Science.gov

Sample records for absaroka volcanic supergroup

  1. 40Ar/39Ar geochronology and paleomagnetism of Independence volcano, Absaroka volcanic supergroup, Beartooth mountains, Montana

    USGS Publications Warehouse

    Harlan, S.S.; Snee, L.W.; Geissman, J.W.

    1996-01-01

    Independence volcano is a major volcanic complex in the lower part of the Absaroka Volcanic Supergroup (AVS) of Montana and Wyoming. Recently reported Rb-Sr mineral dates from the complex give apparent ages of 91 and 84 Ma, whereas field relationships and the physical and compositional similarity of the rocks with other dated parts of the AVS indicate an Early to Middle Eocene age for eruption and deposition. To resolve the conflict between age assignments based on stratigraphic correlations and Rb-Sr dates, we report new paleomagnetic data and 40Ar/39Ar dates for Independence volcano. Paleomagnetic data for the stock and an and andesite plug that cuts the stock are well grouped, of reverse polarity, and yield a virtual geomagnetic pole that is essentially identical to Late Cretaceous and Tertiary reference poles. The reverse polarity indicates that the magnetization of these rocks is probably younger than the Cretaceous normal superchron, or less than about 83.5 Ma. Hornblende from a volcanic breccia near the base of the volcanic pile gives a 40Ar/39Ar age of 51.57 Ma, whereas biotites from a dacite sill and a granodiorite stock that forms the core of the volcano give dates that range from 49.96 to 48.50 Ma. These dates record the age of eruption and intrusion of these rocks and clearly show that the age of Independence volcano is Early to Middle Eocene, consistent with stratigraphic relations. We suggest that the Rb-Sr mineral dates from the Independence stock and related intrusions are unreliable.

  2. Paleomagnetic results from Tertiary volcanic strata and intrusions, Absaroka Volcanic Supergroup, Yellowstone National Park and vicinity: Contributions to the North American apparent polar wander path

    USGS Publications Warehouse

    Harlan, S.S.; Morgan, L.A.

    2010-01-01

    We report paleomagnetic and rock magnetic data from volcanic, volcaniclastic, and intrusive rocks of the 55-44Ma Absaroka Volcanic Supergroup (AVS) exposed along the northeastern margin of Yellowstone National Park and adjacent areas. Demagnetization behavior and rock magnetic experiments indicate that the remanence in most samples is carried by low-Ti titanomagnetite, although high-coercivity phases are present in oxidized basalt flows. Paleomagnetic demagnetization and rock magnetic characteristics, the presence of normal and reverse polarity sites, consistency with previous results, and positive conglomerate tests suggest that the observed remanences are primary thermoremanent magnetizations of Eocene age (c. 50Ma). An in situ grand-mean for 22 individual site- or cooling-unit means from this study that yield acceptable data combined with published data from Independence volcano yields a declination of 347.6?? and inclination of 59.2?? (k=21.8, ??95=6.8??) and a positive reversal test. Averaging 21 virtual geomagnetic poles (VGPs) that are well-grouped yields a mean at 137.1??E, 82.5??N (K=17.6, A95=7.8??), similar to results previously obtained from published studies from the AVS. Combining the VGPs from our study with published data yields a combined AVS pole at 146.3??E, 83.1??N (K=13.5, A95=6.2??, N=42 VGPs). Both poles are indistinguishable from c. 50Ma cratonic and synthetic reference poles for North America, and demonstrate the relative stability of this part of the Cordillera with respect to the craton. ?? 2009 Elsevier B.V.

  3. Oil and gas seeps within Absaroka volcanics of northwestern Wyoming

    SciTech Connect

    Sundell, K.A.; Love, J.D.

    1986-08-01

    Three new occurrences of asphaltic, liquid, and gaseous hydrocarbons have been discovered in the southeastern Absaroka Range. These petroleum seeps are 40 to 110 mi southeast of previously known seeps within Eocene volcaniclastic rocks at Calcite Springs, Tower Junction, and Sweetwater Mineral Springs, Wyoming. The Middle Fork seep and Castle Rocks seep are near the headwaters of the Middle and North Forks of Owl Creek, respectively. The Chimney Rock asphalt locality is along the South Fork of the Wood River. Water samples from the Middle Fork seep fluoresce greenish-orange and contain 6 to 8 mg/L of extractable bituminous hydrocarbons. An iridescent oily film forms on the water surface and on abundant gas bubbles trapped within moss. The Castle Rocks seep, in Quaternary gravels along the bed of the North Fork of Owl Creek, shows iridescent oily bubbles in emerging spring water and black, sooty lenses of carbon-coated gravels in overlying dry deposits. The Middle Fork and Castle Rocks seeps rise through thin Quaternary deposits overlying the Aycross Formation (Eocene). The Chimney Rock asphalt locality is in a northwest-trending paleovalley fill consisting of highly deformed masses of volcanic strata in the Tepee Trail and Wiggins Formations. Thin (< 1 in. thick), discontinuous, subvertical veins of asphaltum cut through these rocks. These petroleum seeps demonstrate migration of hydrocarbons after the volcaniclastic strata were emplaced and suggest that significant petroleum resources may occur elsewhere within Eocene volcaniclastic rocks and/or within Mesozoic and Paleozoic reservoirs beneath the volcanics.

  4. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  5. Petroleum exploration in Absaroka basin of northwestern Wyoming

    SciTech Connect

    Sundell, K.A.

    1986-08-01

    A new, virtually unexplored petroleum province with large potential resources can be defined in northwestern Wyoming. Structurally, the Absaroka basin is bounded on the north by the Beartooth uplift, to the west by the Gallatin and Washakie uplifts, to the south by the Washakie and Owl Creek uplifts, and to the east by the Cody arch. The Cody arch connects the southern Beartooth uplift with the northwesternmost Owl Creek uplift and separates the Bighorn basin to the east from the Absaroka basin to the west. The eastern flank of the cody arch is bounded by a major west-dipping thrust fault. The western flank is locally a subhorizontal shelf but overall gently dips to the west-southwest into deeper parts of the Absaroka basin. In contrast to most petroleum basins, the Absaroka basin is topographically a rugged mountain range, created by erosion of a thick sequence of Eocene volcanic rocks that fill the center of the basin and lap onto the adjacent uplifts. Mesozoic and Paleozoic rocks that have produced several billion barrels of oil from the adjacent Bighorn and Wind River basins are probably present within the Absaroka basin and should have similar production capabilities. The Absaroka basin may have greater potential than adjacent basins because the volcanics provide additional traps and reservoirs. Domes in Mesozoic and Paleozoic rocks beneath the volcanics and stratigraphic traps at the angular unconformity between the volcanics and underlying reservoirs are primary exploration targets. Unique geologic, geophysical, permitting, access, and drilling problems are encountered in all aspects of exploration.

  6. Paleomagnetism of the early Paleoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa

    NASA Astrophysics Data System (ADS)

    Humbert, F.; Sonnette, L.; de Kock, M. O.; Robion, P.; Horng, C. S.; Cousture, A.; Wabo, H.

    2017-02-01

    The Kaapvaal craton (South Africa) was the host of several major magmatic events during the Paleoproterozoic, including the volcanic Hekpoort and Ongeluk formations. Their possible comagmatic origin is the subject of a long debate. We performed a paleomagnetic study of the Hekpoort Formation to get a primary pole can be compared with the available paleopole of the Ongeluk Formation, but also to contribute to the apparent pole wander path of the Kaapvaal craton. Characterization of magnetic mineralogy by 3-axis thermal demagnetization of IRM and magnetic susceptibility vs temperature points out magnetite as the main remanence carrier in most samples.

  7. SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: Evidence for rapid deposition of sedimentary strata

    USGS Publications Warehouse

    Evans, K.V.; Aleinikoff, J.N.; Obradovich, J.D.; Fanning, C.M.

    2000-01-01

    New sensitive high resolution ion microprobe (SHRIMP) U-Pb zircon analyses from two tuffs and a felsic flow in the middle and upper Belt Supergroup of northwestern Montana significantly refine the age of sedimentation for this very thick (15-20 km) Middle Proterozoic stratigraphic sequence. In ascending stratigraphic order, the results are (1) 1454 ?? 9 Ma for a tuff in the upper part of the Helena Formation at Logan Pass, Glacier National Park; (2) 1443 ?? 7 Ma for a regionally restricted porphyritic rhyolite to quartz latite flow of the Purcell Lava in the Yaak River region; and (3) 1401 ?? 6 Ma for a tuff in the very thin transition zone between the Bonner Quartzite and Libby Formation, west of the town of Libby. Combining these ages with those previously published by other workers for ca. 1470-Ma sills in the lower Belt in Montana and Canada indicates that all but the uppermost Belt strata (about 1700 m) were deposited over a period of about 70 million years, considerably reducing the time span from longstanding estimates ranging from 250 to 600 million years. Calculated sediment accumulation rates between dated samples indicates rapid, but not unreasonable, values for early Belt strata, with decreasing rates through time. These ages also suggest the inadequacy of previously published paleomagnetic data to resolve Belt Supergroup chronology at an appropriate level of accuracy.

  8. ABSAROKA PRIMITIVE AREA AND VICINITY, MONTANA.

    USGS Publications Warehouse

    Wedow, Helmuth; Bannister, D'Arcy P.

    1984-01-01

    A mineral-resource appraisal of the Absaroka Primitive Area, Montana indicates a probable resource potential for copper-molybdenum and gold in parts of the area. An area favorable for the occurrence of early Tertiary porphyry-type copper-molybdenum and associated gold deposits lies northwest of Cooke City, along the Cooke City structural sag in the Beartooth uplift. An area favorable for stratabound gold deposits of the Homestake type is in the western part of the area, in and around the Jardine-Crevice Mountain mining district and in lower Hellroaring Creek valley. There is little promise for the occurrence of energy resources in the primitive area.

  9. Synthesis and revision of groups within the Newark Supergroup, eastern North America

    USGS Publications Warehouse

    Weems, R.E.; Olsen, P.E.

    1997-01-01

    The Newark Supergroup currently includes nine stratigraphic groups, each of which applies to part or all of the rock column of only one or a few basins. Because the group nomenclature within the Newark Supergroup is neither inclusive nor parallel in its concepts, nearly half of the strata within the Newark Supergroup lacks any group placement. A new system is proposed herein that (1) establishes unambiguous group boundaries, (2) places all Newark Supergroup strata into groups, (3) reduces the number of group names from nine to three, (4) creates parallelism between groups and three major successive tectonic events that created the rift basins containing the Newark Supergroup, and (5) coincidentally provides isochronous or nearly isochronous group boundaries. These proposed groups are (1) the Chatham Group (Middle Triassic to basal Lower Jurassic sedimentary rocks), (2) the Meriden Group (Lower Jurassic extrusive volcanic and sedimentary rocks), and (3) the Agawam Group (new name) (Lower Jurassic sedimentary rocks above all early Mesozoic igneous intrusive and extrusive rocks). This new rock classification system makes use of the fact that a discrete interval of synchronous or nearly synchronous volcanism and plutonism occurred throughout the early Mesozoic rift system of eastern North America. The presence or absence of volcanic rocks provides a powerful stratigraphic tool for establishing regional groups and group boundaries. The presence of sedimentary rocks injected by diabase dikes and sills, in the absence of extrusive volcanic rocks, places Newark Supergroup rocks in the Chatham Group. The presence of extrusive volcanic rocks, interbedded with sedimentary rocks injected by diabase dikes and sills, places Newark Supergroup rocks in the Meriden Group. The presence of sedimentary rocks lacking both extrusive volcanic rocks and diabase dikes and sills, places Newark Supergroup rocks in the Agawam Group. Application of this new regional group stratigraphy to the

  10. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, Martin J.

    2006-02-01

    New data gathered during mapping of c. 3490-3240 Ma rocks of the Pilbara Supergroup in the Pilbara Craton show that most bedded chert units originated as epiclastic and evaporative sedimentary rocks that were silicified by repeated pulses of hydrothermal fluids that circulated through the footwall basalts during hiatuses in volcanism. For most cherts, fossil hydrothermal fluid pathways are preserved as silica ± barite ± Fe-bearing veins that cut through the footwall and up to the level of individual bedded chert units, but not above, indicating the contemporaneity of hydrothermal silica veining and bedded chert deposition at the end of volcanic eruptive events. Silica ± barite ± Fe-bearing vein swarms are accompanied by extensive hydrothermal alteration of the footwall to the bedded chert units, and occurred under alternating high-sulphidation and low-sulphidation conditions. These veins provided pathways to the surface for elements leached from the footwall (e.g., Si, Ba, Fe) and volcanogenic emissions from underlying felsic magma chambers (e.g., CO 2, H 2S/HS -, SO 2). Stratigraphic evidence of shallowing upward and subsequent deepening associated with the deposition of Warrawoona Group cherts is interpreted to relate to the emplacement of subvolcanic laccoliths and subsequent eruption and/or degassing of these magmas. Heat from these intrusions drove episodes of hydrothermal circulation. Listric normal faulting during caldera collapse produced basins with restricted circulation of seawater. Eruption of volcanogenic emissions into these restricted basins formed brine pools with concentration of the volcanogenic components, thereby providing habitats suitable for early life forms. Fossil stromatolites from two distinct stratigraphic units in the North Pole Dome grew in shallow water conditions, but in two very different geological settings with different morphologies. Stratiform and domical stromatolites in the stratigraphically lower, c. 3490 Ma, Dresser

  11. Supergroup.

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1979-01-01

    Supersymmetry is a newly developed principle with which theorists are attempting to continue the work of unification. This article examines the principle of supersymmetry at the subatomic level and relates it to the quest for a unity theory. (MA)

  12. Structural controls on fluid migration: an example from the Absaroka sheet, Idaho-Wyoming thrust belt

    SciTech Connect

    Wiltschko, D.V.; Budai, J.M.

    1985-01-01

    Combined structural and stable isotopic analysis of vein and slip surface mineralization have temporally constrained the three major stages of deformation in the Madison Group (Miss) within the Absaroka thrust sheet near Afton, Wyoming. Calcite- and rarely dolomite-filled vines are oriented normal to bedding parallel to tectonic transport (I). These veins are the earliest evidence of fluid migration as they are cut by all later deformation fabrics. Stage I veins commonly have C-O isotopic compositions nearly identical to surrounding host limestone suggesting low water/rock volume ratios or complete equilibration with the host carbonate. In contrast to earlier veins, mineralization of slip surfaces reflect high water/rock ratios based on their strongly depleted oxygen compositions. Carbon ratios of calcite fibers reflect partial equilibration with the host rock. Secondary calcite filling in stage I veins have an isotopic composition similar to stage II fiber calcite. The final phase of deformation produced low-angle, unmineralized faults which parallel the strike of stage I veins and have offset all earlier structures. This history of fluid/rock interactions during deformation is complicated by a wide range of oxygen compositions within both stage I and II calcites indicating episodic fluid migration and reactivation of earlier veins during later events. The authors interpret stage I veins as having formed before and during motion on the Absaroka thrust, perhaps originating as hydrofractures due to the emplacement of the overlying Meade-Crawford thrust system.

  13. Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona

    USGS Publications Warehouse

    Condie, K.C.; Noll, P.D.; Conway, C.M.

    1992-01-01

    The Tonto Basin Supergroup includes up to 6.5 km of Early Proterozoic sedimentary and volcanic rocks that were deposited in a relatively short period of time at about 1.7 Ga in central Arizona. Moderate correlations of rare earth elements (REE) and Ti with Al2O3 and REE distributions in detrital sediments of this supergroup suggest that these elements are contained chiefly in clay-mica and/or zircon fractions. REE distributions, including negative Eu anomalies in most Tonto Basin sediments, are similar to those in Phanerozoic shales. Weak to moderate correlations of Fe, Sc, Ni, and Co to Al2O3 also suggest a clay-mica control of these elements. Detrital modes and geochemical characteristics of sediments indicate two dominant sources for sedimentary rocks of the Tonto Basin Supergroup: a granitoid source and a volcanic source. The granitoid source was important during deposition of the upper part of the succession (the Mazatzal Group) as shown by increases in K2O, Al2O3, and Th in pelites with stratigraphic height, and increases in Zr and Hf and decreases in Eu/Eu*, Cr, and Ni in in pelites of the Maverick Shale. Sediment provenance characteristics and paleocurrent indicators are consistent with deposition of the supergroup in a continental-margin back-arc basin. The granitoid sediment source appears to have been the North American craton on the north, and the volcanic source a more local source from an arc on the south. ?? 1992.

  14. Geology and Mineral Resources of the North Absaroka Wilderness and Vicinity, Park County, Wyoming, with Sections on Mineralization of the Sunlight Mining Region and Geology and Mineralization of the Cooke City Mining District, and a Section on Aeromagnetic Survey

    USGS Publications Warehouse

    Nelson, Willis H.; Prostka, Harold J.; Williams, Frank E.; Elliott, James E.; Peterson, Donald L.

    1980-01-01

    SUMMARY The North Absaroka Wilderness is approximately 560 square miles (1,450 km 2 ) of rugged scenic mountainous terrain that adjoins the eastern boundary of Yellowstone National Park in northwestern Wyoming. The area was studied during 1970, 1971, and 1972 by personnel of the U. S. Geological Survey and the U. S. Bureau of Mines to evaluate its mineral-resource potential as required by the Wilderness Act of 1964. This evaluation is based on a search of the literature courthouse and production records, geologic field mapping, field inspection of claims and prospects, analyses of bedrock and stream-sediment samples, and an aeromagnetic survey. The North Absaroka Wilderness is underlain almost entirely by andesitic and basaltic volcanic rocks of Eocene age. These volcanics rest on deformed sedimentary rocks of Paleozoic and, locally, of Mesozoic age that are exposed at places along the northern and eastern edges of the wilderness. Dikes and other igneous intrusive bodies cut both the volcanic and sedimentary rocks. A nearly flat detachment fault, the Heart Mountain fault, and a related steep break-away fault have displaced middle and upper Paleozoic rocks and some of the older part of the volcanic sequence to the southeast. A much greater thickness of volcanic rocks was found to be involved in Heart Mountain faulting than had previously been recognized; however, most of the volcanic rocks and many of the intrusives were emplaced after Heart Mountain faulting. Local folding and high-angle faulting in mid-Eocene time have deformed all but the youngest part of the volcanic sequence in the southeastern part of the wilderness. This deformation is interpreted as the last pulse of Laramide orogeny. The results of this study indicate that the mineral-resource potential of the wilderness is minimal. Bentonite, petroleum, low-quality coal, and localized deposits of uranium and chromite have been produced in the surrounding region from rocks that underlie the volcanic rocks

  15. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    USGS Publications Warehouse

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  16. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Finn, Carol A.; Morgan, Lisa A.

    2002-06-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  17. Application of ERTS imagery to geologic mapping in the volcanic terrane of northwest Wyoming

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. M.

    1973-01-01

    The author has identified the following significant results. ERTS-1 image interpretations in the Yellowstone/Absaroka volcanic province indicate that the ERTS-1 imagery can be successfully employed in mapping large-scale structures and gross lithologic differences within the volcanic rocks. The volcanic rocks are readily separable from the sedimentary and crystalline rocks but the various volcanic units are seldom distinguishable unless they exhibit a characteristic morphology. Color anomalies were detected on the ERTS-1 imagery and found to be related to zones of alteration and mineralization. High altitude aircraft imagery provided a means of checking and improving the interpretations.

  18. Supergroup stratigraphy of the Atlantic and Gulf Coastal Plains (Middle? Jurassic through holocene, Eastern North America)

    USGS Publications Warehouse

    Weems, R.E.; ,; Edwards, L.E.

    2004-01-01

    An inclusive supergroup stratigraphic framework for the Atlantic and Gulf Coastal Plains is proposed herein. This framework consists of five supergroups that 1) are regionally inclusive and regionally applicable, 2) meaningfully reflect the overall stratigraphic and structural history of the Coastal Plains geologic province of the southeastern United States, and 3) create stratigraphic units that are readily mappable and useful at a regional level. Only the Marquesas Supergroup (Lower Cretaceous to lowest Upper Cretaceous) has been previously established. The Trent Supergroup (middle middle Eocene to basal lower Miocene) is an existing name here raised to supergroup rank. The Minden Supergroup (Middle? through Upper Jurassic), the Ancora Supergroup (Upper Cretaceous to lower middle Eocene), and the Nomini Supergroup (lower Miocene to Recent) are new stratigraphic concepts proposed herein. In order to bring existing groups and formations into accord with the supergroups described here, the following stratigraphic revisions are made. 1) The base of the Shark River Formation (Trent Supergroup) is moved upward. 2) The Old Church Formation is removed from the Chesapeake Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 3) The Tiger Leap and Penney Farms formations are removed from the Hawthorn Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 4) The Piney Point and Chickahominy formations are removed from the Pamunkey Group (Ancora Supergroup) and moved to the Trent Supergroup without group placement. 5) the Tallahatta Formation is removed from the Claiborne Group (Trent Supergroup) and placed within the Ancora Supergroup without group placement.

  19. Supergroup F Wolbachia bacteria parasitise lice (Insecta: Phthiraptera).

    PubMed

    Covacin, Catherine; Barker, Stephen C

    2007-02-01

    We studied six species of lice from three of the four suborders of lice. These lice were infected with Wolbachia bacteria from supergroups A and F. This is the first report of an infection of supergroup F Wolbachia in lice. To date, Wolbachia from supergroup F have been found in filarial nematodes, Mansonella spp., and, rarely, in insects. We inferred the phylogeny of the Wolbachia from lice and representatives of all Wolbachia supergroups, with nucleotide sequences from the small subunit ribosomal RNA gene (SSU rRNA). There was no evidence of congruence between the taxon of louse and the Wolbachia bacteria that infect lice. There is no evidence that Wolbachia and their louse hosts co-evolved at least at the level of Wolbachia supergroups. We propose a novel mechanism for the horizontal transfer of Wolbachia between different species of lice from birds: transfer of Wolbachia during phoresis by hippoboscid flies.

  20. The sedimentary and tectonic setting of the Transvaal Supergroup floor rocks to the Bushveld complex

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Reczko, B. F. F.

    1995-11-01

    The Palaeoproterozoic Transvaal Supergroup floor to the Bushveld complex comprises protobasinal successions overlain by the Black Reef Formation, Chuniespoort Group and the uppermost Pretoria Group. The protobasinal successions comprise predominantly mafic lavas and pyroclastic rocks, immature alluvial-fluvial braidplain deposits and finer-grained basinal rocks. These thick, laterally restricted protobasinal sequences reflect either strike-slip or small extensional basins formed during the impactogenal rifting and southeasterly-directed tectonic escape, which accompanied collision of the Zimbabwe and Kaapvaal cratons during Ventersdorp times. The erosively-based sheet sandstones of the succeeding Black Reef Formation reflect northwand-directed compression in the south of the basin. Thermal subsidence along the Ventersdorp Supergroup and Transvaal protobasinal fault systems led to shallow epeiric marine deposition of the sheet-like Chuniespoort Group carbonate-BIF platform succession. After an estimated 80 Ma hiatus, characterized by uplift and karstic weathering of the Chuniespoort dolomites, slower thermal subsidence is thought to have formed the Pretoria Group basin. Widespread, closed basin alluvial fan, fluvial braidplain and lacustrine sedimentation, as well as laterally extensive, subaerial andesitic volcanism (Rooihoogte to Strubenkop Formations), gave way to a marine transgression, which laid down the tuffaceous mudrocks, relatively mature sandstones and subordinate subaqueous volcanic rocks of the succeeding Daspoort, Silverton and Magaliesberg Formations. Poorly preserved post-Magaliesberg formations in the Upper Pretoria Group point to possible compressive deformation and concomitant rapid deposition of largely feldspathic detritus within smaller closed basins.

  1. Nilpotent symmetries in supergroup field cosmology

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2015-04-01

    In this paper, we study the gauge invariance of the third quantized supergroup field cosmology which is a model for multiverse. Further, we propose both the infinitesimal (usual) as well as the finite superfield-dependent BRST symmetry transformations which leave the effective theory invariant. The effects of finite superfield-dependent BRST transformations on the path integral (so-called void functional in the case of third quantization) are implemented. Within the finite superfield-dependent BRST formulation, the finite superfield-dependent BRST transformations with specific parameter switch the void functional from one gauge to another. We establish this result for the most general gauge with the help of explicit calculations which holds for all possible sets of gauge choices at both the classical and the quantum levels.

  2. Stratigraphic Sedimentary Environmental Change of the Mount Bruce Supergroup, Beasley River Area, Southern Pilbara, Western Australia

    NASA Astrophysics Data System (ADS)

    Komure, M.; Kiyokawa, S.; Ikehara, M.; Tsutsumi, Y.; Horie, K.

    2005-12-01

    The Mount Bruce Supergroup is deposited from Late Archaean to Early Proterozoic in the Pilbara craton, Western Australia. It is filed the information of the period that changes from the Late Archean to the Early Proterozoic, and is the key sequences which could reconstruct the sedimentary environment because of its low metamorphic grade. The evidence of early Proterozoic global ice age as the glacial sediment is reported in this uppermost group (Martin 1999). In this study, we focus the lithological changes of the Mount Bruce Supergroup at the Beasley River - Rocklea Dome area in the Southern Pilbara. Along the Beasley River, this supergroup distributes more than 10000m thick with 5 billion years sequences, and is divided into three groups. The Fortescue Group is identified with the flood basalt to the Shallow marine or the non-marine sediment, the middle Hamersley Group rich in the banded iron formation and the acidic volcanic rock and the upper Turee Creek Group mainly of the Shallow marine sediment. Here we focused origin of the sandstone in each group, especially in the Meteorite Bore Member of Turee Creek Formation which is identified as the early snowball earth events. At the matrix of the diamictite of the Meteorite Bore Member, Origin of diamictite matrix in the Turee Creek Group sediment by the U-Pb detrital zircon geochronology by CHIME and SHRIMP2. The zircon ages points between 2.7Ga and 2.4Ga. In addtion from this matrix, TOC value indicate 0.1-0.05%, the delta 13 C value is -30--20 par mil. These evidence suggested that the organic activity might take place at during ice age.

  3. New geochronological history of the Mbuji-Mayi Supergroup (Proterozoic, DRC) through U-Pb and Sm-Nd dating

    NASA Astrophysics Data System (ADS)

    François, Camille; Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; Paquette, Jean-Louis; Fialin, Michel; Debaille, Vinciane; Javaux, Emmanuelle J.

    2016-04-01

    The Mbuji-Mayi Supergroup, DRC is located between the Archean-Paleoproterozoic Kasai Craton and the Mesoproterozoic Kibaran Belt. This sedimentary sequence, unaffected by regional metamorphism, preserves a large diversity of well-preserved acritarchs (organic-walled microfossils), evidencing the diversification of complex life (early eukaryotes) for the first time in mid-Proterozoic redox stratified oceans of Central Africa (Baludikay et al., in review). This Supergroup is composed of two distinct lithostratigraphic successions (i) BI Group: a lower siliciclastic sequence (ca. 1175 Myr to ca. 882 Myr or ca. 1050 Myr (Cahen, 1954; Holmes & Cahen, 1955; Delpomdor et al., 2013) unconformably overlying the ca. 2.82-2.56 Gyr granitoid Dibaya Complex to the North (Cahen & Snelling; recent notice on DRC geological map); and (ii) BII Group: a poorly age-constrained upper carbonate sequence with sparse shales . Basaltic lavas (including pillow lavas) overlying the Mbuji-Mayi Supergroup were dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984). To better constraint the age of this Supergroup in the Meso-Neoproterozoic limit, we combine different geochronological methods, in particular on diagenetic minerals such as monazite (Montel et al., 1996; Rasmussen & Muhling, 2007) and xenotime (McNaughton et al., 1999) but also on detrital zircons. For the BI Group, results of in situ U-Pb dating with LA-ICP-MS on monazite, xenotime and zircon (Laboratoire Magmas et Volcans, Clermont-Ferrand) provide ages between 2.9 and 1.2 Gyr for zircons and between 1.4 and 1.03 Gyr for monazites and xenotimes. New results of in situ U-Th-Pb dating of well-crystallized monazites and xenotimes with Electron MicroProbe (Camparis, UPMC, Paris), highlight that some crystals display zonations with an inherited core older than 1125 Myr and diagenetic rims around 1050-1075 Myr. This suggests that the diagenesis of BI Group is younger than 1175 Myr (Delpomdor et al., 2013) and probably around

  4. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae).

    PubMed

    Glowska, Eliza; Dragun-Damian, Anna; Dabert, Miroslawa; Gerth, Michael

    2015-03-01

    Wolbachia is the most abundant intracellular bacterial genus infecting a wide range of arthropods and filarial nematodes. Wolbachia have evolved parasitic, mutualistic and commensal relationships with their hosts but in arthropods generally act as reproductive parasites, inducing a wide range of phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. Up to now, the genus has been divided into 14 supergroups successively named A-O. Here, we describe two new Wolbachia supergroups from syringophilid mites (Acari: Cheyletoidea). These obligatory ectoparasites of birds inhabit the quills of feathers in many avian groups. The species of this family reproduce in a haplodiploid mode sensu arrhenotoky and are usually strongly female-biased. Based on the sequences of four protein-coding genes (ftsZ, gltA and groEL and coxA) and the 16S rRNA we identified strains of three Wolbachia supergroups (F and two distinct, yet undescribed ones) in five quill mite species. Our results suggest that in some cases the distribution of the bacteria can be better correlated with the mite's bird host rather than with mite taxonomy as such. The discovery of two new Wolbachia supergroups not only broadens the knowledge of the diversity of this bacterium but also raises questions about potential effects induced in quill mites and transmission mechanisms of the endosymbionts in this peculiar bacteria-quill mite-bird system.

  5. Super-Group Field Cosmology in Batalin-Vilkovisky Formulation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2016-09-01

    In this paper we study the third quantized super-group field cosmology, a model in multiverse scenario, in Batalin-Vilkovisky (BV) formulation. Further, we propose the superfield/super-antifield dependent BRST symmetry transformations. Within this formulation we establish connection between the two different solutions of the quantum master equation within the BV formulation.

  6. Tectonic setting of the Windermere Supergroup revisited

    SciTech Connect

    Ross, G.M. )

    1991-11-01

    Neo-Proterozoic (< 780 Ma) rocks in western North America compose a regionally persistent stratigraphic succession that contains basal sedimentary and volcanic rocks that accumulated during active faulting. In the Canadian Cordillera, the synrift component is overlain by a thick succession that includes shelf, shelf-edge, and basinal strata and implies substantial postrift subsidence. Although fragmentary in nature due to the effects of sub-cambrian erosion, when reconstructed the Canadian stratigraphic record is similar in thickness, facies, and lateral persistence to the overlying Cambrian-Ordovician passive margin. The neo-Proterozoic record of western North America is thus interpreted as a passive-margin succession, rather than a simple rift, which predates a younger rift that resulted in widespread early Paleozoic passive-margin sedimentation. If correct, this may imply that break-up of western Laurentia was a neo-Proterozoic phenomenon rather than early Paleozoic.

  7. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: Late Archean record of changing atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Mishima, Kaoru; Yamazaki, Rie; Satish-Kumar, Madhusoodhan; Ueno, Yuichiro; Hokada, Tomokazu; Toyoshima, Tsuyoshi

    2017-04-01

    Earth's tectonic and climatic systems may have changed fundamentally before the Great Oxidation Event (GOE) at about 2.3 Ga. Sulfur Mass Independent Fractionation (S-MIF) has demonstrated that Earth's atmosphere was virtually oxygen-free before the GOE. During 3.0 to 2.4 Ga, the change in Δ33S and Δ36S signals may reflect the perturbation of atmospheric chemistry, though the mechanisms of the change are uncertain. Here, we reported multiple sulfur isotopic studies of Archean volcano-sedimentary sequences of the Dharwar Supergroup, distributed in the Chitradurga Schist Belt (CSB), Southern India. New field mapping and zircon U-Pb dating allows us to reconstruct detailed lithostratigraphy of the Dharwar Supergroup. The lower unit consists of post-3.0 Ga conglomerate, stromatolitic carbonate, siliciclastics with diamictite, chert/BIF and pillowed basalt in ascending order, all of which are older than the 2676 Ma dacite dyke that had intruded into the lower unit. The upper unit unconformably overlies the pillow basalts at the top of the lower unit, and consists of conglomerate/sandstone with ∼2600 Ma detrital zircons, komatiitic basalt, BIF and siliciclastic sequence with mafic volcanics. Sulfur isotope analysis of extracted sulfides shows MIF signals (Δ33S > + 1 ‰) with clear Δ33S- Δ36S correlations. The lower group of the Dharwar Supergroup shows a Δ36S / Δ33S slope of -1.48, the middle group shows -1.16 and -1.07, and the upper group shows -0.94. Reassessment of all the Archean S-MIF records from sedimentary rocks indicates that the Δ36S / Δ33S slope systematically changed during the Archean period. The observed trend in the Indian section is similar to those of its Pilbara-Kaapvaal equivalents, thus it could reflect a global atmospheric signature. Moreover, the isotopic trend seems to correlate with mid-Archean glaciation. Thus, the Δ36S / Δ33S slope could be a useful tracer for atmospheric chemistry and its link with climate change before the GOE.

  8. The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup

    NASA Astrophysics Data System (ADS)

    Lehrer, G. I.; Zhang, R. B.

    2017-01-01

    We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur-Weyl-Brauer duality is established between the orthosymplectic supergroup of superdimension ( m|2 n) and the Brauer algebra with parameter m - 2 n. The result may be interpreted either in terms of the group scheme OSp( V) over C, where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra {Λ}. We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.

  9. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  10. Dinosaur egg deposits in the Cretaceous Gyeongsang Supergroup, Korea: Diversity and paleobiological implications

    NASA Astrophysics Data System (ADS)

    Paik, In Sung; Kim, Hyun Joo; Huh, Min

    2012-08-01

    The taphonomy and depositional environments of dinosaur-egg-bearing deposits in the Cretaceous Gyeongsang Basin, Korea, are described and their paleobiological implications are discussed in the context of global geographic occurrences, geological ages, paleoenvironments, and lithology. The general depositional environment of dinosaur egg deposits in the Gyeongsang Supergroup is interpreted as dry floodplains with a semi-arid climate and intermittent volcanic activity. The diverse floodplain paleoenvironments include fluvial plains with meandering rivers to alluvial plains with episodic sheet-flooding. Both global and Korean dinosaur-egg-bearing deposits are generally restricted to the Late Cretaceous, a phenomenon for which two possible explanations are proposed. The first possible explanation for the temporal limitation of dinosaur egg preservation involves the appearance of angiosperms in the Late Jurassic, the Late Cretaceous ecological dispersion of angiosperm trees into swamps and floodplains, and the attendant change in herbivorous dinosaurs' diets. The second possible reason is related to nesting behavior in the Cretaceous. By contrast to the temporally limited occurrence of dinosaur eggs, paleoenvironments of nesting areas are diverse, ranging from inland areas to coastal areas. These hypotheses may provide new directions for the study and understanding of dinosaur egg distribution in the context of geologic time.

  11. Characterization of alunite supergroup minerals by Raman spectroscopy.

    PubMed

    Maubec, N; Lahfid, A; Lerouge, C; Wille, G; Michel, K

    2012-10-01

    Raman spectroscopy has been used to study the molecular structure of different natural minerals of the alunite supergroup (AB(3)(XO(4))(2)(OH)(6)), with A=K(+), Na(+), Ca(2+), Sr(2+), Ba(2+), B=Al(3+), Fe(3+) and X=S(6+), P(5+). The influence of the ions, in A-, B- and X-sites, is highlighted in the Raman spectra by variations in the position of certain vibrations and is discussed in association with published crystallographic data in order to describe the observed differences. It was found that A-site substitutions are characterized by wavenumber shifts of the vibrations involving hydroxyl groups. The positions of these vibrational bands vary linearly with the ionic radius of the ions in this site. B-site substitutions induce shifts of all bands due to structural modifications that lead to differences in the chemical environment around the hydroxyl and XO(4) groups and changes in B-O bond lengths. A correlation showed that these shifts correlate well with the ionic radii of the B-ions. The spectra of compounds containing both sulfate and phosphate groups are described by numerous vibration bands caused by a complex elemental composition and a symmetry change of the XO(4) groups. This study has also made it possible to generalize substitution effects on the wavenumbers of several vibrations and show that Raman spectroscopy could be a powerful tool for identifying and distinguishing minerals of the alunite supergroup.

  12. The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciation

    NASA Astrophysics Data System (ADS)

    Allen, Philip A.

    2007-10-01

    The Huqf Supergroup of the Sultanate of Oman provides important information on the geological evolution of the Arabian-Persian Gulf region during a protracted period of continental dispersal and reassembly on the periphery of the Gondwanan supercontinent during the Neoproterozoic, and also provides important constraints on the nature of extreme climate swings during this critical period in the evolution of Earth's biosphere. The Huqf Supergroup spans the period ca. 725-540 Ma, and is composed of three groups. The Abu Mahara Group ( ca. 725 to < 645 Ma) hosts two glacial successions separated by an interval of non-glacial, deep to shallow marine sedimentary rocks. The base of the overlying Nafun Group ( ca.< 645-547 Ma) is marked by a transgressive post-glacial carbonate, which initiates an overstepping of basement-cored structural highs and the deposition of an extensive blanket of carbonate and siliciclastic stratigraphy. The Ara Group ( ca. 547-540 Ma), which is known mostly from the subsurface, comprises carbonates, evaporites and organic-rich shales, with interbedded ashes, deposited in a large number of N-S trending troughs and platforms. The three groups of the Huqf Supergroup correspond to three phases of basin development. The Abu Mahara Group was deposited on an eroded crystalline and metasedimentary basement. An early stage of basin formation preserved < 1.5 km of marginal to deeper marine sedimentary rocks, including an older Cryogenian glacial succession infilling erosional palaeovalleys. Renewed tectonic subsidence associated with submarine volcanism allowed the preservation of a > 1 km-thick, cyclical, rift basin-fill of glacial and non-glacial sedimentary rocks representing a younger Cryogenian icehouse epoch. Progressively older source areas were exhumed during the interval ca. 725 to < 645 Ma, with unroofed 800+ Ma granitoid plutons providing the bulk of sediment, supplemented by syn-extension volcanics, and eventually by distant Meso- and

  13. U-Th-Pb zircon ages of some Keweenawan Supergroup rocks from the south shore of Lake Superior

    USGS Publications Warehouse

    Zartman, R.E.; Nicholson, S.W.; Cannon, W.F.; Morey, G.B.

    1997-01-01

    New single-crystal zircon U-Th-Pb ages for plutonic and rhyolitic Keweenawan Supergroup rocks from the south shore of Lake Superior provide geochronological constraints on magmatic evolution associated with the 1.1 Ga Midcontinent rift. Analyses of a granophyric phase of the Mineral Lake intrusion and the Meilen granite, both parts of the Meilen Intrusive Complex, and a laterally extensive rhyolite from the top of the Kallander Creek Volcanics have weighted average 207Pb/206Pb ages of 1102.0 ?? 2.8 Ma (N = 2), 1100.9 ?? 1.4 Ma (N = 5), and 1098.8 ?? 1.9 Ma (N = 4), respectively. Analyses of a pyroclastic rhyolite flow at the top of the Porcupine Volcanics result in variable 207Pb/206Pb ages that range from 1080 to 1137 Ma. This rhyolite exhibits a continuum between morphologically complex and simpler prismatic zircon crystals, the latter yielding concordant analyses having a weighted average 207Pb/206Pb age of 1093.6 ?? 1.8 Ma (N = 2). Four prismatic zircons from an aphyric rhyolite of the Chengwatana Volcanics in the Ashland syncline form a linear array intersecting concordia at 1094.6 ?? 2.1 Ma (MSWD = 1.3). Another presumed Chengwatana rhyolite recovered from drill core intersecting the Hudson-Afton horst in southeast Minnesota yielded only ???20 morphologically indistinguishable zircons. Six analyses give 207Pb/206Pb ages ranging from 1112 to 1136 Ma, including one analysis with a virtually concordant age of 1130 Ma. This age, however, is considerably older than that obtained for the Chengwatana Volcanics in the Ashland syncline or any other precisely dated rock from the Midcontinent rift.

  14. Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure

    PubMed Central

    Comandatore, Francesco; Cordaux, Richard; Bandi, Claudio; Blaxter, Mark; Darby, Alistair; Makepeace, Benjamin L.; Montagna, Matteo; Sassera, Davide

    2015-01-01

    Wolbachia pipientis is possibly the most widespread endosymbiont of arthropods and nematodes. While all Wolbachia strains have historically been defined as a single species, 16 monophyletic clusters of diversity (called supergroups) have been described. Different supergroups have distinct host ranges and symbiotic relationships, ranging from mutualism to reproductive manipulation. In filarial nematodes, which include parasites responsible for major diseases of humans (such as Onchocerca volvulus, agent of river blindness) and companion animals (Dirofilaria immitis, the dog heartworm), Wolbachia has an obligate mutualist role and is the target of new treatment regimens. Here, we compare the genomes of eight Wolbachia strains, spanning the diversity of the major supergroups (A–F), analysing synteny, transposable element content, GC skew and gene loss or gain. We detected genomic features that differ between Wolbachia supergroups, most notably in the C and D clades from filarial nematodes. In particular, strains from supergroup C (symbionts of O. volvulus and D. immitis) present a pattern of GC skew, conserved synteny and lack of transposable elements, unique in the Wolbachia genus. These features could be the consequence of a distinct symbiotic relationship between C Wolbachia strains and their hosts, highlighting underappreciated differences between the mutualistic supergroups found within filarial nematodes. PMID:26631376

  15. Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure.

    PubMed

    Comandatore, Francesco; Cordaux, Richard; Bandi, Claudio; Blaxter, Mark; Darby, Alistair; Makepeace, Benjamin L; Montagna, Matteo; Sassera, Davide

    2015-12-01

    Wolbachia pipientis is possibly the most widespread endosymbiont of arthropods and nematodes. While all Wolbachia strains have historically been defined as a single species, 16 monophyletic clusters of diversity (called supergroups) have been described. Different supergroups have distinct host ranges and symbiotic relationships, ranging from mutualism to reproductive manipulation. In filarial nematodes, which include parasites responsible for major diseases of humans (such as Onchocerca volvulus, agent of river blindness) and companion animals (Dirofilaria immitis, the dog heartworm), Wolbachia has an obligate mutualist role and is the target of new treatment regimens. Here, we compare the genomes of eight Wolbachia strains, spanning the diversity of the major supergroups (A-F), analysing synteny, transposable element content, GC skew and gene loss or gain. We detected genomic features that differ between Wolbachia supergroups, most notably in the C and D clades from filarial nematodes. In particular, strains from supergroup C (symbionts of O. volvulus and D. immitis) present a pattern of GC skew, conserved synteny and lack of transposable elements, unique in the Wolbachia genus. These features could be the consequence of a distinct symbiotic relationship between C Wolbachia strains and their hosts, highlighting underappreciated differences between the mutualistic supergroups found within filarial nematodes.

  16. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  17. Physical volcanology, geochemistry and basin evolution of the Ediacaran volcano-sedimentary succession in the Bas Draâ inlier (Ouarzazate Supergroup, Western Anti-Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Karaoui, Brahim; Breitkreuz, Christoph; Mahmoudi, Abdelkader; Youbi, Nasrrddine

    2014-11-01

    New geologic mapping, lithofacies and granulometric analysis, and geochemistry from the volcano-sedimentary successions of the central part of the Bas Draâ inlier, Western Anti-Atlas, constrain the Ediacaran Ouarzazate Supergroup evolution during the post-collisional stage of the Pan-African orogeny. Volcanosedimentary facies analysis is the key aspect of the present contribution. We distinguished sixteen terrestrial volcanosedimentary lithofacies in the Bas Draâ succession (BDS), which reaches a total thickness of 2000 m. BDS evolution can be grouped into four units (Aouinet Aït Oussa I to IV, AO I-AO IV). The earliest volcanic activity produced rhyolitic ignimbrite sheets (AO I), which had been considered as lava flows by previous workers, and which were presumably related to caldera system(s). During AO II, a complex of high-silica andesitic and rhyolitic lavas formed, punctuated by the explosive eruption of a high-temperature silica-rich magma leading to the formation of parataxitic ignimbrite. AO III consists of basalt and andesite lava fields and small explosive, in parts phreatomagmatic volcanic vents. It is dissected by fluvial systems depositing external non-volcanic and local volcanic debris. BDS evolution terminated with the formation of a large SiO2-rich lava dome complex (AO IV), accompanied by small basalt effusive event. Volcanosedimentary facies analysis infers that the BDS evolved in a continental extensional setting developing in a low topography under humid paleoclimatic conditions. Alteration textures are dominated by a piemontite-calcite-albite-quartz (+ iron oxides) assemblage. Chemical analysis of BDS volcanic and subvolcanic rocks belongs to high-k calc-alkaline and alkali-calcic to alkaline magmatic trend typical for a post-collision setting. Trace elements spidergrams show a pattern typical for subduction-related suites of orogenic belts. REE patterns show moderate enrichment in LREE relative to flat HREE, with strong negative Eu

  18. Studies on homalomeneae (araceae) of borneo v: a new species and new supergroup record, of homalomena from sabah, malaysian borneo.

    PubMed

    Sulaiman, Baharuddin; Boyce, Peter C

    2010-12-01

    Homalomena galbana Baharuddin S. & P.C. Boyce is described from the Maliau Basin Conservation Area, Sabah, representing the first species of the Homalomena Supergroup to be recorded from Sabah, and the first mesophytic species of the Supergroup to be described from Borneo. The species is illustrated and a brief discussion on the pollination role of interpistillar staminodes is presented.

  19. Studies on Homalomeneae (Araceae) of Borneo V: A New Species and New Supergroup Record, of Homalomena from Sabah, Malaysian Borneo

    PubMed Central

    Sulaiman, Baharuddin; Boyce, Peter C.

    2010-01-01

    Homalomena galbana Baharuddin S. & P.C. Boyce is described from the Maliau Basin Conservation Area, Sabah, representing the first species of the Homalomena Supergroup to be recorded from Sabah, and the first mesophytic species of the Supergroup to be described from Borneo. The species is illustrated and a brief discussion on the pollination role of interpistillar staminodes is presented. PMID:24575201

  20. Topological M-strings and supergroup Wess-Zumino-Witten models

    NASA Astrophysics Data System (ADS)

    Okazaki, Tadashi; Smith, Douglas J.

    2016-09-01

    We study the boundary conditions in topologically twisted Chern-Simons matter theories with the Lie 3-algebraic structure. We find that the supersymmetric boundary conditions and the gauge-invariant boundary conditions can be unified as complexified gauge-invariant boundary conditions which lead to supergroup Wess-Zumino-Witten (WZW) models. We propose that the low-energy effective field theories on the two-dimensional intersection of multiple M2-branes on a holomorphic curve inside K3 with two nonparallel M5-branes on the K3 are supergroup WZW models from the topologically twisted Bagger-Lambert-Gustavson model and the Aharony-Bergman-Jafferis-Maldacena model.

  1. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  2. Wolbachia are present in southern african scorpions and cluster with supergroup F.

    PubMed

    Baldo, Laura; Prendini, Lorenzo; Corthals, Angelique; Werren, John H

    2007-11-01

    The presence and distribution of the intracellular bacteria Wolbachia in the arthropod subphylum Chelicerata (including class Arachnida) has not been extensively explored. Here we report the discovery of Wolbachia in scorpions. Five strains found in host species of the genus Opistophthalmus (Southern African burrowing scorpions) have been characterized by Multilocus Sequence Typing and by Wolbachia Surface Protein. Phylogenetic analyses indicate clustering in the supergroup F and a high genetic relatedness among all scorpion strains as a result of a potential transmission within the host genus. The F-group is an uncommon lineage compared to the A and B supergroups, although it is present in a broad range of hosts (including insects, filarial nematodes, and now arachnids) and across a large geographical area (e.g., North America, Africa, Europe, and Australia). It also shows no evidence of recombination and has a significantly higher genetic diversity than supergroup A and B. Overall, this pattern suggests an older radiation of F-strains with respect to A and B-strains, followed by limited horizontal transmission across host genera and reduced genetic flux among strains. A more extensive sampling of supergroup F-strains is required to confirm this scenario.

  3. Volcanic rocks

    USGS Publications Warehouse

    1986-01-01

    Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. Often the remnants of an eruption are as revealing as the eruption itself, for they tell us many things about the eruption. Included here are examples of several volcanic products and other magmatic features, with descriptions of how they were formed and what they tell us about volcanism.

  4. Distribution and Origin of Iridium in Upper Triassic-Lower Jurassic Continental Strata of the Fundy, Deerfield and Hartford Basins, Newark Supergroup

    NASA Astrophysics Data System (ADS)

    Tanner, L. H.; Kyte, F. T.

    2015-12-01

    To date, elevated Ir levels in continental sediments proximal to the Triassic-Jurassic boundary (TJB) have been reported only from Upper Triassic strata of the Newark and Fundy basins, below the basal extrusive units of the Central Atlantic Magmatic Province. We report here the first occurrence of elevated Ir above the oldest volcanic units, as well as additional horizons of Ir enrichment from other basins of the Newark Supergroup. In the Fundy Basin (Nova Scotia, Canada), lacustrine sediments of the Scots Bay Member of the McCoy Brook Formation that directly overlie the North Mountain Basalt contain Ir up to 413 pg/g in fish-bearing strata very close to the palynological TJB. Higher in the formation the strata lack significant Ir enrichment. Similarly, sedimentary strata from between flows of North Mount Basalt show no Ir appreciable enrichment. The Deerfield Basin (Massachusetts) extension of the Hartford Basin contains only one CAMP extrusive unit, the Lower Jurassic Deerfield Basalt. Very modest Ir enrichment, up to 90 pg/g, occurs in the Fall River Beds of the Sugarloaf Formation, several meters below the basalt, and up to 70 pg/g in the Turners Falls Formation less than 2 meters above the basalt. The uppermost New Haven Formation (Upper Triassic) at the Silver Ridge locality (Guilford, CT) in the Hartford Basin contains abundant plant debris, but no evidence of elevated Ir. At the Clathopteris locality to the north (Holyoke, MA), potentially correlative strata that are fine grained and rich in plant remains have Ir enriched to 542 pg/g, an order of magnitude higher than in the coarser-grained strata in direct stratigraphic contact. The high-Ir beds also have elevated REEs relative to other Hartford Basin samples, although there is no evidence of HREE enrichment. We consider the basalts of the Central Atlantic Magmatic Province, widely accepted as the driver of Late Triassic extinctions, as the origin of the elevated Ir levels in the Newark Supergroup.

