the clandestine synthesis of 1-alkyl-1H-indazole regioisomers, and can be distinguished by differences in gas chromatography-mass spectrometry fragmentation pattern.

  15. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  16. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose.

    PubMed

    Tang, Li-rong; Huang, Biao; Ou, Wen; Chen, Xue-rong; Chen, Yan-dan

    2011-12-01

    Cellulose nanocrystals (CNC) were prepared from microcrystalline cellulose (MCC) by hydrolysis with cation exchange resin (NKC-9) or 64% sulfuric acid. The cation exchange resin hydrolysis parameters were optimized by using the Box-Behnken design and response surface methodology. An optimum yield (50.04%) was achieved at a ratio of resin to MCC (w/w) of 10, a temperature of 48 °C and a reaction time of 189 min. Electron microscopy (EM) showed that the diameter of CNCs was about 10-40 nm, and the length was 100-400 nm. Regular short rod-like CNCs were obtained by sulfuric acid hydrolysis, while long and thin crystals of cellulose were obtained with the cation exchange resin. X-ray diffraction (XRD) showed that, compared with MCC, the crystallinity of H2SO4-CNC and resin-CNC increased from 72.25% to 77.29% and 84.26%, respectively. The research shows that cation exchange resin-catalyzed hydrolysis of cellulose could be an excellent method for manufacturing of CNC in an environmental-friendly way.

  17. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  18. Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater.

    PubMed

    Chang, Chia-Yuan; Tanong, Kulchaya; Xu, Jia; Shon, Hokyong

    2011-05-01

    A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a β-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit.

  19. 40 CFR Table 2 to Subpart Ooo of... - Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (HAP) From the Manufacture of Amino/Phenolic Resins 2 Table 2 to Subpart OOO of Part 63 Protection of... Pollutant Emissions: Manufacture of Amino/Phenolic Resins Pt. 63, Subpt. OOO, Table 2 Table 2 to Subpart OOO of Part 63—Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic...

  20. 40 CFR Table 2 to Subpart Ooo of... - Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (HAP) From the Manufacture of Amino/Phenolic Resins 2 Table 2 to Subpart OOO of Part 63 Protection of... Hazardous Air Pollutant Emissions: Manufacture of Amino/Phenolic Resins Pt. 63, Subpt. OOO, Table 2 Table 2 to Subpart OOO of Part 63—Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of...

  1. 40 CFR Table 2 to Subpart Ooo of... - Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (HAP) From the Manufacture of Amino/Phenolic Resins 2 Table 2 to Subpart OOO of Part 63 Protection of... Pollutant Emissions: Manufacture of Amino/Phenolic Resins Pt. 63, Subpt. OOO, Table 2 Table 2 to Subpart OOO of Part 63—Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic...

  2. 40 CFR Table 2 to Subpart Ooo of... - Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (HAP) From the Manufacture of Amino/Phenolic Resins 2 Table 2 to Subpart OOO of Part 63 Protection of... Hazardous Air Pollutant Emissions: Manufacture of Amino/Phenolic Resins Pt. 63, Subpt. OOO, Table 2 Table 2 to Subpart OOO of Part 63—Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of...

  3. 40 CFR Table 2 to Subpart Ooo of... - Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic Resins

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (HAP) From the Manufacture of Amino/Phenolic Resins 2 Table 2 to Subpart OOO of Part 63 Protection of... Pollutant Emissions: Manufacture of Amino/Phenolic Resins Pt. 63, Subpt. OOO, Table 2 Table 2 to Subpart OOO of Part 63—Known Organic Hazardous Air Pollutants (HAP) From the Manufacture of Amino/Phenolic...

  4. Near Infrared Spectroscopy for On-line Monitoring of Alkali- Free Cloth/Phenolic Resin Prepreg During Manufacture

    PubMed Central

    Jiang, Bo; Huang, Yu Dong

    2007-01-01

    A NIR method was developed for the on-line monitoring of alkali-free cloth/phenolic resin prepreg during its manufacturing process. First, the sizing content of the alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content of the prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial least square (PLS) regression was used to develop the calibration models, which for the sizing content was preprocessed by 1stDER +MSC, for the volatile content by 1stDER +VN, for the soluble resin content by 1stDER +MSC and for the resin content by the VN spectral data preprocessing method. RMSEP of the prediction model for the sizing content was 0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 and for volatiles content it was 0.127. The results of the paired t-test revealed that there was no significant difference between the NIR method and the standard method. The NIR spectroscopy method could be used to predict the resin, soluble resin and the volatiles content of the prepreg simultaneously, as well as sizing content of alkali-free cloth. The processing parameters of the prepreg during manufacture could be adjusted quickly with the help of the NIR analysis results. The results indicated that the NIR spectroscopy method was sufficiently accurate and effective for the on-line monitoring of alkali-free cloth/phenolic resin prepreg.

  5. Authorized manufacturing changes for therapeutic monoclonal antibodies (mAbs) in European Public Assessment Report (EPAR) documents.

    PubMed

    Vezér, Balázs; Buzás, Zsuzsanna; Sebeszta, Miklós; Zrubka, Zsombor

    2016-05-01

    Background The quality of biologicals, including biosimilars, is subject to change as a result of manufacturing process modifications following initial authorization. It is important that such product changes have no adverse impact on product efficacy or safety, including immunogenicity. Objectives The aim of this study was to investigate the number and types of manufacturing changes for originator mAbs (the reference for the comparability exercise to confirm biosimilarity) according to European Public Assessment Report (EPAR) documentation and to ascertain the level of risk these changes might impart. The extensive body of evidence contained in the EPAR documents can help support the EMA during the EC marketing authorization approval process for biosimilars, since it provides a broad base of scientific experience. Research designs and methods For EPAR-listed mAbs, details of all changes listed chronologically in the EPAR were evaluated and described. Based on these descriptions the manufacturing changes can be categorized by risk status (low, moderate or high). Results Entries for 29 mAbs with publicly available EPAR reports were reviewed. These contained details of 404 manufacturing changes authorized by the European Medicines Agency (EMA): 22 were categorized as high risk, 286 as moderate risk and 96 as low risk manufacturing changes. A limitation of this analysis is that it only summarizes publicly available data from EPAR documents. Conclusions Manufacturing change data indicate that the EMA has significant experience of process changes for originator mAbs, and the impact they may have on the efficacy and safety of biologicals. This experience will be useful in biosimilar product development to ensure adherence to sound scientific principles. Compared with the established manufacturing process for a reference product, the production of biosimilars will usually be different. Consequently, in addition to a comprehensive comparative functional and physicochemical

  6. Development of Self Fire Retardant Melamine-Animal Glue Formaldehyde (MGF) Resin for the Manufacture of BWR Ply Board

    NASA Astrophysics Data System (ADS)

    Khatua, Pijus Kanti; Dubey, Rajib Kumar; Roymahapatra, Gourisankar; Mishra, Anjan; Shahoo, Shadhu Charan; Kalawate, Aparna

    2016-06-01

    Wood is one of the most sustainable, naturally growing materials that consist mainly of combustible organic carbon compounds. Since plywood are widely used nowadays especially in buildings, furniture and cabinets. Too often the fire behavior of ply-board may be viewed as a drawback. Amino-plastic based thermosetting resin adhesives are the important and most widely used in the plywood panel industries. The fire retardant property of wood panel products by adding animal glue as an additive in the form of MGF resin and used as substitute of melamine for manufacture of plywood. Environment concerns and higher cost of petroleum based resins have resulted in the development of technologies to replace melamine partially by biomaterials for the manufacturing of resin adhesive. Natural bio-based materials such as tannin, CNSL (cardanol), lignin, soya etc. are used as partial substitution of melamine. This article presents the development of melamine-animal glue formaldehyde resin as plywood binder. About 30 % melamine was substituted by animal glue and optimized. The different physico-mechanical and fire retardant property properties tested as per IS: 1734-1983 and IS: 5509-2000 respectively are quite satisfactory. The production of adhesive from melamine with compatible natural proteinous material is cost effective, eco-friendly and enhance the fire retardant property.

  7. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    SciTech Connect

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  8. Manufacture of Bulk Magnetorheological Elastomers Using Vacuum Assisted Resin Transfer Molding

    NASA Astrophysics Data System (ADS)

    Woods, B. K. S.; Wereley, N.; Hoffmaster, R.; Nersessian, N.

    Magnetorheological elastomers (MREs) consist of ferromagnetic particles embedded in a compliant matrix (i.e. elastomer). Due to the magnetic interaction of the ferromagnetic particles, MREs exhibit field dependent physical properties. Very significant changes in the modulus and loss factor of the elastomer can be realized. This makes MREs a promising candidate for active vibration control mechanisms. One factor currently limiting the implementation of this technology is the lack of an efficient manufacturing method that is practical for mass production. Most of the specimens created for previous MRE research were made using simple casting or mechanical mixing methods that are not ideal. In this research a new methodology for producing MREs using Vacuum Assisted Resin Transfer Molding (VARTM) was investigated. The method was used with a range of iron particles sizes and silicon elastomer systems and found to be effective within certain limits of applicability. The specimens produced were tested in compression under a range of magnetic fields to validate the presence of the MR effect. Relative changes in compressive modulus ranging from 35% to 150% (depending on volume fraction), under fields of around 0.3T were observed.

  9. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns.

    PubMed

    Harada, Akio; Nakamura, Keisuke; Kanno, Taro; Inagaki, Ryoichi; Örtengren, Ulf; Niwano, Yoshimi; Sasaki, Keiichi; Egusa, Hiroshi

    2015-04-01

    The aim of this study was to investigate whether different fabrication processes, such as the computer-aided design/computer-aided manufacturing (CAD/CAM) system or the manual build-up technique, affect the fracture resistance of composite resin-based crowns. Lava Ultimate (LU), Estenia C&B (EC&B), and lithium disilicate glass-ceramic IPS e.max press (EMP) were used. Four types of molar crowns were fabricated: CAD/CAM-generated composite resin-based crowns (LU crowns); manually built-up monolayer composite resin-based crowns (EC&B-monolayer crowns); manually built-up layered composite resin-based crowns (EC&B-layered crowns); and EMP crowns. Each type of crown was cemented to dies and the fracture resistance was tested. EC&B-layered crowns showed significantly lower fracture resistance compared with LU and EMP crowns, although there was no significant difference in flexural strength or fracture toughness between LU and EC&B materials. Micro-computed tomography and fractographic analysis showed that decreased strength probably resulted from internal voids in the EC&B-layered crowns introduced by the layering process. There was no significant difference in fracture resistance among LU, EC&B-monolayer, and EMP crowns. Both types of composite resin-based crowns showed fracture loads of >2000 N, which is higher than the molar bite force. Therefore, CAD/CAM-generated crowns, without internal defects, may be applied to molar regions with sufficient fracture resistance.

  10. Pretreatment of ultra-high concentrated wastewater from phthalonitrile resin manufacturing by chemical precipitation, reduction and oxidation.

    PubMed

    Ji, Qingqing; Yuan, Yue; Lai, Bo; Yang, Ping; Zhou, Yuexi

    2016-05-05

    To remove the toxic and refractory pollutants in the phthalonitrile resin wastewater and improve its biodegradability, a combined process (i.e., CaCl2+AA+Fe/Cu/air) was developed to pretreat this wastewater obtained from a phthalonitrile resin manufacturing plant in southwestern China. First, CO3(2-) was precipitated and removed by adding CaCl2. Furthermore, its ultra-high concentrated NO2(-) (22.7±0.1 g/L) was reduced into N2 by adding amidosulphonic acid (AA). Meanwhile, two control experiments were setup to confirm the superiority of the combined process (i.e., CaCl2+AA). Subsequently, the wastewater was further treated by Fe/Cu/air process after the removal of CO3(2-) and NO2(-). The results suggest that the developed method not only could effectively remove the ultra-high concentrated CO3(2-) (>99%) and NO2(-) (>99%), but also could obtain high COD (58.8%) and colority (95.2%) removal efficiencies. Meanwhile, B/C ratio of this wastewater increased from 0.19 to 0.45, which suggests the biodegradability also was improved significantly. Finally, the high treatment efficiency was mainly attributed to the synergistic effects of CaCl2, AA and Fe/Cu/air. Therefore, the combined process is a promising pretreatment process for the ultra-high concentrated wastewater from phthalonitrile resin manufacturing.

  11. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  12. Application of mid-infrared spectroscopy in analyzing different segmented production of Angelica by AB-8 macroporous resin

    NASA Astrophysics Data System (ADS)

    Guo, Yizhen; Wang, Jingjuan; Lu, Lina; Sun, Suqin; Liu, Yang; Xiao, Yao; Qin, Youwen; Xiao, Lijuan; Wen, Haoran; Qu, Lei

    2016-01-01

    As complicated mixture systems, chemical components of Angelica are very difficult to identify and discriminate, so as not to control its quality effectively. In recent years, Mid-infrared spectroscopy has been innovatively employed to identify and assess the quality of Traditional Chinese medicine (TCM) products. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2D-IR), are applied to study and identify Angelica raw material, the decoction and different segmented production of AB-8 macroporous resin. FT-IR spectrum indicates that Angelica raw material is rich in sucrose and the correlation coefficient is 0.8465. The decoction of Angelica contains varieties of polysaccharides components and the content is gradually decreased with increasing concentration of ethanol. In addition, the decoction of Angelica contains a certain amount of protein components and 50% ethanol eluate has more protein than other eluates. Their second derivative spectra amplify the differences and reveal the potentially characteristic IR absorption bands, then we conclude that the decoction of Angelica contains a certain amount of ferulic acid and ligustilide. And 30% ethanol eluate, 50% ethanol eluate and 70% ethanol eluate are similar to ligustilide. Further, 2D-IR spectra enhance the spectral resolution and obtain much new information for discriminating the similar complicated samples. It is demonstrated that the above three-step infrared spectroscopy could be applicable for effective, visual and accurate analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  13. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  14. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  15. Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings.

    PubMed

    Lee, Wen-Jau; Chen, Yi-Chun

    2008-10-01

    The wood of Japanese cedar (Cryptomeria japonica) was liquefied in phenol with H2SO4 and HCl as catalysts. The liquefied wood was reacted with formalin to prepare the novolak PF resin. The results showed that the reaction of liquefied Japanese cedar with formalin was an exothermic reaction, and formed a solid-like resin without extra heating. Two novolak PF resins were prepared from the liquefied wood which were identified as SF and CF that using the liquefied wood with H2SO4 and HCl as catalyst respectively. The novolak PF powder displayed thermo-melting characteristic. The resins of SF and CF had weight average molecular weight of 3638 and 3941 respectively and melting temperature of 149.4 degrees C and 127.5 degrees C respectively. Both of the novolak resins could be used to make moldings with good performance by mixing the novolak resin with wood powder, hardener and zinc stearate at the weight ratio of 60:30:10:1 and hot-pressed under 200 degrees C for 10min.

  16. An infiltration/cure model for manufacture of fabric composites by the resin infusion process

    NASA Technical Reports Server (NTRS)

    Weideman, Mark H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1992-01-01

    A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.

  17. The load separation criterion in elastic-plastic fracture mechanics: Rate and temperature dependence of the material plastic deformation function in an ABS resin

    NASA Astrophysics Data System (ADS)

    Agnelli, Silvia; Baldi, Francesco; Riccò, Theonis

    2012-07-01

    This work is aimed at analyzing the effects of temperature and loading rate on the plastic deformation behavior of an acrylonitrile-butadiene-styrene (ABS) resin during a fracture process. According to the load separation criterion, the plastic deformation behavior during the fracture process of an elastic-plastic material is described by a plastic deformation function. For the ABS here examined, the material plastic deformation function was constructed at different temperatures and loading rates, by single edge notched in bending (SEB) tests on blunt notched specimens. Both low and moderately high (impact) loading rates were explored. For the various conditions of temperature and loading rate the material yield stress was also measured by uniaxial tensile tests. The relationships between material deformation function and yield stress were researched and discussed.

  18. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment

    PubMed Central

    Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A.; Sander, Ian M.; Doney, Justin; Turner, Clark; Leevy, W. Matthew

    2017-01-01

    Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2–2.7 g/cm3), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm3 of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm3 created a stable material that could attenuate 50% of 99mTechnetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization. PMID:28245589

  19. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment.

    PubMed

    Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A; Sander, Ian M; Doney, Justin; Turner, Clark; Leevy, W Matthew

    2017-02-24

    Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2-2.7 g/cm³), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm³ of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm³ created a stable material that could attenuate 50% of (99m)Technetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.

  20. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  1. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2008-11-18

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  2. Investigation of an accident in a resins manufacturing site: the role of accelerator on polymerisation of methyl methacrylate.

    PubMed

    Casson, Valeria; Snee, Tim; Maschio, Giuseppe

    2014-04-15

    This paper analyzes the effect of an accelerator on the polymerisation of methyl methacrylate (MMA). This study is based on the results of an investigation of an accident in a manufacturing site for resins located in the United Kingdom. As sequence of event to cause the accident the following was assumed: during an unattended batch process a runaway undesired polymerisation of methyl methacrylate occurred, generating rapid vaporisation of monomer, which in contact with an ignition source, led to an explosion followed by a fire. Since no initiator for the polymerisation reaction had been jet added to the blend, it was supposed that the accelerator contributed to the onset of the undesired polymerisation. The accelerator involved in the accident t has therefore been tested by differential scanning calorimetry and adiabatic calorimetry. The experimental data allowed the authors to prove the hypothesis made and to define safety ranges for the polymerisation reaction.

  3. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater.

    PubMed

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Zhang, Yunhong; Chen, Zhiqiang

    2014-01-01

    This study provides mechanistic insights into the passivation of the packing particles during the treatment of acrylonitrile-butadiene-styrene (ABS) resin wastewater by the Fe0/GAC system. The granular-activated carbon (GAC) and iron chippings (Fe0) were mixed together with a volumetric ratio of 1:1. GAC has a mean particle size of approximately 3-5 mm, a specific surface of 748 m2 g(-1), a total pore volume of 0.48 mL g(-1) and a bulk density of 0.49 g cm(-3). The iron chippings have a compact and non-porous surface morphology. The results show that the packing particles in the Fe0/GAC system would lose their activity because the removal of TOC and PO4(3-) for ABS resin wastewater could not carried out by the Fe0/GAC system after 40 days continuous running. Meanwhile, the availability of O2 and intrinsic reactivity of Fe0 play a key role on the form of passive film with different iron oxidation states. The passive film on the surface of iron chippings was formed by two phases: (a) local corrosion phase (0-20 d) and (b) co-precipitation phase (20-40 d), while that of GAC was mainly formed by the co-precipitation of corrosion products with SO4(2-) and PO4(3-) because SO4(2-) and PO4(3-) would not easily reach the Fe0 surface. Therefore, in order to avoid the occurrence of filler passivation, high concentrations of SO4(2-) and PO4(3-) in wastewater should be removed before the treatment process of the Fe/GAC system.

  4. Application of Resin Transfer Molding to the Manufacture of Wind Turbine Blade Substructures. Final Report

    SciTech Connect

    Hedley, C. W.; Ritter, W. J.; Ashwill, T.

    2001-07-26

    The U.S. has generally lacked the capability for an iterative process of detailed structural design, manufacturing, and testing at the full blade level to achieve specific structural performance, cost, and weight targets. This project examined the effects that different composites processing methods had on the performance of representative blade substructures. In addition, the results of the testing of these substructures was used to validate NuMAD, the design tool developed at Sandia National Laboratories.

  5. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  6. Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite.

    PubMed

    Shinohara, Ayano; Taira, Yohsuke; Sawase, Takashi

    2017-01-09

    The present study was conducted to evaluate the effects of an experimental adhesive agent [methyl methacrylate-tributylborane liquid (MT)] and two adhesive agents containing silane on the bonding between a resin composite block of a computer-aided design and manufacturing (CAD/CAM) system and a light-curing resin composite veneering material. The surfaces of CAD/CAM resin composite specimens were ground with silicon-carbide paper, treated with phosphoric acid, and then primed with either one of the two silane agents [Scotchbond Universal Adhesive (SC) and GC Ceramic Primer II (GC)], no adhesive control (Cont), or one of three combinations (MT/SC, MT/GC, and MT/Cont). A light-curing resin composite was veneered on the primed CAD/CAM resin composite surface. The veneered specimens were subjected to thermocycling between 4 and 60 °C for 10,000 cycles, and the shear bond strengths were determined. All data were analyzed using analysis of variance and a post hoc Tukey-Kramer HSD test (α = 0.05, n = 8). MT/SC (38.7 MPa) exhibited the highest mean bond strengths, followed by MT/GC (30.4 MPa), SC (27.9 MPa), and MT/Cont (25.7 MPa), while Cont (12.9 MPa) and GC (12.3 MPa) resulted in the lowest bond strengths. The use of MT in conjunction with a silane agent significantly improved the bond strength. Surface treatment with appropriate adhesive agents was confirmed as a prerequisite for veneering CAD/CAM resin composite restorations.

  7. Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment.

    PubMed

    Luo, Huilong; Song, Yudong; Zhou, Yuexi; Yang, Liwei; Zhao, Yaqian

    2017-02-01

    ABS resin wastewater is a high-temperature nitrogenous organic wastewater. It can be successfully treated with anoxic/aerobic (A/O) process. In this study, the effect of temperature on nitrogen removal and microbial community after quick temperature rise (QTR) was investigated. It was indicated that QTR from 25 to 30 °C facilitated the microbial growth and achieved a similar effluent quality as that at 25 °C. QTR from 25 to 35 °C or 40 °C resulted in higher effluent concentration of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN), and total phosphorus (TP). Illumina MiSeq pyrosequencing analysis illustrated that the richness and diversity of the bacterial community was decreased as the temperature was increased. The percentage of many functional groups was changed significantly. QTR from 25 to 40 °C also resulted in the inhibition of ammonia oxidation rate and high concentration of free ammonia, which then inhibited the growth of NOB (Nitrospira), and thus resulted in nitrite accumulation. The high temperature above 35 °C promoted the growth of a denitrifying bacterial genus, Denitratisoma, which might increase N2O production during the denitrification process.

  8. Fatigue analysis of computer-aided design/computer-aided manufacturing resin-based composite vs. lithium disilicate glass-ceramic.

    PubMed

    Ankyu, Shuhei; Nakamura, Keisuke; Harada, Akio; Hong, Guang; Kanno, Taro; Niwano, Yoshimi; Örtengren, Ulf; Egusa, Hiroshi

    2016-08-01

    Resin-based composite molar crowns made by computer-aided design/computer-aided manufacturing (CAD/CAM) systems have been proposed as an inexpensive alternative to metal-ceramic or all-ceramic crowns. However, there is a lack of scientific information regarding fatigue resistance. This study aimed to analyze the fatigue behavior of CAD/CAM resin-based composite compared with lithium disilicate glass-ceramic. One-hundred and sixty bar-shaped specimens were fabricated using resin-based composite blocks [Lava Ultimate (LU); 3M/ESPE] and lithium disilicate glass-ceramic [IPS e.max press (EMP); Ivoclar/Vivadent]. The specimens were divided into four groups: no treatment (NT); thermal cycling (TC); mechanical cycling (MC); and thermal cycling followed by mechanical cycling (TCMC). Thermal cycling was performed by alternate immersion in water baths of 5°C and 55°C for 5 × 10(4) cycles. Mechanical cycling was performed in a three-point bending test, with a maximum load of 40 N, for 1.2 × 10(6) cycles. In addition, LU and EMP molar crowns were fabricated and subjected to fatigue treatments followed by load-to-failure testing. The flexural strength of LU was not severely reduced by the fatigue treatments. The fatigue treatments did not significantly affect the fracture resistance of LU molar crowns. The results demonstrate the potential of clinical application of CAD/CAM-generated resin-based composite molar crowns in terms of fatigue resistance.

  9. A Study on the Influence of Process Parameters on the Viscoelastic Properties of ABS Components Manufactured by FDM Process

    NASA Astrophysics Data System (ADS)

    Dakshinamurthy, Devika; Gupta, Srinivasa

    2016-06-01

    Fused Deposition Modelling (FDM) is a fast growing Rapid Prototyping (RP) technology due to its ability to build parts having complex geometrical shape in reasonable time period. The quality of built parts depends on many process variables. In this study, the influence of three FDM process parameters namely, slice height, raster angle and raster width on viscoelastic properties of Acrylonitrile Butadiene Styrene (ABS) RP-specimen is studied. Statistically designed experiments have been conducted for finding the optimum process parameter setting for enhancing the storage modulus. Dynamic Mechanical Analysis has been used to understand the viscoelastic properties at various parameter settings. At the optimal parameter setting the storage modulus and loss modulus of the ABS-RP specimen was 1008 and 259.9 MPa respectively. The relative percentage contribution of slice height and raster width on the viscoelastic properties of the FDM-RP components was found to be 55 and 31 % respectively.

  10. Life‐cycle and cost of goods assessment of fed‐batch and perfusion‐based manufacturing processes for mAbs

    PubMed Central

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V.; Lettieri, Paola

    2016-01-01

    Life‐cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost‐efficient, robust and environmentally‐friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale‐up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed‐batch (FB) and perfusion‐based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO2 than the FB process. Water consumption was the most important impact category, especially when scaling‐up the processes, as energy was required to produce process water and water‐for‐injection, while CO2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally‐friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324–1335, 2016 PMID:27390260

  11. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    NASA Technical Reports Server (NTRS)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  12. Environmentally Safe, Sprayable, Waterproof, Rapid Three Minute Room Temperature Cure Resin for the Manufacturing of Aerospace Composite Sealants

    DTIC Science & Technology

    2007-11-02

    asphalt laminated, aluminum foil roofing material has a permeance rating of 0.176 perms. IMP believes the reason the resin is highly waterproof is...number in the low tenths is very, very low. (Compare to Duplex sheet, asphalt laminated, aluminum foil, roofing material which equals 0.176 perms...in.Hg ASTM E 96 Water vapor permeance. Material does not absorb water. Duplex sheet, asphalt laminated, aluminum foil, roofing material 0.176

  13. A multi-stage curing technique toward improved dimensional infidelity of curve-shaped composites manufactured with vacuum assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Teoh, Kai Jin

    The occurrence of dimensional infidelity during the curing process is detected as curved composites are being released from the mold after full consolidation. On the other hand, the lengthy cure cycle, thermal spiking and non-uniform consolidation in thick composite manufacturing are often strong deterrents to widespread industrial implementation. Therefore, a multi-stage curing technique is implemented and its outcome toward the spring-in phenomenon is investigated in this research. The composite processing technique of stage curing is useful for assessing the effects of thermal spiking, non-uniform consolidation and fiber wrinkling on mechanical integrity for thick composite structures. However, the prediction of spring-in behavior for a multi-stage curing process is still a relatively unexplored area in engineering research. As a result, a compatibility model based on the residual stress that builds up at each curing stage is performed in our study. Since the resin provides a lubricant effect between each curing stage, a partial slipping interface factor w is introduced to our numerical simulation model. The newly developed multi-stage curing model shows good agreement with the experimental results under Vacuum Assisted Resin Transfer Molding (VARTM) process.

  14. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  15. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer`s specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  16. Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study.

    PubMed

    Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2009-08-01

    This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.

  17. A Method for Characterizing PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Roberts, G. D.; Lauver, R. W.

    1986-01-01

    Quantitative analysis technique based on reverse-phase, highperformance liquid chromatography (HPLC) and paired-ion chromatography (PIC) developed for PMR-15 resins. In reverse-phase HPLC experiment, polar solvent containing material to be analyzed passed through column packed with nonpolar substrate. Composition of PMR-15 Resin of 50 weight percent changes as resin ages at room temperature. Verification of proper resin formulation and analysis of changes in resin composition during storage important to manufacturers of PMR-15 polymer matrix composite parts. Technique especially suitable for commercial use by manufacturers of high-performance composite components.

  18. 77 FR 4522 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ..., Industrial Inorganic Chemical Manufacturing, Industrial Organic Chemical Manufacturing, Inorganic Pigments Manufacturing, Miscellaneous Organic Chemical Manufacturing, Plastic Materials and Resins Manufacturing... Intermediate Production, Industrial Inorganic Chemical Manufacturing, Industrial Organic Chemical...

  19. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer's specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  20. The influence of different dispersion methods on the size of the aggregate of CNTs in epoxy resin for the manufacturing of carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Barra, Giuseppina; Guadagno, Liberata; Simonet, Bartolome; Santos, Bricio

    2016-05-01

    Different industrial mixing methods and some of their combinations (1) ultrasound; (2) stirring; (3) (4) by roller machine, (5) by gears machine (6) Ultrasound radiation + high stirring were investigated for incorporating Multi walled Carbon nanotubes (MWCNT) into a resin based on an aeronautical epoxy precursor, cured with 4,4' diamine-dibenzylsulfone (DDS). The effect of different parameters, ultrasound intensity, number of cycles, type of blade, gears speed on the nanofiller dispersion were analyzed. The inclusion of the nanofiller in the resin causes a drastic increase in the viscosity, preventing the homogenization of the resin and a drastic increase in temperature in the zones closest to the ultrasound probe. To overcome these challenges, the application of high speed agitation simultaneously with the application of ultrasonic radiation was used. This allows on the one hand a homogeneous dispersion, on the other hand an improvement of the dissipation of heat generated by ultrasonic radiation. A comprehensive study with parameters like viscosity and temperature was performed. It is necessary a balance between viscosity and temperature. Viscosity must be low enough to facilitate the dispersion and homogenization of the nanofillers, whereas the temperature cannot be too high because of re-agglomerations

  1. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  2. THE DURABILITY OF LARGE-SCALE ADDITIVE MANUFACTURING COMPOSITE MOLDS

    SciTech Connect

    Post, Brian K; Love, Lonnie J; Duty, Chad; Vaidya, Uday; Pipes, R. Byron; Kunc, Vlastimil

    2016-01-01

    Oak Ridge National Laboratory s Big Area Additive Manufacturing (BAAM) technology permits the rapid production of thermoplastic composite molds using a carbon fiber filled Acrylonitrile-Butadiene-Styrene (ABS) thermoplastic. Demonstration tools (i.e. 0.965 m X 0.559 m X 0.152 m) for composite part fabrication have been printed, coated, and finished with a traditional tooling gel. We present validation results demonstrating the stability of thermoplastic printed molds for room temperature Vacuum Assisted Resin Transfer Molding (VARTM) processes. Arkema s Elium thermoplastic resin was investigated with a variety of reinforcement materials. Experimental results include dimensional characterization of the tool surface using laser scanning technique following demolding of 10 parts. Thermoplastic composite molds offer rapid production compared to traditionally built thermoset molds in that near-net deposition allows direct digital production of the net geometry at production rate of 45 kg/hr.

  3. Modeling the VARTM Composite Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal

    2004-01-01

    A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.

  4. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  5. Technical assessment for quality control of resins

    NASA Technical Reports Server (NTRS)

    Gosnell, R. B.

    1977-01-01

    Survey visits to companies involved in the manufacture and use of graphite-epoxy prepregs were conducted to assess the factors which may contribute to variability in the mechanical properties of graphite-epoxy composites. In particular, the purpose was to assess the contributions of the epoxy resins to variability. Companies represented three segments of the composites industry - aircraft manufacturers, prepreg manufacturers, and epoxy resin manufacturers. Several important sources of performance variability were identified from among the complete spectrum of potential sources which ranged from raw materials to composite test data interpretation.

  6. Manufacturing and characterization of encapsulated microfibers with different molecular weight poly(ε-caprolactone) (PCL) resins using a melt electrospinning technique

    NASA Astrophysics Data System (ADS)

    Lee, Jason K.; Ko, Junghyuk; Jun, Martin B. G.; Lee, Patrick C.

    2016-02-01

    Encapsulated structures of poly(ε-caprolactone) microfibers were successfully fabricated through two distinct melt electrospinning methods: melt coaxial and melt-blending electrospinning methods. Both methods resulted in encapsulated microfibers, but the resultant microfibers had different morphologies. Melt coaxial electrospinning formed a dual, semi-concentric structure, whereas melt-blending electrospinning resulted in an islands-in-a-sea fiber structure (i.e. a multiple-core structure). The encapsulated microfibers were produced using a custom-designed melt coaxial electrospinning device and the microfibers were characterized using a scanning electron microscope. To analyze the properties of the melt blended encapsulated fibers and coaxial fibers, the microfiber mesh specimens were collected. The mechanical properties of each microfiber mesh were analyzed through a tensile test. The coaxial microfiber meshes were post processed with a femtosecond laser machine to create dog-bone shaped tensile test specimens, while the melt blended microfiber meshes were kept as-fabricated. The tensile experiments undertaken with coaxial microfiber specimens resulted in an increase in tensile strength compared to 10 k and 45 k monolayer specimens. However, melt blended microfiber meshes did not result in an increase in tensile strength. The melt blended microfiber mesh results indicate that by using greater amounts of 45 k PCL resin within the microstructure, the resulting fibers obtain a higher tensile strength.

  7. Dentin bond strength of two resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials and five cements after six months storage.

    PubMed

    Flury, Simon; Schmidt, Stefanie Zita; Peutzfeldt, Anne; Lussi, Adrian

    2016-10-01

    The aim was to investigate dentin bond strength of two resin-ceramic materials and five cements after 24 h and six months storage. Cylinders (n=15/group) of Lava Ultimate (3M ESPE) and VITA ENAMIC (VITA Zahnfabrik) were cemented to mid-coronal dentin of 300 extracted human molars with RelyX Ultimate (3M ESPE), PANAVIA F2.0 (Kuraray), Variolink II (Ivoclar Vivadent), els cem (Saremco Dental), or Ketac Cem Plus (3M ESPE). Shear bond strength (SBS) was measured after 24 h or six months storage (37°C, 100% humidity) and statistically analyzed (significance level: α=0.05). SBS varied markedly between Lava Ultimate and VITA ENAMIC, between the five cements, and between storage of either 24 h or six months. After six months, SBS was highest when Lava Ultimate was cemented with RelyX Ultimate and when VITA ENAMIC was cemented with RelyX Ultimate or with Variolink II. Lava Ultimate was somewhat more sensitive to storage than was VITA ENAMIC.

  8. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  9. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... determined by weighing a 1-gram to 5-gram sample first in air and then in freshly boiled distilled water at... manufactured by the condensation of equal-weight mixtures of nylon 66 salts and nylon 610 salts. (4) Nylon 6/66 resins manufactured by the condensation and polymerization of Nylon 66 salts and epsilon-caprolactam....

  10. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... determined by weighing a 1-gram to 5-gram sample first in air and then in freshly boiled distilled water at... manufactured by the condensation of equal-weight mixtures of nylon 66 salts and nylon 610 salts. (4) Nylon 6/66 resins manufactured by the condensation and polymerization of Nylon 66 salts and epsilon-caprolactam....

  11. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... determined by weighing a 1-gram to 5-gram sample first in air and then in freshly boiled distilled water at... manufactured by the condensation of equal-weight mixtures of nylon 66 salts and nylon 610 salts. (4) Nylon 6/66 resins manufactured by the condensation and polymerization of Nylon 66 salts and epsilon-caprolactam....

  12. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... determined by weighing a 1-gram to 5-gram sample first in air and then in freshly boiled distilled water at... manufactured by the condensation of equal-weight mixtures of nylon 66 salts and nylon 610 salts. (4) Nylon 6/66 resins manufactured by the condensation and polymerization of Nylon 66 salts and epsilon-caprolactam....

  13. Remembering AB

    NASA Astrophysics Data System (ADS)

    Belyayev, S. T.

    2013-06-01

    In 1947 I became a second-year student at Moscow State University's Physics and Engineering Department, where a part of the week's classes were taught at base organizations. Our group's base was the future Kurchatov Institute, at that time known as the mysterious "Laboratory N^circ 2," and later as LIPAN. . Besides group lectures and practical work at the experimental laboratories, we also had access to the general seminars which Igor Vasilyevich Kurchatov tried to hold, with Leonid Vasilyevich Groshev filling in when he was absent. At the seminar, theorists spoke as welcome co-presenters and commentators. In 1949 I felt ready to approach A. B. Migdal to ask if I could transfer to his theoretical sector. In response, he suggested a number of simple qualitative problems, which I then successfully solved. (Incidentally, AB used the very same "introductory problems" for screening many generations of students.) So I wound up among AB's students. From 1952 on (for 10 years) I also served as an employee of the Migdal Sector. My memoirs here are mainly inspired by these years of constant communication with AB. After my departure for Novosibirsk in 1962, although our meetings still took place, they became occasional....

  14. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  15. Resin Characterization

    DTIC Science & Technology

    2015-06-01

    international treaties). Environmental testing is performed in a chemical laboratory setting, with the test compounds being exposed to environmental soil or......when it is no longer needed. Do not return it to the originator. ARL-SR-0323 ● JUNE 2015 US Army Research Laboratory Resin

  16. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  17. Damage Tolerance of Resin Transfer Molded Composite Sandwich Constructions

    DTIC Science & Technology

    1999-05-01

    cost manufacturing techniques to produce panels included; resin transfer molding ( RTM ), vacuum assisted resin infusion/transfer molding ( VARTM ), co...analysis conducted revealed that in terms of failure characteristics, the RTM / VARTM processed sandwich composites yielded similar performance as those...injection VARTM and vacuum assisted compression molding (VACM). Detailed experimental impact studies were performed under three scenarios low velocity

  18. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sulfide used to manufacture polyphenylene sulfone is prepared by the reaction of sodium sulfide and p... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfone resins. 177.2500 Section...

  19. Structural and performance characteristics of representative anion exchange resins used for weak partitioning chromatography.

    PubMed

    Zhang, Shaojie; Iskra, Tim; Daniels, William; Salm, Jeffrey; Gallo, Christopher; Godavarti, Ranga; Carta, Giorgio

    2016-12-20

    Weak partitioning chromatography (WPC) has been proposed for the purification of monoclonal antibodies using an anion exchange (AEX) resin to simultaneously remove both acidic and basic protein impurities. Despite potential advantages, the relationship between resin structure and WPC performance has not been evaluated systematically. In this work, we determine the structure of representative AEX resins (Fractogel® EMD TMAE HiCap, Q Sepharose FF, and POROS 50 HQ) using transmission electron microscopy and inverse size exclusion chromatography and characterize protein interactions while operating these resins under WPC conditions using two mAb monomers, a mAb dimer, mAb multimers, and BSA as model products and impurities. We determine the isocratic elution behavior of the weakly bound monomer and dimer species and the adsorptive and mass transfer properties of the strongly bound multimers and BSA by confocal laser scanning microscopy. The results show that for each resin, using the product Kp value as guidance, salt, and pH conditions can be found where mAb multimers and BSA are simultaneously removed. Isocratic elution and adsorption mechanisms are, however, different for each resin and for the different components. Under WPC conditions, the Fractogel resin exhibited very slow diffusion of both mAb monomer and dimer species but fast adsorption for both mAb multimers and BSA with high capacity for BSA, while the Sepharose resin, because of its small pore size, was unable to effectively remove mAb multimers. The POROS resin was instead able to bind both multimers and BSA effectively, while exhibiting a greater resolution of mAb monomer and dimer species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2017.

  20. Maximizing the functional lifetime of protein a resins.

    PubMed

    Zhang, Jennifer; Siva, Sethu; Caple, Ryan; Ghose, Sanchayita; Gronke, Rob

    2017-02-20

    Protein A chromatography is currently the industry gold-standard for monoclonal antibody and Fc-fusion protein purification. The high cost of Protein A, however, makes resin lifetime and resin reuse an important factor for process economics. Typical resin lifetime studies performed in the industry usually examine the effect of resin re-use on binding capacity, yield, and product quality without answering the fundamental question of what is causing the decrease in performance. A two part mechanistic study was conducted in an attempt to decouple the effect of the two possible factors (resin hydrolysis and/or degradation vs. resin fouling) on column performance over lifetime of the most commonly used alkali-stable Protein A resins (MabSelect SuRe and MabSelect SuRe LX). The change in binding capacity as a function of sodium hydroxide concentration (rate of hydrolysis), temperature, and stabilizing additives was examined. Additionally, resin extraction studies and product cycling studies were conducted to determine cleaning effectiveness (resin fouling) of various cleaning strategies. Sodium hydroxide-based cleaning solutions were shown to be more effective at preventing resin fouling. Conversely, cold temperature and the use of stabilizing additives in conjunction with sodium hydroxide were found to be beneficial in minimizing the rate of Protein A ligand hydrolysis. An effective and robust cleaning strategy is presented here to maximize resin lifetime and thereby the number of column cycles for future manufacturing processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017.

  1. Manufacturing process of a multifunctional composite panel with nanocharged matrix

    NASA Astrophysics Data System (ADS)

    Volponi, R.; Spena, P.; De Nicola, F.; Guadagno, L.; Raimondo, M.; Vietri, U.

    2016-05-01

    This paper proposes an effective manufacturing process developed to overcome drawbacks that can occur using a nanofilled resin as matrix in aeronautical composites. Nanoparticles embedded in epoxy resins impregnating carbon fibers are able to improve a composite with new desired functionalities. As soon as the nanoparticles are dispersed in a resin, the viscosity dizzily rises and usually, the traditional manufacturing processes are not suitable to obtain a good quality of the manufactured panels. An alternative method has been developed starting from the Resin Film Infusion (RFI) process. This method has been firstly tested on several flat panels, and then it has been transferred on a more complex shaped panel with three stringers. In this work, a flame resistant resin based on a tetrafunctional epoxy precursor filled with carbon nanotubes to increase electrical conductivity, has been used for the panel manufacturing.

  2. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  3. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  4. Advanced Manufacturing

    DTIC Science & Technology

    2002-01-01

    manufacturing will enable the mass customization of products and create new market opportunities in the commercial sector. Flexible manufacturing ...the mass customization of products and create new market opportunities in the commercial sector. One of the most promising flexible manufacturing ... manufacturing , increase efficiency and productivity. Research in leading edge technologies continues to promise exciting new manufacturing methods

  5. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  6. Resin transfer molding of textile composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William

    1993-01-01

    The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.

  7. 40 CFR 63.5731 - What standards must I meet for resin and gel coat mixing operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and gel coat mixing operations? 63.5731 Section 63.5731 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Resin and Gel Coat Mixing Operations § 63.5731 What standards must I meet for resin and gel coat mixing operations? (a) All resin and gel coat mixing containers with a capacity equal...

  8. 40 CFR 63.5737 - How do I demonstrate compliance with the resin and gel coat application equipment cleaning...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the resin and gel coat application equipment cleaning standards? 63.5737 Section 63.5737 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5737 How do I demonstrate compliance with the resin and gel coat application equipment...

  9. 40 CFR 63.5731 - What standards must I meet for resin and gel coat mixing operations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and gel coat mixing operations? 63.5731 Section 63.5731 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Resin and Gel Coat Mixing Operations § 63.5731 What standards must I meet for resin and gel coat mixing operations? (a) All resin and gel coat mixing containers with a capacity equal...

  10. 40 CFR 63.5698 - What emission limit must I meet for open molding resin and gel coat operations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... open molding resin and gel coat operations? 63.5698 Section 63.5698 Protection of Environment... Manufacturing Standards for Open Molding Resin and Gel Coat Operations § 63.5698 What emission limit must I meet for open molding resin and gel coat operations? (a) You must limit organic HAP emissions from the...

  11. 40 CFR 63.5698 - What emission limit must I meet for open molding resin and gel coat operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... open molding resin and gel coat operations? 63.5698 Section 63.5698 Protection of Environment... Manufacturing Standards for Open Molding Resin and Gel Coat Operations § 63.5698 What emission limit must I meet for open molding resin and gel coat operations? (a) You must limit organic HAP emissions from the...

  12. 40 CFR 63.5737 - How do I demonstrate compliance with the resin and gel coat application equipment cleaning...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the resin and gel coat application equipment cleaning standards? 63.5737 Section 63.5737 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5737 How do I demonstrate compliance with the resin and gel coat application equipment...

  13. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost

  14. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that…

  15. In-Space Rapid Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.

    1998-01-01

    In-space manufacturing objectives are: (1) Develop and demonstrate capability to directly fabricate components in space using rapid prototyping technology - ceramics (alumina, silicon nitride, zirconia), metallics (stainless, inconel, etc.), high strength/temperature plastics (PEEK). and ABS plastics (starting point). (2) Perform material science experiments on rapid prototyping candidate materials in microgravity.

  16. Simulation of the Vacuum Assisted Resin Transfer Molding Process

    DTIC Science & Technology

    2004-07-01

    Manufacturing INTRODUCTION Vacuum Assisted Resin Transfer Molding ( VARTM ) is a variant of the traditional RTM process in which one of the solid tool faces...is replaced by a flexible vacuum bag. VARTM offers numerous cost advantages over traditional RTM , such as lower tooling cost and shorter start-up time... VARTM ) process. Flow of resin through the distribution medium and preform were modeled as flow through porous media. The finite element/control volume

  17. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  18. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, Gene W.; Roybal, Herman E.

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  19. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-02-23

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first

  20. Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique

    PubMed Central

    Belter, Joseph T.; Dollar, Aaron M.

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications. PMID:25880807

  1. Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

    PubMed

    Belter, Joseph T; Dollar, Aaron M

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

  2. Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light.

    PubMed

    Munksgaard, E C; Peutzfeldt, A; Asmussen, E

    2000-08-01

    Plasma arc light units for curing resin composites have been introduced with the claim of relatively short curing times. The purpose of the present study was to measure and compare elution of monomers from an experimental BisGMA-TEGDMA resin and a commercial resin composite when cured with a halogen unit and when cured with a plasma arc unit. Specimens of the materials were immersed in methanol, and the amounts of monomers released with time were analyzed by HPLC. By use of Fick's laws of diffusion, the amount of eluted monomers from the specimen at infinity was estimated. The elution from resin specimens and from resin composite specimens cured with the plasma arc light unit was 7 and 4 times higher, respectively, compared to the elution from specimens cured with the halogen unit. It was concluded that the plasma arc light curing unit did not provide optimal cure when used as recommended by the manufacturer.

  3. Development of Manufacturing Technology for Fabrication of a Composite Helicopter Main Rotor Spar by Tubular Braiding

    DTIC Science & Technology

    1981-04-01

    the manufacturer’s lot numbers of adhesives, primers, prepregs, glass fabric and roving used., a record of the mix batches of resin used which is...traceable to the resin sys- tem component manufacturer’s lot numbers (see 3.3.3), a record of time between cleaning, priming and curing in those cases

  4. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  5. Bisphenol A Release: Survey of the Composition of Dental Composite Resins

    PubMed Central

    Dursun, Elisabeth; Fron-Chabouis, Hélène; Attal, Jean-Pierre; Raskin, Anne

    2016-01-01

    Background: Bisphenol A (BPA) is an endocrine disruptor with potential toxicity. Composite resins may not contain pure BPA, but its derivatives are widely used. Several studies found doses of BPA or its derivatives in saliva or urine of patients after composite resin placement. Objective: The aims of this study were to establish an exhaustive list of composite resins marketed in Europe and their composition, and to assess the extent of BPA derivatives used. Methods: A research on manufacturers' websites was performed to reference all composite resins marketed in Europe, then their composition was determined from both material safety data sheets and a standardized questionnaire sent to manufacturers. Manufacturers had to indicate whether their product contained the monomers listed, add other monomers if necessary, or indicate “not disclosed”. Results: 160 composite resins were identified from 31 manufacturers and 23 manufacturers (74.2%) responded to the survey. From the survey and websites, the composition of 130 composite resins (81.2%) was: 112 (86.2%) based on BPA derivatives, 97 (74.7%) on bis-GMA, 17 (13.1%) without monomer derived from BPA (UDMA, sometimes with TEGDMA) and 6 (4.6%) with UDMA (only); 1 (0.8%) did not contain a BPA derivative or UDMA or TEGDMA. Pure BPA was never reported. Conclusion: This work has established a list of 18 composite resins that contain no BPA derivative. Manufacturers should be required to report the exact composition of their products as it often remains unclear or incomplete. PMID:27708726

  6. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  7. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  8. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  9. Difference in color and color parameters between dental porcelain and porcelain-repairing resin composite.

    PubMed

    Kim, Sung-Hee; Lee, Yong-Keun; Lim, Bum-Soon; Rhee, Sang-Hoon; Yang, Hyeong-Cheol

    2006-01-01

    The objective of this study was to measure the differences in color and color parameters between dental porcelain and porcelain-repairing resin composites. The colors of three shades (A2, A3, A3.5) of one brand of dental porcelain, three original shades (A2, A3, A3.5), and three combinations (A2/A3, A3/3.5, A2/A3.5) of three brands of porcelain-repairing resin composites (ABT, FSP, TCR) were measured. The specimens were 2 mm thick, and 1 mm of each shade was layered to make combined shades. Differences in color (DeltaE(ab) (*)), lightness (DeltaL*), chroma (DeltaC(ab) (*)), and hue (DeltaH(*)) between porcelain and resin composite were calculated. Color difference was calculated as DeltaE(ab) (*) = (DeltaL*(2) + Deltaa*(2) + Deltab*(2))(1/2), chroma difference was calculated as DeltaC(ab) (*) = (Deltaa*(2) + Deltab*(2))(1/2), and hue difference was calculated as DeltaH(ab) (*) = (DeltaE(ab) (*2) - DeltaL*(2) - DeltaC(ab) (*2))(1/2). The influence of porcelain shade, brand of resin composites, and shade of resin composites were analyzed by three-way analyses of variance, and the differential influence of color parameters on color difference was analyzed with multiple regression analysis (alpha = 0.05). Differences in color and color parameters were influenced by the porcelain shade, brand and shade of resin composites. The DeltaE(ab) (*) value was in the range of 2.2-16.9. The DeltaE(ab) (*) value was correlated with DeltaC(ab) (*) (standardized correlation coefficient, beta = - 0.85), DeltaL* (beta = - 0.52), and DeltaH(ab) (*) (beta = 0.08). Between the same shade designated pairs of porcelain and repairing composite, color difference was perceptible. Therefore, studies to improve the color matching between porcelain and repairing resin are recommended.

  10. Comparative study of electroless copper film on different self-assembled monolayers modified ABS substrate.

    PubMed

    Xu, Jiushuai; Fan, Ruibin; Wang, Jiaolong; Jia, Mengke; Xiong, Xuanrui; Wang, Fang

    2014-04-15

    Copper films were grown on (3-Mercaptopropyl)trimethoxysilane (MPTMS), (3-Aminopropyl)triethoxysilane (APTES) and 6-(3-(triethoxysilyl)propylamino)-1,3,5- triazine-2,4-dithiol monosodium (TES) self-assembled monolayers (SAMs) modified acrylonitrile-butadiene-styrene (ABS) substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111) preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.

  11. Manufacturing of Composite Parts Via VARTM

    DTIC Science & Technology

    2007-11-02

    Control ØAdvanced VARTM Processing F RTM -like Parts G Surface Quality G Dimensional Tolerances F Co-Injection Resin Transfer Molding G In-Plane G...UD-CCM l 2 July 2003 D. Heider J. W. Gillespie, Jr. UD-CCM 00000 MANUFACTURING OF COMPOSITE PARTS VIA VARTM Report Documentation Page Form...COVERED - 4. TITLE AND SUBTITLE Manufacturing Of Composite Parts Via VARTM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  12. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  13. Vacuum infusion equipment design and the influence of reinforcement layers addition to the resin infusion time

    NASA Astrophysics Data System (ADS)

    Saputra, A. H.; Setyarso, G.

    2016-11-01

    The characteristic of composite material is greatly influenced by the manufacture method of composite. The conventional method that has been used such as hand lay-up and spray up are simple and easy to apply but the composite tend to have a void in it because of the air trapped during the manufacture process. Vacuum infusion is one of the modern composite manufacture process which can replace the conventional method. The problem of this method happens when the resin infusion time become longer due to the addition of reinforcement layers. When the resin infusion time is longer than the resin's gel time, the resin will become gel and not able to flow into the mold. In order to overcome this problem, a study that observe the influence of reinforcement layers addition to the resin infusion time is needed. In this study, vacuum infusion equipment for composite materials manufacturing process that are designed consists of: 1×1m glass as the mold, 1L PVC tube for the resin container, 1L glass tube for the resin trap, and ‘A HP vacuum pump with 7 CFM vacuum speed. The resin that is used in this study is unsaturated polyester resin (UPR) and the fiber used as reinforcement is fiber glass. It is observed that the more number of reinforcement layers the longer resin infusion time will be. The resin infusion time (in seconds) from two until six layers respectively for the area of 15×20cm are: 88, 115, 145, 174, 196; for the area of 15×25cm are: 119, 142, 168, 198, 235; and for the area of 15×35cm are: 181, 203, 235, 263, 303. The maximum reinforcement layers that can be accommodated for each 15×20cm, 15×25cm, and 15×35cm area are respectively 31 layers, 29 layers, and 25 layers.

  14. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  15. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  16. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  17. Epoxy and acrylate sterolithography resins: in-situ property measurements

    SciTech Connect

    Guess, T.R.; Chambers, R.S.; Hinnerichs, T.D.

    1996-01-01

    Stereolithography is a rapid prototyping method that is becoming an important product realization and concurrent engineering tool, with applications in advanced and agile manufacturing. During the build process, material behavior plays a significant role in the mechanics leading to internal stresses and, potentially, to distortion (curling) of parts. The goal of the ``Stereolithography Manufacturing Process Modeling and Optimization`` LDRD program was to develop engineering tools for improving overall part accuracy during the stereolithography build process. These tools include phenomenological material models of solidifying stereolithography photocurable resins and a 3D finite element architecture that incorporates time varying material behavior, laser path dependence, and structural linkage. This SAND report discusses the in situ measurement of shrinkage and force relaxation behavior of two photocurable resins, and the measurement of curl in simple cantilever beams. These studies directly supported the development of phenomenological material models for solidifying resins and provided experimental curl data to compare to model predictions.

  18. Resin-Transfer-Molding of a Tool Face

    NASA Technical Reports Server (NTRS)

    Fowler, Mike; Ehlers, Edward; Brainard, David; Kellermann, Charles

    2004-01-01

    A resin-transfer-molding (RTM) process has been devised for fabricating a matrix/graphite-cloth composite panel that serves as tool face for manufacturing other composite panels. Heretofore, RTM has generally been confined to resins with viscosities low enough that they can readily flow through interstices of cloth. The present process makes it possible to use a high-temperature, more-viscous resin required for the tool face. First, a release layer and then a graphite cloth are laid on a foam pattern that has the desired contour. A spring with an inside diameter of 3/8 in. (.9.5 mm) is placed along the long dimension of the pattern to act as a conduit for the resin. Springs with an inside diameter of 1/4 in. (.6.4 mm) are run off the larger lengthwise spring for distributing the resin over the tool face. A glass cloth is laid on top to act as breather. The whole layup is vacuum-bagged. Resin is mixed and made to flow under vacuum assistance to infiltrate the layup through the springs. The whole process takes less than a day, and the exposure of personnel to resin vapors is minimized.

  19. Development and characterization of soy-based epoxy resins and pultruded FRP composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang

    This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.

  20. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as... producing, manufacturing, packing, processing, preparing, treating, packaging, transporting, or holding food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyether resins, chlorinated. 177.2430 Section...

  1. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  2. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  3. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  4. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: effects of resin type, load buffer, and protein stability.

    PubMed

    Guo, Jing; Carta, Giorgio

    2015-04-03

    The chromatographic behavior of a monoclonal antibody (mAb) that exhibits a pronounced two-peak elution behavior is studied for a range of strong cation exchange resins and with varying load buffer pH and composition. Six stationary phases are considered, including two tentacle-type resins (Fractogel EMD SO3-(M) and Eshmuno S), a resin with grafted polymeric surface extenders (Nuvia S), a resin with a bimodal pore size distribution (POROS HS 50), and two macroporous resins without polymer grafts (Source 30S and UNOsphere Rapid S). The two-peak elution behavior is very pronounced for the tentacle and polymer-grafted resins and for POROS HS 50, but is essentially absent for the two macroporous resins. The extent of this behavior decreases as the buffer pH and concentration increase and, consequently, mAb binding becomes weaker. Replacing sodium with arginine as the buffer counterion, which is expected to decrease the mAb binding strength, nearly completely eliminates the two-peak behavior, while replacing sodium with tetra-n-butylammonium hydroxide, which is expected to increase the mAb binding strength, dramatically exacerbate the effect. As shown by hydrogen-deuterium exchange mass spectrometry (HX-MS), the two-peak elution behavior is related to conformational changes that occur when the mAb binds. These changes result in increased solvent exposure of specific peptides in the Fc-region for either the Fractogel or the Nuvia resin. No significant conformational changes were seen by HX-MS when the mAb was bound to the UNOsphere resin or on the Fractogel resin when arginine was used in lieu of sodium as the load buffer counterion. Experiments with two additional mAbs on the Fractogel resin show that the two-peak elution behavior is dependent on the particular antibody. Circular dichroism suggests that the propensity of different mAbs to either precipitate directly or to form stabilizing intermolecular structures upon exposure to thermal stress can be related to their

  5. In-situ sensor monitoring of resin film infusion of advanced fiber architecture preforms

    SciTech Connect

    Kranbuehl, D.E.; Hood, D.; Rogozinski, J.

    1995-12-01

    Resin transfer molding (RTM) of advanced fiber architecture stitched preforms is being developed as a smart cost-effective manufacturing technique for fabricating damage tolerant composite structures with geometrically complex reinforcements. Dry textile preforms are infiltrated with resin and cured in a single step process, thus eliminating separate prepreg manufacture and ply-by-ply lay-up. The number of parameters that must be controlled during infiltration and cure make trial-and-error methods of process cycle optimization extremely inefficient. In situ cure monitoring sensors and an analytical processing model are a superior alternative for the determination of optimum processing cycles, quality assurance, and automated process control. Resin transfer molding experiments have been conducted in a manufacturing plant with a reactive epoxy resin and carbon fabric preforms. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin position, viscosity and degree of cure in situ in the mold during the Resin Transfer Molding infiltration and cure process. A science based multi-dimensional model of Resin Transfer Molding (RTM) was used to predict the infiltration behavior, as well as viscosity and degree of cure as the resin flows and cures in the dry textile preform.

  6. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  7. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  8. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  9. Erythema ab igne.

    PubMed

    Miller, Kristen; Hunt, Raegan; Chu, Julie; Meehan, Shane; Stein, Jennifer

    2011-10-15

    Erythema ab igne is a reticulated, erythematous or hyperpigmented dermatosis that results from chronic and repeated exposure to low levels of infrared radiation. Multiple heat sources have been reported to cause this condition, which include heated reclining chairs, heating pads, hot water bottles, car heaters, electric space heaters, and, more recently, laptop computers. Treatment consists of withdrawing the inciting heat source. Although erythema ab igne carries a good prognosis, it is not necessarily a self-limited diagnosis as patients are at long-term risk of developing subsequent cutaneous malignant conditions, which include squamous cell and merkel-cell carcinomas.

  10. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  11. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  12. Additive Manufacturing of Hierarchical Porous Structures

    SciTech Connect

    Grote, Christopher John

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  13. Comparison Between Structures and Properties of ABS Nanocomposites Derived from Two Different Kinds of OMT

    NASA Astrophysics Data System (ADS)

    Cai, Yibing; Huang, Fenglin; Xia, Xin; Wei, Qufu; Tong, Xutao; Wei, Anfang; Gao, Weidong

    2010-03-01

    In the present work, the hexadecyl triphenyl phosphonium bromide (P16) and cetyl pyridium chloride (CPC) were used to modify montmorillonite (MMT) based on the structural characteristic of the engineering thermoplastic acrylonitrile-butadiene-styrene copolymer (ABS) and the principle of “like dissolves like”, and then used to prepare the ABS/organic-modified montmorillonite (OMT) nanocomposites by melt-intercalation method. The influences of two different kinds of OMT on the structures and properties of the ABS nanocomposites were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HREM), thermogravimetric analyses (TGA), Cone calorimetry and dynamic mechanical analyses (DMA), respectively. The increased basal spacing showed that ABS intercalated into the gallery of the OMT. The morphology indicated that the OMT dispersed well in the ABS resin and the intercalated structure for ABS/OMT-P16 nanocomposites and intercalated-exfoliated structure for ABS/OMT-CPC nanocomposites were respectively formed. The TGA results revealed that onset temperature of thermal degradation and charred residue at 700 °C of the ABS nanocomposites was remarkably enhanced compared to the pure ABS. It was also found from the Cone calorimetry tests that the peak of heat release rate (PHRR) decreased significantly, contributing to the reduced flammability. The DMA measurements indicated that the loading of silicate clays improved the storage modulus of the ABS resin. The partial exfoliation of the OMT-CPC within ABS nanocomposites was advantageous to increasing thermal stability properties, decreasing flammability properties, and improving mechanical properties.

  14. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  15. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  16. Nature of foulants and fouling mechanism in the Protein A MabSelect resin cycled in a monoclonal antibody purification process.

    PubMed

    Zhang, Shaojie; Daniels, William; Salm, Jeffrey; Glynn, Judy; Martin, Joseph; Gallo, Christopher; Godavarti, Ranga; Carta, Giorgio

    2016-01-01

    The composition and origin of foulants and their spatial distribution within the particles of the Protein A MabSelect resin cycled in a mAb purification process are determined using electron and confocal microscopy techniques with gold and fluorescently labeled protein probes that associate with the foulants. The results show that the foulants are primarily related to the mAb product, are heterogeneously dispersed both on the outer surface and in the interior of the resin beads, and accumulate only when loading the conditioned CHO cell culture supernatant. Insignificant accumulation is seen if the process is run with purified mAb or with the null cell culture supernatant. When bound to the Protein A ligand, the mAb responsible for the observed fouling behavior is shown to associate with BSA and α-lactalbumin. This property is exploited using labeled versions of these lipophilic proteins to assess the effectiveness of improved resin cleaning processes and to elucidate the fouling mechanism. Resin fouling for this mAb appears to be consistent with the occurrence of conformational changes that occur upon binding, which, in turn, facilitate association of lipophilic proteins with the mAb. Upon desorption at low pH, these destabilized mAb complexes are deposited on and within the resin growing with each cycle and eventually leading to significant degradation of process performance.

  17. Postmortem and insitu TEM methods to study the mechanism of failure in controlled-morphology high-impact polystrene resin

    SciTech Connect

    Cieslinski, R.C.; Dineen, M.T.; Hahnfeld, J.L.