  5. Sulfur Isotopic Compositions of Sulfides From the Lower Huronian Supergroup, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Tachibana, S.; Hirai, T.; Goto, K.; Yamamoto, S.; Isozaki, Y.; Tada, R.; Tajika, E.; Shimoda, G.; Morishita, Y.; Kita, N. T.

    2004-12-01

    Mass-independent isotopic fractionation (MIF) of sulfur found in sedimentary rocks older than 2470 Ma implies that the atmospheric oxygen level was lower than 10-5 PAL (present atmospheric level) in the Archean atmosphere [e.g., 1, 2]. Sulfides from the Rooihoogte and Timeball Hill Formations, Transvaal Supergroup, South Africa, (2316 Ma [3]) show only a small degree of MIF [4], which suggests that the atmospheric oxygen level reached 10-5 PAL by 2316 Ma [4]. The Huronian Supergroup in E. Canada recording three Paleoproterozoic glaciatial events between 2450 and 2220 Ma is correlated with the Rooihootge and Timeball Hill Formations, and may record the evidence of the great oxygenation event. The sulfur isotopic compositions of sulfides in the Matinenda to Gordon Lake Formations of the Huronian Supergroup exhibit D33S, deviation from a mass-dependent fractionation line, of less than 0.5 permil [e.g., 1]. This suggests that the atmospheric oxygen reached a level high enough to vanish the MIF signature before the Matinenda deposition. Here we report sulfur isotopic compositions of sulfides from the Livingstone Creek, Thessalon, and Matinenda Formations of the Lower Huronian Supergroup in the Elliot lake area. The Livingstone Creek and Thessalon Formations underlie the uraniferous Matinenda Formation. In-situ ion microprobe measurements showed that most of sulfides have a small degree of sulfur MIF, as seen in other formations, except for clastic sulfide blocks in the polymictic conglomerates of the Livingstone Creek Formation, the lowermost Huronian Supergroup. The sulfides in the Livingstone sulfide blocks show a clear evidence of MIF (D33S = -1.7 to +3.6 permil) with d34S of _|4 to +2 permil. The range of MIF from the sulfide blocks is an order of magnitude larger than that for other sulfides from the Huronian Supergroup. This indicates that the atmospheric oxygen may have started to increase after the formation of the sulfide blocks and before the deposition of the

  6. Steranes and triterpanes in the Beacon Supergroup samples from southern Victoria Land in Antarctica

    SciTech Connect

    Matsumoto, Genki I.; Watanuki, Kunihiko ); Machihara, Tsutomu ); Suzuki, Noriyuki ); Funaki, Minoru )

    1987-10-01

    Steranes and triterpanes in Beacon Supergroup samples (sedimentary rock and silicified wood) from Allan Hills and Carapace Nunatak of southern Victoria Land in Antarctica were studied to elucidate sources of organic materials, sedimentary paleoenvironment and thermal history after deposition. Relative abundances of C{sub 27}, C{sub 28} and C{sub 29} steranes and visual kerogen results of Beacon Supergroup samples from Allan Hills imply that organic materials in the sedimentary paleoenvironments are contributed mainly by vascular plants with some influence of microorganisms, while those of the Carapace Nunatak sample may be largely due to fern spores. The pristane/phytane and pristane/heptadecane ratios of the samples were generally close to unity and between 0.50 and 0.99, respectively, suggesting that the sedimentary paleoenvironment was shallow lacustrine with alternating oxic and anoxic conditions.

  7. Geology of Keweenawan Supergroup Rocks near the Porcupine Mountains, Ontonagon and Gogebic Counties, Michigan

    USGS Publications Warehouse

    Cannon, William F.; Nicholson, Suzanne W.; Hedgman, Cheryl A.; Woodruff, Laurel G.; Schul, Klaus J.

    1992-01-01

    This field trip examines the geology of rocks of the Keweenawan Supergroup (1 .1 Ga) and related intrusive rocks of the Midcontinent rift system (MRS) in the western part of the northern peninsula of Michigan. The combination of stops includes all formations of the Keweenawan Supergroup in this region. Examination of all described localities requires more than a single day and participants are encouraged to use this guidebook on their own to supplement the localities that will be visited on our one-day trip. Because of uncertainties of weather, road conditions, and remaining snow pack in early May in this region of very heavy snowfall, the stops that we will visitwill not be known until the date of the trip. Stops are numbered in stratigraphic order, from oldest to youngest, not in the order in which they will be visited.

  8. Transvaal Supergroup inliers: geology, tectonic development and relationship with the Bushveld complex, South Africa

    NASA Astrophysics Data System (ADS)

    Hartzer, F. J.

    1995-11-01

    Several deformed Transvaal Supergroup inliers occur in the Bushveld complex. The most prominant are the Crocodile River dome and the Rooiberg fragment in the western Transvaal basin and the Dennilton-Marble Hall dome and Stavoren fragment in the eastern Transvaal basin. Several other smaller Transvaal Supergroup inliers are situated in the Bushveld complex to the east and west of the central inliers. The geology and tectonic relationship of these inliers with the Bushveld complex imposed important constraints on the tectonic evolution of the Transvaal basin and the subsequent distribution of the Bushveld complex. The central inliers are subdivided into two groups. The Crocodile River, Marble Hall and Dennilton domes consist of highly deformed, lower Transvaal strata that were subjected to low-grade metamorphism. The domes were formed by interference folding that was accentuated by the intrusion of the Bushveld complex. They acted as physical barriers to the emplacement of the mafic rocks of the Bushveld complex in the centre of the Transvaal basin. The Rooiberg and Stavoren fragments are synforms of upper Transvaal strata. The strara that comprise them are less deformed than those in the domes. These fragments were subjected to low-grade metamorphism because of the intrusion of Bushveld granite beneath them. They acted as roof pendants to the emplacement of the Bushveld complex. Other smaller Transvaal Supergroup inliers in the Transvaal basin are shown to be either attached or detached structures, depending on their tectonic setting and relation to the Bushveld complex.

  9. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup.

    PubMed

    Haegeman, Annelies; Vanholme, Bartel; Jacob, Joachim; Vandekerckhove, Tom T M; Claeys, Myriam; Borgonie, Gaetan; Gheysen, Godelieve

    2009-07-15

    Wolbachia is an endosymbiotic bacterium widely present in arthropods and animal-parasitic nematodes. Despite previous efforts, it has never been identified in plant-parasitic nematodes. Random sequencing of genes expressed by the burrowing nematode Radopholus similis resulted in several sequences with similarity to Wolbachia genes. The presence of a Wolbachia-like endosymbiont in this plant-parasitic nematode was investigated using both morphological and molecular approaches. Transmission electronmicroscopy, fluorescent immunolocalisation and staining with DAPI confirmed the presence of the endosymbiont within the reproductive tract of female adults. 16S rDNA, ftsZ and groEL gene sequences showed that the endosymbiont of R. similis is distantly related to the known Wolbachia supergroups. Finally, based on our initial success in finding sequences of this endosymbiont by screening an expressed sequence tag (EST) dataset, all nematode ESTs were mined for Wolbachia-like sequences. Although the retained sequences belonged to six different nematode species, R. similis was the only plant-parasitic nematode with traces of Wolbachia. Based on our phylogenetic study and the current literature we designate the endosymbiont of R. similis to a new supergroup (supergroup I) rather than considering it as a new species. Although its role remains unknown, the endosymbiont was found in all individuals tested, pointing towards an essential function of the bacteria.

  10. Volcanic mesocyclones.

    PubMed

    Chakraborty, Pinaki; Gioia, Gustavo; Kieffer, Susan W

    2009-03-26

    A strong volcanic plume consists of a vertical column of hot gases and dust topped with a horizontal 'umbrella'. The column rises, buoyed by entrained and heated ambient air, reaches the neutral-buoyancy level, then spreads radially to form the umbrella. In classical models of strong volcanic plumes, the plume is assumed to remain always axisymmetric and non-rotating. Here we show that the updraught of the rising column induces a hydrodynamic effect not addressed to date-a 'volcanic mesocyclone'. This volcanic mesocyclone sets the entire plume rotating about its axis, as confirmed by an unprecedented analysis of satellite images from the 1991 eruption of Mount Pinatubo. Destabilized by the rotation, the umbrella loses axial symmetry and becomes lobate in plan view, in accord with satellite records of recent eruptions on Mounts Pinatubo, Manam, Reventador, Okmok, Chaiten and Ruang. The volcanic mesocyclone spawns waterspouts or dust devils, as seen in numerous eruptions, and groups the electric charges about the plume to form the 'lightning sheath' that was so prominent in the recent eruption of Mount Chaiten. The concept of a volcanic mesocyclone provides a unified explanation for a disparate set of poorly understood phenomena in strong volcanic plumes.

  11. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  12. Paleomagnetic analysis of the Marwar Supergroup, Rajasthan, India and proposed interbasinal correlations

    NASA Astrophysics Data System (ADS)

    Davis, Joshua K.; Meert, Joseph G.; Pandit, Manoj K.

    2014-09-01

    The Marwar Supergroup refers to a 1000-2000 m thick marine and coastal sequence that covers a vast area of Rajasthan in NW-India. The Marwar Basin uncomformably overlies the ∼750-770 Ma rocks of the Malani Igneous Suite and is therefore considered Late Neoproterozoic to Early Cambrian in age. Upper Vindhyan basinal sediments (Bhander and Rewa Groups), exposed in the east and separated by the Aravalli-Delhi Fold Belt, have long been assumed to coeval with the Marwar Supergroup. Recent studies based on detrital zircon populations of the Marwar and Upper Vindhyan sequences show some similarity in the older populations, but the Vindhyan sequence shows no zircons younger than 1000 Ma whereas samples taken from the Marwar Basin show distinctly younger zircons. This observation led to speculation that the Upper Vindhyan and Marwar sequences did not develop coevally. While there are alternative explanations for why the two basins may differ in their detrital zircon populations, paleomagnetic studies may provide independent evidence for differences/similarities between the assumed coeval basins. We have collected samples in the Marwar Basin and present the paleomagnetic results. Previous paleomagnetic studies of Marwar basinal sediments were misinterpreted as being indistinguishable from the Upper Vindhyan sequence. The vast majority of our samples show directional characteristics similar to the previously published studies. We interpret these results to be a recent overprint. A small subset of hematite-bearing rocks from the Jodhpur Formation (basal Marwar) exhibit directional data (Dec = 89° Inc = -1° α95 = 9°) that are distinct from the Upper Vindhyan pole and may offer additional support for temporally distinct episodes of sedimentation in these proximal regions. A VGP based upon our directional data is reported at 1°S 344°E (dp = 5°, dm = 9°). We conclude that the Marwar Supergroup developed near the close of the Ediacaran Period and is part of a larger group

  13. Io volcanism

    SciTech Connect

    Carr, M.H.

    1985-01-01

    Io is the most volcanically active body in the Solar System. The Voyage spacecraft observed nine active eruption plumes in 1979, and detected numerous thermal anomalies. Loki the most active volcanic region has been emitting 1.5 x 10/sup 13/ W over the last few years. Many of the volcanic features have been interpreted as the result of sulfur volcanism because 1) the spectral reflectance of the surface resembles sulfur, 2) SO/sub 2/ has been positively identified, 3) the satellite leaves a trail of sulfur atoms in its wake; and 4) many of the hot spots have surfaces temperatures less than 400/sup 0/K, compatible with low-temperature melts. The evidence for sulfur has led to suggestions of sulfur lava flows hundreds of kilometers long, and sulfur lava lakes as large as Lake Erie. The observations are, however, equally compatible with basaltic volcanism. Modeling of the cooling of basaltic lava flows indicates that regions of basaltic volcanism on Io should have temperatures similar to those detected by the Voyager spacecraft. High eruption rates are required. High rates of fumarolic activity accompanying the eruptions and expulsion of volatiles by the plumes give the surface its sulfur-like spectral reflectance.

  14. Geometrostatis and the current algebra of nonlinear sigma models on supergroup manifolds

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.

    1987-02-01

    The radiative correction of nonlinear sigma models on supermanifolds that have invertible metrics is investigated. It will be shown that the equation of motion for Riemannian supergravity (nonstandard supergravity) is derived from a consistency condition. This condition can be satisfied in the case of supergroup manifolds. We shall explicitly construct the model following the methods of Braaten, Curtright, and Zachos [E. Braaten, T. L. Curtright, and C. K. Zachos, Nucl. Phys. B 260, 630 (1985)] and of Witten [E. Witten, Commun. Math. Phys. 92, 455 (1984)]. Finally, super-Kac-Moody algebras of these models are derived.

  15. Pre-Ediacaran to Ediacaran Radiation in the Vindhyan Supergroup, India

    NASA Astrophysics Data System (ADS)

    Srivastava, P.

    2009-04-01

    The Vindhyan Supergroup is globally acknowledged amongst the best repositories of the Proterozoic life evidences. Fossils of the Vindhyan Supergroup exhibit extensive diversity and variable biologic affinities represented by: bacteria, cyanobacteria, algae, fungi, acritarchs, metaphytes and metazoans (including members of the Ediacaran Fauna). The size of fossils ranges from less than a micron to almost a meter. As the Ediacaran fauna has already been recorded from the uppermost Vindhyans that is from the Bhander Group, strata lying beneath and above the Ediacaran fossil bearing horizons, exhibit presence of a vast range of fossils (both micro and mega fossils) inclining towards variable biologic affinities stated earlier. Besides identified fossils, a number of peculiar morphologies (due to deviation of morphologies from conventional structures), present in various stratigraphic horizons of the entire Vindhyan Supergroup, have also been observed. It is very difficult to identify and decide biologic affinities of these peculiar morphologies or bizarre fossil forms. In thin sections of Lower Vindhyan cherts (of Semri Group), microfossils resembling, a Volvox colony like structure and a vase- shaped body without an opening, Lichen- like or fungal forms in which a sac encompassing a coiled filament may possibly indicate a symbiotic relationship are unique. Megascopic branching and associated Grypania like structure is another form preserved as an impression on a micritic limestone slab. A very unusual and interesting fossil is a transparent disc of about one mm in diameter, composed of numerous chromosome-like structures or the appendages of an unidentified mesoscopic insect- like organism. In Upper Vindhyans, microscopic unidentified forms (in thin sections of chert) include acritarchs and acanthomorphs of variable morphologies and a dividing cell like structure interpreted as rhodophycean form or a cleaving embryo of an animal affinity. Among the carbonaceous

  16. Steranes and triterpanes in the Beacon Supergroup samples from southern Victoria Land in Antarctica

    NASA Astrophysics Data System (ADS)

    Matsumoto, Genki I.; Machihara, Tsutomu; Suzuki, Noriyuki; Funaki, Minoru; Watanuki, Kunihiko

    1987-10-01

    Steranes and triterpanes in Beacon Supergroup samples (sedimentary rock and silicified wood) from Allan Hills and Carapace Nunatak of southern Victoria Land in Antarctica were studied to elucidate sources of organic materials, sedimentary paleoenvironment and thermal history after deposition. Relative abundances of C 27, C 28 and C 29 steranes and visual kerogen results of Beacon Supergroup samples from Allan Hills imply that organic materials in the sedimentary paleoenvironments are contributed mainly by vascular plants with some influence of microorganisms, while those of the Carapace Nunatak sample may be largely due to fern spores. The pristane/phytane and pristane/heptadecane ratios of the samples were generally close to unity and between 0.50 and 0.99, respectively, suggesting that the sedimentary paleoenvironment was shallow lacustrine with alternating oxic and anoxic conditions. The ( 22S/22R)-17α(H),21β(H)-C 31-C 33 triterpane ratios are approximately at thermal equilibrium values ( ca. 1.5) in most samples, while the ( 20S/20R)-5α(H), 14α(H), 17α(H)-C 29 sterane ratios and the (20R + 20S)-5α(H), 14β(H), 17β(H)/5α(H), 14α(H), 17α(H)-C 29 sterane ratios vary from 0.0 to 1.1 and from 0.0 to 1.4, respectively. Most of the ( 20S/20R)-5α(H), 14α(H), 17α(H)-C 29 sterane ratios did not reach thermal equilibrium values. The correlation coefficient between the ( 20S/20R)-5α(H), 14α(H), 17α(H)-C 29 sterane ratios and (20R + 20S)-5α(H), 14β(H), 17β(H)/5α(H), 14α(H), 17α(H)-C 29, sterane ratios is very high (0.96). These variable maturities probably reflect thermal effects of basaltic dikes on the Beacon Supergroup at Allan Hills and Carapace Nunatak during Jurassic time. Thermal stresses on the Beacon Supergroup prior to basaltic intrusion have been estimated to be quite low, so the paleotemperatures of this formation have been quite low.

  17. Paleontological evidence of Paleozoic age for the Walden Creek Group, Ocoee Supergroup, Tennessee

    NASA Astrophysics Data System (ADS)

    Unrug, Raphael; Unrug, Sophia

    1990-11-01

    A newly discovered fossil assemblage including trilobite, ostracod, bryozoan, and microcrinoid fragments and agglutinated foraminifers has been found in the Wilhite Formation, Walden Creek Group, Ocoee Supergroup, in the foothills of the Great Smoky Mountains, Tennessee. These fossils prove a Paleozoic age for the Walden Creek Group, which had been interpreted to be of Late Proterozoic age. The foraminiferal assemblage indicaes the Silurian as the older age limit for the Walden Creek Group. These findings make necessary a redefinition of the Ocoee sedimentary basin and reinterpretation of models of the evolution of the Blue Ridge structural province.

  18. Hydrocarbon source-rock evaluation - Solor Church Formation (middle Proterozoic, Keweenawan Supergroup), southeastern Minnesota

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1984-01-01

    In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solor Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5 percent for 22 of 25 samples); (2) the organic matter is thermally very mature (Tmax = 494°C, sample 19) and is probably near the transition between the wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup).

  19. A comparison of microstructural and chemical patterns in garnet from the Fleur de Lys Supergroup, Newfoundland

    NASA Astrophysics Data System (ADS)

    Stallard, Aaron; Hickey, Ken

    2002-07-01

    This study uses compositional analyses of garnet porphyroblasts to test a previously published microstructure-based model of garnet growth in the Fleur de Lys Supergroup. X-ray maps reveal significant compositional anomalies within garnet, including zoning reversals and steepened compositional gradients. These anomalies occur at the margin of the proposed first stage of garnet growth (G 1), and coincide with truncations of inclusion trails and changes in the inclusion assemblage. Intervals of reversed composition zoning and steepened compositional gradients across this boundary are interpreted to represent a hiatus in garnet growth, possibly accompanied by garnet consumption, during which changes in the garnet-forming reaction, P- T conditions and deformation kinematics occurred. The junction of the proposed second and third stages of garnet growth (G 2 and G 3) coincides with the transition between successive crenulation cleavages, without substantial microstructural truncations or changes in the inclusion assemblage. The G 2-G 3 boundary is generally marked by uninterrupted normal zoning, with subtle compositional anomalies in some samples. This boundary may in fact record continuous garnet growth, or alternatively mark a relatively short intra-orogenic pause in garnet growth with minimal affect on zoning patterns. Individual porphyroblasts with contrasting inclusion trail microstructures also have different zoning patterns, and this supports the previous recognition of contrasting growth histories between individual porphyroblasts. A combined structural-metamorphic model is presented that integrates the timing of garnet growth and foliation development, reaction history and the P- T- t path in the Fleur de Lys Supergroup.

  20. Micropaleontology and chemostratigraphy of the Neoproterozoic Mbuji-Mayi Supergroup, Democratic Republic of Congo.

    NASA Astrophysics Data System (ADS)

    Baludikay, Blaise; Bekker, Andrey; Baudet, Daniel; Asael, Dan; Storme, Jean-Yves; Javaux, Emmanuelle

    2014-05-01

    The Mbuji-Mayi Supergroup, deposited between 1170 ± 22 Ma and ca. 800 Ma [1], outcrops in the eastern Oriental Kasai Province and western Katanga Province of the Democratic Republic of Congo. It is the youngest Precambrian unit of the Kasai block and was deposited in the SE-NW trending failed-rift Sankuru-Mbuji-Mayi-Lomami-Lovoy basin filled with siliciclastic and carbonate sediments. In the northern part of this basin (Oriental Kasai Province), the Mbuji-Mayi Supergroup rests unconformably upon the Archean Dibaya Granite Complex, but in the southern part (northeastern Katanga Province), it overlies the Mesoproterozoic Kibaran Supergroup. The Supergroup is divided into two groups: the lower, ~ 500-m thick siliciclastics-rich BI Group and the upper, ~ 1000-m thick carbonate-rich BII Group. Our own and previous sedimentological observations [2] indicate facies ranging from subtidal, low-energy stromatolitic environments to overlying intertidal to supratidal evaporitic settings of lagoon and sabkha. In order to characterize the diversity of microfossil assemblages, their paleobiology and paleoecology as well as redox conditions in their depositional setting, we have sampled three drill cores (KAFUKU 15, B13 KANSHI, and S70 LUBI) from the collections of the Royal Museum for Central Africa (RMAC). Our biostratigraphic and chemostratigraphic data also provide further constraints on the age of the Mbuji-Mayi Supergroup. Here we present preliminary data on microfossil diversity from the Kanshi drill core and carbon isotope chemostratigraphy for all three drill cores. The well-preserved and diverse assemblage of acritarchs and filamentous forms includes prokaryotes and eukaryotes, and is similar to other coeval assemblages described worldwide outside of Africa. The presence of the acanthomorph acritarch Trachyhystrichosphaera aimika is significant as it is indicative of the late Meso- to early Neoproterozoic age elsewhere, and is reported for the first time in Central

  1. Volcanic gas

    USGS Publications Warehouse

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  2. Volcanic Seismology

    NASA Astrophysics Data System (ADS)

    McNutt, Stephen R.

    2005-01-01

    Recent developments in volcanic seismology include new techniques to improve earthquake locations that have changed clouds of earthquakes to lines (faults) for high-frequency events and small volumes for low-frequency (LF) events. Spatial mapping of the b-value shows regions of normal b and high b anomalies at depths of 3-4 and 7-10 km. Increases in b precede some eruptions. LF events and very-long-period (VLP) events have been recorded at many volcanoes, and models are becoming increasingly sophisticated. Deep long-period (LP) events are fairly common, but may represent several processes. Acoustic sensors have greatly improved the study of volcanic explosions. Volcanic tremor is stronger for fissure eruptions, phreatic eruptions, and higher gas contents. Path and site effects can be extreme at volcanoes. Seismicity at volcanoes is triggered by large earthquakes, although mechanisms are still uncertain. A number of volcanoes have significant deformation with very little seismicity. Tomography has benefited from improved techniques and better instrumental arrays.

  3. A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011)

    NASA Astrophysics Data System (ADS)

    Yavuz, Fuat; Karakaya, Necati; Yıldırım, Demet K.; Karakaya, Muazzez Ç.; Kumral, Mustafa

    2014-02-01

    A Microsoft Visual Basic program, WinTcac, has been developed to calculate structural formulae of tourmaline analyses based on the Subcommittee on Tourmaline Nomenclature (STN) of the International Mineralogical Association's Commission on New Minerals, Nomenclature and Classification (IMA-CNMCN) scheme. WinTcac calculates and classifies tourmaline-supergroup minerals based on 31 O atoms for complete tourmaline analyses. For electron-microprobe-derived tourmaline analyses site occupancy can be estimated by using the stoichiometric H2O (wt%) and B2O3 (wt%) contents. This program also allows the user to process tourmaline analyses using 15 cations and 6 silicons normalization schemes. WinTcac provides the user to display tourmaline analyses in a various classification, environmental, substitution, and miscellaneous plots by using the Golden Software's Grapher program. The program is developed to predict cation site-allocations at the different structural positions, including the T, Z, Y, and X sites, as well as to estimate the OH1-, F1-, Cl1-, and O2- contents. WinTcac provides editing and loading Microsoft Excel files to calculate multiple tourmaline analyses. This software generates and stores all the calculated results in the output of Microsoft Excel file, which can be displayed and processed by any other software for verification, general data manipulation, and graphing purposes. The compiled program code is distributed as a self-extracting setup file, including a help file, test data files and graphic files, which are designed to produce a high-quality printout of the related plotting software. We developed a Windows program, called WinTcac, for calculation and classification of tourmaline-supergroup based on the current IMA-2011 scheme. The program calculates tourmaline-supergroup minerals according to 31 O atoms for complete tourmaline analyses. Electron-microprobe-derived tourmaline analyses are carried out based on site occupancy by using the stoichiometric

  4. Late Precambrian Sixtymile Formation and orogeny at top of the Grand Canyon Supergroup, northern Arizona

    USGS Publications Warehouse

    Elston, Donald Parker

    1979-01-01

    The Sixtymile Formation, a 60-m-thick red-bed unit at the top of the late Precambrian Chuar Group, crops out at three places in the Chuar syncline in the eastern Grand Canyon. Its base is marked by a transition from gray marine shale to red sandstone. The Sixtymile was deposited in the deepening trough of the north-trending Chuar syncline during and as a consequence of regional uplift, tilting, and large-scale block faulting. Folding to form the Chuar syncline occurred in response to faulting on the parallel-trending Butte fault, about 1 km to the east. About 3.2 km of structural relief was developed across the Butte fault, principally during deposition of the lower member of the Sixtymile Formation. Landslide debris shed from the upthrown block on the east constitutes a major part of the material in the lower member. Conglomeratic strata of the upper member of the Sixtymile were deposited after the last increment of subsidence on the Chuar syncline, indicating that deposition of the Sixty mile Formation spanned the time of the structural disturbance. The folding and faulting are part of a regional structural episode that here is called the Grand Canyon orogeny, an event that signaled the end of deposition of strata of the Grand Canyon Supergroup and the beginning of a long interval of erosion. The age of the Grand Canyon orogeny is estimated at about 830 m.y., inferred from an evaluation of maximum and minimum reset K-Ar ages reported for the 1,100-m.y.-old Cardenas Lavas of the Unkar Group. In age and structural style, the Grand Canyon orogeny appears generally correlative with the East Kootenay orogeny of British Columbia, which separates the Purcell (Belt) and Windermere Supergroups. By analogy, strata of the Chuar Group below the Sixtymile Formation are correlated with strata of the upper part of the Belt Supergroup, and conglomeratic strata of the Sixtymile deposited after the structural episode are correlated with conglomeratic strata of the Windermere that

  5. How Diverse Is the Genus Wolbachia? Multiple-Gene Sequencing Reveals a Putatively New Wolbachia Supergroup Recovered from Spider Mites (Acari: Tetranychidae)▿ †

    PubMed Central

    Ros, Vera I. D.; Fleming, Vicki M.; Feil, Edward J.; Breeuwer, Johannes A. J.

    2009-01-01

    At least 20% of all arthropods and some nematode species are infected with intracellular bacteria of the genus Wolbachia. This highly diverse genus has been subdivided into eight “supergroups” (A to H) on the basis of nucleotide sequence data. Here, we report the discovery of a new Wolbachia supergroup recovered from the spider mite species Bryobia species V (Acari: Tetranychidae), based on the sequences of three protein-coding genes (ftsZ, gltA, and groEL) and the 16S rRNA gene. Other tetranychid mites possess supergroup B Wolbachia strains. The discovery of another Wolbachia supergroup expands the known diversity of Wolbachia and emphasizes the high variability of the genus. Our data also clarify the existing supergroup structure and highlight the use of multiple gene sequences for robust phylogenetic analysis. In addition to previous reports of recombination between the arthropod-infecting supergroups A and B, we provide evidence for recombination between the nematode-infecting supergroups C and D. Robust delineation of supergroups is essential for understanding the origin and spread of this common reproductive parasite and for unraveling mechanisms of host adaptation and manipulation across a wide range of hosts. PMID:19098217

  6. Volcanic Catastrophes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  7. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.

    PubMed

    Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V

    2008-12-01

    The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.

  8. Detrital zircon age populations from the Moine Supergroup, Scotland, and their implications for tectonic evolution

    NASA Astrophysics Data System (ADS)

    Kindgren, Kelly; Steltenpohl, Mark; Strachan, Rob; Law, Rick; Cawood, Peter; Schwartz, Joshua

    2016-04-01

    U-Pb detrital zircon age populations determined by LA-SF-ICPMS analysis (California State University - Northridge) from the Neoproterozoic Moine Supergroup, northern Scotland, provide important insights into its depositional age and nature of source. U-Pb detrital zircon ages for 100 grains from the stratigraphically lowest recognized unit of the Moine Supergroup, the Morar Group (sample KMK-MT-07), were analyzed and 80 were less than 10% discordant. KMK-MT-07 has a broad major peak at 1640 Ma (52.5% of grains in sample create this peak). This major peak is skewed by a secondary hump at 1196 Ma (accounting for 21.3% of all grains). There are two minor peaks at 2618 Ma (3.8%) and 3200 Ma (3.8%). A major trough occurs between 1280 Ma and 1500 Ma (6.3%) and a minor trough appears between 1750 Ma and 2000 Ma (12.5%). Sixty-five grains from the stratigraphically highest unit of the Moine succession, the Loch Eil Group (sample RS-IS-47), yielded ages ranging from 1843 to 885 Ma. Forty-four grains were less than 10% discordant and reveal a major peak at 1726 Ma (63.6% of all grains) and a secondary peak at 1263 Ma (9%). A minor peak occurs between 1050 Ma and 1106 Ma (4.5%) and a minor cluster occurs between 1835 Ma and 1845 Ma (4.5%). The two youngest concordant or near concordant grains have ages of 885 Ma. Troughs occur between 1300 Ma and 1500 Ma (13.6%). The youngest grain within the Loch Eil data set, ca. 885 Ma, which in combination with a previously reported age of ca. 870 Ma for the West Highland Granitic Gneiss that intrudes the group, constrains the depositional age of at least the upper parts of the Moine Supergroup to a 15 Ma period in the early Neoproterozoic. The overall age range of detrital grains in the two samples is indicative of derivation from the Laurentian foreland to the south of Scotland (i.e., NE Canada/Labrador). However, the contrasting distribution of specific age peaks between the upper and lower units of the Moine Supergroup, as well as the

  9. Gwembe Coal Formation, Karoo Supergroup, Mid-Zambezi valley, southern Zambia; a fluvial plain environment

    SciTech Connect

    Nyambe, I.A.; Dixon, O. )

    1993-03-01

    The Gwembe Coal Formation of Permian age belongs to the Lower Karoo Group of the Karoo Supergroup (Permo-Carboniferous to early Jurassic), which crops out in the mid-Zambezi Valley, southern Zambia. The formation has a maximum thickness of 280 m. It was formed in a fluvial depositional environment in which sandstones, siltstones and mudstones were deposited in channels and flood plains. One sandstone body (A Sandstone) indicates a change in fluvial style from a proximal braided system to a high-sinuosity meandering stream system. The productive coals (Main Seam) with thicknesses from 5 to 12 m were deposited in shallow swampy areas of the flood plain. Peat deposition was interrupted by channel, crevasse channel and splay, levee and overbank deposition. Rootlets observed in basal sandstones indicate an insitu origin for the Main Seam.

  10. Volcanic features of Io

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  11. 40Ar/39Ar geochronology and geochemical reconnaissance of the Eocene Lowland Creek volcanic field, west-central Montana

    USGS Publications Warehouse

    Dudas, F.O.; Ispolatov, V.O.; Harlan, S.S.; Snee, L.W.

    2010-01-01

    We report geochronological and geochemical data for the calc-alkalic Lowland Creek volcanic field (LCVF) in westcentral Montana. 40Ar/ 39Ar age determinations show that the LCVF was active from 52.9 to 48.6 Ma, with tuff-forming eruptions at 52.9 ?? 0.14 and 51.8 ?? 0.14 Ma. These dates span the age range of vigorous Eocene igneous activity in the Kamloops-Absaroka-Challis belt. The LCVF evolved upward from basal rhyolites (SiO 2>71 wt%) to dacites and andesites (SiO 2 > 62 wt%). Compositional change parallels a transition from early explosive volcanism to late effusive activity. Four geochemical components can be detected in the rocks. A component with 206Pb/204Pb < 16.5 and epsilon;Nd near-15 is predominant in anhydrous, two-pyroxene dacites; hydrous rhyolites, rhyodacites, and dacites with epsilon;Nd below-10 are dominated by a second component; hydrous rocks with 206Pb/ 204Pb > 18.3 and epsilon;Nd>-9 contain a third component; and an andesite with low Nd content and epsilon;Nd near-9 probably contains a fourth component. The first three components probably derive from the lower and middle crust, whereas the fourth is probably from the lithospheric mantle. ?? 2010 by The University of Chicago.

  12. Weathering Intensity on Laurentia in the Mesoproterozoic: Evidence From CIA of the Lower Belt Supergroup

    NASA Astrophysics Data System (ADS)

    Kerrich, R.; Gonzalez-Alvarez, I.

    2004-05-01

    The Belt Supergroup siliciclastic sequence was deposited between 1.47 to 1.40 Ga in a passive rift on the margin of Laurentia associated with the opening of the Grenville Ocean. Nominal CIA values of the Appekunny and Grinnell siltstones are 49 to 68. Given pervasive secondary enrichment of K due to basinal brines, corrected values are 66 to 85 using the procedure of Fedo et al., (1995). Red and green colored siltstones from the Appekunny and Grinnell formations in the lower Belt Supergroup, have abundances of CaO, Na(2)O, and Sr depleted up to 6 times relative to PA-UCC, stemming from intense weathering of the provenance. In contrast, there are pronounced additions of K (x 1.5) as well as high Li, Rb, and Cs, hence high Rb/Sr ratios, and negative anomalies of Eu/Eu* relative to PA-UCC. Red siltstones have an average K/Cs ratio of 1600. This post-depositional potassic alteration is a common feature of siliciclastic sedimentary sequences, and has been documented in several Precambrian sedimentary basins. Interpretation of corrected CIA values is complex, as CIA reflects some combination of contemporaneous weathering and recycled sediments in the source area. Low Sr contents in conjunction with high Rb/Sr ratios, relative to Archean or post-Archean UCC, have been reported in other studies of several Archean and Proterozoic metasedimentary sequences as a proxy for deeply weathered cratonic rocks. Low Sr contents coupled with high Rb/Sr, with an average of 5.5 for red siltstones in the Appekunny and Grinnell formations, whereas the Aldridge and Fort Steele formations in the lower Belt Supergroup have Rb/Sr averages of 2.0 and 2.2 respectively. This stratigraphic trend is interpreted as a secular enlargement in the area of the drainage basin to erode more recycled sedimentary rocks, and/or an increase in weathering intensity. A mantle plume associated with the opening of the Grenville Ocean ~1.5 Ga ago may have degassed massive quantities of CO(2), resulting in intense

  13. Rifting, drifting, convergence and orogenesis: The sedimentary record of the Wernecke Supergroup on the Paleoproterozoic margin of northwestern Columbia

    NASA Astrophysics Data System (ADS)

    Furlanetto, F.; Thorkelson, D. J.; Rainbird, R.; Davis, B.; Gibson, D.; Marshall, D. D.

    2015-12-01

    The Wernecke Supergroup was deposited when the northwestern margin of Laurentia was undergoing major adjustments related to the assembly of the supercontinent Columbia (Nuna) in the late Paleoproterozoic. The succession was deposited between ca. 1663 and ca. 1620 Ma in two clastic to carbonate grand cycles. The detrital zircon population is bimodal, reflecting derivation from cratonic Laurentia. Basin shallowing at the end of the second grand cycle corresponds to a significant younging of detrital zircon populations. Specifically, the late Paleoproterozoic peak of zircon ages shifted from ca. 1900 Ma to ca. 1825 Ma, and the proportion of Archaean and early Paleoproterozoic zircon decreased. These shifts were caused by a change in drainage pattern in northern Laurentia during an early phase of the Forward orogeny, farther inland. The orogeny also led to inversion of the broadly correlative Hornby Bay Group. Zircon younger than 1.75 Ga is present throughout the sedimentary succession and may have originated from small igneous suites in northern Laurentia or larger magmatic arc terranes of the Yavapai and early Mazatzal orogenies in southern Laurentia. Eastern and southern Australia and the intervening Bonnetian arc may have contributed. The Wernecke Supergroup shares similar detrital zircon age and Nd isotope signatures with the Hornby Bay, Muskwa, Athabasca and Thelon successions of Canada; the Tarcoola Formation, Willyama Supergroup, and Isan Supergroup of Australia; and of the Dongchuan-Dahongshan-Hondo successions of South China. These similarities are compelling evidence for a shared depositional system in the late Paleoproterozoic. Western Columbia may have had a dynamic SWEAT-like configuration with Australia, East Antarctica and South China moving in a complex manner near the margin of western Laurentia. All of the continents except for South China underwent post-Wernecke tectonism during the Racklan, Forward, Olarian, Isan, Mazatzal and related orogenies, ca

  14. Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882

    NASA Astrophysics Data System (ADS)

    Sengupta, Aparajita

    We present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies

  15. Wolbachia supergroups A and B in natural populations of medically important filth flies (diptera: muscidae, calliphoridae, and sarcophagidae) in Thailand.

    PubMed

    Mingchay, Pichanon; Sai-Ngam, Arkhom; Phumee, Atchara; Bhakdeenuan, Payu; Lorlertthum, Kittitouch; Thavara, Usavadee; Tawatsin, Apiwat; Choochote, Wej; Siriyasatien, Padet

    2014-03-01

    Filth flies, belonging to suborder Brachycera (Family; Muscidae, Calliphoridae and Sarcophagidae), are a major cause of nuisance and able to transmit pathogens to humans and animals. These insects are distributed worldwide and their populations are increasing especially in sub-tropical and tropical areas. One strategy for controlling insects employs Wolbachia, which is a group of maternally inherited intracellular bacteria, found in many insect species. The bacteria can cause reproductive abnormalities in their hosts, such as cytoplasmic incompatibility, feminization, parthenogenesis, and male lethality. In this study we determined Wolbachia endosymbionts in natural population of medically important flies (42 females and 9 males) from several geographic regions of Thailand. Wolbachia supergroups A or B were detected in 7 of female flies using PCR specific for wsp. Sequence analysis of wsp showed variations between and within the Wolbachia supergroup. Phylogenetics demonstrated that wsp is able to diverge between Wolbachia supergroups A and B. These data should be useful in future Wolbachia-based programs of fly control.

  16. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  17. Did Viruses Evolve As a Distinct Supergroup from Common Ancestors of Cells?

    PubMed Central

    Harish, Ajith; Abroi, Aare; Gough, Julian; Kurland, Charles

    2016-01-01

    The evolutionary origins of viruses according to marker gene phylogenies, as well as their relationships to the ancestors of host cells remains unclear. In a recent article Nasir and Caetano-Anollés reported that their genome-scale phylogenetic analyses based on genomic composition of protein structural-domains identify an ancient origin of the “viral supergroup” (Nasir et al. 2015. A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv. 1(8):e1500527.). It suggests that viruses and host cells evolved independently from a universal common ancestor. Examination of their data and phylogenetic methods indicates that systematic errors likely affected the results. Reanalysis of the data with additional tests shows that small-genome attraction artifacts distort their phylogenomic analyses, particularly the location of the root of the phylogenetic tree of life that is central to their conclusions. These new results indicate that their suggestion of a distinct ancestry of the viral supergroup is not well supported by the evidence. PMID:27497315

  18. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  19. Geochemistry of archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance

    SciTech Connect

    Wronkiewicz, D.J.; Condie, K.C.

    1987-09-01

    With a few exceptions, shales from the Archean Witwatersrand Supergroup in South Africa are depleted in Na, Ca, Large ion lithophile elements (LILE, rare earth elements (REE) and half field strength elements ((HFSE) compared to Phanerozoic shales. Cr, Co and Ni are enriched in all Witwatersrand shales and Fe and Mg are high in shales from the West Rand Groups (WRG) and lower Central Rand Group (CRG). Shales from the CRG and uppermost WRG are enriched in Na, Al, LILE, REE, HFSE and transition metals relative to shales from the lower WRG. Chondrite-normalized REE patterns for all Witwatersrand shales are enriched in light-REE and exhibit small to moderate negative Eu anomalies. Relative to shales from the CRG, shales from the WRG exhibit depletions of Na, Ca and Sr, a feature probably reflecting intense chemical weathering of their source rocks. CIA indices in Witwatersrand shales are variable, even within the same shale unit. Such variations reflect chiefly variable climatic zones or rates of tectonic uplift in source areas with perhaps some contribution from provenance and element remobilization during metamorphism. Compared to present-day upper continental crust, all but the Orange Grove, Roodepoort, and K8 shales appear to have been derived from continental sources depleted in LILE, REE, and HFSE and enriched in transition metals. Computer mixing models abased on six relatively immobile elements (Th, Hf, Yb, La, Sc, Co) and four source rocks indicate that the relative proportions of granite, basalt and komatiite increased with time in sediment source areas at the expense of tonalite.

  20. Thermal maturation of carbonaceous material from Mbuji-Mayi Supergroup (Kasai, Democratic Republic of Congo).

    NASA Astrophysics Data System (ADS)

    Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; François, Camille; Javaux, Emmanuelle

    2016-04-01

    The Mbuji-Mayi Supergroup is a sedimentary sequence in DRC unaffected by regional metamorphism. It consists of two distinct successions: a lower, ~500 m thick siliciclastic sequence of the BI Group and an upper, ~1000 m thick carbonate sequence with stromatolitic build-ups and black shales of the BII Group directly overlain by basaltic lavas [1]. Radiometric data suggest a Latest Meso- to Early Neoproterozoic age [2, 3, 4, and 5]. A well preserved and diversified microfossil assemblage is reported including 54 taxa belonging to 32 genera. The potential Late Mesoproterozoic-Tonian index fossil Trachyhystrichosphaera aimika, is reported for the first time in central Africa, and co-occurs with other eukaryotes and prokaryotes [6]. Thermal maturation calculated on macerate residues, using geothermometer for low-grade metamorphism [7] reveals thermal palaeoenvironments of organic matter, ranging from 180 to 279° C (average = 249 ± 37 °C). The range of thermal maturity is similar, in both microfossils and amorphous organic matter. Raman reflectance (RmcRo %), which is also an index indicative of maturity [8], ranges from 1.05 to 2.55 % (average = 2.01 ± 0.42 %). So, organic matter from Mbuji-Mayi is likely into a maturation stage corresponding to oil window. References: [1] Raucq (1957) Ann. MRAC, série 8, Sc. géol. 18, 427. [2] Cahen & Snelling (1966) Publ. C., Amsterdam. [3] Cahen et al. (1984) Clarendon Press, Oxford. [4] Delpomdor et al. (2013) Pal.3 389, 4-34. [5] François et al. (in preparation). [6] Baludikay et al. (in review) Prec. Res. [7] Kouketsu et al. (2014) Island Arc 23, 33-50. [8] Liu et al. (2013) Geochemistry, Chi. Sc. Bul. 58 (11), 1285-1298.

  1. Paleoproterozoic volcanism in the southern Amazon Craton (Brazil): insight into its origin and deposit textures

    NASA Astrophysics Data System (ADS)

    Roverato, Matteo; Juliani, Caetano

    2014-05-01

    The Brazilian Amazon craton hosts a primitive volcanic activity that took place in a region completely stable since 1.87 Ga. The current geotectonic context is very different from what caused the huge volcanism that we are presenting in this work. Volcanic rocks in several portions of the Amazon craton were grouped in the proterozoic Uatumã supergroup, a well-preserved magmatic region that covers an area with more than 1,200,000 km2. In this work one specific region is considered, the southwestern Tapajos Gold province (TGP) that is part of the Tapajós-Parina tectonic province (Tassinari and Macambri, 1999). TGP consists of metamorphic, igneous and sedimentary sequences resulted from a ca. 2.10-1.87 Ga ocean-continent orogeny. High-K andesites to felsic volcanic sequences and plutonic bodies, andesitic/rhyolitic epiclastic volcanic rocks and A-type granitic intrusions form part of this volcanism/plutonism. In this work we focus particularly our attention on welded, reomorphic and lava-like rhyolitic ignimbrites and co-ignimbrite brecchas. Fiamme texture of different welding intensity, stretched obsidian fragments, "glassy folds", relict pumices, lithics, rotated crystals of feldspars, bipiramidal quarz, and devetrification spherulites are the common features represented by our samples. Microscopical images are provided to characterize the deposits analyzed during this preliminary research. The lack of continuum outcrops in the field made more difficult the stratigraphic reconstruction, but the superb preservation of the deposits, apparently without any metamorphic evidences (not even low-grade), permits a clearly description of the textures and a differentiation between deposits. A detailed exploration of this ancient andesitic and rhyolitic volcanic activity could contribute greatly to the knowledge of the Amazon territory and in particular for the recognition of the various units that form the supergroup Uatumã, especially in relation to different eruptive

  2. Revisiting the Swaziland Supergroup: New Approaches to Examining Evidence for Early Life on Earth

    NASA Technical Reports Server (NTRS)

    Walsh, M. M.; Westall, F.

    2000-01-01

    The re-examination by SEM of 3.4 Ga fossiliferous carbonaceous cherts reveals fungal contaminants in addition to indigenous microfossils. Weathered volcanic flows associated with fossiliferous chert layers offer a promising area for further study of early life on Earth.

  3. California's potential volcanic hazards

    SciTech Connect

    Jorgenson, P. )

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S. Geological Survey (USGS) publication. The 17-page bulletin, Potential Hazards from Future Volcanic Eruptions in California, gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. The six areas and brief descriptions of their past volcanic history and potential for future volcanic hazards are briefly summarized here.

  4. Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin (Triassic Jurassic), Newark Supergroup, USA

    NASA Astrophysics Data System (ADS)

    Wolela, A. M.; Gierlowski-Kordesch, E. H.

    2007-04-01

    The early introduction of clays into continental sandstones has been attributed to mechanical infiltration by percolation of clay-rich surface waters into grain framework or cutans formed from pedogenic processes. The discovery of pedogenic mud aggregates as traction-load mud in ancient fluvial deposits suggests that permeability and porosity of terrigenous sandstones can be influenced at deposition and control early diagenetic patterns. This study compares diagenesis in fluvial (subaerially exposed) sandstones with lacustrine (subaqueous) sandstones in a Triassic-Jurassic continental rift basin (Hartford Basin, Newark Supergroup). Diversity of diagenetic minerals and sequence of diagenetic alteration can be directly related to depositional environment. The fluvial sandstones in the New Haven Arkose, East Berlin Formation, and Shuttle Meadow Formation of the Hartford Basin are dominated by concretionary calcite and early calcite cement, infiltrated clays (illite-smectite), pedogenic mud aggregates (smectite and illite-smectite), grain coating clays (illite/hematite, illite-chlorite/hematite), quartz overgrowths, late stage carbonate cements (calcite, ferroan calcite), pore-filling clays (illite, kaolinite with minor amounts of smectite, smectite-chlorite, illite-smectite) and hematite. However, pedogenic processes in these fluvial sandstones retarded the development of quartz and feldspar overgrowths, and carbonate authigenesis, as well as the quality of diagenetically enhanced porosity. Dark gray-black lacustrine (subaqueous) sandstones and mudrocks in the East Berlin and Shuttle Meadow Formations are dominated by pyrite, concretionary dolomite and early dolomite cement, radial grain coating clays (smectite-chlorite, illite-smectite), late stage carbonate cements (dolomite, ferroan dolomite, ankerite), albite and pore-filling clays (smectite-chlorite, illite-smectite, illite-chlorite). Clay minerals exist as detrital, mechanically infiltrated, and neoformed clay

  5. Differentiating Detrital and Metamorphic Monazite in Greenschist-Facies Sandstones From the Witwatersrand Supergroup

    NASA Astrophysics Data System (ADS)

    Muhling, J. R.; Rasmussen, B.

    2009-05-01

    Monazite is a robust and reliable geochronometer of low-temperature metamorphic and hydrothermal events. It is a widespread accessory phase in sedimentary rocks metamorphosed at prehnite-pumpellyite to lower greenschist facies grade, and also in a range of hydrothermal ore deposits. Its ability to date multiple fluid-flow events in low-grade metasedimentary belts has been largely neglected, possibly because of a misconception that it is rare in these rocks and possibly because of misidentification of metamorphic monazite grains as detrital. Both detrital and metamorphic monazites are present in sandstone and conglomerate from the Witwatersrand Supergroup but can be distinguished by their occurrence, chemistry and age. Detrital grains were unstable during regional greenschist-facies metamorphism, and show evidence for a number of destructive reactions dependent on bulk rock composition and the original composition of the monazite. In quartz sandstone and conglomerate, detrital grains were present in heavy mineral bands with pyrite, zircon and chromite. The monazite grains have been pseudomorphed by intergrowths of apatite, florencite and Th-silicate, as well as matrix muscovite and chlorite. In some samples, Th-silicate forms only minute specks but in others it forms larger prismatic crystals that comprise up to 2% of some pseudomorphs. These variations may reflect differences in the original compositions of the detrital grains. In other samples detrital monazite cores, dated at 2.8-3.0 Ga, are enclosed within 2.04 Ga metamorphic rims. These composite grains formed by dissolution and reprecipitation of monazite during metamorphism. The cores and rims have distinctly different compositions, and the metamorphic rims show pronounced zoning of REE. In more calcic sandstone monazite occurs in heavy mineral bands with chromite, zircon, rutile, pyrite, apatite, Th-silicate, allanite and baddeleyite. These sandstones are notably rich in Ca-bearing minerals such as epidote

  6. Risk Evaluation for CO{sub 2} Geosequestration in the Knox Supergroup

    SciTech Connect

    Leetaru, Hannes

    2014-01-31

    This report describes a process and provides seed information for identifying and evaluating risks pertinent to a hypothetical carbon dioxide (CO{sub 2}) capture and sequestration (CCS) project. In the envisioned project, the target sequestration reservoir rock is the Potosi Formation of the Knox Supergroup. The Potosi is identified as a potential target formation because (1) at least locally, it contains vuggy to cavernous layers that have very high porosity, and (2) it is present in areas where the deeper Mt. Simon Sandstone (a known potential reservoir unit) is absent or nonporous. The key report content is discussed in Section 3.3, which describes two lists of Features, Events, and Processes (FEPs) that should be considered during the design stage of such a project. These lists primarily highlight risk elements particular to the establishment of the Potosi as the target formation in general. The lists are consciously incomplete with respect to risk elements that would be relevant for essentially all CCS projects regardless of location or geology. In addition, other risk elements specific to a particular future project site would have to be identified. Sources for the FEPs and scenarios listed here include the iconic Quintessa FEPs list developed for the International Energy Agency Greenhouse Gas (IEAGHG) Programme; previous risk evaluation projects executed by Schlumberger Carbon Services; and new input solicited from experts currently working on aspects of CCS in the Knox geology. The projects used as sources of risk information are primarily those that have targeted carbonate reservoir rocks similar in age, stratigraphy, and mineralogy to the Knox-Potosi. Risks of using the Potosi Formation as the target sequestration reservoir for a CCS project include uncertainties about the levels of porosity and permeability of that rock unit; the lateral consistency and continuity of those properties; and the ability of the project team to identify suitable (i

  7. Risk Evaluation for CO2 Geosequestration in the Knox Supergroup, Illinois Basin Final Report

    SciTech Connect

    Hnottavange-Telleen, Ken; Leetaru, Hannes

    2014-09-30

    This report describes a process and provides seed information for identifying and evaluating risks pertinent to a hypothetical carbon dioxide (CO2) capture and sequestration (CCS) project. In the envisioned project, the target sequestration reservoir rock is the Potosi Formation of the Knox Supergroup. The Potosi is identified as a potential target formation because (1) at least locally, it contains vuggy to cavernous layers that have very high porosity, and (2) it is present in areas where the deeper Mt. Simon Sandstone (a known potential reservoir unit) is absent or nonporous. The key report content is discussed in Section 3.3, which describes two lists of Features, Events, and Processes (FEPs) that should be considered during the design stage of such a project. These lists primarily highlight risk elements particular to the establishment of the Potosi as the target formation in general. The lists are consciously incomplete with respect to risk elements that would be relevant for essentially all CCS projects regardless of location or geology. In addition, other risk elements specific to a particular future project site would have to be identified. Sources for the FEPs and scenarios listed here include the iconic Quintessa FEPs list developed for the International Energy Agency Greenhouse Gas (IEAGHG) Programme; previous risk evaluation projects executed by Schlumberger Carbon Services; and new input solicited from experts currently working on aspects of CCS in the Knox geology. The projects used as sources of risk information are primarily those that have targeted carbonate reservoir rocks similar in age, stratigraphy, and mineralogy to the Knox-Potosi. Risks of using the Potosi Formation as the target sequestration reservoir for a CCS project include uncertainties about the levels of porosity and permeability of that rock unit; the lateral consistency and continuity of those properties; and the ability of the project team to identify suitable (i.e., persistently

  8. Volcanism on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  9. Volcanism on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard

    2007-08-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-1995; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  10. Provenance study from petrography of the late Permian - Early Triassic sandstones of the Balfour Formation Karoo Supergroup, South Africa

    NASA Astrophysics Data System (ADS)

    Oghenekome, M. E.; Chatterjee, T. K.; Hammond, N. Q.; van Bever Donker, J. M.

    2016-02-01

    Non marine clastic sediments from the Late Permian - Early Triassic Balfour Formation of the Karoo Supergroup were studied to infer the composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals reveal that these sediments (mainly sandstones) are mostly composed of quartz, feldspar and sedimentary and metamorphic rock fragments. There is no significant petrographic variation across the sandstone succession of the study. The sandstones are dominantly feldspathic litharenite and ultralithofeldspathic in composition indicating a metamorphic source area. Modal analysis data plot in the dissected and transitional arc block provenance fields of QmFLt (quartz-feldspar-lithic fragments) diagram suggesting an active margin and magmatic arc signature preserving a recycled provenance.

  11. Middle Proterozoic mafic magmatism, east central Idaho: Implications for age of deposition of Belt Supergroup and basin subsidence models

    SciTech Connect

    Chamberlain, K.R. . Dept. of Geology and Geophysics); Doughty, P.T. . Geological Sciences)

    1993-04-01

    In the Salmon River Arch, a ca. 1,365 Ma rapikivi granite intrudes the Proterozoic Yellow Jacket Formation, which is commonly correlated with the basal Belt-Purcell Supergroup. The contact aureole of the granite contains andalusite and overprints greenschist-facies burial metamorphism in the undeformed sedimentary strata. To the north, the granite intrudes amphibolite-facies, migmatitic paragneiss and a mafic igneous complex. Textures within the migmatites attest to deformation during partial melting. Preliminary U-Pb zircon data from a quartz diorite that intrudes the Yellowjacket sediments yield an age of ca. 1,445 Ma. This is consistent with zircon ages from the Crossport C and Moyie sills in northern Idaho and southern BC that constrain the basal Belt Supergroup to be older than 1,440 Ma. U-Pb zircon data from an amphibolitized mafic dike within the mafic igneous complex along the Salmon River are nearly concordant and yield Pb/Pb ages of ca. 1,377 Ma. The zircons exhibit skeletal, magmatic morphologies and the age is interpreted to be the time of primary crystallization. This age is slightly older than the age of the rapikivi granite and overlaps with the U-Pb zircon age of leucosomes in the migmatites. Thus, bimodal magmatism and partial melting occurred ca. 1,370 Ma. Deformation accompanied these events, but was concentrated in the deeper level, high-grade rocks. These processes are syn-depositional, based on age constraints from the intrusive quartz diorite. The authors envision that burial metamorphism, deformation, partial melting mafic magmatism and granite emplacement occurred during extensional deformation in the base of the Yellowjacket basin.

  12. The Edwardsburg Formation and related rocks, Windermere Supergroup, central Idaho, USA

    USGS Publications Warehouse

    Lund, Karen; Aleinikoff, John N.; Evans, Karl V.

    2011-01-01

    In central Idaho, Neoproterozoic stratified rocks are engulfed by the Late Cretaceous Idaho batholith and by Eocene volcanic and plutonic rocks of the Challis event. Studied sections in the Gospel Peaks and Big Creek areas of west-central Idaho are in roof pendants of the Idaho batholith. A drill core section studied from near Challis, east-central Idaho, lies beneath the Challis Volcanic Group and is not exposed at the surface. Metamorphic and deformational overprinting, as well as widespread dismembering by the younger igneous rocks, conceals many primary details. Despite this, these rocks provide important links for regional correlations and have produced critical geochronological data for two Neoproterozoic glacial periods in the North American Cordillera. At the base of the section, the more than 700-m-thick Edwardsburg Formation (Fm.) contains interlayered diamictite and volcanic rocks. There are two diamictite-bearing members in the Edwardsburg Fm. that are closely related in time. Each of the diamictites is associated with intermediate composition tuff or flow rocks and the diamictites are separated by mafic volcanic rocks. SHRIMP U–Pb dating indicates that the lower diamictite is about 685±7 Ma, whereas the upper diamictite is 684±4 Ma. The diamictite units are part of a cycle of rocks from coarse clastic, to fine clastic, to carbonate rocks that, by correlation to better preserved sections, are thought to record an older Cryogenian glacial to interglacial period in the northern US Cordillera. The more than 75-m-thick diamictite of Daugherty Gulch is dated at 664±6 Ma. This unit is preserved only in drill core and the palaeoenvironmental interpretation and local stratigraphic relations are non-unique. Thus, the date for this diamictite may provide a date for a newly recognized glaciogenic horizon or may be a minimum age for the diamictite in the Edwardsburg Fm. The c. 1000-m-thick Moores Lake Fm. is an amphibolite facies diamictite in which glacial

  13. Chapter 39 The Edwardsburg Formation and related rocks, Windermere Supergroup, central Idaho, USA

    USGS Publications Warehouse

    Lund, Karen; Evans, Karl V.; Alienikoff, John N.

    2011-01-01

    In central Idaho, Neoproterozoic stratified rocks are engulfed by the Late Cretaceous Idaho batholith and by Eocene volcanic and plutonic rocks of the Challis event. Studied sections in the Gospel Peaks and Big Creek areas of west-central Idaho are in roof pendants of the Idaho batholith. A drill core section studied from near Challis, east-central Idaho, lies beneath the Challis Volcanic Group and is not exposed at the surface. Metamorphic and deformational overprinting, as well as widespread dismembering by the younger igneous rocks, conceals many primary details. Despite this, these rocks provide important links for regional correlations and have produced critical geochronological data for two Neoproterozoic glacial periods in the North American Cordillera. At the base of the section, the more than 700-m-thick Edwardsburg Formation (Fm.) contains interlayered diamictite and volcanic rocks. There are two diamictite-bearing members in the Edwardsburg Fm. that are closely related in time. Each of the diamictites is associated with intermediate composition tuff or flow rocks and the diamictites are separated by mafic volcanic rocks. SHRIMP U–Pb dating indicates that the lower diamictite is about 685±7 Ma, whereas the upper diamictite is 684±4 Ma. The diamictite units are part of a cycle of rocks from coarse clastic, to fine clastic, to carbonate rocks that, by correlation to better preserved sections, are thought to record an older Cryogenian glacial to interglacial period in the northern US Cordillera. The more than 75-m-thick diamictite of Daugherty Gulch is dated at 664±6 Ma. This unit is preserved only in drill core and the palaeoenvironmental interpretation and local stratigraphic relations are non-unique. Thus, the date for this diamictite may provide a date for a newly recognized glaciogenic horizon or may be a minimum age for the diamictite in the Edwardsburg Fm. The c. 1000-m-thick Moores Lake Fm. is an amphibolite facies diamictite in which glacial

  14. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  15. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  16. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  17. Species in Wolbachia? Proposal for the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxteri', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylori', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitum' for the different species within Wolbachia supergroups.

    PubMed

    Ramírez-Puebla, Shamayim T; Servín-Garcidueñas, Luis E; Ormeño-Orrillo, Ernesto; Vera-Ponce de León, Arturo; Rosenblueth, Mónica; Delaye, Luis; Martínez, Julio; Martínez-Romero, Esperanza

    2015-09-01

    Wolbachia are highly extended bacterial endosymbionts that infect arthropods and filarial nematodes and produce contrasting phenotypes on their hosts. Wolbachia taxonomy has been understudied. Currently, Wolbachia strains are classified into phylogenetic supergroups. Here we applied phylogenomic analyses to study Wolbachia evolutionary relationships and examined metrics derived from their genome sequences such as average nucleotide identity (ANI), in silico DNA-DNA hybridization (DDH), G+C content, and synteny to shed light on the taxonomy of these bacteria. Draft genome sequences of strains wDacA and wDacB obtained from the carmine cochineal insect Dactylopius coccus were included. Although all analyses indicated that each Wolbachia supergroup represents a distinct evolutionary lineage, we found that some of the analyzed supergroups showed enough internal heterogeneity to be considered as assemblages of more than one species. Thus, supergroups would represent supraspecific groupings. Consequently, Wolbachia pipientis nomen species would apply only to strains of supergroup B and we propose the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxterii', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylorii', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitis' for other supergroups.

  18. Sulfur sources of sedimentary "buckshot" pyrite in the Auriferous Conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Guy, B. M.; Ono, S.; Gutzmer, J.; Lin, Y.; Beukes, N. J.

    2014-08-01

    Large rounded pyrite grains (>1 mm), commonly referred to as "buckshot" pyrite grains, are a characteristic feature of the auriferous conglomerates (reefs) in the Witwatersrand and Ventersdorp supergroups, Kaapvaal Craton, South Africa. Detailed petrographic analyses of the reefs indicated that the vast majority of the buckshot pyrite grains are of reworked sedimentary origin, i.e., that the pyrite grains originally formed in the sedimentary environment during sedimentation and diagenesis. Forty-one of these reworked sedimentary pyrite grains from the Main, Vaal, Basal, Kalkoenkrans, Beatrix, and Ventersdorp Contact reefs were analyzed for their multiple sulfur isotope compositions (δ34S, Δ33S, and Δ36S) to determine the source of the pyrite sulfur. In addition, five epigenetic pyrite samples (pyrite formed after sedimentation and lithification) from the Middelvlei and the Ventersdorp Contact reefs were measured for comparison. The δ34S, Δ33S, and Δ36S values of all 41 reworked sedimentary pyrite grains indicate clear signatures of mass-dependent and mass-independent fractionation and range from -6.8 to +13.8 ‰, -1.7 to +1.7 ‰, and -3.9 to +0.9 ‰, respectively. In contrast, the five epigenetic pyrite samples display a very limited range of δ34S, Δ33S, and Δ36S values (+0.7 to +4.0 ‰, -0.3 to +0.0 ‰. and -0.3 to +0.1 ‰, respectively). Despite the clear signatures of mass-independent sulfur isotope fractionation, very few data points plot along the primary Archean photochemical array suggesting a weak photolytic control over the data set. Instead, other factors command a greater degree of influence such as pyrite paragenesis, the prevailing depositional environment, and non-photolytic sulfur sources. In relation to pyrite paragenesis, reworked syngenetic sedimentary pyrite grains (pyrite originally precipitated along the sediment-water interface) are characterized by negative δ34S and Δ33S values, suggesting open system conditions with respect

  19. Chemostratigraphy and geochronology of the Kaniapiskau Supergroup, Labrador Trough indicate a major tectonic reorganization event hidden in the first cycle

    NASA Astrophysics Data System (ADS)

    Bekker, A.; Davis, D.; Wing, B.

    2009-05-01

    Deposition of the Paleoproterozoic Kaniapiskau Supergroup in the Labrador Trough started before 2.16 Ga and continued until shortly after ca. 1.88 Ga and is conventionally viewed as the result of three cycles of sedimentation in a single basin. The lower part of the first cycle is usually interpreted as rift to passive margin deposits, while the second and third cycles were likely deposited in the foreland basin. The age and depositional setting of the middle and upper parts of the lower cycle remains poorly constrained. We combine results of chemostratigraphic study of carbonates of the Kaniapiskau Supergroup with U-Pb geochronology of detrital zircons from the basal and middle parts of the first cycle to improve age constraints, understanding of tectonic setting, and correlation with other Paleoproterozoic basins along the eastern margin of the Superior Craton. The basal Chakonipau Formation has the youngest detrital zircon with an age of 2241 +/- 18 Ma, further constraining rifting between 2.22 and 2.16 Ga. The overlying lower part of the first cycle contains carbonates with highly positive carbon isotope values, typical for the 2.22-2.1 Ga Lomagundi Event. It is capped by black shales representing a flooding event and overlying turbiditic greywackes. Carbonates in the overlying upper part of the first cycle do not carry a 13C-enrichment and were therefore deposited after ca. 2.1 Ga. We infer a major break in sedimentation at the base of the Bacchus Formation consistent with its transgressive position over various units from the lower part of the first cycle. The flooding and deposition of immature sediments suggests a major reorganization in the basin likely related to the distal response to tectonic stresses. Similar events are also recognized in the Mistassini Basin, ~400 km SW along the margin of the Superior Craton and in other basins worldwide (e.g. on the Wyoming and Fennoscandian cratons), where black shales and turbidites straddle the end of the

  20. Pre-Snowball Earth ecosystems, insights from nitrogen isotopes in the Neoproterozoic Kwagunt Formation of the Chuar Supergroup, Grand Canyon.

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Arthur, M. A.; Freeman, K. H.

    2008-12-01

    Reconstructing marine ecosystems prior to the Neoproterozoic Snowball Earth episodes is an important constraint to our understanding of these events and to the biogeochemical evolution of the Neoproterozoic. The mixed siliciclastic and carbonate sequence comprising the Chuar Supergroup, Grand Canyon, USA, encompasses the period in Earth history immediately prior to the first of the Snowball Earth episodes 740 million years ago and presents a unique opportunity explore this issue in relatively immature rocks. In the Phanerozoic, there is a consistent relationship between euxinic basins, widespread black shale deposition, and δ15N values below 0‰ that are indicative of nitrogen-fixation supported primary productivity. Fe-speciation data from black shales of the Walcott Member of the Kwagunt Formation, upper Chuar Supergroup suggest that the Chuar water column and the middle Neoproterozoic deep ocean was euxinic. Bulk δ15N values from the Walcott Member range from +1.7 to +4.7‰, which are not directly supportive of nitrogen fixation. Preliminary nitrogen isotope data from organic extracts suggest that organic nitrogen may be more significantly enriched than bulk isotopes suggest. These relatively 15N- enriched values contrast those from Phanerozoic episodes of black shale deposition. The Walcott primary producer community is interpreted to have utilized a nitrogen substrate that had an isotopic composition more like that of nitrate in modern, relatively oxygenated marine systems. On the basis of biomarker data many black shale sequences of the Phanerozoic (e.g. Devonian, Permo-Triassic and Cretaceous) record the presence of an active phototrophic sulfide oxidizer community. In contrast, our best efforts have yet to yield biomarker evidence of photic zone euxinia within the Walcott. We therefore suggest that the sulfidic chemocline during Walcott deposition was consistently below the photic zone. Oxygenic phototrophic primary producers utilized nitrate from the

  1. Revision of the lithostratigraphy of the Walden Creek Group in southeastern Tennessee and its implications to the basin models of the Ocoee Supergroup

    SciTech Connect

    Laajoki, K. . Dept. of Geology Univ. of Tennessee, Knoxville, TN . Dept. of Geological Sciences)

    1993-03-01

    Stratigraphy and structural relationships within the Ocoee Supergroup along eight well-exposed sections across strike from Turtletown, Tennessee, to the Little Pigeon River suggest that: (1) the Walden Creek Group (WCG) conformably overlies both the Great Smoky Group (GSG) and the Snowbird Group (SBG). The former relationship can be verified in sections southwest of the Little Tennessee River and in the Ocoee and Hiawassee river sections studied recently by Costello and Carter and the latter north of Gatlinburg, where the Pigeon Siltstone grades to the Wilhite Formation confirming Keller's observations farther in the northeast. Between these two areas, the lower contact of the WCG is faulted. (2) The Shields Formation is incised into and interfingers with the Wilhite Formation, but the bulk of it overlies the latter and grades upwards to the Sandsuck Formation. (3) The Sandsuck Formation is conformably overlain by the Cochran Conglomerate (Chilhowee Group). Schematically, the proposed revised Ocoee Supergroup lithostratigraphy is shown. The idea that the GSG does not overlie the SBG as is generally thought, but rather intertongues with it, considerably reduces the cumulative thickness of the Ocoee Supergroup and requires totally new basin models for this sequence. Sedimentology of both the SBG and GSG has to be restudied, however, before this can be established.

  2. Volcanic hazards to airports

    USGS Publications Warehouse

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  3. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  4. A re-evaluation of the volcanism of the Palaeoproterozoic Pretoria Group (Kaapvaal craton) and a hypothesis on basin development

    NASA Astrophysics Data System (ADS)

    Reczko, B. F. F.; Oberholzer, J. D.; Res, M.; Eriksson, P. G.; Schreiber, U. M.

    1995-11-01

    The Palaeoproterozoic (approximately 2.3-2.1 Ga) Pretoria Group, Transvaal Supergroup, contains three main volcanic units, i.e the basal Bushy Bend Lava Member, the medial Hekpoort Formation and the Machadodorp Volcanic Member. Field relationships and geochemistry of the latter two volcanic successions have similarities with continental flood basalts (CFB), such as comparable trace element patterns and a distinct niobium anomaly. The genesis of the Pretoria Group volcanic rocks is inferred to be related to processes in a replenished, fractionated, tapped, assimilated (RFTA) magma chamber, involving an asthenospheric source, replenishing and tapping of the magma chamber and contamination of the primary partial melts by crustal material accompanied by fractional crystallization. The proposed basin development of the Pretoria Group, thought to have been related to asymmetric stretching of crust and lithosphere, may have been complicated further by decoupling of the extension in the sedimentary cover from the basement below, due to the presence of over-pressured basal shales. The tectonic setting of the Pretoria Group is inferred to lie in the rift-to-intracratonic-sag-type continuum.

  5. Sequence and Structural Characterization of Great Salt Lake Bacteriophage CW02, a Member of the T7-Like Supergroup

    PubMed Central

    Shen, Peter S.; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M.; Hoggan, Ryan; Culumber, Michele D.; Oberg, Craig J.; Breakwell, Donald P.; Prince, John T.

    2012-01-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1. PMID:22593163

  6. Extensional versus compressional settings for metamorphism: Garnet chronometry and pressure-temperature-time histories in the Moine Supergroup, northwest Scotland

    NASA Astrophysics Data System (ADS)

    Vance, D.; Strachan, R. A.; Jones, K. A.

    1998-10-01

    Identification of the tectonic setting for metamorphism is often extremely difficult in complex polymetamorphic terranes where individual tectonothermal events are obscured by later thermal and structural reorganizations. The traditional approach is to use mineral parageneses to outline the nature of the pressure-temperature-time path, but assigning an age to that path remains a challenge. In this case study, pressure-temperature data show that garnet in pelites of the polymetamorphic Moine Supergroup of northwest Scotland grew during compressional tectonics. In addition, the Sm-Nd systematics of these garnets demonstrate that growth occurred in the interval 820 790 Ma and was thus coeval with crustal melting documented as ca. 800 Ma. The heat source for the latter event has previously been postulated to be related to extension, but here we provide the first substantive evidence for a collisional orogeny at this time. These data further demonstrate the utility of garnet chronometry in identifying the timing and nature of particular tectonothermal events in polymetamorphic settings. In addition, the data show that the period between Grenville collision and supercontinent assembly in the North Atlantic region ca. 1000 1100 Ma, and rifting and continental breakup ca. 750 Ma was not as quiescent as previously envisaged. Late Proterozoic orogenesis is likely to have resulted from the closure of aborted continental rifts and/or minor oceanic tracts within the Grenville supercontinent prior to final rifting and supercontinent dispersal.

  7. Seasonality of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2001-12-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  8. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B.; Pyle, D.; Dade, B.; Jupp, T.

    2003-04-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  9. Precambrian Lunar Volcanic Protolife

    PubMed Central

    Green, Jack

    2009-01-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224

  10. Precambrian lunar volcanic protolife.

    PubMed

    Green, Jack

    2009-06-11

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  11. Mercurian volcanism questioned

    USGS Publications Warehouse

    Wilhelms, D.E.

    1976-01-01

    The Mariner 10 television team has argued that extensive plains on Mercury were formed by volcanism and compared them with the demonstrably lunar maria. I believe, however, that in stratigraphic relations, surface morphology, and albedo contrast, the Mercurian plains more closely resemble the lunar light plains. These lunar plains were interpreted as volcanic on the basis of data comparable to that available to the Mariner 10 investigators but have been shown by the Apollo missions to be of impact origin. The plains on Mercury might also be formed of impact materials, perhaps of impact melt or other basin ejecta that behaved more like a fluid when emplaced that did lunar basin ejecta. ?? 1976.

  12. Volcanic Hazards Survey in the Trans Mexican Volcanic Belt

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Siebe, Claus; Macias, Jose Luis

    1996-01-01

    We have assembled a digital mosaic of 11 Landsat Thematic images to serve as a mapping base for reconnaissance activities within the Trans Mexican Volcanic Belt. This will aid us in interpretation and in the evaluation of potential activity of all the volcanic centers there. One result is a volcanic hazards map of the area.

  13. Volcanism at Rifts.

    ERIC Educational Resources Information Center

    White, Robert S.; McKenzie, Dan P.

    1989-01-01

    Investigates the nature of catastrophic volcanism and the rifting process. Describes two kinds of evidence: quantitative descriptions of rock melting and a wide range of observations. Discusses examples of continent growth in the North Atlantic, India and the Seychelles islands, and the South Atlantic. (YP)

  14. Volcanism in the Classroom.

    ERIC Educational Resources Information Center

    Albin, Edward F.

    1993-01-01

    Presents activities to familiarize junior high school students with the processes behind and reasons for volcanism, which is generally a planet's way of releasing excessive internal heat and pressure. Students participate in the creation of four important volcano-related simulations: a lava flow, a shield volcano, a cinder-cone volcano, and a…

  15. Multiple Basinal Fluid Events in the Lower Belt Supergroup, Montana: Constraints From CHIME Ages and REE Patterns of Monazites

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Kusiak, M. A.

    2004-05-01

    Chemical dates (CHIME) on 105 spots and REE patterns of monazites were obtained from coarse sandstones and siltstones in the Mesoproterozoic siliciclastic Appekunny and Grinnell formations, lower Belt Supergroup, Montana, by EMPA. At least three post-depositional events induced by basinal fluids can be recognized: (a) red coloration accompanied by a major K-addition; (b) a green overprint of red siltstones; and (c) dolomitization. Fluid advection in the unmineralized lower Belt is pervasive and may have been alkaline and oxidizing. These three events progressively modified the primary geochemical characteristics of the siliciclastic rocks. Calculated ages show similar ranges in the fine and coarse-grained facies. For siltstones there are two age clusters: (1) at 1,801 ± 21 to 1,968 ± 26 Ma, as well as (2) at 854 ± 7 to 962 ± 13 Ma. Coarse sandstones show similar age clusters (3) at 1,831 ± 14 to 1,982 ± 12 Ma, and (4) at 803 ± 6 to 944 ± 9 Ma. A wide range of dates plots between the clusters for both facies. Clusters (1) and (3) are interpreted as the result of detrital monazites from a source area ~1.8 to 1.9 Ga old. Mineralogical variations and trace element systematic reveal basinal brines, which mobilized MREE and HREE, locally generating secondary monazites, influencing large domains of the lower Belt. The lower Belt Supergroup is estimated to have been deposited between 1.47 Ga and 1.45 Ga; consequently, the second age cluster for sandstones and siltstones is viewed as constraining the timeframe of a major basinal fluid event at ~0.80 to 0.96 Ga. That event is clearly distinct from the hydrothermal system associated with the Sullivan sedex base metal deposit at the base of the Belt. Ages between the clusters are interpreted either as secondary, formed during additional basinal fluid events or as reset of detrital monazites. Accordingly, the Belt basin was intermittently an open system to fluids from ~1.47 to ~0.80 Ga. Chondrite-normalized REE patterns

  16. Paleomagnetism of Middle Proterozoic mafic intrusions and Upper Proterozoic (Nankoweap) red beds from the Lower Grand Canyon Supergroup, Arizona

    NASA Astrophysics Data System (ADS)

    Weil, Arlo B.; Geissman, John W.; Heizler, Matt; Van der Voo, Rob

    2003-11-01

    Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, dm=9.3°) and early Late Proterozoic (ca. 850-900 Ma) at 10°S, 163°E (dp=3.5°, dm=7.0°). A new 40Ar/ 39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred ˜200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.

  17. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    USGS Publications Warehouse

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  18. Preliminary palynological zonation of the Chinle formation, southwestern U.S.A., and its correlation to the Newark supergroup (eastern U.S.A.)

    USGS Publications Warehouse

    Litwin, R.J.; Traverse, A.; Ash, S.R.

    1991-01-01

    Three informal palynological assemblage zones can be distinguished in samples from Chinle Formation outcrops in Utah, Arizona and New Mexico. The oldest zone (zone I) is in the Temple Mountain Member in southeastern Utah; the middle zone (zone II) is in the Shinarump, Moss Back, Monitor Butte and (lower part of the) Petrified Forest Members (Utah, Arizona and New Mexico); the youngest zone (zone III) is in the upper Petrified Forest Member and silstone member in Arizona and Utah and the silstone member in northcentral New Mexico. Present palynological evidence suggests that Chinle deposition on the Colorado Plateau began locally in late Carnian time and continued at least into the early part of Norian time of the Late Triassic period. Because the upper boundary of the Chinle Formation is an unconformity and the overlying formations are palynologically barren, the length of time represented by this stratigraphic hiatus is not known with certainty. Current palynological evidence suggests, however, that the unconformity at the top of the Chinle cannot be older than early Norian nor younger than Hettangian. Zones I, II and III can now be recognized in the palynomorph assemblage sequences from the Eastern Mesozoic basins, which modifies earlier palynological zonations for the lower portions of the Newark Supergroup. This is based on our identification of palynomorphs not previously known from portions of the Newark Supergroup and the discovery that specific biomarker taxa combinations are the same for both the western and eastern palynomorph sequences. At present palynomorph assemblages from the Chinle Formation and Newark Supergroup compare more closely for zones II and III than they do for zone I, but research is still in progress. ?? 1991.

  19. Exploring Hawaiian Volcanism

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  20. Exploring Hawaiian volcanism

    USGS Publications Warehouse

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  1. Volcanism-Climate Interactions

    NASA Technical Reports Server (NTRS)

    Walter, Louis S. (Editor); Desilva, Shanaka (Editor)

    1991-01-01

    The range of disciplines in the study of volcanism-climate interactions includes paleoclimate, volcanology, petrology, tectonics, cloud physics and chemistry, and climate and radiation modeling. Questions encountered in understanding the interactions include: the source and evolution of sulfur and sulfur-gaseous species in magmas; their entrainment in volcanic plumes and injection into the stratosphere; their dissipation rates; and their radiative effects. Other issues include modeling and measuring regional and global effects of such large, dense clouds. A broad-range plan of research designed to answer these questions was defined. The plan includes observations of volcanoes, rocks, trees, and ice cores, as well as satellite and aircraft observations of erupting volcanoes and resulting lumes and clouds.

  2. California's potential volcanic hazards

    USGS Publications Warehouse

    Jorgenson, P.

    1989-01-01

    This is a summary of "Potential Hazards from Future Volcanic Eruptions in California' (USGS Bulletin No. 1847: price $4.75). The chief areas of danger are Lassen Peak, Mount Shasta and Medicine Lake Highland in the north; Clear Lake, Mono Lake and Long Valley in the centre; and Owen's River-Death Valley, Amboy Crater and the Saltan Butter in the south of the State. -A.Scarth

  3. Volcanic effects on climate

    NASA Technical Reports Server (NTRS)

    Robock, Alan

    1991-01-01

    Volcanic eruptions which inject large amounts of sulfur-rich gas into the stratosphere produce dust veils which last years and cool the earth's surface. At the same time, these dust veils absorb enough solar radiation to warm the stratosphere. Since these temperature changes at the earth's surface and in the stratosphere are both in the opposite direction of hypothesized effects from greenhouse gases, they act to delay and mask the detection of greenhouse effects on the climate system. Tantalizing recent research results have suggested regional effects of volcanic eruptions, including effects on El Nino/Southern Oscillation (ENSO). In addition, a large portion of the global climate change of the past 100 years may be due to the effects of volcanoes, but a definite answer is not yet clear. While effects of several years were demonstrated with both data studies and numerical models, long-term effects, while found in climate model calculations, await confirmation with more realistic models. Extremely large explosive prehistoric eruptions may have produced severe weather and climate effects, sometimes called a 'volcanic winter'. Complete understanding of the above effects of volcanoes is hampered by inadequacies of data sets on volcanic dust veils and on climate change. Space observations can play an increasingly important role in an observing program in the future. The effects of volcanoes are not adequately separated from ENSO events, and climate modeling of the effects of volcanoes is in its infancy. Specific suggestions are made for future work to improve the knowledge of this important component of the climate system.

  4. Volcanic alert in antarctica

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    1992-01-01

    On January 14, members of the Council of Managers of National Antarctic Programs (COMNAP) were alerted to possible volcanic activity on Deception Island, Antarctica. The island, located at latitude 62%57‧S, longitude 60'40‧W, attracts many tourists.COMNAP is a group of national program managers of 25 countries that have government programs in the Antarctic. Its function is to implement measures adopted by the Antarctic Treaty parties, including fostering international cooperation in scientific research.

  5. Timeline of Martian Volcanism

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2011-05-01

    A recent study of Martian volcanism presents a timeline of the last major eruptions from 20 large volcanoes, based on the relative ages of caldera surfaces determined by crater counting. Stuart Robbins, Gaetano Di Achille, and Brian Hynek (University of Colorado) counted craters on high-resolution images from the the Context Camera (CTX) on Mars Reconnaissance Orbiter to date individual calderas, or terraces within calderas, on the 20 major Martian volcanoes. Based on their timeline and mapping, rates and durations of eruptions and transitions from explosive to effusive activity varied from volcano to volcano. The work confirms previous findings by others that volcanism was continuous throughout Martian geologic history until about one to two hundred million years ago, the final volcanic events were not synchronous across the planet, and the latest large-scale caldera activity ended about 150 million years ago in the Tharsis province. This timing correlates well with the crystallization ages (~165-170 million years) determined for the youngest basaltic Martian meteorites.

  6. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic

    NASA Astrophysics Data System (ADS)

    Wronkiewicz, David J.; Condie, Kent C.

    1990-02-01

    Approximately 100 pelite and 12 quartzite samples from the Ventersdorp (~2.7 Ga) and Transvaal Supergroups (~2.6-2.1 Ga) have been analyzed to monitor the early Proterozoic evolution of the Kaapvaal Craton, southern Africa. From oldest to youngest, pelites were sampled from the Ventersdorp-Bothaville (BOT), Transvaal-Selati (SEL), Black Reef (BR), Timeball Hill (TH), Strubenkop (STR), and Silverton (SIL) Formations. Paleocurrent measurements in Transvaal quartzites indicate sources lying predominantly to the north and east. Relative to the BOT-SEL-BR, pelites from the TH-STR-SIL are enriched in heavy-REE, LILE, Zr, Hf, Nb, and Ta, depleted in K 2O, MgO, Ni, and Cr, and have lower Cr/Zr, Sc/Th, K 2O/Na 2O, and K/ Rb ratios. Compared to SEL-BR, BOT-TH-STR-SIL pelites have higher light-REE contents and La/Yb ratios, and lower Eu/Eu∗ ratios (0.61-0.66). Relative to NASC (North American Shale Composite), THSTR-SIL pelites are enriched in light-REE, Th, U, Ta, Nb, Sc, Cs, have higher La/Yb ratios, and are depleted in K 2O and MgO. BOT-SEL-BR pelites are enriched in K 2O, MgO, Cr, and Ni, have higher K 2O/Na 2O, Sc/Th, and Eu/Eu∗ ratios, and are depleted in Th, U, heavy-REE, and High Field Strength Elements (HFSE) relative to NASC. Compositions of TH-STR-SIL pelites suggest a provenance similar to average Phanerozoic uppercontinental crust. This source is more evolved than that of BOT-SEL-BR pelites, indicating a transformation from primitive (mafic-rich) to evolved (felsic-rich) upper-crust at 2.2 Ga. This transition follows earlier primitive to evolved trends in Moodies-Pongola (3.3-3.0 Ga) and Witwatersrand (~2.8 Ga) successions. These data suggest that several cycles of changing upper-continental crust occurred in the Kaapvaal craton between 3.3-2.1 Ga.

  7. Laboratory studies of volcanic jets.

    USGS Publications Warehouse

    Kieffer, S.W.; Sturtevant, B.

    1984-01-01

    Laboratory experiments to study the fluid dynamics of violent volcanic eruptions employed pure gases erupted from small reservoirs. The gases used were Freon 12 and Freon 22, both of high molecular weight and high density, to model heavy, particulate- laden volcanic gases; nitrogen, a moderate molecular weight and density gas with well known thermodynamic properties; and He, a low molecular weight and density gas used as an analogue of steam, the dominant gas of most volcanic eruptions.-W.H.B.

  8. Volcanism on Mars. Chapter 41

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  9. Quantitative Studies in Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen M.

    2004-01-01

    Proxemy Research has a research grant to perform scientific investigations of volcanism and volcanic-related process on other planets. Part of this research involves mathematical modeling of specific volcanic transport processes and the use of terrestrial analogs. This report contains a summary of activities conducted over the time period indicated. In addition, a synopsis of science research conducted during the period is given. A complete listing of publications and scientific abstracts that were presented at scientific conferences is contained in the report.

  10. Detrital modes of the Pyeongan Supergroup (Late Carboniferous Early Triassic) sandstones in the Samcheog coalfield, Korea: implications for provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Lee, Yong Il; Sheen, Dong-Hee

    1998-08-01

    Medium to coarse sandstones of the Carboniferous to Early Triassic Pyeongan Supergroup in the Samcheog coalfield, Korea, were studied to infer the provenance and tectonic settings of the source areas. Sandstone detrital modes change upwards stratigraphically. Sandstone types from the Manhang to Dosagog formations low to middle in the sequence are quartzarenite, and sublitharenite to litharenite, whereas sandstones of the Gohan and Donggo formations high in the sequence are feldspathic litharenite and arkose, respectively. Using various ternary diagrams, the provenance of the Manhang to Gohan formations is suggested to be a recycled orogen setting. Some Gohan Formation sandstones plot within the arc-related setting field, and the Donggo Formation sandstones plot within both continental block and recycled orogen fields. Results of quartz grain petrography are consistent with those of detrital modes. Quartz in sandstones of all units except the Donggo Formation indicates derivation from low-rank metamorphic sources. Quartz in Donggo sandstones was derived from medium- to high-rank metamorphic and plutonic source rocks. Considering the sandstone composition and palaeocurrent data, the Pyeongan Supergroup probably was deposited in a molasse foreland basin and was derived from a synbasinal orogenic belt, probably the Akiyoshi orogen located in southwest Japan.

  11. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  12. Volcanism at rifts

    SciTech Connect

    White, R.S.; McKenzie, D.P.

    1989-07-01

    The earth's outer shell rifts continuously, stretching and splitting both on the ocean's floor and on continents. Every 30 million years or so the rifting becomes cataclysmic, releasing continent-size floods of magma. This paper explains that the same mechanism is at work in both cases, the difference being in the slightly hotter temperature of the parent mantle for spectacular volcanic outbursts. Two kinds of evidence are described: quantitative descriptions of rock melting and a wide range of observations made on the rifted edges of continents and in the oceans that have opened between them.

  13. Sensitivity to volcanic field boundary

    NASA Astrophysics Data System (ADS)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  14. Uranium series, volcanic rocks

    USGS Publications Warehouse

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  15. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  16. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    2008-06-01

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  17. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  18. Friction in volcanic environments

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  19. Caledonian evolution of the Moine Supergroup: Prograde garnet growth and context for quartz fabric-based deformation thermometry

    NASA Astrophysics Data System (ADS)

    Law, Richard; Ashley, Kyle; Thigpen, Ryan

    2014-05-01

    Despite the detailed Caledonian structural/tectonic framework developed for the Moine Supergroup of northern Scotland, debate continues over the tectonic processes that drove metamorphism. Rapid temporal evolution of the metamorphic sequence has led some geologists to suggest that crustal thickening alone cannot provide sufficient heat flow to reach the metamorphic grades observed. Rather, they postulate that large-scale contact metamorphism or initial heating in an extensional, back-arc setting is required. We present coupled petrographic analyses and forward phase stability modeling for quantifying prograde metamorphic evolution in pelite horizons dispersed across the Caledonian thrust sheets. Results suggest garnet growth was syn-kinematic during prograde decompression. Rutile and ilmenite inclusions in garnet cores and rims, respectively, support this claim, while chemical profiles and crystal morphology argue against a detrital origin for these garnet grains. The observed clockwise P-T path for these garnets is incompatible with extensional or contact metamorphic models (would require counter-clockwise paths). Rather, the P-T data suggests advection of isotherms during thrusting as the dominant mechanism for metamorphism (Thigpen et al., 2013). Recent studies in other orogens (e.g., Spear et al., 2012) suggest that heating over long time scales under mid-crustal conditions may not be needed to reach the metamorphic grades observed. Therefore the structurally higher, more hinterland Caledonian thrust sheets may have reached peak metamorphism in a much shorter time period than previously expected. The paucity of pelitic horizons across the foreland-positioned Moine thrust sheet has previously limited insight into the prograde evolution of these rocks. However, the dominance of quartz-rich units has allowed the thermal structure of the thrust sheet to be evaluated using quartz c-axis fabric opening angle-based deformation thermometry. Microstructures in the

  20. Diagenetic nanometric ferrihydrite clusters in 2.4 Ga carbonate banded iron formations from the Minas Supergroup

    NASA Astrophysics Data System (ADS)

    Morgan, R. R.; Wirth, R.; Orberger, B.

    2011-12-01

    Iron (oxyhydr)oxides, abundant on the Martian surface, can be formed via magmatic, hydrothermal, diagenetic or weathering processes. At present their formation are poorly understood. The study of Precambrian samples may be key to better understanding the Martian environmental conditions, past and present. Our FIB-TEM study of iron oxides from a banded iron formation (Gandarela Formation (2.4 Ga), Minas Supergroup, Minas Gerais, Brazil) provides a Precambrian terrestrial analogue for the formation of diagenetic ferrihydrite. A detailed mineralogical, petrological and FIB-TEM study of a carbonate banded iron formation (known locally as carbonate itabirites-CI) has revealed the presence of previously unknown nano-platelets of ferrihydrite, goethite and hematite hosted within dolomite. The CI are millimetrically alternating bands of pink dolomite and grey hematite. The fine sedimentary laminations, micritic sized dolomite crystals and nano (oxyhydr)oxide inclusions in the dolomite grains likely reflect a primary origin during deposition. The pink colour of the dolomite is a result of the nano inclusions of euhedral hematite (≤1 μm) and nano platelets of ferrihydrite and gothite (≥10 nm). The smallest ferrihydrites (~10 nm) are mostly rounded with a hint of a euhedral shape whereas the larger ferrihydrites (400 nm) are euhedral platelets. Clinochlore and talc indicate that the CI have experienced greenschist facies metamorphism at two major intervals; the Transamazonian at 2.1 Ga and the Brasiliano at 0.8 Ga. The ferrihydrites occur either as individual droplets or as clusters of up to 30 crystals. A common feature of all the ferrihydrite platelets is their close association with porosity indicating that the ferrihydrite platelets are a result of precipitation from fluid inclusions trapped within the dolomite during its formation. Deciphering the relative time of precipitation of the ferrihydrite is key in understanding the overall history of the rock. Dislocations

  1. Volcanic studies at Katmai

    SciTech Connect

    Not Available

    1989-12-31

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  2. Quantitative Studies in Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen M.

    2001-01-01

    Scientific research was conducted on volcanic processes on Mars, Venus, Io, the moon, and the Earth. The achievements led to scientific advances in the understanding of volcanic plumes, lava flow emplacements, coronae, and regoliths on the solid surfaces. This research led to multiple publications on each of the main topics of the proposal. Research was also presented at the annual Lunar and Planetary Science Conference at Houston. Typically, this grant contributed to 3-4 presentations each year. This grant demonstrated, numerous times, the usefulness of NASA mission data for advancing the understanding of volcanic processes on other planetary surfaces and the Earth.

  3. Closer look at lunar volcanism

    SciTech Connect

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry.

  4. Age constraints for Paleoproterozoic glaciation in the Lake Superior Region: Detrital zircon and hydrothermal xenotime ages for the Chocolay Group, Marquette Range Supergroup

    USGS Publications Warehouse

    Vallini, D.A.; Cannon, W.F.; Schulz, K.J.

    2006-01-01

    A geochronological study of the Chocolay Group at the base of the Paleoproterozoic Marquette Range Supergroup in Michigan, Lake Superior Region, is attempted for the first time, Age data from detrital zircon grains and hydrothermal xenotime from the basal glaciogenic formation, the Enchantment Lake Formation, and the stratigraphically higher Sturgeon Quartzite and its equivalent, the Sunday Quartzite, provide maximum and minimum age constraints for the Chocolay Group. The youngest detrital zircon population in the Enchantment Lake Formation is 2317 ?? 6 Ma; in the Sturgeon Quartzite, it is 2306 ?? 9 Ma, and in the Sunday Quartzite, it is 2647 ?? 5 Ma. The oldest hydrothermal xenotime age in the Enchantment Lake Formation is 2133 ?? 11 Ma; in the Sturgeon Quartzite, it is 2115 ?? 5 Ma, and in the Sunday Quartzite, it is 2207 ?? 5 Ma. The radiometric age data in this study implies the depositional age of the Chocolay Group is constrained to ???2.3-2.2 Ga, which proves its correlation with part of the Huronian Supergroup in the Lake Huron Region, Ontario, and reveals the unconformity that separates the Chocolay Group from the overlying Menominee Group is up to 325 million years in duration. The source(s) of the ??? 2.3 Ga detrital zircon populations in the Enchantment Lake Formation and Sturgeon Quartzite remains an enigma because no known rock units of this age are known in the Michigan area. It is speculated that once widespread volcano-sedimentary cover sequences in Michigan were removed or concealed prior to Chocolay Group deposition. The hydrothermal xenotime ages probably reflect basinal hydrothermal fluid flow associated with the period of extension involving rifting and major dyke formation, that affected the North American provinces between 2.2 and 2.1 Ga. ?? 2006 NRC Canada.

  5. Cenozoic volcanic rocks of Saudi Arabia

    USGS Publications Warehouse

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The historical record of volcanic activity in Saudi Arabia suggests that volcanism is dormant. The harrats should be evaluated for their potential as volcanic hazards and as sources of geothermal energy. The volcanic rocks are natural traps for groundwater; thus water resources for agriculture may be significant and should be investigated.

  6. Lung problems and volcanic smog

    MedlinePlus

    ... smog forms. This smog is a type of air pollution. Volcanic smog also contains highly acidic aerosols (tiny ... References Balmes JR, Eisner MD. Indoor and outdoor air pollution. In: Broaddus VC, Mason RJ, Ernst JD, et ...

  7. Volcanology: Volcanic bipolar disorder explained

    NASA Astrophysics Data System (ADS)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  8. Monogenetic volcanic hazards and assessment

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  9. Volcanic hazards and aviation safety

    USGS Publications Warehouse

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  10. Are Axial Volcanic Ridges where all the (volcanic) action is?

    NASA Astrophysics Data System (ADS)

    Searle, R. C.

    2012-12-01

    Although axial volcanic ridges (AVRs) are generally recognised as the main loci for lithospheric generation at slow-spreading mid-ocean ridges, various recent studies have suggested that axial volcanism is not confined to them. Here I present evidence from three studies for significant amounts of off-AVR volcanism at three slow-spreading ridges. 1) Near-bottom side-scan sonar (TOBI) images of the Mid-Atlantic Ridge near 13°N show a complex pattern of closely-spaced, active oceanic core complexes (OCCs) where plate separation is largely a-volcanic, separated by short segments of vigorous volcanic spreading. In one such volcanic segment, the brightest sea floor and therefore inferred youngest volcanism occurs not on the topographic axis (an apparently 'old' AVR) but at the edge of a broad axial valley. 2) A similar TOBI survey of the Mid-Cayman Spreading Centre reveals AVRs in the north and south flanking an OCC (Mt. Dent) and a non-volcanic ridge interpreted as tectonically extruded peridotite ('smooth' sea floor). In both AVR segments there are clear, young lava flows that have erupted from perched sources part way up the median valley walls and have partly flowed down into the valley. 3) The third case is from the Mid-Atlantic Ridge at 45°N, where we conducted a detailed geophysical and geological study of an AVR and surrounding median valley floor. The AVR is largely surrounded by flat sea floor composed mainly of lobate and sheet flows, whereas the AVR comprises predominantly pillow lavas. Although we have no firm dates, various indicators suggest most lavas on the AVR are around 10ka old or somewhat less. The apparently youngest (brightest acoustic returns, thinnest sediment cover) of the flat-lying lava flows appears to have a similar age from its degree of sediment cover. Contact relations between these lavas and the AVR flanks show no evidence of a clear age difference between the two, and we think both types of eruption may have occurred roughly

  11. Age and progression of volcanism, Wrangell volcanic field, Alaska

    USGS Publications Warehouse

    Richter, D.H.; Smith, James G.; Lanphere, M.A.; Dalrymple, G.B.; Reed, B.L.; Shew, N.

    1990-01-01

    The Wrangell volcanic field covers more than 10 000 km2 in southern Alaska and extends uninterrupted into northwest. Yukon Territory. Lavas in the field exhibit medium-K, calc-alkaline affinities, typical of continental volcanic arcs along convergent plate margins. Eleven major eruptive centers are recognized in the Alaskan part of the field. More than 90 K-Ar age determinations in the field show a northwesterly progression of eruptive activity from 26 Ma, near the Alaska-Yukon border, to about 0.2 Ma at the northwest end of the field. A few age determinations in the southeast extension of the field in Yukon Territory, Canada, range from 11 to 25 Ma. The ages indicate that the progression of volcanism in the Alaska part of the field increased from about 0.8 km/Ma, at 25 Ma, to more than 20 km/MA during the past 2 Ma. The progression of volcanic activity and its increased rate of migration with time is attributed to changes in the rate and angle of Pacific plate convergence and the progressive decoupling of the Yakutat terrane from North America. Subduction of Yakutat terrane-Pacific plate and Wrangell volcanic activity ceased about 200 000 years age when Pacific plate motion was taken up by strike-slip faulting and thrusting. ?? 1990 Springer-Verlag.