    1996-12-31

    Advanced Styrenic resins are being developed throughout the industry to bridge the properties gap between traditional HIPS (High Impact Polystyrene) and ABS (Acrylonitrile-Butadiene-Styrene copolymers) resins. These new resins have an unprecedented balance of high gloss and high impact energies. Dow Chemical`s contribution to this area is based on a unique combination of rubber morphologies including labyrinth, onion skin, and core-shelf rubber particles. This new resin, referred as a controlled morphology resin (CMR), was investigated to determine the toughening mechanism of this unique rubber morphology. This poster will summarize the initial studies of these resins using the double-notch four-point bend test of Su and Yee, tensile stage electron microscopy, and Poisson Ratio analysis of the fracture mechanism.

  18. Imide Modified Epoxy Matrix Resin.

    DTIC Science & Technology

    1981-02-01

    the bisimide amine cured epoxies (IME’s) were considerably lower than the state-of-the-art epoxies . The strain-to-failure of the control resin system ...nine epoxy resin systems which were prepared from tetraglycidyl methylenedianiline (MY 720) cured with a stoichiometric quantity of bisimide-amine and...graphite imide modified cured epoxy resin composites. The designation for each material is also listed in Table 1. The composition of each resin system

  19. Blade Manufacturing Improvement Project: Final Report

    SciTech Connect

    SHERWOOD, KENT

    2002-10-01

    The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

  20. 40 CFR 63.5734 - What standards must I meet for resin and gel coat application equipment cleaning operations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and gel coat application equipment cleaning operations? 63.5734 Section 63.5734 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5734 What standards must I meet for resin and gel coat application equipment cleaning...

  1. 40 CFR 63.5734 - What standards must I meet for resin and gel coat application equipment cleaning operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and gel coat application equipment cleaning operations? 63.5734 Section 63.5734 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5734 What standards must I meet for resin and gel coat application equipment cleaning...

  2. Application of TRIZ Theory in Patternless Casting Manufacturing Technique

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Gan, Dequan; Jiang, Ping; Tian, Yumei

    The ultimate goal of Patternless Casting Manufacturing (referred to as PCM) is how to obtain the casts by casting the sand mold directly. In the previous PCM, the resin content of sand mold is much higher than that required by traditional resin sand, so the casts obtained are difficult to be sound and qualified products, which limits the application of this technique greatly. In this paper, the TRIZ algorithm is introduced to the innovation process in PCM systematically.

  3. Fluorinated epoxy resins with high glass transition temperatures

    NASA Technical Reports Server (NTRS)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  4. Storage and Aging Effects on Spherical Resorcinol-Formaldehyde Resin Ion Exchange Performance

    SciTech Connect

    Fiskum, Sandra K.; Arm, Stuart T.; Edwards, Matthew K.; Steele, Marilyn J.; Thomas, Kathie K.

    2007-09-10

    Bechtel National, Inc. (BNI) is evaluating the alternate Cs ion exchanger, spherical resorcinol-formaldehyde (RF), for use in the River Protection Project-Waste Treatment Plant (RPP-WTP).( ) Previous test activities with spherical RF indicate that it has adequate capacity, selectivity, and kinetics to perform in the plant according to the flowsheet needs. It appears to have better elution and hydraulic properties than the existing alternatives: ground-gel RF and SuperLig® 644 (SL 644).( ) To date, the spherical RF performance testing has been conducted on freshly manufactured resin (within ~2 months of manufacture). The ion exchange resins will be manufactured and shipped to the WTP up to 1 year before being used in the plant. Changes in the resin properties during storage could reduce the capacity of the resin to remove Cs from low-activity waste solutions. Active sites on organic SL-644 resin have been shown to degrade during storage (Arm et al. 2004). Additional testing was needed to study the effects of storage conditions and aging on spherical RF ion exchange performance. Variables that could have a significant impact on ion exchange resins during storage include storage temperature, medium, and time. Battelle—Pacific Northwest Division (PNWD) was contracted to test the effects of various storage conditions on spherical RF resin. Data obtained from the testing will be used by the WTP operations to provide direction for suitable storage conditions and manage the spherical RF resin stock. Storage test conditions included wet and dry resin configurations under nitrogen at three temperatures. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan( ) TSS A-219 to evaluate the impact of storage conditions on RF resin performance. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract DE-AC05-76RL

  5. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  6. Kinetic modelling of vinyl ester resin polymerization

    SciTech Connect

    Dhulipala, R.; Kreig. G.; Hawley, M.C.

    1993-12-31

    The study of kinetics offers a substantional incentive in the endeavor to manufacture polymer matrix composites at high speeds. The study enables one to optimize the curing cycle based on the specific curing characteristics of the resin and also makes it possible to simulate the curing process. This paper reports the results of the modelling of the thermal curing of the vinyl ester resin. The parameters for the proposed model have been calculated based on conversion-vs-data generated at various temperatures and Benzoyl peroxide (initiator) concentrations. The extent of cure of the resin mixture was determined using Fourier Transform Infrared Spectroscopy. In this model the termination rate constant is considered to drop with extent of cure until a limiting value is reached. The limiting value is a consequence of the active chain ends possessing a degree of mobility due to the propagation reaction even though the translational motion of the growing for radicals in increasingly restricted with conversion. Good agreements is observed between the model predictions and the experimental data.

  7. Characterization and Process Development of Cyanate Ester Resin and Composite

    SciTech Connect

    Frame, B.J.

    1998-03-01

    Cyanate ester (or polycyanate) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14A polycyanate resin as the constituent materials. Process trials, tests and analyses were conducted in order to gain insight into factors that can affect final properties of the cured cyanate ester resin and its composites. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to cure is also crucial as it affects the T{sub g} of the resin and composite. Recommendations for reducing moisture contact with the resin during wet-winding are presented. High fiber volume fraction ({approximately}80%) composites wound and cured with these methods yielded excellent hoop tensile strengths (660 to 670 ksi average with individual rings failing above 700 ksi), which are believed to be the highest recorded strengths for this class of materials. The measured transverse properties were also exceptional for these high fiber fraction composites. Based on the available data, this cyanate ester resin system and its composites are recommended for space and vacuum applications only. Further testing is required before these materials can be recommended for long term use at elevated temperatures in an ambient air environment. The results of all analyses and tests performed as part of this study are presented as well as baseline process for fabricating thick, stage-cured composites. The manufacture of a 1 in. thick composite cylinder made with this process is also described.

  8. New Low Cost Resin Systems

    DTIC Science & Technology

    2006-05-31

    difference between resins 1 and 2 was the type of phosphorous containing compound, where resin 3 was the same as resin 1 with the addition of melamine ...SBIR N03-120 New Low Cost Resin Systems Applied Poleramic, Inc. Final Report Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Feb 2004 4. TITLE AND SUBTITLE New Low Cost Resin Systems 5a. CONTRACT NUMBER N00014-03-M-0304 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  9. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    EPA Science Inventory

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  10. Separation and Purification of Two Flavone Glucuronides from Erigeron multiradiatus (Lindl.) Benth with Macroporous Resins

    PubMed Central

    Zhang, Zhi-feng; Liu, Yuan; Luo, Pei; Zhang, Hao

    2009-01-01

    Scutellarein-7-O-β-D-glucuronide (SG) and apigenin-7-O-β-D-glucuronide (AG) are two major bioactive constituents with known pharmacological effects in Erigeron multiradiatus. In this study, a simple method for preparative separation of the two flavone glucuronides was established with macroporous resins. The performance and adsorption characteristics of eight macroporous resins including AB-8, HPD100, HPD450, HPD600, D100, D101, D141, and D160 have been evaluated. The results confirmed that D141 resin offered the best adsorption and desorption capacities and the highest desorption ratio for the two glucuronides among the tested resins. Sorption isotherms were constructed for D141 resin under optimal ethanol conditions and fitted well to the Freundlich and Langmuir models (R2 > 0.95). Dynamic adsorption and desorption tests was performed on column packed with D141 resin. After one-run treatment with D141 resin, the two-constituent content in the final product was increased from 2.14% and 1.34% in the crude extract of Erigeron multiradiatus to 24.63% and 18.42% in the final products with the recoveries of 82.5% and 85.4%, respectively. The preparative separation of SG and AG can be easily and effectively achieved via adsorption and desorption on D141 resin, and the method developed can be referenced for large-scale separation and purification of flavone glucuronides from herbal raw materials. PMID:19918373

  11. Prepreg effects on honeycomb composite manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, Cary Joseph

    Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.

  12. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    DOE PAGES

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less

  13. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    SciTech Connect

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shown to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.

  14. Anion exchange resins as a source of nitrosamines and nitrosamine precursors.

    PubMed

    Flowers, Riley C; Singer, Philip C

    2013-07-02

    Anion exchange resins are important tools for the removal of harmful anionic contaminants from drinking water, but their use has been linked to the presence of carcinogenic nitrosamines in treated drinking water. In bench-scale batch and column experiments, anion exchange resins from a large, representative group were investigated as sources of the nitrosamines N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), and N-nitrosodi-n-butylamine (NDBA) and their precursors. Several resins were found to release high levels (up to >2000 ng/L, orders of magnitude above drinking water regulatory levels) of nitrosamines upon initial rinsing with lab-grade water, with levels subsiding within 50-100 bed volumes of rinsing. Resins released similarly high levels of nitrosamine precursors, with spikes in precursor release triggered by regeneration of resins with sodium chloride or by interruptions in flow resulting in prolonged contact times. Free chlorine or preformed monochloramine in feedwater led to the production of nitrosamines. Resins released different nitrosamines and precursors depending on their functional groups, with some resins releasing as many as three different nitrosamines and their precursors. These findings have significant implications for the pretreatment and appropriate use of anion exchange resins by drinking water utilities and for the production of anion exchange resins by manufacturers.

  15. Dental fiber-post resin base material: a review

    PubMed Central

    Xu, Chun; Zhang, Fu-qiang

    2014-01-01

    Teeth that have short clinical crown, which are not alone enough to support the definitive restoration can be best treated using the post and core system. The advantages of fiber post over conventional metallic post materials have led to its wide acceptance. In addition to that the combination of aesthetic and mechanical benefits of fiber post has provided it with a rise in the field of dentistry. Also the results obtained from some clinical trials have encouraged the clinicians to use the fiber posts confidently. Fiber posts are manufactured from pre-stretched fibers impregnated within a resin matrix. The fibers could that be of carbon, glass/silica, and quartz, whereas Epoxy and bis-GMA are the most widely used resin bases. But recently studies are also found to be going on for polyimide as possible material for the fiber post resin base as a substitute for the conventional materials. PMID:24605208

  16. Adhesion of different resin cements to enamel and dentin.

    PubMed

    Naumova, Ella A; Ernst, Saskia; Schaper, Katharina; Arnold, Wolfgang H; Piwowarczyk, Andree

    2016-01-01

    The purpose of this in vitro study was to compare the shear bond strength (SBS) of five different resin cements to human enamel and dentin under different storage conditions. Five resin cements and their dedicated systems were tested. Teeth were embedded, ground flat to expose enamel or dentin and polished with sandpaper. Adhesive systems were applied according to the manufacturers'instructions. V2A steel cylinders with were silicated, coated, and cemented onto the teeth. Specimens were stored at three different conditions and subsequently thermocycled. SBS was measured. Significant differences were observed between the tested resin cements depending on the tooth surface. Different storage conditions influenced the bond strength, independent of the tooth surface, in all test cements. The bond strength of all experimental materials to enamel is higher than that to dentin surfaces. Furthermore, the adhesiveness decreases after wetness (hydro-) and hydrothermal stress, regardless of the tooth surface.

  17. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  18. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  19. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  20. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  1. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  2. Development of a High-Temperature Vacuum Assisted Resin Transfer Molding Testbed for Aerospace Grade Composites

    DTIC Science & Technology

    2005-11-10

    conventional RTM and hand lay-up prepreg/autoclave techniques. Manufacturing high-quality, large composite parts for high temperature applications using VARTM ...composite 3 parts via RTM and/or resin infusion (here called VARTM ) [3]. Thereafter Connell and Criss et al. fabricated carbon fiber reinforced...It was found that these imide resins show the combination of processability for RTM and high performance. The goal of the HT- VARTM research is to

  3. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Chen, Chi-Chun; Chen, Po-En

    2010-12-15

    In this study, a synthesized cation exchange resin supported nano zero-valent iron (NZVI) complex forming NZVI-resin was proposed for the decoloration of an azo dye Acid Blue 113 (AB 113), taking into account reaction time, initial dye concentration, NZVI dose and pH. From results, the successful decoloration of the AB 113 solution was observed using a NZVI-resin. Increasing the iron load to 50.8 mg g(-1), the removal efficiencies of the AB 113 concentration increased exponentially. With an initial dye concentration of 100 mg l(-1) and nano iron load of 50.8 mg g(-1), the best removal efficiencies were obtained at 100 and 12.6% for dye concentration and total organic carbon, respectively. Color removal efficiency was dependent on initial dye concentration and iron load. Moreover, the removal rates followed modified pseudo-first order kinetic equations with respect to dye concentration. Thus, the observed removal rate constants (k) were 0.137-0.756 min(-1) by NZVI loads of 4.9-50.8 mg g(-1). Consequently, the NZVI-resin performed effectively for the decoloration of AB 113 azo dye, offering great potential in the application of NZVI-resins in larger scale column tests and further field processes.

  4. Depth of cure of bulk-fill flowable composite resins.

    PubMed

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  5. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  6. Novel matrix resins for composites for aircraft primary structures, phase 1

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  7. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    NASA Technical Reports Server (NTRS)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  8. Development of Refined Natural Resin based Cashew Nut Shell Oil Liquid (CNSL) for Brake Pads Composite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Rahmawati, P.; Tamtama, B. P. N.; Sari, P. P.; Sari, P. L.; Ichsan, S.; Kristiawan, Y. R.; Aini, F. N.

    2017-02-01

    Brake is one of the most important components in the vehicle. One type of brake that widely used is brake-based composites. One of the manufacture of composite material is resin. Cashew Nut Shell Liquid (CNSL) is a natural material which has chemical structure similar to synthetic phenol so it can be an alternative as a resin. Brake pads manufacture using CNSL as resin composites made to obtain the brake which is strong, wear-resistant, and environmentally friendly. The composite made using powder metallurgy techniques by mixing ingredients such as rubber, fibre glass, carbon, mineral sands and phenolic resin. Two formulas were composed by varying the resin and iron mineral sands in 5 grams. Composites were tested using Universal Testing Machine (UTM). The tensile strength result of those formulas are 600 N and 900 N and the elongations are 1.98 mm and 2.59 mm respectively. Formula 2 has a better tensile strength due to the addition of more resin is 15%. Since the better properties, formula 2 was derivated to 4 extended formulas and showed excellent pressure strength reached 20.000 N. It indicates that the addition of the resin can improve the mechanical properties of a composite.

  9. Dry PMR-15 Resin Powders

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  10. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  11. Heat - Initiated Furan Resin for Rapid Runway Repair.

    DTIC Science & Technology

    1983-08-01

    previous work on the ongoing bomb damage repair (dDR) program at Battelle, furan ( furfuryl alcohol-based) prepolymers had shown excellent potential for...All but one of these (Delta Airkure 06-00, a proprietary blend of furfuryl alcohol monoher) are of the urea-formaldehydu turfury] alcohol typo used...CANDIDATES [Designation Type Manufacturer Airkure-k6-00 - Furfuryl alcohol monomer with Delta Resin & Refractories proprietary cross-linking agent AirkurO

  12. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  13. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  14. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  15. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  16. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  17. Laptop induced erythema ab igne.

    PubMed

    Nayak, Sudhir U K; Shenoi, Shrutakirthi D; Prabhu, Smitha

    2012-03-01

    Erythema ab igne is a reticular, pigmented dermatosis caused by prolonged and repeated exposure to infrared radiation that is insufficient to produce a burn. The use of laptop computers has increased manifold in the recent past. Prolonged contact of the laptop with the skin can lead to the development of erythema ab igne. We present a case of erythema ab igne secondary to laptop use in an Indian student.

  18. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  19. Fabric Manufacturing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    When rapid oscillation of blanket wearing looms at Chatham Manufacturing Company caused significant metal fatigue, the company turned to NC/STRC for a NASA data bank computer search. The search pinpointed tensile stress, and suggested a built-in residual compressive stress as a solution. "Shot peening," bombarding a part with a high velocity stream of very small shot to pound and compress the part's surface, was found to be the only practical method for creating compressive stress. The method has been successful and the company estimates its annual savings as a quarter million dollars.

  20. Manufacturing technology

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Floyd, H. L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high-voltage varistors. A selective laser sintering process automates wax casting pattern fabrication. Numerical modeling improves the performance of a photoresist stripper (a simulation on a Cray supercomputer reveals the path of a uniform plasma). Improved mathematical models will help make the dream of low-cost ceramic composites come true.

  1. Elution characteristics of residual monomers in different light- and auto-curing resins.

    PubMed

    Danesh, Gholamreza; Hellak, Tobias; Reinhardt, Klaus-Jürgen; Végh, András; Schäfer, Edgar; Lippold, Carsten

    2012-11-01

    The aim of this in vitro study was to assess different auto-curing resins based on methylmethacrylate (MMA) and new light-curing resins based on urethane dimethacrylate (UDMA) regarding the residual monomers remaining in the resin and their elution over time. Specimens from three auto-curing and three light-curing resins were produced following the manufacturer's instructions. The concentration of residual MMA and UDMA monomers present in the resins as well as the quantity of the residual monomers released into artificial saliva solution after immersion times of 1, 3, and 7 days were analyzed by high-performance liquid chromatography (HPLC). Data were statistically analyzed using ANOVA and the post hoc Student-Newman-Keuls test. The highest and lowest amounts of residual monomers were found in the group of light-curing resins (p<0.05). The light-curing resins Triad Trans Sheet (0.06 wt%) and Primosplint (0.06 wt%) released over the entire immersion time of 7 days the smallest (p<0.05) quantity of UDMA. These two light-curing resins based on UDMA exhibited lower elution of residual monomers than auto-curing resins (MMA). The elution characteristics of the residual monomers do not seem to correlate with the residual monomer concentration in resins. These observations demonstrate that the quantitative determination of residual monomers alone - as required by the ISO specification 20795-1 - does not seem to be sufficient for an assessment of the biological properties of different resins. Instead, the evaluation of elution characteristics appears to be of higher clinical relevance.

  2. Characterization of Composite Fan Case Resins

    NASA Technical Reports Server (NTRS)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  3. Cure shrinkage in casting resins

    SciTech Connect

    Spencer, J. Brock

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  4. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  5. Turbine Manufacture

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.

  6. High performance phenolic pultrusion resin

    SciTech Connect

    Qureshi, S.P.; Ingram, W.H.; Smith, C.

    1996-11-01

    Today, Phenol-Formaldehyde (PF) resins are the materials of choice for aerospace interior applications, primarily due to low FST (flame, smoke and toxicity). Since 1990, growth of PF resins has been steadily increasing in non-aerospace applications (which include mass transit, construction, marine, mine ducting and offshore oil) due to low FST and reasonable cost. This paper describes one component phenol-formaldehyde resin that was jointly developed with Morrison Molded Fiber Glass for their pultrusion process. Physical properties of the resin with flame/smoke/toxicity, chemical resistance and mechanical performance of the pultruded RP are discussed. Neat resin screening tests to identify high-temperature formulations are explored. Research continues at Georgia-Pacific to investigate the effect of formulation variables on processing and mechanical properties.

  7. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  8. Prosthetics and Orthotics Manufacturing Initiative (POMI) Phase Zero Final Report: Recommendations on Composite Socket Fabrication Based upon Experimental Results

    DTIC Science & Technology

    2009-06-20

    Introduction 1 Background 1 Socket Fabrication 1 Vacuum Assisted Resin Transfer Molding ( VARTM ) 3 Socket Manufacturing versus Traditional VARTM 4 Flat Panel...Background Sockets are fabricated using techniques which are similar to Vacuum Assisted Resin Transfer Molding ( VARTM ). A discussion of socket fabrication...traditional VARTM processing, and the important differences between the two, will provide an important background. Socket Fabrication A positive

  9. Experimental Manufacture of Paper for War Maps

    PubMed Central

    Weber, Charles G.; Shaw, Merle B.

    2000-01-01

    Early in World War II, a new map paper was developed that greatly improved the quality and performance of war maps. The National Bureau of Standards cooperated in the development and, subsequently, determined by experimental manufacture how to make the paper from commercially available raw materials. The best results were obtained in experimental manufacture by using fiber furnishes of 100-percent strong bleached sulfate pulps with the addition of melamine-formaldehyde resin to increase the wet strength and titanium dioxide to produce the desired capacity. It was essential that the beating be very carefully controlled to preserve the maximum fiber strength. The most critical requirements from a manufacturing standpoint were very high resistance to tear, high wet tensile strength, high opacity, and good smoothness. A moderate degree of wildness was not objectionable. The data obtained by experiments were applied to initiate the commercial production of the new paper to meet unprecedented tonnage requirements. PMID:27551643

  10. Rapid prototyping applications for manufacturing

    SciTech Connect

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A.

    1996-01-01

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  11. Determination of Cd and Cr in an ABS candidate reference material by instrumental neutron activation analysis.

    PubMed

    Park, Kwangwon; Kang, Namgoo; Cho, Kyunghaeng; Lee, Jounghae

    2008-12-01

    In order to practically better cope with technical barriers to trade (TBT) of a great number of resin goods, our research presents first-ever results for the determination of Cd and Cr in acrylonitrile butadiene styrene (ABS) candidate reference material using instrumental neutron activation analysis (INAA) recently recognized as a candidate primary ratio method with a particular attention to the estimation of involved measurement uncertainties.

  12. Assessment of the flexural strength of two heat-curing acrylic resins for artificial eyes.

    PubMed

    Fernandes, Aline Ursula Rocha; Portugal, Aline; Veloso, Letícia Rocha; Goiato, Marcelo Coelho; Santos, Daniela Micheline dos

    2009-01-01

    Prosthetic eyes are artificial substitutes for the eyeball, made of heat-curing acrylic resin, serving to improve the esthetic appearance of the mutilated patient and his/her inclusion in society. The aim of this study was to assess the flexural strength of two heat-curing acrylic resins used for manufacturing prosthetic eyes. Thirty-six specimens measuring 64 x 10 x 3.3 mm were obtained and divided into four groups: acrylic resin for artificial sclera N1 (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GI) and microwave-cured (GII); colorless acrylic resin for prosthetic eyes (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GIII) and microwave-cured (GIV). Mechanical tests using three point loads were performed in a test machine (EMIC, São José dos Pinhais, PR, Brazil). The analysis of variance and the Tukey test were used to identify significant differences (p < 0.01). Groups GII and GIV presented, respectively, the highest (98.70 +/- 11.90 MPa) and lowest means (71.07 +/- 8.93 MPa), with a statistically significant difference. The cure method used for the prosthetic eye resins did not interfere in their flexural strength. It was concluded that all the resins assessed presented sufficient flexural strength values to be recommended for the manufacture of prosthetic eyes.

  13. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  14. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  15. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  16. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  17. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  18. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  19. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  20. Ab Interno Trabeculectomy

    PubMed Central

    Pantcheva, Mina B.; Kahook, Malik Y.

    2010-01-01

    Anterior chamber drainage angle surgery, namely trabeculotomy and goniotomy, has been commonly utilized in children for many years. Its’ reported success has ranged between 68% and 100% in infants and young children with congenital glaucoma. However, the long-term success of these procedures has been limited in adults presumably due to the formation of anterior synechiae (AS) in the postoperative phase. Recently, ab interno trabeculectomy with the Trabectome™ has emerged as a novel surgical approach to effectively and selectively remove and ablate the trabecular meshwork and the inner wall of the Schlemm’s canal in an attempt to avoid AS formation or other forms of wound healing with resultant closure of the cleft. This procedure seems to have an appealing safety profile with respect to early hypotony or infection if compared to trabeculectomy or glaucoma drainage device implantation. This might be advantageous in some of the impoverish regions of the Middle East and Africa where patients experience difficulties keeping up with their postoperative visits. It is important to note that no randomized trial comparing the Trabectome to other glaucoma procedures appears to have been published to date. Trabectome surgery is not a panacea, however, and it is associated with early postoperative intraocular pressure spikes that may require additional glaucoma surgery as well as a high incidence of hyphema. Reported results show that postoperative intraocular pressure (IOP) remains, at best, in the mid-teen range making it undesirable in patients with low-target IOP goals. A major advantage of Trabectome surgery is that it does not preclude further glaucoma surgery involving the conjunctiva, such as a trabeculectomy or drainage device implantation. As prospective randomized long-term clinical data become available, we will be better positioned to elucidate the exact role of this technique in the glaucoma surgical armamentarium. PMID:21180426

  1. Erythema Ab Igne induced by a laptop computer in an adolescent.

    PubMed

    Giraldi, Susana; Diettrich, Fábio; Abbage, Kerstin T; Carvalho, Vânia de O; Marinoni, Leide P

    2011-01-01

    Erythema ab igne is a pigmented reticular skin lesion with telangiectasias caused by prolonged exposure to heat. This report describes the case of a 12-year-old adolescent girl with erythema ab igne induced by a laptop computer. The paper also discusses how computers generate heat and how important it is for the manufacturers of these devices to warn consumers of the potential hazards that could occur if the equipment is misused.

  2. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  3. Allergic contact dermatitis from formaldehyde textile resins.

    PubMed

    Reich, Hilary C; Warshaw, Erin M

    2010-01-01

    Formaldehyde-based resins have been used to create permanent-press finishes on fabrics since the 1920s. These resins have been shown to be potent sensitizers in some patients, leading to allergic contact dermatitis. This review summarizes the history of formaldehyde textile resin use, the diagnosis and management of allergic contact dermatitis from these resins, and current regulation of formaldehyde resins in textiles.

  4. Survey of volatile substances in kitchen utensils made from acrylonitrile-butadiene-styrene and acrylonitrile-styrene resin in Japan.

    PubMed

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Kawamura, Yoko; Akiyama, Hiroshi

    2014-05-01

    Residual levels of 14 volatile substances, including 1,3-butadiene, acrylonitrile, benzene, ethylbenzene, and styrene, in 30 kitchen utensils made from acrylonitrile-butadiene-styrene resin (ABS) and acrylonitrile-styrene resin (AS) such as slicers, picks, cups, and lunch boxes in Japan were simultaneously determined using headspace gas chromatography/mass spectroscopy (HS-GC/MS). The maximum residual levels in the ABS and AS samples were found to be 2000 and 2800 μg/g of styrene, respectively. The residual levels of 1,3-butadiene ranged from 0.06 to 1.7 μg/g in ABS, and three of 15 ABS samples exceeded the regulatory limit for this compound as established by the European Union (EU). The residual levels of acrylonitrile ranged from 0.15 to 20 μg/g in ABS and from 19 to 180 μg/g in AS. The levels of this substance in seven ABS and six AS samples exceeded the limit set by the U.S. Food and Drug Administration (FDA). Furthermore, the levels of acrylonitrile in three AS samples exceeded the voluntary standard established by Japanese industries. These results clearly indicate that the residual levels of some volatile compounds are still high in ABS and AS kitchen utensils and further observations are needed.

  5. Autonomous Biological System (ABS) experiments.

    PubMed

    MacCallum, T K; Anderson, G A; Poynter, J E; Stodieck, L S; Klaus, D M

    1998-12-01

    Three space flight experiments have been conducted to test and demonstrate the use of a passively controlled, materially closed, bioregenerative life support system in space. The Autonomous Biological System (ABS) provides an experimental environment for long term growth and breeding of aquatic plants and animals. The ABS is completely materially closed, isolated from human life support systems and cabin atmosphere contaminants, and requires little need for astronaut intervention. Testing of the ABS marked several firsts: the first aquatic angiosperms to be grown in space; the first higher organisms (aquatic invertebrate animals) to complete their life cycles in space; the first completely bioregenerative life support system in space; and, among the first gravitational ecology experiments. As an introduction this paper describes the ABS, its flight performance, advantages and disadvantages.

  6. Microhardness evaluation of resin composites polymerized by three different light sources.

    PubMed

    Hubbezoğlu, Ihsan; Bolayir, Giray; Doğan, Orhan Murat; Doğan, Arife; Ozer, Ali; Bek, Bülent

    2007-11-01

    This study examined the surface microhardness of four kinds of resin composites with different fillers and resin matrices. Ten specimens of 2 mm thickness and 4 mm diameter of each resin composite were polymerized using a halogen light, a blue light-emitted diode, and a plasma arc unit. Microhardness evaluation was performed at top and bottom surfaces for each specimen using a Vickers microhardness tester. Furthermore, morphologies of the polished top surfaces of composites cured with blue light-emitted diode were observed using scanning electron microscopy. Results indicated that composites cured with halogen or blue light-emitted diode light yielded higher microhardness values, although it also appeared to depend on the type of composite cured. Plasma arc curing according to manufacturer's instructions yielded the lowest microhardness values for all the materials. Among the materials tested, the nanofilled resin composite displayed the highest microhardness values for each curing regime.

  7. Fabrication of a resin appliance with alloy components using digital technology without an analog impression.

    PubMed

    Al Mortadi, Noor; Jones, Quentin; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J

    2015-11-01

    The aim of this study was to fabricate a resin appliance incorporating "wire" components without the use of an analog impression and dental casts using an intraoral scanner and computer technology to build the appliance. This unique alignment of technology offers an enormous reduction in the number of fabrication steps when compared with more traditional methods of manufacture. The prototype incorporated 2 Adams clasps and a fitted labial bow. The alloy components were built from cobalt-chromium in an initial powdered form using established digital technology methods and then inserted into a build of a resin base plate. This article reports the first known use of computer-aided design and additive manufacture to fabricate a resin and alloy appliance, and constitutes proof of the concept for such manufacturing. The original workflow described could be seen as an example for many other similar appliances, perhaps with active components. The scan data were imported into an appropriate specialized computer-aided design software, which was used in conjunction with a force feedback (haptic) interface. The appliance designs were then exported as stereolithography files and transferred to an additive manufacturing machine for fabrication. The results showed that the applied techniques may provide new manufacturing and design opportunities in orthodontics and highlights the need for intraoral-specific additive manufacture materials to be produced and tested for biocompatibility compliance. In a trial, the retainer was fitted orally and judged acceptable by the clinician according to the typical criteria when placing such appliances in situ.

  8. Epoxy hydantoins as matrix resins

    NASA Technical Reports Server (NTRS)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  9. Phthalonitrile Resins and Preparation Thereof.

    DTIC Science & Technology

    The present invention pertains generally to organic synthesis and in particular to a rapid synthesis of a diether-linked polyphthalonitrile resin by polymerizing a phthalonitrile monomer with a primary amine.

  10. (abstract) Studies on AB(sub 5) Metal Hydride Alloys with Sn Additives

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Surampudi, S.; Stefano, S. Di; Halpert, G.; Witham, C.; Fultz, B.

    1994-01-01

    The use of metal hydrides as negative electrodes in alkaline rechargeable cells is becoming increasingly popular, due to several advantages offered by the metal hydrides over conventional anode materials (such as Zn, Cd) in terms of specific energy environmental cycle life and compatibility. Besides, the similarities in the cell voltage pressure characteristics, and charge control methods of the Ni-MH cells to the commonly used Ni-Cd point to a projected take over of 25% of the Ni-Cd market for consumer electronics by the Ni-MH cells in the next couple of years. Two classes of metal hydrides alloys based on rare earth metals (AB(sub 5)) and titanium (AB(sub 2)) are being currently developed at various laboratories. AB(sub 2) alloys exhibit higher specific energy than the AB(sub 5) alloys but the state of the art commercial Ni-MH cells are predominately manufactured using AB(sub 5) alloys.