  12. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  13. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  14. Climatic impact of volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  15. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining

  16. Aurorae and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  17. Io's volcanism influences Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    Volcanic emissions from Jupiter's moon Io supply plasma to the planet's magnetosphere and lead to its main auroral emissions. New observations show that the main auroral oval expanded and outer emissions brightened in spring 2007. Some studies have suggested that magnetospheric changes such as these could be caused by changes in the incoming solar wind. Bonfond et al. present several lines of evidence—including images from the Hubble Space Telescope and observations of a volcanic plume on Io from the New Horizons probe along with measurements of increased emissions from Jupiter's sodium cloud—that indicate that Io's volcanism controls changes in Jupiter's magnetosphere. (Geophysical Research Letters, doi:10.1029/2011GL050253, 2012)

  18. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-06-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  19. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  20. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  1. Orbital search for lunar volcanism.

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Hoffman, J. H.; Yeh, T. T. J.; Chang, G. K.

    1972-01-01

    The total rate of volcanic release of gases into the lunar atmosphere is estimated to be less than 60 g/sec. One of the implications of this degassing is that, if it occurs as sporadic releases of large quantities of gas, these events can be detected by an orbiting mass spectrometer, such as that carried on the flight of Apollo 15 and one that will operate during the Apollo 16 mission. The nature of a volcanic perturbation of the lunar atmosphere is discussed, and a lower bound is derived for the expected time between detected events.

  2. Recurrence models of volcanic events: Applications to volcanic risk assessment

    SciTech Connect

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  3. Controls on volcanism at intraplate basaltic volcanic fields

    NASA Astrophysics Data System (ADS)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  4. Wolbachia co-infection in a hybrid zone: discovery of horizontal gene transfers from two Wolbachia supergroups into an animal genome.

    PubMed

    Funkhouser-Jones, Lisa J; Sehnert, Stephanie R; Martínez-Rodríguez, Paloma; Toribio-Fernández, Raquel; Pita, Miguel; Bella, José L; Bordenstein, Seth R

    2015-01-01

    Hybrid zones and the consequences of hybridization have contributed greatly to our understanding of evolutionary processes. Hybrid zones also provide valuable insight into the dynamics of symbiosis since each subspecies or species brings its unique microbial symbionts, including germline bacteria such as Wolbachia, to the hybrid zone. Here, we investigate a natural hybrid zone of two subspecies of the meadow grasshopper Chorthippus parallelus in the Pyrenees Mountains. We set out to test whether co-infections of B and F Wolbachia in hybrid grasshoppers enabled horizontal transfer of phage WO, similar to the numerous examples of phage WO transfer between A and B Wolbachia co-infections. While we found no evidence for transfer between the divergent co-infections, we discovered horizontal transfer of at least three phage WO haplotypes to the grasshopper genome. Subsequent genome sequencing of uninfected grasshoppers uncovered the first evidence for two discrete Wolbachia supergroups (B and F) contributing at least 448 kb and 144 kb of DNA, respectively, into the host nuclear genome. Fluorescent in situ hybridization verified the presence of Wolbachia DNA in C. parallelus chromosomes and revealed that some inserts are subspecies-specific while others are present in both subspecies. We discuss our findings in light of symbiont dynamics in an animal hybrid zone.

  5. Wolbachia co-infection in a hybrid zone: discovery of horizontal gene transfers from two Wolbachia supergroups into an animal genome

    PubMed Central

    Sehnert, Stephanie R.; Martínez-Rodríguez, Paloma; Toribio-Fernández, Raquel; Pita, Miguel; Bella, José L.; Bordenstein, Seth R.

    2015-01-01

    Hybrid zones and the consequences of hybridization have contributed greatly to our understanding of evolutionary processes. Hybrid zones also provide valuable insight into the dynamics of symbiosis since each subspecies or species brings its unique microbial symbionts, including germline bacteria such as Wolbachia, to the hybrid zone. Here, we investigate a natural hybrid zone of two subspecies of the meadow grasshopper Chorthippus parallelus in the Pyrenees Mountains. We set out to test whether co-infections of B and F Wolbachia in hybrid grasshoppers enabled horizontal transfer of phage WO, similar to the numerous examples of phage WO transfer between A and B Wolbachia co-infections. While we found no evidence for transfer between the divergent co-infections, we discovered horizontal transfer of at least three phage WO haplotypes to the grasshopper genome. Subsequent genome sequencing of uninfected grasshoppers uncovered the first evidence for two discrete Wolbachia supergroups (B and F) contributing at least 448 kb and 144 kb of DNA, respectively, into the host nuclear genome. Fluorescent in situ hybridization verified the presence of Wolbachia DNA in C. parallelus chromosomes and revealed that some inserts are subspecies-specific while others are present in both subspecies. We discuss our findings in light of symbiont dynamics in an animal hybrid zone. PMID:26664808

  6. Provenance and reconnaissance study of detrital zircons of the Palaeozoic Cape Supergroup in South Africa: revealing the interaction of the Kalahari and Río de la Plata cratons

    NASA Astrophysics Data System (ADS)

    Fourie, Pieter H.; Zimmermann, Udo; Beukes, Nicolas J.; Naidoo, Thanusha; Kobayashi, Katsuro; Kosler, Jan; Nakamura, Eizo; Tait, Jenny; Theron, Johannes N.

    2011-04-01

    In order to facilitate the understanding of the geological evolution of the Kalahari Craton and its relation to South America, the provenance of the first large-scale cratonic cover sequence of the craton, namely the Ordovician to Carboniferous Cape Supergroup was studied through geochemical analyses of the siliciclastics, and age determinations of detrital zircon. The Cape Supergroup comprises mainly quartz-arenites and a Hirnantian tillite in the basal Table Mountain Group, subgreywackes and mudrocks in the overlying Bokkeveld Group, while siltstones, interbedded shales and quartz-arenites are typical for the Witteberg Group at the top of the Cape Supergroup. Palaeocurrent analyses indicate transport of sediment mainly from northerly directions, off the interior of the Kalahari Craton with subordinate transport from a westerly source in the southwestern part of the basin near Cape Town. Geochemical provenance data suggest mainly sources from passive to active continental margin settings. The reconnaissance study of detrital zircons reveals a major contribution of Mesoproterozoic sources throughout the basin, reflecting the dominance of the Namaqua-Natal Metamorphic Belt, situated immediately north of the preserved strata of Cape Supergroup, as a source with Archaean-aged zircons being extremely rare. We interpret the Namaqua-Natal Metamorphic Belt to have been a large morphological divide at the time of deposition of the Cape Supergroup that prevented input of detrital zircons from the interior early Archaean Kaapvaal cratonic block of the Kalahari Craton. Neoproterozoic and Cambrian zircons are abundant and reflect the basement geology of the outcrops of Cape strata. Exposures close to Cape Town must have received sediment from a cratonic fragment that was situated off the Kalahari Craton to the west and that has subsequently drifted away. This cratonic fragment predominantly supplied Meso- to Neoproterozoic, and Cambrian-aged zircon grains in addition to minor

  7. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  8. DETECTING VOLCANISM ON EXTRASOLAR PLANETS

    SciTech Connect

    Kaltenegger, L.; Sasselov, D. D.; Henning, W. G.

    2010-11-15

    The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

  9. Infrasound research of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; Ripepe, Maurizio

    2016-04-01

    Volcanic eruptions are efficient sources of infrasound produced by the rapid perturbation of the atmosphere by the explosive source. Being able to propagate up to large distances from the source, infrasonic waves from major (VEI 4 or larger) volcanic eruptions have been recorded for many decades with analogue micro-barometers at large regional distances. In late 1980s, near-field observations became progressively more common and started to have direct impact on the understanding and modeling of explosive source dynamics, to eventually play a primary role in volcano research. Nowadays, infrasound observation from a large variety of volcanic eruptions, spanning from VEI 0 to VEI 5 events, has shown a dramatic variability in terms of signature, excess pressure and frequency content of radiated infrasound and has been used to infer complex eruptive source mechanisms for the different kinds of events. Improved processing capability and sensors has allowed unprecedented precise locations of the explosive source and is progressively increasing the possibility to monitor volcanoes from distant records. Very broadband infrasound observations is also showing the relation between volcanic eruptions and the atmosphere, with the eruptive mass injection in the atmosphere triggering acoustic-gravity waves which eventually might control the ash dispersal and fallout.

  10. Putative volcanic landforms on Ceres

    NASA Astrophysics Data System (ADS)

    Platz, T.; Nathues, A.; Hoffmann, M.; Schäfer, M.; Williams, D. A.; Mest, S. C.; Crown, D. A.; Sykes, M. V.; Li, J.-Y.; Kneissl, T.; Schmedemann, N.; Ruesch, O.; Hiesinger, H.; Sizemore, H.; Büttner, I.; Gutierrez-Marques, P.; Ripken, J.; Raymond, C. A.; Russell, C. T.; Schäfer, T.

    2015-10-01

    In the first RC2 and OpNav7 images of Dawn's approach at Ceres a number of intriguing landforms are observed, which potentially have formed by volcanic activity. These and subsequently discovered features will be monitored and validated on higher resolution datasets as acquired later in 2015.

  11. Experimental generation of volcanic lightning

    NASA Astrophysics Data System (ADS)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  12. A Volcanic Hydrogen Habitable Zone

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  13. How Volcanism Controls Climate Change

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2013-12-01

    Large explosive volcanoes eject megatons of sulfur dioxide into the lower stratosphere where it spreads around the world within months and is oxidized slowly to form a sulfuric-acid aerosol with particle sizes that grow large enough to reflect and scatter solar radiation, cooling Earth ~0.5C for up to 3 years. Explosive eruptions also deplete total column ozone ~6% causing up to 3C winter warming at mid-latitudes over continents. Global cooling predominates. Extrusive, basaltic volcanoes deplete ozone ~6% but do not eject much sulfur dioxide into the lower stratosphere, causing net global warming. Anthropogenic chlorofluorocarbons (CFCs) deplete ozone ~3% for up to a century while each volcanic eruption, even small ones, depletes ozone twice as much but for less than a decade through eruption of halogens and ensuing photochemical processes. The 2010 eruption of Eyjafjallajökull, the 2011 eruption of Grímsvötn, plus anthropogenic CFCs depleted ozone over Toronto Canada 14% in 2012, causing an unusually warm winter and drought. Total column ozone determines how much solar ultraviolet energy with wavelengths between 290 and 340 nanometers reaches Earth where it is absorbed most efficiently by the ocean. A 25% depletion of ozone increases the amount of this radiation reaching Earth by 1 W m-2 for overhead sun and 0.25 W m-2 for a solar zenith angle of 70 degrees. The tropopause is the boundary between the troposphere heated from below by a sun-warmed Earth and the stratosphere heated from above by the Sun through photodissociation primarily of oxygen and ozone. The mean annual height of the tropopause increased ~160 m between 1980 and 2004 at the same time that northern mid-latitude total column ozone was depleted by ~4%, the lower stratosphere cooled ~2C, the upper troposphere warmed ~0.1C, and mean surface temperatures in the northern hemisphere rose ~0.5C. Regional total ozone columns are observed to increase as rapidly as 20% within 5 hours with an associated 5

  14. Initial development of the Banda Volcanic Arc

    SciTech Connect

    Hartono, H.M.S. )

    1990-06-01

    The initial development of the Banda Volcanic Arc can be determined by obtaining absolute ages of granites or volcanics, stratigraphy of the Eocene Metan Volcanics of Timor as the oldest formation containing Banda Volcanic Arc extrusives, and tectonic analysis. Banda Arc volcanism is the result of subduction of oceanic crust under the volcanic arc. The time of initial subduction is related to initial seafloor spreading between Australia and Antarctica, which is identical to geomagnetic polarity time 34 (82 mybp). Therefore, 82 mybp can be used as one of the criteria to determine the birth of the Banda Volcanic Arc. With present available time data for determining the birth of the Banda Volcanic Arc, the minimum age coincides with the age of the Metan Volcanics (Eocene, 39-56 mybp) and the maximum age coincides with initial seafloor spreading between Australia and Antarctica (82 mybp). This time span is too long. With the assumption that it needs some time to develop from transcurrent faulting to subduction and volcanism, it is proposed that the initial development of Banda Arc volcanism was during early Tertiary.

  15. Disruptive event analysis: Volcanism and igneous intrusion

    NASA Astrophysics Data System (ADS)

    Crowe, B. M.

    1980-08-01

    An evaluation was made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions were considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity were the geometry of the magma repository intersection (partly controlled by depth of burial) and the nature of volcanism. Simplified probability calculations were attempted for areas of past volcanic activity.

  16. Can rain cause volcanic eruptions?

    USGS Publications Warehouse

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  17. Venus volcanism and El Chichon

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Reinterpretations of telemetry data returned to earth from the Pioneer Venus Orbiter suggest that the surface of Venus may be characterized by violent immense volcanic activity. L.W. Esposito has made an interactive analysis of Pioneer ultraviolet spectral data and similar data from the earth's atmosphere [Science, 223, 1072-1074, 1984]. Spacecraft analysis of sulfur dioxide in the earth's upper atmosphere, apparently released by El Chich[acu]on, Mexico, in March 1982 (EOS, June 14, 1983, p. 411, and August 16, 1983, p. 506) prompted reanalysis of accumulated Pioneer ultraviolet data. Massive injections of sulfur dioxide into the Venus atmosphere could be the result of volcanic eruptions about the size of the Krakatoa explosive eruption that took place between Java and Summatra in 1883.

  18. Recent volcanism and the stratosphere.

    PubMed

    Cronin, J F

    1971-05-21

    In the quiet years after the 1956 eruption of the Bezymianny volcano in central Kamchatka, it is doubtful that any volcano vented into the stratosphere until the 1963 eruptions of Agung (Bali), Trident (Alaska), and Surtsey (Iceland). From 1963 to the Hekla (Iceland) event in May 1970, two latitudinal belts of volcanoes have ejected ash and gases into the stratosphere. One belt is equatorial and the other is just below the Arctic Circle. The latter, where the tropopause is considerably lower, may have been the principal source of replenishment of volcanic dust and gases to the stratosphere. Submarine and phreatic volcanic eruptions may have been the sources of reported increase of water vapor in the stratosphere.

  19. Satellite observation of effusive volcanism

    USGS Publications Warehouse

    Williams, R.S.; Friedman, J.D.

    1970-01-01

    Infrared emission from an active effusive volcanic eruption on Surtsey, Vestmannaeyjar, Iceland, was recorded by airborne and satellite infrared systems at irregular intervals between 19 August and 3 October 1966. Ground and lava temperature measurements and volumetric lava outflow data permitted a comparison to be made between total thermal-energy yield and radiant emission recorded by the satellite system. The Nimbus HRIR recorded radiant emission at a level of about 3% of the estimated total thermal yield.

  20. Volcanic hazards in Central America

    USGS Publications Warehouse

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  1. Scaled experiments of volcanic spreading

    NASA Astrophysics Data System (ADS)

    Merle, Olivier; Borgia, Andrea

    1996-06-01

    Experiments were conducted to study the spreading of volcanic constructs. Volcanoes are simulated by a sand cone, and the volcanic substratum is simulated by a sand layer (brittle substratum) overlying a silicone layer (ductile substratum). Similarity conditions between natural volcanoes and experimental prototypes led to the definition of dimensionless π numbers. Experiments determine π values which predict whether or not spreading takes place. Of particular importance are the ratio between the thickness of the brittle substratum and the height of the volcano (π2) and the brittle/ductile ratio of the substratum (π3). π2 indicates that the volcano must be large enough to "break" the substratum before spreading occurs, whereas π3 controls the style of deformation. During spreading, these dimensionless numbers change with time, reaching values that tend toward those observed for stable configurations. Experimental values are compared with those from well-constrained natural examples. It is found that an essential requirement for volcanic spreading is the presence of a low-viscosity layer within the substratum. Flow of the weak layer away from the excess load is responsible for the spreading. The overlying edifice displays radial intersecting grabens, due to concentric stretching, dissected summit areas; concentric zones of thrusts and folds form in the substratum around the edifice, and diapirs of the ductile substratum rise within the fault zones.

  2. Volcanic mercury in Pinus canariensis

    NASA Astrophysics Data System (ADS)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  3. Source mechanism of volcanic tremor

    SciTech Connect

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.

    1982-10-10

    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  4. Origin of peak and retrograde assemblages during Grenvillian orogeny from garnet-staurolite bearing mica schist of Bhilwara Supergroup, NW India: constraints from pseudosection modelling

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; Saha, Lopamudra; Sarkar, Saheli

    2016-04-01

    Fractionation of components due to formation of garnet porphyroblasts during prograde metamorphism, have been constrained from pseudosection analyses. Such fractionation process leads to changes in the effective bulk composition within the rock, which can be modelled with well-preserved growth zonation patterns in garnet porphyroblasts. On the contrary, textures and mineralogy in metamorphic rocks can be far more complex with different textural domains within a single rock preserving assemblages formed along different segments of the P-T paths or during different metamorphic events. Examples of such textures include pseudomorphs, reaction rims or coronae, symplectites formed by breakdown of both cores and rims of porphyroblasts. Apart from pressure and temperature, availability of fluids during metamorphic reactions plays important roles in defining mineral assemblages and textures. In this study we have constrained formation of garnet porphyroblasts and paragonite-albite-sillimanite-quartz-staurolite bearing domains within the mica schist from the Rajpura-Dariba sequence of the Bhilwara Supergroup in NW India. The mica schist is inter-layered with calc-silicates and quartzite and together the units form a NE-SW trending Grenvillian orogenic belt in southern part of Bhilwara Supergroup sequence. Within the mica schist, three distinct textural domains have been observed: (i) muscovite-biotite-quartz-feldspar bearing matrix foliation, (ii) garnet porphyroblasts within the matrix foliation, (iii) staurolite-paragonite-albite-staurolite-sillimanite-quartz bearing domains. Paragonite, albite and sillimanite occur exclusively in the pseudomorph domains. Garnet porphyroblasts show variation in compositions from cores (Spessartine0.14 Grossular0.10 Pyrope0.12 Almandine0.72) to rims (Spessartine0.09Grossular0.15Pyrope0.12Almandine0.75). The average XMg contents of staurolite and matrix biotite are 0.21 and 0.57 respectively. Pseudosections have been constructed from the

  5. Disruptive event analysis: volcanism and igneous intrusion

    SciTech Connect

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  6. Widespread Secondary Volcanism Near Northern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Garcia, Michael; Ito, Garrett; Weis, Dominique; Geist, Dennis; Swinnard, Lisa; Bianco, Todd; Flinders, Ashton; Taylor, Brian; Appelgate, Bruce; Blay, Chuck; Hanano, Diane; Nobre Silva, Inês; Naumann, Terry; Maerschalk, Claude; Harpp, Karen; Christensen, Branden; Sciaroni, Linda; Tagami, Taka; Yamasaki, Seiko

    2008-12-01

    Hot spot theory provides a key framework for understanding the motion of the tectonic plates, mantle convection and composition, and magma genesis. The age-progressive volcanism that constructs many chains of islands throughout the world's ocean basins is essential to hot spot theory. In contrast, secondary volcanism, which follows the main edifice-building stage of volcanism in many chains including the Hawaii, Samoa, Canary, Mauritius, and Kerguelen islands, is not predicted by hot spot theory. Hawaiian secondary volcanism occurs hundreds of kilometers away from, and more than 1 million years after, the end of the main shield volcanism, which has generated more than 99% of the volume of the volcano's mass [Macdonald et al., 1983; Ozawa et al., 2005]. Diamond Head, in Honolulu, is the first and classic example of secondary volcanism.

  7. Volcanic processes in the Solar System

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    This article stresses that terrestrial volcanism represents only part of the range of volcanism in the solar system. Earth processes of volcanicity are dominated by plate tectonics, which does not seem to operate on other planets, except possibly on Venus. Lunar volcanicity is dominated by lava effusion at enormous rates. Mars is similar, with the addition to huge shield volcanoes developed over fixed hotspots. Io, the moon closest to Jupiter, is the most active body in the Solar System and, for example, much sulphur and silicates are emitted. The eruptions of Io are generated by heating caused by tides induced by Jupiter. Europa nearby seems to emit water from fractures and Ganymede is similar. The satellites of Saturn and Uranus are also marked by volcanic craters, but they are of very low temperature melts, possibly of ammonia and water. The volcanism of the solar system is generally more exotic, the greater the distance from Earth. -A.Scarth

  8. Volcanic deposits in Antarctic snow and ice

    NASA Astrophysics Data System (ADS)

    Delmas, Robert J.; Legrand, Michel; Aristarain, Alberto J.; Zanolini, FrançOise

    1985-12-01

    Major volcanic eruptions are able to spread large amounts of sulfuric acid all over the world. Acid layers of volcanic origin were detected for the first time a few years ago by Hammer in Greenland ice. The present paper deals with volcanic deposits in the Antarctic. The different methods that can be used to find volcanic acid deposits in snow and ice cores are compared: electrical conductivity, sulfate, and acidity measurements. Numerous snow and ice samples collected at several Antarctic locations were analyzed. The results reveal that the two major volcanic events recorded by H2SO4, fallout in Antarctic ice over the last century are the eruptions of Krakatoa (1883) and Agung (1963), both located at equatorial latitudes in the southern hemisphere. The volcanic signals are found to be particularly well defined at central Antarctic locations apparently in relation to the low snow accumulation rates in these areas. It is demonstrated that volcanic sulfuric acid in snow is not even partially neutralized by ammonia. The possible influence of Antarctic volcanic activity on snow chemistry is also discussed, using the three recent eruptions of the Deception Island volcano as examples. Only one of them seems to have had a significant effect on the chemistry of snow at a location 200 km from this volcano. It is concluded that Antarctic volcanic ice records are less complicated than Greenland records because of the limited number of volcanos in the southern hemisphere and the apparently higher signal to background ratio for acidity in Antarctica than in Greenland.

  9. The intensities and magnitudes of volcanic eruptions

    USGS Publications Warehouse

    Sigurdsson, H.

    1991-01-01

    Ever since 1935, when C.F Richter devised the earthquake magnitude scale that bears his name, seismologists have been able to view energy release from earthquakes in a systematic and quantitative manner. The benefits have been obvious in terms of assessing seismic gaps and the spatial and temporal trends of earthquake energy release. A similar quantitative treatment of volcanic activity is of course equally desirable, both for gaining a further understanding of the physical principles of volcanic eruptions and for volcanic-hazard assessment. A systematic volcanologic data base would be of great value in evaluating such features as volcanic gaps, and regional and temporal trends in energy release.  

  10. Laboratory studies of volcanic jets

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner; Sturtevant, Bradford

    1984-09-01

    The study of the fluid dynamics of violent volcanic eruptions by laboratory experiment is described, and the important fluid-dynamic processes that can be examined in laboratory models are discussed in detail. In preliminary experiments, pure gases are erupted from small reservoirs. The gases used are Freon 12 and Freon 22, two gases of high molecular weight and high density that are good analogs of heavy and particulate-laden volcanic gases; nitrogen, a moderate molecular weight, moderate density gas for which the thermodynamic properties are well known; and helium, a low molecular weight, lowdensity gas that is used as a basis for comparison with the behavior of the heavier gases and as an analog of steam, the gas that dominates many volcanic eruptions. Transient jets erupt from the reservoir into the laboratory upon rupture of a thin diaphragm at the exit of a convergent nozzle. The gas accelerates from rest in the reservoir to high velocity in the jet. Reservoir pressures and geometries are such that the fluid velocity in the jets is initially supersonic and later decays to subsonic. The measured reservoir pressure decreases as the fluid expands through repetitively reflecting rarefaction waves, but for the conditions of these experiments, a simple steady-discharge model is sufficient to explain the pressure decay and to predict the duration of the flow. Density variations in the flow field have been visualized with schlieren and shadowgraph photography. The observed structure of the jet is correlated with the measured pressure history. The starting vortex generated when the diaphragm ruptures becomes the head of the jet. Though the exit velocity is sonic, the flow head in the helium jet decelerates to about one-third of sonic velocity in the first few nozzle diameters, the nitrogen head decelerates to about three-fourths of sonic velocity, while Freon maintains nearly sonic velocity. The impulsive acceleration of reservoir fluid into the surrounding atmosphere

  11. Felsic Volcanics on the Moon

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.; Lawrence, S. J.; Stopar, J.; Braden, S.; Hawke, B. R.; Robinson, M. S.; Glotch, T. D.; Greenhagen, B. T.; Seddio, S. M.

    2012-12-01

    Lunar Reconnaissance Orbiter (LRO) imaging and thermal data provide new morphologic and compositional evidence for features that appear to be expressions of nonmare silicic volcanism. Examples reflecting a range of sizes and volcanic styles include the Gruithuisen and Mairan Domes, and the Hansteen Alpha (H-A) and Compton-Belkovich (C-B) volcanic complexes. In this work we combine new observations with existing compositional remote sensing and Apollo sample data to assess possible origins. Images and digital topographic data at 100 m scale (Wide Angle Camera) and ~0.5 to 2 m (Narrow Angle Camera) reveal (1) slopes on volcanic constructs of ~12° to 27°, (2) potential endogenic summit depressions, (3) small domical features with dense boulder populations, and (4) irregular collapse features. Morphologies in plan view range from the circular to elliptical Gruithuisen γ and δ domes (~340 km2 each), to smaller cumulodomes such as Mairan T and C-B α (~30 km2, each), to the H-A (~375 km2) and C-B (~680 km2) volcanic complexes. Heights range from ~800-1800 m, and most domes are relatively flat-topped or have a central depression. Positions of the Christiansen Feature in LRO Diviner data reflect silicic compositions [1]. Clementine UVVIS-derived FeO varies from ~5 to 10 wt%. Lunar Prospector Th data indicate model values of 20-55 ppm [2,3], which are consistent with compositions ranging from KREEP basalt to lunar granite. The Apollo collection contains small rocks and breccia clasts of felsic/granitic lithologies. Apollo 12 samples include small, pristine and brecciated granitic rock fragments and a large, polymict breccia (12013) consisting of felsic material (quartz & K-feldspar-rich) and mafic phases (similar to KREEP basalt). Many of the evolved lunar rocks have geochemically complementary compositions. The lithologic associations and the lack of samples with intermediate composition suggest a form of magmatic differentiation that produced mafic and felsic

  12. The Procellarum volcanic complexes - Contrasting styles of volcanism. [lunar morphology

    NASA Technical Reports Server (NTRS)

    Whitford-Stark, J. L.; Head, J. W.

    1977-01-01

    Three major volcanic complexes have long been recognized in the Oceanus Procellarum region. Detailed study shows that the complexes share some characteristics and also display major differences which provide clues to eruption style. The Rumker Hills occupy 5000 sq km in northern Procellarum and are apparently Imbrian-Eratosthenian in age; they are dominated by domes, suggesting relatively low effusion rates. The Aristarchus Plateau-Prinz/Harbinger region occupies 40,000 sq km in central Procellarum and is predominantly Imbrian in age; it is dominated by large sinuous rilles and associated dark mantling deposits of probable pyroclastic origin, suggesting relatively high eruption rates. The Marius Hills occupy 35,000 sq km in south-central Procellarum and appear to be predominantly Eratosthenian in age; they are dominated by low domes, steep domes, cones, and sinuous rilles, suggesting variable eruption rates and possible different volatile contents associated with eruption conditions that produced each type of feature. The volcanic complexes, particularly Aristarchus and Marius, appear to be the sources for much of the central Procellarum mare fill.

  13. Thermal vesiculation during volcanic eruptions.

    PubMed

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  14. Isotopic heterogeneity in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ramos, F. C.; Tollstrup, D. L.

    2003-04-01

    The growing microsample database on volcanic rocks is showing that isotopic disequilibrium between and among phenocryst phases, their melt inclusions, and groundmass is the rule rather than the exception. This applies even in cases of little or no petrographic evidence for disequilibrium. Erupted magmas must therefore be regarded, to some extent, as mechanical mixtures of isotopically distinct components assembled from different sources. The preservation of isotopic disequilibrium requires that the assembly takes place before diffusion can eradicate evidence of disequilibrium. For a wide range of magmas (mafic, intermediate and felsic, silica under- and oversaturated) from different volcano types (flood basalts, monogenetic cones, stratocones, silicic calderas) this timescale ranges from thousands of years down to one year or less, with no consistent pattern of mixing-to-eruption time vs. volcano or magma type. Among many issues arising from these findings, we note that estimation of magmatic temperatures from application of equilibrium thermodynamics to phenocryst assemblages in volcanic rocks should be approached with extreme caution. The isotope ratio variations observed among the components of a single volcanic rock sample, in most cases, indicate interaction between magma and the local wall-rock. This is consistent with the view that the vast majority of magmas undergo modification during transport through and residence within the crust. Three physical origins of heterogeneity have been proposed: melting of wallrock, magmatic recharge, and mixing of components within a magma chamber initially segregated into melt-rich and crystal-rich portions. Time constraints on preservation of disequilibrium imply either a causal link with eruption, or that these processes occur through the lifetime of a chamber.

  15. Thermal vesiculation during volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  16. Water in volcanic glass: From volcanic degassing to secondary hydration

    NASA Astrophysics Data System (ADS)

    Seligman, Angela N.; Bindeman, Ilya N.; Watkins, James M.; Ross, Abigail M.

    2016-10-01

    Volcanic glass is deposited with trace amounts (0.1-0.6 wt.%) of undegassed magmatic water dissolved in the glass. After deposition, meteoric water penetrates into the glass structure mostly as molecular H2O. Due to the lower δD (‰) values of non-tropical meteoric waters and the ∼30‰ offset between volcanic glass and environmental water during hydration, secondary water imparts lighter hydrogen isotopic values during secondary hydration up to a saturation concentration of 3-4 wt.% H2O. We analyzed compositionally and globally diverse volcanic glass from 0 to 10 ka for their δD and H2Ot across different climatic zones, and thus different δD of precipitation, on a thermal conversion elemental analyzer (TCEA) furnace attached to a mass spectrometer. We find that tephrachronologically coeval rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), while a few equatorial glasses have little change in δD (‰). We compute a magmatic water correction based on our non-hydrated glasses, and calculate an average 103lnαglass-water for our hydrated felsic glasses of -33‰, which is similar to the 103lnαglass-water determined by Friedman et al. (1993a) of -34‰. We also determine a smaller average 103lnαglass-water for all our mafic glasses of -23‰. We compare the δD values of water extracted from our glasses to local meteoric waters following the inclusion of a -33‰ 103lnαglass-water. We find that, following a correction for residual magmatic water based on an average δD and wt.% H2Ot of recently erupted ashes from our study, the δD value of water extracted from hydrated volcanic glass is, on average, within 4‰ of local meteoric water. To better understand the difference in hydration rates of mafic and felsic glasses, we imaged 6 tephra clasts ranging in age and chemical composition with BSE (by FEI SEM) down to a submicron resolution. Mafic tephra

  17. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  18. Volcanism and associated hazards: the Andean perspective

    NASA Astrophysics Data System (ADS)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and

  19. Volcanism and associated hazards: The Andean perspective

    USGS Publications Warehouse

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km 3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia

  20. Volcanic eruptions; energy and size

    USGS Publications Warehouse

    de la Cruz-Reyna, S.

    1991-01-01

    The Earth is a dynamic planet. Many different processes are continuously developing, creating a delicate balance between the energy stored and generated in its interior and the heat lost into space. The heat in continuously transferred through complex self-regulating convection mechanisms on a planetary scale. The distribution of terrestrial heat flow reveals some of the fine structure of the energy transport mechanisms in the outer layers of the Earth. Of these mechanisms in the outer layers of the Earth. Of these mechanisms, volcanism is indeed the most remarkable, for it allows energy to be transported in rapid bursts to the surface. In order to maintain the subtle balance of the terrestrial heat machine, one may expect that some law or principle restricts the ways in which these volcanic bursts affect the overall energy transfer of the Earth. For instance, we know that the geothermal flux of the planet amounts to 1028 erg/year. On the other hand, a single large event like the Lava Creek Tuff eruption that formed Yellowstone caldera over half a million years ago may release the same amount of energy in a very small area, over a short period of time. 

  1. Bromine oxidation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Vogel, L.; Kern, C.; Giuffrida, G. B.; Delgado-Granados, H.; Platt, U.

    2009-04-01

    Volcanoes are very strong sources of hydrogen, carbon, sulphur and halogen compounds, as well as of particles. Some gases only behave as passive tracers; others interact and affect the formation, growth or chemical characteristics of aerosol particles in a complex system. Recent measurements of halogen radicals in volcanic plumes showed that volcanic plumes are chemically very active. Kinetic considerations (Oppenheimer et al., 2006) and detailed calculations with an atmospheric chemistry model (Bobrowski et al., 2007) explain the halogen chemistry mainly with photochemical reactions involving both, the gas and particle phase. They reproduce the measured gas-phase concentrations quite well. However, temporal evolution of BrO in the early plume is not well described in the models. The understanding of chemical kinetics of BrO formation is still not complete. Recent measurement results (Vogel et al., 2008) do not fit with initial model calculation. The new data lead to the suggestion that the BrO formation could be much faster during the first few minutes after emission than initially suggested. Old and recent data sets will be confronted, compared and possible causes of their differences discussed. The measurements considered were taken at Mt. Etna (Italy), Villarica (Chile), and Popocatépetl (Mexico) volcanoes. Additionally, at Mt Etna the emission consists of up to four individual plumes from four summit craters. The differences between the individual plumes have been investigated during the last years and will be presented.

  2. Observations of volcanic Lightning (Invited)

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.; Behnke, S. A.; Krehbiel, P. R.; Rison, W.; Edens, H. E.; McNutt, S. R.

    2010-12-01

    We have made detailed observations of lightning during four volcanic eruptions using lightning mapping array (LMA) stations. In January 2006 we observed several explosive eruptions from Augustine Volcano in Alaska with two LMA stations. While two stations only gave us the direction to the lightning it gave a detailed time history of the lightning in relationship to the eruption as measured by seismic and acoustic instruments. We inferred that there were two phases (explosive and plume) and three types of lightning (small discharges near the vent, larger discharges in the volcanic column, thunderstorm like lightning in the plume). In May 2008 we mapped lightning in the plume of Chaitan (Chile) three weeks after the initial eruption. In 2009 we observed the entire sequence of explosive eruptions of Redoubt Volcano in Alaska with 4 distant stations. This provided good 2-D locations of the electrical activity. In 2010 we mapped much of the eruption of Eyjafjallajökull using 6 LMA stations that provided 3-D locations. All the observations have reinforced the basic conclusions that we found at the Augustine eruption, and let us expand and refine the these ideas.

  3. Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New constraints from high-resolution 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Manzi, Musa S. D.; Hein, Kim A. A.; King, Nick; Durrheim, Raymond J.

    2013-04-01

    First-order scale structures in the West Wits Line and West Rand goldfields of the Witwatersrand Basin (South Africa) were mapped using the high-resolution 3D reflection seismic method. Structural models constrain the magnitude of displacement of thrusts and faults, the gross structural architecture and Neoarchaean tectonic evolution of the West Rand and Bank fault zones, which offset the gold-bearing reefs of the basin. The merging of several 3D seismic surveys made clear the gross strato-structural architecture of the goldfields; a macroscopic fold-thrust belt is crosscut by a macroscopic extensional fault array. These are dissected, eroded and overlain by the Transvaal Supergroup above an angular unconformity. The seismic sections confirm that the West Rand Group (ca. 2985-2902 Ma) is unconformably overlain by the Central Rand Group (ca. 2902-2849 Ma), with tilting of the West Rand Group syn- to post-erosion at ca. 2.9 Ga. The seismic sections also confirm that an unconformable relationship exists between the Central Rand Group and the auriferous Ventersdorp Contact Reef (VCR), with an easterly-verging fold-thrust belt being initiated concomitant to deposition of the VCR at approximately 2.72 Ga. Fold-thrust formation included development of the (1) newly identified first-order scale Libanon Anticline, (2) Tandeka and Jabulani thrusts which displace the West Rand Group, and (3) parasite folds. The fold-thrust belt is crosscut by a macroscopic extensional fault array (or rift-like system of faults) which incepted towards the end of extrusion of the Ventersdorp lavas, and certainly during deposition of the Platberg Group (2709-2643 Ma) when a mantle plume may have heated the lithosphere. The West Rand and Bank fault zones formed at this time and include (1) the West Rand and Bank faults which are scissors faults; (2) second and third-order scale normal faults in the immediate footwall and hanging wall of the faults; (3) drag synclines, and (4) rollover anticlines.

  4. Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Brocks, Jochen J.; Buick, Roger; Logan, Graham A.; Summons, Roger E.

    2003-11-01

    Shales of very low metamorphic grade from the 2.78 to 2.45 billion-year-old (Ga) Mount Bruce Supergroup, Pilbara Craton, Western Australia, were analyzed for solvent extractable hydrocarbons. Samples were collected from ten drill cores and two mines in a sampling area centered in the Hamersley Basin near Wittenoom and ranging 200 km to the southeast, 100 km to the southwest and 70 km to the northwest. Almost all analyzed kerogenous sedimentary rocks yielded solvent extractable organic matter. Concentrations of total saturated hydrocarbons were commonly in the range of 1 to 20 ppm (μg/g rock) but reached maximum values of 1000 ppm. The abundance of aromatic hydrocarbons was ˜1 to 30 ppm. Analysis of the extracts by gas chromatography-mass spectrometry (GC-MS) and GC-MS metastable reaction monitoring (MRM) revealed the presence of n-alkanes, mid- and end-branched monomethylalkanes, ω-cyclohexylalkanes, acyclic isoprenoids, diamondoids, tri- to pentacyclic terpanes, steranes, aromatic steroids and polyaromatic hydrocarbons. Neither plant biomarkers nor hydrocarbon distributions indicative of Phanerozoic contamination were detected. The host kerogens of the hydrocarbons were depleted in 13C by 2 to 21‰ relative to n-alkanes, a pattern typical of, although more extreme than, other Precambrian samples. Acyclic isoprenoids showed carbon isotopic depletion relative to n-alkanes and concentrations of 2α-methylhopanes were relatively high, features rarely observed in the Phanerozoic but characteristic of many other Precambrian bitumens. Molecular parameters, including sterane and hopane ratios at their apparent thermal maxima, condensate-like alkane profiles, high mono- and triaromatic steroid maturity parameters, high methyladamantane and methyldiamantane indices and high methylphenanthrene maturity ratios, indicate thermal maturities in the wet-gas generation zone. Additionally, extracts from shales associated with iron ore deposits at Tom Price and Newman have

  5. Slope Stability in the Choco Volcanics.

    DTIC Science & Technology

    The rocks comprising the Choco volcanics, a formation crossed by the proposed Route 25 sea-level canal through northwestern Colombia, have been...found to slake in ethylene glycol. It is concluded that the factors of intermediate unconfined compressive strength and slaking will not cause massive slope failures of crater slopes formed in the Choco volcanic rocks.

  6. Io: Heat flow from dark volcanic fields

    NASA Astrophysics Data System (ADS)

    Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.

    2009-11-01

    Dark flow fields on the jovian satellite Io are evidence of current or recent volcanic activity. We have examined the darkest volcanic fields and quantified their thermal emission in order to assess their contribution to Io's total heat flow. Loki Patera, the largest single source of heat flow on Io, is a convenient point of reference. We find that dark volcanic fields are more common in the hemisphere opposite Loki Patera and this large scale concentration is manifested as a maximum in the longitudinal distribution (near ˜200 °W), consistent with USGS global geologic mapping results. In spite of their relatively cool temperatures, dark volcanic fields contribute almost as much to Io's heat flow as Loki Patera itself because of their larger areal extent. As a group, dark volcanic fields provide an asymmetric component of ˜5% of Io's global heat flow or ˜5 × 10 12 W.

  7. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  8. Large Volcanic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  9. Assessing volcanic hazards with Vhub

    NASA Astrophysics Data System (ADS)

    Palma, J. L.; Charbonnier, S.; Courtland, L.; Valentine, G.; Connor, C.; Connor, L.

    2012-04-01

    Vhub (online at vhub.org) is a virtual organization and community cyberinfrastructure designed for collaboration in volcanology research, education, and outreach. One of the core objectives of this project is to accelerate the transfer of research tools to organizations and stakeholders charged with volcano hazard and risk mitigation (such as volcano observatories). Vhub offers a clearinghouse for computational models of volcanic processes and data analysis, documentation of those models, and capabilities for online collaborative groups focused on issues such as code development, configuration management, benchmarking, and validation. Vhub supports computer simulations and numerical modeling at two levels: (1) some models can be executed online via Vhub, without needing to download code and compile on the user's local machine; (2) other models are not available for online execution but for offline use in the user's computer. VHub also has wikis, blogs and group functions around specific topics to encourage collaboration, communication and discussion. Some of the simulation tools currently available to Vhub users are: Energy Cone (rapid delineation of the impact zone by pyroclastic density currents), Tephra2 (tephra dispersion forecast tool), Bent (atmospheric plume analysis), Hazmap (simulate sedimentation of volcanic particles) and TITAN2D (mass flow simulation tool). The list of online simulations available on Vhub is expected to expand considerably as the volcanological community becomes more involved in the project. This presentation focuses on the implementation of online simulation tools, and other Vhub's features, for assessing volcanic hazards following approaches similar to those reported in the literature. Attention is drawn to the minimum computational resources needed by the user to carry out such analyses, and to the tools and media provided to facilitate the effective use of Vhub's infrastructure for hazard and risk assessment. Currently the project

  10. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  11. Feedback Between Volcanism and Milankovitch Cycles

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.; Huybers, P.

    2008-12-01

    Deglaciation is known to induce volcanism in many regions, notably Iceland. Since volcanism contributes CO2 to the atmosphere, we have investigated the global extent of glacially induced magmatism, and whether such volcanism may contribute to the co-variation between atmospheric CO2 and glacial cycles over the course of the late Pleistocene. Investigation of two combined global data sets on dated eruptions shows that global frequency of subaerial volcanic events increases substantially between 12Ka and 7Ka. An important aspect of the data is the temporal bias. While the record extends to 40,000 years, 80% of dated eruptions occur in the last 1000 years. The observation appears robust despite the temporal bias because it is apparent when comparing the 12-7Ka data with both older and younger time intervals. Application of a correction for the temporal bias indicates that global volcanic activity increases by a factor of 3-5 during this time interval. Increased volcanism can be confidently linked to deglaciation both in terms of location and mechanism. All of the increase occurs in regions thought to have experienced significant deglaciation, that is, predominantly high latitude or high elevation regions with significant precipitation. We show that two possible mechanisms may be important. As previously known from Iceland, deglaciation leads to decompression melting of the underlying mantle, yielding more magmatic input to volcanoes beneath ablating ice. In addition, pacing of volcanic eruptions reflects a balance between the forces generated by melt production and degassing, and the confining pressure and integrity of the surrounding rocks. A simple pacing model based on an eruption threshold and observed power law behavior of eruption frequency with number of volcanoes shows that ice volumes changes (estimated from oceanic δ18O) could also cluster the timing of volcanic eruptions near times of deglaciation. The influence of deglaciation upon volcanism is thus

  12. Biotic effects of impacts and volcanism

    NASA Astrophysics Data System (ADS)

    Keller, Gerta

    2003-10-01

    The biotic effects of late Maastrichtian mantle plume volcanism on Ninetyeast Ridge and Deccan volcanism mirror those of the Cretaceous-Tertiary (KT) mass extinction and impact event. Planktonic foraminifera responded to high stress conditions with the same impoverished and small-sized species assemblages dominated by the disaster/opportunists Guembelitria cretacea, which characterize the KT mass extinction worldwide. Similar high stress late Maastrichtian assemblages have recently been documented from Madagascar, Israel and Egypt. Biotic effects of volcanism cannot be differentiated from those of impacts, though every period of intense volcanism is associated with high stress assemblages, this is not the case with every impact. The most catastrophic biotic effects occurred at the KT boundary (65.0 Ma) when intense Deccan volcanism coincided with a major impact and caused the mass extinction of all tropical and subtropical species. The Chicxulub impact, which now appears to have predated the KT boundary by about 300 kyr, coincided with intense Deccan volcanism that resulted in high biotic stress and greenhouse warming, but no major extinctions. The unequivocal connection between intense volcanism and high stress assemblages during the late Maastrichtian to early Danian, and the evidence of multiple impacts, necessitates revision of current impact and mass extinction theories.

  13. First satellite identification of volcanic carbon monoxide

    NASA Astrophysics Data System (ADS)

    Martínez-Alonso, Sara; Deeter, Merritt N.; Worden, Helen M.; Clerbaux, Cathy; Mao, Debbie; Gille, John C.

    2012-11-01

    Volcanic degassing produces abundant H2O and CO2, as well as SO2, HCl, H2S, S2, H2, HF, CO, and SiF4. Volcanic SO2, HCl, and H2S have been detected from satellites in the past; the remaining species are analyzed in situ or using airborne instruments, with all the consequent limitations in safety and sampling, and at elevated costs. We report identification of high CO concentrations consistent with a volcanic origin (the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions in Iceland) in data from the Measurements of Pollution in the Troposphere instrument (MOPITT) onboard EOS/Terra. The high CO values coincide spatially and temporally with ash plumes emanating from the eruptive centers, with elevated SO2 and aerosol optical thickness, as well as with high CO values in data from the Infrared Atmospheric Sounding Interferometer (IASI), onboard MetOp-A. CO has a positive indirect radiative forcing; climate models currently do not account for volcanic CO emissions. Given global volcanic CO2 emissions between 130 and 440 Tg/year and volcanic CO:CO2 ratios from the literature, we estimate that average global volcanic CO emissions may be on the order of ∼5.5 Tg/year, equivalent to the CO emissions caused by combined fossil fuel and biofuel combustion in Australia.

  14. Explosive volcanism: Inception, evolution, and hazards

    SciTech Connect

    Not Available

    1984-01-01

    One purpose of the studies is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such an assessment is an evaluation of the adequacy of present geophysical knowledge and the appropriateness of present research programs to provide information required for those decisions. Some of the studies place more emphasis on assessing the present status of a field of geophysics and identifying the most promising directions for future research. This study on explosive volcanism was begun soon after the cataclysmic eruptions of Mount St. Helens. It readily became apparent to the committee that an assessment of the explosive nature of volcanoes must cover all types of volcanic activity; any volcano can be explosive. Improved understanding of the physics of volcanic eruptions is an exciting goal that is vital to progress in hazard evaluation. The study of explosive volcanism must include an appreciation of the severe social problems that are caused by erupting volcanoes. None is of greater urgency than planning for a crisis. This report considers the progress in research on these aspects of explosive volcanism and the need for additional research efforts. This volume contains 13 papers. Topics include tectonism, volcanism, volcanic periodicity, eruptive mechanics, emergency planning and recommendations. Individual papers are indexed separately on the energy data base.

  15. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, Jifeng

    2009-11-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and they are independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. And the prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  16. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, J.; Peterson, R.

    2009-12-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and are largely independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. The prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  17. MISR Observations of Etna Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  18. Volcanic sulfate aerosol formation in the troposphere

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bekki, Slimane; Ninin, Charlotte; Bindeman, Ilya

    2014-11-01

    The isotopic composition of volcanic sulfate provides insights into the atmospheric chemical processing of volcanic plumes. First, mass-independent isotopic anomalies quantified by Δ17O and to a lesser extent Δ33S and Δ36S in sulfate depend on the relative importance of different oxidation mechanisms that generate sulfate aerosols. Second, the isotopic composition of sulfate (δ34S and δ18O) could be an indicator of fractionation (distillation/condensation) processes occurring in volcanic plumes. Here we present analyses of O- and S isotopic compositions of volcanic sulfate absorbed on very fresh volcanic ash from nine moderate historical eruptions in the Northern Hemisphere. Most of our volcanic sulfate samples, which are thought to have been generated in the troposphere or in the tropopause region, do not exhibit any significant mass-independent fractionation (MIF) isotopic anomalies, apart from those from an eruption of a Mexican volcano. Coupled to simple chemistry model calculations representative of the background atmosphere, our data set suggests that although H2O2 (a MIF-carrying oxidant) is thought to be by far the most efficient sulfur oxidant in the background atmosphere, it is probably quickly consumed in large dense tropospheric volcanic plumes. We estimate that in the troposphere, at least, more than 90% of volcanic secondary sulfate is not generated by MIF processes. Volcanic S-bearing gases, mostly SO2, appear to be oxidized through channels that do not generate significant isotopically mass-independent sulfate, possibly via OH in the gas phase and/or transition metal ion catalysis in the aqueous phase. It is also likely that some of the sulfates sampled were not entirely produced by atmospheric oxidation processes but came out directly from volcanoes without any MIF anomalies.

  19. Volcanic Plume Measurements with UAV (Invited)

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  20. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  1. Advancing remote sensing of volcanic clouds

    NASA Astrophysics Data System (ADS)

    Rose, William I.

    A second international workshop on the remote sensing of volcanic clouds was recently held to improve and expand the use of satellite-based remote sensing data for hazard mitigation and other research purposes, such as volcano-atmosphere interactions and chemical and meteorological effects on the troposphere and stratosphere. Forty-six researchers attended, representing 11 countries, 10 universities, and several government meteorological and volcanological organizations. Also represented were the Volcanic Ash Aviation Centers in Washington, D.C.; Anchorage; Montreal; Darwin; London; and Tokyo, which monitor volcanic ash plumes and predict their displacement within their areas of responsibility The nine VAACs were established by the International Civil Aviation Organization (ICAO) to address various aviation concerns related to volcanic ash.

  2. Remote sensing of volcanic clouds shows promise

    NASA Astrophysics Data System (ADS)

    Rose, William I.

    An international workshop on the Remote Sensing of Volcanic Clouds was held July 29-August 3, 2001, at Michigan Technological University The workshop's goal was to improve and expand the use of satellite-based remote sensing data for hazard mitigation and other research purposes, such as volcano-atmosphere interactions and chemical and meteorological effects on the troposphere and stratosphere. Forty-six researchers attended, representing 11 countries, 9 universities, and several government meteorological and volcanological organizations, as well as the Volcanic Ash Aviation Centers in Washington, D.C., Anchorage, Montreal, Darwin, London, and Toulouse. (The Volcanic Ash Aviation Centers monitor volcanic ash plumes within their assigned airspace. There are 9 in all and they were created at the request of the International Civil Aviation Organization (ICAO) and other aviation concerns.)

  3. Io: Heat Flow from Dark Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Matson, D. L.; Davies, A. G.; Johnson, T. V.

    2008-03-01

    We focus on the heat flow contribution from dark volcanic fields on Io. These are concentrated in the anti-Loki hemisphere. We use the areas and estimated effective temperatures of dark flucti to derive their total power.

  4. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans.

  5. Probabilistic Volcanic Hazard and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Neri, A.; Newhall, C. G.; Papale, P.

    2007-08-01

    Quantifying Long- and Short-Term Volcanic Hazard: Building Up a Common Strategy for Italian Volcanoes, Erice Italy, 8 November 2006 The term ``hazard'' can lead to some misunderstanding. In English, hazard has the generic meaning ``potential source of danger,'' but for more than 30 years [e.g., Fournier d'Albe, 1979], hazard has been also used in a more quantitative way, that reads, ``the probability of a certain hazardous event in a specific time-space window.'' However, many volcanologists still use ``hazard'' and ``volcanic hazard'' in purely descriptive and subjective ways. A recent meeting held in November 2006 at Erice, Italy, entitled ``Quantifying Long- and Short-Term Volcanic Hazard: Building up a Common Strategy for Italian Volcanoes'' (http://www.bo.ingv.it/erice2006) concluded that a more suitable term for the estimation of quantitative hazard is ``probabilistic volcanic hazard assessment'' (PVHA).

  6. Constructing event trees for volcanic crises

    USGS Publications Warehouse

    Newhall, C.; Hoblitt, R.

    2002-01-01

    Event trees are useful frameworks for discussing probabilities of possible outcomes of volcanic unrest. Each branch of the tree leads from a necessary prior event to a more specific outcome, e.g., from an eruption to a pyroclastic flow. Where volcanic processes are poorly understood, probability estimates might be purely empirical - utilizing observations of past and current activity and an assumption that the future will mimic the past or follow a present trend. If processes are better understood, probabilities might be estimated from a theoritical model, either subjectively or by numerical simulations. Use of Bayes' theorem aids in the estimation of how fresh unrest raises (or lowers) the probabilities of eruptions. Use of event trees during volcanic crises can help volcanologists to critically review their analysis of hazard, and help officials and individuals to compare volcanic risks with more familiar risks. Trees also emphasize the inherently probabilistic nature of volcano forecasts, with multiple possible outcomes.

  7. Ice Nuclei Production in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  8. Episodic Volcanism and Geochemistry in Western Nicaragua

    NASA Astrophysics Data System (ADS)

    Saginor, I.; Carr, M. J.; Gazel, E.; Swisher, C.; Turrin, B.

    2007-12-01

    The active volcanic arc in western Nicaragua is separated from the Miocene arc by a temporal gap in the volcanic record, during which little volcanic material was erupted. Previous work suggested that this gap lasted from 7 to 1.6 Ma, during which volcanic production in Nicaragua was limited or nonexistent. Because the precise timing and duration of this gap has been poorly constrained, recent fieldwork has focused on locating samples that may have erupted close to or even during this apparent hiatus in activity. Recent 40Ar/39Ar dates reveal pulses of low- level episodic volcanism at 7 Ma and 1 Ma between the active and Miocene arcs with current volcanism beginning ~350 ka. In addition, sampling from an inactive area between Coseguina and San Cristobal yielded two distinct groupings of ages; one of Tamarindo age (13 Ma) and the other around 3.5 Ma-the only samples of that age collected on-strike with the active arc. This raises the possibility the bases of the other active volcanoes contain lavas that are older than expected, but have been covered by subsequent eruptions. The Miocene arc differs from the active arc in Central America in several ways, with the latter having higher Ba/La and U/Th values due to increased slab input and changes in subducted sediment composition. Analysis of sample C-51 and others taken from the same area may shed light on the timing of this shift from high to low Ba/La and U/Th values. More importantly, it may help explain why the arc experienced such a dramatic downturn in volcanic production during this time. We also report 25 new major and trace element analyses that shed some light on the origins of these minor episodes of Nicaraguan volcanism. These samples are currently awaiting Sr and Nd isotopic analyses.

  9. Volcanic hazards at Mount Shasta, California

    USGS Publications Warehouse

    Crandell, Dwight R.; Nichols, Donald R.

    1989-01-01

    The eruptions of Mount St. Helens, Washington, in 1980 served as a reminder that long-dormant volcanoes can come to life again. Those eruptions, and their effects on people and property, also showed the value of having information about volcanic hazards well in advance of possible volcanic activity. This pamphlet about Mount Shasta provides such information for the public, even though the next eruption may still be far in the future.

  10. Volcanism and aseismic slip in subduction zones

    SciTech Connect

    Acharya, H.

    1981-01-10

    The spatial and temporal relationship of volcanism to the occurrence of large earthquakes and convergent plate motion is examined. The number of volcanic eruptions per year in a convergent zone is found to be linearly related to the aseismic slip component of plate motion. If the aseismic slip rate is low (coupling between converging plates is strong), then the primary manifestation of tectonic activity is the occurrence of large earthquakes with only infrequent volcanic activity. If, however, the aseismic slip rate is high (coupling is weak), then there are few large earthquakes, and volcanism is the principal manifestation of tectonic activity. This model is consistent with the spatial distribution of large earthquakes and active volcanoes in the circum-Pacific area. It is tested by examining the extent of volcanic activity in the rupture zones of the 1952--1973 sequence of earthquakes in the Japan--Kurile Islands area. The number of volcanic euptions along these zones during the interval between large earthquakes is used to compute the aseismic slip rates for these segments, based on the relationship developed in this study. The aseismic slip rates so computed agree with those determined from the earthquake history of the area and rates of plate motion. The agreement suggests that in the interval between large earthquakes, the aseismic plate motion is manifested in a specific number of volcanic eruptions. Therefore in areas with adequate historial data it should be possible to use the model developed in this study to monitor volcanic eruptions for long-term prediction of large earthquakes.

  11. Tectonic evolution and volcanism of Okinawa Trough

    SciTech Connect

    Sibuet, J.C.; Letouzey, J.; Marsset, B.; Davagnier, M.; Foucher, J.P.; Bougault, H.; Dosso, L.; Maury, R.; Joron, J.L.

    1986-07-01

    The Okinawa Trough is a back-arc basin formed by extension of the east China continental lithosphere behind the Ryukyu Trench system. The age of marine deposits drilled in the northern Okinawa Trough indicates a Miocene age for the splitting of the volcanic arc and the first tensional movements. The POP 1 cruise of the R/V Jean-Charcot (September-October 1984) provided new evidence concerning the two main periods of extension as recognized by Kimura (Marine and Petroleum Geology, 1985). Tilted fault blocks in the northern Okinawa Trough trend north 40/sup 0/-60/sup 0/ and belong to the early Pleistocene phase (2-0.5 Ma). The present-day phase is characterized over the entire basin by normal faults oriented 80/sup 0/N in the north and 90/sup 0/N in the south. In the southern Okinawa Trough, most of the deformation occurs along linear, subparallel, en echelon depressions intruded by volcanic ridges associated with positive magnetic anomalies. The system of volcanic ridges ends northeast of Okinawa Island in a series of parallel volcanic ridges named the VAMP (Volcanic arc-rift migration processes) area, which merges into an active volcanic chain extending north to Japan. Chemical analyses of the vesicular basalts dredged on the back-arc basin display flat to enriched rare-earth patterns. The niobium-tantalum negative anomalies reflect a subduction signature. A good positive correlation between strontium isotopic compositions and concentrations suggests a contamination effect.

  12. Volcanic loading: The dust veil index

    SciTech Connect

    Lamb, H.H.

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  13. Composition of Syrtis Major volcanic plateau

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Erard, S.; Bibring, Jean-Pierre; Langevin, Yves; Head, James W.; Pieters, Carle M.

    1991-01-01

    Syrtis Major, a low-relief volcanic shield centered near 295 degrees 10 degrees N, is an old, well-preserved and exposed volcanic region on Mars which formed at the end of the heavy bombardment period. The composition of these volcanic materials has importance for understanding the thermal and chemical history of Mars. Imaging spectrometer data of the Syrtis Major volcanic plateau are used in this analysis to identify major compositional components. First and second order even channel reflectance spectra between 0.77 and 2.55 microns from four broad classes of materials on Syrtis Major are given. For the volcanic materials, there are three primary classes characterized by albedo, slope, and shape of the 10 micron band. To emphasize the latter, straight line continua were removed from each spectral segment and replotted in another figure. Each spectrum shows a band minima near 0.96 microns and 2.15 microns indicative of pyroxene mineral absorptions. Comparison of these band minima with studies of pyroxene reflectance spectra suggests that the pyroxenes in the volcanics of Syrtis Major are high calcium pyroxene with a Ca/(Mg+Fe+Ca) ratio of 0.2 to 0.3. The most likely pyroxene is an augite.

  14. California’s potential volcanic hazards

    USGS Publications Warehouse

    Jorgenson, P.

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S Geological Survey (USGS) publication. the 17-page bulletin, "Potential Hazards from Future Volcanic Eruptions in California," gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. Although no quantitative probabilities are attached to any of the potential volcanic hazards, the USGS bulletin warns that "sooner or later a volcano in California will erupt again and the ever-expanding use of area near volcnoes increases the potential impact of an eruption on the state's economy and on the health and safety of its citizens. 

  15. A frictional law for volcanic ash gouge

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Hirose, T.; Kendrick, J. E.; De Angelis, S.; Petrakova, L.; Hornby, A. J.; Dingwell, D. B.

    2014-08-01

    Volcanic provinces are structurally active regions - undergoing continual deformation along faults. Within such fault structures, volcanic ash gouge, containing both crystalline and glassy material, may act as a potential fault plane lubricant. Here, we investigate the frictional properties of volcanic ash gouges with varying glass fractions using a rotary shear apparatus at a range of slip rates (1.3-1300 mm/s) and axial stresses (0.5-2.5 MPa). We show that the frictional behaviour of volcanic ash is in agreement with Byerlee's friction law at low slip velocities, irrespective of glass content. The results reveal a common non-linear reduction of the friction coefficient with slip velocity and yield a frictional law for fault zones containing volcanic ash gouge. Textural analysis reveals that strain localisation and the development of shear bands are more prominent at higher slip velocities (>10 mm/s). The textures observed here are similar to those recorded in ash gouge at the surface of extrusive spines at Mount St. Helens (USA). We use the rate-weakening component of the frictional law to estimate shear-stress-resistance reductions associated with episodic seismogenic slip events that accompany magma ascent pulses. We conclude that the internal structure of volcanic ash gouge may act as a kinematic marker of exogenic dome growth.

  16. Local and remote infrasound from explosive volcanism

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  17. Mosaic composition of ribA and wspB genes flanking the virB8-D4 operon in the Wolbachia supergroup B-strain, wStr.

    PubMed

    Baldridge, Gerald D; Li, Yang Grace; Witthuhn, Bruce A; Higgins, LeeAnn; Markowski, Todd W; Baldridge, Abigail S; Fallon, Ann M

    2016-01-01

    The obligate intracellular bacterium, Wolbachia pipientis (Rickettsiales), is a widespread, vertically transmitted endosymbiont of filarial nematodes and arthropods. In insects, Wolbachia modifies reproduction, and in mosquitoes, infection interferes with replication of arboviruses, bacteria and plasmodia. Development of Wolbachia as a tool to control pest insects will be facilitated by an understanding of molecular events that underlie genetic exchange between Wolbachia strains. Here, we used nucleotide sequence, transcriptional and proteomic analyses to evaluate expression levels and establish the mosaic nature of genes flanking the T4SS virB8-D4 operon from wStr, a supergroup B-strain from a planthopper (Hemiptera) that maintains a robust, persistent infection in an Aedes albopictus mosquito cell line. Based on protein abundance, ribA, which contains promoter elements at the 5'-end of the operon, is weakly expressed. The 3'-end of the operon encodes an intact wspB, which encodes an outer membrane protein and is co-transcribed with the vir genes. WspB and vir proteins are expressed at similar, above average abundance levels. In wStr, both ribA and wspB are mosaics of conserved sequence motifs from Wolbachia supergroup A- and B-strains, and wspB is nearly identical to its homolog from wCobU4-2, an A-strain from weevils (Coleoptera). We describe conserved repeated sequence elements that map within or near pseudogene lesions and transitions between A- and B-strain motifs. These studies contribute to ongoing efforts to explore interactions between Wolbachia and its host cell in an in vitro system.

  18. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province

    NASA Astrophysics Data System (ADS)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.

    2005-12-01

    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  19. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  20. Can tides influence volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Girona, T.; Huber, C.

    2015-12-01

    The possibility that the Moon-Sun gravitational force can affect terrestrial volcanoes and trigger eruptions is a controversial issue that has been proposed since ancient times, and that has been widely debated during the last century. The controversy arises mainly from two reasons. First, the days of initiation of eruptions are not well known for many volcanoes, and thus a robust statistical comparison with tidal cycles cannot be performed for many of them. Second, the stress changes induced by tides in the upper crust are very small (10-3 MPa) compared to the tensile strength of rocks (~ 10-1-10 MPa), and hence the mechanism by which tidal stresses might trigger eruptions is unclear. In this study, we address these issues for persistently degassing volcanoes, as they erupt frequently and thus the initiation time of a significant number of eruptions (>30) is well known in several cases (9). In particular, we find that the occurrence of eruptions within ±2 days from neap tides (first and third quarter moon) is lower than 34% (e.g., 29% for Etna, Italy; 28% for Merapi, Indonesia), which is the value expected if eruptions occur randomly with no external influence. To understand this preference for erupting far away from neap tides, we have developed a new lumped-parameter model that accounts for the deformation of magma reservoirs, a partially open conduit, and a gas layer where bubbles accumulate beneath volcanic craters before being released. We demonstrate that this system reservoir-conduit-gas layer acts as an amplifier of the tidal stresses, such that, when a volcano approaches to a critical state, the gas overpressure beneath the crater can reach up to several MPa more during a spring tide (full and new moon) than during a neap tide. This amplification mechanism can explain why active volcanoes are sensitive to the moon cycles.

  1. Volcanic Lightning in Eruptions of Sakurajima Volcano

    NASA Astrophysics Data System (ADS)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  2. New geochemical insights into volcanic degassing.

    PubMed

    Edmonds, Marie

    2008-12-28

    Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas-melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical geochemical investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas-melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of geochemical studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in

  3. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  4. (abstract) Survey of Volcanic Hazards in the Trans Mexican Volcanic Belt

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Siebe, C.; Macias, J.

    1997-01-01

    A substantial percentage of the world's population lives in areas vulnerable to the negative effects of future volcanic activity. This is especially true in Mexico, where within the Trans Mexican Volcanic Belt (TMVB) one half of the country's 90 million inhabitants live. The TMVB is a 1 000 by 200 km area, dotted with hundreds of volcanoes and volcanic centers. Most of the area has been poorly studied, and the volcanic history is largely unknown. Our approach is to combine interpretations of satellite images, field work and mapping, laboratory analysis, and age dating to elucidate the volcanic history and evaluate the potential eruptive hazards. Hazards evaluations are done in the form of risk maps.

  5. Tornillos and Other Volcanic Tremors in Tatun Volcanoes, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, C.; Konstantinou, K.; Pu, S.; Huang, Y.; Lin, Y.; You, S.

    2004-12-01

    This is the first time to report several types of volcanic signals such as Tornillos (screws), harmonic signals (drops) and continuously short-period volcanic tremors at the Tatun volcanic group (Taiwan), which was usually considered as extinct because there was no any historical eruption. These volcanic signals are often reported in the active volcanoes in the earth. In particular, the tornillos have been considered as the potential precursor for volcanic eruption at Galeras volcano, Colombia. Combining all of these volcanic signals with the presviously geochemical analyses from the Helium isotop ratio, we strongly suggest that volcanic activities in the Tatun volcanic area might not be totally extinct yet and further investigations have to been done for evaluation of potential volcanic activities because the Tatun volcano group is not only just nearby two nuclear power plants but also about 15 km north to Taipei, the capital of Taiwan, in which more than seven million people live on.

  6. Role of volcanism in climate and evolution

    SciTech Connect

    Axelrod, D.I.

    1981-01-01

    Several major episodes of Tertiary explosive volcanism coincided with sharply lowered temperature as inferred from oxygen-isotope composition of foraminiferal tests in deep-sea cores. At these times, fossil floras in the western interior recorded significant changes. Reductions in taxa that required warmth occurred early in the Paleogene. Later, taxa that demand ample summer rain were reduced during a progressive change reflecting growth of the subtropic high. Other ecosystem changes that appear to have responded to volcanically induced climatic modifications include tachytely in Equidae (12 to 10 m.y. B.P.), rapid evolution of grasses (7 to 5 m.y. B.P.), evolution of marine mammals, and plankton flucuations. Although Lake Cretaceous extinctions commenced as epeiric seas retreated, the pulses of sharply lowered temperature induced by explosive volcanism, together with widespread falls of volcanic ash, may have led to extinction of dinosaurs, ammonites, cycadeoids, and other Cretaceous taxa. earlier, as Pangaea was assembled, Permian extinctions resulted not only from the elimination of oceans, epeiric seas, and shorelines, and the spread of more-continental climates, bu also from the climatic effects of major pulses of global volcanism and Gondwana glaciation.

  7. Volcanic activity: a review for health professionals.

    PubMed Central

    Newhall, C G; Fruchter, J S

    1986-01-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity. Images FIGURE 1 FIGURE 2 FIGURE 6a-6e FIGURE 6a-6e FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:3946726

  8. Volcanic iodine monoxide observed from satellite

    NASA Astrophysics Data System (ADS)

    Schönhardt, Anja; Richter, Andreas; Theys, Nicolas; Burrows, John P.

    2016-04-01

    Halogen species are injected into the atmosphere by volcanic eruptions. Previous studies have reported observations of chlorine and bromine oxides in volcanic plumes. These emissions have a significant impact on the chemistry within the plume as well as on upper troposphere and lower stratosphere composition, e.g. through ozone depletion. Volcanic halogen oxides have been observed from different platforms, from ground, aircraft and from satellite. The present study reports on satellite observations of iodine monoxide, IO, following the eruption of the Kasatochi volcano, Alaska, in August 2008. Satellite measurements from the SCIAMACHY sensor onboard ENVISAT are used. In addition, the volcanic IO plume is also retrieved from GOME-2 / MetOP-A measurements. Largest IO column amounts reach up to more than 4×1013 molec/cm2, the results from both instruments being consistent. The IO plume has a very similar shape as the BrO plume and is observed for several days following the eruption. The present observations are the first evidence that besides chlorine and bromine oxides also iodine oxides can be emitted by volcanic eruptions. This has important implications for atmospheric composition and background iodine levels. Together with the simultaneous observations of BrO and SO2, iodine monoxide columns can possibly provide insights into the composition of the magma.

  9. Volcanic activity: a review for health professionals.

    PubMed

    Newhall, C G; Fruchter, J S

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  10. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  11. Dynamical constraints on kimberlite volcanism

    NASA Astrophysics Data System (ADS)

    Sparks, R. S. J.; Baker, L.; Brown, R. J.; Field, M.; Schumacher, J.; Stripp, G.; Walters, A.

    2006-07-01

    Kimberlite volcanism involves the ascent of low viscosity (0.1 to 1 Pa s) and volatile-rich (CO 2 and H 2O) ultrabasic magmas from depths of 150 km or greater. Theoretical models and empirical evidence suggest ascent along narrow (˜1 m) dykes at speeds in the range > 4 to 20 m/s. With typical dyke breadths of 1 to 10 km, magma supply rates are estimated in the range 10 2 to 10 5 m 3/s with eruption durations of many hours to months. Based on observations, theory and experiments we propose a four-stage model for kimberlite eruptions to explain the main geological relationships of kimberlites. In stage I magma reaches the Earth's surface along fissures and erupts explosively due to their high volatile content. The early flow exit conditions are overpressured with choked flow conditions; an exit velocity of ˜200 m/s is estimated as representative. Explosive expansion and near surface overpressures initiate crater and pipe formation from the top downwards. In stage II under-pressures (the difference between the lithostatic pressure and pressure of the erupting mixture) develop within the evolving pipe causing rock bursting at depth, undermining overlying rocks and causing down-faulting and crater rim slumping. Rocks falling into the pipe interior are ejected by the strong explosive flows. Stage II is the erosive stage of pipe formation. As the pipe widens and deepens larger under-pressures develop enhancing pipe wall instability. A critical threshold is reached when the exit pressure falls to one atmosphere. As the pipe widens and deepens further the gas exit velocity declines and ejecta becomes trapped within the pipe, initiating stage III. A fluidised bed of pyroclasts develops within the pipe as the eruption wanes to form typical massive volcaniclastic kimberlite. Marginal breccias represent the transition between stages II and III. After the eruption stage IV is a period of hydrothermal metamorphism (principally serpentinisation) and alteration as the pipe cools

  12. Basaltic Volcanism of the Snake River Volcanic Province

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Vetter, S.

    2012-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province is the world's best modern example of a time-transgressive hotspot track beneath continental crust. Tomographic images document a thermal anomaly which pierces the Farallon plate at depth and appears to extend to depths of over 1000 km. Many investigators attribute this anomaly to a deep mantle plume, while others recognize the sheet-like aspect of the velocity anomaly and attribute it to lower mantle flow around a fragmented remnant of the Farallon plate. Tholeiitic basalts of the SRP have major element compositions similar to ocean island basalts (OIB), with higher FeO, TiO2, P2O5 and K2O than mid-ocean ridge basalts over a similar range in MgO. Their trace element concentrations also mimic OIB tholeiites, with moderately enriched LREE/HREE ratios, OIB-like HFSE ratios and Nb-Y-Zr systematics. Most SRP basalts show little evidence of crustal assimilation: oxygen isotope compositions are mantle-like, K2O is low and does not increase relative to other incompatible elements during fractionation (e.g., P2O5), and silica contents are consistently low. In contrast, evidence suggests that these basalts evolve primarily through fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Trace element concentration patterns are nearly identical to OIB tholeiites, with somewhat lower slopes on multi-element variations diagrams, consistent with 7-12% partial melting of spinel-facies peridotite (9-18 kb, 40-65 km) with a composition similar to the source of OIB or EMORB. Models show that depleted MORB asthenosphere or primitive mantle peridotite composition sources cannot yield SRP tholeiites, even with residual garnet in the source region to raise LREE/HREE ratios in the melt. There is no indication of residual garnet in the source - which requires that either the lithosphere was relatively thin during formation of the SRP, or that the melts originated within the lithosphere itself

  13. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  14. Explosive volcanic deposits on Mars: Preliminary investigations

    NASA Technical Reports Server (NTRS)

    Crown, D. A.; Leshin, L. A.; Greeley, Ronald

    1987-01-01

    Two investigations were undertaken to examine possible large scale explosive volcanic deposits on Mars. The first includes an analysis of Viking Infrared Thermal Mapper (IRTM) data covering the vast deposits in the Amazonis, Memnonia, and Aeolis regions. These postulated ignimbrites have been previously mapped, and at least five high resolution nighttime IRTM data tracks cross the deposits. Preliminary analysis of the data covering Amazonis Planitia show that local features have anomalous thermal inertias but the ignimbrites as a whole do not consistently have significantly different thermal inertias from their surroundings. Preliminary photogeologic and IRTM studies of the large and small highland paterae have also begun. The purpose of IRTM studies of postulated Martian explosive volcanic deposits is to determine the physical properties of the proposed ignimbrites. If volcanic deposits are exposed at the surface, high thermal inertias, as are observed for Apollinaris Patera, should be present.

  15. The Latest on Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2013-08-01

    What was the largest volcanic eruption on Earth since the historic Mount Pinatubo eruption on 15 June 1991? Was the Toba super­eruption 74,000 years ago—the largest in the past 100,000 years—responsible for a human genetic bottleneck or a 1000-year-long glacial advance? What role did small volcanic eruptions play in the reduced global warming of the past decade? What caused the Little Ice Age? Was the April 2010 Eyjafjallajökull eruption in Iceland important for climate change? What do volcanic eruptions teach us about new ideas on geoengineering and nuclear winter? These are some of the questions that have been answered since the review article by Robock [2000]. Reviews by Forster et al. [2007] and Timmreck [2012] go into some of these topics in much greater detail.

  16. Yucca Mountain could face greater volcanic threat

    NASA Astrophysics Data System (ADS)

    Smith, Eugene I.; Keenan, Deborah L.

    Locating a radioactive waste repository in the United States has been the subject of over 20 years of scientific research, political wrangling, and court decisions. If a nuclear waste repository is constructed at Yucca Mountain, Nevada, 70,000 metric tons of spent nuclear fuel will be buried 300 m below the surface.Because eight Quaternary basalt volcanoes erupted within 50 km of the proposed repository in the past million years, future volcanism is an important issue. The U.S. Department of Energy (DOE) is currently using an expert panel to evaluate current models [Perry et al., 1998] and consider alternative models. This article presents an alternative model, developed independently of DOE and the expert panel, and reviews new information pertinent to volcanic hazard studies. Additionally, this article suggests that the size of the Yucca Mountain volcanic field is not presently well known.

  17. Surface Coatings on Lunar Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  18. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  19. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  20. U.S. Interagency Response Plans for Volcanic Ash and Other Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Birch, S.; Carpenter, D.

    2011-12-01

    The U.S. federal agencies, under the Office of the Federal Coordinator for Meteorology (OFCM), have partnered to provide guidance and support for regional response plans dealing with volcanic hazards. The OFCM working group for volcanic ash (WG/VA) has produced a national framework document entitled National Volcanic Ash Operations Plan for Aviation (NVOPA) in support of the International Airways Volcano Watch, August 2007. This document provides a high level look at the federal agency roles and responsibilities, products and services pertaining to volcanic ash. There are several regional plans that sit under the "national" plan framework specifically, Alaska Interagency Operating Plan for Volcanic Ash Episodes, July 2011; Interagency Operating Plan for Volcanic Ash Hazards to Aviation in the Pacific Region of the Northern Marianas Islands (draft framework), June 2009; Pacific Northwest (Washington/Oregon) Interagency Operating Plan for Volcanic Ash Events, May 2011. In addition to the plans listed above, there is a Hawaii volcano hazards and a California volcanic ash plan under development. Work on a Puerto Rico/Eastern Caribbean plan will commence in 2011. The purpose of these regional plans is to dovetail off of the NVOPA and provide more granularity with respect to agency roles and responsibilities. These regional plans often times will include agency call down lists and volcano specific information for the area of concern. The intent of these plans is not to act as an agency/office SOP but rather provide a more regional perspective. A side benefit to these plans is that they act as a focus around the development of table top exercises between the agencies. Areas in the continental U.S. that have relatively low frequency of volcanic events must practice through table top and communications exercises to remain proficient and ensure the messaging is communicated and appropriate action is taken in a timely fashion.

  1. Volcanic Perspective on Plutonism based on Patterns in Evolution in Long-Lived Continental Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Grunder, A. L.; Harris, R. N.; Walker, B. A.; Giles, D.; Klemetti, E. W.

    2008-12-01

    Volcanic rocks represent a biased view of magmatism, but provide critical quenched samples and temporal constraints of magmatic evolution obscured in the plutonic record. We here draw on the records from the Aucanquilcha Volcanic Cluster (AVC; 10 to 0 Ma) in northern Chile and from the mid-Tertiary volcanic field in east-central Nevada (ECNVF; ~40-32 Ma) to consider how evolutionary patterns of intermediate composition volcanic systems bear on the magmatic reworking of the continental crust by plutons and batholiths. Despite disparate tectonic setting (subduction vs extension) and volumes (70 km crust for the ~300 km 3 AVC versus and ~40 km crust for the ~3000 km 3 ECNVF) both volcanic systems share a history of early compositionally diverse volcanism, followed by a stage of more centralized and voluminous dacitic volcanism, which in turn is followed by waning of volcanism. The compositional change and the rapid increase in magma output rate after about half the lifetime of the system is a characteristic pattern of long- lived continental volcanic systems based on a compilation of volume-composition data. The middle, voluminous stage corresponds to the hottest upper crustal conditions, deduced from Al-in-amphibole geothermobarometry and Ti-in-zircon thermometry of the AVC. The middle stage rocks also have textures indicating hybridization of mixed magmas. Simple thermal models of heat input via intraplating readily allow for generation of partially molten crust above the sill, but they do not emulate the rapid increase of magma after some incubation time. We propose that there is a feedback in which a critical thickness of partially molten crust, consisting in part of magmatic precursors, can be readily convectively stirred and mixed with magma of the underplating sill, rapidly creating a large, hybrid and relatively hot body of magma. Stirring facilitates separation of a liquid-enriched extract. The volume of liquid extracted may be small relative to residual

  2. Constraining the onset of flood volcanism in Isle of Skye Lava Field, British Paleogene Volcanic Province

    NASA Astrophysics Data System (ADS)

    Angkasa, Syahreza; Jerram, Dougal. A.; Svensen, Henrik; Millet, John M.; Taylor, Ross; Planke, Sverre

    2016-04-01

    In order to constrain eruption styles at the onset of flood volcanism, field observations were undertaken on basal sections of the Isle of Skye Lava Field, British Paleogene Volcanic Province. This study investigates three specific sections; Camus Ban, Neist Point and Soay Sound which sample a large area about 1500 km2 and can be used to help explain the variability in palaeo-environments at the onset of flood volcanism. Petrological analysis is coupled with petrophysical lab data and photogrammetry data to create detailed facies models for the different styles of initiating flood basalt volcanism. Photogrammetry is used to create Ortho-rectified 3D models which, along with photomontage images, allow detailed geological observations to be mapped spatially. Petrographic analyses are combined with petrophysical lab data to identify key textural variation, mineral compositions and physical properties of the volcanic rocks emplaced during the initial eruptions. Volcanism initiated with effusive eruptions in either subaerial or subaqueous environments resulting in tuff/hyaloclastite materials or lava flow facies lying directly on the older Mesozoic strata. Volcanic facies indicative of lava-water interactions vary significantly in thickness between different sections suggesting a strong accommodation space control on the style of volcanism. Camus Ban shows hyaloclastite deposits with a thickness of 25m, whereas the Soay Sound area has tuffaceous sediments of under 0.1m in thickness. Subaerial lavas overly these variable deposits in all studied areas. The flood basalt eruptions took place in mixed wet and dry environments with some significant locally developed water bodies (e.g. Camus Ban). More explosive eruptions were promoted in some cases by interaction of lavas with these water bodies and possibly by local interaction with water - saturated sediments. We record key examples of how palaeotopography imparts a primary control on the style of volcanism during the

  3. New Map of Io's Volcanic Heat Flow

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Veeder, G. J.; Matson, D.; Johnson, T. V.

    2014-12-01

    We have created a global map of Io's volcanic heat flow from 245 thermal sources indicative of ongoing or recent volcanic activity, and 8 additional outbursts [1,2]. We incorporate data from both spacecraft and ground-based instruments that have observed Io primarily at infrared wavelengths. This map provides a snapshot of Io's volcanic activity and distribution during the Galileo epoch. Io's volcanic activity, in terms of thermal emission from individual eruptive centres, spans nearly six orders of magnitude, from Surt in 2001 (78 TW) [3] to a faint hot spot in patera P197 (0.2 GW) [1]. We account for ≈54% of Io's yearly volcanic heat flow, which emanates from ≈2% of Io's surface [1]. Averaged heat flow from the non-active surface is 1 ± 0.2 W m2. This quantification of volcanic heat flow map provides constraints for modelling the magnitude and location of the internal heating of Io by tidal dissipation. The observed heat flow distribution is the result of interior heating and volcanic advection, the delivery of magma to the surface regardless of its depth of origin. As noted previously [1, 2] the distribution of heat flow is not uniform, which is not unexpected. The volcanic heat flow does not match the expected distributions from end-member models for both the deep-seated (mantle) heating model (which predicts enhanced polar heating) and the shallow (aesthenospheric) heating model, which predicts enhanced thermal emission at sub-jovian and anti-jovian longitudes. Intriguingly, heat flow curves using a bin size of 30 degrees show a longitudinal offset from the shallow heating model prediction of some tens of degrees [2], suggesting a more complex mixture of deep and shallow heating. Future work includes refinement of thermal emission by including temporal variability of thermal emission at individual volcanoes, and comparing the heat flow map with the Io Geological Map [4] and global topography [5]. We thank the NASA OPR Program for support. Part of this

  4. Emplacement Scenarios for Volcanic Domes on Venus

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Steve M.; Stofan, Ellen R.

    2012-01-01

    One key to understanding the history of resurfacing on Venus is better constraints on the emplacement timescales for the range of volcanic features visible on the surface. A figure shows a Magellan radar image and topography for a putative lava dome on Venus. 175 such domes have been identified with diameters ranging from 19 - 94 km, and estimated thicknesses as great as 4 km. These domes are thought to be volcanic in origin and to have formed by the flow of viscous fluid (i.e., lava) on the surface.

  5. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Mao, J.

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  6. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  7. Initiation and Impact of Siberian Traps Volcanism

    NASA Astrophysics Data System (ADS)

    Planke, S.; Svensen, H.; Polozov, A. G.; Jerram, D.; Faleide, J. I.

    2011-12-01

    The Siberian Traps Large Igneous Province was formed during the end-Permian, about 251 million years ago. Basaltic melt was injected into the organic and salt rich Tunguska sedimentary basin, forming interconnected sill complexes and associated hydrothermal vent complexes. The initial eruptions took place in a wet environment, documented by tuff layers. The explosive eruptions were followed by effusive magmatism, forming the characteristic volcanic traps. Further away, in the southwest Barents Sea, the earliest Triassic is characterized by rapid basin subsidence and deposition of thick clastic sedimentary sequences. We have conducted field work in Siberia during 2004 to 2010 to study the formation and implications of the Siberian Traps volcanism. The massive magmatism likely triggered the end-Permian mass extinction and pertubated the global carbon cycle. Four key processes link the Siberian Traps Large Igneous Province to the end-Permian carbon cycle perturbation and mass extinction: 1) degassing of subaerially emplaces lava flows, 2) explosive volcanism and tephra eruptions, 3) phreatomagmatic pipes rooted in the evaporates of the Tunguska Basin, and 4) degassing following contact metamorphism around coal, shale, and evaporate lithologies in the Tunguska Basin. Field work in 2010 focused on the nature of explosive volcanism and tephra eruptions. Thick deposits of basaltic tuff and tephra have been reported as widespread in the lower succession of the Siberian Traps, for instance in the Maymecha region (300 meters of basal mafic tuffs), commonly taken as direct evidence for the explosive nature of the initial phase of volcanism. This is puzzling as explosive volcanism is unusual in low viscosity and volatile-poor basaltic systems. As few modern studies have documented the extent and nature of these tuff deposits, especially in the areas outside the ore-rich regions around Norilsk, this may have contributed to their enigmatic status. The field work revealed that

  8. The influence of oceans on Martian volcanism

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter

    1993-01-01

    Geomorphological evidence for episodic oceans on Mars has recently been identified. This idea of large bodies of water on Mars is innovative and controversial compared to the more generally accepted view of a 'dry Mars', but also enables some of the more enigmatic volcanic landforms to be reinterpreted in a self-consistent model. This hypothesis can be used to develop new models for the mode of formation of several volcanic landforms in the W. Tharsis and S.E. Elysium Planitia regions of Mars.

  9. The Environmental Impact of Siberian Traps Volcanism

    NASA Astrophysics Data System (ADS)

    Saunders, A. D.; Reichow, M. K.

    2008-12-01

    New high-precision 40Ar/39Ar data confirm that the Siberian Traps extend as far west as the Ural Mountains, and from the Kuznetsk Basin in the south to the Taimyr Peninsula in the north; an area encompassing some 5 million km2. The bulk of this volcanism occurred at about 250 Ma (Ar-Ar time). These data, plus new and published Ar/Ar data from the P-Tr section at Meishan, China, confirm that volcanism and the mass extinction were synchronous. Here, we explore the causal link between volcanism and extinction. The volcanism is associated with global super-greenhouse conditions and widespread shallow oceanic anoxia - perhaps the sine qua non of the marine mass extinctions. Injection of isotopically 'light' carbon is required to explain the characteristic and dramatic negative carbon isotope excursion preserved in ocean water proxies, but because the CIE occurs after the mass extinction, this suggests that the carbon pulse (from breakdown of methane hydrates, or magmatic burning of coal or other hydrocarbons) was not the fundamental cause of the extinction. Rather, we suggest that magmatic CO2 released during the eruptions (complemented by pyrogenetic CO2 and methane) led to progressive CO2 accumulation in the atmosphere-ocean system (rates of long-term removal of carbon by geological processes are significantly lower than volcanic injection). Atmospheric accumulation may have been amplified by short-term sulphate-induced volcanic winters that caused collapse of photosynthetic cycles by atmospheric temperature fluctuations and sunlight attenuation, thus inhibiting carbon draw-down. Subsequent warming of the deep ocean may have triggered the methane pulse, leading to the main CIE. What lessons can we take away for present climate change? Unlike in the Cenozoic, when atmospheric CO2 progressively decreased to low pre-industrial levels, throughout the Permian atmospheric CO2 levels fluctuated strongly, and may have been as much as 10x present-day by the time that Siberian

  10. Volcanic Eruptions and Climate: Outstanding Research Issues

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  11. Tellurium in active volcanic environments: Preliminary results

    NASA Astrophysics Data System (ADS)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  12. Geomagnetic imprint of the Persani volcanism

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Seghedi, Ioan; Zlagnean, Luminita; Atanasiu, Ligia; Popa, Razvan-Gabriel; Pomeran, Mihai; Visan, Madalina

    2016-04-01

    The Persani small volume volcanism is located in the SE corner of the Transylvanian Depression, at the north-western edge of the intra-mountainous Brasov basin. It represents the south-easternmost segment of the Neogene-Quaternary volcanic chain of the East Carpathians. The alkaline basalt monogenetic volcanic field is partly coeval with the high-K calc-alkaline magmatism south of Harghita Mountains (1-1.6 Ma). Its eruptions post-dated the calc-alkaline volcanism in the Harghita Mountains (5.3-1.6 Ma), but pre-dated the high-K calc-alkaline emissions of Ciomadul volcano (1.0-0.03 Ma). The major volcanic forms have been mapped in previous geological surveys. Still, due to the small size of the volcanoes and large extent of tephra deposits and recent sediments, the location of some vents or other volcanic structures has been incompletely revealed. To overcome this problem, the area was subject to several near-surface geophysical investigations, including paleomagnetic research. However, due to their large-scale features, the previous geophysical surveys proved to be an inappropriate approach to the volcanological issues. Therefore, during the summers of 2014 and 2015, based on the high magnetic contrast between the volcanic rocks and the hosting sedimentary formations, a detailed ground geomagnetic survey has been designed and conducted, within central Persani volcanism area, in order to outline the presence of volcanic structures hidden beneath the overlying deposits. Additionally, information on the rock magnetic properties was also targeted by sampling and analysing several outcrops in the area. Based on the acquired data, a detailed total intensity scalar geomagnetic anomaly map was constructed by using the recent IGRF12 model. The revealed pattern of the geomagnetic field proved to be fully consistent with the direction of magnetisation previously determined on rock samples. In order to enhance the signal/noise ratio, the results were further processed by

  13. The role of mantle CO2 in volcanism

    USGS Publications Warehouse

    Barnes, I.; Evans, William C.; White, L.D.

    1988-01-01

    Carbon dioxide is the propellant gas in volcanic eruptions and is also found in mantle xenoliths. It is speculated that CO2 occurs as a free gas phase in the mantle because there is no reason to expect CO2 to be so universally associated with volcanic rocks unless the CO2 comes from the same source as the volcanic rocks and their xenoliths. If correct, the presence of a free gas in the mantle would lead to physical instability, with excess gas pressure providing the cause of both buoyancy of volcanic melts and seismicity in volcanic regions. Convection in the mantle and episodic volcanic eruptions are likely necessary consequences. This suggestion has considerable implications for those responsible for providing warnings of impending disasters resulting from volcanic eruptions and earthquakes in volcanic regions. ?? 1988.

  14. Differential Bacterial Colonization of Volcanic Minerals in Deep Thermal Basalts

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Popa, R.; Fisk, M. R.; Nielsen, M.; Wheat, G.; Jannasch, H.; Fisher, A.; Sievert, S.

    2010-04-01

    There are reports of microbial weathering patterns in volcanic glass and minerals of both terrestrial and Martian origin. Volcanic minerals are colonized differentially in subsurface hydrothermal environments by a variety of physiological types.

  15. NASA MEVTV Program Working Group Meeting: Volcanism on Mars

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The purpose of this working group meeting is to focus predominantly on volcanism on Mars, prior to considering the more complex issues of interactions between volcanism and tectonism or between volcanism and global or regional volatile evolution. It is also hoped that the topical areas of research identified will aid the planetary geology community in understanding volcanism on Mars and its relationship to other physical processes.

  16. On the climatic implications of volcanic cooling

    NASA Astrophysics Data System (ADS)

    Lindzen, Richard S.; Giannitsis, Constantine

    1998-03-01

    A simple energy balance model is used to investigate the response to a volcanic-type radiative forcing under different assumptions about the climatic sensitivity of the system. Volcanic eruptions are used as control experiments to investigate the role of the ocean-atmosphere coupling and of diffusive heat uptake by the thermocline. The effect of varying equilibrium climate sensitivity by varying the coupling of the atmosphere and ocean is examined, high sensitivity being associated with weak coupling. A model representing a coupled land-ocean system, with a reasonably realistic representation of the large-scale physics is used. It is found that systems with large equilibrium sensitivities not only respond somewhat more strongly to radiative perturbations but also return to equilibrium with much longer timescales. Based on this behavior pattern, we examine the model response to a series of volcanic eruptions following Krakatoa in 1883. Comparison between the model results and past temperature records seems to suggest that use of small sensitivity parameters is more appropriate. Despite the uncertainties associated with both the physics and the quantitative characteristics of the radiative forcing and the temperature anomalies produced by volcanic eruptions, the present study constitutes a possible test of different assumptions about the sensitivity of the climate system.

  17. Controlled Volcanism in the Classroom: A Simulation

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim

    2005-01-01

    In this extended earth science activity, students create a hands-on model of a volcano to achieve an understanding of volcanic structure, lava flows, formation of lava layers, and the scientific work of archaeologists and geoscientists. During this simulation activity, students have opportunities to learn science as inquiry and the nature of…

  18. Infrasonic waves and volcanic tremor at Stromboli

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Poggi, P.; Braun, T.; Gordeev, E.

    The origin of the volcanic tremor is still under debate. Many theories have been proposed in the last years, but none has yet been completely accepted. In 1993, highly sensitive pressure sensors (2.175 Pa/Volt) used to monitor the explosive activity at Stromboli have revealed unexpected correlation between small spike-shaped pressure signals (1-2 Pa) and volcanic tremor. These pressure pulses repeat regularly in time with a recurrent period of ca. 1 s. Video camera images allowed us to correlate the pressure pulses with small gas bursts occurring at one of the active vents. The striking correlation (0.971) between infrasonic and seismic energy fluctuations is particularly meaningful in the frequency domain. Infrasonic and seismic signal share the same spectral content (3 Hz) for every station within a range of 700 m around the craters. Correlations in time and frequency domain remained unaltered during the 1994 field experiments. Moreover, during 1994, the increased degassing activity has been followed by an increase in pressure release (7-8 Pa) and by a shift towards higher frequencies (8 Hz) both in the infrasonic and seismic records. Infrasonic waves and volcanic tremor show similar energy fluctuations and frequency contents, appearing therefore to be produced by the same dynamical process. On this basis, we claim that volcanic tremor at Stromboli originates by continuous outbursting of small gas bubbles in the upper part of the magmatic column.

  19. Remote sensing of volcanos and volcanic terrains

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.

    1989-01-01

    The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.

  20. Trachyandesitic volcanism in the early Solar System

    PubMed Central

    Bischoff, Addi; Horstmann, Marian; Barrat, Jean-Alix; Chaussidon, Marc; Pack, Andreas; Herwartz, Daniel; Ward, Dustin; Vollmer, Christian; Decker, Stephan

    2014-01-01

    Volcanism is a substantial process during crustal growth on planetary bodies and well documented to have occurred in the early Solar System from the recognition of numerous basaltic meteorites. Considering the ureilite parent body (UPB), the compositions of magmas that formed a potential UPB crust and were complementary to the ultramafic ureilite mantle rocks are poorly constrained. Among the Almahata Sitta meteorites, a unique trachyandesite lava (with an oxygen isotope composition identical to that of common ureilites) documents the presence of volatile- and SiO2-rich magmas on the UPB. The magma was extracted at low degrees of disequilibrium partial melting of the UPB mantle. This trachyandesite extends the range of known ancient volcanic, crust-forming rocks and documents that volcanic rocks, similar in composition to trachyandesites on Earth, also formed on small planetary bodies ∼4.56 billion years ago. It also extends the volcanic activity on the UPB by ∼1 million years (Ma) and thus constrains the time of disruption of the body to later than 6.5 Ma after the formation of Ca–Al-rich inclusions. PMID:25136108

  1. Monogenetic volcanism: personal views and discussion

    NASA Astrophysics Data System (ADS)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  2. Organic Entrainment and Preservation in Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  3. Simulating a Volcanic Crisis in the Classroom.

    ERIC Educational Resources Information Center

    Harpp, Karen S.; Sweeney, William J.

    2002-01-01

    Reports on the design of a multi-week cooperative learning activity for an undergraduate introductory volcanology class which culminates in the simulation of a volcanic monitoring crisis. Suggests that this activity creates an effective and exciting learning environment in which students have the opportunity to apply theoretical concepts to a more…

  4. Dating volcanic ash by use of thermoluminescence

    SciTech Connect

    Berger, G.W. )

    1992-01-01

    The fine-silt-sized (4-11 {mu}m) grains of glass separated from four samples of independently dated, 8 to 400 ka, tephra beds provide accurate thermoluminescence (TL) ages. This demonstration of reliable TL dating of volcanic glass provides a new tephrochronometer for deposits spanning the Holocene to middle Pleistocene age range.

  5. Volcanism, global catastrophe and mass mortality

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Burke, K.

    1988-01-01

    The effects of very large volcanic eruptions are well documented in many studies, mostly based on observations made on three historic eruptions, Laki 1783; Tambora 1815 and Krakatau 1883. Such eruptions have effects that are catastrophic locally and measurable globally, but it is not clear that even the largest volcanic eruptions have had global catastrophic effects, nor caused mass extinctions. Two different types of volcanic eruption were considered as likely to have the most serious widespread effects: large silicic explosive eruptions producing hundreds or thousands of cubic kilometers of pyroclastic materials, and effusive basaltic eruptions producing of approximately 100 cubic kilometers of lava. In both cases, the global effects are climatic, and attributable to production of stratospheric aerosols. Other possibilities need to be explored. Recent research on global change has emphasized the extreme sensitivity of the links between oceanic circulation, atmospheric circulation and climate. In particular, it was argued that the pattern of ocean current circulation (which strongly influences climate) is unstable; it may rapidly flip from one pattern to a different one, with global climatic consequences. If volcanism has been a factor in global environmental change and a cause of mass extinctions, it seems most likely that it has done so by providing a trigger to other processes, for example by driving oceanic circulation from one mode to another.

  6. Impact of Volcanic Activity on AMC Channel Operations

    DTIC Science & Technology

    2014-06-13

    IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Matthew D... VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational Sciences...AFIT-ENS-GRP-14-J-11 IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS Matthew D. Meshanko, BS, MA Major, USAF

  7. Evolution of volcanic rocks and associated ore deposits in the Marysvale volcanic field, Utah

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Rowley, Peter D.; Naeser, Charles W.; Mehnert, Harald H.; Hedge, Carl E.; Ludwig, Kenneth R.

    1994-01-01

    A geological account on the igneous activity and associated mineral deposition in the volcanic field of Marysvale in Utah is presented. Three episodes (34-22 Ma, 22-14 Ma and 9-5 Ma) involved in the volcanic rock eruption and associated mineralization are described. The first episode is believed to have occurred during the time of tectonic convergence when two contrasting suites of rocks, Mount Dutton Formation and Bullion Canyon Volcanics, erupted concurrently. Mineralization during this period was sparse. In the second episode, change from intermediate to bimodal volcanism occurred. During the third episode, basaltic compositions did not change. Although major element constituent had rhyolites similar to that of the second episode, rhyolites had a marked radiogenic isotope characteristic difference.