  11. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  12. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  13. Microgravity Manufacturing Via Fused Deposition

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Griffin, M. R.

    2003-01-01

    Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

  14. Separation and purification of flavonoid from Taxus remainder extracts free of taxoids using polystyrene and polyamide resin.

    PubMed

    Ruan, Xiao; Zhan, Li-mei; Gao, Xing-xing; Yan, Liu-ye; Zhang, Huan; Zhu, Zhi-yong; Wang, Qiang; Jiang, De-an

    2013-06-01

    An efficient separation process of flavonoid from Taxus wallichiana var. mairei remainder extracts free of taxoids was developed in this study. AB-8 macroporous resin and polyamide resin offered the fine adsorption capacity, and its adsorption rate at 30°C fitted well to the Langmuir and Freundich isotherms. Resin dynamic adsorption and desorption experiments were conducted to optimize the separation process of total flavonoids from T. wallichiana var. mairei remainder extracts free of taxoids. The optimum parameters for adsorption by AB-8 resin were as follows: (1) the concentration of flavonoids in a sample solution of 5.61 mg/mL with a processing volume of 2 bed volume (BV) (60 mL); (2) for desorption, ethanol-water (80:20, v/v), with 6 BV as an eluent at a flow rate of 2 BV/h. After a one-run treatment with AB-8 resin, the content of flavonoids was increased 5.10-fold from 4.05 to 20.65%. The optimum parameters for adsorption by polyamide resin were as follows: processing volume of 2 BV (30 mL); for desorption, ethanol-water (70:30, v/v), with 8 BV as an eluent at a flow rate of 2 BV/h. After one-run treatment with polyamide resin, the content of total flavonoids increased from 20.65 to 65.21%. The method will provide a potential approach for large-scale separation and purification of flavonoid for its wide pharmaceutical use.

  15. A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.

    PubMed

    Wang, Lu; Dembecki, Jill; Jaffe, Neil E; O'Mara, Brian W; Cai, Hui; Sparks, Colleen N; Zhang, Jian; Laino, Sarah G; Russell, Reb J; Wang, Michelle

    2013-09-20

    Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy

  16. At-line validation of a process analytical technology approach for quality control of melamine-urea-formaldehyde resin in composite wood-panel production using near infrared spectroscopy.

    PubMed

    Meder, Roger; Stahl, Wolfgang; Warburton, Paul; Woolley, Sam; Earnshaw, Scott; Haselhofer, Klaus; van Langenberg, Ken; Ebdon, Nick; Mulder, Roger

    2017-01-01

    The reactivity of melamine-urea-formaldehyde resins is of key importance in the manufacture of engineered wood products such as medium density fibreboard (MDF) and other wood composite products. Often the MDF manufacturing plant has little available information on the resin reactivity other than details of the resin specification at the time of batch manufacture, which often occurs off-site at a third-party resin plant. Often too, fresh resin on delivery at the MDF plant is mixed with variable volume of aged resin in storage tanks, thereby rendering any specification of the fresh resin batch obsolete. It is therefore highly desirable to develop a real-time, at-line or on-line, process analytical technology to monitor the quality of the resin prior to MDF panel manufacture. Near infrared (NIR) spectroscopy has been calibrated against standard quality methods and against (13)C nuclear magnetic resonance (NMR) measures of molecular composition in order to provide at-line process analytical technology (PAT), to monitor the resin quality, particularly the formaldehyde content of the resin. At-line determination of formaldehyde content in the resin was made possible using a six-factor calibration with an R (2)(cal) value of 0.973, and R (2)(CV) value of 0.929 and a root-mean-square error of cross-validation of 0.01. This calibration was then used to generate control charts of formaldehyde content at regular four-hourly periods during MDF panel manufacture in a commercial MDF manufacturing plant.

  17. Removal of cadmium from fish sauce using chelate resin.

    PubMed

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  18. Effects of Mouth Rinses on Color Stability of Resin Composites

    PubMed Central

    Celik, Cigdem; Yuzugullu, Bulem; Erkut, Selim; Yamanel, Kıvanc

    2008-01-01

    Objectives The aim of this study was to evaluate the effects of 3 commercially available mouth rinses on the color stability of 4 different resin-based composite restorative materials. Methods Forty disc-shaped specimens (10x2 mm) were prepared from each of the following materials: A nanofill composite Filtek Supreme XT (3M/Espe, St. Paul, MN, USA); a packable low-shrinkage composite, AeliteLS Packable (BISCO, Inc, Shaumburg, IL, USA); nanoceramic composite resin Ceram-X (Dentsply, Konstanz, Germany); a microhybrid composite, and Aelite All-Purpose Body (BISCO). The specimens were then incubated in distilled water at 37°C for 24 hours. The baseline color values (L*, a*, b*) of each specimen were measured with a colorimeter according to the CIELAB color scale. After baseline color measurements, 10 randomly selected specimens from each group were immersed in 1 of the 3 mouth rinses and distilled water as control. The specimens were stored in 20 mL of each mouth rinse (Oral B Alcohol-free, Listerine Tooth Defense Anti-cavity Fluoride Rinse and Klorhex) for 12 hours. After immersion, the color values of all specimens were remeasured, and the color change value ΔE*ab was calculated. Data were analyzed using a 2-way analysis of variance at a significance level of .05. Results All specimens displayed color changes after immersion, and there was a statistically significant difference among restorative materials and mouth rinses (P<.05); however, the change was not visually perceptible (ΔE*ab<3.3). The interaction between the effect of mouth rinses and type of restorative materials was not statistically significant (P>.05). Conclusions It may be concluded that although visually nonperceptible, all resin restorative materials tested showed a color difference after immersion in different mouth rinses. PMID:19212530

  19. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the

  20. Ab Initio and Ab Exitu No-Core Shell Model

    SciTech Connect

    Vary, J P; Navratil, P; Gueorguiev, V G; Ormand, W E; Nogga, A; Maris, P; Shirokov, A

    2007-10-02

    We outline two complementary approaches based on the no core shell model (NCSM) and present recent results. In the ab initio approach, nuclear properties are evaluated with two-nucleon (NN) and three-nucleon interactions (TNI) derived within effective field theory (EFT) based on chiral perturbation theory (ChPT). Fitting two available parameters of the TNI generates good descriptions of light nuclei. In a second effort, an ab exitu approach, results are obtained with a realistic NN interaction derived by inverse scattering theory with off-shell properties tuned to fit light nuclei. Both approaches produce good results for observables sensitive to spin-orbit properties.

  1. The evaluation of dual cement resins in orthodontic bonding.

    PubMed

    Smith, R T; Shivapuja, P K

    1993-05-01

    Dual-cement resins are composite resins that are both light activated and chemically cured. They can be cured completely with a visible light source or by the catalyst and base reaction of the material. With the control of setting time, dual cements appear to offer clinicians advantages in orthodontic bonding. The purposes of the present research are to compare various dual cements in regard to orthodontic bonding and to evaluate them in relation to currently used chemically cured and light-cured composite resins for bonding stainless steel mesh-backed orthodontic brackets. Seven currently available orthodontic bonding systems (three light cured and four chemically cured) and three dual cements were evaluated. Each of the 10 groups contained 15 noncarious mandibular incisors. Mandibular incisor brackets were bonded to the teeth in accordance with the manufacturer's recommendation. After bonding, the teeth were stored for 5 days in water at 37 degrees C. An Instron machine (Instron Corp., Canton, Mass.) was used to test samples. All samples were compared with Concise orthodontic bonding composite (3M, St. Paul, Minn.). The results of this investigation show that it is possible to bond solid, mesh-backed metal orthodontic brackets to teeth with a dual cement. The shear bond strengths of the dual cements, as tested in the laboratory, should be adequate to withstand normal orthodontic forces. Increased control of the setting time of the dual cements will allow the clinician more time to correctly position brackets and to remove excess resin before curing. In addition, the clinician can be assured of complete polymerization with the chemical properties of the dual cement resins.

  2. ON THE DURABILITY OF RESIN-DENTIN BONDS: IDENTIFYING THE WEAKEST LINKS

    PubMed Central

    Zhang, Zihou; Beitzel, Dylan; Mutluay, Mustafa; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability. PMID:26169318

  3. Effect of laser preparation on bond strength of a self-adhesive flowable resin.

    PubMed

    Yazici, A Rüya; Agarwal, Ishita; Campillo-Funollet, Marc; Munoz-Viveros, Carlos; Antonson, Sibel A; Antonson, Donald E; Mang, Thomas

    2013-01-01

    The aim of this in vitro study was to evaluate the effect of laser treatment on shear bond strength of a self-adhesive flowable resin composite to human dentin. Eighty extracted sound human molar teeth were used for the study. The teeth were sectioned mesiodistally and embedded in acrylic blocks. The dentin surfaces were ground wet with 600-grit silicon carbide (SiC) paper. They were randomly divided into two preparation groups: laser (Er:YAG laser, with 12 Hz, 350 mJ energy) and control (SiC). Each group was then divided into two subgroups according to the flowable resin composite type (n = 20). A self-adhesive flowable (Vertise Flow) and a conventional flowable resin (Premise Flow) were used. Flowable resin composites were applied according to the manufacturer's recommendations using the Ultradent shear bond Teflon mold system. The bonded specimens were stored in water at 37 °C for 24 h. Shear bond strength was tested at 1 mm/min. The data were logarithmically transformed and analyzed using two-way analysis of variance and Student-Newman-Keul's test at a significance level of 0.05. The self-adhesive flowable resin showed significantly higher bond strength values to laser-prepared surfaces than to SiC-prepared surfaces (p < 0.001). The conventional flowable resin did not show such differences (p = 0.224). While there was a significant difference between the two flowable resin composites in SiC-prepared surfaces (p < 0.001), no significant difference was detected in laser-prepared surfaces (p = 0.053). The bond strength of a self-adhesive flowable resin composite differs according to the type of dentin surface preparation. Laser treatment increased the dentin bonding values of the self-adhesive flowable resin.

  4. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Aleman, S.; Hamm, L.; Smith, F.

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  7. 21 CFR 177.1585 - Polyestercarbonate resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... intrinsic viscosity of the polyestercarbonate resins shall be a minimum of 0.44 deciliter per gram, as determined by a method entitled “Intrinsic Viscosity (IV) of Lexan ® Polyestercarbonate Resin by a...

  8. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry.

    PubMed

    Chen, Yao; Zhang, Weijie; Zhao, Ting; Li, Fang; Zhang, Min; Li, Jing; Zou, Ye; Wang, Wei; Cobbina, Samuel J; Wu, Xiangyang; Yang, Liuqing

    2016-03-01

    In this study, the adsorption/desorption characteristics of mulberry anthocyanins (MA) on five types of macroporous resins (XAD-7HP, AB-8, HP-20, D-101 and X-5) were evaluated, XAD-7HP and AB-8 showed higher adsorption/desorption capacities. On the basis of static adsorption test, XAD-7HP and AB-8 resins were selected for kinetics, isotherms and thermodynamics. The adsorption mechanism indicated that the process was better explained by pseudo-first-order kinetics and the Langmuir isotherm model, and the thermodynamics tests showed that the processes were exothermic, spontaneous and thermodynamically feasible. Dynamic tests were performed on a column packed with XAD-7HP and AB-8, and breakthrough volume was reached at 15 and 14 bed volumes of MA solution, respectively. The purity of the fraction by 40% ethanol elution on XAD-7HP reached 93.6%, from which cyanidin-3-glucoside and cyanidin-3-rutinoside were identified by HPLC-ESI-MS/MS. The method could be used to prepare high purity anthocyanins from mulberry fruits as well as other plants.

  9. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  10. 21 CFR 177.1585 - Polyestercarbonate resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 10. (i) Polyestercarbonate resins, when extracted with distilled water at reflux temperature for 6... water at reflux temperature for 6 hours, shall yield total nonvolatile extractives not to exceed 0.005 percent by weight of the resins. (iii) Polyestercarbonate resins, when extracted with n-heptane at...

  11. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyurethane resins. 177.1680 Section 177.1680... Components of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of...

  12. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  13. SRM filament wound case resin characterization studies

    NASA Technical Reports Server (NTRS)

    Chou, L. W.

    1985-01-01

    The amine cured epoxy wet winding resin used in fabrication of the SRM filament wound case is analyzed. High pressure liquid chromatography (HPSC) is utilized extensively to study lot-to-lot variation in both resin and curing agent. The validity of quantitative hplc methodology currently under development in-process resin/catalyst assay is assessed.

  14. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  15. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  16. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  17. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  18. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  19. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  20. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  1. Dimensional Stability of Complex Shapes Manufactured by the VARTM Process

    NASA Technical Reports Server (NTRS)

    Hubert, Pascal; Grimsley, Brian W.; Cano, Roberto J.; Pipes, R. Byron

    2002-01-01

    The vacuum assisted resin transfer molding (VARTM) process is a cost effective, innovative method that is being considered for manufacture of large aircraft-quality components where high mechanical properties and dimensional tolerance are essential. In the present work, carbon fiber SAERTEX fabric/SI-ZG-5A epoxy resin C-shaped laminates were manufactured by VARTM using different cure cycles followed by the same post-cure cycle. The final part thickness was uniform except at the corner were thinning was observed. The cure cycle selected is shown to significantly affect the part spring-in and a long cycle at 66 C followed by a 178 C post-cure produced a part with negligible spring-in.

  2. Registration of nine sorghum seed parent (A/B) lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine sorghum [Sorghum bicolor (L.) Moench] A1 cyto plasmic-genic male sterile seed parent (A) and their maintainer (B) lines [KS 133A/B, KS 134A/B, KS 135A/B, KS 136A/B, KS 137A/B, KS 138A/B, KS 139A/B, KS 140A/B and KS 141A/B] were released by the Kansas State University, Agricultural Research Cent...

  3. Replica mold for nanoimprint lithography from a novel hybrid resin.

    PubMed

    Lee, Bong Kuk; Hong, Lan-Young; Lee, Hea Yeon; Kim, Dong-Pyo; Kawai, Tomoji

    2009-10-06

    The use of durable replica molds with high feature resolution has been proposed as an inexpensive and convenient route for manufacturing nanostructured materials. A simple and fast duplication method, involving the use of a master mold to create durable polymer replicas as imprinting molds, has been demonstrated using both UV- and thermal nanoimprinting lithography (NIL). To obtain a high-durability replicating material, a dual UV/thermal-curable, organic-inorganic hybrid resin was synthesized using a sol-gel-based combinatorial method. The cross-linked hybrid resin exhibited high transparency to UV light and resistance to organic solvents. Molds made of this material showed good mechanical properties (Young's modulus=1.76 GPa) and gas permeability. The low viscosity of the hybrid resin (approximately 29 cP) allowed it to be easily transferred to relief nanostructures on transparent glass substrates using UV-NIL at room temperature and low pressure (0.2 MPa) over a relatively short time (80 s). A low surface energy release agent was successfully coated onto the hybrid mold surface without destroying the imprinted nanostructures, even after O2 plasma treatment. Nanostructures with feature sizes down to 80 nm were successfully reproduced using these molds in both UV- and thermal-NIL processes. After repeating 10 imprinting cycles at relatively high temperature and pressure, no detectable collapse or contamination of the replica surface was observed. These results indicate that the hybrid molds could tolerate repeated UV- and thermal-NIL processes.

  4. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  5. Variations in Manufacturing Processes 155 mm Combustible Cartridge Case

    DTIC Science & Technology

    1983-08-01

    number) Spiral wrap Talc Accretion Molded Combustibility Felting Tensile strength Nitrocellulose formulation Adhesive bonding Resin Wood cellulose ’M...preform and pressing techniques that were employed during the past century in the manufacture of three dimensional shapes from wood cellulose fibers... Kraft fibers is added to the water. 3. The mixture is beaten until the desired freeness is at- tained. 4. A measured amount of nitrocellulose fibers is

  6. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements.

    PubMed

    Rigoni, Paulo; Amaral, Flávia Lucisano Botelho do; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany

    2012-01-01

    The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2) associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2), and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite resin discs (Lliss / FGM / A2) and nanofluorapatite ceramic discs with try-in pastes or cements were evaluated according to the Vita Classical shade guide by a digital spectrophotometer (Micro EspectroShade, MHT) immediately after placing the try-in pastes or resin cements between composite resin discs and ceramic discs. Other evaluations were performed at 2, 5, and 6 day intervals after cementation with the resin cements. All ceramic discs that received try-in pastes presented an A2 shade. There was no statistical difference in the shade of the ceramic specimens fixed with different cements at the different intervals, as evaluated by the Friedman test (p > 0.05). Two try-in pastes presented shade compatibility with those recommended by the manufacturers. There was no similarity of shades between the ceramic discs with try-in pastes and those with the respective resin cements. Shade stability was observed in ceramic discs with resin cements within the intervals evaluated.

  7. 12 CFR Appendixes A-B - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true A Appendixes A-B Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY CAPITAL Regulatory Capital Requirements Appendixes A-B...

  8. 12 CFR Appendixes A-B - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true A Appendixes A-B Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY CAPITAL Regulatory Capital Requirements Appendixes A-B...

  9. 12 CFR Appendixes A-B - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false A Appendixes A-B Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY CAPITAL Regulatory Capital Requirements Appendixes A-B...

  10. 12 CFR Appendixes A-B - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false A Appendixes A-B Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY CAPITAL Regulatory Capital Requirements Appendixes A-B...

  11. 12 CFR Appendixes A-B - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false A Appendixes A-B Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY CAPITAL Regulatory Capital Requirements Appendixes A-B...

  12. Fractionation and utilization of gossypol resin

    SciTech Connect

    Tursunov, A.K.; Dzhailov, A.T.; Fatkhullaev, E.; Sadykov, A.A.

    1985-10-01

    Gossypol resin is formed as a secondary waste product during distillation of fatty acides isolated from cottonseed oil soap stocks; it is insoluble in water but soluble in products of petroleum distillation. For fractionation, gossypol resin was saponified with caustic soda or caustic potash. Using this method, the resin was separated into unsaponifiable (21-24%) and saponifiable (76-79%) parts. Details of the individual fractions of gossypol resin are presented. The unsaponifiable fraction contains hydrocarbons, alcohols, beta-sito-sterol, beta-amyrin, and vitamin E. The fatty acid fraction of the resin is a mixture of fatty acids and lactones.

  13. Process for curing bismaleimide resins

    NASA Technical Reports Server (NTRS)

    Parker, John A. (Inventor); OTHY S.imides alone. (Inventor)

    1986-01-01

    This invention relates to vinyl pyridine group containing compounds and oligomers, their advantageous copolymerization with bismaleimide resins, and the formation of reinforced composites based on these copolymers. When vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are admixed with bismaleimides and cured to form copolymers the cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone.

  14. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  15. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  16. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.

    PubMed

    Gjoka, Xhorxhi; Gantier, Rene; Schofield, Mark

    2017-01-20

    The goal of this study was to adapt a batch mAb purification chromatography platform for continuous operation. The experiments and rationale used to convert from batch to continuous operation are described. Experimental data was used to design chromatography methods for continuous operation that would exceed the threshold for critical quality attributes and minimize the consumables required as compared to batch mode of operation. Four unit operations comprising of Protein A capture, viral inactivation, flow-through anion exchange (AEX), and mixed-mode cation exchange chromatography (MMCEX) were integrated across two Cadence BioSMB PD multi-column chromatography systems in order to process a 25L volume of harvested cell culture fluid (HCCF) in less than 12h. Transfer from batch to continuous resulted in an increase in productivity of the Protein A step from 13 to 50g/L/h and of the MMCEX step from 10 to 60g/L/h with no impact on the purification process performance in term of contaminant removal (4.5 log reduction of host cell proteins, 50% reduction in soluble product aggregates) and overall chromatography process yield of recovery (75%). The increase in productivity, combined with continuous operation, reduced the resin volume required for Protein A and MMCEX chromatography by more than 95% compared to batch. The volume of AEX membrane required for flow through operation was reduced by 74%. Moreover, the continuous process required 44% less buffer than an equivalent batch process. This significant reduction in consumables enables cost-effective, disposable, single-use manufacturing.

  17. Energy Use in Manufacturing

    EIA Publications

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  18. RRR Niobium Manufacturing Experience

    SciTech Connect

    Graham, Ronald A.

    2007-08-09

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  19. Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)

    NASA Astrophysics Data System (ADS)

    Möginger, B.; Kehret, L.; Hausnerova, B.; Steinhaus, J.

    2016-05-01

    3D-Printing is an efficient method in the field of additive manufacturing. In order to optimize the properties of manufactured parts it is essential to adapt the curing behavior of the resin systems with respect to the requirements. Thus, effects of resin composition, e.g. due to different additives such as thickener and curing agents, on the curing behavior have to be known. As the resin transfers from a liquid to a solid glass the time dependent ion viscosity was measured using DEA with flat IDEX sensors. This allows for a sensitive measurement of resin changes as the ion viscosity changes two to four decades. The investigated resin systems are based on the monomers styrene and HEMA. To account for the effects of copolymerization in the calculation of the reaction kinetics it was assumed that the reaction can be considered as a homo-polymerization having a reaction order n≠1. Then the measured ion viscosity curves are fitted with the solution of the reactions kinetics - the time dependent degree of conversion (DC-function) - for times exceeding the initiation phase representing the primary curing. The measured ion viscosity curves can nicely be fitted with the DC-function and the determined fit parameters distinguish distinctly between the investigated resin compositions.

  20. Phenoxy resins containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    As part of an effort on tougher/solvent resistant matrix resins for composites, research was directed towards exploring methods to improve the solvent resistance of linear amorphous thermoplastics. Ethyl reactive groups were placed on the ends of oligomers and pendent along the polymer chain and subsequently thermally reacted to provide crosslinking and thus improvement in solvent resistance. This concept is extended to another thermoplastic, a phenoxy resin. A commercially available phenoxy resin (PKHH) was systematically modified by reaction of the pendent hydroxyl groups on the phenoxy resin with various amounts of 4-ethynylbenzoyl chloride. As the pendent ethynyl group content in the phenoxy resin increased, the cured resin exhibited a higher glass transition temperature, better solvent resistance and less flexibility. The solvent resistance was further improved by correcting a low molecular weight diethynyl compound, 2,2-bis(4-ethynylbenzoyloxy-4'-phenyl)propane, with a phenoxy resin containing pendent ethynyl groups.

  1. Connecting American Manufacturers (CAM)

    DTIC Science & Technology

    2013-09-01

    AFRL-RX-WP-TR-2013-0221 CONNECTING AMERICAN MANUFACTURERS (CAM) Nainesh B. Rathod Imaginestics, LLC SEPTEMBER 2013...SUBTITLE CONNECTING AMERICAN MANUFACTURERS (CAM) 5a. CONTRACT NUMBER FA8650-12-C-5515 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63680F 6...Connecting American Manufacturing (CAM) initiative sought to improve participation of small manufacturers in building components for the military by

  2. Poly(ethylene oxide)-Assisted Macromolecular Self-Assembly of Lignin in ABS Matrix for Sustainable Composite Applications

    DOE PAGES

    Akato, Kokouvi M.; Tran, Chau D.; Chen, Jihua; ...

    2015-11-05

    Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (Ea) for its relaxationmore » but caused stiffening of the soft phase and increased its Ea. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS while reducing its carbon footprint.« less

  3. Poly(ethylene oxide)-Assisted Macromolecular Self-Assembly of Lignin in ABS Matrix for Sustainable Composite Applications

    SciTech Connect

    Akato, Kokouvi M.; Tran, Chau D.; Chen, Jihua; Naskar, Amit K.

    2015-11-05

    Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (Ea) for its relaxation but caused stiffening of the soft phase and increased its Ea. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS while reducing its carbon footprint.

  4. The Influence of Polymerization Type and Reinforcement Method on Flexural Strength of Acrylic Resin

    PubMed Central

    Fonseca, Rodrigo Borges; Kasuya, Amanda Vessoni Barbosa; Favarão, Isabella Negro; Naves, Lucas Zago; Hoeppner, Márcio Grama

    2015-01-01

    The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N = 10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement method (industrialized glass fiber (Ind), unidirectional glass fiber (Uni), short glass fiber (Short), unidirectional and short glass fiber (Uni-Short), thermoplastic resin fiber (Tpl), and steel wire (SW)). Reinforced bars (25 × 2 × 2 mm) were tested in flexural strength (0.5 mm/min) and examined by scanning electron microscopy (SEM). Data (MPa) were submitted to factorial analysis, ANOVA, and Tukey and T-student tests (a = 5%) showing significant interaction (P = 0.008), for SC: Uni (241.71 ± 67.77)a, Uni-Short (221.05 ± 71.97)a, Ind (215.21 ± 46.59)ab, SW (190.51 ± 31.49)abc, Short (156.31 ± 28.76)bcd, Tpl (132.51 ± 20.21)cd, Control SC (101.47 ± 19.79)d and for HC: Ind (268.93 ± 105.65)a, Uni (215.14 ± 67.60)ab, Short (198.44 ± 95.27)abc, Uni-Short (189.56 ± 92.27)abc, Tpl (161.32 ± 62.51)cd, SW (106.69 ± 28.70)cd, and Control HC (93.39 ± 39.61)d. SEM analysis showed better fiber-resin interaction for HC. Nonimpregnated fibers, irrespective of their length, tend to improve fracture strength of acrylics. PMID:25879079

  5. The influence of polymerization type and reinforcement method on flexural strength of acrylic resin.

    PubMed

    Fonseca, Rodrigo Borges; Kasuya, Amanda Vessoni Barbosa; Favarão, Isabella Negro; Naves, Lucas Zago; Hoeppner, Márcio Grama

    2015-01-01

    The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N=10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement method (industrialized glass fiber (Ind), unidirectional glass fiber (Uni), short glass fiber (Short), unidirectional and short glass fiber (Uni-Short), thermoplastic resin fiber (Tpl), and steel wire (SW)). Reinforced bars (25×2×2 mm) were tested in flexural strength (0.5 mm/min) and examined by scanning electron microscopy (SEM). Data (MPa) were submitted to factorial analysis, ANOVA, and Tukey and T-student tests (a=5%) showing significant interaction (P=0.008), for SC: Uni (241.71±67.77)a, Uni-Short (221.05±71.97)a, Ind (215.21±46.59)ab, SW (190.51±31.49)abc, Short (156.31±28.76)bcd, Tpl (132.51±20.21)cd, Control SC (101.47±19.79)d and for HC: Ind (268.93±105.65)a, Uni (215.14±67.60)ab, Short (198.44±95.27)abc, Uni-Short (189.56±92.27)abc, Tpl (161.32±62.51)cd, SW (106.69±28.70)cd, and Control HC (93.39±39.61)d. SEM analysis showed better fiber-resin interaction for HC. Nonimpregnated fibers, irrespective of their length, tend to improve fracture strength of acrylics.

  6. Designing using manufacturing features

    NASA Astrophysics Data System (ADS)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  7. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  8. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    SciTech Connect

    J.G. Hubrig; G.H. Biallas

    2005-05-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  9. Generative design drives manufacturing

    NASA Astrophysics Data System (ADS)

    Logan, Frank A.

    1989-04-01

    This paper reviews the collaboration that is being forced on Engineering and Manufacturing as they move from the manual translation of Engineering drawings toward automatic decoding of Product Data Definitions (PDDs), a pre-requisite to integrated manufacture. Based on case studies and implementation experience gained over the last decade, it defines the step-by-step evolution of a generative design capability that will drive manufacturing logic. It reviews the changing relationship of Engineering to Manufacturing and Industrial Engineering and the challenge this presents to manufacturing management in its struggle to remain competitive in both domestic and international markets.

  10. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  12. Synthesis, characterization and adsorption properties of diethylenetriamine-modified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution.

    PubMed

    Huang, Jianhan; Jin, Xiaoying; Mao, Jinglin; Yuan, Bin; Deng, Rujie; Deng, Shuguang

    2012-05-30

    We report an effective approach for tailoring the pore textural properties and surface polarity of a hypercrosslinked resin to enhance its adsorption capacity and selectivity for removing salicylic acid from aqueous solution. Four hypercrosslinked resins were synthesized by controlling the reaction time of the self Friedel-Crafts reaction of chloromethylated polystyrene-co-divinylbenzene, and then modified with diethylenetriamine to adjust their surface polarity. The resins were characterized with N(2) adsorption for pore textural properties, Fourier transform infrared spectroscopy (FT-IR) for surface functional groups, chemical analysis for residual chlorine content and weak basic exchange capacity. Adsorption equilibrium, kinetics and breakthrough performance were determined for the removal of salicylic acid from aqueous solution on a selected resin HJ-M01. The equilibrium adsorption capacity of salicylic acid on HJ-M01 is significantly higher than that on its precursor HJ-11 and a few commercial adsorbents including AB-8, XAD-4 and XAD-7. The dynamic adsorption capacity of salicylic acid on HJ-M01 was found to be 456.4 mg/L at a feed concentration of 1000 mg/L and 294 K. The used resin could be fully regenerated with 1% sodium hydroxide solution. The hypercrosslinked resins being developed were promising alternatives to commercial adsorbents for removing salicylic acid and other volatile organic compounds (VOCs) from aqueous solution.

  13. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    SciTech Connect

    Menchhofer, Paul A.; Johnson, Joseph E.; Lindahl, John M.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  14. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process

    NASA Astrophysics Data System (ADS)

    Hsiao, Kuang-Ting; Devillard, Mathieu; Advani, Suresh G.

    2004-05-01

    In the vacuum assisted resin transfer moulding (VARTM) process, using a flow distribution network such as flow channels and high permeability fabrics can accelerate the resin infiltration of the fibre reinforcement during the manufacture of composite parts. The flow distribution network significantly influences the fill time and fill pattern and is essential for the process design. The current practice has been to cover the top surface of the fibre preform with the distribution media with the hope that the resin will flood the top surface immediately and penetrate through the thickness. However, this approach has some drawbacks. One is when the resin finds its way to the vent before it has penetrated the preform entirely, which results in a defective part or resin wastage. Also, if the composite structure contains ribs or inserts, this approach invariably results in dry spots. Instead of this intuitive approach, we propose a science-based approach to design the layout of the distribution network. Our approach uses flow simulation of the resin into the network and the preform and a genetic algorithm to optimize the flow distribution network. An experimental case study of a co-cured rib structure is conducted to demonstrate the design procedure and validate the optimized flow distribution network design. Good agreement between the flow simulations and the experimental results was observed. It was found that the proposed design algorithm effectively optimized the flow distribution network of the part considered in our case study and hence should prove to be a useful tool to extend the VARTM process to manufacture of complex structures with effective use of the distribution network layup.

  15. Evaluation of a Novel Methacrylate-Based Protein A Resin for the Purification of Immunoglobulins and Fc-Fusion Proteins

    PubMed Central

    McCaw, Tyler R; Koepf, Edward K; Conley, Lynn

    2014-01-01

    Protein A affinity chromatography is a central part of most commercial monoclonal antibody and Fc-fusion protein purification processes. In the last couple years an increasing number of new Protein A technologies have emerged. One of these new Protein A technologies consists of a novel, alkaline-tolerant, Protein A ligand coupled to a macroporous polymethacrylate base matrix that has been optimized for immunoglobulin (Ig) G capture. The resin is interesting from a technology perspective because the particle size and pore distribution of the base beads are reported to have been optimized for high IgG binding and fast mass transfer, while the Protein A ligand has been engineered for enhanced alkaline tolerance. This resin was subjected to a number of technical studies including evaluating dynamic and static binding capacities, alkaline stability, Protein A leachate propensity, impurity clearance, and pressure–flow behavior. The results demonstrated similar static binding capacities as those achieved with industry standard agarose Protein A resins, but marginally lower dynamic binding capacities. Removal of impurities from the process stream, particularly host cell proteins, was molecule dependent, but in most instances matched the performance of the agarose resins. This resin was stable in 0.1 M NaOH for at least 100 h with little loss in binding capacity, with Protein A ligand leakage levels comparable to values for the agarose resins. Pressure–flow experiments in lab-scale chromatography columns demonstrated minimal resin compression at typical manufacturing flow rates. Prediction of resin compression in manufacturing scale columns did not suggest any pressure limitations upon scale up. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1125–1136, 2014 PMID:25045034

  16. Evaluation of a novel methacrylate-based Protein A resin for the purification of immunoglobulins and Fc-fusion proteins.

    PubMed

    McCaw, Tyler R; Koepf, Edward K; Conley, Lynn

    2014-01-01

    Protein A affinity chromatography is a central part of most commercial monoclonal antibody and Fc-fusion protein purification processes. In the last couple years an increasing number of new Protein A technologies have emerged. One of these new Protein A technologies consists of a novel, alkaline-tolerant, Protein A ligand coupled to a macroporous polymethacrylate base matrix that has been optimized for immunoglobulin (Ig) G capture. The resin is interesting from a technology perspective because the particle size and pore distribution of the base beads are reported to have been optimized for high IgG binding and fast mass transfer, while the Protein A ligand has been engineered for enhanced alkaline tolerance. This resin was subjected to a number of technical studies including evaluating dynamic and static binding capacities, alkaline stability, Protein A leachate propensity, impurity clearance, and pressure-flow behavior. The results demonstrated similar static binding capacities as those achieved with industry standard agarose Protein A resins, but marginally lower dynamic binding capacities. Removal of impurities from the process stream, particularly host cell proteins, was molecule dependent, but in most instances matched the performance of the agarose resins. This resin was stable in 0.1 M NaOH for at least 100 h with little loss in binding capacity, with Protein A ligand leakage levels comparable to values for the agarose resins. Pressure-flow experiments in lab-scale chromatography columns demonstrated minimal resin compression at typical manufacturing flow rates. Prediction of resin compression in manufacturing scale columns did not suggest any pressure limitations upon scale up.

  17. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used... fluoride resins consist of basic resins produced by the polymerization of vinylidene fluoride. (b)...

  18. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  19. Advanced thermoplastic resins, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  20. Petroleum resins and their production

    SciTech Connect

    Luvinh, Q.

    1989-04-25

    A process is described for the production of petroleum resins compatible with base polymers in hot melt formulations and having a softening point of from about 60/sup 0/C. to about 120/sup 0/C. and Gardner color of about 4 or less, comprising copolymerizing using a Friedel-Crafts catalyst. The mixture is substantially free form cyclopentadiene and dicyclopentadiene. This patent also describes a resin consisting essentially of a copolymer containing from 5 to 80 wt. % of units derived from an olefinically unsaturated aromatic compound form 5 to 80 wt. % of units derived from C/sub 5/ olefines or diolefines or C/sub 6/ olefines diolefines or a mixture of C/sub 5/ and C/sub 6/ olefines or diolefines and from 7 to 45 wt. % of units derived from a terpene.

  1. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Flame-resistant reinforced bodies are disclosed which are composed of reinforcing fibers, filaments or fabrics in a cured body of bis- and tris-imide resins derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, or of addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride.

  2. Synthesis of Improved Polyester Resins.

    DTIC Science & Technology

    1979-07-05

    peroxides as initiator. The peroxides used were benzoyl peroxide , cumene hydroperoxide, t-butyl peroxybenzoate and 2,5... benzoyl peroxide , while allyl type polyester resins require a higher temperature cure and use a peroxide such as dicumyl peroxide . Numerous other peroxides ...using MEKP (methylethylketone peroxide ) or BZP ( benzoyl peroxide ) catalysts. 47 01 "I 4 C C~ >~> .0 00 Q) . x> x (. C. a, 0 + 0) 0. 0 0 a,. E S- >0>

  3. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  4. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  5. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  6. Development of tough, moisture resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  7. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    SciTech Connect

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  8. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.

    PubMed

    Lee, I Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2006-12-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 degrees C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results.

  9. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.

  10. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements.

    PubMed

    Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm(2); HPM: 15.0 and 30.4 J/cm(2); XPM: 9.5, 19.3, and 29.7 J/cm(2)) (n = 17). Vickers hardness (HV ) and indentation modulus (EIT) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p ≤ 0.0001). Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  11. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    PubMed Central

    Peutzfeldt, Anne; Lussi, Adrian

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2) (n = 17). Vickers hardness (HV) and indentation modulus (EIT) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p ≤ 0.0001). Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement. PMID:28044129

  12. Double-Vacuum-Bag Process for Making Resin-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bradford, Larry J.

    2007-01-01

    A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.

  13. Repair bond strength of dual-cured resin composite core buildup materials.

    PubMed

    El-Deeb, Heba A; Ghalab, Radwa M; Elsayed Akah, Mai M; Mobarak, Enas H

    2016-03-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers' instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm(2)) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64-86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage.

  14. Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing

    PubMed Central

    de OLIVEIRA, Gabriela Ulian; MONDELLI, Rafael Francisco Lia; CHARANTOLA RODRIGUES, Marcela; FRANCO, Eduardo Batista; ISHIKIRIAMA, Sérgio Kiyoshi; WANG, Linda

    2012-01-01

    Objectives Nanofilled composite resins are claimed to provide superior mechanical properties compared with microhybrid resins. Thus, the aim of this study was to compare nanofilled with microhybrid composite resins. The null hypothesis was that the size and the distribution of fillers do not influence the mechanical properties of surface roughness and wear after simulated toothbrushing test. Material and methods Ten rectangular specimens (15 mm x 5 mm x 4 mm) of Filtek Z250 (FZ2), Admira (A), TPH3 (T),Esthet-X (EX), Estelite Sigma (ES), Concept Advanced (C), Grandio (G) and Filtek Z350 (F) were prepared according to manufacturer's instructions. Half of each top surface was protected with nail polish as control surface (not brushed) while the other half was assessed with five random readings using a roughness tester (Ra). Following, the specimens were abraded by simulated toothbrushing with soft toothbrushes and slurry comprised of 2:1 water and dentifrice (w/w). 100,000 strokes were performed and the brushed surfaces were re-analyzed. Nail polish layers were removed from the specimens so that the roughness (Ra) and the wear could be assessed with three random readings (µm). Data were analyzed by ANOVA and Tukey's multiple-comparison test (α=0.05). Results Overall outcomes indicated that composite resins showed a significant increase in roughness after simulated toothbrushing, except for Grandio, which presented a smoother surface. Generally, wear of nanofilled resins was significantly lower compared with microhybrid resins. Conclusions As restorative materials suffer alterations under mechanical challenges, such as toothbrushing, the use of nanofilled materials seem to be more resistant than microhybrid composite resins, being less prone to be rougher and worn. PMID:23138735

  15. Comparison of fatigue and static physical properties of plaques made with various resins constructed using a vacuum infusion process and conventional lay-up method

    SciTech Connect

    Herzog, D.J.; Ross, L.R.; Brown, T.B.; Kastl, M.C.

    1996-11-01

    The resin infusion molding process is one of the new techniques used to reduce VOC emissions and manufacture a composite typically with 60--80% reinforcement. A database of the physical performance of these new composites and a comparison to the more common hand lay-up manufacturing techniques is lacking. This paper will compare the fatigue and static physical properties of plaques made with various resins using a vacuum assisted method and conventional lay-up method. Three resins were selected: a typical bisphenol A epichlorohydrin vinyl ester, a flexible isophthalic polyester, and a high performance modified vinyl ester resin. Static physical property data and fatigue data run on the three resins will be discussed. Included is a statistical analysis of the flexural and tensile fatigue performance of the panels with a high loading of reinforcement and constructed from the three resins. An analysis of the fatigue data compared to previous work at lower reinforcement levels will be done. A model will be generated to predict the fatigue performance of resins at various levels and types of reinforcements.

  16. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  17. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    DTIC Science & Technology

    2013-01-01

    Assisted Resin Transfer Molding ( VARTM ) process is applicable for fiber-reinforced polymer (FRP) composite fabrication and repair. However, VARTM in...scenario is a fully enclosed VARTM system that limits the need for laboratory or manufacturing equipment. The Bladder-Bag VARTM (BBVARTM) technique...composite fabrication, VARTM , composite repair, in-field repair 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER

  18. User's guide to resin infusion simulation program in the FORTRAN language

    NASA Technical Reports Server (NTRS)

    Weideman, Mark H.; Hammond, Vince H.; Loos, Alfred C.

    1992-01-01

    RTMCL is a user friendly computer code which simulates the manufacture of fabric composites by the resin infusion process. The computer code is based on the process simulation model described in reference 1. Included in the user's guide is a detailed step by step description of how to run the program and enter and modify the input data set. Sample input and output files are included along with an explanation of the results. Finally, a complete listing of the program is provided.

  19. Resins and Non-Portland Cements for Construction in the Cold.

    DTIC Science & Technology

    1980-09-01

    that this urethane and urethane composite (resin sand mixture) is an elastic-plastic material. After 24-hour curing at -30%C and subsequent to unconfined...climatic conditions results in concrete curing problems for construction engineers, concrete design engineers, and manufacturers of concrete...expanding and freezing water. For foundations below grade, the hydra- tion heat evolved by the curing concrete must not melt the permafrost. These conditions

  20. Manufacturing Information System.

    DTIC Science & Technology

    1983-12-22

    university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development...PAUL R. SMITH 175 South 600 East #1 Provo, Utah 84601 (801) 377-8068 CAREER OBJECTIVE: Manufacturing Engineer using skills in development and...university classroom to aid in the education and train- ing of new manufacturing engineers. , . o i . o ., . . . . . - ,’ o . -2- 1.2. NEED There is a current

  1. Industrialization of mAb production technology The bioprocessing industry at a crossroads

    PubMed Central

    2009-01-01

    Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purification technologies, promises nearly unlimited production capacity in the foreseeable future. The increase in titers has also led to a marked reduction in production costs, which could then become a relatively small fraction of sales price for future products which are sold at prices at or near current levels. The reduction of capacity and cost pressures for current state-of-the-art bulk production processes may shift the focus of process development efforts and have important implications for both plant design and product development strategies for both biopharmaceutical and contract manufacturing companies. PMID:20065641

  2. Sand control with resin and explosive

    SciTech Connect

    Dees, J.M.; Begnaud, W.J.; Sahr, N.L.

    1992-09-08

    This patent describes a method for treating a well having perforated casing to prevent solids movement through the perforations and into the wellbore. It comprises positioning a quantity of liquid resin solution such that the solution occupies the interval of the casing having perforations; positioning an explosive in proximity with the liquid resin solution; detonating the explosive; displacing the liquid resin solution remaining in the wellbore after step (c) through the perforations with a displacing fluid; and injecting a chemical solution through the perforations to cause the resin to polymerize to form a consolidated permeable matrix.

  3. Characterization of PMR polyimide resin and prepreg

    NASA Technical Reports Server (NTRS)

    Lindenmeyer, P. H.; Sheppard, C. H.

    1984-01-01

    Procedures for the chemical characterization of PMR-15 resin solutions and graphite-reinforced prepregs were developed, and a chemical data base was established. In addition, a basic understanding of PMR-15 resin chemistry was gained; this was translated into effective processing procedures for the production of high quality graphite composites. During the program the PMR monomers and selected model compounds representative of postulated PMR-15 solution chemistry were acquired and characterized. Based on these data, a baseline PMR-15 resin was formulated and evaluated for processing characteristics and composite properties. Commercially available PMR-15 resins were then obtained and chemically characterized. Composite panels were fabricated and evaluated.

  4. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  5. Manufacturing scale-up of composite fuselage crown panels

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Gessel, M.; Grant, Carroll G.; Brown, T.

    1993-01-01

    The goal of the Boeing effort under the NASA ACT program is to reduce manufacturing costs of composite fuselage structure. Materials, fabrication of complex subcomponents and assembly issues are expected to drive the costs of composite fuselage structure. Several manufacturing concepts for the crown section of the fuselage were evaluated through the efforts of a Design Build Team (DBT). A skin-stringer-frame intricate bond design that required no fasteners for the panel assembly was selected for further manufacturing demonstrations. The manufacturing processes selected for the intricate bond design include Advanced Tow Placement (ATP) for multiple skin fabrication, resin transfer molding (RTM) of fuselage frames, innovative cure tooling, and utilization of low-cost material forms. Optimization of these processes for final design/manufacturing configuration was evaluated through the fabrication of several intricate bond panels. Panels up to 7 ft. by 10 ft. in size were fabricated to simulate half scale production parts. The qualitative and quantitative results of these manufacturing demonstrations were used to assess manufacturing risks and technology readiness for production.

  6. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  7. Monitoring of vacuum assisted resin transfer moulding (VARTM) process with superimposed Fiber-Bragg-gratings

    NASA Astrophysics Data System (ADS)

    Triollet, S.; Robert, L.; Marin, E.; Ouerdane, Y.

    2011-05-01

    We report the instrumentation of a manufacturing composite process using an optical fiber sensor based on Bragg gratings. The sensor is made of superimposed Long Period (LPG) and short period (FBG) Bragg gratings written in the same fiber section. The monitoring of the process needs simultaneous measurements of temperature and strain. It has been shown that these two solicitations can be determined and discriminated with a superimposed FBG/LPG sensor [1]. In this paper we present the device based on the dual superimposed gratings. The sensor is embedded in a composite specimen manufactured by Vacuum Assisted Resin Transfer Moulding (VARTM) process for monitoring purpose.

  8. Plasmid DNA manufacturing technology.

    PubMed

    Carnes, Aaron E; Williams, James A

    2007-01-01

    Today, plasmid DNA is becoming increasingly important as the next generation of biotechnology products (gene medicines and DNA vaccines) make their way into clinical trials, and eventually into the pharmaceutical marketplace. This review summarizes recent patents and patent applications relating to plasmid manufacturing, in the context of a comprehensive description of the plasmid manufacturing intellectual property landscape. Strategies for plasmid manufacturers to develop or in-license key plasmid manufacturing technologies are described with the endpoint of efficiently producing kg quantities of plasmid DNA of a quality that meets anticipated European and FDA quality specifications for commercial plasmid products.

  9. Manufacturing with the Sun

    NASA Technical Reports Server (NTRS)

    Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.

    1991-01-01

    Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.

  10. Color change in acrylic denture base resin reinforced with wire mesh and glass cloth.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2003-12-01

    In this study, the L*a*b* color system as a color system and light transmittance of the denture base resin reinforced with wire mesh and glass cloth were measured, and the color difference (deltaE*ab) was calculated using L*, a* and b* values which were measured both on a white calibration plate and on a null background. The thicknesses of test specimens, which were reinforced with wire mesh and glass cloth 0.5 and 1.0 mm below the surface, were 3 and 5 mm. L*, a* and b* values of wire mesh reinforcing specimens decreased in comparison with the non-reinforcing specimens (p<0.05). L* values of glass cloth-reinforcing specimens increased compared with the non-reinforcing specimens (p<0.05). The glass cloth is an effective reinforcing material and an aesthetically important property of denture base resin, since wire mesh makes the resin appear darker with the background condition greatly altering the color, while glass cloth makes the resin lighter.

  11. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  12. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... condensation of xylene-formaldehyde resin and 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins, to... include resins produced by the condensation of allyl ether of mono-, di-, or trimethylol phenol and...

  13. Development of sustained release fast-disintegrating tablets using various polymer-coated ion-exchange resin complexes.

    PubMed

    Jeong, Seong Hoon; Park, Kinam

    2008-04-02

    Complex formation between drugs and ion-exchange resins was investigated and the effects of coating by various aqueous polymeric dispersions on the complexes were evaluated for developing new sustained-release fast-disintegrating tablets (FDTs). Complexes of ion-exchange resin and dextromethorphan, a model drug, were prepared using different particle sizes of the resins. Aqueous colloidal dispersions of ethylcellulose (EC) and poly(vinyl acetate) (Kollicoat SR30D) were used for fluid-bed coating. Based on drug loading, release profiles, and scanning electron microscopy (SEM) images, the coated particles were granulated with suitable tablet excipients and then compressed into the tablets. Drug release profiles and SEM pictures were compared before and after the manufacturing processes. As the particle size of resins increased, the drug loading and release rate decreased due to the reduced effective diffusion coefficient and surface area. Higher coating level decreased the release rate further. In contrast to EC, Kollicoat SR30D coated particles could be compressed into tablets without any rupture or cracks on the coating since the mechanical properties of the polymer was more resistant to the manufacturing processes. This resulted in no significant changes in release rates. SEM showed the mechanical strength of the polymers affected the morphological change after compression. When the drug release profiles were applied into Boyd model and Higuchi equation, the linear relationship was observed, indicating that the diffusion within the resin matrix is the rate-controlling step.

  14. Additive Manufacturing of Ultem Polymers and Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  15. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  16. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  17. Computer Aided Manufacturing.

    ERIC Educational Resources Information Center

    Insolia, Gerard

    This document contains course outlines in computer-aided manufacturing developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The four units of the course cover the following: (1) introduction to computer-assisted design (CAD)/computer-assisted manufacturing (CAM); (2) CAM…

  18. Additive Manufactured Product Integrity

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Wells, Doug; James, Steve; Nichols, Charles

    2017-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  19. Manufacturing Education Curriculum Project.

    ERIC Educational Resources Information Center

    Umstattd, William D.

    The Manufacturing Education Curriculum Project's feasibility study concerned with industrial arts curriculum development in manufacturing for the senior high school level is described. The need for an industrial arts curriculum which meets and reflects present and future trends is discussed in the introduction, followed by a review of the…

  20. Method for manufacturing whisker preforms and composites

    SciTech Connect

    Lessing, P.A.

    1995-11-07

    A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  1. Method for manufacturing whisker preforms and composites

    SciTech Connect

    Lessing, Paul A.

    1995-01-01

    A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  2. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  3. Dentine sealing provided by smear layer/smear plugs vs. adhesive resins/resin tags.

    PubMed

    Carrilho, Marcela R; Tay, Franklin R; Sword, Jeremy; Donnelly, Adam M; Agee, Kelli A; Nishitani, Yoshihiro; Sadek, Fernanda T; Carvalho, Ricardo M; Pashley, David H

    2007-08-01

    The aim of this study was to evaluate the ability of five experimental resins, which ranged from hydrophobic to hydrophilic blends, to seal acid-etched dentine saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents (100% resin) or as solutions solvated with absolute ethanol (70% resin/30% ethanol). Fluid conductance was measured at 20 cm H(2)O hydrostatic pressure after sound dentine surfaces were: (i) covered with a smear layer; (ii) acid-etched; or (iii) bonded with neat or solvated resins, which were applied to acid-etched dentine saturated with water or ethanol. In general, the fluid conductance of resin-bonded dentine was significantly higher than that of smear layer-covered dentine. However, when the most hydrophobic neat resins (R1 and R2) were applied to acid-etched dentine saturated with ethanol, the fluid conductance was as low as that produced by smear layers. The fluid conductance of resin-bonded dentine saturated with ethanol was significantly lower than for resin bonded to water-saturated dentine, except for resin R4. Application of more hydrophobic resins may provide better sealing of acid-etched dentine if the substrate is saturated with ethanol instead of with water.

  4. Polyimide Resins Resist Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  5. Coupling Agents - HME Resin System.

    DTIC Science & Technology

    1977-12-01

    and test results of the sized fiber impregnated with lIME 5803—53 resin and laminated are shown in Table 2. The slig htl y improved SBS strength of...inherent in the 9 - - -~~~~ . ~~~~~~~~~~~~~~~~ ~~- % . - ~, - • - - - ~~~~~~~~~~~~ — — ~~~~~~~~ free radical—induced crosslink cures. As this shrinkage

  6. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    Cured polymers of bis and tris-imides derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a monoimide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride prior to curing are disclosed and claimed. Such polymers are flame resistant. Also disclosed are an improved method of producing tris(m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst and fiber reinforced cured resin composites.

  7. Ab initio dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Thunström, Patrik; Gunacker, Patrik; Tomczak, Jan M.; Held, Karsten

    2017-03-01

    Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation (DΓ A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for model calculations. Here, we develop and implement an Ab initio DΓ A approach (AbinitioDΓ A ) for electronic structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The AbinitioDΓ A approach naturally generates all local DMFT correlations and all nonlocal G W contributions, but also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We apply this new methodology to the prototypical correlated metal SrVO3.

  8. Experience with NuResin, a mobile ion exchange resin reprocessing system

    SciTech Connect

    Palazzi, K.R.; Bell, M.J.; Concklin, J.R.

    1995-12-31

    Ion exchange resin used in condensate polishing, steam generator blowdown, and radwaste systems is a major contributor to the volume of low-level waste (LLW) at operating nuclear plants. Plant regeneration systems for resins use large quantities of demineralized water for cleaning, separating, and regenerating resins. These systems generate a tremendous volume of LLW from boiling water reactors (BWRs) and those pressurized water reactors (PWRs) that have experienced steam generator tube leaks. At essentially all BWRs and those PWRs that replace rather than regenerate condensate polishing resin, the LLW volume contribution from the resin alone is significant. This report describes a process for the treatment of resins with the objective of returning the resin to service.

  9. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  10. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  11. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1980-01-01

    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa.

  12. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  13. TMI-2 purification demineralizer resin study

    SciTech Connect

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  14. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not less than.../federal_register/code_of_federal_regulations/ibr_locations.html. The melt viscosity of the...

  15. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Nylon resins Specific gravity Melting point(degrees Fahrenheit) Solubilityin boiling 4.2N HC1 Viscosity... by 100. (5) Viscosity number (VN). (i) The viscosity number (VN) for Nylon 6/12 resin in a 96 percent... ISO 307-1984(E), “Plastics-Polyamides-Determination of Viscosity Number,” which is incorporated...

  16. Influence of dentin conditioning on bond strength of light-cured ionomer restorative materials and polyacid-modified composite resins.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    1996-01-01

    The purpose of the study was to evaluate the dentin bond strength of restorative materials containing both glass ionomer and composite resin components. Three resin-modified glass ionomer restorative materials (Fuji II LC, Photac-Fil, Vitremer), three polyacid-modified composite resins (Dyract, Ionosit Fil, VariGlass VLC), a hybrid composite (blend-a-lux) and a chemical-cured glass ionomer cement (ChemFil Superior) were investigated for dentin tensile bond strength with and without conditioning of the tooth surfaces. For each material, tensile bond strength was determined using five conditioned and five unconditioned bovine tooth specimens. Conditioning of the specimens was performed according to the manufacturers' instructions. The tensile bond strength was tested with a universal testing machine. Statistical analysis was performed with analysis of variance, the Scheffe's-test and the Student's t-test. All materials showed higher adhesion to conditioned dentin than to unconditioned specimens. Except for Photac-Fil, the bond strength to conditioned dentin of all resin-modified glass ionomer restorative materials and polyacid-modified composite resins was higher as compared to the chemical-cured glass ionomer and the hybrid composite. However, these differences were not statistically significant. All polyacid-modified composite resins resulted in higher bond strengths to conditioned dentin as compared to the resin-modified glass ionomer restorative materials. These differences were statistically significant only for VariGlass VLC as compared to Photac-Fil. In order to improve adhesion of the tested materials to dentin it is highly recommended to follow the manufacturers' instructions concerning dentin conditioning.

  17. Ultrasound Biomicroscopy Comparison of Ab Interno and Ab Externo Intraocular Lens Scleral Fixation.

    PubMed

    Horiguchi, Lie; Garcia, Patricia Novita; Malavazzi, Gustavo Ricci; Allemann, Norma; Gomes, Rachel L R

    2016-01-01

    Purpose. To compare ab interno and ab externo scleral fixation of posterior chamber intraocular lenses (PCIOL) using ultrasound biomicroscopy (UBM). Methods. Randomized patients underwent ab externo or ab interno scleral fixation of a PCIOL. Ultrasound biomicroscopy was performed 3 to 6 months postoperatively, to determine PCIOL centration, IOL distance to the iris at 12, 3, 6, and 9 hours, and haptics placement in relation to the ciliary sulcus. Results. Fifteen patients were enrolled in the study. The ab externo technique was used in 7 eyes (46.6%) and the ab interno in 8 eyes (53.3%). In the ab externo technique, 14 haptics were located: 4 (28.57%) in the ciliary sulcus; 2 (14.28%) anterior to the sulcus; and 8 (57.14%) posterior to the sulcus, 6 in the ciliary body and 2 posterior to the ciliary body. In the ab interno group, 4 haptics (25.0%) were in the ciliary sulcus, 2 (12.50%) anterior to the sulcus, and 10 (75.0%) posterior to the sulcus, 4 in the ciliary body and 6 posterior to the ciliary body. Conclusions. Ab externo and ab interno scleral fixation techniques presented similar results in haptic placement. Ab externo technique presented higher vertical tilt when compared to the ab interno.

  18. Release and toxicity of dental resin composite.

    PubMed

    Gupta, Saurabh K; Saxena, Payal; Pant, Vandana A; Pant, Aditya B

    2012-09-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined.

  19. Release and toxicity of dental resin composite

    PubMed Central

    Gupta, Saurabh K.; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined. PMID:23293458

  20. Chemoviscosity modeling for thermosetting resins, 2

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resin was formulated. The model is developed by modifying the Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By assuming a linear relationship between the glass transition temperature and the degree of cure of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants were determined from the isothermal cure data of Lee, Loos, and Springer for the Hercules 3501-6 resin system. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data reported by Carpenter. A chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure was established.

  1. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  2. Effects of Aerospace Contaminants on EPIKOTE(TM) 862 / EPIKURE(TM)-W Filament Winding Resin System: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Moffet, Mitchell Lee

    This thesis presents the findings of extensive experiments to determine the effects of various common aerospace chemicals on EPIKOTE(TM) 862 (resin) and EPIKURE(TM) W (curing agent), a resin system utilized in filament wound carbon fiber reinforced polymer (CRP) structures. Test specimens of the neat resin system were fabricated and exposed for up to 6 months at room temperature to 11 fluids representing typical aerospace chemicals found on the flight line, and to 74°C tap water. Post exposure the samples were tested in torsion using a rheometer, which performed strain sweeps and frequency sweeps on all the samples. In addition, a subset of the samples received a temperatures sweep. The rheology test parameters represented the nominal stress levels CRP structures would expect to see in operation. In addition to the rheological tests, dimensional and mass measurements were made of the samples both pre and post exposure to study the physical changes due to the chemical interactions. Based on the results, a common detergent, MEK on structures manufactured with the 862W resin system should be prevented or severely limited. It had a significant impact on the performance of the resin system within 3 months, with no visible indications of the degradation. The resins system had good chemical resistance to all the other chemicals used in this study including hot water.

  3. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX.

    PubMed

    Aguiar, Thaiane Rodrigues; Di Francescantonio, Marina; Bedran-Russo, Ana Karina; Giannini, Marcelo

    2012-10-01

    The purpose of this study was to characterize the inorganic components and morphology of filler particles of conventional and self-adhesive, dual-curing, resin luting cements. The main components were identified by energy dispersive X-ray spectroscopy microanalysis (EDX), and filler particles were morphologically analyzed by scanning electron microscopy (SEM). Four resin cements were used in this study: two conventional resin cements (RelyX ARC/3M ESPE and Clearfil Esthetic Cement/Kuraray Medical) and two self-adhesive resin cements (RelyX Unicem/3M ESPE and Clearfil SA Luting/Kuraray Medical). The materials (n = 5) were manipulated according to manufacturers' instructions, immersed in organic solvents to eliminate the organic phase and observed under SEM/EDX. Although EDX measurements showed high amount of silicon for all cements, differences in elemental composition of materials tested were identified. RelyX ARC showed spherical and irregular particles, whereas other cements presented only irregular filler shape. In general, self-adhesive cements contained higher filler size than conventional resin luting cements. The differences in inorganic components and filler particles were observed between categories of luting material and among them. All resin cements contain silicon, however, other components varied among them.

  4. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  5. Terpenoid Oligomers of Dammar Resin.

    PubMed

    Bonaduce, Ilaria; Di Girolamo, Francesca; Corsi, Iacopo; Degano, Ilaria; Tinè, Maria Rosaria; Colombini, Maria Perla

    2016-04-22

    Dammar is a triterpenoid resin containing a volatile fraction, a monomeric fraction, and a high-molecular weight fraction. Although the low-molecular-weight components comprising sesquiterpenoids and triterpenoids have been extensively studied, the nature of the macromolecular components is still not fully understood, and different and sometimes contradictory theories have been proposed. The aim of this paper is to clarify the nature of the macromolecular components of dammar resin. A multianalytical approach was adopted based on thermoanalytical-thermogravimetric analysis (TGA), and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR)--and mass spectrometric techniques-direct exposure mass spectrometry (DE/MS), pyrolysis coupled to gas chromatography and mass spectrometry (Py/GC/MS), flow injection analysis electrospray ionization mass spectrometry (FIA/ESI/MS), and gas chromatography/mass spectrometry (GC/MS). The data indicate that the oligomeric fraction comprises triterpenoids bound through ester bonds, and that these triterpenoids are the same as those found in the free terpenoid fraction. The oligomeric fraction also includes triterpenoids containing carbonyl moieties, such as formyl groups, thus suggesting that these are involved in the esters in their corresponding enolic form.

  6. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  7. Adsorption of pesticides on resins.

    PubMed

    Kyriakopoulos, Grigorios; Hourdakis, Adamadia; Doulia, Danae

    2003-03-01

    The objective of this work was to assess the capability of organic hydrophobic polymeric resins Amberlite XAD-4 and XAD-7 to remove the pesticides alachlor and amitrole from water. The pesticides adsorption on the two different adsorbents was measured by batch equilibrium technique and isotherm types and parameters were estimated. Two theoretical models were applied based on a Freundlich and a Langmuir isotherms. The effect of pesticides chemical composition and structure as well as the nature of solid surface on the efficiency of adsorption was evaluated. The influence of pH also was studied. In low pH solutions adsorption of amitrole was higher upon the nonionic aliphatic acrylic ester copolymer XAD-7 in comparison to the nonionic, crosslinked macroreticular copolymer of styrene divinylbenzene XAD-4. In neutral and intermediate pH solutions the polar acrylic ester copolymer XAD-7 was more effective to the retention of alachlor. The acrylic ester copolymer showed at pH 3 the lower effectiveness in alachlor removal from water. The data of the adsorption isotherms of pesticides upon the examined polymeric resins seemed to conform to both the Freundlich and the Langmuir isotherm models.

  8. [Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].