  8. Volcanic Ash Transport and Dispersion Forecasting

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  9. Volcanic Plume Chemistry: Models, Observations and Impacts

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    Volcanic plumes are highly chemically reactive; both in the hot, near-vent plume, and also at ambient temperatures in the downwind plume, as the volcanic gases and aerosol disperse into the background atmosphere. In particular, DOAS (Differential Optical Absortpion Spectroscopy) observations have identified BrO (Bromine Monoxide) in several volcanic plumes degassing into the troposphere. These observations are explained by rapid in-plume autocatalytic BrO-chemistry that occurs whilst the plume disperses, enabling oxidants such as ozone from background air to mix with the acid gases and aerosol. Computer modelling tools have recently been developed to interpret the observed BrO and predict that substantial ozone depletion occurs downwind. Alongside these modelling developments, advances in in-situ and remote sensing techniques have also improved our observational understanding of volcanic plumes. We present simulations using the model, PlumeChem, that predict the spatial distribution of gases in volcanic plumes, including formation of reactive halogens BrO, ClO and OClO that are enhanced nearer the plume edges, and depletion of ozone within the plume core. The simulations also show that in-plume chemistry rapidly converts NOx into nitric acid, providing a mechanism to explain observed elevated in-plume HNO3. This highlights the importance of coupled BrO-NOx chemistry, both for BrO-formation and as a production mechanism for HNO3 in BrO-influenced regions of the atmosphere. Studies of coupled halogen-H2S-chemistry are consistent with in-situ Alphasense electrochemical sensor observations of H2S at a range of volcanoes, and only predict H2S-depletion if Cl is additionally elevated. Initial studies regarding the transformations of mercury within volcanic plumes suggest that significant in-plume conversion of Hg0 to Hg2+ can occur in the downwind plume. Such Hg2+ may impact downwind ecology through enhanced Hg-deposition, and causing enhanced biological uptake of

  10. Holocene explosive volcanism of the Jan Mayen (island) volcanic province, North-Atlantic

    NASA Astrophysics Data System (ADS)

    Gjerløw, Eirik; Haflidason, H.; Pedersen, R. B.

    2016-07-01

    The volcanic island Jan Mayen, located in the Norwegian-Greenland Sea, hosts the active stratovolcano of Beerenberg, the northernmost active subaerial volcano in the world. At least five eruptions are known from the island following its discovery in the 17th century, but its eruptive history prior to this is basically unknown. In this paper two sediment cores retrieved close to Jan Mayen have been studied in detail to shed light on the Holocene history of explosive volcanism from the Jan Mayen volcanic province. Horizons with elevated tephra concentrations were identified and tephra from these was analysed to determine major element chemistry of the tephra. The tephra chemistry was used to provide a link between the two cores and the land based tephra records from Jan Mayen Island. We managed to link two well-developed tephra peaks in the cores by their geochemical composition and age to Jan Mayen. One of these peaks represents the 1732 AD eruption of Eggøya while the other peak represents a previously undescribed eruption dated to around 10.3 ka BP. Two less prominent tephra peaks, one in each core, dated to approximately 2.3 and 3.0 ka BP, also have a distinct geochemical character linking them to Jan Mayen volcanism. However, the most prominent tephra layer in the cores located close to Jan Mayen and numerous other cores along the Jan Mayen ridge is the 12.1 ka BP Vedde Ash originating from the Iceland volcanic province. We find that the Holocene volcanism on Jan Mayen is much less explosive than volcanism in Iceland, and propose that either low amounts of explosive volcanic activity from the summit region of Beerenberg or small to absent glacier cover on Beerenberg is responsible for this.

  11. Cooling Rates of Lunar Volcanic Glass Beads

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  12. Volcanic lake systematics II. Chemical constraints

    USGS Publications Warehouse

    Varekamp, J.C.; Pasternack, G.B.; Rowe, G.L.

    2000-01-01

    A database of 373 lake water analyses from the published literature was compiled and used to explore the geochemical systematics of volcanic lakes. Binary correlations and principal component analysis indicate strong internal coherence among most chemical parameters. Compositional variations are influenced by the flux of magmatic volatiles and/or deep hydrothermal fluids. The chemistry of the fluid entering a lake may be dominated by a high-temperature volcanic gas component or by a lower-temperature fluid that has interacted extensively with volcanic rocks. Precipitation of minerals like gypsum and silica can strongly affect the concentrations of Ca and Si in some lakes. A much less concentrated geothermal input fluid provides the mineralized components of some more dilute lakes. Temporal variations in dilution and evaporation rates ultimately control absolute concentrations of dissolved constituents, but not conservative element ratios. Most volcanic lake waters, and presumably their deep hydrothermal fluid inputs, classify as immature acid fluids that have not equilibrated with common secondary silicates such as clays or zeolites. Many such fluids may have equilibrated with secondary minerals earlier in their history but were re-acidified by mixing with fresh volcanic fluids. We use the concept of 'degree of neutralization' as a new parameter to characterize these acid fluids. This leads to a classification of gas-dominated versus rock-dominated lake waters. A further classification is based on a cluster analysis and a hydrothermal speedometer concept which uses the degree of silica equilibration of a fluid during cooling and dilution to evaluate the rate of fluid equilibration in volcano-hydrothermal systems.

  13. Pacific seamount volcanism in space and time

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.

    2007-02-01

    Seamounts constitute some of the most direct evidence about intraplate volcanism. As such, when seamounts formed and into which tectonic setting they erupted (i.e. on-ridge or off-ridge) are a useful reflection of how the properties of the lithosphere interact with magma generation in the fluid mantle beneath. Proportionately few seamounts are radiometrically dated however, and these tend to be recently active. In order to more representatively sample and better understand Pacific seamount volcanism this paper estimates the eruption ages (tvolc) of 2706 volcanoes via automated estimates of lithospheric strength. Lithospheric strength (GTRrel) is deduced from the ratio of gravity to topography above the summits of volcanoes, and is shown to correlate with seafloor age at the time of volcanic loading (Δt) at 61 sites where radiometric constraints upon Δt exist. A trend of fits data for these 61, and with seafloor age (tsf) known, can date the 2706 volcanoes; tvolc = tsf - Δt. Widespread recurrences of volcanism proximal to older features (e.g. the Cook-Austral alignment in French Polynesia) suggest that the lithosphere exerts a significant element of control upon the location of volcanism, and that magmatic throughput leaves the lithosphere more susceptible to the passage of future melts. Observations also prompt speculation that: the Tavara seamounts share morphological characteristics and isostatic compensation state with the Musicians, and probably formed similarly; the Easter Island chain may be a modern analogy to the Cross-Lines; a Musicians - South Hawaiian seamounts alignment may be deflecting the Hawaiian hotspot trace.

  14. Map of Io's volcanic heat flow

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Veeder, Glenn J.; Matson, Dennis L.; Johnson, Torrence V.

    2015-12-01

    We present a map of Io's volcanic heat flow. Io's high heat flow is a result of intense tidal heating, which generates widespread volcanic activity. The surface expression of ongoing volcanic activity constrains the location and magnitude of tidal dissipation within Io. Tidal heating models place heating either at relatively shallow (aesthenosphere) levels, or deep in the mantle. It was thought that actual tidal heating could be approximated using a combination of these end-member models. Io's volcanic heat flow has now been mapped in sufficient detail to compare with the models. Our maps show that the distribution of heat flow is not matched by current models of deep nor shallow tidal heating, nor by any combination of these two models. We find relatively low heat flow at sub-jovian (0°W) and anti-jovian (180°W) longitudes, at odds with the pure aesthenospheric heating model. Furthermore, there are large swaths of Io's surface where there is poor correlation between the number of hot spots in an area and the power emitted. We have previously accounted for ≈54% of Io's observed heat flow. We now show that Io's anomalously warm poles, possibly the result of heat flow from deep-mantle heating, would yield the ;missing; energy (48 TW) if the polar surfaces are at temperatures of ∼90 K to ∼95 K and cover latitudes above ∼43° to ∼48° respectively. This possibility implies a ratio of deep to shallow heating of about 1:1. However, explaining regional variations in surface volcanic activity requires more detailed modeling of the location and magnitude of the internal tidal dissipation and the consequences of mantle convection and advection within Io. Future model predictions can be compared to our heat flow map.

  15. International Database of Volcanic Ash Impacts

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  16. Volcanic and tectonic evolution of the Cascade volcanic arc, central Oregon

    SciTech Connect

    Priest, G.R. )

    1990-11-10

    From 22 to 0 Ma, {sigma}{sub 1} and {sigma}{sub 3} was likely a response to decreasing influence of ENE to NE compression at the Juan de Fuca plate-North American plate (JDFP-NAP) boundary relative to N-S compression and attendant continental extension produced at the Pacific plate (PP)-North American plate boundary. Decreases in orthogonal convergence rate, convergence angle, and length of the convergent margin relative to the NAP-PP transform Ma to 16.9-7.4 Ma, probably reflecting a decrease in convergence rate. Volcanic production increased at 7.4-0 Ma even though convergence rate continued to decrease. The extensional stress regime at 7-0 Ma promoted mafic volcanism that caused the increased volcanic production. Volcanic production is therefore a function of convergence rate and upper plate stress regime. The volcanic front migrated progressively eastward from 35 to 0 Ma as the volcanic belt narrowed. The narrowing was caused primarily by steepening slab dip at depths greater than 100 km. Eastward migration was likely caused by decreasing shallow (0-100 km) slab dip resulting from thinning of the NAP. Uplift of the Western Cascades province in the early Pliocene may have been caused by vigorous flow into the mantle wedge accommodating an increase of free rollback rate of the subducted plate at 4 Ma.

  17. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  18. Submarine Volcanic Morphology of Santorini Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  19. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  20. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    PubMed

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism.

  1. Pore pressure embrittlement in a volcanic edifice

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael J.; Baud, Patrick; Reuschlé, Thierry; Varley, Nick R.

    2016-01-01

    The failure mode of porous rock in compression—dilatant or compactant—is largely governed by the overlying lithostatic pressure and the pressure of pore fluids within the rock (Wong, Solid Earth 102:3009-3025, 1997), both of which are subject to change in space and time within a volcanic edifice. While lithostatic pressure will tend to increase monotonously with depth due to the progressive accumulation of erupted products, pore pressures are prone to fluctuations (during periods of volcanic unrest, for example). An increase in pore fluid pressure can result in rock fracture, even at depths where the lithostatic pressure would otherwise preclude such dilatant behaviour—a process termed pore fluid-induced embrittlement. We explore this phenomenon through a series of targeted triaxial experiments on typical edifice-forming andesites (from Volcán de Colima, Mexico). We first show that increasing pore pressure over a range of timescales (on the order of 1 min to 1 day) can culminate in brittle failure of otherwise intact rock. Irrespective of the pore pressure increase rate, we record comparable accelerations in acoustic emission and strain prior to macroscopic failure. We further show that oscillating pore fluid pressures can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. We find that macroscopic failure occurs once a critical threshold of damage is surpassed, suggesting that only small increases in pore pressure may be necessary to trigger failure in previously damaged rocks. Finally, we observe that inelastic compaction of volcanic rock (as we may expect in much of the deep edifice) can be overprinted by shear fractures due to this mechanism of embrittlement. Pore fluid-induced embrittlement of edifice rock during volcanic unrest is anticipated to be highest closer to the conduit and, as a result, may assist in the development of a fractured halo zone surrounding the

  2. Volcanic lightning in the lab: observations from rapid decompression experiments with natural volcanic samples

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, M. A.; Cimarelli, C.; Scheu, B.; Kueppers, U.; Dingwell, D. B.

    2012-12-01

    Explosive volcanic eruptions often produce spectacular volcanic lightning. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Yet volcanic lightning continues to be poorly understood, because there are still few direct scientific observations of the phenomena. Lightning strikes produced during volcanic eruptions have been associated with two phases with completely different dynamics: 1) In the explosive phase, volcanic particles and gas are violently ejected producing lightning near the vent; 2) in the second phase, lightning discharges occur within the eruption plume produced by the rise of the gas-ash-mixture. Almost all the research on volcanic charging has been carried out on the second phase because the plume covers a wide area and measurements can be made at several km from the vent. Given its explosive nature, direct electric measurements on the first phase are severely restricted. We generate lightning in rapid decompression experiments with natural volcanic particles. These experiments were performed in a shock-tube apparatus that mimics the explosive phase of volcanic eruptions under controlled conditions. Upon decompression (from 5-15 MPa Argon pressure to 0,1 MPa),loose volcanic ash is ejected into a voluminous tank at atmospheric conditions. The ejection of the particles is monitored using a high-speed camera at frame rates of up to 65,000 frames per second. We performed experiments with samples from different volcanoes and with different grain-sizes. In some experiments we observe more than 120 lightning strikes of up to 5 cm in length within less than10 ms. Most of the lightning strikes are observed in only one frame, suggesting that they last less than 20 microseconds. Our observations indicate that particle charging and lightning are strongly controlled by the ejection dynamics and the sample characteristics. A fundamental advantage of the laboratory experiments is

  3. Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina)

    NASA Astrophysics Data System (ADS)

    Mazzarini, F.; Fornaciai, A.; Bistacchi, A.; Pasquarè, F. A.

    2008-09-01

    Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35°S and 38°S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7-49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5-48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48-49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime.

  4. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    NASA Astrophysics Data System (ADS)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  5. [Effects of volcanic eruptions on human health in Iceland. Review].

    PubMed

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  6. Quaternary volcanism in the Acambay graben, Mexican Volcanic Belt: Re-evaluation for potential volcanic danger in central Mexico

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Lacan, P.; Roldan-Quintana, J.; Ortuňo, M.; Zuniga, R. R.; Laurence, A.

    2015-12-01

    The Mexican Volcanic Belt (MVB) is best known for the major active stratovolcanoes, such as Popocatépetl, Citlaltépetl and Colima. The most common stratovolcanoes in this province are modest-size cones with heights of 800 to 1000 m. Examples are Tequila, Sangangüey, Las Navajas, Culiacán, La Joya, El Zamorano, Temascalcingo and Altamirano; these last two were formed within the Acambay Graben in central MVB. The Acambay graben (20 x 70 km) is 100 km to the NW of Mexico City, with E-W trending seismically active normal faults; in particular the Acambay-Tixmadejé fault related to a mB =7 earthquake in 1912. Within the graben there are many volcanic structures, including calderas, domes, cinder cones and stratovolcanoes; Temascalcingo and Altamirano are the largest, with about 800 and 900 m heights, respectively. Temascalcingo is mostly composed of dacitic lavas and block and ash flow deposits. Includes a 3 x 2.5 km summit caldera and a magmatic sector collapse event with the associated debris avalanche deposit. 14C ages of 37-12 ka correspond to the volcano's latest phases that produced pyroclastic deposits. A major plinian eruption formed the San Mateo Pumice with an age of <20 Ka. Altamirano volcano is poorly studied; it is andesitic-dacitic, composed of lavas, pyroclastic flow deposits, and pumice fallouts. Morphologically is better preserved than Temascalcingo, and it should be younger. 14C ages of 4.0-2.5 ka were performed in charcoal within pyroclastic flow deposits that apparently were erupted from Altamirano. An undated 3 m thick pumice fallout on the flanks of Altamirano volcano could be also Holocene. It represents a major explosive event. The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally thought as an inactive volcanic zone. The two major volcanoes, Temascalcingo and Altamirano, should be considered as dormant volcanoes that could restart activity at any time. We

  7. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  8. Magma vesiculation and pyroclastic volcanism on Venus

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.; Head, J. W.; Wilson, L.

    1982-11-01

    Theoretical consideration of the magma vesiculation process under observed and inferred venusian surface conditions suggests that vesicles should form in basaltic melts, especially if CO2 is the primary magmatic volatile. However, the high surface atmospheric pressure (about 90 bars) and density on Venus retard bubble coalescence and disruption sufficiently to make explosive volcanism unlikely. The products of explosive volcanism (fire fountains, convecting eruption clouds, pyroclastic flows, and topography-mantling deposits of ash, spatter, and scoria) should be rare on Venus, and effusive eruptions should dominate. The volume fraction of vesicles in basaltic rocks on Venus are predicted to be less than in chemically similar rocks on earth. Detection of pyroclastic landforms or eruption products on Venus would indicate either abnormally high volatile contents of Venus magmas (2.5-4 wt%) or different environmental conditions (e.g., lower atmospheric pressure) in previous geologic history.

  9. Seasonal variations of volcanic eruption frequencies

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  10. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Jianping Mao )

    1992-12-24

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95% level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight. 21 refs., 2 figs., 1 tab.

  11. Noise-induced variability of volcanic extrusions

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2016-11-01

    Motivated by important physical applications, we study a non-linear dynamics of volcanic extrusions on the basis of a simple pressure-mass flow model. We demonstrate that the deterministic phase portrait represents either the bulbous-type curves or closed paths stretched to their left depending on the initial conditions. The period of phase trajectories therewith increases when the pressure drop between the conduit top and bottom compensates the lava column pressure in it. Stochastic forcing changes the system dynamics drastically. We show that a repetitive scenario of volcanic behaviour with intermittency of stochastic oscillations of different extrusion amplitudes and frequencies appears in the presence of noises. As this takes place, the mean values of interspike intervals characterizing the system periodicity have a tendency to grow with increasing the noise intensity. The probability distribution functions confirming this dynamic behaviour are constructed.

  12. The scaling of experiments on volcanic systems

    NASA Astrophysics Data System (ADS)

    Merle, Olivier

    2015-06-01

    In this article, the basic principles of the scaling procedure are first reviewed by a presentation of scale factors. Then, taking an idealized example of a brittle volcanic cone intruded by a viscous magma, the way to choose appropriate analogue materials for both the brittle and ductile parts of the cone is explained by the use of model ratios. Lines of similarity are described to show that an experiment simulates a range of physical processes instead of a unique natural case. The pi theorem is presented as an alternative scaling procedure and discussed through the same idealized example to make the comparison with the model ratio procedure. The appropriateness of the use of gelatin as analogue material for simulating dyke formation is investigated. Finally, the scaling of some particular experiments such as pyroclastic flows or volcanic explosions is briefly presented to show the diversity of scaling procedures in volcanology.

  13. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  14. Learning to recognize volcanic non-eruptions

    USGS Publications Warehouse

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  15. Obsidian hydration dating of volcanic events

    USGS Publications Warehouse

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  16. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  17. Volcanic influences on the atmospheric methane budget

    NASA Astrophysics Data System (ADS)

    Gauci, V.; Blake, S.; Stevenson, D.

    2003-04-01

    It is well known that volcanic gases can pollute the atmosphere. Certain volcanic gases can produce biogeochemical effects that lead to an indirect volcanic effect on the atmosphere. Microbially mediated emission of CH4 from wetlands can be reduced as a result of SO4-- deposition by stimulating competitive exclusion of methanogens by sulfate reducing microorganisms. Hence, a large emission of volcanic SO2 could lead to a fall in atmospheric CH4. We have developed a simple mathematical model to explore the effects of the Icelandic Laki eruption that occurred in 1783 and compare the results with ice-core records of late 18th century atmospheric methane. Field experiments have shown that methane emission rates are suppressed for at least 2 years after a short episode of S deposition which is likely due to reoxidation of reduced sulfur compounds back to SO4-- at steep redox gradients that exist within wetlands. Using Stevenson et al.'s (2003) model, we estimate a reduction in methane emission from northern wetlands of ca. 10 Tg/year (a 6 percent reduction). Our model predicts a decrease in the mean global atmospheric methane concentration of up to 5 ppbv (0.7 percent) and a c. 15 year period of lowered methane. Ice-core data (Etheridge et al., 1998) show a possible dip in atmospheric methane growth rate at the correct time, but a fuller comparison is compromised by the coarseness of the record. Our study suggests that basaltic eruptions that are at least the size and duration of Laki can induce a measurable reduction in atmospheric methane.

  18. Coping with volcanic hazards; a global perspective

    USGS Publications Warehouse

    Tilling, R.I.

    1990-01-01

    Compared to some other natural hazards-such as floods, storms, earthquakes, landslides- volcanic hazards strike infrequently. However, in populated areas , even very small eruptions can wreak havoc and cause widespread devastation. For example, the 13 November 1985 eruption of Nevado del Ruiz in Colombia ejected only about 3 percent of the volume of ash produced during the 18 May 1980 eruption of Mount St. Helens. Yet, the mudflows triggered by this tiny eruption killed more than 25,000 people.

  19. Microphysical Processes Affecting the Pinatubo Volcanic Plume

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia

    1996-01-01

    In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.

  20. Preventive health measures in volcanic eruptions.

    PubMed Central

    Baxter, P J; Bernstein, R S; Buist, A S

    1986-01-01

    Medical treatment has only a small role in severe volcanic eruptions and so preventive measures are paramount if injuries and loss of life are to be reduced. The health team must be incorporated in emergency planning and response at the earliest stage. Guidance on the interpretation of geological information about a volcano and the appropriate health measures that should be adopted before and after an eruption are summarized for the benefit of health workers. PMID:3946731

  1. A Possible Origin of Volcanic Tremor

    NASA Astrophysics Data System (ADS)

    Sakuraba, A.

    2014-12-01

    Sakuraba and Yamauchi (2014) found in their linear stability analysis that a laminar flow through an infinitely extended sheetlike conduit embedded in an infinite elastic medium is destabilized with a much slower critical speed than previously thought, and proposed that this instability might be an origin of volcanic tremor. In their results, the viscous drag due to the main fluid flow amplifies the surface (Rayleigh) wave that involves flexural deformation of the conduit. The oscillation period of the surface wave, essentially determined by wavelength, naturally falls into a narrow range of about 0.1-1 s if their result is applied to a typical volcanic setting, firstly because there is an upper bound in the conduit (dike) length and secondly because there is an upper bound in the magma flow speed. The above flow-induced oscillation can explain why most of volcanic tremors produce similar oscillation periods despite the variety of volcanos, but there still remain some uncertainties in the model. Most importantly, the model assumes an infinitely extended dike and cannot explain emergence of multiple spectral peaks that is one of the most remarkable characteristics of volcanic tremor. In this presentation, I am going to report some results of a laboratory experiment. In order to understand the nature of a finitely extended sheetlike conduit as a wave generator, I am planning to observe oscillations of a gel in which a thin slit is made and a viscous fluid such as syrup is force to flow through it. The project is currently ongoing, but I expect that an oscillation can be excited due to a similar mechanism to that predicted in the linear study.

  2. Volcanic Plumes on Io and Mars

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Senske, David (Technical Monitor)

    2001-01-01

    Proxemy research is under contract to NASA to perform science research of volcanic plumes on Mars and Io. This report is submitted in accordance with contract NASW-00013 and contains a summary of activities. In addition to a synopsis of science research conducted, any manuscripts submitted for publication in this time period are also attached. Abstracts to scientific conferences may also be included if appropriate.

  3. Volcanic Plumes on Venus and Io

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Grant, John (Technical Monitor)

    2000-01-01

    Proxemy Research is under contract to NASA to perform science research of volcanic plumes on Venus and lo. This report is submitted in accordance with contract NASW -98012 and contains a summary of activities conducted over the time period indicated. In addition to a synopsis of science research conducted, any manuscripts submitted for publication in this time period are also attached. Abstracts to scientific conferences may also be included if appropriate.

  4. Tectonic Controls on Pyroclastic Volcanism on Mercury

    NASA Astrophysics Data System (ADS)

    Habermann, M.; Klimczak, C.

    2015-12-01

    Over much of Mercury's geologic history the planet has contracted as a response to cooling of its interior. Such contraction is evident as landforms formed by thrust faults, which have accommodated a radius decrease of ~5 km. Stresses from global contraction imposed on the lithosphere are not favorable for and prevent volcanism. Yet, there are examples on Mercury where pyroclastic deposits superpose thrust faults, indicating that explosive volcanism has occurred after the onset of global contraction. To better understand the spatial relationships of thrust faults with the pyroclastic vents, we used MESSENGER image data to categorize 343 vents by their occurrence either (1) within 30 km, (2) within 100 km, or (3) farther than 100 km from a thrust fault, using ArcGIS. Vents were also classified by their association with impact craters. Results show that 75% of all vents are located within impact structures, with 36% of vents within 30 km of thrust faults, 41% located farther than 30 but within 100 km of thrust faults, and 23% of vents are farther than 100 km from a thrust fault. To investigate whether this geospatial relationship is tectonically controlled, three areas —representing the three categories of vents— were mapped, and the locations and orientations of vents and faults were recorded. Stress changes around these faults were then numerically modeled with the COULOMB 3.4 software, using elastic rock properties, a background stress field, and fault size- and dislocation parameters applicable to conditions of Mercury's global contractional tectonic environment. Preliminary results indicate that stress changes can locally produce conditions beneficial for volcanism. Further modeling will determine if such beneficial conditions are geospatially correlated with the pyroclastic vents and thus enable a better understanding of pyroclastic volcanism on Mercury after the onset of global contraction.

  5. Skywave Radar Detectability of Volcanic Aersols

    DTIC Science & Technology

    1984-08-01

    be explained by: (a) early scavenging of ash by the condensation of emitted water vapour to form rapidly settling ice crystals ; (b) rapid settling of...prior to eruption; (b) pumice - a rock froth formed by the rapid quenching of magma, composed . - -...-. of volcanic glass, crystals of several...different minerals, and gas bubble "voids; (c) crystals and crystal fragments of various minerals which were derived from lithic fragments as well as from

  6. Volcanic disasters and incidents: A new database

    NASA Astrophysics Data System (ADS)

    Witham, C. S.

    2005-12-01

    A new database on human mortality and morbidity, and civil evacuations arising from volcanic activity is presented. The aim is to quantify the human impacts of volcanic phenomena during the 20th Century. Data include numbers of deaths, injuries, evacuees and people made homeless, and the nature of the associated volcanic phenomena. The database has been compiled from a wide range of sources, and discrepancies between these are indicated where they arise. The quality of the data varies according to the source and the impacts reported. Data for homelessness are particularly poor and effects from ashfall and injuries appear to be under-reported. Of the 491 events included in the database, ˜53% resulted in deaths, although the total death toll of 91,724 is dominated by the disasters at Mt Pelée and Nevado del Ruiz. Pyroclastic density currents account for the largest proportion of deaths, and lahars for the most injuries incurred. The Philippines, Indonesia, and Southeast Asia, as a region, were the worst affected, and middle-income countries experienced greater human impacts than low or high-income countries. Compilation of the database has highlighted a number of problems with the completeness and accuracy of the existing CRED EM-DAT disaster database that includes volcanic events. This database is used by a range of organisations involved with risk management. The new database is intended as a resource for future analysis and will be made available via the Internet. It is hoped that it will be maintained and expanded.

  7. Jasper Seamount: Seven million years of volcanism

    SciTech Connect

    Pringle, M.S. ); Staudigel, H.; Gee, J. )

    1991-04-01

    Jasper Seamount is a young, mid-sized (690 km{sup 3}) oceanic intraplate volcano located about 500 km west-southwest of San Diego, California. Reliable {sup 40}Ar/{sup 39}Ar age data were obtained for several milligram-sized samples of 4 to 10 Ma plagioclase by using a defocused laser beam to clean the samples before fusion. Gee and Staudigel suggested that Jasper Seamount consists of a transitional to tholeiitic shield volcano formed by flank transitional series lavas, overlain by flank alkalic series lavas and summit alkalic series lavas. Twenty-nine individual {sup 40}Ar/{sup 39}Ar laser fusion analyses on nine samples confirm the stratigraphy: 10.3-10.0 Ma for the flank transitonal series, 8.7-7.5 Ma for the flank alkalic series, and 4.8-4.1 Ma for the summit alkalic series. The alkalinity of the lavas clearly increases with time, and there appear to be 1 to 3 m.y. hiatuses between each series. The age data are consistent with the complex magnetic anomaly of Jasper; however the dominant reversed polarity inferred from the anomaly suggests that most of the seamount formed at ca. 11 Ma, prior to the onset of Chron C5N. The duration of volcanism of Jasper Seamount is slightly longer than the duration of volcanism at Hawaiian volcanoes, suggesting that individual age data from seamounts may constrain the age of a seamount only to within about 7 m.y. unless the stage of volcanism can be unambiguously determined. Extrapolating from the results of our study, similar precision in age determinations should be possible on 50 mg of 1 Ma plagioclase from mid-ocean ridge basalt, opening new possibilities in the geochronology of young, low-potassium volcanic rocks.

  8. The Zuni-Bandera Volcanic Field, NM: An Analog for Exploring Planetary Volcanic Terrains

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Garry, W. B.; Zimbelman, J. R.; Crumpler, L. S.; Aubele, J. C.

    2010-12-01

    The Zuni-Bandera volcanic field, near Grants, New Mexico, is comprised of volcanic deposits from several basaltic eruptions during the last million years. This vent field exhibits a diverse group of coalesced lava flows and displays well-preserved volcanic features including a’a and pahoehoe flows, collapsed lava tubes, cinder cones and low shields. The McCartys flow is a 48-km long inflated basalt flow and is the youngest in the field at around 3000 years old. Over the last three years we have used the Zuni-Bandera volcanic field, and the McCartys flow in particular, as a terrestrial analog for exploring planetary volcanic fields, and understanding the role of lava sheet inflation in flow field development. We have conducted three different styles of analog tests, 1) basic field science focused on understanding lava sheet inflation, 2) mission operations tests related to EVA design and real-time modification of traverse plans, and 3) science enabling technology tests. The Zuni-Bandera field is an ideal location for each style of analog test because it provides easy access to a diverse set of volcanic features with variable quality of preservation. However, many limitations must also be considered in order to maximize lessons learned. The McCartys flow displays well-preserved inflation plateaus that rise up to 15 m above the surrounding field. The preservation state enables textures and morphologies indicative of this process to be characterized. However, the pristine nature of the flow does not compare well with the much older and heavily modified inflated flows of Mars and the Moon. Older flows west of McCartys add value to this aspect of analog work because of their degraded surfaces, development of soil horizons, loose float, and limited exposure of outcrops, similar to what might be observed on the Moon or Mars. EVA design tests and science enabling technology tests at the Zuni-Bandera field provide the opportunity to document and interpret the relationships

  9. The Interaction of Volcanic Ash with Water and its Impact on Volcanic Plume Evolution

    NASA Astrophysics Data System (ADS)

    Nenes, A.; Lathem, T. L.; Kumar, P.; Dufek, J.; Sokolik, I. N.; Raymond, T. M.

    2011-12-01

    Volcanic eruptions are long known to have profound impacts on the Earth System and society, which result from the atmospheric emissions and transport of volcanic ash. Yet, limited observational data exists on the physical interactions between water vapor with ash particles which are thought to strongly impact the coagulation efficiency and microphysical evolution of volcanic ash. In this study, we investigate the water uptake properties of fine volcanic ash (less than 125 micro-meter diameter) from a diverse set of eruptions: Mount St. Helens (1980), Tungurahua (2006), Chaiten (2008), Redoubt (2009), and Eyjafjallajökull (2010). The hydrophilicity of the ash particles is quantified by their ability to nucleate cloud droplets under controlled levels of water vapor supersaturation. From this information, we deduce the source of particle hydrophilicity (being absorption from deliquescent soluble material present in the ash or adsorption onto its surface), and, determine their equilibrium water uptake curve. This information is then introduced into a computational fluid dynamic simulation of the Eyjafjallajökull eruption and assess the effects of ash water uptake on the volcanic plume evolution.

  10. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  11. Volcanism, isostatic residual gravity, and regional tectonic setting of the Cascade volcanic province

    SciTech Connect

    Blakely, R.J.; Jachens, R.C. )

    1990-11-10

    A technique to locate automatically boundaries between crustal blocks of disparate densities was applied to upward continued isostatic residual gravity data. The boundary analysis delineates a narrow gravitational trough that extends the length of the Pliocene and Quaternary volcanic arc from Mount Baker in northern Washington to Lassen Peak in California. Gravitational highs interrupt the trough at two localities: A northwest trending high in southern Washington and a northeast trending high between Mount Shasta and Lassen Peak. The latter anomaly is one of a set of northeast trending anomalies that, within the Quaternary arc, appear related to volcanic segmentation proposed previously on the basis of spatial compositional distributions of volcanoes. These northeast trending anomalies extend hundreds of kilometers northeast of the arc, are caused by sources in the upper crust, and in some cases are related to exposed pre-Tertiary rocks. Segmentation models invoke geometric characteristics of the subducting plate as the primary factor controlling location and chemistry of volcanism, and these northeast trending gravity sources also may be a product of disturbance of the upper crust by the subduction process. More likely, the gravity sources may reflect upper crustal structures older than the High Cascades, possibly relicts from earlier accretionary events or more recent crustal deformation, that have actively influenced the spatial location of more recent volcanism. Much of the Pliocene and Quaternary volcanism of the Cascade arc has concentrated on or near contacts between crustal blocks of disparate density. These contacts may promote the ascension of magma to the Earth's surface.

  12. Volcanism, isostatic residual gravity, and regional tectonic setting of the Cascade Volcanic Province

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Jachens, Robert C.

    1990-11-01

    A technique to locate automatically boundaries between crustal blocks of disparate densities was applied to upward continued isostatic residual gravity data. The boundary analysis delineates a narrow gravitational trough that extends the length of the Pliocene and Quaternary volcanic arc from Mount Baker in northern Washington to Lassen Peak in California. Gravitational highs interrupt the trough at two localities: a northwest trending high in southern Washington and a northeast trending high between Mount Shasta and Lassen Peak. The latter anomaly is one of a set of northeast trending anomalies that, within the Quaternary arc, appear related to volcanic segmentation proposed previously on the basis of spatial and compositional distributions of volcanoes. These northeast trending anomalies extend hundreds of kilometers northeast of the arc, are caused by sources in the upper crust, and in some cases are related to exposed pre-Tertiary rocks. Segmentation models invoke geometric characteristics of the subducting plate as the primary factor controlling location and chemistry of volcanism, and these northeast trending gravity sources also may be a product of disturbance of the upper crust by the subduction process. More likely, the gravity sources may reflect upper crustal structures older than the High Cascades, possibly relicts from earlier accretionary events or more recent crustal deformation, that have actively influenced the spatial location of more recent volcanism. Much of the Pliocene and Quaternary volcanism of the Cascade arc has concentrated on or near contacts between crustal blocks of disparate density. These contacts may promote the ascension of magma to the Earth's surface.

  13. Venus volcanism: Initial analysis from Magellan data

    USGS Publications Warehouse

    Head, J.W.; Campbell, D.B.; Elachi, C.; Guest, J.E.; Mckenzie, D.P.; Saunders, R.S.; Schaber, G.G.; Schubert, G.

    1991-01-01

    Magellan images confirm that volcanism is widespread and has been fundamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on Earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komatiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 km3/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  14. Scientists Outline Volcanic Ash Risks to Aviation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The ash clouds that belched out of Iceland's Eyjafjallajökull volcano last spring and dispersed over much of Europe, temporarily paralyzing aviation, were vast smoke signal warnings about the hazard that volcanic ash poses for air traffic around the world. At a 15 December news briefing at the AGU Fall Meeting in San Francisco, two experts with the U.S. Geological Survey (USGS) presented an overview of the damage airplanes can sustain from rock fragment- and mineral fragment-laden ash, an update on efforts to mitigate the hazard of ash, and an outline of further measures that are needed to address the problem. Between 1953 and 2009, there were 129 reported encounters of aircraft with volcanic ash clouds, according to a newly released USGS document cited at the briefing. The report, “Encounters of aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009,” by Marianne Guffanti, Thomas Casadevall, and Karin Budding, indicates that 26 encounters involved significant damage to the airplanes; nine of those incidents resulted in engine shutdown during flight. The report, which does not focus on the effects on airplanes of cumulative exposure to dilute ash and does not include data since 2009, indicates that “ash clouds continue to pose substantial risks to safe and efficient air travel globally.”

  15. Tracing acidification induced by Deccan volcanism

    NASA Astrophysics Data System (ADS)

    Font, Eric; Adatte, Thierry; Fantasia, Alicia; Ponte, Jorge; Florindo, Fabio; Abrajevitch, Alexandra; Samant, Bandana; Mohabey, Dhananjay; Thakre, Deepali

    2015-04-01

    The Deccan Volcanic Province (DVP) is constituted by three major phases of eruptions, for which the most voluminous - the Deccan Phase-2 - encompassed the Cretaceous-Paleogene (KT) boundary and has been pointed as the main contributor of the KT mass extinction. However, the mechanisms (including acidification) by which the massive Deccan Phase eruptions contributed to the end-Cretaceous global changes and to the controversial KT mass extinction are still poorly constrained. Here we identify the regional climate and environmental effects of the Deccan eruptions by studying the magnetic and mineral assemblages preserved in the lacustrine and continental intertrappeans sediments from the western Maharashtra Deccan Volcanic Provinces (DVP). To achieve this objective, we applied rock magnetic techniques coupled to scanning electron microscopy and diffuse reflectance spectrophotometry to samples collected in three different stratigraphic sections. Our results show that the main magnetic carriers of the Deccan lacustrine and continental sediments are represented by allogenic (detrital) magnetite and hematite inherited from the weathering of the surrounding underlying basaltic bedrocks. Iron sulphides (pyrrhotite or greigite) are accessorily observed. Interestingly, the Podgawan deposits show peculiar and very distinct magnetic and mineralogical signatures, including iron oxide reductive dissolution and widespread crystallisation of iron vanadates, that we interpreted as the effect of Deccan induced acidification. Keywords: Deccan Volcanic Province, intertrappean continental sediments, environmental magnetism Funded by FCT (PTDC/CTE-GIX/117298/2010)

  16. Venus volcanism: initial analysis from magellan data.

    PubMed

    Head, J W; Campbell, D B; Elachi, C; Guest, J E; McKenzie, D P; Saunders, R S; Schaber, G G; Schubert, G

    1991-04-12

    Magellan images confirm that volcanism is widespread and has been fimdamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on Earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komatiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 Km(3)/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  17. Venus volcanism - Initial analysis from Magellan data

    NASA Technical Reports Server (NTRS)

    Head, James W.; Campbell, Donald B.; Elachi, Charles; Saunders, R. Stephen; Guest, John E.

    1991-01-01

    Magellan images confirm that volcanism is widespread and has been fundamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komantiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 cu km/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  18. Venus volcanism - Initial analysis from Magellan data

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Campbell, D. B.; Elachi, C.; Guest, J. E.; McKenzie, D. P.; Saunders, R. S.; Schaber, G. G.; Schubert, G.

    1991-04-01

    Magellan images confirm that volcanism is widespread and has been fundamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komantiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 cu km/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  19. Effects of volcanism on tropical variability

    NASA Astrophysics Data System (ADS)

    Maher, Nicola; McGregor, Shayne; England, Matthew H.; Gupta, Alexander Sen

    2015-07-01

    The effects of large tropical volcanic eruptions on Indo-Pacific tropical variability are investigated using 122 historical ensemble members from the Coupled Model Intercomparison Project 5. Radiative forcing due to volcanic aerosols in the stratosphere is found to increase the likelihood of a model climatic response that projects onto both the El Niño-Southern Oscillation and the Indian Ocean Dipole (IOD). Large eruptions are associated with co-occurring El Niño and positive IOD events in the ensemble means that peak 6-12 months after the volcanic forcing peaks, marking a significant increase in the likelihood of each event occurring in the Southern Hemisphere (SH) spring/summer posteruption. There is also an ensemble mean La Niña-like response in the third SH summer posteruption, which coincides with a significant increase in the likelihood of a La Niña occurring. Taken together with the initial cooling, this La Niña-like response may increase the persistence of the cool global average surface temperature anomaly after an eruption.

  20. UNAVCO Conference explores advances in volcanic geodesy

    NASA Astrophysics Data System (ADS)

    Stein, Seth; Hamburger, Michael; Meertens, Charles; Dixon, Timothy; Owen, Susan

    Volcanic eruptions are among Earth's most spectacular surface phenomena. However, attempts to understand their basic physics face the challenge that the key processes occur at great depth and are difficult to observe. Thus volcanologists have been interested for years in using ground deformation measurements to study active volcanoes and predict their behavior during extended volcanic crises, such as the dramatic six weeks in 1980 between the initial and major eruptions of Mt. Saint Helens.The advent of new technologies in recent years—in particular the Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (INSAR)—has shown potential for significant advances in volcano studies. Progress in this direction was explored at a conference organized by the University Navstar Consortium (UNAVCO) on September 15-17, 1999, with financial support from the National Science Foundation (NSF), NASA, and the U.S. Geological Survey (USGS). The meeting aimed to assess the status of various geodetic technologies and their potential to address crucial scientific and social needs in volcanic science and monitoring, as well as to develop recommendations on ways to spur further progress in these areas.

  1. A cryptoendolithic community in volcanic glass.

    PubMed

    Herrera, Aude; Cockell, Charles S; Self, Stephen; Blaxter, Mark; Reitner, Joachim; Thorsteinsson, Thorsteinn; Arp, Gernot; Dröse, Wolfgang; Tindle, Andrew G

    2009-05-01

    Fluorescent in situ hybridization (FISH) and 16S rDNA analysis were used to characterize the endolithic colonization of silica-rich rhyolitic glass (obsidian) in a barren terrestrial volcanic environment in Iceland. The rocks were inhabited by a diverse eubacterial assemblage. In the interior of the rock, we identified cyanobacterial and algal 16S (plastid) sequences and visualized phototrophs by FISH, which demonstrates that molecular methods can be used to characterize phototrophs at the limits of photosynthetically active radiation (PAR). Temperatures on the surface of the dark rocks can exceed 40 degrees C but are below freezing for much of the winter. The rocks effectively shield the organisms within from ultraviolet radiation. Although PAR sufficient for photosynthesis cannot penetrate more than approximately 250 mum into the solid rock, the phototrophs inhabit cavities; and we hypothesize that by weathering the rock they may contribute to the formation of cavities in a feedback process, which allows them to acquire sufficient PAR at greater depths. These observations show how pioneer phototrophs can colonize the interior of volcanic glasses and rocks, despite the opaque nature of these materials. The data show that protected microhabitats in volcanic rocky environments would have been available for phototrophs on early Earth.

  2. Geothermal resource potential of Cascade volcanic arc

    SciTech Connect

    Priest, G.R.

    1987-08-01

    The central and southern cascade volcanic arc has the following features that suggest a high potential for geothermal resources: (1) extensive Quaternary volcanism with some silicic to intermediate volcanoes, (2) hundreds of square kilometers with regional background heat flow in excess of 100 mW/m/sup 2/, (3) shallow (4-9 km) calculated depth to Curie point in the same areas that have heat flow in excess of 100 mW/m/sup 2/, (4) a thick pile of volcanic rock with moderate to low thermal conductivity, (5) hot springs with minimum reservoir temperatures of 174/sup 0/-186/sup 0/C (from the anhydrite geothermometer of Mariner, 1985), and (6) fault zones for fracture permeability. These features are the result of interactions between the North American plate (NAP), the Pacific plate (PP), and the subducted Gorda, Juan de Fuca, and Explorer plates (GJEP). Interactions between the NAP and the PP produce north-south compression and east-west extension, causing extensive development of north-south normal faults and partial melting episodes in upper mantle. Northeast-southwest convergence between the NAP and the GJEP produce subduction-related magmas and crustal deformation from northeast-southwest compression. NAP-GJEP interactions dominate in the northern part of the arc, whereas NAP-PP and NAP-GJEP interactions have combined in the central and southern part of the arc to produce rates of magmatism and heat flow higher than in the north.

  3. Global volcanic emissions: budgets, plume chemistry and impacts

    NASA Astrophysics Data System (ADS)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  4. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  5. Dynamics of pseudotachylytes in volcanic structures

    NASA Astrophysics Data System (ADS)

    Lavallee, Y.; Mitchell, T. M.; Heap, M. J.; Hirose, T.; Dingwell, D. B.

    2010-12-01

    Pseudotachylytes in volcanic systems and structures may play a major role in strain localisation and deformation. Pseudotachylyte formation is typically initiated by nonequilibrium melting of silicate rocks. Such processes may however approach chemical equilibrium if slip is sufficiently sustained. The chemical mixing of initially disequilibrium silicate melts is controlled by diffusion and convection. The latter is strongly enhanced by frictional slip. The rheological properties of silicate melts depend on chemical composition, temperature, the presence of crystals and bubbles, as well as strain rate (at high rates). Thus the complexity of dynamics and rheological behaviour of pseudotachylyte formation associated with volcanic structures requires experimental investigation. Here, high-velocity (1500 rpm equivalent to 2 m/s) friction experiments on andesitic and basaltic volcanic rocks are combined with rheological, geochemical and microstructural analyses as well as neutron-computed-tomography to constrain the development of pseudotachylytes in volcanic structures and their rheological control on the frictional properties of volcano-tectonic faults. The formation of a frictional melt occurs at 1050+/-50 °C and coincides with a peak in the coefficient of friction (1.25 for the andesite and 0.6 for the basalt). As friction is sustained, the coefficient of friction decreases by about 20% to stabilisation while the temperature rises by ca. 300 °C. Post-experiment FE-SEM and SEM image analysis combined with electron microprobe data show a gradation from the host rock, to a thin, outer region of chemically heterogeneous initial melts (protomelts), and an inner region of chemically homogeneous frictional melts in the core of the slip zone. The initial protomelts chemically reflect the composition of the local crystal assemblage and as such, their rheological behaviour may vary locally. The frictional melt in the slip zone, however, chemically reflects the composition

  6. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Pringle, Malcolm S.; Wijbrans, Jan R.

    2003-10-01

    South Pacific intraplate volcanoes have been active since the Early Cretaceous. Their HIMU-EMI-EMII mantle sources can be traced back into the West Pacific Seamount Province (WPSP) using plate tectonic reconstructions, implying that these distinctive components are enduring features within the Earth's mantle for, at least, the last 120 Myr. These correlations are eminent on the scale of the WPSP and the South Pacific Thermal and Isotopic Anomaly (SOPITA), but the evolution of single hot spots emerges notably more complicated. Hot spots in the WPSP and SOPITA mantle regions typically display intermittent volcanic activity, longevities shorter than 40 Myr, superposition of hot spot volcanism, and motion relative to other hot spots. In this review, we use 40Ar/39Ar seamount ages and Sr-Nd-Pb isotopic signatures to map out Cretaceous volcanism in the WPSP and to characterize its evolution with respect to the currently active hot spots in the SOPITA region. Our plate tectonic reconstructions indicate cessation of volcanism during the Cretaceous for the Typhoon and Japanese hot spots; whereas the currently active Samoan, Society, Pitcairn and Marquesas hot spots lack long-lived counterparts in the WPSP. These hot spots may have become active during the last 20 Myr only. The other WPSP seamount trails can be only "indirectly" reconciled with hot spots in the SOPITA region. Complex age distributions in the Magellan, Anewetak, Ralik and Ratak seamount trails would necessitate the superposition of multiple volcanic trails generated by the Macdonald, Rurutu and Rarotonga hot spots during the Cretaceous; whereas HIMU-type seamounts in the Southern Wake seamount trail would require 350-500 km of hot spot motion over the last 100 Myr following its origination along the Mangaia-Rurutu "hotline" in the Cook-Austral Islands. These observations, however, violate all assumptions of the classical Wilson-Morgan hot spot hypothesis, indicating that long-lived, deep and fixed mantle

  7. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  8. Volcanic styles at Alba Patera, Mars: Implications of lava flow morphology to the volcanic history

    NASA Technical Reports Server (NTRS)

    Schneeberger, D. M.; Pieri, D. C.

    1988-01-01

    Alba Patera presents styles of volcanism that are unique to Mars. Its very low profile, large areal extent, unusually long and voluminous lava flows, and circumferential graben make it among Mars' most interesting volcanic features. Clues to Alba's volcanic history are preserved in its morphology and stratigraphy. Understanding the relationship of lava flow morphology to emplacement processes should enable estimates of viscosity, effusion rate, and gross composition to be made. Lava flows, with dimensions considered enormous by terrestrial standards, account for a major portion of the exposed surface of Alba Patera. These flows exhibit a range of morphologies. While most previous works have focused on the planimetric characteristics, attention was drawn to the important morphological attributes, paying particular attention to what the features suggest about the emplacement process.

  9. Volcanism, isostatic residual gravity and regional tectonic setting of the Cascade volcanic province

    USGS Publications Warehouse

    Blakely, R.J.; Jachens, R.C.

    1990-01-01

    A technique to locate automatically boundaries between crustal blocks of disparate densities was applied to upward continued isostatic residual gravity data. The boundary analysis delineates a narrow gravitational trough that extends the length of the Pliocene and Quaternary volcanic arc from Mount Baker in northern Washington to Lassen Peak in California. Gravitational highs interrupt the trough at two localities: a northwest trending high in southern Washington and a northeast trending high between Mount Shasta and Lassen Peak. The gravity sources may reflect upper crustal structures older than the High Cascades, possibly relicts from earlier accretionary events or more recent crustal deformation, that have actively influenced the spatial location of more recent volcanism. Much of the Pliocene and Quaternary volcanism of the Cascade arc has concentrated on or near contacts between crustal blocks of disparate density. These contacts may promote the ascension of magma to the Earth's surface. -from Authors

  10. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  11. Volcanic CO2 as a major agent of weathering in volcanic regions

    NASA Astrophysics Data System (ADS)

    Rive, K.; Gaillardet, J.; Agrinier, P.; Rad, S.

    2007-12-01

    According to high erosion rates, weathering of volcanic areas is one of the main processes controlling the atmospheric CO2 levels (e.g. Louvat, 1997, Dessert et al., 2003). So far, the origin of CO2 was assumed to be mainly atmospheric. The origin and consumption rates of CO2 can be estimated using concentration of Dissolved Inorganic Carbon (DIC ~ bicarbonates) in the rivers and carbon stable isotopes. The processes governing the CO2 consumption by chemical weathering were studied in four volcanic areas, with climates from tropical to sub-polar, in different geodynamic contexts. Lesser Antilles, Reunion, Iceland and French Massif Central are ideal sites for the study of weathering due to the gradients of rainfall (up to 14m/yr), rock ages (tertiary to subactual) and volcanic activities, inducing variable weathering rates (50- 400t/km\\2/yr). δ13CDIC and major elements chemistry were studied in streams, springs and soil solutions of these four areas. The δ13CDIC and major elements concentrations are highly variable, and allow us to identify the origin of DIC as a mixing between biogenic CO2 (average value of δ13C ~ - 29.1±2.0‰ in tropical areas, -26‰ in temperate to sub-polar climate) and volcanic CO2 (δ13CDIC = -5 to 3‰). We found that volcanic CO2 is a major source of carbon, the highest contribution being for zones with high infiltration of water (up to 100\\percent of DIC for Piton de la Fournaise in Reunion). As inferred by Rad et al. (2007) from major elements, this isotopic study of the DIC cycling in the river demonstrates the importance of the volcanic fluids on chemical weathering processes.