    PubMed

    Lai, Bo; Qin, Hong-Ke; Zhou, Yue-Xi; Song, Yu-Dong; Cheng, Jia-Yun; Sun, Li-Dong

    2011-04-01

    Wastewater from the condensation and drying section of acrylonitrile-butadiene-styrene (ABS) resin plant was pretreated by the microelectrolysis, and the effect of the influent pH value on the pollution removal efficiency of the microelectrolysis was mainly studied. In order to study the electrochemical action of the microelectrolysis for the degradation of toxic refractory organic pollutants, two control experiments of activated carbon and iron were set up. The results showed that the TOC removal efficiencies were all fluctuated between 40% and 60% under the condition of different influent pH values. The microelectrolysis can decompose and transform the toxic refractory organic pollutants and increase the BOD5/COD ratio from 0.32 to 0.60, which increased the biodegradability of ABS resin wastewater significantly. When the pH value of influent was 4.0, the BOD5/COD ratio of effluent reached 0.71. The result of UV-vis spectra indicates that the removal efficiency of the organic nitrile was the highest with influent pH was 4.0. Therefore, the best influent pH value of microelectrolysis was 4.0.

  9. Erythema ab igne: Usual site, unusual cause.

    PubMed

    Manoharan, D

    2015-04-01

    Erythema ab igne is reticular erythematous pigmented dermatoses seen in patients exposed to prolonged or repeated sub-threshold Infrared radiation inadequate to cause burns. Here, we report a case of erythema ab igne in a 40-year-old male patient seen over the abdomen due to prolonged laptop use.

  10. Simulation of the X-Ray Beam Absorption by the ABS-Plastic Filled with Different Metallic Additives

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Verigin, D. A.; Krasnykh, A. A.; Danilova, I. B.

    2016-11-01

    This article is a part of the work on developing new materials for manufacturing filaments for fused deposition modeling (FDM). The computations of depth dose distributions for gamma-radiation in ABS plastic filled with lead and zinc additives of various concentration were performed via Monte Carlo technique and are represented in graphic form.

  11. Epoxy resin/carbon black composites below the percolation threshold.

    PubMed

    Macutkevic, J; Kuzhir, P; Paddubskaya, A; Maksimenko, S; Banys, J; Celzard, A; Fierro, V; Stefanutti, E; Cataldo, A; Micciulla, F; Bellucci, S

    2013-08-01

    A set of epoxy resin composites filled with 0.25-2.0 wt.% of commercially available ENSACO carbon black (CB) of high and low surface area (CBH and CBL respectively) has been produced. The results of broadband dielectric spectroscopy of manufactured CB/epoxy below the percolation threshold in broad temperature (200 K to 450 K) and frequency (20 Hz to 1 MHz) ranges are reported. The dielectric properties of composites below the percolation threshold are mostly determined by alpha relaxation in pure polymer matrix. The glass transition temperature for CB/epoxy decreases in comparison with neat epoxy resin due to the extra free volume at the polymer-filler interface. At room temperature, the dielectric permittivity is higher for epoxy loaded with CBH additives. In contrast, at high temperature, the electrical conductivity was found to be higher for composites with CBL embedded. The established influence of the CB surface area on the broadband dielectric characteristics can be exploited for the production of effective low-cost antistatic paints and coatings working at different temperatures.

  12. Manufacturing development of visor for binocular helmet mounted display

    NASA Astrophysics Data System (ADS)

    Krevor, David; Edwards, Timothy; Larkin, Eric; Skubon, John; Speirs, Robert; Sowden, Tom

    2007-09-01

    The HMD (Helmet Mounted Display) visor is a sophisticated article. It is both the optical combiner for the display and personal protective equipment for the pilot. The visor must have dimensional and optical tolerances commensurate with precision optics; and mechanical properties sufficient for a ballistic shield. Optimized processes and tooling are necessary in order to manufacture a functional visor. This paper describes the manufacturing development of the visor for the Joint Strike Fighter (JSF) HMD. The analytical and experimental basis for the tool and manufacturing process development are described; as well as the metrological and testing methods to verify the visor design and function. The requirements for the F-35 JSF visor are a generation beyond those for the HMD visor which currently flies on the F-15, F-16 and F/A-18. The need for greater precision is manifest in the requirements for the tooling and molding process for the visor. The visor is injection-molded optical polycarbonate, selected for its combination of optical, mechanical and environmental properties. Proper design and manufacture of the tool - the mold - is essential. Design of the manufacturing tooling is an iterative process between visor design, mold design, mechanical modeling and polymer-flow modeling. Iterative design and manufacture enable the mold designer to define a polymer shrinkage factor more precise than derived from modeling or recommended by the resin supplier.

  13. Variability Analysis in Vacuum Assisted Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Hubert, Pascal; Pipes, R. Byron; Grimsley, Brian W.

    2002-01-01

    The vacuum assisted resin transfer molding (VARTM) process is a low-cost, innovative method that is being considered for manufacture of large aircraft-quality components where high mechanical properties and dimensional tolerance are essential. In the present work a rigorous science-based approach is used to study the VARTM processing of high performance complex shape components. A process model, COMPRO, is used to simulate the cure of panels produced by VARTM. It was found that the presence of the distribution media significantly affects the magnitude of the exotherm particularly for thick panels. For C-shaped laminates, the part distortion was a function of fiber volume fraction distribution and was affected by the presence of the distribution media.

  14. Rapid small lot manufacturing

    SciTech Connect

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  15. Effect of Polymerization Cycles on Gloss, Roughness, Hardness and Impact Strength of Acrylic Resins.

    PubMed

    Consani, Rafael Leonardo Xediek; Folli, Bianca L; Nogueira, Moises C F; Correr, Americo Bortolazzo; Mesquita, Marcelo F

    2016-01-01

    The aim of this study was to evaluate the conventional and boiled polymerization cycles on gloss, roughness, hardness and impact strength of acrylic resins. Samples were made for each Classico and QC-20 materials (n=10) in dental stone molds obtained from rectangular metallic matrices embedded in metallic flasks. The powder-liquid ratio and manipulation of the acrylic resins' were accomplished according to manufacturers' instructions and the resins were conventionally packed in metallic flasks. After polymerization by (1) conventional: 74 °C for 9 h (Classico) and (2) boiled: 20 min (QC-20) cycles, the samples were deflasked after cooling at room temperature and conventionally finished and polished. The properties were evaluated after storage in water at 37 °C for 24 h. Gloss was verified with Multi Gloss 268 meter (Konica Minolta), surface roughness was measured with Surfcorder SE 1700 rugosimeter (Kosaka), Knoop hardness number was obtained with HMV-200 microdurometer, and impact strength was measured in an Otto Wolpert-Werke device by Charpy system (40 kpcm). Data were subjected to Student's t-test (at α=0.05). The results were: Gloss: 67.7 and 62.2 for Classico and QC-20 resins, respectively; Surface roughness: 0.874 and 1.469 Ra-µm for Classico and QC-20, respectively; Knoop hardness: 27.4 and 26.9 for Classico and QC-20, respectively; and Impact strength: 37.6 and 33.6 kgf/cm2 for Classico and QC-20, respectively. No statistically significant difference (p>0.05)were found between the resins for the evaluated properties. In conclusion, conventional and boiled polymerization cycles had similar effects on gloss, roughness, hardness and impact strength of both Classico and QC-20 resins.

  16. 75 FR 30781 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On March 16, 2010, the Department of Commerce's International Trade... the Manufacturing Council (Council). The March 16, 2010 notice provided that all applications must...

  17. 75 FR 80040 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On November 23, 2010, the Department of Commerce's International Trade... vacant position on the Manufacturing Council (Council). The November 23, 2010 notice provided that...

  18. Agile manufacturing concept

    NASA Astrophysics Data System (ADS)

    Goldman, Steven L.

    1994-03-01

    The initial conceptualization of agile manufacturing was the result of a 1991 study -- chaired by Lehigh Professor Roger N. Nagel and California-based entrepreneur Rick Dove, President of Paradigm Shifts, International -- of what it would take for U.S. industry to regain global manufacturing competitiveness by the early twenty-first century. This industry-led study, reviewed by senior management at over 100 companies before its release, concluded that incremental improvement of the current system of manufacturing would not be enough to be competitive in today's global marketplace. Computer-based information and production technologies that were becoming available to industry opened up the possibility of an altogether new system of manufacturing, one that would be characterized by a distinctive integration of people and technologies; of management and labor; of customers, producers, suppliers, and society.

  19. Computers in Manufacturing.

    ERIC Educational Resources Information Center

    Hudson, C. A.

    1982-01-01

    Advances in factory computerization (computer-aided design and computer-aided manufacturing) are reviewed, including discussions of robotics, human factors engineering, and the sociological impact of automation. (JN)

  20. Human Issues in Manufacturing Technology

    DTIC Science & Technology

    1992-09-01

    conventional mass- production manufacturing and the benefits of lean manufacturing . The text details the results of a five-year, multi national study...data and comparisons between mass and lean manufacturing . The key objective is to "illustrate the transition from mass to lean production with...of reference for the transition from current manufacturing systems to the goal state of lean manufacturing . Manufacturing before change is referred to

  1. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  2. Restorative resins: abrasion vs. mechanical properties.

    PubMed

    Jørgensen, K D

    1980-12-01

    The purpose of the present work was to examine whether it is possible by simple and reliable laboratory tests to evaluate the abrasion by food of Class 1 restorative resins. The results point to the following main conclusions: for the smooth-surface resins, i.e. the micro-filled composite and the unfilled resins, the Wallace hardness test appears to be a valid parameter for abrasion; the greater the depth of penetration of the Vickers diamond of this apparatus, the more severe abrasion is to be expected. The mode of abrasion in this type of resin is scratching. Porosity in the resins strongly enhances the abrasion. For the rough-surface resins, i.e. the conventional composites, a dual effect of the filler particles was concluded. The filler particles on the one hand protect the matrix against abrasion, but cause, on the other hand, in time an increase of the surface roughness of the composite and thereby via increased friction an increase of the abrasion. Considerations on possible ways to improve the present-day restorative resins are presented. It is stressed that the results obtained refer only to abrasion of Class 1 fillings by food.

  3. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  4. The B AB AR detector

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bazan, A.; Boucham, A.; Boutigny, D.; De Bonis, I.; Favier, J.; Gaillard, J.-M.; Jeremie, A.; Karyotakis, Y.; Le Flour, T.; Lees, J. P.; Lieunard, S.; Petitpas, P.; Robbe, P.; Tisserand, V.; Zachariadou, K.; Palano, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Reinertsen, P. L.; Stugu, B.; Abbott, B.; Abrams, G. S.; Amerman, L.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Clark, A. R.; Dardin, S.; Day, C.; Dow, S. F.; Fan, Q.; Gaponenko, I.; Gill, M. S.; Goozen, F. R.; Gowdy, S. J.; Gritsan, A.; Groysman, Y.; Hernikl, C.; Jacobsen, R. G.; Jared, R. C.; Kadel, R. W.; Kadyk, J.; Karcher, A.; Kerth, L. T.; Kipnis, I.; Kluth, S.; Kral, J. F.; Lafever, R.; LeClerc, C.; Levi, M. E.; Lewis, S. A.; Lionberger, C.; Liu, T.; Long, M.; Luo, L.; Lynch, G.; Luft, P.; Mandelli, E.; Marino, M.; Marks, K.; Matuk, C.; Meyer, A. B.; Minor, R.; Mokhtarani, A.; Momayezi, M.; Nyman, M.; Oddone, P. J.; Ohnemus, J.; Oshatz, D.; Patton, S.; Pedrali-Noy, M.; Perazzo, A.; Peters, C.; Pope, W.; Pripstein, M.; Quarrie, D. R.; Rasson, J. E.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Stone, R.; Strother, P. D.; Telnov, A. V.; von der Lippe, H.; Weber, T. F.; Wenzel, W. A.; Zizka, G.; Bright-Thomas, P. G.; Hawkes, C. M.; Kirk, A.; Knowles, D. J.; O'Neale, S. W.; Watson, A. T.; Watson, N. K.; Deppermann, T.; Koch, H.; Krug, J.; Kunze, M.; Lewandowski, B.; Peters, K.; Schmuecker, H.; Steinke, M.; Andress, J. C.; Barlow, N. R.; Bhimji, W.; Chevalier, N.; Clark, P. J.; Cottingham, W. N.; De Groot, N.; Dyce, N.; Foster, B.; Mass, A.; McFall, J. D.; Wallom, D.; Wilson, F. F.; Abe, K.; Hearty, C.; McKenna, J. A.; Thiessen, D.; Camanzi, B.; Harrison, T. J.; McKemey, A. K.; Tinslay, J.; Antohin, E. I.; Blinov, V. E.; Bukin, A. D.; Bukin, D. A.; Buzykaev, A. R.; Dubrovin, M. S.; Golubev, V. B.; Ivanchenko, V. N.; Kolachev, G. M.; Korol, A. A.; Kravchenko, E. A.; Mikhailov, S. F.; Onuchin, A. P.; Salnikov, A. A.; Serednyakov, S. I.; Skovpen, Yu. I.; Telnov, V. I.; Yushkov, A. N.; Booth, J.; Lankford, A. J.; Mandelkern, M.; Pier, S.; Stoker, D. P.; Zioulas, G.; Ahsan, A.; Arisaka, K.; Buchanan, C.; Chun, S.; Faccini, R.; MacFarlane, D. B.; Prell, S. A.; Rahatlou, Sh.; Raven, G.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P. A.; Kuznetsova, N.; Kyre, S.; Levy, S. L.; Long, O.; Lu, A.; May, J.; Richman, J. D.; Verkerke, W.; Witherell, M.; Yellin, S.; Beringer, J.; DeWitt, J.; Dorfan, D. E.; Eisner, A. M.; Frey, A.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Johnson, R. P.; Kroeger, W.; Lockman, W. S.; Pulliam, T.; Rowe, W.; Sadrozinski, H.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E. N.; Turri, M.; Walkowiak, W.; Wilder, M.; Williams, D. C.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Hanson, J. E.; Hitlin, D. G.; Kolomensky, Yu. G.; Metzler, S.; Oyang, J.; Porter, F. C.; Ryd, A.; Samuel, A.; Weaver, M.; Yang, S.; Zhu, R. Y.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Jayatilleke, S. M.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P.; Broomer, B.; Erdos, E.; Fahey, S.; Ford, W. T.; Gaede, F.; van Hoek, W. C.; Johnson, D. R.; Michael, A. K.; Nauenberg, U.; Olivas, A.; Park, H.; Rankin, P.; Roy, J.; Sen, S.; Smith, J. G.; Wagner, D. L.; Blouw, J.; Harton, J. L.; Krishnamurthy, M.; Soffer, A.; Toki, W. H.; Warner, D. W.; Wilson, R. J.; Zhang, J.; Brandt, T.; Brose, J.; Dahlinger, G.; Dickopp, M.; Dubitzky, R. S.; Eckstein, P.; Futterschneider, H.; Kocian, M. L.; Krause, R.; Müller-Pfefferkorn, R.; Schubert, K. R.; Schwierz, R.; Spaan, B.; Wilden, L.; Behr, L.; Bernard, D.; Bonneaud, G. R.; Brochard, F.; Cohen-Tanugi, J.; Ferrag, S.; Fouque, G.; Gastaldi, F.; Matricon, P.; Mora de Freitas, P.; Renard, C.; Roussot, E.; T'Jampens, S.; Thiebaux, C.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Di Lodovico, F.; Muheim, F.; Playfer, S.; Swain, J. E.; Falbo, M.; Bozzi, C.; Dittongo, S.; Folegani, M.; Piemontese, L.; Ramusino, A. C.; Treadwell, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Xie, Y.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Contri, R.; Crosetti, G.; Fabbricatore, P.; Farinon, S.; Lo Vetere, M.; Macri, M.; Minutoli, S.; Monge, M. R.; Musenich, R.; Pallavicini, M.; Parodi, R.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Priano, C.; Robutti, E.; Santroni, A.; Bartoldus, R.; Dignan, T.; Hamilton, R.; Mallik, U.; Cochran, J.; Crawley, H. B.; Fischer, P. A.; Lamsa, J.; McKay, R.; Meyer, W. T.; Rosenberg, E. I.; Albert, J. N.; Beigbeder, C.; Benkebil, M.; Breton, D.; Cizeron, R.; Du, S.; Grosdidier, G.; Hast, C.; Höcker, A.; Lacker, H. M.; LePeltier, V.; Lutz, A. M.; Plaszczynski, S.; Schune, M. H.; Trincaz-Duvoid, S.; Truong, K.; Valassi, A.; Wormser, G.; Alford, O.; Behne, D.; Bionta, R. M.; Bowman, J.; Brigljević, V.; Brooks, A.; Dacosta, V. A.; Fackler, O.; Fujino, D.; Harper, M.; Lange, D. J.; Mugge, M.; O'Connor, T. G.; Olson, H.; Ott, L.; Parker, E.; Pedrotti, B.; Roeben, M.; Shi, X.; van Bibber, K.; Wenaus, T. J.; Wright, D. M.; Wuest, C. R.; Yamamoto, B.; Carroll, M.; Cooke, P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Kay, M.; McMahon, S.; Muir, A.; Payne, D. J.; Sloane, R. J.; Sutcliffe, P.; Touramanis, C.; Aspinwall, M. L.; Bowerman, D. A.; Dauncey, P. D.; Eschrich, I.; Gunawardane, N. J. W.; Martin, R.; Nash, J. A.; Price, D. R.; Sanders, P.; Smith, D.; Azzopardi, D. E.; Back, J. J.; Dixon, P.; Harrison, P. F.; Newman-Coburn, D.; Potter, R. J. L.; Shorthouse, H. W.; Williams, M. I.; Vidal, P. B.; Cowan, G.; George, S.; Green, M. G.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Salvatore, F.; Scott, I.; Vaitsas, G.; Brown, D.; Davis, C. L.; Li, Y.; Pavlovich, J.; Allison, J.; Barlow, R. J.; Boyd, J. T.; Fullwood, J.; Jackson, F.; Khan, A.; Lafferty, G. D.; Savvas, N.; Simopoulos, E. T.; Thompson, R. J.; Weatherall, J. H.; Bard, R.; Dallapiccola, C.; Farbin, A.; Jawahery, A.; Lillard, V.; Olsen, J.; Roberts, D. A.; Schieck, J. R.; Blaylock, G.; Flood, K. T.; Hertzbach, S. S.; Kofler, R.; Lin, C. S.; Willocq, S.; Wittlin, J.; Brau, B.; Cowan, R.; Taylor, F.; Yamamoto, R. K.; Britton, D. I.; Fernholz, R.; Houde, M.; Milek, M.; Patel, P. M.; Trischuk, J.; Lanni, F.; Palombo, F.; Bauer, J. M.; Booke, M.; Cremaldi, L.; Kroeger, R.; Reep, M.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Arguin, J. F.; Beaulieu, M.; Martin, J. P.; Nief, J. Y.; Seitz, R.; Taras, P.; Woch, A.; Zacek, V.; Nicholson, H.; Sutton, C. S.; Cartaro, C.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Piccolo, D.; Sciacca, C.; Cason, N. M.; LoSecco, J. M.; Alsmiller, J. R. G.; Gabriel, T. A.; Handler, T.; Heck, J.; Iwasaki, M.; Sinev, N. B.; Caracciolo, R.; Colecchia, F.; Dal Corso, F.; Galeazzi, F.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Santi, S.; Simonetto, F.; Stroili, R.; Torassa, E.; Voci, C.; Bailly, P.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; De la Vaissière, C.; Del Buono, L.; Genat, J.-F.; Hamon, O.; Leruste, Ph.; Le Diberder, F.; Lebbolo, H.; Lory, J.; Martin, L.; Martinez-Vidal, F.; Roos, L.; Stark, J.; Versillé, S.; Zhang, B.; Manfredi, P. F.; Ratti, L.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J. H.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Carpinelli, M.; Forti, F.; Gaddi, A.; Gagliardi, D.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Neri, N.; Profeti, A.; Paoloni, E.; Raffaelli, F.; Rama, M.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Haire, M.; Judd, D.; Paick, K.; Turnbull, L.; Wagoner, D. E.; Albert, J.; Bula, C.; Kelsey, M. H.; Lu, C.; McDonald, K. T.; Miftakov, V.; Sands, B.; Schaffner, S. F.; Smith, A. J. S.; Tumanov, A.; Varnes, E. W.; Bronzini, F.; Buccheri, A.; Bulfon, C.; Cavoto, G.; del Re, D.; Ferrarotto, F.; Ferroni, F.; Fratini, K.; Lamanna, E.; Leonardi, E.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Safai Tehrani, F.; Serra, M.; Voena, C.; Waldi, R.; Jacques, P. F.; Kalelkar, M.; Plano, R. J.; Adye, T.; Claxton, B.; Dowdell, J.; Egede, U.; Franek, B.; Galagedera, S.; Geddes, N. I.; Gopal, G. P.; Kay, J.; Lidbury, J.; Madani, S.; Metcalfe, S.; Metcalfe, S.; Markey, G.; Olley, P.; Watt, M.; Xella, S. M.; Aleksan, R.; Besson, P.; Bourgeois, P.; Convert, P.; De Domenico, G.; de Lesquen, A.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; Georgette, Z.; Gosset, L.; Graffin, P.; Hamel de Monchenault, G.; Hervé, S.; Karolak, M.; Kozanecki, W.; Langer, M.; London, G. W.; Marques, V.; Mayer, B.; Micout, P.; Mols, J. P.; Mouly, J. P.; Penichot, Y.; Rolquin, J.; Serfass, B.; Toussaint, J. C.; Usseglio, M.; Vasseur, G.; Yeche, C.; Zito, M.; Copty, N.; Purohit, M. V.; Yumiceva, F. X.; Adam, I.; Adesanya, A.; Anthony, P. L.; Aston, D.; Bartelt, J.; Becla, J.; Bell, R.; Bloom, E.; Boeheim, C. T.; Boyarski, A. M.; Boyce, R. F.; Briggs, D.; Bulos, F.; Burgess, W.; Byers, B.; Calderini, G.; Chestnut, R.; Claus, R.; Convery, M. R.; Coombes, R.; Cottrell, L.; Coupal, D. P.; Coward, D. H.; Craddock, W. W.; DeBarger, S.; DeStaebler, H.; Dorfan, J.; Doser, M.; Dunwoodie, W.; Dusatko, J. E.; Ecklund, S.; Fieguth, T. H.; Freytag, D. R.; Glanzman, T.; Godfrey, G. L.; Haller, G.; Hanushevsky, A.; Harris, J.; Hasan, A.; Hee, C.; Himel, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Jessop, C. P.; Kawahara, H.; Keller, L.; King, M. E.; Klaisner, L.; Krebs, H. J.; Langenegger, U.; Langeveld, W.; Leith, D. W. G. S.; Louie, S. K.; Luitz, S.; Luth, V.; Lynch, H. L.; McDonald, J.; Manzin, G.; Marsiske, H.; Mattison, T.; McCulloch, M.; McDougald, M.; McShurley, D.; Menke, S.; Messner, R.; Metcalfe, S.; Morii, M.; Mount, R.; Muller, D. R.; Nelson, D.; Nordby, M.; O'Grady, C. P.; Olavson, L.; Olsen, J.; O'Neill, F. G.; Oxoby, G.; Paolucci, P.; Pavel, T.; Perl, J.; Pertsova, M.; Petrak, S.; Putallaz, G.; Raines, P. E.; Ratcliff, B. N.; Reif, R.; Robertson, S. H.; Rochester, L. S.; Roodman, A.; Russel, J. J.; Sapozhnikov, L.; Saxton, O. H.; Schietinger, T.; Schindler, R. H.; Schwiening, J.; Sciolla, G.; Seeman, J. T.; Serbo, V. V.; Shapiro, S.; Skarpass, K., Sr.; Snyder, A.; Soderstrom, E.; Soha, A.; Spanier, S. M.; Stahl, A.; Stiles, P.; Su, D.; Sullivan, M. K.; Talby, M.; Tanaka, H. A.; Va'vra, J.; Wagner, S. R.; Wang, R.; Weber, T.; Weinstein, A. J. R.; White, J. L.; Wienands, U.; Wisniewski, W. J.; Young, C. C.; Yu, N.; Burchat, P. R.; Cheng, C. H.; Kirkby, D.; Meyer, T. I.; Roat, C.; Henderson, R.; Khan, N.; Berridge, S.; Bugg, W.; Cohn, H.; Hart, E.; Weidemann, A. W.; Benninger, T.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Turcotte, M.; Bianchi, F.; Bona, M.; Daudo, F.; Di Girolamo, B.; Gamba, D.; Grosso, P.; Smol, A.; Trapani, P. P.; Zanin, D.; Bosisio, L.; Della Ricca, G.; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rashevskaia, I.; Vallazza, E.; Vuagnin, G.; Panvini, R. S.; Brown, C.; De Silva, A.; Kowalewski, R.; Pitman, D.; Roney, J. M.; Band, H. R.; Charles, E.; Dasu, S.; Elmer, P.; Johnson, J. R.; Nielsen, J.; Orejudos, W.; Pan, Y.; Prepost, R.; Scott, I. J.; Walsh, J.; Wu, S. L.; Yu, Z.; Zobernig, H.; Moore, T. B.; Neal, H.

    2002-02-01

    B AB AR, the detector for the SLAC PEP-II asymmetric e +e - B Factory operating at the ϒ(4 S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagnetic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by d E/d x measurements in the tracking detectors and by a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  5. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  6. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  7. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  8. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  9. Improved microbial-check-valve resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1980-01-01

    Improved microbial-check-valve resins have been tested for their microbicidal effectiveness and long-term stability. Resins give more-stable iodine concentrations than previous preparations and do not impart objectionable odor or taste to treated water. Microbial check valve is small cylindrical device, packed with iodide-saturated resin, that is installed in water line where contamination by micro-organisms is to be prevented. Prototype microbial check valve was tested for stability and performance under harsh environmental conditions. Effectiveness was 100 percent at 35 deg, 70 deg, and 160 deg F (2 deg, 21 deg, and 71 deg C).

  10. Hydraulic Permeability of Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen

    2010-01-01

    An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing

  11. SEM and elemental analysis of composite resins

    SciTech Connect

    Hosoda, H.; Yamada, T.; Inokoshi, S. )

    1990-12-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use.

  12. Properties of a nanodielectric cryogenic resin

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Sauers, Isidor; More, Karren Leslie

    2010-01-01

    Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles ({le} 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO{sub 2} nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.

  13. Class II Resin Composites: Restorative Options.

    PubMed

    Patel, Minesh; Mehta, Shamir B; Banerji, Subir

    2015-10-01

    Tooth-coloured, resin composite restorations are amongst the most frequently prescribed forms of dental restoration to manage defects in posterior teeth. The attainment of a desirable outcome when placing posterior resin composite restorations requires the clinician to have a good understanding of the benefits (as well as the limitations) posed by this material, together with a sound knowledge of placement technique. Numerous protocols and materials have evolved to assist the dental operator with this type of demanding posterior restoration. With the use of case examples, four techniques available are reported here. CPD/Clinical Relevance: This article explores varying techniques for the restoration of Class II cavities using resin composite.

  14. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  15. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant...

  16. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant...

  17. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant...

  18. Structural health monitoring using fiber optic distributed sensors for vacuum-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Eum, S. H.; Kageyama, K.; Murayama, H.; Uzawa, K.; Ohsawa, I.; Kanai, M.; Kobayashi, S.; Igawa, H.; Shirai, T.

    2007-12-01

    In this study we implemented manufacturing process and strain monitoring of a composite structure by optical fiber sensors for vacuum-assisted resin transfer molding (VaRTM). Optical fibers with fiber Bragg gratings were embedded into a glass fiber reinforced plastic specimen made by VaRTM and the applicability of structural health monitoring with fiber Bragg grating (FBG) sensors based on optical frequency domain reflectometry (OFDR) was investigated. In this study, long-gage FBGs which are 10 times longer than ordinary FBGs (which are about 10 mm long) were employed for distributed sensing. We can easily map the strain or temperature profile along gratings by OFDR and the spatial resolution of this sensing technique is about 1 mm. The resin flow process in VaRTM could be monitored by measuring the difference in temperature between the resin and preform. Then, the shrinkage of resin could be also monitored during the curing process. The specimen was then subjected to a bending load in a three-point bending test and the strain distributions along the FBGs were measured. From these results we could show the applicability of distributed sensors to quality assurance of a composite structure made by VaRTM and assessment of the structural integrity of in-service composite structures.

  19. Chronic Dermal Toxicity of Epoxy Resins I. Skin Carcinogenic Potency and General Toxicity

    SciTech Connect

    Holland, J.M.

    2001-01-16

    Epoxy resins are a diverse class of chemicals that differ in structure, physical properties, and, presumably, biological activity. The purpose of these experiments was to compare the chronic dermal toxicity and carcinogenicity of selected commercial epoxy resins and to determine the potential for positive synergistic carcinogenic interactions between different resins. This work is an extension and continuation of a Department of Energy sponsored program to evaluate epoxy resins for potential occupational health risks. The materials examined were chosen on the basis of their interest to the U.S. government. They are representative of the manufacturer's production at the time, and therefore the data are completely valid only for the specific production period. Results of the experimental exposures will be reported in two parts. This report describes the test materials, their chemical and physical characteristics and the experimental design. General (systemic) toxicity will be evaluated and the skin carcinogenicity of the materials compared. A subsequent report will provide morphological descriptions of skin and significant internal pathology induced by the various treatments.

  20. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  1. A review of devices used for photocuring resin-based composites.

    PubMed

    Small, B W

    2001-01-01

    Composite resin shrinks up to 5% by volume upon curing. This shrinkage and the associated contraction stress remain the two most significant clinical problems with curing resin composite restorations. Many patients continue to experience sensitivity following placement of direct composites and seating of indirect restorations utilizing resin cements. Unfortunately, some claims made by manufacturers or certain clinicians that promise to alleviate these problems are made from a marketing standpoint, with no refereed literature to support those claims. Even within the literature, contradictory results have been reported, perpetuating the confusion. It is of utmost importance that all practicing dentists be aware of the various types of curing systems available and the advantages and disadvantages of each system. It is the opinion of the author that no existing system will alleviate every problem. Until new composite systems are perfected, such as the cyclopolymerizable resins and expanding polymers, we will continue to have shrinkage and stress. Be aware of false claims, read and interpret the literature, and, most importantly, do what is best for your patients.

  2. Thermal characterization of a liquid resin for 3D printing using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, José L.; Pincel, Pavel Vieyra; Cruz-Orea, Alfredo; Correa-Pacheco, Zormy N.

    2016-05-01

    Thermal properties of a liquid resin were studied by thermal lens spectrometry (TLS) and open photoacoustic cell (OPC), respectively. In the case of the TLS technique, the two mismatched mode experimental configuration was used with a He-Ne laser, as a probe beam and an Argon laser was used as the excitation source. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data in order to obtain the thermal diffusivity ( α) of the resin. On the other hand, the sample thermal effusivity ( e) was obtained by using the OPC technique. In this technique, an Argon laser was used as the excitation source and was operated at 514 nm with an output power of 30 mW. From the obtained thermal diffusivity ( α) and thermal effusivity ( e) values, the thermal conductivity ( k) and specific heat capacity per unit volume ( ρc) of resin were calculated through the relationships k = e( α)1/2 and ρc = e/( α)1/2. The obtained thermal parameters were compared with the thermal parameters of the literature. To our knowledge, the thermal characterization of resin has not been reported until now. The present study has applications in laser stereo-lithography to manufacture 3D printing pieces.

  3. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    PubMed

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  4. Erythema ab igne: evolving technology, evolving presentation.

    PubMed

    Kesty, Katarina; Feldman, Steven R

    2014-11-15

    We present a case of a 49-year-old woman with erythema ab igne on her posterior thighs owing to 2-4 hours per day of seat heater use in her car. Erythema ab igne is caused by prolonged exposure to a heat source. It used to be caused mainly by wood stoves used to heat homes. Erythema ab igne is now more often related to other heat sources, including heating pads, laptop computers, and car seat heaters, as in our case. As technology changes, so does the presentation of skin conditions that are related to technology.

  5. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  6. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  7. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  8. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium.

  9. Resin Flow Analysis in the Injection Cycle of a Resin Transfer Molded Radome

    NASA Astrophysics Data System (ADS)

    Golestanian, Hossein; Poursina, Mehrdad

    2007-04-01

    Resin flow analysis in the injection cycle of an RTM process was investigated. Fiberglass and carbon fiber mats were used as reinforcements with EPON 826 epoxy resin. Numerical models were developed in ANSYS finite element software to simulate resin flow behavior into a mold of conical shape. Resin flow into the woven fiber mats is modeled as flow through porous media. The injection time for fiberglass/epoxy composite is found to be 4407 seconds. Required injection time for the carbon/epoxy composite is 27022 seconds. Higher injection time for carbon/epoxy part is due to lower permeability value of the carbon fibers compared to glass fiber mat.

  10. Phenoxy resins containing pendent ethynyl groups and cured resins obtained therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1985-01-01

    Phenoxy resins containing pendent ethynyl groups, the process for preparing the same, and the cured resin products obtained therefrom are disclosed. Upon the application of heat, the ethynyl groups react to provide branching and crosslinking with the cure temperature being lowered by using a catalyst if desired but not required. The cured phenoxy resins containing pendent ethynyl groups have improved solvent resistance and higher use temperature than linear uncrosslinked phenoxy resins and are applicable for use as coatings, films, adhesives, composited matrices and molding compounds.

  11. National Center for Manufacturing Sciences: Environmentally conscious manufacturing

    NASA Technical Reports Server (NTRS)

    Vinton, Clare

    1995-01-01

    The purpose of this presentation is to share the results and some of the thinking of the Environmentally Conscious Manufacturing - Strategic Initiative Group (ECM-SIG) at the National Center for Manufacturing Sciences (NCMS). NCMS is a consortium of more than 185 North American Manufacturing organizations comprised of about 75 percent for profit manufacturing companies and about 25 percent nonprofit organizations that support manufacturing activities. NCMS conducts collaborative R&D programs designed to improve global competitiveness of its members and other North American manufacturers to address common issues that are important to manufacturing industries. NCMS is an industry driven organization whose agenda is established by industry with input from appropriate government agencies.

  12. SiO2-nanocomposite film coating of CAD/CAM composite resin blocks improves surface hardness and reduces susceptibility to bacterial adhesion.

    PubMed

    Kamonwanon, Pranithida; Hirose, Nanako; Yamaguchi, Satoshi; Sasaki, Jun-Ichi; Kitagawa, Haruaki; Kitagawa, Ranna; Thaweboon, Sroisiri; Srikhirin, Toemsak; Imazato, Satoshi

    2017-01-31

    Composite resin blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications have recently become available. However, CAD/CAM composite resins have lower wear resistance and accumulate more plaque than CAD/CAM ceramic materials. We assessed the effects of SiO2-nanocomposite film coating of four types of CAD/CAM composite resin blocks: Cerasmart, Katana Avencia block, Lava Ultimate, and Block HC on surface hardness and bacterial attachment. All composite blocks with coating demonstrated significantly greater Vickers hardness, reduced surface roughness, and greater hydrophobicity than those without coating. Adhesion of Streptococcus mutans to the coated specimens was significantly less than those for the uncoated specimens. These reduced levels of bacterial adherence on the coated surface were still evident after treatment with saliva. Surface modification by SiO2-nanocomposite film coating has potential to improve wear resistance and susceptibility to plaque accumulation of CAD/CAM composite resin restorations.

  13. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  14. Polyclonal and monoclonal IgG binding on Protein A resins - Evidence of competitive binding effects.

    PubMed

    Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Healy, Edward; Carta, Giorgio; Przybycien, Todd

    2017-03-14

    Protein A (ProA) chromatography is used extensively in the biopharmaceutical industry for the selective capture of both polyclonal and monoclonal antibodies (mAbs). This work provides a comparison of the adsorptive behavior of a highly heterogeneous polyclonal hIgG versus that of a mAb as well as the behavior of their mixtures on representative ProA resins. Both pH gradient elution and frontal loading experiments using human polyclonal IgG (hIgG) reveal a distribution of IgG-ProA binding strengths likely associated with multiple IgG subclasses and the heterogeneity of the variable region. pH gradient analysis of fractions collected along the breakthrough curve demonstrate a clear progression from weaker binding (higher pH eluting) to stronger binding (lower pH eluting) IgG species leaving the column suggesting the possibility of stronger binding species displacing the weaker binding ones. Displacement is directly observed by visualizing the adsorption of fluorescently labeled mAb and hIgG using confocal laser scanning microscopy (CLSM). Here, the displacement of hIgG results in a broad adsorption front compared to the sharp, 'shrinking core' behavior typically observed with mAbs. Sequential CLSM adsorption experiments with a mAb and hIgG confirm that stronger or equivalent-binding hIgG species are able to displace and desorb bound mAb molecules. These phenomena are examined using a variety of ProA resins including CaptivA PriMAB, MabSelect, and MabSelect SuRe to understand the effect of different ligand properties on binding strength and competition among different IgG species. The results of these comparisons suggest that the competition kinetics are slower with ligands that have a single-point covalent attachment to the base matrix compared to a multi-point attachment. This article is protected by copyright. All rights reserved.

  15. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  16. An update on resin-bonded bridges.

    PubMed

    Barber, M W; Preston, A J

    2008-03-01

    Since the introduction of the 'Rochette' bridge in the 1970s the resin-bonded bridge has undergone a number of developments to become a commonly used technique for replacement of a missing tooth, especially in a minimally restored dentition. One of the major advantages of the resin-bonded bridge is that it requires less tooth preparation than conventional bridgework, with some authorities advising no preparation at all. Some reports have suggested poor long-term success rates, however, if used in appropriate clinical situations, this treatment modality can be extremely successful. The aim of this paper is to review the literature relating to resin-bonded bridges and suggest recommendations for clinicalpractice concerning the provision of resin-bonded bridges.

  17. Determining resin/fiber content of laminates

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.; Houston, D. W.

    1979-01-01

    Article discusses procedure where hydrazine is used to extract graphite fibers from cured polyimide resin. Method does not attack graphite fibers and is faster than hot-concentrated-acid digestion process.

  18. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1979-01-01

    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi.

  19. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  20. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  1. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  2. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  3. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  4. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  5. Resins for Advanced Reentry Systems Applications.

    DTIC Science & Technology

    strengths of 3,000 to 6,000 psi. The strength values increased to 7,000 to 10,000 psi after the samples were reimpregnated with a furfuryl alcohol resin and repyrolyzed. The pyrolysis results are discussed.

  6. Improved high-temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.

    1989-01-01

    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.

  7. The effect of various frequencies of ultrasonic cleaner in reducing residual monomer in acrylic resin.

    PubMed

    Charasseangpaisarn, Taksid; Wiwatwarrapan, Chairat

    2015-12-01

    Monomer remaining in denture base acrylic can be a major problem because it may cause adverse effects on oral tissue and on the properties of the material. The purpose of this study was to compare the effect of various ultrasonic cleaner frequencies on the amount of residual monomer in acrylic resin after curing. Forty-two specimens each of Meliodent heat-polymerized acrylic resin (M) and Unifast Trad Ivory auto-polymerized acrylic resin (U) were prepared according to their manufacturer's instructions and randomly divided into seven groups: Negative control (NC); Positive control (PC); and five ultrasonic treatment groups: 28 kHz (F1), 40 kHz (F2), 60 kHz (F3) (M=10 min, U=5 min), and 28 kHz followed by 60 kHz (F4: M=5 min per frequency, U=2.5 min per frequency, and F5: M=10 min followed by 5 min per frequency, U=5 min followed by 2.5 min per frequency). Residual monomer was determined by HPLC following ISO 20795-1. The data were analyzed by One-way ANOVA and Tukey HSD. There was significantly less residual monomer in the auto-polymerized acrylic resin in all ultrasonic treatment groups and the PC group than that of the NC group (p<0.05). However, the amount of residual monomer in group F3 was significantly higher than that of the F1, F4, and PC groups (p<0.05). In contrast, ultrasonic treatment did not reduce the amount of residual monomer in heat-polymerized acrylic resin (p>0.05). The amount of residual monomer in heat-polymerized acrylic resin was significantly lower than that of auto-polymerized acrylic resin. In conclusion, ultrasonic treatment at low frequencies is recommended to reduce the residual monomer in auto-polymerized acrylic resin and this method is more practical in a clinical situation than previously recommended methods because of reduced chairside time.

  8. Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder

    PubMed Central

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  9. Clinical applications of preheated hybrid resin composite.

    PubMed

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  10. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  11. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  12. Liquid Resins With Low VOC Emissions

    DTIC Science & Technology

    2004-12-01

    titrated with the perchloric acid / peracetic acid solution (Aldrich) until the indicator, 0.1% crystal violet in acetic acid (Aldrich), changed color from...method of reducing styrene emissions from vinyl ester (VE) resins is to replace some or all of the styrene with fatty acid -based monomers. Fatty acid ...renewable resources. VE resins with no more than 20 wt% styrene were prepared using methacrylate terminated lauric acid . The viscosities of these

  13. Layered Manufacturing: Challenges and Opportunities

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014215 TITLE: Layered Manufacturing : Challenges and Opportunities ...Research Society LL1.4 Layered Manufacturing : Challenges and Opportunities Khershed P. Cooper Materials Science and Technology Division, Naval Research...Laboratory Washington, DC 20375-5343, U.S.A. ABSTRACT Layered Manufacturing (LM) refers to computer-aided manufacturing processes in which parts are made

  14. Administered activity and outcomes of glass versus resin 90Y microsphere radioembolization in patients with colorectal liver metastases

    PubMed Central

    Nasr, Elie C.; Kunam, Vamsi K.; Bullen, Jennifer A.; Purysko, Andrei S.

    2016-01-01

    Background Given the differences in size, specific activity, and dosing methods for glass yttrium-90 microspheres (90Y-glass) and resin 90Y microspheres (90Y-resin), these therapies may expose the liver to different amounts of radiation, thereby affecting their efficacy and tolerability. We aimed to compare the prescribed activity of 90Y-glass and 90Y-resin for real-world patients undergoing selective internal radiation therapy (SIRT) for liver-dominant metastatic colorectal cancer (mCRC) and to assess efficacy and safety outcomes in these patients. Methods We examined the records of 28 consecutive patients with unresectable colorectal liver metastases treated with SIRT between June 2008 and May 2011 at our institution. Using baseline CT and MR images, we calculated a projected activity as if we had used the other product and compared it to the actual prescribed activity of 90Y-glass and 90Y-resin for each SIRT treatment per manufacturer guidelines. Progression and adverse events were evaluated at follow up visits. Survival was analyzed by the Kaplan-Meier method. Results For 90Y-glass treatments with a mean prescribed 90Y activity of 1.77 GBq, the mean projected 90Y-resin activity was 0.84 GBq. For 90Y-resin treatments with a mean prescribed 90Y activity of 1.05 GBq, the mean projected 90Y-glass activity was 2.48 GBq. The median survival was 9.3 months versus 18.2 months for 90Y-glass and 90Y-resin, respectively (P=0.292). During the second year after SIRT, the hazard ratio of death for patients treated with 90Y-glass versus 90Y-resin was 4.0 (95% CI: 1.3, 12.3; P=0.017). No significant difference in progression, adverse events or liver toxicity was observed. Conclusions Using manufacturer recommended guidelines, 90Y-resin delivers significantly less activity than 90Y-glass to patients with liver-dominant mCRC undergoing SIRT with no significant difference in adverse events and a trend toward improved survival. PMID:27563442

  15. Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties.

    PubMed

    Gao, Chong; Zhang, Shimin; Wang, Feng; Wen, Bin; Han, Chunchun; Ding, Yanfen; Yang, Mingshu

    2014-08-13

    Acrylonitrile-butadiene-styrene resin (ABS)/graphene nanocomposites were prepared through a facile coagulation method. Because the chemical reduction of graphene oxide was in situ conducted in the presence of ABS at the dispersion stage, the aggregation of the graphene nanosheets was avoided. It was shown by transmission electron microscopy that the graphene nanosheets were selectively located and homogeneously dispersed in the styrene-acrylonitrile (SAN) phase. The electrical conductivity and linear viscoelastic behavior of the nanocomposites were systematically studied. With increasing filler content, graphene networks were established in the SAN phase. Consequently, the nanocomposites underwent a transition from electrical insulator to conductor at a percolation threshold of 0.13 vol %, which is smaller than that of other ABS composites. Such a low percolation threshold results from extreme geometry, selective localization, and homogeneous dispersion of the graphene nanosheets in SAN phase. Similarly, the rheological response of the nanocomposites also showed a transition to solid-like behavior. Due to the thermal reduction of graphene nanosheets and structure improvement of graphene networks, enhanced electrical conductivity of the nanocomposites was obtained after annealing.

  16. Ab Initio Infrared and Raman Spectra.

    DTIC Science & Technology

    1982-08-01

    tions. For parameters not depending on momenta, a parallel ab fhti Monte Carlo approach would use electronic energies and other parameters of... Monte Carlo approach. Specifically, as one of us has suggested,t I classical molecular dynamics may be integrated with ab iniHo quan- tum force...alternative approach, for phenomena which are not explicitly time dependent, is a Monte Carlo procedure in which at each trial nuclear configuration

  17. Environmentally sound manufacturing

    NASA Astrophysics Data System (ADS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  18. Environmentally sound manufacturing

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1994-01-01

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  19. Cleanup of TMI-2 demineralizer resins

    SciTech Connect

    Bond, W.D.; King, L.J.; Knauer, J.B.; Hofstetter, K.J.; Thompson, J.D.

    1985-01-01

    Radiocesium is being removed from Demineralizers A and B (DA and DB by a process that was developed from laboratory tests on small samples of resin from the demineralizers. The process was designed to elute the radiocesium from the demineralizer resins and then to resorb it onto the zeolite ion exchangers contained in the Submerged Demineralizer System (SDS). The process was also required to limit the maximum cesium activities in the resin eluates (SDS feeds) so that the radiation field surrounding the pipelines would not be excessive. The process consists of 17 stages of batch elution. In the initial stage, the resin is contacted with 0.18 M boric acid. Subsequent stages subject the resin to increasing concentrations of sodium in NaH/sub 2/BO/sub 3/-H/sub 3/BO/sub 3/ solution (total B = 0.35 M) and then 1 M sodium hydroxide in the final stages. Results on the performance of the process in the cleanup of the demineralizers at TMI-2 are compared to those obtained from laboratory tests with small samples of the DA and DB resins. To date, 15 stages of batch elution have been completed on the demineralizers at TMI-2 which resulted in the removal of about 750 Ci of radiocesium from DA and about 3300 Ci from DB.

  20. Resin characterization by electro-acoustic measurements.

    PubMed

    Müller, Egbert; Mann, Christian

    2007-03-09

    The electro-acoustic effects, namely the ion vibration potential (IVP) and the colloidal vibration current (CVI), colloidal vibration potential (CVP) first described by P. Debye [P. Debye, J. Chem. Phys. 1 (1933) 13], are a result of charge separation of bound or free ions at different degrees by ultrasonic waves. Today commercial instruments are available to investigate liquid homogeneous and heterogeneous systems. In the present paper the application of this technique for the characterization of salts, protein solutions and resins for biochromatography is shown and valuable information about resins can be derived in a short time. Various resins were investigated with the following results: (1) the CVI magnitude is dependent of several parameters (such as particle size distribution, volume fraction, density difference); (2) the CVI is influenced by the surface modification of the resins. Polymeric modifications decrease the value of CVI. The CVI is generally lower for high capacity resins; (3) the measurement of the electro-acoustic effects can be used to detect small changes in resins. The CVI is dependent of the amount of adsorbed protein in "native" and denatured state.

  1. ATS materials/manufacturing

    SciTech Connect

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K.

    1997-11-01

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  2. Computers in manufacturing.

    PubMed

    Hudson, C A

    1982-02-12

    Computers are now widely used in product design and in automation of selected areas in factories. Within the next decade, the use of computers in the entire spectrum of manufacturing applications, from computer-aided design to computer-aided manufacturing and robotics, is expected to be practical and economically justified. Such widespread use of computers on the factory floor awaits further advances in computer capabilities, the emergence of systems that are adaptive to the workplace, and the development of interfaces to link islands of automation and to allow effective user communications.

  3. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    SciTech Connect

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  4. Wet-filament winding fabrication of thick carbon fiber/polycyanate resin composite

    SciTech Connect

    Frame, B.J.; Dodge, W.G.

    1997-06-01

    Polycyanate resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the fabrication of a thick (nominal 1 in.) hoop-wound composite cylinder that is manufactured by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14 polycyanate resin as the constituent materials. An analytical model used to evaluate the fabrication process, estimate composite residual stresses and provide input toward mandrel design is presented and the construction of the mandrel used to wet-wind the cylinder is described. The composite cylinder quality is evaluated by dimensional inspection and measurements of density and composition.

  5. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  6. AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and Potency of Novel Synthetic Cannabinoids in Producing Δ9-Tetrahydrocannabinol-Like Effects in Mice.

    PubMed

    Wiley, Jenny L; Marusich, Julie A; Lefever, Timothy W; Antonazzo, Kateland R; Wallgren, Michael T; Cortes, Ricardo A; Patel, Purvi R; Grabenauer, Megan; Moore, Katherine N; Thomas, Brian F

    2015-09-01

    Diversion of synthetic cannabinoids for abuse began in the early 2000s. Despite legislation banning compounds currently on the drug market, illicit manufacturers continue to release new compounds for recreational use. This study examined new synthetic cannabinoids, AB-CHMINACA (N-[1-amino-3-methyl-oxobutan-2-yl]-1-[cyclohexylmethyl]-1H-indazole-3-carboxamide), AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide], and FUBIMINA [(1-(5-fluoropentyl)-1H-benzo[d]imadazol-2-yl)(naphthalen-1-yl)methanone], with the hypothesis that these compounds, like those before them, would be highly susceptible to abuse. Cannabinoids were examined in vitro for binding and activation of CB1 receptors, and in vivo for pharmacological effects in mice and in Δ(9)-tetrahydrocannabinol (Δ(9)-THC) discrimination. AB-CHMINACA, AB-PINACA, and FUBIMINA bound to and activated CB1 and CB2 receptors, and produced locomotor suppression, antinociception, hypothermia, and catalepsy. Furthermore, these compounds, along with JWH-018 [1-pentyl-3-(1-naphthoyl)indole], CP47,497 [rel-5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol], and WIN55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate), substituted for Δ(9)-THC in Δ(9)-THC discrimination. Rank order of potency correlated with CB1 receptor-binding affinity, and all three compounds were full agonists in [(35)S]GTPγS binding, as compared with the partial agonist Δ(9)-THC. Indeed, AB-CHMINACA and AB-PINACA exhibited higher efficacy than most known full agonists of the CB1 receptor. Preliminary analysis of urinary metabolites of the compounds revealed the expected hydroxylation. AB-PINACA and AB-CHMINACA are of potential interest as research tools due to their unique chemical structures and high CB1 receptor efficacies. Further studies on these chemicals are likely to include research on understanding cannabinoid

  7. AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and Potency of Novel Synthetic Cannabinoids in Producing Δ9-Tetrahydrocannabinol–Like Effects in Mice

    PubMed Central

    Marusich, Julie A.; Lefever, Timothy W.; Antonazzo, Kateland R.; Wallgren, Michael T.; Cortes, Ricardo A.; Patel, Purvi R.; Grabenauer, Megan; Moore, Katherine N.

    2015-01-01

    Diversion of synthetic cannabinoids for abuse began in the early 2000s. Despite legislation banning compounds currently on the drug market, illicit manufacturers continue to release new compounds for recreational use. This study examined new synthetic cannabinoids, AB-CHMINACA (N-[1-amino-3-methyl-oxobutan-2-yl]-1-[cyclohexylmethyl]-1H-indazole-3-carboxamide), AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide], and FUBIMINA [(1-(5-fluoropentyl)-1H-benzo[d]imadazol-2-yl)(naphthalen-1-yl)methanone], with the hypothesis that these compounds, like those before them, would be highly susceptible to abuse. Cannabinoids were examined in vitro for binding and activation of CB1 receptors, and in vivo for pharmacological effects in mice and in Δ9-tetrahydrocannabinol (Δ9-THC) discrimination. AB-CHMINACA, AB-PINACA, and FUBIMINA bound to and activated CB1 and CB2 receptors, and produced locomotor suppression, antinociception, hypothermia, and catalepsy. Furthermore, these compounds, along with JWH-018 [1-pentyl-3-(1-naphthoyl)indole], CP47,497 [rel-5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol], and WIN55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate), substituted for Δ9-THC in Δ9-THC discrimination. Rank order of potency correlated with CB1 receptor-binding affinity, and all three compounds were full agonists in [35S]GTPγS binding, as compared with the partial agonist Δ9-THC. Indeed, AB-CHMINACA and AB-PINACA exhibited higher efficacy than most known full agonists of the CB1 receptor. Preliminary analysis of urinary metabolites of the compounds revealed the expected hydroxylation. AB-PINACA and AB-CHMINACA are of potential interest as research tools due to their unique chemical structures and high CB1 receptor efficacies. Further studies on these chemicals are likely to include research on understanding cannabinoid receptors

  8. Preparation and cured properties of novel cycloaliphatic epoxy resins

    SciTech Connect

    Tokizawa, Makoto; Okada, Hiroyoshi; Wakabayashi, Nobukatsu; Kimura, Tomiaki . Research Center)

    1993-10-20

    Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is compared to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C[sub 8] chain by cross-linking.

  9. Scaling up of manufacturing processes of recycled carpet based composites

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Krishnan

    2011-12-01

    In this work, feasibility of recycling post-consumer carpets using a modified vacuum assisted resisted molding process into large-scale components was successfully demonstrated. The scale up also included the incorporation of nano-clay films in the carpet composites. It is expected that the films will enhance the ability of the composite to withstand environmental degradation and also serve as a fire retardant. Low-cost resins were used to fabricate the recycled carpet-based composites. The scale up in terms of process was achieved by manufacturing composites without a hot press and thereby saving additional equipment cost. Mechanical and physical properties were evaluated. Large-scale samples demonstrated mechanical properties that were different from results from small samples. Acoustic tests indicate good sound absorption of the carpet composite. Cost analysis of the composite material based on the cost of the raw materials and the manufacturing process has been presented.

  10. Selection and Manufacturing of Membrane Materials for Solar Sails

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Seaman, Shane T.; Wilkie, W. Keats; Miyaucchi, Masahiko; Working, Dennis C.

    2013-01-01

    Commercial metallized polyimide or polyester films and hand-assembly techniques are acceptable for small solar sail technology demonstrations, although scaling this approach to large sail areas is impractical. Opportunities now exist to use new polymeric materials specifically designed for solar sailing applications, and take advantage of integrated sail manufacturing to enable large-scale solar sail construction. This approach has, in part, been demonstrated on the JAXA IKAROS solar sail demonstrator, and NASA Langley Research Center is now developing capabilities to produce ultrathin membranes for solar sails by integrating resin synthesis with film forming and sail manufacturing processes. This paper will discuss the selection and development of polymer material systems for space, and these new processes for producing ultrathin high-performance solar sail membrane films.

  11. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    PubMed Central

    KİLİC, Kerem; ARSLAN, Soley; DEMETOGLU, Goknil Alkan; ZARARSIZ, Gokmen; KESİM, Bulent

    2013-01-01

    Objective: The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS) and hydrogen peroxide (H2O2) on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods: Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results: There were significant differences in microtensile bond strengths (µTBS) between the control and blood-contaminated groups (p<0.05), whereas there were no significant differences found between the control and the other groups (p>0.05). Conclusions: Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination. PMID:23559118

  12. Characterisation and discrimination of various types of lac resin using gas chromatography mass spectrometry techniques with quaternary ammonium reagents.

    PubMed

    Sutherland, K; del Río, J C

    2014-04-18

    A variety of lac resin samples obtained from artists' suppliers, industrial manufacturers, and museum collections were analysed using gas chromatography mass spectrometry (GCMS) and reactive pyrolysis GCMS with quaternary ammonium reagents. These techniques allowed a detailed chemical characterisation of microgram-sized samples, based on the detection and identification of derivatives of the hydroxy aliphatic and cyclic (sesquiterpene) acids that compose the resin. Differences in composition could be related to the nature of the resin, e.g. wax-containing (unrefined), bleached, or aged samples. Furthermore, differences in the relative abundances of aliphatic hydroxyacids appear to be associated with the biological source of the resin. The diagnostic value of newly characterised lac components, including 8-hydroxyacids, is discussed here for the first time. Identification of derivatised components was aided by AMDIS deconvolution software, and discrimination of samples was enhanced by statistical evaluation of data using principal component analysis. The robustness of the analyses, together with the minimal sample size required, make these very powerful approaches for the characterisation of lac resin in museum objects. The value of such analyses for enhancing the understanding of museum collections is illustrated by two case studies of objects in the collection of the Philadelphia Museum of Art: a restorer's varnish on a painting by Luca Signorelli, and a pictorial inlay in an early nineteenth-century High Chest by George Dyer.

  13. Assessment of flow and cure monitoring using direct current and alternating current sensing in vacuum-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Vaidya, Uday K.; Jadhav, Nitesh C.; Hosur, Mahesh V.; Gillespie, John W., Jr.; Fink, Bruce K.

    2000-12-01

    Vacuum-assisted resin transfer molding (VARTM) is an emerging manufacturing technique that holds promise as an affordable alternative to traditional autoclave molding and automated fiber placement for producing large-scale structural parts. In VARTM, the fibrous preform is laid on a single-sided tool, which is then bagged along with the infusion and vacuum lines. The resin is then infused through the preform, which causes simultaneous wetting in its in-plane and transverse directions. An effective sensing technique is essential so that comprehensive information pertaining to the wetting of the preform, arrival of resin at various locations, cure gradients associated with thickness and presence of dry spots may be monitored. In the current work, direct current (dc) and alternating current sensing/monitoring techniques were adopted for developing a systematic understanding of the resin position and cure on plain weave S2-glass preforms with Dow Derakane vinyl ester VE 411-350, Shell EPON RSL 2704/2705 and Si-AN epoxy as the matrix systems. A SMARTweave dc sensing system was utilized to conduct parametric studies: (a) to compare the flow and cure of resin through the stitched and non-stitched preforms; (b) to investigate the influence of sensor positioning, i.e. top, middle and bottom layers; and (c) to investigate the influence of positioning of the process accessories, i.e. resin infusion point and vacuum point on the composite panel. The SMARTweave system was found to be sensitive to all the parametric variations introduced in the study. Furthermore, the results obtained from the SMARTweave system were compared to the cure monitoring studies conducted by using embedded interdigitated (IDEX) dielectric sensors. The results indicate that SMARTweave sensing was a viable alternative to obtaining resin position and cure, and was more superior in terms of obtaining global information, in contrast to the localized dielectric sensing approach.

  14. Northwest Manufacturing Initiative

    DTIC Science & Technology

    2014-07-31

    manufacturer, now recycle used soda bottles , unusable second quality fabrics and worn out garments into polyester fibers to produce many of their clothes... Recycling .............................. B1-FB7-1 Warehouse Layout Design at Shady Peeps...Analysis and Recommendations .......................................... B1-FB11-1 NextStep Recycling Supply Chain and Ops Analysis and

  15. Rapid response manufacturing (RRM)

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  16. Manufacturing Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Dakota State Board for Vocational Education, Bismarck.

    This guide provides the basic foundation to develop a one-semester course based on the cluster concept, manufacturing technology. One of a set of six guides for an industrial arts curriculum at the junior high school level, it suggests activities that allow students (1) to become familiar with and use some of the tools, materials, and processes…

  17. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  18. Advanced Computing for Manufacturing.

    ERIC Educational Resources Information Center

    Erisman, Albert M.; Neves, Kenneth W.

    1987-01-01

    Discusses ways that supercomputers are being used in the manufacturing industry, including the design and production of airplanes and automobiles. Describes problems that need to be solved in the next few years for supercomputers to assume a major role in industry. (TW)

  19. Reusing Old Manufacturing Buildings

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  20. Illinois Manufacturing Technology Curriculum.

    ERIC Educational Resources Information Center

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  1. Manufacturing (Industrial) Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 35 units to consider for use in a tech prep competency profile for the occupation of manufacturing (industrial) technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific…

  2. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  3. Can 1% chlorhexidine diacetate and ethanol stabilize resin-dentin bonds?

    PubMed Central

    Manso, Adriana Pigozzo; Grande, Rosa Helena Miranda; Bedran-Russo, Ana Karina; Reis, Alessandra; Loguercio, Alessandro D.; Pashley, David Henry; Carvalho, Ricardo Marins

    2014-01-01

    Objectives To examine the effects of the combined use of chlorhexidine and ethanol on the durability of resin-dentin bonds. Methods Forty-eight flat dentin surfaces were etched (32% phosphoric acid), rinsed (15 s) and kept wet until bonding procedures. Dentin surfaces were blot-dried with absorbent paper and re-wetted with water (Water, control), 1% chlorhexidine diacetate in water (CHD/Water), 100% ethanol (Ethanol), or 1% chlorhexidine diacetate in ethanol (CHD/Ethanol) solutions for 30 s. They were then bonded with All Bond 3 (AB3, Bisco) or Excite (EX, Ivoclar-Vivadent) using a smooth, continuous rubbing application (10 s), followed by 15 s gentle air stream to evaporate solvents. The adhesives were light-cured (20 s) and resin composite build-ups constructed for the microtensile method. Bonded beams were obtained and tested after 24-hours, 6-months and 15-months of water storage at 37°C. Storage water was changed every month. Effects of treatment and testing periods were analyzed (ANOVA, Holm-Sidak, p<0.05) for each adhesive. Results There were no interactions between factors for both etch-and-rinse adhesives. AB3 was significantly affected only by storage (p = 0.003). Excite was significantly affected only by treatments (p = 0.048). AB3 treated either with ethanol or CHD/ethanol resulted in reduced bond strengths after 15 months. The use of CHD/ethanol resulted in higher bond strengths values for Excite. Conclusions Combined use of ethanol/1% chlorhexidine diacetate did not stabilize bond strengths after 15 months. PMID:24815823

  4. a Method of 3d Freeform Fabrication Using a Curing of Photopolymer Resin

    NASA Astrophysics Data System (ADS)

    Kim, Jung Su; Kim, Dong Soo; Lee, Min Cheol; Lee, Won Hee

    Recently, Study of 3D freeform fabrication method was working in the various applications. For example, in the powder base, it's laminated using a binding method or laser sintering method. However, the demerits of these methods are to take long time for post process and not enough to keep high strength of manufacturing part. The binding method needs the post process and the time for post process needs longer time than a manufacturing time. The sintering method has huge size of system with module of the laser. In this paper, we introduce a method of 3D freeform fabrication using a curing of photopolymer resin. A photopolymer curing method has simply fabrication process and high strength of manufacturing part. So, we are configuration the system with compact type module for the office environment and experiment a UV curing test with photopolymer resin in the 3D freeform fabrication method. In the conclusion, we fabricate the 3D freeform part, which is suitable to the office environment using a photopolymer curing method.

  5. Thermal rearrangement of novolak resins used in microlithography

    NASA Astrophysics Data System (ADS)

    Hardy, Ricky; Zampini, Anthony; Monaghan, Michael J.; O'Leary, Michael J.; Cardin, William J.; Eugster, Timothy J.

    1995-06-01

    Changes in phenolic-formaldehyde resin properties are described in terms of thermal exposure. At high temperature, resin molecular weight, dissolution properties and chemical composition change depending on the presence or absence of monomers. Without monomer in the resin melt at 220 degree(s)C, resin molecular weight increases with a corresponding decrease in dissolution rate. In the presence of monomer, molecular weight generally decreases. Dissolution rate may fluctuate depending on the monomer mixture. Three,five- Xylenol and 2,3,5-trimethylphenol co-monomers induced the most extreme changes in resin properties with thermal treatment. Resin degradation-recombination processes suggest a classical Friedel-Craft rearrangement mechanism.

  6. Optimizing Vacuum Assisted Resin Transfer Moulding (VARTM) Processing Parameters to Improve Part Quality

    NASA Astrophysics Data System (ADS)

    Polowick, Christopher

    The Low Cost Composites (LCC) group at Carleton University is studying out-of-autoclave composite manufacturing processes such as Vacuum Assisted Resin Transfer Moulding (VARTM) and Closed Cavity Bag Moulding (CCBM). These processes are used to produce inexpensive and high performance components for the GeoSurv II, an Unmanned Aerial Vehicle (UAV) being developed at Carleton University. This research has focused on optimizing VARTM processing parameters to reduce the weight and improve the strength and surface finish of GeoSurv II composite components. A simulation was developed to model resin flow through in VARTM infusions and was used to simulate mould filling and resin emptying of the GeoSurv II inverted V-empennage and mission avionics hatch. The resin infusion schemes of these parts were designed to ensure full preform resin saturation, and minimize thickness variations. An experimental study of the effects of the presence of a corner on composite thickness, void content, and strength was conducted. It was found that inside corners result in local increases in thickness and void content due to poor preform compaction. A novel bagging technique was developed to improve corner compaction, and this technique was shown to reduce thickness variability and void content. The strength, void content, and thickness variation were found to be heavily dependent on corner radius, with corner radii greater than 6.4 mm displaying the greatest improvement in performance for the layups considered. The design of the empennage and hatch mould incorporated the results of this study to improve the quality of these components.

  7. [Effects of different surface conditioning agents on the bond strength of resin-opaque porcelain composite].

    PubMed

    Liu, Wenjia; Fu, Jing; Liao, Shuang; Su, Naichuan; Wang, Hang; Liao, Yunmao

    2014-04-01

    The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P < 0.05) and most specimens of SPP and RCP performed combined failures (failure occurred in bond surface and within opaque porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could

  8. Tc-99 Ion Exchange Resin Testing

    SciTech Connect

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  9. Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste.

    PubMed

    Wang, Zhihong; Wang, Chengzhang; Yuan, Jiaojiao; Zhang, Changwei

    2017-01-01

    In this study, the adsorption properties of nine resins including polyamide resin (30-60), polyamide resin (60-100) AB-8, S-8, D-101, NKA-9, NKA-II, XDA-1 and XDA-4 for enrichment phenolics of the olive waste were investigated. XDA-1 and NKA-II were chosen for further study due to their outstanding adsorption and desorption capacity. XDA-1 and NKA-II had similar adsorption and desorption behaviors for phenolics of olive waste. The adsorption mechanism could be better explained by pseudo second-order kinetics model and Freundlich isotherm model, and the adsorption processes were spontaneously and exothermic. The experiment of gradient elution were carried out through treated XDA-1 resins column, the result indicated the total phenolics were mainly obtained from the 40% and 60% ethanol fraction. The order of antioxidant capacity by DPPH  , ABTS(+) radical and FRAP assay was similar with the content of phenolics from fraction elution. The compositions of phenolics from different elution fractions were determined by reversed phase-HPLC-DAD method. Gallic acid, hydroxytyrosol, tyrosol and ferulic acid were the major constituent in the fraction elute, and the content of hydroxytyrosol reached to the 41.69mg/g. The above results revealed the synergistic effects of the different phenolics contribute to the antioxidant capacity.

  10. Enrichment and purification of six Aconitum alkaloids from Aconiti kusnezoffii radix by macroporous resins and quantification by HPLC-MS.

    PubMed

    Liu, Jingjing; Li, Qing; Liu, Ran; Yin, Yidi; Chen, Xiaohui; Bi, Kaishun

    2014-06-01

    Aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypaconine are six main Aconitum alkaloids from traditional Chinese medicine, Aconiti kusnezoffii radix, which possess highly bioactive as well as highly toxic character for medicinal use. In the present study, for the purpose of better utilizing the toxic herbal material, the performance characteristics of NKA-II, D101, X-5, AB-8, S-8, HPD722 and HPD750 macroporous resins for the enrichment and purification of these six Aconitum alkaloids were critically evaluated. Results showed that NKA-II offered the best adsorption and desorption capacities for six Aconitum alkaloids among the seven macroporous resins tested, which were affected significantly by the pH value. Subsequently, dynamic adsorption and desorption experiments had been carried out with the column packed by NKA-II resin to optimize the separation process of six Aconitum alkaloids. After one run treatment with NKA-II resin, the content of total six Aconitum alkaloids were increased from 5.87% to 60.3%, the recovery was 75.8%. Meanwhile, a validated HPLC-MS method had been developed to qualitative and quantitative these six Aconitum alkaloids. This method would provide scientific references to the large-scale production of six Aconitum alkaloids from Aconiti kusnezoffii radix or other plants and might also expand the secure application of these highly toxic components for pharmacy.

  11. Resin flow monitoring in vacuum-assisted resin transfer molding using optical fiber distributed sensor

    NASA Astrophysics Data System (ADS)

    Eum, Soohyun; Kageyama, Kazuro; Murayama, Hideaki; Ohsawa, Isamu; Uzawa, Kiyoshi; Kanai, Makoto; Igawa, Hirotaka

    2007-04-01

    In this study, we implemented resin flow monitoring by using an optical fiber sensor during vacuum assisted resin transfer molding (VaRTM).We employed optical frequency domain reflectometry (OFDR) and fiber Bragg grating (FBG) sensor for distributed sensing. Especially, long gauge FBGs (about 100mm) which are 10 times longer than an ordinary FBG were employed for more effective distributed sensing. A long gauge FBG was embedded in GFRP laminates, and other two ones were located out of laminate for wavelength reference and temperature compensation, respectively. During VaRTM, the embedded FBG could measure how the preform affected the sensor with vacuum pressure and resin was flowed into the preform. In this study, we intended to detect the gradient of compressive strain between impregnated part and umimpregnated one within long gauge FBG. If resin is infused to preform, compressive strain which is generated on FBG is released by volume of resin. We could get the wavelength shift due to the change of compressive strain along gauge length of FBG by using short-time Fourier transformation for signal acquired from FBG. Therefore, we could know the resin flow front with the gradient of compressive strain of FBG. In this study, we used silicon oil which has same viscosity with resin substitute for resin in order to reuse FBG. In order to monitor resin flow, the silicon oil was infused from one edge of preform, the silicon oil was flowed from right to left. Then, we made dry spot within gauge length by infusing silicon oil to both sides of preform to prove the ability of dry spot monitoring with FBG. We could monitor resin flow condition and dry spot formation successfully using by FBG based on OFDR.

  12. Surface Roughness of Composite Resins after Simulated Toothbrushing with Different Dentifrices

    PubMed Central

    Monteiro, Bruna; Spohr, Ana Maria

    2015-01-01

    Background: The aim of the study was to evaluate, in vitro, the surface roughness of two composite resins submitted to simulated toothbrushing with three different dentifrices. Materials and Methods: Totally, 36 samples of Z350XT and 36 samples of Empress Direct were built and randomly divided into three groups (n = 12) according to the dentifrice used (Oral-B Pro-Health Whitening [OBW], Colgate Sensitive Pro-Relief [CS], Colgate Total Clean Mint 12 [CT12]). The samples were submitted to 5,000, 10,000 or 20,000 cycles of simulated toothbrushing. After each simulated period, the surface roughness of the samples was measured using a roughness tester. Results: According to three-way analysis of variance, dentifrice (P = 0.044) and brushing time (P = 0.000) were significant. The composite resin was not significant (P = 0.381) and the interaction among the factors was not significant (P > 0.05). The mean values of the surface roughness (µm) followed by the same letter represent no statistical difference by Tukey's post-hoc test (P <0.05): Dentifrice: CT12 = 0.269a; CS Pro- Relief = 0.300ab; OBW = 0.390b. Brushing time: Baseline = 0,046ª; 5,000 cycles = 0.297b; 10,000 cycles = 0.354b; 20,000 cycles = 0.584c. Conclusion: Z350 XT and Empress Direct presented similar surface roughness after all cycles of simulated toothbrushing. The higher the brushing time, the higher the surface roughness of composite resins. The dentifrice OBW caused a higher surface roughness in both composite resins. PMID:26229362

  13. Additive and Photochemical Manufacturing of Copper

    NASA Astrophysics Data System (ADS)

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-12-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

  14. Additive and Photochemical Manufacturing of Copper

    PubMed Central

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733

  15. Additive and Photochemical Manufacturing of Copper.

    PubMed

    Yung, Winco K C; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-12-21

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

  16. Clinical evaluation of a flowable resin composite and flowable compomer for preventive resin restorations.

    PubMed

    Qin, Man; Liu, HongSheng

    2005-01-01

    This clinical study evaluated the retention and caries protection of a flowable resin composite (Flow Line) and a flowable compomer (Dyract Flow) used in preventive resin restorations as compared to the conventional preventive resin technique which uses a resin composite (Brilliant) and a sealant (Concise). This study observed 205 permanent molars with small carious cavities less than 1.5 mm in width, which were obtained from 165 children aged 7 to 15 years. Flowable resin composite was used to treat 75 teeth, and 71 teeth were treated with flowable compomer in both cavities and caries-free fissures. For the control group, 59 teeth were treated with resin composite in cavities and sealant in caries-free fissures. The teeth were evaluated at 3, 6, 12, 18 and 24-month intervals. After three months, all 205 treated teeth were completely intact. After six months, 66 of the 71 teeth treated with flowable resin composite and 65 of the 70 teeth treated with flowable compomer were complete, compared to 57 of the 58 teeth treated with the conventional preventive resin technique. After 12 months, 60 of the 67 teeth treated with flowable resin composite and 61 of the 67 teeth treated with flowable compomer were complete, compared to 51 of the 55 teeth treated with the conventional preventive resin technique. After 18 months, 53 of the 61 teeth treated with flowable resin composite and 54 of the 62 teeth treated with flowable compomer were complete, compared to 47 of the 53 teeth treated with the conventional preventive resin technique. After 24 months, 49 of the 58 teeth treated with flowable resin composite and 45 of the 57 teeth treated with flowable compomer were complete, compared to 42 of the 52 teeth treated with the conventional preventive resin technique. There were no statistically significant differences in retention rates among all groups after 3, 6, 12, 18 or 24-months (p>0.05). One tooth treated with flowable resin composite and one tooth treated with flowable

  17. Method development for thermal analyses testing on Reillex HPQ resin using the advanced reactive system screening tool (ARSST)

    SciTech Connect

    Best, D.

    2016-03-01

    Reillex™ HPQ resin was developed by Los Alamos Laboratory and Reilly Industries Inc. in an effort to increase safety and process efficiency during the recovery and purification of plutonium. Ionac™ A-641, another strong base macroporous anion exchange resin used in the nuclear industry, was known to undergo a runaway reaction in hot nitric acid solutions. Because of this, an extensive amount of thermal analyses testing on the Reillex™ HPQ resin in SRNL was performed in 1999-2001 prior to use. A report on the thermal stability qualification of the Reillex™ HPQ resin in 8M (35%) and 12M (53%) HNO3 was reported in 2000. In 2001, the reactivity of Reillex™ HPQ resin in 14.4M (64%) HNO3 was evaluated. In January of 2001, thermal stability scoping tests were performed on irradiated Reillex™ HPQ resin in 14.4M (64%) HNO3 (as a worst case scenario) and the results sent to Fauske and Associates to calculate a rupture disk size for the HB-Line resin column. A technical report by Fauske and Associates was issued in February 2001 recommending a 2.0” vent line with a rupture disk set pressure of 60 psig. This calculation was based on ARSST thermal analyses scoping tests at SRNL in which 4 grams of dried resin and 6.0 grams of 64% nitric acid in a 10 gram test cell, produced a maximum pressure rate (dP/dt) of 720 psi/min (12 psi/sec) and a maximum temperature of 250 °C. In 2015, a new batch of Reillex™ HPQ resin was manufactured by Vertellus Industries. A test sample of the resin was sent to SRNL to perform acceptance and qualification thermal stability testing using the ARSST. During these tests, method development was performed to ensure that a representative resin to acid ratios were used while running the tests in the ARSST. Fauske and Associates recommended to either use a full test cell representative of the HB-Line column or a 10 gram sample in the test cell that was representative of the ratios of resin to nitric acid in

  18. Treatment of chromium plating process effluents with ion exchange resins.

    PubMed

    Tenório, J A; Espinosa, D C

    2001-01-01

    The surface treatment industry deals with various heavy metals, including the elements Cr, Zn, Ni, Cd, and Cu. Conventional treatments of effluents generate class I solid residue. The aim of this investigation was to study the viability of ion exchange as an alternative process for treatment of rinse water and to determine the efficacy of two ion exchange systems, System 1: "strong" cationic resin-"strong" anionic resin and System 2: "strong" cationic resin-"weak" anionic resin. Commercial resins and solutions taken from rinse tanks of chromium plating companies were used in this investigation. A two-column system, one for the cationic resin and another for the anionic resin, both with 150 ml capacity was mounted. The solution was percolated at a rate of 10 ml/min. The following solutions were used for regeneration of the resins: 2% H2SO4 for the cationic and 4% NaOH for the anionic. The percolated solutions revealed chromium contents of less than 0.25 mg/l, independent of the system used. The "strong" cationic resin-"weak" anionic resin gave excellent regeneration results. The "strong" cationic-"strong" anionic resin presented problems during regeneration, and did not release the retained ions after percolation of 2000 ml of 4% NaOH solution. It is concluded that for this type of treatment, the system composed of "strong" cationic resin and "weak" anionic resin is more appropriate.

  19. Optimization of Resin Infusion Processing for Composite Pipe Key-Part and K/T Type Joints Using Vacuum-Assisted Resin Transfer Molding

    NASA Astrophysics Data System (ADS)

    Wang, Changchun; Bai, Guanghui; Yue, Guangquan; Wang, Zhuxi; Li, Jin; Zhang, Boming

    2016-10-01

    In present study, the optimization injection processes for manufacturing the composite pipe key-part and K/T type joints in vacuum-assisted resin transfer molding (VARTM) were determined by estimating the filling time and flow front shape of four kinds of injection methods. Validity of the determined process was proved with the results of a scaling-down composite pipe key-part containing of the carbon fiber four axial fabrics and a steel core with a complex surface. In addition, an expanded-size composite pipe part was also produced to further estimate the effective of the determined injection process. Moreover, the resin injection method for producing the K/T type joints via VARTM was also optimized with the simulation method, and then manufactured on a special integrated mould by the determined injection process. The flow front pattern and filling time of the experiments show good agreement with that from simulation. Cross-section images of the cured composite pipe and K/T type joints parts prove the validity of the optimized injection process, which verify the efficiency of simulation method in obtaining a suitable injection process of VARTM.

  20. Ponderosa pine resin defenses and growth: metrics matter.

    PubMed

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  1. Diffusion of residual monomer in polymer resins.

    PubMed Central

    Piver, W T

    1976-01-01

    A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410

  2. Development of a heterogeneous laminating resin system

    NASA Technical Reports Server (NTRS)

    Biermann, T. F.; Hopper, L. C.

    1985-01-01

    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions.

  3. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Bismaleimide (BMI) resins are an attractive new addition to world-wide composite applications. This type of thermosetting polyimide provides several unique characteristics such as excellent physical property retention at elevated temperatures and in wet environments, constant electrical properties over a vast array of temperature settings, and nonflammability properties as well. This makes BMI a popular choice in advance composites and electronics applications [I]. Bismaleimide-2 (BMI-2) resin was used to infuse intermediate modulus 7 (IM7) based carbon fiber. Two panel configurations consisting of 4 plies with [+45deg, 90deg]2 and [0deg]4 orientations were fabricated. For tensile testing, a [90deg]4 configuration was tested by rotating the [0deg]4 configirration to lie orthogonal with the load direction of the test fixture. Curing of the BMI-2/IM7 system utilized an optimal infusion process which focused on the integration of the manufacturer-recommended ramp rates,. hold times, and cure temperatures. Completion of the cure cycle for the BMI-2/IM7 composite yielded a product with multiple surface voids determined through visual and metallographic observation. Although the curing cycle was the same for the three panellayups, the surface voids that remained within the material post-cure were different in abundance, shape, and size. For tensile testing, the [0deg]4 layup had a 19.9% and 21.7% greater average tensile strain performance compared to the [90deg]4 and [+45deg, 90deg, 90deg,-45degg] layups, respectively, at failure. For tensile stress performance, the [0deg]4 layup had a 5.8% and 34.0% greater average performance% than the [90deg]4 and [+45deg, 90deg, 90deg,-45deg] layups.

  4. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Caba, Aaron C.; Furrow, Keith W.

    2000-01-01

    This investigation completed the verification of a three-dimensional resin transfer molding/resin film infusion (RTM/RFI) process simulation model. The model incorporates resin flow through an anisotropic carbon fiber preform, cure kinetics of the resin, and heat transfer within the preform/tool assembly. The computer model can predict the flow front location, resin pressure distribution, and thermal profiles in the modeled part. The formulation for the flow model is given using the finite element/control volume (FE/CV) technique based on Darcy's Law of creeping flow through a porous media. The FE/CV technique is a numerically efficient method for finding the flow front location and the fluid pressure. The heat transfer model is based on the three-dimensional, transient heat conduction equation, including heat generation. Boundary conditions include specified temperature and convection. The code was designed with a modular approach so the flow and/or the thermal module may be turned on or off as desired. Both models are solved sequentially in a quasi-steady state fashion. A mesh refinement study was completed on a one-element thick model to determine the recommended size of elements that would result in a converged model for a typical RFI analysis. Guidelines are established for checking the convergence of a model, and the recommended element sizes are listed. Several experiments were conducted and computer simulations of the experiments were run to verify the simulation model. Isothermal, non-reacting flow in a T-stiffened section was simulated to verify the flow module. Predicted infiltration times were within 12-20% of measured times. The predicted pressures were approximately 50% of the measured pressures. A study was performed to attempt to explain the difference in pressures. Non-isothermal experiments with a reactive resin were modeled to verify the thermal module and the resin model. Two panels were manufactured using the RFI process. One was a stepped

  5. Impression technique for a complete-arch prosthesis with multiple implants using additive manufacturing technologies.

    PubMed

    Revilla-León, Marta; Sánchez-Rubio, José Luis; Oteo-Calatayud, Jesús; Özcan, Mutlu

    2016-11-23

    This article describes an impression technique for a complete-arch prosthesis supported by multiple implants where additive manufacturing technologies were used to fabricate a splinting framework and a custom tray. The technique presented uses a shim method to control the homogenous splinting acrylic resin and impression material during the procedure, thereby reducing laboratory and chairside time and the number of impression copings and laboratory analogs needed.

  6. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  7. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  8. [Allergic contact dermatitis from colophony and turpentine in resins of untreated pine wood].

    PubMed

    Booken, D; Velten, F W; Utikal, J; Goerdt, S; Bayerl, C

    2006-11-01

    Pine wood is one of the most used raw products in furniture manufacturing in Europe. High concentrations of colophony and turpentine can be extracted from pine resins. A 45-year-old woman developed a contact dermatitis of the face and hands due to a sensitization to colophony and turpentine after she had bought untreated pine chairs. The increased use of untreated pine in the furniture industry might result in an increase of colophony and turpentine-induced contact allergies. Therefore, the slogan "untreated=harmless" should be considered critically in such cases.

  9. Ab interno trabeculectomy: patient selection and perspectives.

    PubMed

    Vinod, Kateki; Gedde, Steven J

    2016-01-01

    Ab interno trabeculectomy is one among several recently introduced minimally invasive glaucoma surgeries that avoid a conjunctival incision and full-thickness sclerostomy involved in traditional glaucoma surgery. Ablation of the trabecular meshwork and inner wall of Schlemm's canal is performed in an arcuate fashion via a clear corneal incision, alone or in combination with phacoemulsification cataract surgery. Intraocular pressure reduction following ab interno trabeculectomy is limited by resistance in distal outflow pathways and generally stabilizes in the mid-to-high teens. Relief of medication burden has been demonstrated by some studies. A very low rate of complications, most commonly transient hyphema and intraocular pressure elevations in the immediate postoperative period, have been reported. However, available data are derived from small retrospective and prospective case series. Randomized, controlled trials are needed to better elucidate the potential merits of ab interno trabeculectomy in the combined setting versus phacoemulsification cataract surgery alone and to compare it with other minimally invasive glaucoma surgeries.

  10. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin *Ketone... thermosetting resins subcategory. 414.50 Section 414.50 Protection of Environment ENVIRONMENTAL PROTECTION... Thermosetting Resins § 414.50 Applicability; description of the thermosetting resins subcategory. The...

  11. Northwest Manufacturing Initiative

    DTIC Science & Technology

    2013-03-26

    structural and armor alloys and their weldments, as well as the development of agile, reconfigurable automated manufacturing environments. These...included construction of a work cell around the Fanuc M16 robot to simulate the installation of a window or windshield panel. The vacuum grip end effecter...lower strength alloys would further increase productivity of the tandem wire time twin process. The use of a double -V- groove joint for both welding

  12. Advances in Additive Manufacturing

    DTIC Science & Technology

    2016-07-14

    casting molds for traditional casting processes on the battlefield, and 3) the use of recycled polymeric materials as feedstock for 3-D printers ...nondestructive characterization technique allows for 3D imaging that readily captures defects and voids on the conditions that the attenuation, which is...of 3D -printed structures. Analysis examples will include quantification of tolerance differences between the designed and manufactured parts, void

  13. Electrohydrodynamic Printing and Manufacturing

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  14. Simulator manufacturers' requirements

    NASA Technical Reports Server (NTRS)

    Reilly, David R.

    1987-01-01

    Simulator manufacturers must continue to provide the customers the latest wind shear models available for pilot training. The release of the JAWS data package enabled the provision of a much more realistic wind shear package to the customer rather than just the standard six SRI wind shear profiles currently in use. In this brief presentation, the steps taken in implementing the JAWS data into the FAA 727 simulator are highlighted.

  15. Enrichment of total steroidal saponins from the extracts of Trillium tschonoskii Maxim by macroporous resin and the simultaneous determination of eight steroidal saponins in the final product by HPLC.

    PubMed

    Zhou, Yulan; Gao, Xin; Fu, Qiang; Guo, Pengqi; Xu, Xinya; Zhang, Ting; Ge, Yanhui; Zhang, Bilin; Wang, Mingchan; Zeng, Aiguo; Luo, Zhimin; Chang, Chun

    2017-03-01

    An effective and simple method was established for the separation and enrichment of steroidal saponins from Trillium tschonoskii Maxim. The adsorption and desorption properties of seven macroporous resins were investigated. Among the tested resins, AB-8 resin showed the best adsorption and desorption capacities. The adsorption of steroidal saponins on AB-8 at 25°C was quite consistent with both the Freundlich isotherm model and the pseudo-second-order kinetics model. By optimizing the dynamic adsorption and desorption parameters, the content of steroidal saponins increased from 5.20% in the crude extracts to 51.93% in the final product, with a recovery yield of 86.67%. Furthermore, by scale-up separation, the concentration and recovery of total steroidal saponins were 43.8 and 85.5%, respectively, which suggested that AB-8 resin had great industrial and pharmaceutical potential because of its high efficiency and cost-effectiveness. In addition, a high-performance liquid chromatography method for the simultaneous determination of eight steroidal saponins was established for the first time, which was employed to qualitatively and quantitatively analyze the final product. Based on the methodological validation results, the high-performance liquid chromatography method can be widely applied to the quality control of steroidal saponins from Trillium tschonoskii Maxim due to its excellent accuracy, stability, and repeatability.

  16. Standard tests for toughened resin composites, revised edition

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Several toughened resin systems are evaluated to achieve commonality for certain kinds of tests used to characterize toughened resin composites. Specifications for five tests were standardized; these test standards are described.

  17. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  18. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade... polytetrafluoroethylene resin from Japan would be likely to lead to continuation or recurrence of material injury....

  19. REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO THE HEATED CORE BOX THAT SETS THE RESIN CREATING THE HARDENED CORE SHOWN HERE. - Southern Ductile Casting Company, Core Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  20. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  1. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  2. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  3. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  4. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyacrylamide resin is produced by the copolymerization of acrylamide with not more than 5-mole percent β....05 percent residual acrylamide. (c) The modified polyacrylamide resin is used as a flocculent in...

  5. Try-in Pastes Versus Resin Cements: A Color Comparison.

    PubMed

    Vaz, Edenize Cristina; Vaz, Maysa Magalhães; Rodrigues Gonçalves de Oliveira, Maria Beatriz; Takano, Alfa Emília; de Carvalho Cardoso, Paula; de Torres, Érica Miranda; Gonzaga Lopes, Lawrence

    2016-05-01

    This study aimed to compare the color of ceramic veneer restorations using different shades of try-in pastes and resin cement. Researchers found no differences between try-in pastes and resin cements after cementation.

  6. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  7. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  8. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  9. Manufacturing a Superconductor in School.

    ERIC Educational Resources Information Center

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  10. Dermatitis in rubber manufacturing industries

    SciTech Connect

    White, I.R.

    1988-01-01

    This review describes the history of rubber technology and the manufacturing techniques used in rubber manufacturing industries. The important aspects of the acquisition of allergic and irritant contact dermatitis within the industry are presented for the reader.

  11. Resin injection in clays with high plasticity

    NASA Astrophysics Data System (ADS)

    Nowamooz, Hossein

    2016-11-01

    Regarding the injection process of polyurethane resins in clays with high plasticity, this paper presents the experimental results of the pressuremeter and cone penetration tests before and after injection. A very important increase in pressure limit or in soil resistance can be observed for all the studied depths close to the injection points. An analytical analysis for cylindrical pore cavity expansion in cohesive frictional soils obeying the Mohr-Coulomb criterion was then used to reproduce the pressuremeter tests before and after injection. The model parameters were calibrated by maintaining constant the elasticity parameters as well as the friction angel before and after injection. A significant increase in cohesion was observed because of soil densification after resin expansion. The estimated undrained cohesions, derived from the parameters of the Mohr-Coulomb criterion, were also compared with the cone penetration tests. Globally, the model predictions show the efficiency of resin injection in clay soils with high plasticity.

  12. Improved high temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Chang, G. E.; Powell, S. H.; Jones, R. J.

    1983-01-01

    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.

  13. Investigations of toughening mechanisms of epoxy resins

    NASA Technical Reports Server (NTRS)

    Koenig, T.

    1986-01-01

    Composite material technology was applied to the solid rocket booster by the development of a carbon filament-epoxy resin case which yields a net increase of 4000 lbs. in payload in the shuttle. The question of reusability of the new composite tanks has not yet been answered and will depend on the toughness of the matrix resin. The present study was aimed at providing conditions whereby test specimens of the epoxy resin (EPON/85) and curing agents of systematically varied structures could be produced in a controlled manner. Three sets of conditions were found that might allow the isolation of the structural effects on toughness from the cure effects. The kinetic methods leading to the determination of these conditions are described.

  14. Cycloaliphatic epoxy resin coating for capillary electrophoresis.

    PubMed

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L

    2002-04-05

    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were <0.8%. Speed and simplicity are important advantages of the coating procedure compared to other published coating methods.

  15. Laptop computer--associated erythema ab igne.

    PubMed

    Levinbook, Wendy Susser; Mallett, Janelle; Grant-Kels, Jane M

    2007-10-01

    A 40-year-old woman presented with an asymptomatic reticulated eruption on the thighs. After an extensive workup, she was diagnosed with erythema ab igne caused by laptop computer use. The eruption ultimately cleared several months after discontinuation of direct placement of the laptop computer on her thighs. Erythema ab igne is becoming increasingly associated with exposure to modern heat sources. A thorough history of patients with suspicious lesions should include questioning for contact with alternative heat sources to avoid an unnecessary workup for this condition.

  16. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  17. Energy 101: Clean Energy Manufacturing

    ScienceCinema

    None

    2016-07-12

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  18. Energy 101: Clean Energy Manufacturing

    SciTech Connect

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  19. MELCOR 1.8.2 assessment: Aerosol experiments ABCOVE AB5, AB6, AB7, and LACE LA2

    SciTech Connect

    Souto, F.J.; Haskin, F.E.; Kmetyk, L.N.

    1994-10-01

    The MELCOR computer code has been used to model four of the large-scale aerosol behavior experiments conducted in the Containment System Test Facility (CSTF) vessel. Tests AB5, AB6 and AB7 of the ABCOVE program simulate the dry aerosol conditions during a hypothetical severe accident in an LMFBR. Test LA2 of the LACE program simulates aerosol behavior in a condensing steam environment during a postulated severe accident in an LWR with failure to isolate the containment. The comparison of code results to experimental data show that MELCOR is able to correctly predict most of the thermal-hydraulic results in the four tests. MELCOR predicts reasonably well the dry aerosol behavior of the ABCOVE tests, but significant disagreements are found in the aerosol behavior modelling for the LA2 experiment. These results tend to support some of the concerns about the MELCOR modelling of steam condensation onto aerosols expressed in previous works. During these analyses, a limitation in the MELCOR input was detected for the specification of the aerosol parameters for more than one component. A Latin Hypercube Sampling (LHS) sensitivity study of the aerosol dynamic constants is presented for test AB6. The study shows the importance of the aerosol shape factors in the aerosol deposition behavior, and reveals that MELCOR input/output processing is highly labor intensive for uncertainty and sensitivity analyses based on LHS.

  20. Comparative study regarding friction coefficient for three epoxy resins

    NASA Astrophysics Data System (ADS)

    Mihu, G.; Mihalache, I.; Graur, I.; Ungureanu, C.; Bria, V.

    2017-02-01

    Three commercial epoxy diglycidylether of bisphenol-A (DGEBA) were used in this study namely Epiphen RE4020-DE 4020 (Bostik), Epoxy Resin C (R&G Gmbh Waldenbuch), and Epoxy Resin HT-2 (R&G Gmbh Waldenbuch). Epoxy resins are often used for the friction purpose but their friction resistance is quite low and it is thus necessary to enhance their friction resistance. In this paper it is shown how load, sliding velocity, and distance affect friction coefficient of epoxy resins.