  12. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  13. Cluster Analysis of vents in monogenetic volcanic fields, Lunar Crater Volcanic Field (Nevada)

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Cortes, J. A.; Valentine, G. A.; Johnson, P. J.; Tibaldi, A.; Bonali, F. L.

    2012-12-01

    Monogenetic volcanic fields pose a serious risk to human activities and settlements due to their high occurrence around the world and because of the type of eruptive activity that they exhibit. The need of adequate tools to better undertake volcanic hazard assessment for volcanic fields, especially from a spatial point of view, is of key importance at the time of mitigate such hazard. Among these tools, a better understanding of the spatial distribution of cones and vents and any structural/tectonical relationship are essential to understand the plumbing system of the field and thus help to predict the likelihood location of future eruptions. In this study we have developed a spatial methodology, which is the combination of various methodologies developed for volcanic textures and other clustering goals [1,2], to study the clustering of volcanic vents and their relation with structural features from satellite images. The methodology first involves the statistical identification and removal of spatial outliers using a predictive elliptical area [2] and the generation of randomly distributed points in the same predictive area. A comparison of the Near Neighbor Distance (NND) between the generated data and the data measured in a volcanic field is used to determine whether the vents are clustered or not. If the vents are clustered, a combination of hierarchical clustering and K-means [3] is then used to identify the clusters and their related vents. Results are then further constrained with the study of lineaments and other structural features that can be affected and related with the clusters. The methodology was tested in the Lunar Crater Volcanic Field, Nevada (USA) and successfully has helped to identify tectonically controlled lineaments from those that are resultant of geomorphological processes such the drainage control imposed by the cone clusters. Theoretical approaches has been developed before to constrain the plumbing of a volcanic field [4], however these

  14. Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Michalski, Joseph. R.; Bleacher, Jacob E.

    2014-01-01

    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  15. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    PubMed

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  16. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  17. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism

    NASA Astrophysics Data System (ADS)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.

    2015-12-01

    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  18. Volatile Transport by Volcanic Plumes on Earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Baloga, Steve; Stofan, Ellen R.

    2012-01-01

    Explosive volcanic eruptions can produce sustained, buoyant columns of ash and gas in the atmosphere (Fig. 1). Large flood basalt eruptions may also include significant explosive phases that generate eruption columns. Such eruptions can transport volcanic volatiles to great heights in the atmosphere. Volcanic eruption columns can also redistribute chemical species within the atmosphere by entraining ambient atmosphere at low altitudes and releasing those species at much higher altitudes.

  19. The Moon - The volcanic features of the Gemma Frisius region

    NASA Astrophysics Data System (ADS)

    Douglass, Eric

    2003-06-01

    The crater Gemma Frisius in the southern highland region of the Moon is the home of both a large volcanic cone and a dark haloed crater. Little else that is volcanic is appreciated, suggesting that this region was generally covered by an ejecta layer after its volcanic period had ceased. By careful examination of the geology, a history of the region can be pieced together.

  20. A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis

    DTIC Science & Technology

    2012-01-01

    estimates of volcanic ash transport and dispersal. Our primary modeling tools will be a combination of a plume eruption model BENT and the ash transport... eruptions ,” J. of Volcanology and Geothermal Research, vol. 186, pp. 10–21, 2009, special issue on Volcanic Ash Clouds; L. Mastin and P.W. Webley (eds...J. Dehn, J. Bailey, and R. Peterson, “ Volcanic ash dispersion modeling of the 2006 eruption of Augustine Volcano ,” USGS Professional Paper: Augustine

  1. Mare volcanism in the Taurus-Littrow region

    NASA Technical Reports Server (NTRS)

    Delano, J. W.

    1992-01-01

    The products of mare volcanism at Taurus-Littrow occur in the form of crystalline basalts and volcanic glass beads. Both categories of samples define a compositionally diverse, but petrogenetically unrelated, suite of magmas derived by partial melting of a heterogenous, differentiated mantle beneath the region of the Apollo 17 landing site. This is a brief review of what is known and what is not known about mare volcanism at this location on the Moon.

  2. The limiting factors on volcanism on massive stagnant lid planets

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2012-04-01

    As the number of discovered exoplanets is increasing, the question whether these planets could harbor life becomes more relevant. Chemoautotrophs, which live from thermal disequilibrium due to volcanic activity, are believed to have been the first organisms on Earth and maybe on planets in general. Furthermore, volcanism influences the atmosphere, and therefore the habitability of the planet. Therefore, we investigate weather volcanism could occur on massive stagnant lid planets in dependence of their mass, age, surface temperature or their relative mantle thickness.

  3. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  4. Venus - Volcanism and rift formation in Beta Regio

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Harmon, J. K.; Hine, A. A.; Head, J. W.

    1984-01-01

    A new high-resolution radar image of Beta Regio, a Venus highland area, confirms the presence of a major tectonic rift system and associated volcanic activity. The lack of identifiable impact craters, together with the apparent superposition of the Theia Mons volcanic structure on the rift system, suggest that at least some of the volcanic activity occurred in relatively recent geologic time. The presence of topographically similar highland areas elsewhere on Venus (Aphrodite Terra, Dali Chasma, and Diana Chasma) suggests that rifting and volcanism are significant processes on Venus.

  5. The Martian highland paterae: Evidence for explosive volcanism on Mars

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Greeley, Ronald

    1988-01-01

    The Martian surface exhibits numerous volcanic landforms displaying great diversity in size, age, and morphology. Most research regarding Martian volcanology has centered around effusive basaltic volcanism, including analyses of individual lava flows, extensive lava plains, and large shield volcanoes. These studies were hindered by a lack of definitive morphologic criteria for the remote identification of ash deposits. Knowledge of the abundances, ages, and geologic settings of explosive volcanic deposits on Mars is essential to a comprehensive understanding of the evolution of the Martian surface, with implications for the evolution of the lithosphere and atmosphere as well as the histories of specific volcanic centers and provinces.

  6. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  7. Introduction to the epidemiological aspects of explosive volcanism

    SciTech Connect

    Bernstein, R.S.; Baxter, P.J.; Buist, A.S.

    1986-03-01

    A review of the literature concerning the adverse health effects of volcanic eruptions prior to the May 18, 1980 eruption of Mount St. Helens is presented. The global distribution and occurrence of explosive and effusive (consisting primarily of emission gases and lava) volcanic eruptions is described. Public health implications for areas at high- and low-risk, with emphasis on the implications of explosive volcanism in developing countries is briefly discussed. Data are provided which may be used as the basis for pre-disaster planning and preparedness in areas of the world where explosive and effusive volcanic eruptions are relatively common in proximity to vulnerable human populations.

  8. Sources of volcanic aerosols: Petrologic and volcanological constraints

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Haraldur

    1991-01-01

    Global climatic effects brought about by volcanism are related to the impact of volcanic gases and their derivative aerosols on the atmosphere, rather than the effects of volcanic ash. Evidence from both historic eruptions and polar ice cores indicate that volcanic sulfur gases are the dominant aerosol-forming component, resulting in produciton of a sulfuric acid-rich stratosphere aerosol that can have profound effects on the earth radiation budget over periods of a few years. Due to highly variable sulfur content of different magma types, the climatic effects do not relate simply to total erupted mass. There is a close relationship between volcanic sulfur yield to the atmospheric and hemispheric surface temperature decrease following an eruption, with up to 1 C surface temperature decrease indicated following a major volcanic event such as the 1815 Tambora eruption. While the erupted mass of HCl and HF is equal to or greater than that of sulfur gases in some volcanic events, the halogens do not form known aerosols nor are they abundant in ice core acidity layers. The early removal of halogens from eruption columns occurs by rain flushing and adsorption onto tephra particles, but the fate of halogens in the atmosphere following very large explosive eruptions is unknown. The CO2 flux to the atmosphere from volcanic eruptions is volumetrically one of the most important of the gas species, but owing to the huge size of the atmospheric reservoir of this gas, the volcanic contribution is likely to have negligible effects.

  9. The Volcanic History of Mars and Influences on Carbon Outgassing

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Whelley, P.

    2015-12-01

    Exploration of Mars has revealed some of the most impressive volcanic landforms found throughout the solar system. Volatiles outgassed from volcanoes were likely to have strongly influenced atmospheric chemistry and affected the martian climate. On Earth the role of carbon involved in volcanic outgassing is strongly influenced by tectonic setting, with the greatest weight percent contributions coming from partial mantle melts associated with hot spot volcanism. Most martian volcanic centers appear to represent this style of volcanism. Thus, one important factor in understanding the martian carbon cycle through time is understanding this volatile's link to the planet's volcanic history. The identified volcanic constructs on Mars are not unlike those of the Earth suggesting similar magmatic and eruptive processes. However, the dimensions of many martian volcanic features are significantly larger. The distribution of volcanoes and volcanic deposits on Mars are not spatially or temporally uniform. Large volcanoes (> 100 km diameter) are spatially concentrated in volcanic provinces that likely represent focused upwellings or zones of crustal weakness that enabled magma ascension. Smaller (10s km diameters) volcanoes such as cones, low shields and fissures are often grouped into fields and their lava flows coalesce to produce low slope plains. In some cases plains lava fields are quite extensive with little to no evidence for the volcanic constructs. Although martian volcanism appears to have been dominated by effusive eruptions with likely contributions from passive degassing from the interior, explosive volcanic centers and deposits are known to exist. After the development of a martian crust the planet's volcanic style appears to have evolved from early explosive activity to effusive activity centered at major volcanoes to effusive distributed activity in fields. However, questions remain as to whether or not these styles significantly overlapped in time and if so

  10. Exceptional Volumes of Rejuvenated Volcanism in Samoa

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Jackson, M.; Storm, L.

    2010-12-01

    The internal structure of within-plate volcanoes is typically compared to the stages of volcanic evolution in Hawaii. In Samoa, these stages show some differences with the Hawaiian model, in terms of the duration, volume and geochemical composition of the stages. Particularly, the rejuvenated stage of volcanism in Samoa is significantly more voluminous, with increasing geographic coverage with age, completely repaving the island of Savai’i. This unusual outpouring of rejuvenated lavas has previously been proposed to be related to the tectonic setting, near the northern terminus of the Tonga Trench. Therefore, Samoan volcanism might be caused by lithospheric fracturing, a mantle plume, or potentially a combination of the two. We collected new samples from a deeply eroded canyon on Savai’i to determine a time evolution of the transition from shield to eventual rejuvenated lavas. The canyon exposes several hundred meters of lavas, and we collected samples about 200m vertically down into the canyon. These samples are dominantly olivine basalts, and their Pb isotope compositions fall within the compositional field of young rejuvenated lavas on Savai’i and Upolu. This canyon section, therefore, represents a minimum thickness for the rejuvenated lavas of 200m. Assuming eruption of rejuvenated lavas only occurred subaerially, with a universal thickness of 200m, the new data suggest more than one percent of the volume of Savai’i consists of rejuvenated lavas. This is an order of magnitude greater than the largest relative volumes in Hawaii (Kauai), and implies a different cause for rejuvenated volcanism in Samoa. Another feature that suggests different processes may be important is the transition between the shield and rejuvenated stage. Although Samoan volcanoes do not seem to erupt exactly the same rock types as characteristic Hawaiian post-shield stage lavas, there is a definite shift to more evolved compositions (including trachytes) during the later stages of

  11. The volcanic and tectonic history of Enceladus

    USGS Publications Warehouse

    Kargel, J.S.; Pozio, S.

    1996-01-01

    Enceladus has a protracted history of impact cratering, cryo-volcanism, and extensional, compressional, and probable strike-slip faulting. It is unique in having some of the outer Solar System's least and most heavily cratered surfaces. Enceladus' cratering record, tectonic features, and relief elements have been analyzed more comprehensively than done previously. Like few other icy satellites, Enceladus seems to have experienced major lateral lithospheric motions; it may be the only icy satellite with global features indicating probable lithospheric convergence and folding. Ridged plains, 500 km across, consist of a central labyrinthine ridge complex atop a broad dome surrounded by smooth plains and peripheral sinuous ridge belts. The ridged plains have few if any signs of extension, almost no craters, and an average age of just 107 to 108 years. Ridge belts have local relief ranging from 500 to 2000 m and tend to occur near the bottoms of broad regional troughs between swells. Our reanalysis of Peter Thomas' (Dermott, S. F., and P. C. Thomas, 1994, The determination of the mass and mean density of Enceladus from its observed shape, Icarus, 109, 241-257) limb profiles indicates that high peaks, probably ridge belts, also occur in unmapped areas. Sinuous ridges appear foldlike and are similar to terrestrial fold belts such as the Appalachians. If they are indeed folds, it may require that the ridged plains are mechanically (perhaps volcanically) layered. Regional topography suggests that folding may have occurred along zones of convective downwelling. The cratered plains, in contrast to the ridged plains, are heavily cratered and exhibit extensional structures but no obvious signs of compression. Cratered plains contain a possible strike-slip fault (Isbanir Fossa), along which two pairs of fractures seem to have 15 km of right-lateral offset. The oldest cratered plains might date from shortly after the formation of the saturnian system or the impact disruption and

  12. Volcanic lightning on Venus and early Earth

    NASA Astrophysics Data System (ADS)

    Airey, Martin; Aplin, Karen

    2016-04-01

    Lightning may have been crucial in the development of life, as it enables key chemical reactions to occur. We cannot directly observe early Earth's hot, CO2-rich, atmosphere; however, similar conditions exist today on Venus, where there may be volcanic and/or meteorological lightning. Recent observations made by ESA's Venus Express satellite have provided evidence for active volcanism [1-3] and lightning discharges [e.g. 4], which may be volcanic in origin. This study uses laboratory experiments to simulate ash generation and to measure its electrical charging under typical atmospheric conditions for Venus and the early Earth (specifically the Hadean eon, up to 4 billion years ago, and the Archean eon, from 4 billion to 2.5 billion years ago). Ultimately the work will address the following questions: (a) is volcanic activity a feasible mechanism for lightning generation on Venus and early Earth, (b) how would these extreme paleo-environmental conditions affect lightning, (c) can the similarities in atmospheric conditions inform us of planetary evolutionary concepts, (d) could volcanic lightning have been important in the emergence of life on Earth, and (e) what are the wider implications for the likelihood of the emergence of life on other planets? A 1-litre atmospheric simulation chamber will be used to simulate the high-pressure, high-temperature, CO2-dominated atmospheres of the surface of early Earth, and Venus at ~10 km altitude (~5 MPa, 650 K) (where ash plume-forming eruptions on Venus are more likely to occur [5]). The chamber contains temperature/pressure monitoring and logging equipment, a collision apparatus to generate the charged rock fragments, and electrodes for charge measurement with an electrometer [6]. The planned experimental programme will measure the effects of varying temperature, pressure, atmospheric, and sample composition under a range of conditions appropriate to Venus and early Earth. Comparative work with present day Earth conditions

  13. Volcanic hazard assessment at Deception Island

    NASA Astrophysics Data System (ADS)

    Bartolini, S.; Sobradelo, R.; Geyer, A.; Martí, J.

    2012-04-01

    Deception Island is the most active volcano of the South Shetland Islands (Antarctica) with more than twenty eruptions recognised over the past two centuries. The island was formed on the expansion axis of the Central Bransfield Strait and its evolution consists of constructive and destructive phases. A first a shield phase was followed by the construction of a central edifice and formation of the caldera with a final monogenetic volcanism along the caldera rim. The post-caldera magma composition varies from andesitic-basaltic to dacitic. The activity is characterised by monogenetic eruptions of low volume and short duration. The eruptions show a variable degree of explosivity, strombolian or phreatomagmatic, with a VEI 2 to 4, which have generated a wide variety of pyroclastic deposits and lavas. It is remarkable how many phases of phreatic explosive eruptions are associated to the emission of large ballistic blocks. Tephra record preserved in the glacier ice of Livingston Island or in marine sediments show the explosive power of the phreatomagmatic phases and the wide dispersal of its finest products in a great variety of directions of the prevailing winds. Also it is important to highlight the presence of different lahar deposits associated with some of these eruptions. In this contribution we present the guidelines to conduct a short-term and long-term volcanic hazard assessment at Deception Island. We apply probabilistic methods to estimate the susceptibility, statistical techniques to determine the eruption recurrence and eruptive scenario, and reproduce the effects of historical eruptions too. Volcanic hazard maps and scenarios are obtained using a Voris-based model tool (Felpeto et al., 2007) in a free Geographical Information System (GIS), a Quantum GIS.

  14. Automatic landslides detection on Stromboli volcanic Island

    NASA Astrophysics Data System (ADS)

    Silengo, Maria Cristina; Delle Donne, Dario; Ulivieri, Giacomo; Cigolini, Corrado; Ripepe, Maurizio

    2016-04-01

    Landslides occurring in active volcanic islands play a key role in triggering tsunami and other related risks. Therefore, it becomes vital for a correct and prompt risk assessment to monitor landslides activity and to have an automatic system for a robust early-warning. We then developed a system based on a multi-frequency analysis of seismic signals for automatic landslides detection occurring at Stromboli volcano. We used a network of 4 seismic 3 components stations located along the unstable flank of the Sciara del Fuoco. Our method is able to recognize and separate the different sources of seismic signals related to volcanic and tectonic activity (e.g. tremor, explosions, earthquake) from landslides. This is done using a multi-frequency analysis combined with a waveform patter recognition. We applied the method to one year of seismic activity of Stromboli volcano centered during the last 2007 effusive eruption. This eruption was characterized by a pre-eruptive landslide activity reflecting the slow deformation of the volcano edifice. The algorithm is at the moment running off-line but has proved to be robust and efficient in picking automatically landslide. The method provides also real-time statistics on the landslide occurrence, which could be used as a proxy for the volcano deformation during the pre-eruptive phases. This method is very promising since the number of false detections is quite small (<5%) and is reducing when the size of the landslide increases. The final aim will be to apply this method on-line and for a real-time automatic detection as an improving tool for early warnings of tsunami-genic landslide activity. We suggest that a similar approach could be also applied to other unstable non-volcanic also slopes.

  15. Age progressive volcanism in the Tasmantid Seamounts

    NASA Astrophysics Data System (ADS)

    McDougall, Ian; Duncan, Robert A.

    1988-07-01

    The Tasmantid Seamounts comprise a northerly trending linear chain of submarine volcanoes that extend over more than 1300 km in the middle of the Tasman Basin, located to the east of the Australian continental margin. The volcanoes are situated upon deep oceanic crust of Late Cretaceous/Early Cenozoic age. Several of the volcanoes were built from sea floor depths of more than 4000 m to above sea level, and were then eroded to flat-topped mountains which have subsided to depths as great as 400 m. Basalt samples dredged from Gascoyne, Taupo, Derwent Hunter, Britannia and Queensland Seamounts have been dated by the K-Ar and 40Ar/ 39Ar methods, yielding results in the range 24 to 6.4 Ma, Early to Late Miocene. A progressive younging of the volcanism southward along the seamount chain at an average rate of 67 ± 5mm/year is indicated. The predicted present position of the volcanic focus is at 40.4°S latitude, and between 155° and 156°E longitude, virtually coincident with the epicentre of a recent large earthquake. These results provide strong evidence that the Tasmantid Seamounts represent a hotspot track, effectively recording motion of the Australian plate across the sublithospheric mantle source region for the volcanism. Comparison with results from hotspot traces on the same plate and on the African plate further demonstrate that these hotspots provide a useful frame of reference for plate motions, and that relative movement between individual hotspots must be less than about 5 mm/year.

  16. Crystallization and nucleation kinetics in volcanic systems

    NASA Astrophysics Data System (ADS)

    Agostini, C.; Fortunati, A.; Carroll, M. R.; Scaillet, B.; Landi, P.

    2011-12-01

    The main objective of this experimental study is to constrain and quantitatively model the complex solidification process that transforms a magma in a solid material. Of major interest are crystal nucleation and growth driven by isothermal decompression of hydrous magmas, and comparison with results from more abundant crystal growth/nucleation data obtained in isobaric cooling experiments. This research concerns two different volcanic systems, Pantelleria (peralkaline rhyolite) and Stromboli (basalt), to better understand how crystallization kinetics can affect different magma compositions. For Stromboli volcanic system TZM apparatus has been used to perform decompression runs at Bayerisches Geoinstitut in Bayreuth (DE). As for Pantelleria composition, cooling experiments has been done using IHPV devices at ISTO of Orléans (FR), on the basis of previous phase equilibrium work (Di Carlo et al., 2010). First obtained results for Stromboli case show high rates of nucleation and crystal growth during the initial stages of crystallization which were followed by crystal growth at approximately constant number densities as equilibrium was approached. Shapes of crystals growing in melts are controlled by the kinetics of crystallization and may provide information about the degree of undercooling experienced by batches of magma en route to the surface (Lofgren, 1980). The study of crystallization kinetics through phases growth rates (Couch et al., 2003), together with the calculation of nucleation density and nucleation rates (Hammer et al., 1999) represent a step toward the estimation of the time scales of magmatic processes in volcanic systems and the interpretation of shallow magmatic processes. The results for Stromboli suggest average crystal growth timescales on the order of weeks, but this is complicated by clear evidence that some crystals have experienced repeated periods of both dissolution and growth (Landi et al., 2004).

  17. Coevolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeo; Troch, Peter A.

    2016-03-01

    Present-day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment coevolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density and slope-area relationship) as well as hydrological response (annual water balance, baseflow index, and flow-duration curves) and examined their relation with catchment age and climate (through the aridity index). We found a significant correlation between drainage density and baseflow index with age, but not with climate. The intra-annual flow variability was also significantly related to catchments age. Younger catchments tended to have lower peak flows and higher low flows, while older catchments exhibited more flashy runoff. The decrease in baseflow with catchment age is consistent with the existing hypothesis that in volcanic landscapes the major flow pathways change over time from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in a set of similar, but younger volcanic catchments in the Oregon Cascades, in which drainage density increased with age. In that case, older catchments were thought to show more landscape incision due to increasing near-surface lateral flow paths. Our results suggests two competing hypotheses on the evolution of drainage density in mature catchments. One is that as catchments continue to age, the hydrologically active channels retreat

  18. Detection of volcanic influence on global precipitation

    NASA Astrophysics Data System (ADS)

    Gillett, N. P.; Weaver, A. J.; Zwiers, F. W.; Wehner, M. F.

    2004-06-01

    Observations of terrestrial precipitation from the latter half of the 20th century are compared with precipitation simulated by the Parallel Climate Model to determine which external forcings have had a detectable influence on precipitation. Consistent with a previous study using another model, we found that the global mean response to all forcings combined was significantly correlated with that observed. A detection and attribution analysis applied to the simulated and observed precipitation indicated that the volcanic signal is detectable both on its own and in a multiple regression with other forcings. These results are consistent with the hypothesis that shortwave forcings exert a larger influence on precipitation than longwave forcings.

  19. Volcanism/tectonics working group summary

    SciTech Connect

    Kovach, L.A.; Young, S.R.

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the impacts of earthquakes, fault rupture, and volcanic eruption on the underground repository disposal of high-level radioactive wastes. The tectonics and seismic history of the Yucca Mountain site in Nevada is discussed and geologic analogs to that site are described.

  20. Experimental simulation of early Martian volcanic lightning.

    PubMed

    Segura, A; Navarro-Gonzalez, R

    2001-01-01

    A mixture of possible Martian volcanic gases were reproduced and irradiated by a high-energy infrared laser to reproduce the effects of lightning on the production of prebiotic molecules. The analysis of products were performed by a gas chromatograph interfaced in parallel with a FTIR-detector and a quadrupole mass spectrometer equipped with an electron impact and chemical ionization modes. The main products identified were hydrocarbons and an uncharacterized yellow film deposit. Preliminary results indicate the presence of hydrogen cyanide among the resultant compounds.

  1. The San Francisco volcanic field, Arizona

    USGS Publications Warehouse

    Priest, S.S.; Duffield, W.A.; Malis-Clark, Karen; Hendley, J. W.; Stauffer, P.H.

    2001-01-01

    Northern Arizona's San Francisco Volcanic Field, much of which lies within Coconino and Kaibab National Forests, is an area of young volcanoes along the southern margin of the Colorado Plateau. During its 6-million-year history, this field has produced more than 600 volcanoes. Their activity has created a topographically varied landscape with forests that extend from the Pi?on-Juniper up to the Bristlecone Pine life zones. The most prominent landmark is San Francisco Mountain, a stratovolcano that rises to 12,633 feet and serves as a scenic backdrop to the city of Flagstaff.

  2. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  3. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    SciTech Connect

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-08-26

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  4. Satellite detection of volcanic sulphuric acid aerosol

    SciTech Connect

    Baran, A.J.; Foot, J.S.; Dibben, P.C.

    1993-09-03

    This paper presents a new method for detecting sulfuric acid aerosols in the stratosphere. The method is based upon brightness temperature measurements made at two thermal wavelengths. Such measurements can be extracted from polar orbiting satellites. Such clouds are the result of the conversion of sulfur dioxide emissions from large volcanic eruptions, and when formed can have lifetimes of years, and can cause a significant increase in the albedo of the planet. This new method is applied to look at the impact of the Mt Pinatubo eruption on the earths albedo.

  5. Asteroid differentiation - Pyroclastic volcanism to magma oceans

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Keil, Klaus; Mccoy, Timothy; Haack, Henning; Scott, Edward R. D.

    1993-01-01

    A summary is presented of theoretical and speculative research on the physics of igneous processes involved in asteroid differentiation. Partial melting processes, melt migration, and their products are discussed and explosive volcanism is described. Evidence for the existence of asteroidal magma oceans is considered and processes which may have occurred in these oceans are examined. Synthesis and inferences of asteroid heat sources are discussed under the assumption that asteroids are heated mainly by internal processes and that the role of impact heating is small. Inferences of these results for earth-forming planetesimals are suggested.

  6. Volcanic hazards on the Island of Hawaii

    USGS Publications Warehouse

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  7. NRL Satellite Volcanic Ash Plume Monitoring

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Kuciauskas, A. P.; Richardson, K.; Solbrig, J.; Miller, S. D.; Pavolonis, M. J.; Bankert, R.; Lee, T.; Kent, J.; Tsui, T.

    2009-12-01

    The Naval Research Laboratory’s (NRL) Marine Meteorology Division (NRL-MRY) is assembling a unique suite of near real-time digital satellite products geared towards monitoring volcanic ash plumes which can create hazardous aviation conditions. Ash plume detection, areal extent, plume top height and mass loading will be extracted via automated algorithms from a combination of geostationary (GEO) and low earth orbiting (LEO) data sets that take advantage of their complimentary strengths since no one sensor has the required spectral, spatial and temporal attributes needed. This product suite would then be available to the Volcanic Ash Advisory Centers (VAAC) and other interested users via web distribution. Initially, GOES-West and the Japanese MTSAT data will be incorporated to view volcanic plumes within the north Pacific region. Although GEO sensor spectral channels are not optimized for ash detection, temporal changes over limited timeframes can assist in plume extraction, but not for those at the highest latitudes. Examples with multi-channel techniques will be highlighted via animations. LEO sensors provide a suite of spectral channels unmatched on GEO platforms and permit enhanced ash plume monitoring. NRL has exploited the Moderate Resolution Imaging Spectroradiometer (MODIS) and SeaWiFS via a “dust enhancement technique” that has demonstrated positive plume monitoring results. Multi-channel methods using the Advanced Very High Resolution Radiometer (AVHRR) will be highlighted to take advantage of the numerous NOAA LEO satellites carrying this wide swath sensor with frequent volcano overpasses at the higher latitudes. The DMSP Operational Linescan System (OLS) provides daytime visible/infrared, as well as night time visible data which has shown value in spotting ash plumes when sufficient lunar illumination is present. The following suite of products is potentially available for over twenty (20) volcano sites world-wide via our NexSat web site: http

  8. Venus - False Color of Volcanic Plains

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This Magellan full-resolution mosaic of Venus, centered at 10 degrees north latitude, 301 degrees east longitude, shows an area replete with diverse volcanic features. The image, of an area 489 kilometers long by 311 kilometers wide (303 by 193 miles), is dominated by volcanic plains which appear mottled because of varying roughnesses of each solidified lava flow. The rougher the terrain the brighter it appears in the radar image. The small, bright bumps clustered in the left portion of the image are a grouping of small volcanoes called a shield field. Each shield volcano is approximately 2 to 5 kilometers (1.2 to 3.1 miles) in diameter and has very subdued relief. It is believed that the lava flows that make up each shield originates from a common source. To the right of the shield field is another type of volcano, called a scalloped dome. It is 25 kilometers (16 miles) in diameter and has a central pit. Some of the indistinct lobe-shaped pattern around the dome may either be lava flows or rocky debris which has fallen from the scalloped cliffs surrounding the domes. The small radial ridges characteristic of scalloped domes are remnants of catastrophic landslides. To the right of that feature is a large depression called a volcanic caldera. The caldera was formed when lava was expelled from an underground chamber, which when emptied, subsequently collapsed forming the depression. The feature furthermost to the east (right) is another scalloped dome, 35 kilometers (22 miles) in diameter. That feature is unusual in that lava came out through the southeastern margin, rafting a large portion of the dome for 20 kilometers (12 miles). The lava continues into the lower right portion of the area in the image. Its steep rounded boundaries suggest it was a very sticky, oozing lava. That same type of lava is what scientists propose formed the steep-sided domes such as the bright, round feature, slightly northeast of center. It is highly likely that the features are all part

  9. Ice nucleating properties of volcanic ash particles from the Eyjafjallajökull volcanic eruption

    NASA Astrophysics Data System (ADS)

    Kulkarni, G.; Zelenyuk, A.; Beranek, J.

    2011-12-01

    The volcanic ash from the volcanic emissions can significantly contribute to the natural source of aerosols in the atmosphere. In the vicinity and downwind of eruption site, the transported ash might have a stronger impact on the aviation industry, regional air quality, and climate. Despite the environmental significance of ash, our understanding of ash particles reacting with other volcanic plume constituents is rudimentary. In particular, the complex interactions between the water vapor and ash particles under different meteorological conditions that lead to cloud hydrometeors are poorly understood. To improve our understanding, we focus on investigating the ice formation properties of ash particles collected from the recent volcanic eruption. It was observed that the ash particles are less efficient ice nuclei compared to the natural dust particles in the deposition nucleation regime, but have similar efficiencies in the condensation freezing mode. The ice nucleated ash particles are separated from the interstitial particles, and further evaporated to understand the elemental composition, size, shape and morphology of the ice residue using the single particle mass spectrometer. The elemental composition reveals that majority of the elements are also present in the natural dust particles, but subtle differences are observed. This suggests that particle properties play an important role in the ice nucleation process.

  10. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    USGS Publications Warehouse

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  11. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  12. Structure and evolution of the Rockeskyllerkopf Volcanic Complex, West Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Woodland, Alan B.; Hopp, Jens; Trenholm, Nesha D.

    2010-10-01

    The Rockeskyllerkopf Volcanic Complex (RVC) comprises three overlapping monogenetic volcanic centers: Southeast Lammersdorf (SEL), Mäuseberg (M) and Rockeskyllerkopf (RKK). Each volcanic center comprises proximal wall deposits with a well defined crater wall unconformity and crater fill deposits that partially to completely cover the outer crater wall. The SEL Center is a phreatomagmatic tuff ring composed of lithic rich tephra deposited by pyroclastic falls and surges. The second center, Mäuseberg, with its crater to the northwest of the SEL Center is predominantly magmatic. Topographic and outcrop patterns suggest that this center may have formed a series of overlapping scoria cones along a N-S trending fissure. The youngest center, RKK, which lies on a poorly developed palaeosol within the earlier Mäuseberg deposits, comprises a well developed proximal crater wall sequence. This sequence of magmatic, likely Strombolian, fall and grain avalanche deposits passes upward into a crater fill sequence that comprises variably welded bombs. The final eruptions in the center were massive lava flows that were ponded within the RKK crater. Ar-Ar age dating of reequilibrated fragments of phlogopite megacrysts in the SEL lavas indicates volcanic activity began at 474 ± 39 ka. Literature K-Ar dates for the youngest lava flows in the RKK Center give ages of 360 ± 60 to 470 ka. Our interpretation of the age data and the presence of the poorly developed palaeosol between the Mäuseberg and RKK centers indicates that volcanism in the RVC began around 470 ka with the eruption of the SEL and Mäuseberg centers followed a few thousand years later by the eruption of the RKK Center.

  13. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    PubMed Central

    Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in

  14. Nano-volcanic Eruption of Silver

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  15. Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthelyi, L. P.; Radebaugh, J.; Davies, A. G.; McEwen, A. S.

    2004-01-01

    Tvashtar Catena (63 N, 120 W) is one of the most interesting features on Io. This chain of large paterae (caldera-like depressions) has exhibited highly variable volcanic activity in a series of observations. Tvashtar is the type example of a style of volcanism seen only at high latitudes, with short-lived Pele-type plumes and short-lived by intense thermal events. Evidence for a hot spot at Tvashtar was first detected in an eclipse observation in April 1997 (orbit G7) by the Solid State Imager (SSI) on the Galileo Spacecraft. Tvashtar was originally targeted for observation at higher resolution in the close flyby in November 1999 (I25) because of its interesting large-scale topography. There are relatively few but generally larger paterae at high latitudes on Io. I25 images revealed a 25 km long, 1-2 km high lava curtain via a pattern of saturation and bleeding in the CCD image, which requires very high temperatures.

  16. Explosive mafic volcanism on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Gregg, Tracy K. P.; Williams, Stanley N.

    1993-01-01

    Deposits within Amazonia Planitia, Mars, have been interpreted as ignimbrite plains on the basis of their erosional characteristics. The western flank of Hecates Tholus appears to be mantled by an airfall deposit, which was produced through magma-water interactions or exsolution of magmatic volatiles. Morphologic studies, along with numerical and analytical modeling of Martian plinian columns and pyroclastic flows, suggest that shield materials of Tyrrhena and Hadriaca paterae are composed of welded pyroclastic flows. Terrestrial pyroclastic flows, ignimbrites, and airfall deposits are typically associated with silicic volcanism. Because it is unlikely that large volumes of silicic lavas have been produced on Mars, we seek terrestrial analogs of explosives, mafic volcanism. Plinian basaltic airfall deposits have been well-documented at Masaya, Nicaragua, and basaltic ignimbrite and surge deposits also have been recognized there. Ambrym and Yasour, both in Vanuatu, are mafic stratovolcanioes with large central calderas, and are composed of interbedded basaltic pyrocalstic deposits and lava flows. Zavaritzki, a mafic stratovolcano in the Kurile Islands, may have also produced pyroclastic deposits, although the exact nature of these deposits in unknown. Masaya, Ambrym and Yasour are known to be located above tensional zones. Hadriaca and Tyrrhena Paterae may also be located above zones of tension, resulting from the formation and evolution of Hellas basin, and, thus, may be directly analogous to these terrestrial mafic, explosive volcanoes.

  17. Concept for Mars Volcanic Emission Life Scout

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This artist's rendition depicts a concept for a Mars orbiter that would scrutinize the martian atmosphere for chemical traces of life or environments supportive of life that might be present anywhere on the planet.

    The concept is named the Mars Volcanic Emission and Life Scout, or Marvel. It would equip a Mars orbiter with two types of instruments proven useful in studying Earth's atmosphere from Earth orbit. One, a solar occultation infrared spectrometer, would look sideways through Mars' atmosphere toward the setting or rising Sun for an extremely sensitive reading of what chemicals are in the air that sunlight passes through before hitting the instrument. The other, a submillimeter spectrometer would survey the atmosphere continuously, including during dust storms and polar night, to seek localized surface sources of the chemicals of interest. The infrared spectrometer has very high sensitivity for one chemical of great interest: methane, which is produced by many types of microbes, as well as by some volcanic sources. The submillimeter spectrometer has very high sensitivity for water vapor. Localized concentrations of water vapor in the atmosphere could identify places where subsurface water sources may be venting.

  18. Mantle updrafts and mechanisms of oceanic volcanism

    PubMed Central

    Anderson, Don L.; Natland, James H.

    2014-01-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts—consequences of Archimedes’ principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism. PMID:25201992

  19. Mantle updrafts and mechanisms of oceanic volcanism

    NASA Astrophysics Data System (ADS)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  20. Constrained inversion of seismo-volcanic events

    NASA Astrophysics Data System (ADS)

    Nocerino, Luciano; D'Auria, Luca; Giudicepietro, Flora; Martini, Marcello

    2014-05-01

    The inversion of seismo-volcanic events is performed to retrieve the source geometry and to determine volumetric budgets of the source. Such observations have shown to be an important tool for the seismological monitoring of volcanoes. We developed a novel technique for the non-linear constrained inversion of low frequency seismo-volcanic events. Unconstrained linear inversion methods work well when a dense network of broadband seismometers is available. We propose a new constrained inversion technique, which has shown to be efficient also in a reduced network configuration and a low signal-noise ratio. The waveform inversion is performed in the frequency domain, constraining the source mechanism during the event to vary only in its magnitude. The eigenvectors orientation and the eigenvalue ratio are kept constant. This significantly reduces the number of parameters to invert, making the procedure more stable. The method has been tested over a synthetic dataset, reproducing realistic very-long-period (VLP) signals Stromboli volcano. We have applied the method to a VLP dataset recorded on Stromboli volcano and to low-frequency earthquakes recorded on Mt.Vesuvius.

  1. Volcanoes and volcanic provinces - Martian western hemisphere

    NASA Technical Reports Server (NTRS)

    Scott, D. H.

    1982-01-01

    The recognition of some Martian landforms as volcanoes is based on their morphology and geologic setting. Other structures, however, may exhibit classic identifying features to a varying or a less degree; these may be only considered provisionally as having a volcanic origin. Regional geologic mapping of the western hemisphere of Mars from Viking images has revealed many more probable volcanoes and volcanotectonic features than were recognized on Mariner 9 pictures. These abundant volcanoes have been assigned to several distinct provinces on the basis of their areal distribution. Although the Olympus-Tharsis region remains as the principle center of volcanism on Mars, four other important provinces are now also recognized: the lowland plains, Tempe Terra plateau, southern highlands (in the Phaethontis and Thaumasia quadrangles), and a probable ignimbrite province, situated along the highland-lowland boundary in Amazonis Planitia. Volcanoes in any one province vary in morphlogy, size, and age, but volcanoes in each province tend to have common characteristics that distinguish that particular group.

  2. Nano-volcanic Eruption of Silver

    PubMed Central

    Lin, Shih-kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-chen; Lin, Shih-guei; Suganuma, Katsuaki

    2016-01-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings. PMID:27703220

  3. Modulations of stratospheric ozone by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  4. Supercomputer modeling of volcanic eruption dynamics

    SciTech Connect

    Kieffer, S.W.; Valentine, G.A.; Woo, Mahn-Ling

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  5. Victims from volcanic eruptions: a revised database

    NASA Astrophysics Data System (ADS)

    Tanguy, J.-C.; Ribière, C.; Scarth, A.; Tjetjep, W. S.

    The number of victims from volcanism and the primary cause(s) of death reported in the literature show considerable uncertainty. We present the results of investigations carried out either in contemporary accounts or in specific studies of eruptions that occurred since A.D. 1783. More than 220 000 people died because of volcanic activity during this period, which includes approximately 90% of the recorded deaths throughout history. Most of the fatalities resulted from post-eruption famine and epidemic disease (30.3%), nuées ardentes or pyroclastic flows and surges (26.8%), mudflows or lahars (17.1%), and volcanogenic tsunamis (16.9%). At present, however, international relief efforts might reduce the effects of post-eruption crop failure and disease, and at least some of the lahars could be anticipated in time by adequate scientific and social response. Thus, mitigation of hazards from pyroclastic flows and tsunamis will become of paramount importance to volcanologists and civil authorities.

  6. Modeling sill intrusion in volcanic calderas

    NASA Astrophysics Data System (ADS)

    Macedonio, Giovanni; Giudicepietro, Flora; D'Auria, Luca; Martini, Marcello

    2015-04-01

    We present a numerical model for describing sill intrusion in volcanic calderas. The dynamics of volcanic calderas are often subject to long-term unrests, with remarkable ground deformation, seismicity, and geochemical changes, that do not culminate in an eruption. On the contrary, in some cases, unrests with minor geophysical changes are followed, in few months, by an eruption, as in the case of Rabaul Caldera in 1994 and Sierra Negra (Galapagos) in 2005. The main common features of calderas are the relevant ground deformations with intense uplift episodes, often followed by subsidence. We think that the process of sill intrusion can explain the common features observed on different calderas. In our model, the sill, fed by a deeper magma reservoir, intrudes below a horizontal elastic plate, representing the overlying rocks and expands radially. The model is based on the numerical solution of the equation for the elastic plate, coupled with a Navier-Stokes equation for simulating magma intrusion in the viscous regime. The numerical simulations show that during the feeding process, the ground is subject to uplift. When the feeding stops a subsidence occurs in the central zone. For very low flexural rigidity of the elastic plate, the subsidence can occur even during the intrusion of the sill. The stress field produced by the intrusion is mainly concentrated in a circular zone that follows the sill intrusion front.

  7. Supercomputer modeling of volcanic eruption dynamics

    NASA Astrophysics Data System (ADS)

    Kieffer, S. W.; Valentine, G. A.; Woo, Mahn-Ling

    1995-04-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) relate equations-of-state for magma-gas mixtures to flow dynamics; (4) examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; (5) test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; and (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  8. Venus climate stability and volcanic resurfacing rates

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.

    1994-01-01

    The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.

  9. WSR-88D observations of volcanic ash

    USGS Publications Warehouse

    Wood, J.; Scott, C.; Schneider, D.

    2007-01-01

    Conclusions that may impact operations are summarized below: ??? Current VCPs may not be optimal for the scharacterization of volcanic events. Therefore, the development of a new VCP that combines the enhanced low level elevation density and increased temporal resolution of VCP 12 with the enhanced sensitivity of VCP 31. ??? Given currently available scan strategies, this preliminary investigation would suggest that it is advisable to use VCP 12 during the initial explosive phase of an eruptive event. Once the maximum reflectivity has dropped below 30 dBZ, VCP 31 should be used. ??? This study clearly indicates that WSR-88D Level II data offers many advantages over Level III data currently available in Alaska. The ability to access this data would open up greater opportunities for research. Given the proximity of WSR-88D platforms to active volcanoes in Alaska, as well as in the western Lower 48 states and Hawaii, radar data will likely play a major operational role when volcanic eruptions again pose a threat to life and property. The utilization of this tool to its maximum capability is vital.

  10. Numerical simulation of El Chichon volcanic cloud

    NASA Technical Reports Server (NTRS)

    Shibata, T.; Fujiwara, M.; Hirono, M.

    1985-01-01

    The stratospheric volcanic cloud from the eruption of El Chichon, Mexico, on April 4, 1982 was observed routinely by a Nd:YAG lidar system from April 18, 1982 at Kyushu University. There were two phenomena detected by lidar observation of the El Chichon volcanic cloud: (1) The main enhanced layer was formed in the summer easterly wind region over Fukuoka (33.5 deg N, 130.4 deg E). The layer had two high gradient top and bottom boundaries. The layer width slowly broadened until September 1982, when the easterly wind changed to the westerly wind. A similar phenomenon was observed after the eruption of Mt. St. Helens in May 1980. (2) The stratospheric integrated backscattering coefficient (IBC) reached a peak value on May 3, 1982. It then gradually decreased until August, but reincreased significantly from September to December 1982. After January 1983, IBC decreased slowly. This remarkable reincrease had not been seen in past increases which had been observed by lidar at Kyushu University. These phenomena are briefly discussed.

  11. Mantle updrafts and mechanisms of oceanic volcanism.

    PubMed

    Anderson, Don L; Natland, James H

    2014-10-14

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts--consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  12. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  13. Volcanic hazards at Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  14. Present state of studies of volcanic risk in Colombia

    USGS Publications Warehouse

    Carvajal, C. A.

    1990-01-01

    Because of the reactivation of Nevado del Ruiz volcano in the last days of 1984, we began studies whose purpose was directed toward the identification of hte risks that accompanied such volcanic activity. As a result of these investigations there appeared a preliminary map of volcanic risk in Octoer 7, 1985, the first map of its kind in Colombia  

  15. Assessment of the atmospheric impact of volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  16. Comparative estimate of volcanism intensity on continents and in oceans

    SciTech Connect

    Ronov, A.B.; Khain, V.E.; Balukhovskii, A.N.

    1980-12-01

    A quantitative estimate of the volume of volcanogenic rocks and the volcanism intensity during different stages in the Earth's development indicates that the total volume of the tholeiitic basalts of Layer II of the oceans exceeds by 20 times that of the synchronous late Mesozoic-Cenozoic volcanics of the continents and is almost 5 times greater than the volume of the volcanogenic rocks of the entire Phanerozoic sequence of the continents. The absolute maxima of volcanism, determined on the basis of the area and volume of the corresponding volcanics, belong to the Late Cretaceous and Miocene intervals. Changes in the volcanic eruption areas took place synchronously in the Pacific, Atlantic, and Indian Oceans. The volcanism intensity, expressed in the volume of its products in km/sup 3/ per m.y., increases in the oceans from Late Jurassic to Pliocene time. During the Riphean and Vendian intervals, the volcanism intensity on the continents remained at an extremely low level, then increased during early Paleozoic time, and underwent a marked jump, beginning in the Devonian Period. Since Late Jurassic time, the intensity of global volcanism increased unusually sharply and reached its culmination during Neogene time.

  17. Bipolar correlation of volcanism with millennial climate change.

    PubMed

    Bay, Ryan C; Bramall, Nathan; Price, P Buford

    2004-04-27

    Analyzing data from our optical dust logger, we find that volcanic ash layers from the Siple Dome (Antarctica) borehole are simultaneous (with >99% rejection of the null hypothesis) with the onset of millennium-timescale cooling recorded at Greenland Ice Sheet Project 2 (GISP2; Greenland). These data are the best evidence yet for a causal connection between volcanism and millennial climate change and lead to possibilities of a direct causal relationship. Evidence has been accumulating for decades that volcanic eruptions can perturb climate and possibly affect it on long timescales and that volcanism may respond to climate change. If rapid climate change can induce volcanism, this result could be further evidence of a southern-lead North-South climate asynchrony. Alternatively, a volcanic-forcing viewpoint is of particular interest because of the high correlation and relative timing of the events, and it may involve a scenario in which volcanic ash and sulfate abruptly increase the soluble iron in large surface areas of the nutrient-limited Southern Ocean, stimulate growth of phytoplankton, which enhance volcanic effects on planetary albedo and the global carbon cycle, and trigger northern millennial cooling. Large global temperature swings could be limited by feedback within the volcano-climate system.

  18. Young volcanic deposits in the Valles Marineris, Mars?

    USGS Publications Warehouse

    Lucchitta, B.K.

    1990-01-01

    A study of the interior deposits of the central Valles Marineris has led to the discovery of a sequence of deposits that cover the chasma floors and range in thickness from that of thin dust to several kilometers. The emplacement of the deposits was the last major event in the history of the Valles Marineris, following deposition of older layered interior beds, warping, faulting, erosion, and landslide emplacement. The young deposits are of three major types: (1) dark patches typically occurring along faults; (2) light-colored deposits locally associated with craters; and (3) rugged, mottled deposits with, in places, light-colored lobate fronts. These young materials may be of volcanic origin, as suggested by the low albedo and spectrally gray colors of some, their association with faults and possible volcanic craters and calderas, and their embayment relations and lobate margins. No other mechanism explains all the observed features and relations as well as volcanism. If these deposits are volcanic, implications are that (1) volcanism was associated with rifting in the Valles Marineris, (2) the volcanism was explosive in places, and (3) the volcanism may be as young as the late Tharsis volcanism and, locally, may well be recent. ?? 1990.

  19. Volcanology, geochemistry and age of the Lausitz Volcanic Field

    NASA Astrophysics Data System (ADS)

    Büchner, J.; Tietz, O.; Viereck, L.; Suhr, P.; Abratis, M.

    2015-11-01

    The Lausitz (Lusatia) Volcanic Field is part of the Central European Volcanic Province, and its magmas represent an alkaline trend from olivine nephelinites and basanites to trachytes and phonolites, typical for intraplate settings. Neighbouring volcanic fields are the České Středohoří Mountains to the south-west and the Fore-Sudetic Basin in Lower Silesia to the east. More than 1000 volcanic structures associated with approximately 500 vents have been located within this volcanic field. Residuals of scoria cones, lava lakes, lava flows and maar-diatreme in filling occur in situ near the level of the original syn-volcanic terrain. In more deeply eroded structures, volcanic relicts outcrop as plugs or feeders. Evolved rocks occur as monogenetic domes or intrusions in diatremes, while their volcaniclastic equivalents are rare. Twenty-three localities were dated using the 40Ar/39Ar method. The ages range from 35 to 27 Ma, with a focus around 32-29 Ma, indicating Late Eocene and mainly Oligocene volcanism for the LVF. Differentiated rocks appear to be slightly younger than less differentiated. No geographical age clusters are apparent.

  20. Improving communication during volcanic crises on small, vulnerable islands

    NASA Astrophysics Data System (ADS)

    McGuire, W. J.; Solana, M. C.; Kilburn, C. R. J.; Sanderson, D.

    2009-05-01

    Increased exposure to volcanic hazard, particularly at vulnerable small islands, is driving an urgent and growing need for improved communication between monitoring scientists, emergency managers and the media, in advance of and during volcanic crises. Information gathering exercises undertaken on volcanic islands (Guadeloupe, St. Vincent and Montserrat) in the Lesser Antilles (eastern Caribbean), which have recently experienced - or are currently experiencing - volcanic action, have provided the basis for the compilation and publication of a handbook on Communication During Volcanic Emergencies, aimed at the principal stakeholder groups. The findings of the on-island surveys point up the critical importance of (1) bringing together monitoring scientists, emergency managers, and representatives of the media, well in advance of a volcanic crisis, and (2), ensuring that procedures and protocols are in place that will allow, as far as possible, effective and seamless cooperation and coordination when and if a crisis situation develops. Communication During Volcanic Emergencies is designed to promote and encourage both of these priorities through providing the first source-book addressing working relationships and inter-linkages between the stakeholder groups, and providing examples of good and bad practice. While targeting the volcanic islands of the eastern Caribbean, the source-book and its content are largely generic, and the advice and guidelines contained therein have equal validity in respect of improving communication before and during crises at any volcano, and have application to the communication issue in respect of a range of other geophysical hazards.

  1. Monitoring of volcanic emissions of SO2 and ash

    NASA Astrophysics Data System (ADS)

    Theys, Nicolas; Clarisse, Lieven; Brenot, Hugues; van Gent, Jeroen; Campion, Robin; van der A, Ronald; Valks, Pieter; Corradini, Stefano; Merucci, Luca; Van Roozendael, Michel; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy; Tait, Steve; Ferrucci, Fabrizio

    2013-04-01

    Volcanic eruptions can emit large quantities of fine particles (ash) into the atmosphere as well as several trace gases, such as water vapour, carbon dioxide, sulphur species (SO2, H2S) and halogens (HCl, HBr, HF). These volcanic ejecta can have a considerable impact on the atmosphere, human health and society. Volcanic ash in particular is known to be a major threat for aviation, especially after dispersion over long distances (>1000 km) from the erupting volcano. In this respect, the continuous monitoring of volcanic ash from space is playing an essential role for the mitigation of aviation hazards. Compared to ash, SO2 is less critical for aviation safety, but is much easier to measure. Therefore, SO2 observations are often use as a marker of volcanic ash in the atmosphere. Moreover, SO2 yields information on the processes occurring in the magmatic system and is used as a proxy for the eruptive rate. In this presentation we give an overview of recent developments of the Support to Aviation Control Service (SACS). The focus is on the near-real time detection and monitoring of volcanic plumes of ash and SO2 using polar-orbiting instruments GOME-2, OMI, IASI and AIRS. The second part of the talk is dedicated to the determination of volcanic SO2 fluxes from satellite measurements. We review different techniques and investigate the temporal evolution of the total emissions of SO2 for recent volcanic events.

  2. Tectonic implications of space-time patterns of Cenozoic volcanism in the Palo Verde Mountain volcanic field, southeastern California

    SciTech Connect

    Murray, K.S.

    1981-01-01

    Variations in Cenozoic volcanism in the western United States are believed to correlate closely with changes in tectonic setting. A transition in volcanic association from calc-alkaline to fundamentally basaltic volcanism and subsequent crustal extension, appears to have coincided temporally with the initial collision of the East Pacific Rise with the continental margin trench off western North America, between 28 and 25 Ma. The volcanic stratigraphy of the Palo Verde Mountain volcanic field is broadly similar to other volcanic centers in southeastern California and can be divided into tripartite regional stratigraphy. A basal sequence of andesitic to rhyolitic lava flows, plugs, domes, and extensive pyroclastic deposits rests unconformably on pre-Cenozoic basement rocks. The basal sequence is intruded by cogenetic Cenozoic plutonic rocks and overlain by basaltic to rhyolitic lava flows, dikes, and a second widespread assemblage of pyroclastic deposits, cumulatively referred to as the silicic sequence. The youngest volcanic rocks of the field include olivine basalt flows and breccia which occur at scattered localities in the Palo Verde Mountains. The age, stratigraphy, and chemistry of the intermediate and basaltic composition volcanic rocks broadly supports previously cited volcanic-tectonic models, if modified to incorporate modern plate reconstruction theory. This modification results in a southeast migration of the transition to basaltic volcanism to southeastern California occurring significantly later in time than the previously cited ages of transition. Moreover, this southeast migration of the volcanic transition is coincident with the inception of Basin and Range faulting and the initiation of movement on the San Andreas fault south of the Transverse Ranges, corresponding to the southward migration of the Pacific-Cocos Ridge.

  3. Temporal and Spatial Analysis of Monogenetic Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Kiyosugi, Koji

    Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir. We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism. We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more

  4. Volcanic Versus Non-Volcanic Passive Margins: Two Different Ways to Break-up Continents

    NASA Astrophysics Data System (ADS)

    Geoffroy, L.; Burov, E. B.; Werner, P.; Unternehr, P.

    2014-12-01

    Volcanic passive margins (VPMs) are distinctive features of Larges Igneous Provinces. They characterize continental breakup associated with the extrusion and intrusion of large volumes of magma, predominantly mafic. In Large Igneous Provinces, regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere, suggesting that mantle melting is a cause of continental break-up, not a consequence. Early melt covers as volcanic traps large cratonic or/and cratonic-edge continental areas. Crustal dilatation through dyking in the upper crust and magma underplating at Moho level is thought to occur massively during this early stage. Lithosphere extension leading to break-up and VPMs development is coeval with a 3D focusing of mantle melting, giving rise to VPMs. From a combination of deep seismic reflection profiles and onshore observations, we show that the mechanism of continental breakup at volcanic passive margins is very different from the one generally proposed for non-magmatic systems. Crustal extension and coeval extrusion of thick wedges of seaward-dipping basalts are accommodated by continentward-dipping detachment-faults at both conjugate margins. Those faults root on a deformed ductile crust whose composition seems partly magmatic. Our numerical modeling show that hardening of deep continental crust during the early magmatic stages provokes a divergent flow of the ductile lithosphere (mantle and lower crust) away from a central continental block which thins through advection with time. Magma-assisted crustal-scale faults dipping continentward root over this flowing material, isolating micro-continents which may be lost in the future oceanic domain. The structure and tectonic evolution of volcanic passive margins cannot therefore be compared to non-volcanic ones, where major detachment faults dip oceanward during the necking-stage and where mantle is finally exhumed during the mechanical breakup. Confusions may exist where ancient hyper

  5. Crustal deformation and volcanic earthquakes associated with the recent volcanic activity of Iwojima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Fujita, E.; Tanada, T.

    2013-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The seismometer and GPS network of National Research Institute for Earth Science and Disaster Prevention (NIED) in Iwojima has observed a repeating island wide uplift more than 1 m associated with large number of volcanic earthquakes every several years. During 2006-2012, we observed more than 20000 volcanic earthquakes and an uplift of about 3 m, and precursory volcanic earthquakes and rapid crustal deformation just before the small submarine eruption near the northern coast of Iwojima in April 2012. In a restless volcano such as Iwojima, it is important issue to distinguish whether rapid crustal deformation and intense earthquake activity lead to an eruption or not. According to a long period geodetic observation by Ukawa et al. (2006), the crustal deformation of Iwojima can be classify into 2 phases. The first is an island wide large uplift centering on Motoyama area (the eastern part of the island, the center of the caldera), and the second is contraction and subsidence at local area centering on Motoyama and uplift around that area. They are interpreted by superposition of crustal deformations by a shallow contraction source and a deep seated inflation source beneath Motoyama. The earthquake activity of Iwojima highly correlates with the island wide large uplift, suggesting the earthquakes are almost controlled by a magma accumulation into a deep seated magma chamber. In contrast to the activity, the precursory activity of the eruption in 2012 is deviated from the correlation. The rapid crustal deformation just before and after the eruption in 2012 can be interpreted by rapid inflation and deflation of a shallow sill source about 1km deep, respectively, suggesting that it was caused by a shallow hydrothermal activity. The result shows that we can probably distinguish an abnormal activity related with a volcanic eruption when we observe

  6. Aerosol measurements from a recent Alaskan volcanic eruption: Implications for volcanic ash transport predictions

    NASA Astrophysics Data System (ADS)

    Cahill, Catherine F.; Rinkleff, Peter G.; Dehn, Jonathan; Webley, Peter W.; Cahill, Thomas A.; Barnes, David E.

    2010-12-01

    Size and time-resolved aerosol compositional measurements conducted during the 2006 eruption of Augustine Volcano provide quantitative information on the size and concentration of the fine volcanic ash emitted during the eruption and carried and deposited downwind. These data can be used as a starting point to attempt to validate volcanic ash transport models. For the 2006 eruption of Augustine Volcano, an island volcano in south-central Alaska, size and time-resolved aerosol measurements were made using an eight-stage (0.09-0.26, 0.26-0.34, 0.34-0.56, 0.56-0.75, 0.75-1.15, 1.15-2.5, 2.5-5.0, and 5.0-35.0 μm in aerodynamic diameter) Davis Rotating Unit for Monitoring (DRUM) aerosol impactor deployed near ground level in Homer, Alaska, approximately 110 km east-northeast of the volcano. The aerosol samples collected by the DRUM impactor were analyzed for mass and elemental composition every 90 min during a four-week sampling period from January 13 to February 11, 2006, that spanned several explosive episodes during the 2006 eruption. The collected aerosols showed that the size distribution of the volcanic ash fallout changed during this period of eruption. Ash had its highest concentrations in the largest size fraction (5.0-35.0 μm) with no ash present in the less than 1.15 μm size fractions during the short-lived explosive events. In contrast, during the continuous ash emission phase, concentrations of volcanic ash were more significant in the less than 1.15 μm size fractions. Settling velocities dictate that the smaller size particles will transport far from the volcano and, unlike the larger particles, not be retained in the proximal stratigraphic record. These results show that volcanic ash transport and dispersion (VATD) model predictions based on massless tracer particles, such as the predictions from the PUFF VATD model, provide a good first-order approximation of the transport of both large and small volcanic ash particles. Unfortunately, the

  7. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  8. Explosive volcanism, shock metamorphism and the K-T boundary

    NASA Technical Reports Server (NTRS)

    Desilva, S. L.; Sharpton, V. L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary.

  9. Volcanism in the cratered terrain hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Spudis, P. D.

    1978-01-01

    Four kinds of Martian volcanoes and their prevalences in the cratered terrain hemisphere (generally the southern hemisphere) are described. Patera, which are large low-profile volcanic structures, appear to be either older shield volcanoes or a unique type of volcano. 'Plains' volcanics represent low-volume eruptions that formed cones, low shields, and other small-scale structures. Flood volcanics are produced by high-volume eruptions, post-date the older and more degraded plateau plains, and occur mostly as basin-fill materials. Plateau plains, the Martian intercrater plains, contain many wrinkle ridges and floor-fractured craters. It is suggested that volcanic processes as well as erosional processes have been important in obliterating small Martian craters and that volcanic products may constitute a significant fraction (up to 44%) of the surface rocks in the cratered terrain

  10. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  11. The Influence of Volcanic Aerosols on Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Chen, Howard; Horton, Daniel Ethan

    2017-01-01

    On rocky planetary bodies such as Proxima Centuri b, the detection of sulphate aerosols may indicate volcanism and tectonic activity; ingredients hypothesized to be necessary for planetary habitability. However, due to the effect of atmospheric aerosols on a planet’s energy balance, coupled with eruption constituent and frequency uncertainties, the potential impact of volcanic activity on planetary habitability remains unresolved. Here, we employ multi-column climate models in conjunction with a parameter space approach to test the effect of volcanic aerosols on planetary climate with various climate sensitivities. Preliminary results indicate that volcanic activity could provide a means of extending the inner edge of the habitable zone (IHZ), depending on eruption constituents and frequency. Previous work using transit spectra simulations have demonstrated the possibility of detecting transient aerosols of volcanic origin. Our work investigates the range of habitability implications detection of such aerosols would imply.

  12. Volcanic Stratigraphy and Geochemistry of the Soufrière Volcanic Centre, Saint Lucia with Implications for Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Lindsay, J. M.; Schmitt, A. K.; Trumbull, R. B.; Stockli, D. F.; Shane, P. A.; Howe, T. M.; Kislitsyn, R.; Robertson, R. E.

    2012-12-01

    Extensive pyroclastic flow deposits, lava flows, domes and block-and-ash-flow deposits from the Soufriere Volcanic Complex (SVC), Saint Lucia, collectively represent one of the largest silicic centers in the Lesser Antilles arc. They occur within and around the Qualibou Depression, a ~10 km diameter ampitheater-shaped sector collapse structure that formed sometime 250-100 ka ago. Vent locations for SVC pyroclastic flow deposits and their relationship to the sector collapse remain unclear because stratigraphic correlation is difficult and there are only sparse radiometric ages for SVC domes and pyroclastic rocks. Compositionally, SVC rocks are uniformly medium-K, calc-alkaline rocks with 61.6 to 67.7 wt.% SiO2. Whole-rock trace element abundances are equally uniform whereas mineral chemistry only subtly differs between units. Combined U-Th and (U-Th)/He zircon together with 14C dating and mineral fingerprinting reveals significant explosive eruptions at ~300, 265, 104, 60 and 40 ka (producing deposits previously grouped together as the "Choisuel" unit) and at ~20 ka (Belfond unit). Dacitic lava domes similar in geochemical composition to the pyroclastic flow deposits yield (U-Th)/He eruption ages for zircon ranging from 273 ka (Morne Bonin) to 14 ka (Belfond dome). Zircon crystal rim ages in the most recently erupted volcanic rocks, including the domes, match those of co-erupted plutonic inclusions, whereas crystal interiors are equivalent to the cumulative distribution of zircon ages from older eruptions. This, together with their geochemical characteristics, suggests that the silicic lava domes and pyroclastic flows of the SVC share a common source beneath the Qualibou depression, which we consider the most likely location for future activity.

  13. Along-strike supply of volcanic rifted margins: Implications for plume-influenced rifting and sudden along-strike transitions between volcanic and non-volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Phipps Morgan, J.

    2006-12-01

    The existence of sudden along-strike transitions between volcanic and non-volcanic rifted margins is an important constraint for conceptual models of rifting and continental breakup. We think there is a promising indirect approach to infer the maximum width of the region of upwelling that exists beneath a rifted margin during the transition from rifting to seafloor-spreading. We infer this width of ~30km from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge and at the terminations of fossil volcanic rifted margins. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume-influenced `macro-segments' and volcanic rifted margins. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. This pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins; these transitions coincide with >30km ridge offsets that mark the boundary between the smooth seafloor morphology and thick crust of a plume- influenced volcanic margin and a neighboring non-volcanic margin, as recorded in 180Ma rifting of the early N. Atlantic, the 42Ma rifting of the Kerguelen-Broken Ridge, and the 66Ma Seychelles-Indian rifting in the Indian Ocean. (2) A similar pattern is seen in the often abrupt transitions between `normal' and plume-influenced mid- ocean ridge segments, which is discussed in a companion presentation by Phipps Morgan and Ranero (this meeting). (3) The coexistance of adjacent volcanic and non-volcanic rifted margin segments is readily explained in this conceptual framework. If the volcanic margin macrosegment is plume-fed by hot asthenosphere along an axial ridge slot

  14. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  15. Reconstructing Volcanic Forcing of Climate: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Timmreck, C.; Sigl, M.

    2015-12-01

    Radiative forcing resulting from major volcanic eruptions has been a dominant driver of climate variability during Earth's history. Including volcanic forcing in climate model simulations is therefore essential to recreate past climate variability, and provides the opportunity to test the ability of models to respond accurately to external forcing. Ice cores provide estimates of the volcanic sulfate loadings from past eruptions, from which radiative forcing can be reconstructed, with associated uncertainties. Using prior reconstructions, climate models have reproduced the gross features of global mean temperature variability reconstructed from climate proxies, although some significant differences between model results and reconstructions remain. There is much less confidence in the accuracy of the dynamical responses to volcanic forcing produced by climate models, and thus the regional aspects of post-volcanic climate anomalies are much more uncertain—a result which mirrors uncertainties in the dynamical responses to future climate change. Improvements in model's response to volcanic forcing may be possible through improving the accuracy of the forcing data. Recent advances on multiple fronts have motivated the development of a next-generation volcanic forcing timeseries for use in climate models, based on (1) improved dating and precision of ice core records, (2) better understanding of the atmospheric transport and microphysical evolution of volcanic aerosol, including its size distribution, and (3) improved representations of the spatiotemporal structure of volcanic radiative forcing. A new volcanic forcing data set, covering the past 2500 years, will be introduced and compared with prior reconstructions. Preliminary results of climate model simulations using the new forcing will also be shown, and current and future applications of the forcing set discussed.

  16. Real Time Volcanic Cloud Products and Predictions for Aviation Alerts

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Habib, Shahid; da Silva, Arlindo; Hughes, Eric; Yang, Kai; Brentzel, Kelvin; Seftor, Colin; Li, Jason Y.; Schneider, David; Guffanti, Marianne; Hoffman, Robert L.; Myers, Tim; Tamminen, Johanna; Hassinen, Seppo

    2014-01-01

    Volcanic eruptions can inject significant amounts of sulfur dioxide (SO2) and volcanic ash into the atmosphere, posing a substantial risk to aviation safety. Ingesting near-real time and Direct Readout satellite volcanic cloud data is vital for improving reliability of volcanic ash forecasts and mitigating the effects of volcanic eruptions on aviation and the economy. NASA volcanic products from the Ozone Monitoring Insrument (OMI) aboard the Aura satellite have been incorporated into Decision Support Systems of many operational agencies. With the Aura mission approaching its 10th anniversary, there is an urgent need to replace OMI data with those from the next generation operational NASA/NOAA Suomi National Polar Partnership (SNPP) satellite. The data provided from these instruments are being incorporated into forecasting models to provide quantitative ash forecasts for air traffic management. This study demonstrates the feasibility of the volcanic near-real time and Direct Readout data products from the new Ozone Monitoring and Profiling Suite (OMPS) ultraviolet sensor onboard SNPP for monitoring and forecasting volcanic clouds. The transition of NASA data production to our operational partners is outlined. Satellite observations are used to constrain volcanic cloud simulations and improve estimates of eruption parameters, resulting in more accurate forecasts. This is demonstrated for the 2012 eruption of Copahue. Volcanic eruptions are modeled using the Goddard Earth Observing System, Version 5 (GEOS-5) and the Goddard Chemistry Aerosol and Radiation Transport (GOCART) model. A hindcast of the disruptive eruption from Iceland's Eyjafjallajokull is used to estimate aviation re-routing costs using Metron Aviation's ATM Tools.

  17. Deformation Timescales of Porous Volcanic Materials

    NASA Astrophysics Data System (ADS)

    Quane, S.; Friedlander, B.; Robert, G.; Lynn, H.

    2007-12-01

    determined constant dependent on material properties. The real power of this new model is that now we can predict the timescale of formation of volcanic deposits that have undergone porosity loss by viscous deformation. Two examples we show are welding of ignimbrites and deformation in a volcanic conduit. Prediction of these poorly known timescales provides significant leverage for dynamic models detailing eruption and deposition of volcanic materials.

  18. Managing a volcanic crisis using Exupery

    NASA Astrophysics Data System (ADS)

    Hort, Matthias

    2010-05-01

    Despite ever increasing efforts to monitor historically active volcanoes many of those are still very poorly or unmonitored, even in highly populated areas. In case of volcanic unrest or even a volcanic crisis quickly assessing the situation is therefore often very difficult due to the little information that is available for that specific volcano. With vastly increasing possibilities in communication technology and managing huge data volumes mobile systems become more and more an option to be used as a crisis management tool in volcanology. This is going to supplement different programs that have supported volcanic crisis management efforts in third world countries in the past that includes sending experts and improving or even installing new instruments around the volcano. One of the main problems especially when quickly upgrading the monitoring system during a crisis is that each instrument usually comes with its own acquisition and processing system. This makes it very difficult to manage the monitoring network and provide an interdisciplinary interpretation of the data with respect to the activity status of the volcano. Here we present a newly developed volcano fast response system which overcomes several of these shortcomings. The core of the system is a novel database (SEISHUB) that allows for the collection of data of various kinds, i.e. simple time series data like seismic data, gas measurements, GPS measurements, as well as satellite data (SO2 flux, thermal anomaly, ground deformation). Part of the collected data may also come from an already existing network. Data from new field instruments are transmitted through a wireless network that has been specifically designed for the volcano fast response system. One of the main difficulties with such a multidisciplinary data set is an easy access to the data. This is provided through a common Web based GIS interface which allows various datalayers being simultaneously accessed through a Web Browser. The

  19. Magma storage under Iceland's Eastern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Maclennan, J.; Neave, D.; Hartley, M. E.; Edmonds, M.; Thordarson, T.; Morgan, D. J.

    2014-12-01

    The Eastern Volcanic Zone (EVZ) of Iceland is defined by a number of volcanic systems and large basaltic eruptions occur both through central volcanoes (e.g. Grímsvötn) and on associated fissure rows (e.g. Laki, Eldgjá). We have collected a large quantity of micro-analytical data from a number of EVZ eruptions, with the aim of identifying common processes that occur in the premonitory stages of significant volcanic events. Here, we focus on the AD 1783 Laki event, the early postglacial Saksunarvatn tephra and the sub-glacially erupted Skuggafjöll tindar and for each of these eruptions we have >100 olivine-hosted or plagioclase-hosted melt inclusion analyses for major, trace and volatile elements. These large datasets are vital for understanding the history of melt evolution in the plumbing system of basaltic volcanoes. Diverse trace element compositions in melt inclusions hosted in primitive macrocrysts (i.e. Fo>84, An>84) indicate that the mantle melts supplied to the plumbing system of EVZ eruptions are highly variable in composition. Concurrent mixing and crystallisation of these melts occurs in crustal magma bodies. The levels of the deepest of these magma bodies are not well constrained by EVZ petrology, with only a handful of high-CO2 melt inclusions from Laki providing evidence for magma supply from >5 kbar. In contrast, the volatile contents of melt inclusions in evolved macrocrysts, which are close to equilibrium with the carrier liquids, indicate that final depths of inclusion entrapment are 0.5-2 kbar. The major element composition of the matrix glasses shows that the final pressure of equilibration between the melt and its macrocryst phases also occurred at 0.5-2 kbar. The relationship between these pressures and seismic/geodetic estimates of chamber depths needs to be carefully evaluated. The melt inclusion and macrocryst compositional record indicates that injection of porphyritic, gas-rich primitive melt into evolved/enriched and degassed shallow

  20. Time Series of North Pacific Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Worden, A. K.; Webley, P. W.

    2011-12-01

    The record of volcanic eruptions was gathered from the 1986 eruption of Augustine Volcano to present for Alaska, Kamchatka and the Kuriles Islands. In this time over 400 ash producing eruptions were noted, and many more events that produced some other activity, e.g. lava, lahar, small explosion, seismic crisis. This represents a minimum for the volcanic activity in this region. It is thought that the records for Alaska are complete for this time period, but it is possible that activity in the Kuriles and Kamchatka could have been overlooked, particularly smaller events. For the Alaska region, 19 different volcanoes have been active in this time. Mt. Cleveland shows the most activity over the time period (40 % likely to have activity in a 3 month period), followed closely by Pavlof (34% likely)volcano. In Kamchatka only 7 volcanoes have been active, Shiveluch is the most active (83% likely) followed by Bezymianny and Kliuchevskoi volcanoes (tied at 60%). The Kuriles only has had 4 active volcanoes, and only 6 known eruptions. Overall this region is one of the most active in the world, in any 3 month period there is a 77% likelihood of volcano activity. For well instrumented volcanoes, the majority of activity is preceded by significant seismicity. For just over half of the events, explosive activity is preceded by thermal signals in infrared satellite data. Rarely (only about 5% of the time) is a stand alone thermal signal not followed within 3 months by an explosive eruption. For remaining events where an ash plume begins the activity, over 90% of the cases show a thermal signal the eruption. The volcanoes with the most activity are the least likely to produce large ash plumes. Conversely the volcanoes that erupt rarely often begin with larger ash producing events. Though there appears to be a recurrent progression of volcanic activity down the chain from east to west, this may be an artifact of several independent systems, each working at their own rate, that

  1. Precursory volcanic CO2 signals from space

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  2. The volcanic explosivity index /VEI/ - An estimate of explosive magnitude for historical volcanism

    NASA Technical Reports Server (NTRS)

    Newhall, C. G.; Self, S.

    1982-01-01

    A composite estimate of the magnitude of past explosive eruptions, referred to as the Volcanic Explosivity Index (VEI), is proposed as a semiquantitative compromise between poor data and the need in various disciplines to evaluate the record of past volcanism. The VEI is assigned to more than 8000 historic and prehistoric eruptions. It is shown that the VEI can help detect incompleteness and reporting biases and can help in selecting subsets of the historical record suitable for each study. The VEI is a composite estimate of Walkers (1980) magnitude and/or intensity and/or destructiveness and/or (less frequently) dispersive power, violence, and energy release rate, depending on the data that are available.

  3. Kamchatkan Volcanic Eruption Response Team (KVERT), Russia: preventing the danger of volcanic eruptions to aviation.

    NASA Astrophysics Data System (ADS)

    Girina, O.; Neal, Ch.

    2012-04-01

    The Kamchatkan Volcanic Eruption Response Team (KVERT) has been a collaborative project of scientists from the Institute of Volcanology and Seismology, the Kamchatka Branch of Geophysical Surveys, and the Alaska Volcano Observatory (IVS, KB GS and AVO). The purpose of KVERT is to reduce the risk of costly, damaging, and possibly deadly encounters of aircraft with volcanic ash clouds. To reduce this risk, KVERT collects all possible volcanic information and issues eruption alerts to aviation and other emergency officials. KVERT was founded by Institute of Volcanic Geology and Geochemistry FED RAS in 1993 (in 2004, IVGG merged with the Institute of Volcanology to become IVS). KVERT analyzes volcano monitoring data (seismic, satellite, visual and video, and pilot reports), assigns the Aviation Color Code, and issues reports on eruptive activity and unrest at Kamchatkan (since 1993) and Northern Kurile (since 2003) volcanoes. KVERT receives seismic monitoring data from KB GS (the Laboratory for Seismic and Volcanic Activity). KB GS maintains telemetered seismic stations to investigate 11 of the most active volcanoes in Kamchatka. Data are received around the clock and analysts evaluate data each day for every monitored volcano. Satellite data are provided from several sources to KVERT. AVO conducts satellite analysis of the Kuriles, Kamchatka, and Alaska as part of it daily monitoring and sends the interpretation to KVERT staff. KVERT interprets MODIS and MTSAT images and processes AVHRR data to look for evidence of volcanic ash and thermal anomalies. KVERT obtains visual volcanic information from volcanologist's field trips, web-cameras that monitor Klyuchevskoy (established in 2000), Sheveluch (2002), Bezymianny (2003), Koryaksky (2009), Avachinsky (2009), Kizimen (2011), and Gorely (2011) volcanoes, and pilots. KVERT staff work closely with staff of AVO, AMC (Airport Meteorological Center) at Yelizovo Airport and the Tokyo Volcanic Ash Advisory Center (VAAC), the

  4. Volcanism Studies: Final Report for the Yucca Mountain Project

    SciTech Connect

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  5. Paleoarchean trace fossils in altered volcanic glass.

    PubMed

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-06-02

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas.

  6. Volcanic earthquake swarms at Mt. Erebus, Antarctica

    NASA Astrophysics Data System (ADS)

    Kaminuma, Katsutada; Ueki, Sadato; Juergen, Kienle

    1985-04-01

    Mount Erebus is an active volcano in Antarctica located on Ross Island. A convecting lava lake occupies the summit crater of Mt. Erebus. Since December 1980 the seismic activity of Mt. Erebus has been continuously monitored using a radio-telemetered network of six seismic stations. The seismic activity observed by the Ross Island network during the 1982-1983 field season shows that: (1)Strombolian eruptions occur frequently at the Erebus summit lava lake at rates of 2-5 per day; (2)centrally located earthquakes map out a nearly vertical, narrow conduit system beneath the lava lake; (3)there are other source regions of seismicity on Ross Island, well removed from Mt. Erebus proper. An intense earthquake swarm recorded in October 1982 near Abbott Peak, 10 km northwest of the summit of Mt. Erebus, and volcanic tremor accompanying the swarm, may have been associated with new dike emplacement at depth.

  7. Volcanic thermal features observed by AVIRIS

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Clive; Pieri, David; Carrere, Veronique; Abrams, Michael; Rothery, David; Francis, Peter

    1992-01-01

    In July 1991, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was flown over Mount Etna and Stromboli, Italy. Lava-filled vents were then present within summit craters of both volcanoes. Since surfaces at magmatic temperatures radiate strongly over the wavelength ranges of the AVIRIS C- and D-spectrometers, it was hoped that the data collected would reveal clear thermal signatures, even of sub-pixel sized features, as have been observed in the 1.65 and 2.22 microns bands of Landsat Thematic Mapper images. This would provide an opportunity to explore the potential of imaging spectrometers for deriving temperature distributions of hot volcanic surfaces. Such research has implications for volcano monitoring in the EOS era, and also for any future AVIRIS deployments above active lava flows, lakes, and domes, where understanding of their behavior may be advanced by detailed thermal observations.

  8. Monitoring volcanic threats using ASTER satellite data

    USGS Publications Warehouse

    Duda, K.A.; Wessels, R.; Ramsey, M.; Dehn, J.

    2008-01-01

    This document summarizes ongoing activities associated with a research project funded by the National Aeronautics and Space Administration (NASA) focusing on volcanic change detection through the use of satellite imagery. This work includes systems development as well as improvements in data analysis methods. Participating organizations include the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, the Alaska Volcano Observatory (AVO) at the USGS Alaska Science Center, the Jet Propulsion Laboratory/California Institute of Technology (JPL/CalTech), the University of Pittsburgh, and the University of Alaska Fairbanks. ?? 2007 IEEE.

  9. South Arch volcanic field9d\

    USGS Publications Warehouse

    Lipman, P.W.; Clague, D.A.; Moore, J.G.; Holcomb, R.T.

    1989-01-01

    Several young lava fields were imaged by GLORIA sidescan sonar along the Hawaiian Arch south of Hawaii. The largest, 35 by 50 km across, includes a central area characterized by high sonar backscatter and composed of several flow lobes radiating from a vent area. Reflection profiling and sea-floor photography indicate that the central lobes are flat sheet flows bounded by pillowed margins; thin surface sediment and thin palagonite rinds on lava surfaces suggest ages of 1-10 ka. Vents are localized along the arch crest near bases of Cretaceous seamounts. Two dredged flows are basanite and alkalic basalt, broadly similar to rejuvenated-stage and some pre-shield alkalic lavas on the Hawaiian Ridge. Arch volcanism represents peripheral leakage of melt from the Hawaiian hot spot over much larger areas than previously recognized. -Authors

  10. Paleoarchean trace fossils in altered volcanic glass

    PubMed Central

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-01-01

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas. PMID:26038543

  11. Inside the volcanic boiler room: knowledge exchange among stakeholders of volcanic unrest

    NASA Astrophysics Data System (ADS)

    Gottsmann, Joachim; Christie, Ryerson; Bretton, Richard

    2014-05-01

    The knowledge of the causative links between subsurface processes, resulting monitoring signals and imminent eruption is incomplete. As a consequence, hazard assessment and risk mitigation strategies are subject to uncertainty. Discussion of unrest and pre-eruptive scenarios with uncertain outcomes are central during the discourse between a variety of stakeholders in volcanic unrest including scientists, emergency managers, policy makers and the public. Drawing from research within the EC FP7 VUELCO project, we argue that knowledge exchange amongst the different stakeholders of volcanic unrest evolves along three dimensions: 1) the identification of knowledge holders (including local communities) and their needs and expectations, 2) vehicles of communication and 3) trust. In preparing products that feed into risk assessment and management, scientists need to ensure that their deliverables are timely, accurate, clear, understandable and cater to the expectations of emergency managers. The means and content of communication amongst stakeholders need to be defined and adhered to. Finally, efficient and effective interaction between stakeholders is ideally based on mutual trust between those that generate knowledge and those that receive knowledge. For scientists, this entails contextualising volcanic hazard and risk in the framework of environmental and social values. Periods of volcanic quiescence are ideally suited to test established protocols of engagement between stakeholders in preparation for crises situations. The different roles of stakeholders and associated rules of engagement can be scrutinised and reviewed in antecessum rather than ad-hoc during a crisis situation to avoid issues related to distrust, loss of credibility and overall poor risk management. We will discuss these themes drawing from exploitation of research results from Mexico and Ecuador.

  12. Noachian Martian Volcanics a Water Source

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Glaze, L. S.; Baloga, S. M.; Fonda, Mark (Technical Monitor)

    2002-01-01

    H2O was supplied to the Noachian atmosphere by eruptions, or in association with large impacts. Most water outgassed into an extremely cold atmosphere, and condensate deposits were inevitable. High heat flow could lead to subglacial melting only if ice thicknesses were greater than 500-1000m, which is extremely unlikely. Subareal melting and flow is contingent upon temperatures periodically exceeding 273 K, and retarding evaporative loss of the flow. In still air, evaporation into a dry atmosphere is in the free convection regime, and a stream with 2 cu m/s discharge, flowing 1 m/s could persist for hundreds of days and cover distances greater than any valley reach. The zero-wind-shear condition is considered implausible however. We investigate the possibility that evaporation rates were suppressed because the atmosphere was regionally charged with H2O as it moved over snow/ice fields. Our initial concern is precipitation from volcanic plumes. A Kilauea-style eruption on the martian surface would cover a 10km circular deposit with 10cm of H2O, if all H2O could be precipitated near the vent. The characteristics of the eruption at the vent, (vent size, temperature, H2O content, etc.) are independent of the environmental conditions. The subsequent behavior of the plume, including precipitation of ash and H2O condensate depends strongly on the environment. Hence, the proximal fate of volcanic H2O is amenable to treatment in a model. A simple bulk thermodynamic model of the rise of an H2O plume through a stably stratified CO2 atmosphere, with only adiabatic cooling, produces runaway plume rise. A more complex treatment includes the effects of latent heat release, wind shear along the plume, divergence of ash and H2O, and will yield more realistic estimates of H2O transport in eruptive plumes. Results of these simulations will be presented.

  13. Factors controlling sulfur concentrations in volcanic apatite

    USGS Publications Warehouse

    Peng, G.; Luhr, J.F.; McGee, J.J.

    1997-01-01

    Apatite crystals from two types of samples were analyzed by electron microprobe for 15 major and trace elements: (1) apatite in H2O- and S-saturated experimental charges of the 1982 El Chicho??n trachyandesite and (2) apatite in volcanic rocks erupted from 20 volcanoes. The SO3 contents of the experimental apatite increase with increasing oxygen fugacity (fo2), from ???0.04 wt% in reduced charges buffered by fayalite-magnetite-quartz (FMQ), to 1.0-2.6 wt% in oxidized charges buffered by manganosite-hausmanite (MNH) or magnetite-hematite (MTH). The SO3 contents of MNH- and MTH-buffered apatite also generally increase with increasing pressure from 2 to 4 kbar and decreasing temperature from 950 to 800??C. The partition coefficient for SO3 between apatite and oxidized melt increases with decreasing temperature but appears to be independent of pressure. Apatites in volcanic rocks show a wide range of SO3 contents (<0.04 to 0.63 wt%). Our sample set includes one group known to contain primary anhydrite and a second group inferred to have been free of primary anhydrite. No systematic differences in apatite S contents are observed between these two groups. Our study was initiated to define the factors controlling S contents in apatite and to evaluate the hypothesis that high S contents in apatite could be characteristic of S-rich anhydrite-bearing magmas such as those erupted from El Chicho??n in 1982 and Pinatubo in 1991. This hypothesis is shown to be invalid, probably chiefly a consequence of the slow intra-crystaline diffusion that limits re-equilibration between early formed apatite and the evolving silicate melt. Contributing factors include early crystallization of most apatite over a relatively small temperature interval, common late-stage magmatic enrichment of S, progressive oxidation during magmatic evolution, and strong controls on S contents in apatite exerted fo2, temperature, and pressure.

  14. Volcanic risk perception in the Vesuvius population

    NASA Astrophysics Data System (ADS)

    Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.; Ricci, T.

    2008-05-01

    A volcanic risk perception study of the population residing near Vesuvius was carried out between May and July, 2006. A total of 3600 questionnaires with 45 items were distributed to students, their parents and the general population. The largest number of surveys (2812) were distributed in the 18 towns of the Red Zone, the area nearest to the volcano that is exposed to pyroclastic flow hazards and whose 550,000 residents, according to the civil protection emergency plan (in operation since 1995), should be evacuated in case of an eruption crisis. The remaining 788 questionnaires were distributed in 3 additional towns and 3 neighborhoods of Naples, all within the Yellow Zone, which is an area exposed to pyroclastic fallout hazards. A total of 2655 surveys were returned, resulting in a response rate of 73.7%. Results indicated that people have a realistic view of the risk: they think that an eruption is likely, that it will have serious consequences for their towns and for themselves and their families and they are quite worried about the threat. However, several other social, economic, and security-related issues were listed as a problem more often than Vesuvius. The study also demonstrated a widespread lack of knowledge about the emergency plan, a lack of confidence in the plan's success and in public officials and low feelings of self-efficacy. People want to be more deeply involved in public discussions with scientists and civil protection officials on emergency planning and individual preparedness measures. It is clear from the results that a major education-information effort is still needed to improve the public's knowledge, confidence and self-efficacy, thereby improving their collective and individual capability to positively face a future volcanic emergency.

  15. Volcanic hazards at Atitlan volcano, Guatemala

    USGS Publications Warehouse

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  16. Comminution and frictional melting in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Lavallee, Y.; Mitchell, T. M.; Heap, M. J.; Kendrick, J. E.; kennedy, B.; Ashwell, P. A.; Hirose, T.; Dingwell, D. B.

    2011-12-01

    Shearing and faulting at active volcanoes may differ to tectonic faulting due to their distinct temperature conditions above those of the Earth's geotherm. In particular, the ascent of high-viscosity magma/rocks in upper conduits leads to shear/fault zones, with/without gouge formation and sometimes frictional melting; yet, details of the deformation and fracture mechanisms in these magma/rocks with different crystallinities reveal a different synopsis. For instance, the extrusion of lava domes proceeds endogenously or exogenically - a distinction generally understood as a shift in magma rheology to brittle failure, without consideration of the subsequent slip process. Exogenic growth and formation of a spine follow the dynamic rupture of the lava and the dome carapace, and suffer slip along the fault surface. Here, we present experimental investigations of the ability of volcanic rocks (with different glass/crystal and vesicle ratios) to sustain friction, and in cases melt, using a high-velocity rotary apparatus. During high-velocity rotary shear test, we find that slip of along andesite and basalt rocks generate heat which leads to frictional melting at temperature of ca. 1000 C, conciding to a total slip of 10-40 m (for slip initiating at room temperature). In contrast, slip along dense obsidian rocks or porous rocks cannot sustain slip along a discrete plane. Alternatively, obsidian can be slipped against a crystalline material. The width of the slip zone decreases in the presence of crystals. The findings suggest that the comminution of crystals is a requirement to the development of a localised slip zone. In absence of crystals, obsidian (and crystal-free magma) shatter catastrophically. We discuss the implication of our findings to the cases of tectonic faults, stability of volcanic edifices and evolution of lava dome eruptions.

  17. Atmospheric chemistry of an Antarctic volcanic plume

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Clive; Kyle, Philip; Eisele, Fred; Crawford, Jim; Huey, Greg; Tanner, David; Kim, Saewung; Mauldin, Lee; Blake, Don; Beyersdorf, Andreas; Buhr, Martin; Davis, Doug

    2010-01-01

    We report measurements of the atmospheric plume emitted by Erebus volcano, Antarctica, renowned for its persistent lava lake. The observations were made in December 2005 both at source, with an infrared spectrometer sited on the crater rim, and up to 56 km downwind, using a Twin Otter aircraft; with the two different measurement platforms, plume ages were sampled ranging from <1 min to as long as 9 h. Three species (CO, carbonyl sulfide (OCS), and SO2) were measured from both air and ground. While CO and OCS were conserved in the plume, consistent with their long atmospheric lifetimes, the downwind measurements indicate a SO2/CO ratio about 20% of that observed at the crater rim, suggesting rapid chemical conversion of SO2. The aircraft measurements also identify volcanogenic H2SO4, HNO3 and, recognized for the first time in a volcanic plume, HO2NO2. We did not find NOx in the downwind plume despite previous detection of NO2 above the crater. This suggests that near-source NOx was quickly oxidized to HNO3 and HO2NO2, and probably NO32-(aq), possibly in tandem with the conversion of SO2 to sulfate. These fast processes may have been facilitated by "cloud processing" in the dense plume immediately downwind from the crater. A further striking observation was O3 depletion of up to ˜35% in parts of the downwind plume. This is likely to be due to the presence of reactive halogens (BrO and ClO) formed through heterogeneous processes in the young plume. Our analysis adds to the growing evidence for the tropospheric reactivity of volcanic plumes and shows that Erebus volcano has a significant impact on Antarctic atmospheric chemistry, at least locally in the Southern Ross Sea area.

  18. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  19. Intracaldera volcanism and sedimentation - Creede Caldera, Colorado

    SciTech Connect

    Heiken, G.; Krier, D.; Snow, M.G.

    1997-06-01

    Within the Creede caldera, Colorado, many of the answers to its postcaldera volcanic and sedimentary history lie within the sequence of tuffaceous elastic sedimentary rocks and tuffs known as the Creede Formation. The Creede Formation and its interbedded ash deposits were sampled by research coreholes Creede 1 and 2, drilled during the fall of 1991. In an earlier study of the Creede Formation, based on surface outcrops and shallow mining company coreholes, Heiken and Krier concluded that the process of caldera structural resurgence was rapid and that a caldera lake had developed in an annulus ({open_quotes}moat{close_quotes}) located between the resurgent dome and caldera wall. So far we have a picture of intracaldera activity consisting of intermittent hydrovolcanic eruptions within a caldera lake for the lower third of the Creede Formation, and both magmatic and hydrovolcanic ash eruptions throughout the top two-thirds. Most of the ash deposits interbedded with the moat sedimentary rocks are extremely fine-grained. Ash fallout into the moat lake and unconsolidated ash eroded from caldera walls and the slopes of the resurgent dome were deposited over stream delta distributaries within relatively shallow water in the northwestern moat, and in deeper waters of the northern moat, where the caldera was intersected by a graben. Interbedded with ash beds and tuffaceous siltstones are coarse-grained turbidites from adjacent steep slopes and travertine from fissure ridges adjacent to the moat. Sedimentation rates and provenance for elastic sediments are linked to the frequent volcanic activity in and near the caldera; nearly all of the Creede Formation sedimentary rocks are tuffaceous.

  20. Volcanic glasses, their origins and alteration processes

    USGS Publications Warehouse

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  1. Professional conduct of scientists during volcanic crises

    NASA Astrophysics Data System (ADS)

    IAVCEI SubcommitteeCrisis Protocols; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Barry; Newhall, Chris

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are

  2. Professional conduct of scientists during volcanic crises

    USGS Publications Warehouse

    ,; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Wimpy

    1999-01-01

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are

  3. The Hygroscopic Properties of Volcanic Ash and Implications for the Evolution of Volcanic Plumes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Kumar, P.; Dufek, J.; Sokolik, I. N.; Nenes, A.

    2010-12-01

    Volcanic eruptions are long known to have profound impacts on the Earth System and society, which result from the atmospheric emissions and transport of volcanic ash. The microphysical evolution of volcanic plumes is key to understanding their atmospheric lifetime. Volcanic ash is composed primarily of silicate glass and crystal and is injected into an environment initially rich in volcanically derived gases, including water vapor. Limited observational data exists on the physical interactions between the water vapor and ash particles; yet it is thought that these interactions can strongly impact the coagulation efficiency and microphysical evolution of volcanic ash. In this study, we investigate the hygroscopic properties of fine volcanic ash (less than 125 micro-meter diameter) from a variety of sources, including the eruptions of Mount St. Helens in 1980, Tungurahua in 2006, Chaiten in 2008, Redoubt in 2009, and Eyjafjallajökull in 2010. These recent eruptions were selected to encompass a range of composition, crystallinity, and eruptive style. The hygroscopicity of the ash particles is quantified by their ability to nucleate cloud droplets under controlled levels of water vapor supersaturation. The dependence of critical supersaturation vs. dry particle diameter is used to i) explore the origin of particle hygroscopicity (being from the presence of deliquescent soluble material or adsorption onto insoluble surfaces), and, ii) determine the level of humidity required to coat volcanic ash with water, a requirement for large coagulation efficiencies. Our results show that fresh volcanic ash tends to follow adsorption activation theory and supports the suggestion that ash particles are sufficiently hygroscopic to be coated with a monolayer of water under subsaturated conditions. The range of interactions varies strongly, and follows what is expected from their composition. These experiments provide new insights on ash-water interactions, which can be used to

  4. A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ∼3.0 Ga Pongola Supergroup, Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Hofmann, Axel; Siahi, Mehrnaz; Feng, Yue-xing; Delvigne, Camille

    2015-06-01

    Major and trace element, and Pb isotopic data for chemical and clastic sedimentary rocks of the Mesoarchaean Pongola Supergroup are employed to infer aspects of the provenance and depositional environment, including ambient seawater composition. Stromatolitic carbonates of the Nsuze Group were formed in a tidal-flat setting, whereas ironstones of the Mozaan Group were deposited in an outer-shelf setting during marine transgression. Geochemical criteria, employed to test for crustal contamination and diagenetic/metamorphic overprinting, demonstrate that carbonates and ironstones preserved their primary chemical signature. In comparison to other documented Precambrian stromatolites, shale-normalised REE+Y patterns for Nsuze carbonates show pronounced enrichment in middle REE, but lack strong elemental anomalies (La, Gd, Y) that are diagnostic for derivation from open marine waters. In contrast, normalised REE+Y for ironstones exhibit distinct positive La, Gd and Y anomalies. Both rock types are devoid of normalised Ce anomalies and show only minor enrichment in Eu, suggesting deposition in anoxic environments (with respect to the Ce3+/Ce4+ redox couple) accompanied by minor high-temperature hydrothermal input. Trace element geochemical data are most consistent with deposition of Nsuze carbonates in a shallow-water epicontinental basin with restricted but variable exchange to the open-ocean and dominant fluvial input, whereas ironstone precipitated in a deeper-water, epicontinental sea. Estuarine fractionation and organic complexation due to microbial activity is possibly indicated by MREE enrichment of the carbonates, also consistent with a restricted environment. Shales belonging to the Mozaan Group are characterised by high concentrations of Al and K relative to Ca, Na and Sr, indicative of pronounced in-situ weathering, coupled with K-metasomatism. The provenance is mixed, comprising (ultra)mafic and granitic source rocks. Pb isotope regression for Nsuze

  5. Oceanography, bathymetry and syndepositional tectonics of a Precambrian intracratonic basin: integrating sediments, storms, earthquakes and tsunamis in the Belt Supergroup (Helena Formation, ca. 1.45 Ga), western North America

    NASA Astrophysics Data System (ADS)

    Pratt, Brian R.

    2001-06-01

    The carbonate-dominated Helena Formation of the Mesoproterozoic Belt Supergroup of western North America provides an instructive example of how a range of regional depositional and environmental characteristics of an ancient sea can be deduced on the basis of micron- to metre-scale features. Particularly revealing is the window opened by the presence of abundant molar-tooth structure onto the paleoceanography, paleobathymetry, paleoclimate and tectonic regime of this intracratonic Precambrian basin. The facies hosting molar-tooth structure is composed dominantly of lime mud with substantial subangular quartz and feldspar silt and clay derived from the western and southwestern side of the basin. These are low-energy tempestites deposited on a remarkably flat sea bottom at the limit of storm-wave base, at about 50 m. Sporadic domical, stromatolite patch reefs confirm that the sea bottom was normally within the photic zone. The ubiquity of molar-tooth structure suggests frequent, near-field seismic activity during subsidence, which generated ground motion sufficient to liquefy granular lime mud and terrigenous silt. Sporadic tsunamis from major submarine faults far to the west pounded the shallow-water platform to the east. Tsunami off-surge swept ooids and rounded, coarse-grained, feldspathic quartz sand westward into deeper water, and created strongly erosive currents that left gutter casts composed of lags of preferentially cemented molar-tooth structure in otherwise relatively low-energy facies. Mineralogical and geochemical evidence, confirms that the Belt basin was marine. Organic matter was essentially fully oxidized in the water column. Original high-Mg composition and cementation of lime mud in molar-tooth structure indicate that calcite precipitated above the thermocline in supersaturated seawater under tropical conditions. Scattered bimineralic ooids in allochthonous grainstones indicate that shoals on the platform to the east were intermittently above a

  6. The dynamics of genetic and morphological variation on volcanic islands

    PubMed Central

    Gübitz, Thomas; Thorpe, Roger S; Malhotra, Anita

    2005-01-01

    Oceanic archipelagos of volcanic origin have been important in the study of evolution because they provide repeated natural experiments allowing rigorous tests of evolutionary hypotheses. Ongoing volcanism on these islands may, however, affect the evolutionary diversification of species. Analysis of population structure and phylogeographic patterns in island populations can provide insight into evolutionary dynamics on volcanic islands. We analysed genetic and morphological variation in the gecko Tarentola boettgeri on the island of Gran Canaria and compared it with Tarentola delalandii on Tenerife, a neighbouring volcanic island of similar age but distinctly different geological past. Intraspecific divergence of mitochondrial haplotypes indicates long-term persistence of Tarentola on each island, with a phylogeographic signal left by older volcanic events. More recent volcanic eruptions (approximately 0.2 million years ago on Tenerife, approximately 2.2 million years ago on Gran Canaria) have left a signature of population expansion in the population genetic structure, the strength of which depends on the time since the last major volcanic eruption on each island. While these stochastic events have left traces in morphological variation in Tenerife, in Gran Canaria geographical variation was solely associated with environmental variables. This suggests that historically caused patterns in morphology may be overwritten by natural selection within 2 million years. PMID:15870037

  7. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary