Science.gov

Sample records for abscissic acid aba

  1. Abscission: Role of Abscisic Acid

    PubMed Central

    Cracker, L. E.; Abeles, F. B.

    1969-01-01

    The effect of abscisic acid on cotton (Gossypium hirsutum L. cv. Acala 4-42) and bean (Phaseolus vulgaris L. cv. Red Kidney) explants was 2-fold. It increased ethylene production from the explants, which was found to account for some of its ability to accelerate abscission. Absci is acid also increased the activity of cellulase. Increased synthesis of cellulase was not du to an increase in aging of the explants but rather was an effect of abscisic acid on the processes that lead to cellulase synthesis or activity. PMID:16657181

  2. Involvement of abscisic acid in correlative control of flower abscission in soybean

    SciTech Connect

    Yarrow, G.L.

    1985-01-01

    Studies were carried out in three parts: (1) analysis of endogenous abscisic acid (ABA) in abscising and non-abscising flowers, (2) partitioning of radio-labelled ABA and photoassimilates within the soybean raceme, and (3) shading experiments, wherein endogenous levels, metabolism and partitioning of ABA were determined. Endogenous concentrations of ABA failed to show any consistent relationship to abscission of soybean flowers. Partitioning of radiolabelled ABA and photoassimilates displayed consistently higher sink strengths (% DPM) for both /sup 3/H-ABA and /sup 14/C-photoassimilates for non-abscising flowers than for abscising flowers within control racemes. Shading flowers with aluminum foil, 48 hrs prior to sampling, resulted in lowered endogenous ABA concentrations at 12, 17 and 22 days after anthesis (DAA), but not at 0 or 4 DAA. No differences were found in the catabolism of /sup 3/H-ABA between shaded (abscising) and non-shaded (non-abscising) flowers. Reduced partitioning of ABA and photoassimilates to shaded flowers resulted when shades were applied at 0, 4, 12, and 17 DAA, but not at 22 DAA.

  3. Early Induction of Apple Fruitlet Abscission Is Characterized by an Increase of Both Isoprene Emission and Abscisic Acid Content12[W][OA

    PubMed Central

    Giulia, Eccher; Alessandro, Botton; Mariano, Dimauro; Andrea, Boschetti; Benedetto, Ruperti; Angelo, Ramina

    2013-01-01

    Apple (Malus domestica) fruitlet abscission represents an interesting model system to study the early phases of the shedding process, during which major transcriptomic changes and metabolic rearrangements occur within the fruit. In apple, the drop of fruits at different positions within the cluster can be selectively magnified through chemical thinners, such as benzyladenine and metamitron, acting as abscission enhancers. In this study, different abscission potentials were obtained within the apple fruitlet population by means of the above-cited thinners. A metabolomic study was conducted on the volatile organic compounds emitted by abscising fruitlets, allowing for identification of isoprene as an early marker of abscission induction. A strong correlation was also observed between isoprene production and abscisic acid (ABA) levels in the fruit cortex, which were shown to increase in abscising fruitlets with respect to nonabscising ones. Transcriptomic evidence indicated that abscission-related ABA is biologically active, and its increased biosynthesis is associated with the induction of a specific ABA-responsive 9-cis-epoxycarotenoid dioxygenase gene. According to a hypothetical model, ABA may transiently cooperate with other hormones and secondary messengers in the generation of an intrafruit signal leading to the downstream activation of the abscission zone. The shedding process therefore appears to be triggered by multiple interdependent pathways, whose fine regulation, exerted within a very short temporal window by both endogenous and exogenous factors, determines the final destiny of the fruitlets. PMID:23444344

  4. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*

    PubMed Central

    Minkoff, Benjamin B.; Stecker, Kelly E.; Sussman, Michael R.

    2015-01-01

    Abscisic acid (ABA)1 is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  5. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism

    PubMed Central

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-01-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8’OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy. PMID:25560179

  6. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    SciTech Connect

    Rock, C.D.; Zeevaart, J.A.D. )

    1990-05-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. {sup 18}O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of ({sup 18}O)ABA which contains two {sup 18}O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this ({sup 18}O)t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the {sup 18}O in ABA-aldehyde is trapped in the side chain by reduction to ({sup 18}O)ABA-alcohol, followed by isomerization to ({sup 18}O)t-ABA-alcohol and oxidation with {sup 18}O{sub 2} to ({sup 18}O)t-ABA. The ({sup 18}O)t-ABA is then rapidly converted to ({sup 18}O)t-ABA-GE. Because ({sup 18}O)ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway.

  7. Effects of high night temperature and abscisic acid (ABA) on rice (Oryza sativa L.) physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High night temperature (HNT) is known to decrease rice yields. The impact of abscisic acid (ABA) on plants has been the subject of many studies. However, little or no work has been carried out on rice response to ABA under HNT-stress conditions. This study determined the effects of ABA on rice leaf ...

  8. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways.

    PubMed

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E; Di Lorenzo, Rosario; Oliveira, Cristina M; Goulao, Luis F

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  9. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    PubMed Central

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E.; Di Lorenzo, Rosario; Oliveira, Cristina M.; Goulao, Luis F.

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  10. Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism

    PubMed Central

    Muñoz-Bertomeu, Jesús; Bermúdez, María Angeles; Segura, Juan; Ros, Roc

    2011-01-01

    Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expression, but the mutant response to the hormone differed from that observed in wild-type plants. The gene expression of the transcription factor ABI4, involved in both sugar and ABA signalling, was altered in gapcp1gapcp2, suggesting that their ABA insensitivity is mediated, at least partially, through this transcriptional regulator. Serine supplementation was able partly to restore the ABA sensitivity of gapcp1gapcp2, indicating that amino acid homeostasis and/or serine metabolism may also be important determinants in the connections of ABA with primary metabolism. Overall, these studies provide new insights into the links between plant primary metabolism and ABA signalling, and demonstrate the importance of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in these interactions. PMID:21068209

  11. Abscission: The Role of Aging

    PubMed Central

    Abeles, F. B.; Holm, R. E.; Gahagan, H. E.

    1967-01-01

    Excision of Phaseolus vulgaris L. c.v. Red Kidney abscission zone explants results in senescence, mobilization, and abscission. Because these processes take place at about the same time, there has been some question as to whether they are causally related or are occurring in an independent but simultaneous fashion. Data presented here suggest that the latter interpretation is correct. After abscission zone explants are isolated from the leaf an aging process is set into motion and a degradation of metabolites in the pulvinus takes place. During the aging process the explants also become increasingly sensitive to ethylene which in turn promotes cell separation. Indoleacetic acid, cytokinins, and coumarin appear to retard aging since both degradative processes and abscission are inhibited. However, ethylene increased abscission without increasing degradative processes indicating that abscission and senescence are independent processes occurring at the same time. PMID:16656662

  12. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  13. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  14. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  15. Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize.

    PubMed

    Erb, Matthias; Gordon-Weeks, Ruth; Flors, Victor; Camañes, Gemma; Turlings, Ted C J; Ton, Jurriaan

    2009-07-01

    Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defenses can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by larvae of the beetle Diabrotica virgifera virgifera induced shoot resistance against herbivores and pathogens. Root herbivory also enhanced aboveground DIMBOA and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with plant stress resistance. Interestingly, the plant hormone abscisic acid (ABA) emerged as a putative long-distance signal in the regulation of these systemic defenses. In this addendum, we have investigated the role of root-derived ABA in aboveground regulation of DIMBOA and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. Furthermore, we discuss the relevance of ABA in relation to defense against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, causing augmented induction of this compound after subsequent shoot attack by S. littoralis caterpillars. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defenses during belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, our results also suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis. PMID:19820311

  16. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum.

    PubMed

    Wang, Jin; Lin, Lijin; Luo, Li; Liao, Ming'an; Lv, Xiulan; Wang, Zhihui; Liang, Dong; Xia, Hui; Wang, Xun; Lai, Yunsong; Tang, Yi

    2016-03-01

    The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 μmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 μmol/L ABA with 569.42 μg/plant in shoots of the mining ecotype and 520.51 μg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 μmol/L ABA was the optimal dose. PMID:26899030

  17. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA.

    PubMed

    Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan

    2012-05-01

    Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found. PMID:22391126

  18. LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis.

    PubMed

    Gao, Shan; Guo, Wenya; Feng, Wen; Liu, Liang; Song, Xiaorui; Chen, Jian; Hou, Wei; Zhu, Hongxia; Tang, Saijun; Hu, Jian

    2016-04-01

    Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. PMID:26123657

  19. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley.

    PubMed Central

    Shen, Q; Zhang, P; Ho, T H

    1996-01-01

    The modular nature of the abscisic acid response complex (ABRC), the promoter unit necessary and sufficient for abscisic acid (ABA) induction of gene expression in barley, is defined in this study. We investigated ABA induction of a barley late embrogenesis abundant (Lea) gene, HVA1, and found that the ABRC of this gene consists of a 10-bp box with an ACGT core (ACGT-box) and the 11 bp directly upstream, named coupling element 3 (CE3). Only one copy of this ABRC is sufficient to confer ABA induction when linked to a minimal promoter. Because we previously reported another ABRC in the barley HVA22 gene, which consists of an ACGT-box with a distal coupling element (CE1), exchange experiments were conducted to study the interaction among modular elements in these ABRCs. We show that ACGT-boxes in these ABRCs are interchangeable, indicating that an ACGT-box can interact with either a distal or a proximal coupling element to confer ABA response. However, the two coupling elements are not fully exchangeable. Although CE3 can function either proximal or distal to the ACGT-box, CE1 is only functional at the distal position. The presence of both the distal and the proximal coupling elements has a synergistic effect on the absolute level of expression as well as on ABA induction. These ABRCs function in both seed and vegetative tissues. In seeds, ABA induction of the ABRC containing the proximal CE3, but not the ABRC with the distal CE1, is enhanced in the presence of the transcription regulator Viviparous1, indicating that these two ABRCs are mediated by different ABA signal transduction pathways. PMID:8768371

  20. Abscisic acid (ABA) receptors: light at the end of the tunnel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone abscisic acid (ABA) plays a role in several aspects of plant growth and development. Understanding how this hormonal stimulus is sensed and transduced turned out to be one of the major tasks in the field of plant signaling. A series of recent papers proposed several different prote...

  1. ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions.

    PubMed

    Ma, Fangfang; Ni, Lan; Liu, Libo; Li, Xi; Zhang, Huan; Zhang, Aying; Tan, Mingpu; Jiang, Mingyi

    2016-02-01

    In maize (Zea mays), the mitogen-activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)-induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two-hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short-chain dehydrogenase/reductase family, was identified. Pull-down assay and bimolecular fluorescence complementation analysis and co-immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions. PMID:26096642

  2. Plastid casein kinase 2 knockout reduces abscisic acid (ABA) sensitivity, thermotolerance, and expression of ABA- and heat-stress-responsive nuclear genes.

    PubMed

    Wang, Yu; Chang, Hongping; Hu, Shuai; Lu, Xiutao; Yuan, Congying; Zhang, Chen; Wang, Ping; Xiao, Wenjun; Xiao, Langtao; Xue, Gang-Ping; Guo, Xinhong

    2014-08-01

    Plastid casein kinase 2 (CK2) is a major Ser/Thr-specific enzyme for protein phosphorylation in the chloroplast stroma and its kinase activity is regulated by redox signals. To understand the role of CK2 phosphorylation of chloroplast proteins in abiotic stress signalling, an Arabidopsis plastid CK2 (CKA4) knockout mutant was investigated in terms of the plant response to abscisic acid (ABA) and heat stress. CKA4 expression was upregulated by ABA and heat treatment. The cka4 mutant showed reduced sensitivity to ABA during seed germination and seedling growth, and increased stomatal aperture and leaf water loss with a slightly reduced leaf ABA level. The cka4 mutant was more sensitive to heat stress than the wild-type Columbia-0. The expression levels of a number of genes in the ABA regulatory network were reduced in the cka4 mutant. Many heat-upregulated genes (heat-shock factors and heat-shock proteins) were also reduced in the cka4 mutant. The cka4 mutant showed reduced expression levels of plastid-encoded RNA polymerase target genes (atpB and psbA). CKA4 knockout mutation also resulted in a reduction in expression of some critical genes (PTM, ABI4, and PRS1) involved in retrograde signalling from the chloroplast to the nucleus. Similar results were observed in mutant plants with the knockout mutation in both CKA4 and CKA3, which encodes a nuclear CK2 α3 subunit. CKA3 expression was not responsive to ABA and heat stress. These results suggest that CKA4 is an enhancing factor in abiotic stress signalling through modulating the expression of some molecular players in retrograde signalling. PMID:24803505

  3. Plastid casein kinase 2 knockout reduces abscisic acid (ABA) sensitivity, thermotolerance, and expression of ABA- and heat-stress-responsive nuclear genes

    PubMed Central

    Wang, Yu; Chang, Hongping; Hu, Shuai; Lu, Xiutao; Yuan, Congying; Zhang, Chen; Wang, Ping; Xiao, Wenjun; Xiao, Langtao; Xue, Gang-Ping; Guo, Xinhong

    2014-01-01

    Plastid casein kinase 2 (CK2) is a major Ser/Thr-specific enzyme for protein phosphorylation in the chloroplast stroma and its kinase activity is regulated by redox signals. To understand the role of CK2 phosphorylation of chloroplast proteins in abiotic stress signalling, an Arabidopsis plastid CK2 (CKA4) knockout mutant was investigated in terms of the plant response to abscisic acid (ABA) and heat stress. CKA4 expression was upregulated by ABA and heat treatment. The cka4 mutant showed reduced sensitivity to ABA during seed germination and seedling growth, and increased stomatal aperture and leaf water loss with a slightly reduced leaf ABA level. The cka4 mutant was more sensitive to heat stress than the wild-type Columbia-0. The expression levels of a number of genes in the ABA regulatory network were reduced in the cka4 mutant. Many heat-upregulated genes (heat-shock factors and heat-shock proteins) were also reduced in the cka4 mutant. The cka4 mutant showed reduced expression levels of plastid-encoded RNA polymerase target genes (atpB and psbA). CKA4 knockout mutation also resulted in a reduction in expression of some critical genes (PTM, ABI4, and PRS1) involved in retrograde signalling from the chloroplast to the nucleus. Similar results were observed in mutant plants with the knockout mutation in both CKA4 and CKA3, which encodes a nuclear CK2 α3 subunit. CKA3 expression was not responsive to ABA and heat stress. These results suggest that CKA4 is an enhancing factor in abiotic stress signalling through modulating the expression of some molecular players in retrograde signalling. PMID:24803505

  4. Four shades of detachment: Regulation of floral organ abscission

    PubMed Central

    Kim, Joonyup

    2014-01-01

    Abscission of floral organs from the main body of a plant is a dynamic process that is developmentally and environmentally regulated. In the past decade, genetic studies in Arabidopsis have identified key signaling components and revealed their interactions in the regulation of floral organ abscission. The phytohormones jasmonic acid (JA) and ethylene play critical roles in flower development and floral organ abscission. These hormones regulate the timing of floral organ abscission both independently and inter-dependently. Although significant progress has been made in understanding abscission signaling, there are still many unanswered questions. These include considering abscission in the context of reproductive development and interplay between hormones embedded in the developmental processes. This review summarizes recent advances in the identification of molecular components in Arabidopsis and discusses their relationship with reproductive development. The emerging roles of hormones in the regulation of floral organ abscission, particularly by JA and ethylene, are examined. PMID:25482787

  5. Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize.

    PubMed

    Wang, Ying-Ge; Yu, Hao-Qiang; Zhang, Yuan-Yuan; Lai, Cong-Xian; She, Yue-Hui; Li, Wan-Chen; Fu, Feng-Ling

    2014-10-01

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. In recent researches, pyrabactin resistance 1-like protein (PYL) and protein phosphatase type 2C (PP2C) were identified as the direct receptor and the second component of ABA signaling pathway, respectively. However, a lot of PYL and PP2C members were found in Arabidopsis and several other plants. Some of them were found not to be involved in ABA signaling. Because of the complex diversity of the genome, few documents have been available on the molecular details of the ABA signal perception system in maize. In the present study, we conducted bioinformatics analysis to find out the candidates (ZmPYL3 and ZmPP2C16) of the PYL and PP2C members most probably involved in ABA signaling in maize, cloned their encoding genes (ZmPYL3 and ZmPP2C16), verified the interaction between these two proteins in response to exogenous ABA induction by yeast two-hybrid assay and bimolecular fluorescence complementation, and investigated the expression patterns of these two genes under the induction of exogenous ABA by real-time fluorescence quantitative PCR. The results indicated that the ZmPYL3 and ZmPP2C16 proteins interacted in vitro and in vivo in response to the induction of exogenous ABA. The downregulated expression of the ZmPYL3 gene and the upregulated expression of the ZmPP2C16 gene are responsive to the induction of exogenous ABA. The ZmPYL3 and ZmPP2C16 proteins are the most probable members of the receptors and the second components of ABA signaling pathway, respectively. PMID:25091169

  6. A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components.

    PubMed

    Peirats-Llobet, Marta; Han, Soon-Ki; Gonzalez-Guzman, Miguel; Jeong, Cheol Woong; Rodriguez, Lesia; Belda-Palazon, Borja; Wagner, Doris; Rodriguez, Pedro L

    2016-01-01

    Optimal response to drought is critical for plant survival and will affect biodiversity and crop performance during climate change. Mitotically heritable epigenetic or dynamic chromatin state changes have been implicated in the plant response to the drought stress hormone abscisic acid (ABA). The Arabidopsis SWI/SNF chromatin-remodeling ATPase BRAHMA (BRM) modulates response to ABA by preventing premature activation of stress response pathways during germination. We show that core ABA signaling pathway components physically interact with BRM and post-translationally modify BRM by phosphorylation/dephosphorylation. Genetic evidence suggests that BRM acts downstream of SnRK2.2/2.3 kinases, and biochemical studies identified phosphorylation sites in the C-terminal region of BRM at SnRK2 target sites that are evolutionarily conserved. Finally, the phosphomimetic BRM(S1760D S1762D) mutant displays ABA hypersensitivity. Prior studies showed that BRM resides at target loci in the ABA pathway in the presence and absence of the stimulus, but is only active in the absence of ABA. Our data suggest that SnRK2-dependent phosphorylation of BRM leads to its inhibition, and PP2CA-mediated dephosphorylation of BRM restores the ability of BRM to repress ABA response. These findings point to the presence of a rapid phosphorylation-based switch to control BRM activity; this property could be potentially harnessed to improve drought tolerance in plants. PMID:26499068

  7. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding.

    PubMed

    Basu, Manojit M; González-Carranza, Zinnia H; Azam-Ali, Sayed; Tang, Shouya; Shahid, Ahmad Ali; Roberts, Jeremy A

    2013-05-01

    A number of novel strategies were employed to examine the role of indoleacetic acid (IAA) in regulating floral organ abscission in Arabidopsis (Arabidopsis thaliana). Analysis of auxin influx facilitator expression in β-glucuronidase reporter plants revealed that AUXIN RESISTANT1, LIKE AUX1, and LAX3 were specifically up-regulated at the site of floral organ shedding. Flowers from mutants where individual family members were down-regulated exhibited a reduction in the force necessary to bring about petal separation; however, the effect was not additive in double or quadruple mutants. Using the promoter of a polygalacturonase (At2g41850), active primarily in cells undergoing separation, to drive expression of the bacterial genes iaaL and iaaM, we have shown that it is possible to manipulate auxin activity specifically within the floral organ abscission zone (AZ). Analysis of petal breakstrength reveals that if IAA AZ levels are reduced, shedding takes place prematurely, while if they are enhanced, organ loss is delayed. The At2g41850 promoter was also used to transactivate the gain-of-function AXR3-1 gene in order to disrupt auxin signaling specifically within the floral organ AZ cells. Flowers from transactivated lines failed to shed their sepals, petals, and anthers during pod expansion and maturity, and these organs frequently remained attached to the plant even after silique desiccation and dehiscence had taken place. These observations support a key role for IAA in the regulation of abscission in planta and reveal, to our knowledge for the first time, a requirement for a functional IAA signaling pathway in AZ cells for organ shedding to take place. PMID:23509178

  8. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation.

    PubMed

    Li, Ying; Zhang, Liang; Li, Dekuan; Liu, Zhibin; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant growth and development. The function of ABA is mediated by a group of newly discovered ABA receptors, named PYRABACTIN RESISTANCE 1/PYR-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORs (PYR1/PYLs/RCARs). Here, we report that an Arabidopsis thaliana F-box protein RCAR3 INTERACTING F-BOX PROTEIN 1 (RIFP1) interacts with ABA receptor (RCAR3) and SCF E3 ligase complex subunits Arabidopsis SKP1-LIKE PROTEINs (ASKs) in vitro and in vivo. The rifp1 mutant plants displayed increased ABA-mediated inhibition of seed germination and water loss of detached leaves, while the overexpression of RIFP1 in Arabidopsis led to plants being insensitive to ABA. Meanwhile, the rifp1 mutant plants showed greater tolerance to water deficit. In addition, the RCAR3 protein level was more stable in the rifp1 mutant plants than in the wild-type plants, indicating that RIFP1 facilitates the proteasome degradation of RCAR3. Accordingly, the loss of RIFP1 increased the transcript levels of several ABA-responsive genes. Taken together, these data indicate that RIFP1 plays a negative role in the RCAR3-mediated ABA signalling pathway and likely functions as an adaptor subunit of the SCF ubiquitin ligase complex to regulate ABA receptor RCAR3 stability. PMID:26386272

  9. Cross-talk in abscisic acid signaling

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.

    2002-01-01

    "Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.

  10. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs

    PubMed Central

    Waadt, Rainer; Schroeder, Julian I.

    2016-01-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441

  11. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    PubMed

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  12. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion

    PubMed Central

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-01-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis. Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  13. Environmental factors in the physiology of abscission.

    PubMed

    Addicott, F T

    1968-09-01

    This paper reviews the physiological effects of the principal environmental factors which can influence the process of leaf abscission. The factors include temperature, light, water, gases, mineral elements, soil conditions, and parasitic organisms. These factors influence a variety of internal physiological conditions and processes which in turn may either accelerate or retard the process of abscission. The most important internal factors include A) sugar, pectin, cellulose, and other carbohydrates; B) energy-yielding respiration; C) enzymic reactions; D) amino acids, purines, and other nitrogenous substances; E) levels of plant hormones; and F) the molecular biological pathway. The current information is consistent with the hypothesis that the environmental factors act in leaf abscission via direct or indirect influences on the synthesis or reaction rate of enzymes. PMID:16657013

  14. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue.

    PubMed

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M S; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  15. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    PubMed Central

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  16. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    SciTech Connect

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  17. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance.

    PubMed

    Stevenson, Sean R; Kamisugi, Yasuko; Trinh, Chi H; Schmutz, Jeremy; Jenkins, Jerry W; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A; Rensing, Stefan A; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J; Li, Fay-Wei; Larsson, Anders; Wong, Gane K-S; Edwards, Thomas A; Cuming, Andrew C

    2016-06-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution. PMID:27194706

  18. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance[OPEN

    PubMed Central

    Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Muchero, Wellington; Melkonian, Michael; Rothfels, Carl J.; Li, Fay-Wei; Larsson, Anders; Edwards, Thomas A.

    2016-01-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution. PMID:27194706

  19. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  20. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana.

    PubMed Central

    Schwartz, S H; Léon-Kloosterziel, K M; Koornneef, M; Zeevaart, J A

    1997-01-01

    Abscisic acid (ABA)-deficient mutants in a variety of species have been identified by screening for precocious germination and a wilty phenotype. Mutants at two new loci, aba2 and aba3, have recently been isolated in Arabidopsis thaliana (L.) Hynh. (K.M. Léon-Kloosterziel, M. Alvarez-Gil, G.J. Ruijs, S.E. Jacobsen, N.E. Olszewski, S.H. Schwartz, J.A.D. Zeevaart, M. Koornneef [1996] Plant J 10: 655-661), and the biochemical characterization of these mutants is presented here. Protein extracts from aba2 and aba3 plants displayed a greatly reduced ability to convert xanthoxin to ABA relative to the wild type. The next putative intermediate in ABA synthesis, ABA-aldehyde, was efficiently converted to ABA by extracts from aba2 but not by extracts from aba3 plants. This indicates that the aba2 mutant is blocked in the conversion of xanthoxin to ABA-aldehyde and that aba3 is impaired in the conversion of ABA-aldehyde to ABA. Extracts from the aba3 mutant also lacked additional activities that require a molybdenum cofactor (Moco). Nitrate reductase utilizes a Moco but its activity was unaffected in extracts from aba3 plants. Moco hydroxylases in animals require a desulfo moiety of the cofactor. A sulfido ligand can be added to the Moco by treatment with Na2S and dithionite. Treatment of aba3 extracts with Na2S restored ABA-aldehyde oxidase activity. Therefore, the genetic lesion in aba3 appears to be in the introduction of S into the Moco. PMID:9159947

  1. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana.

    PubMed

    Schwartz, S H; Léon-Kloosterziel, K M; Koornneef, M; Zeevaart, J A

    1997-05-01

    Abscisic acid (ABA)-deficient mutants in a variety of species have been identified by screening for precocious germination and a wilty phenotype. Mutants at two new loci, aba2 and aba3, have recently been isolated in Arabidopsis thaliana (L.) Hynh. (K.M. Léon-Kloosterziel, M. Alvarez-Gil, G.J. Ruijs, S.E. Jacobsen, N.E. Olszewski, S.H. Schwartz, J.A.D. Zeevaart, M. Koornneef [1996] Plant J 10: 655-661), and the biochemical characterization of these mutants is presented here. Protein extracts from aba2 and aba3 plants displayed a greatly reduced ability to convert xanthoxin to ABA relative to the wild type. The next putative intermediate in ABA synthesis, ABA-aldehyde, was efficiently converted to ABA by extracts from aba2 but not by extracts from aba3 plants. This indicates that the aba2 mutant is blocked in the conversion of xanthoxin to ABA-aldehyde and that aba3 is impaired in the conversion of ABA-aldehyde to ABA. Extracts from the aba3 mutant also lacked additional activities that require a molybdenum cofactor (Moco). Nitrate reductase utilizes a Moco but its activity was unaffected in extracts from aba3 plants. Moco hydroxylases in animals require a desulfo moiety of the cofactor. A sulfido ligand can be added to the Moco by treatment with Na2S and dithionite. Treatment of aba3 extracts with Na2S restored ABA-aldehyde oxidase activity. Therefore, the genetic lesion in aba3 appears to be in the introduction of S into the Moco. PMID:9159947

  2. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    PubMed

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles. PMID:27448955

  3. Modulation Role of Abscisic Acid (ABA) on Growth, Water Relations and Glycinebetaine Metabolism in Two Maize (Zea mays L.) Cultivars under Drought Stress

    PubMed Central

    Zhang, Lixin; Gao, Mei; Hu, Jingjiang; Zhang, Xifeng; Wang, Kai; Ashraf, Muhammad

    2012-01-01

    The role of plant hormone abscisic acid (ABA) in plants under drought stress (DS) is crucial in modulating physiological responses that eventually lead to adaptation to an unfavorable environment; however, the role of this hormone in modulation of glycinebetaine (GB) metabolism in maize particularly at the seedling stage is still poorly understood. Some hydroponic experiments were conducted to investigate the modulation role of ABA on plant growth, water relations and GB metabolism in the leaves of two maize cultivars, Zhengdan 958 (ZD958; drought tolerant), and Jundan 20 (JD20; drought sensitive), subjected to integrated root-zone drought stress (IR-DS) simulated by the addition of polyethylene glycol (PEG, 12% w/v, MW 6000). The IR-DS substantially resulted in increased betaine aldehyde dehydrogenase (BADH) activity and choline content which act as the key enzyme and initial substrate, respectively, in GB biosynthesis. Drought stress also induced accumulation of GB, whereas it caused reduction in leaf relative water content (RWC) and dry matter (DM) in both cultivars. The contents of ABA and GB increased in drought-stressed maize seedlings, but ABA accumulated prior to GB accumulation under the drought treatment. These responses were more predominant in ZD958 than those in JD20. Addition of exogenous ABA and fluridone (Flu) (ABA synthesis inhibitor) applied separately increased and decreased BADH activity, respectively. Abscisic acid application enhanced GB accumulation, leaf RWC and shoot DM production in both cultivars. However, of both maize cultivars, the drought sensitive maize cultivar (JD20) performed relatively better than the other maize cultivar ZD958 under both ABA and Flu application in view of all parameters appraised. It is, therefore, concluded that increase in both BADH activity and choline content possibly resulted in enhancement of GB accumulation under DS. The endogenous ABA was probably involved in the regulation of GB metabolism by regulating

  4. ABA Receptors: Past, Present and Future

    SciTech Connect

    Guo, Jianjun; Yang, Xiaohan; Weston, David; Chen, Jay

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  5. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719

  6. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-01-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca2+-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719

  7. Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content.

    PubMed

    Villalobos-González, Luis; Peña-Neira, Alvaro; Ibáñez, Freddy; Pastenes, Claudio

    2016-08-01

    ABA has been proposed as the main signal triggering the onset of the ripening process in grapes, and modulating the secondary metabolism in grape berry skins. To determine the effect of ABA on secondary metabolism in berries, clusters of Carménère were sprayed with 0 μLL(-1) ABA; 50 μLL(-1) ABA and 100 μLL(-1) ABA during pre-véraison, and the gene expression of the transcription factors and enzymes of the phenylpropanoid pathway were assessed from véraison to 70 days after véraison (DAV). Additionally, flavonols, tannins and anthocyanins were assessed from véraison until harvest (110 DAV). ABA accelerated sugar and anthocyanin accumulation at véraison. The grape transcript abundance of VvDFR, VvANS, VvUFGT and VvMybA1, all peaking around véraison mimicked the concentration of ABA throughout the season. The highest anthocyanin concentration occurred 35 DAV for all treatments, but higher pigment concentrations were observed in ABA-treated berries at véraison and from 60 to 70 DAV to harvest. VvPAL was also increased by treatment at the higher concentration of ABA from véraison to 40 DAV. Regarding flavanol synthesis, VvLAR2 and VvMyb4A decreased from véraison until 40 DAV and then increased again until 70 DAV. Compared to the control, both ABA treatments resulted in a less-than-proportional reduction of the expression of both genes compared to the control and, after 40 DAV, in a more-than-proportional increase compared to the control, suggesting a long-term effect of the pre-véraison ABA spray on the berries. A concomitant increase in flavanols was observed in berries after 40 DAV, and this occurred at a higher extent in berries treated with the highest ABA concentration. PMID:27116369

  8. A Novel Approach to Dissect the Abscission Process in Arabidopsis1[C][W][OA

    PubMed Central

    González-Carranza, Zinnia Haydee; Shahid, Ahmad Ali; Zhang, Li; Liu, Yang; Ninsuwan, Unchalee; Roberts, Jeremy Alan

    2012-01-01

    Abscission is the consequence of a specialized layer of cells undergoing a complex series of molecular and biochemical events. Analysis of the specific molecular changes associated with abscission is hampered by contamination from neighboring nonseparating tissues. Moreover, studies of abscission frequently involve the examination of events that take place in isolated segments of tissue exposed to nonphysiological concentrations of ethylene or indole-3-acetic acid for protracted periods (more than 24 h) of time. To resolve these problems, we have adopted the use of a transgenic line of Arabidopsis (Arabidopsis thaliana) where the promoter of an abscission-specific polygalacturonase gene (At2g41850/ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2) has been fused to a green fluorescent protein reporter. RNA was extracted from green fluorescent protein-tagged cells, released from abscising floral organs, and used to generate a complementary DNA library. This library was used to probe a microarray, and a population of abscission-related transcripts was studied in detail. Seven novel abscission-related genes were identified, four of which encode proteins of unknown function. Reverse transcription-polymerase chain reaction analyses and promoter fusions to the β-glucuronidase reporter gene confirmed the expression of these genes in the abscission zone and revealed other places of expression during seedling development. Three of these genes were studied further by crossing reporter lines to the abscission mutants inflorescence deficient in abscission (ida) and blade-on-petiole1 (bop1)/bop2 and an IDA-overexpressing line. Phenotypic analysis of an At3g14380 transfer DNA insertion line indicates that this gene plays a functional role in floral organ shedding. This strategy has enabled us to uncover new genes involved in abscission, and their possible contribution to the process is discussed. PMID:22992509

  9. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.

    PubMed

    Suttle, Jeffrey C; Abrams, Suzanne R; De Stefano-Beltrán, Luis; Huckle, Linda L

    2012-09-01

    The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting. PMID:22664582

  10. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones.

    PubMed

    Baccelli, Ivan; Mauch-Mani, Brigitte

    2016-08-01

    Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process. PMID:26584561

  11. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley☆

    PubMed Central

    Chen, Zhiwei; Huang, Jianhua; Muttucumaru, Nira; Powers, Stephen J.; Halford, Nigel G.

    2013-01-01

    The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation. PMID:24748715

  12. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  13. Reactive oxygen species in leaf abscission signaling

    PubMed Central

    Sakamoto, Masaru; Munemura, Ikuko; Tomita, Reiko

    2008-01-01

    Reactive oxygen species (ROS) are produced in response to many environmental stresses, such as UV, chilling, salt and pathogen attack. These stresses also accompany leaf abscission in some plants, however, the relationship between these stresses and abscission is poorly understood. In our recent report, we developed an in vitro abscission system that reproduces stress-induced pepper leaf abscission in planta. Using this system, we demonstrated that continuous production of hydrogen peroxide (H2O2) is involved in leaf abscission signaling. Continuous H2O2 production is required to induce expression of the cell wall-degrading enzyme, cellulase and functions downstream of ethylene in abscission signaling. Furthermore, enhanced production of H2O2 occurs at the execution phase of abscission, suggesting that H2O2 also plays a role in the cell-wall degradation process. These data suggest that H2O2 has several roles in leaf abscission signaling. Here, we propose a model for these roles. PMID:19704438

  14. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling.

    PubMed

    Aleman, Fernando; Yazaki, Junshi; Lee, Melissa; Takahashi, Yohei; Kim, Alice Y; Li, Zixing; Kinoshita, Toshinori; Ecker, Joseph R; Schroeder, Julian I

    2016-01-01

    Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways. PMID:27357749

  15. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling

    PubMed Central

    Aleman, Fernando; Yazaki, Junshi; Lee, Melissa; Takahashi, Yohei; Kim, Alice Y.; Li, Zixing; Kinoshita, Toshinori; Ecker, Joseph R.; Schroeder, Julian I.

    2016-01-01

    Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways. PMID:27357749

  16. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling.

    PubMed

    Chae, Min-Ju; Lee, Jung-Sook; Nam, Myung-Hee; Cho, Kun; Hong, Ji-Yeon; Yi, Sang-A; Suh, Seok-Cheol; Yoon, In-Sun

    2007-01-01

    By a differential cDNA screening technique, we have isolated a dehydration-inducible gene (designated OSRK1) that encodes a 41.8 kD protein kinase of SnRK2 family from Oryza sativa. The OSRK1 transcript level was undetectable in vegetative tissues, but significantly increased by hyperosmotic stress and Abscisic acid (ABA). To determine its biochemical properties, we expressed and isolated OSRK1 and its mutants as glutathione S-transferase fusion proteins in Escherichia coli. In vitro kinase assay showed that OSRK1 can phosphorylate itself and generic substrates as well. Interestingly, OSRK1 showed strong substrate preference for rice bZIP transcription factors and uncommon cofactor requirement for Mn(2+) over Mg(2+). By deletion of C-terminus 73 amino acids or mutations of Ser-158 and Thr-159 to aspartic acids (Asp) in the activation loop, the activity of OSRK1 was dramatically decreased. OSRK1 can transphosphorylate the inactive deletion protein. A rice family of abscisic acid-responsive element (ABRE) binding factor, OREB1 was phosphorylated in vitro by OSRK1 at multiple sites of different functional domains. MALDI-TOF analysis identified a phosphorylation site at Ser44 of OREB1 and mutation of the residue greatly decreased the substrate specificity for OSRK1. The recognition motif for OSRK1, RQSS is highly similar to the consensus substrate sequence of AMPK/SNF1 kinase family. We further showed that OSRK1 interacts with OREB1 in a yeast two-hybrid system and co-localized to nuclei by transient expression analysis of GFP-fused protein in onion epidermis. Finally, ectopic expression of OSRK1 in transgenic tobacco resulted in a reduced sensitivity to ABA in seed germination and root elongation. These findings suggest that OSRK1 is associated with ABA signaling, possibly through the phosphorylation of ABF family in vivo. The interaction between SnRK2 family kinases and ABF transcription factors may constitute an important part of cross-talk mechanism in the stress

  17. Ethylene, Plant Senescence and Abscission 1

    PubMed Central

    Burg, Stanley P.

    1968-01-01

    Evidence supporting the hypothesis that ethylene is involved in the control of senescence and abscission is reviewed. The data indicate that ethylene causes abscission in vivo by inhibiting auxin synthesis and transport or enhancing auxin destruction, thus lowering the diffusible auxin level. Studies with isolated leaves and explants suggest that the gas also may influence abscission by accelerating senescence and through an action on plant cell walls. Freshly prepared explants produce ethylene at a rate which must be high enough to maximally affect the tissue and this may explain why these explants (stage I) cannot respond to applied ethylene. PMID:16657016

  18. Identification and Kinetics of Accumulation of Proteins Induced by Ethylene in Bean Abscission Zones 1

    PubMed Central

    del Campillo, Elena; Lewis, Lowell N.

    1992-01-01

    A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of β-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45

  19. Microarray Analysis of the Abscission-Related Transcriptome in the Tomato Flower Abscission Zone in Response to Auxin Depletion1[C][W][OA

    PubMed Central

    Meir, Shimon; Philosoph-Hadas, Sonia; Sundaresan, Srivignesh; Selvaraj, K.S. Vijay; Burd, Shaul; Ophir, Ron; Kochanek, Bettina; Reid, Michael S.; Jiang, Cai-Zhong; Lers, Amnon

    2010-01-01

    The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum ‘Shiran 1335’) flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal. Microarray analysis using the Affymetrix Tomato GeneChip revealed changes in expression, occurring prior to and during pedicel abscission, of many genes with possible regulatory functions. They included a range of auxin- and ethylene-related transcription factors, other transcription factors and regulatory genes that are transiently induced early, 2 h after flower removal, and a set of novel AZ-specific genes. All gene expressions initiated by flower removal and leading to pedicel abscission were inhibited by indole-3-acetic acid application, while 1-methylcyclopropene pretreatment inhibited only the ethylene-induced expressions, including those induced by wound-associated ethylene signals. These results confirm our hypothesis that acquisition of ethylene sensitivity in the AZ is associated with altered expression of auxin-regulated genes resulting from auxin depletion. Our results shed light on the regulatory control of abscission at the molecular level and further expand our knowledge of auxin-ethylene cross talk during the initial controlling stages of the process. PMID:20947671

  20. The induction of free proline accumulation by endogenous ABA in Arabidopsis thaliana during drought

    SciTech Connect

    Gottlieb, M.L.; Bray, E.A. )

    1991-05-01

    Endogenous levels of abscisic acid (ABA) and free proline increase in response to drought stress. Exogenous ABA has been shown to induce proline accumulation, suggesting that ABA triggers the amino acid response. To determine if endogenous ABA induces free proline accumulation, increases in ABA and proline during drought stress were compared between wild type (WT), ABA-insensitive (abi) and ABA-deficient (aba) mutants of Arabidopsis thaliana. If elevated levels of endogenous ABA signal the proline response, then the mutants would not be expected to accumulate proline during stress. abi should be unable to respond to increased levels of endogenous ABA, while aba should be unable to accumulate sufficient ABA to elicit a proline response. Drought-stressed three week old shoots of WT, abi, and aba exhibited different patterns of endogenous ABA accumulation, but similar patterns of proline accumulation over 24 hours. Although the patterns of endogenous ABA accumulation differed, maximum levels were similar in WT and abi, but aba produced approximately 25% less. However, free proline accumulated in all three plant lines. abi exhibited a greater, more rapid increase in free proline over that in either WT or aba. aba, however, showed the same pattern and levels of accumulation as that in WT. Since free proline accumulated to at least similar levels in both WT and mutants, regardless of the levels of ABA accumulation, it may be that only a small endogenous ABA accumulation is required for proline accumulation. Alternatively, endogenous ABA may not be the direct signal for the proline response during drought stress.

  1. Abscission: Quantitative Measurement With a Recording Abscissor

    PubMed Central

    Craker, L. E.; Abeles, F. B.

    1969-01-01

    The construction, operation, and effectiveness of an abscission measuring instrument called an abscissor is described. The device measured the force required for a spring-opposed plunger to shear abscission zone explants and was capable of automatically recording break strength data. Examples of data obtained with the abscissor are presented to demonstrate its capability of rapidly measuring significant changes in explant break strength. PMID:16657180

  2. Enhancement of RNA Synthesis, Protein Synthesis, and Abscission by Ethylene

    PubMed Central

    Abeles, F. B.; Holm, R. E.

    1966-01-01

    Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed. PMID:16656405

  3. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance

    PubMed Central

    Okamoto, Masanori; Peterson, Francis C.; Defries, Andrew; Park, Sang-Youl; Endo, Akira; Nambara, Eiji; Volkman, Brian F.; Cutler, Sean R.

    2013-01-01

    Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana. Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis, the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2. Genetic analyses show that quinabactin’s effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C “lock” hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses. PMID:23818638

  4. Understanding the Physiology of Postharvest Needle Abscission in Balsam Fir

    PubMed Central

    Lada, Rajasekaran R.; MacDonald, Mason T.

    2015-01-01

    Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding. PMID:26635863

  5. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission.

    PubMed

    Patharkar, O Rahul; Walker, John C

    2016-09-01

    Drought-triggered abscission is a strategy used by plants to avoid the full consequences of drought; however, it is poorly understood at the molecular genetic level. Here, we show that Arabidopsis (Arabidopsis thaliana) can be used to elucidate the pathway controlling drought-triggered leaf shedding. We further show that much of the pathway regulating developmentally timed floral organ abscission is conserved in regulating drought-triggered leaf abscission. Gene expression of HAESA (HAE) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is induced in cauline leaf abscission zones when the leaves become wilted in response to limited water and HAE continues to accumulate in the leaf abscission zones through the abscission process. The genes that encode HAE/HAESA-LIKE2, IDA, NEVERSHED, and MAPK KINASE4 and 5 are all necessary for drought-induced leaf abscission. Our findings offer a molecular mechanism explaining drought-triggered leaf abscission. Furthermore, the ability to study leaf abscission in Arabidopsis opens up a new avenue to tease apart mechanisms involved in abscission that have been difficult to separate from flower development as well as for understanding the mechanistic role of water and turgor pressure in abscission. PMID:27468996

  6. Effect of Ethylene on Flower Abscission: a Survey

    PubMed Central

    VAN DOORN, WOUTER G.

    2002-01-01

    The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene‐insensitive abscission occurs in the Orchidaceae. PMID:12102524

  7. Isolation of ABA hypersensitive mutants in allhexaploid breadwheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone abscisic acid (ABA) stimulates seed dormancy during embryo maturation, inhibits germination of mature seed, and stimulates stress responses such as stomatal closure in response to drought stress. Arabidopsis mutants isolated for ABA hypersensitive (ABH) seed germination showed incr...

  8. Wheat ABA-insensitive mutants result in reduced grain dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the isolation of wheat mutants in the hard red spring Scarlet resulting in reduced sensitivity to the plant hormone abscisic acid (ABA) during seed germination. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature seeds. Wheat sensitivity t...

  9. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.

    PubMed

    Fukuda, Kazuma; Yamada, Yoshiya; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2013-01-01

    In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0-5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed. PMID:22940290

  10. Identification and Characterization of ABA Receptors in Oryza sativa

    PubMed Central

    He, Yuan; Hao, Qi; Li, Wenqi; Yan, Chuangye

    2014-01-01

    Abscisic acid (ABA) is an essential phytohormone that regulates plant stress responses. ABA receptors in Arabidopsis thaliana (AtPYLs) have been extensively investigated by structural, biochemical, and in vivo studies. In contrast, relatively little is known about the ABA signal transduction cascade in rice. Besides, the diversities of AtPYLs manifest that the information accumulated in Arabidopsis cannot be simply adapted to rice. Thus, studies on rice ABA receptors are compulsory. By taking a bioinformatic approach, we identified twelve ABA receptor orthologs in Oryza sativa (japonica cultivar-group) (OsPYLs), named OsPYL1–12. We have successfully expressed and purified OsPYL1–3, 6 and 10–12 to homogeneity, tested the inhibitory effects on PP2C in Oryza sativa (OsPP2C), and measured their oligomerization states. OsPYL1–3 mainly exhibit as dimers and require ABA to inhibit PP2C’s activity. On the contrary, OsPYL6 retains in the monomer-dimer equilibrium state and OsPYL10–11 largely exist as monomers, and they all display an ABA-independent phosphatase inhibition manner. Interestingly, although OsPYL12 seems to be a dimer, it abrogates the phosphatase activity of PP2Cs in the absence of ABA. Toward a further understanding of OsPYLs on the ABA binding and PP2C inhibition, we determined the crystal structure of ABA-OsPYL2-OsPP2C06 complex. The bioinformatic, biochemical and structural analysis of ABA receptors in rice provide important foundations for designing rational ABA-analogues and breeding the stress-resistant rice for commercial agriculture. PMID:24743650

  11. ABA and cytokinins: challenge and opportunity for plant stress research.

    PubMed

    Verslues, Paul E

    2016-08-01

    Accumulation of the stress hormone abscisic acid (ABA) induces many cellular mechanisms associated with drought resistance. Recent years have seen a rapid advance in our knowledge of how increased ABA levels are perceived by ABA receptors, particularly the PYL/RCAR receptors, but there has been relatively less new information about how ABA accumulation is controlled and matched to stress severity. ABA synthesis and catabolism, conjugation and deconjugation to glucose, and ABA transport all are involved in controlling ABA levels. This highly buffered system of ABA metabolism represents both a challenge and opportunity in developing a mechanistic understanding of how plants detect and respond to drought. Recent data have also shown that direct manipulation of cytokinin levels in transgenic plants has dramatic effect on drought phenotypes and prompted new interest in the role of cytokinins and cytokinin signaling in drought. Both ABA and cytokinins will continue to be major foci of drought research but likely with different trajectories both in terms of basic research and in translational research aimed at increasing plant performance during drought. PMID:26910054

  12. SILENCING POLYGALACTURONASE EXPRESSION INHIBITS TOMATO PETIOLE ABSCISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used Virus Induced Gene Silencing (VIGS) as a tool for functional analysis of cell-wall associated genes that have been suggested to be involved in leaf abscission. Tobacco rattle virus (TRV) is an effective vector for VIGS in tomato (Lycopersicon esculentum). Silencing was more efficient when ...

  13. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.

    PubMed

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-03-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8'OH1 on the D genome (TaABA8'OH1-D) was identified in Japanese cultivars including 'Tamaizumi'. However, a single mutation in TaABA8'OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8'OH1 on the A genome (TaABA8'OH1-A), TM1833, was identified from gamma-ray irradiation lines of 'Tamaizumi'. TM1833 (a double mutant in TaABA8'OH1-A and TaABA8'OH1-D) showed lower TaABA8'OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in 'Tamaizumi' (a single mutant in TaABA8'OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8'OH1 may be effective in germination inhibition in field-grown wheat. PMID:23641187

  14. The IDA Peptide Controls Abscission in Arabidopsis and Citrus.

    PubMed

    Estornell, Leandro H; Wildhagen, Mari; Pérez-Amador, Miguel A; Talón, Manuel; Tadeo, Francisco R; Butenko, Melinka A

    2015-01-01

    Organ abscission is an important process in plant development and reproduction. During abscission, changes in cellular adhesion of specialized abscission zone cells ensure the detachment of infected organs or those no longer serving a function to the plant. In addition, abscission also plays an important role in the release of ripe fruits. Different plant species display distinct patterns and timing of organ shedding, most likely adapted during evolution to their diverse life styles. However, it appears that key regulators of cell separation may have conserved function in different plant species. Here, we investigate the functional conservation of the citrus ortholog of the Arabidopsis peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (AtIDA), controlling floral organ abscission. We discuss the possible implications of modifying the citrus IDA ortholog for citrus fruit production. PMID:26635830

  15. The IDA Peptide Controls Abscission in Arabidopsis and Citrus

    PubMed Central

    Estornell, Leandro H.; Wildhagen, Mari; Pérez-Amador, Miguel A.; Talón, Manuel; Tadeo, Francisco R.; Butenko, Melinka A.

    2015-01-01

    Organ abscission is an important process in plant development and reproduction. During abscission, changes in cellular adhesion of specialized abscission zone cells ensure the detachment of infected organs or those no longer serving a function to the plant. In addition, abscission also plays an important role in the release of ripe fruits. Different plant species display distinct patterns and timing of organ shedding, most likely adapted during evolution to their diverse life styles. However, it appears that key regulators of cell separation may have conserved function in different plant species. Here, we investigate the functional conservation of the citrus ortholog of the Arabidopsis peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (AtIDA), controlling floral organ abscission. We discuss the possible implications of modifying the citrus IDA ortholog for citrus fruit production. PMID:26635830

  16. Abscission: Orchestration of vesicle transport, ESCRTs and kinase surveillance

    PubMed Central

    Chen, Chun-Ting; Hehnly, Heidi; Doxsey, Stephen J.

    2014-01-01

    Preface During the final stage of cell division, the future daughter cells are physically separated in a process called abscission. This process requires coordination of a number of molecular machines that mediate a complex series of events to culminate in the final separation of daughter cells. Abscission is coordinated with other cellular processes (for example, nuclear pore reassembly) through mitotic kinases that act as master regulators to ensure proper progression of abscission. PMID:22781903

  17. Role of RNA and Protein Synthesis in Abscission

    PubMed Central

    Abeles, F. B.

    1968-01-01

    The cell separation aspect of abscission is thought to involve the action of specific cell wall degrading enzymes. Enzymes represent synthesis which in turn is preceded by the synthesis of specific RNA molecules, and it follows that inhibition of either of these processes would also block abscission. Since abscission is a localized phenomenon usually involving 2 or 3 cell layers, RNA and protein synthesis should also be localized. Manipulations of plant material which either accelerate or retard abscission may be due to the regulation of RNA and protein synthesis. This paper is a review of literature concerned with these and related questions. Images PMID:16657020

  18. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis.

    PubMed

    Wagstaff, Carol; Chanasut, Usawadee; Harren, Frans J M; Laarhoven, Luc-Jan; Thomas, Brian; Rogers, Hilary J; Stead, Anthony D

    2005-03-01

    Senescence of floral organs is broadly divided into two groups: those that exhibit sensitivity to exogenous ethylene and those that do not. Endogenous ethylene production from the former group is via a well-characterized biochemical pathway and is either due to developmental or pollination-induced senescence. Many flowers from the order Liliales are characterized as ethylene-insensitive since they do not appear to produce endogenous ethylene, or respond to exogenous ethylene treatments, however, the majority of cases studied are wilting flowers, rather than those where life is terminated by perianth abscission. The role of ethylene in the senescence and abscission of Alstroemeria peruviana cv. Rebecca and cv. Samora tepals was previously unclear, with silver treatments recommended for delaying leaf rather than flower senescence. In the present paper the effects of exogenous ethylene, 2-chloroethylphosphonic acid (CEPA) and silver thiosulphate (STS) treatments on tepal senescence and abscission have been investigated. Results indicate that sensitivity to ethylene develops several days after flower opening such that STS only has a limited ability to delay tepal abscission. Detachment force measurements indicate that cell separation events are initiated after anthesis. Endogenous ethylene production was measured using laser photoacoustics and showed that Alstroemeria senesce independently of ethylene production, but that an extremely small amount of ethylene (0.15 nl flower(-1) h(-1)) is produced immediately prior to abscission. Investigation of the expression of genes involved in ethylene biosysnthesis by semi-quantitative RT-PCR indicated that transcriptional regulation is likely to be at the level of ACC oxidase, and that the timing of ACC oxidase gene expression is coincident with development of sensitivity to exogenous ethylene. PMID:15689338

  19. MACROCALYX and JOINTLESS Interact in the Transcriptional Regulation of Tomato Fruit Abscission Zone Development1[C][W

    PubMed Central

    Nakano, Toshitsugu; Kimbara, Junji; Fujisawa, Masaki; Kitagawa, Mamiko; Ihashi, Nao; Maeda, Hideo; Kasumi, Takafumi; Ito, Yasuhiro

    2012-01-01

    Abscission in plants is a crucial process used to shed organs such as leaves, flowers, and fruits when they are senescent, damaged, or mature. Abscission occurs at predetermined positions called abscission zones (AZs). Although the regulation of fruit abscission is essential for agriculture, the developmental mechanisms remain unclear. Here, we describe a novel transcription factor regulating the development of tomato (Solanum lycopersicum) pedicel AZs. We found that the development of tomato pedicel AZs requires the gene MACROCALYX (MC), which was previously identified as a sepal size regulator and encodes a MADS-box transcription factor. MC has significant sequence similarity to Arabidopsis (Arabidopsis thaliana) FRUITFULL, which is involved in the regulation of fruit dehiscent zone development. The MC protein interacted physically with another MADS-box protein, JOINTLESS, which is known as a regulator of fruit abscission; the resulting heterodimer acquired a specific DNA-binding activity. Transcriptome analyses of pedicels at the preabscission stage revealed that the expression of the genes involved in phytohormone-related functions, cell wall modifications, fatty acid metabolism, and transcription factors is regulated by MC and JOINTLESS. The regulated genes include homologs of Arabidopsis WUSCHEL, REGULATOR OF AXILLARY MERISTEMS, CUP-SHAPED COTYLEDON, and LATERAL SUPPRESSOR. These Arabidopsis genes encode well-characterized transcription factors regulating meristem maintenance, axillary meristem development, and boundary formation in plant tissues. The tomato homologs were specifically expressed in AZs but not in other pedicel tissues, suggesting that these transcription factors may play key roles in pedicel AZ development. PMID:22106095

  20. Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana

    PubMed Central

    Song, Yuwei; Xiang, Fuyou; Zhang, Guozeng; Miao, Yuchen; Miao, Chen; Song, Chun-Peng

    2016-01-01

    Many studies have shown that exogenous abscisic acid (ABA) promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas) that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling. PMID:26925086

  1. Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana.

    PubMed

    Song, Yuwei; Xiang, Fuyou; Zhang, Guozeng; Miao, Yuchen; Miao, Chen; Song, Chun-Peng

    2016-01-01

    Many studies have shown that exogenous abscisic acid (ABA) promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas) that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca(2+) signaling. PMID:26925086

  2. The De-Etiolated 1 Homolog of Arabidopsis Modulates the ABA Signaling Pathway and ABA Biosynthesis in Rice.

    PubMed

    Zang, Guangchao; Zou, Hanyan; Zhang, Yuchan; Xiang, Zheng; Huang, Junli; Luo, Li; Wang, Chunping; Lei, Kairong; Li, Xianyong; Song, Deming; Din, Ahmad Ud; Wang, Guixue

    2016-06-01

    DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1 Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice. PMID:27208292

  3. Fruit abscission by Physalis species as defense against frugivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit abscission as a response to herbivory is well-documented in many plant species, but its effect on further damage by mobile herbivores that survive fruit abscission is relatively unstudied. Physalis plants abscise fruit containing feeding larvae of their main frugivore, Heliothis subflexa Guen...

  4. Seed dormancy and ABA signaling: the breakthrough goes on.

    PubMed

    Rodríguez-Gacio, María del Carmen; Matilla-Vázquez, Miguel A; Matilla, Angel J

    2009-11-01

    The seed is an important organ of higher plants regarding plant survival and species dispersion. The transition between seed dormancy and germination represents a critical stage in the plant life cycle and it is an important ecological and commercial trait. A dynamic balance of synthesis and catabolism of two antagonistic hormones, abscisic acid (ABA) and giberellins (GAs), controls the equilibrium between seed dormancy and germination. Embryonic ABA plays a central role in induction and maintenance of seed dormancy, and also inhibits the transition from embryonic to germination growth. Therefore, the ABA metabolism must be highly regulated at both temporal and spatial levels during phase of dessication tolerance. On the other hand, the ABA levels do not depend exclusively on the seeds because sometimes it becomes a strong sink and imports it from the roots and rhizosphere through the xylem and/or phloem. All theses events are discussed in depth here. Likewise, the role of some recently characterized genes belonging to seeds of woody species and related to ABA signaling, are also included. Finally, although four possible ABA receptors have been reported, not much is known about how they mediate ABA signalling transduction. However, new publications seem to shown that almost all these receptors lack several properties to consider them as such. PMID:19875942

  5. A new aspect of flower abscission: involvement of a specific alkalization of the cytosol in the abscission zone cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The correlation between organ abscission and pH changes in the abscission zone (AZ) cells, visualized by the pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein-acetoxymethyl (BCECF-AM) ester derivative, combined with confocal microscopy was studied. ...

  6. Microarray analysis of the abscission-related transcriptome in tomato flower abscission zone in response to auxin depletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene and may be accelerated by postharvest stresses. Although changes ...

  7. Molecular cloning and characterization of the ABA-specific glucosyltransferase gene from bean (Phaseolus vulgaris L.).

    PubMed

    Palaniyandi, Sasikumar Arunachalam; Chung, Gyuhwa; Kim, Sang Hyon; Yang, Seung Hwan

    2015-04-15

    Levels of the plant hormone abscisic acid (ABA) are maintained in homeostasis by a balance of its biosynthesis, catabolism and conjugation. The detailed molecular and signaling events leading to strict homeostasis are not completely understood in crop plants. In this study, we obtained cDNA of an ABA-inducible, ABA-specific UDP-glucosyltransferase (ABAGT) from the bean plant (Phaseolus vulgaris L.) involved in conjugation of a glucose residue to ABA to form inactive ABA-glucose ester (ABA-GE) to examine its role during development and abiotic stress in bean. The bacterially expressed PvABAGTase enzyme showed ABA-specific glucosylation activity in vitro. A higher level of the PvABAGT transcript was observed in mature leaves, mature flowers, roots, seed coats and embryos as well as upon rehydration following a period of dehydration. Overexpression of 35S::PvABAGT in Arabidopsis showed reduced sensitivity to ABA compared with WT. The transgenic plants showed a high level of ABA-GE without significant decrease in the level of ABA compared with the wild type (WT) during dehydration stress. Upon rehydration, the levels of ABA and phaseic acid (PA) decreased in the WT and the PvABAGT-overexpressing lines with high levels of ABA-GE only in the transgenic plants. Our findings suggest that the PvABAGT gene could play a role in ABA homeostasis during development and stress responses in bean and its overexpression in Arabidopsis did not alter ABA homeostasis during dehydration stress. PMID:25747288

  8. ABA receptor PYL9 promotes drought resistance and leaf senescence

    PubMed Central

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A.; Zhu, Jian-Kang

    2016-01-01

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  9. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L.; Meir, Shimon

    2015-01-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2’,7’-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H+-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336

  10. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells.

    PubMed

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L; Meir, Shimon

    2015-03-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336

  11. Function of ABA in Stomatal Defense against Biotic and Drought Stresses

    PubMed Central

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  12. Function of ABA in Stomatal Defense against Biotic and Drought Stresses.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses--especially ABA receptors--have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  13. Impact of transcriptional, ABA-dependent, and ABA-independent pathways on wounding regulation of RNS1 expression.

    PubMed

    Hillwig, Melissa S; Lebrasseur, Nicole D; Green, Pamela J; Macintosh, Gustavo C

    2008-09-01

    Injured plants induce a wide range of genes whose products are thought to help to repair the plant or to defend against opportunistic pathogens that might infect the wounded plant. In Arabidopsis thaliana L., oligogalacturonides (OGAs) and jasmonic acid (JA) are the main regulators of the signaling pathways that control the local and systemic wound response, respectively. RNS1, a secreted ribonuclease, is induced by wounding in Arabidopsis independent of these two signals, thus indicating that another wound-response signal exists. Here we show that abscisic acid (ABA), which induces wound-responsive genes in other systems, also induces RNS1. In the absence of ABA signaling, wounding induces only approximately 45% of the endogenous levels of RNS1 mRNA. However, significant levels of RNS1 still accumulate in the absence of ABA signaling. Our results suggest that wound-responsive increases in ABA production may amplify induction of RNS1 by a novel ABA-independent pathway. To elucidate this novel pathway, we show here that the wound induction of RNS1 is due in part to transcriptional regulation by wounding and ABA. We also show evidence of post-transcriptional regulation which may contribute to the high levels of RNS1 transcript accumulation in response to wounding. PMID:18607631

  14. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  15. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.

    PubMed

    Zhou, Shun-Fan; Sun, Le; Valdés, Ana Elisa; Engström, Peter; Song, Ze-Ting; Lu, Sun-Jie; Liu, Jian-Xiang

    2015-10-01

    Abscisic acid plays important roles in maintaining seed dormancy while gibberellins (GA) and other phytohormones antagonize ABA to promote germination. However, how ABA signaling is desensitized during the transition from dormancy to germination is still poorly understood. We functionally characterized the role of membrane-associated transcription factor peptidase, site-2 protease (S2P), in ABA signaling during seed germination in Arabidopsis. Genetic analysis showed that loss-of-function of S2P conferred high ABA sensitivity during seed germination, and expression of the activated form of membrane-associated transcription factor bZIP17, in which the transmembrane domain and endoplasmic reticulum (ER) lumen-facing C-terminus were deleted, in the S2P mutant rescued its ABA-sensitive phenotype. MYC and green fluorescent protein (GFP)-tagged bZIP17 were processed and translocated from the ER to the nucleus in response to ABA treatment. Furthermore, genes encoding negative regulators of ABA signaling, such as the transcription factor ATHB7 and its target genes HAB1, HAB2, HAI1 and AHG3, were up-regulated in seeds of the wild-type upon ABA treatment; this up-regulation was impaired in seeds of S2P mutants. Our results suggest that S2P desensitizes ABA signaling during seed germination through regulating the activation of the membrane-associated transcription factor bZIP17 and therefore controlling the expression level of genes encoding negative regulators of ABA signaling. PMID:25919792

  16. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening

    PubMed Central

    Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326

  17. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde.

    PubMed

    González-Guzmán, Miguel; Apostolova, Nadezda; Bellés, José M; Barrero, José M; Piqueras, Pedro; Ponce, María R; Micol, José L; Serrano, Ramón; Rodríguez, Pedro L

    2002-08-01

    Mutants able to germinate and perform early growth in medium containing a high NaCl concentration were identified during the course of two independent screenings and named salt resistant (sre) and salobreño (sañ). The sre and sañ mutants also were able to germinate in high-osmoticum medium, indicating that they are osmotolerant in a germination assay. Complementation analyses revealed that sre1-1, sre1-2, sañ3-1, and sañ3-2 were alleles of the abscisic acid (ABA) biosynthesis ABA2 gene. A map-based cloning strategy allowed the identification of the ABA2 gene and molecular characterization of four new aba2 alleles. The ABA2 gene product belongs to the family of short-chain dehydrogenases/reductases, which are known to be NAD- or NADP-dependent oxidoreductases. Recombinant ABA2 protein produced in Escherichia coli exhibits a K(m) value for xanthoxin of 19 micro M and catalyzes in a NAD-dependent manner the conversion of xanthoxin to abscisic aldehyde, as determined by HPLC-mass spectrometry. The ABA2 mRNA is expressed constitutively in all plant organs examined and is not upregulated in response to osmotic stress. The results of this work are discussed in the context of previous genetic and biochemical evidence regarding ABA biosynthesis, confirming the xanthoxin-->abscisic aldehyde-->ABA transition as the last steps of the major ABA biosynthetic pathway. PMID:12172025

  18. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening.

    PubMed

    Mou, Wangshu; Li, Dongdong; Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326

  19. Chilling-induced leaf abscission of Ixora coccinea plants. III. Enhancement by high light via increased oxidative processes.

    PubMed

    Michaeli, Rina; Philosoph-Hadas, Sonia; Riov, Joseph; Shahak, Yosepha; Ratner, Kira; Meir, Shimon

    2001-11-01

    The role of increased oxidation induced by successive stresses of chilling and high light in the induction of leaf abscission was studied in Ixora coccinea plants in relation to auxin metabolism and oxidative processes. Exposure of plants following dark chilling (7 degrees C for 3 days) to high light (500-700 &mgr;mol m-2 s-1 photosynthetically active radiation) for 5 h at 20-25 degrees C enhanced chilling-induced leaf abscission. This abscission was inhibited by pretreatment with the antioxidant butylated hydroxyanisole, alpha-naphthaleneacetic acid or the ethylene action inhibitor, 1-methylcyclopropene. The oxidative processes initiated during the low light period following the dark chilling period, such as indoleacetic acid (IAA) decarboxylation and lipid peroxidation, were further enhanced by subsequent exposure to high light. Photoinhibition, expressed by the reduction of the chlorophyll fluorescence parameter Fv/Fm, was evident following exposure to high light, irrespective of the temperature of the pretreatment, but this reduction persisted only in chilled plants. This suggests that oxidative processes generated during and after the chilling period might have inhibited the recovery from photoinhibition. The chilling stress under darkness induced a 60% reduction in superoxide dismutase (SOD) activity and significant increases (130-600%) in the activities of several other antioxidative enzymes. These data suggest that the chilling-induced reduction in SOD activity may well be responsible for the increase in the oxidative stress induced by the subsequent light treatment, as expressed by the increased enzymatic activities. Taken together, this study provides further support for the involvement of oxidative processes in the events occurring in tissues exposed to sequential chilling and light stresses, leading to reduction in free IAA content in the abscission zone and to leaf abscission. PMID:12060278

  20. ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis.

    PubMed

    Lu, Yu; Sasaki, Yuki; Li, Xingwen; Mori, Izumi C; Matsuura, Takakazu; Hirayama, Takashi; Sato, Takeo; Yamaguchi, Junji

    2015-05-01

    Plants are able to sense and mediate the balance between carbon (C) and nitrogen (N) nutrient availability to optimize metabolism and growth, described as the C/N response. To clarify the C/N signalling mechanism, C/N-insensitive plants were obtained from an Arabidopsis FOX hunting population, which over-expresses full-length cDNAs for individuals. The resulting cni2-D (carbon/nitrogen insensitive 2-dominant) plant was found to overcome the post-germination growth checkpoint and to expand green cotyledons in disrupted high C/low N stress conditions. The CNI2 gene encodes ABI1, a phosphatase type 2C protein, which negatively regulates abscisic acid (ABA) signal transduction. Over-expressors of ABI1 were found to be insensitive to disrupted C/N stress, whereas the loss-of function mutant abi1-2 was hypersensitive, suggesting that ABI1 plays an essential role in the plant C/N response. By contrast, the C/N-dependent growth phenotype observed in wild-type plants was not associated with endogenous ABA content. Accordingly, the ABA-insensitive mutant abi1-1, which could not bind to the ABA-ABA receptor complex, was not insensitive and restored normal sensitivity to high C/low N stress. The canonical ABA signalling mutants abi4 and abi5 were also sensitive to disrupted C/N stress. Further gene expression analysis demonstrated that several genes in the SnRK2s and SnRK1s pathways are transcriptionally affected by high C/low N stress in wild-type plants regardless of the lack of increased endogenous ABA contents, whereas the expression of these genes were significantly suppressed in ABI1 over-expressors. Taken together, these results suggest direct cross-talk between C/N and non-canonical ABA signalling pathways, regulated by ABI1, in plants. PMID:25795738

  1. Polyamine-Induced Rapid Root Abscission in Azolla pinnata.

    PubMed

    Gurung, Sushma; Cohen, Michael F; Fukuto, Jon; Yamasaki, Hideo

    2012-01-01

    Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature whereas high light intensity increased the time lag and markedly lowered the rate of abscission. The oxidation products of polyamines, 1,3-diaminopropane, β-alanine and hydrogen peroxide all failed to initiate root abscission, and hydroxyethyl hydrazine, an inhibitor of polyamine oxidase, did not inhibit spermine-induced root abscission. Exposure of A. pinnata to the polyamines did not result in detectable release of NO and did not affect nitrite-dependent NO production. The finding of polyamine-induced rapid root abscission provides a facile assay for further study of the mode of action of polyamines in plant stress responses. PMID:22997568

  2. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana).

    PubMed

    Escher, Peter; Peuke, Andreas D; Bannister, Peter; Fink, Siegfried; Hartung, Wolfram; Jiang, Fan; Rennenberg, Heinz

    2008-01-01

    Leaves of the mistletoe Viscum album (L.) show a high rate of transpiration, even when the host is under severe drought stress. The hypothesis that a strong control of ABA influx from the xylem sap of the host into the mistletoe prevents stomatal closure in mistletoe leaves was tested under the following conditions: sections of poplar twigs carrying a mistletoe were perfused with artificial xylem sap that contained different ABA concentrations and both transpiration and ABA levels were analysed in mistletoe leaves. Despite variation by a factor of 10(4), the ABA content of the host xylem did not affect ABA levels, leaf transpiration, CO(2) assimilation, WUE, or the degree of stomatal aperture in mistletoe leaves. These observations support the hypothesis of a strong control of ABA influx from the host of the xylem into the mistletoe, although degradation of ABA before it enters the mistletoe leaves cannot be excluded. This mechanism may ensure a water and nutritional status favourable for the mistletoe, even if the water status of the host is impaired. Despite the lack of short-term sensitivity of ABA levels in mistletoe leaves to even strong changes of ABA levels in the xylem sap of the host, ABA levels in mistletoe leaves were relatively high compared to ABA levels in the leaves of several tree species including poplar. Since significant transpiration of the mistletoe leaves was observed despite high ABA levels, a diminished sensitivity of the stomata of mistletoe leaves to ABA has to be concluded. The stomatal density of adaxial Viscum leaves of 89+/-23 stomata per mm is lower than those reported in a study performed at the end of the 19th century. PMID:18042393

  3. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    PubMed Central

    2011-01-01

    Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets

  4. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    SciTech Connect

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  5. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  6. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography.

    PubMed

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  7. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography

    PubMed Central

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  8. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa.

    PubMed

    Meir, Shimon; Hunter, Donald A; Chen, Jen-Chih; Halaly, Vita; Reid, Michael S

    2006-08-01

    To understand how auxin regulates sensitivity of abscission zone (AZ) tissues to ethylene, we used a polymerase chain reaction-based subtractive approach to identify gene transcripts in Mirabilis jalapa AZs that changed in abundance during the time the zones became competent to abscise in response to exogenous ethylene. Transcript expression was then examined in leaf and stem AZs over the period they became ethylene competent following indole-3-acetic acid (IAA) depletion either by leaf deblading, treatment with the IAA transport inhibitor naphthylphthalamic acid, or cutting the stem above a node (decapitation). Transcripts down-regulated by deblading/decapitation included Mj-Aux/IAA1 and Mj-Aux/IAA2, encoding Aux/IAA proteins, and three other transcripts showing highest identity to a polygalacturonase inhibitor protein, a beta-expansin, and a beta-tubulin. Application of IAA to the cut end of petioles or stumps inhibited abscission, and prevented the decline in the levels of transcripts in both AZs. Transcripts up-regulated in the AZ following deblading/decapitation or treatment with naphthylphthalamic acid were isolated from plants pretreated with 1-methylcyclopropene before deblading to help select against ethylene-induced genes. Some of the up-regulated transcripts showed identity to proteins associated with ethylene or stress responses, while others did not show homology to known sequences. Sucrose infiltration of stem stumps enhanced abscission following ethylene treatment and also enhanced the induction of some of the up-regulated genes. Our results demonstrate a correlation between acquisition of competence to respond to ethylene in both leaf and stem AZs, and decline in abundance of auxin regulatory gene transcripts. PMID:16778017

  9. Molecular Changes Occurring during Acquisition of Abscission Competence following Auxin Depletion in Mirabilis jalapa1[W

    PubMed Central

    Meir, Shimon; Hunter, Donald A.; Chen, Jen-Chih; Halaly, Vita; Reid, Michael S.

    2006-01-01

    To understand how auxin regulates sensitivity of abscission zone (AZ) tissues to ethylene, we used a polymerase chain reaction-based subtractive approach to identify gene transcripts in Mirabilis jalapa AZs that changed in abundance during the time the zones became competent to abscise in response to exogenous ethylene. Transcript expression was then examined in leaf and stem AZs over the period they became ethylene competent following indole-3-acetic acid (IAA) depletion either by leaf deblading, treatment with the IAA transport inhibitor naphthylphthalamic acid, or cutting the stem above a node (decapitation). Transcripts down-regulated by deblading/decapitation included Mj-Aux/IAA1 and Mj-Aux/IAA2, encoding Aux/IAA proteins, and three other transcripts showing highest identity to a polygalacturonase inhibitor protein, a β-expansin, and a β-tubulin. Application of IAA to the cut end of petioles or stumps inhibited abscission, and prevented the decline in the levels of transcripts in both AZs. Transcripts up-regulated in the AZ following deblading/decapitation or treatment with naphthylphthalamic acid were isolated from plants pretreated with 1-methylcyclopropene before deblading to help select against ethylene-induced genes. Some of the up-regulated transcripts showed identity to proteins associated with ethylene or stress responses, while others did not show homology to known sequences. Sucrose infiltration of stem stumps enhanced abscission following ethylene treatment and also enhanced the induction of some of the up-regulated genes. Our results demonstrate a correlation between acquisition of competence to respond to ethylene in both leaf and stem AZs, and decline in abundance of auxin regulatory gene transcripts. PMID:16778017

  10. Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs.

    PubMed

    Bhaskara, Govinal Badiger; Nguyen, Thao Thi; Verslues, Paul E

    2012-09-01

    Six Arabidopsis (Arabidopsis thaliana) clade A protein phosphatase 2Cs (PP2Cs) have established abscisic acid (ABA) signaling roles; however, phenotypic roles of the remaining three "HAI" PP2Cs, Highly ABA-Induced1 (HAI1), AKT1-Interacting PP2C1/HAI2, and HAI3, have remained unclear. HAI PP2C mutants had enhanced proline and osmoregulatory solute accumulation at low water potential, while mutants of other clade A PP2Cs had no or lesser effect on these drought resistance traits. hai1-2 also had increased expression of abiotic stress-associated genes, including dehydrins and late embryogenesis abundant proteins, but decreased expression of several defense-related genes. Conversely, the HAI PP2Cs had relatively less impact on several ABA sensitivity phenotypes. HAI PP2C single mutants were unaffected in ABA sensitivity, while double and triple mutants were moderately hypersensitive in postgermination ABA response but ABA insensitive in germination. The HAI PP2Cs interacted most strongly with PYL5 and PYL7 to -10 of the PYL/RCAR ABA receptor family, with PYL7 to -10 interactions being relatively little affected by ABA in yeast two-hybrid assays. HAI1 had especially limited PYL interaction. Reduced expression of the main HAI1-interacting PYLs at low water potential when HAI1 expression was strongly induced also suggests limited PYL regulation and a role of HAI1 activity in negatively regulating specific drought resistance phenotypes. Overall, the HAI PP2Cs had greatest effect on ABA-independent low water potential phenotypes and lesser effect on classical ABA sensitivity phenotypes. Both this and their distinct PYL interaction demonstrate a new level of functional differentiation among the clade A PP2Cs and a point of cross talk between ABA-dependent and ABA-independent drought-associated signaling. PMID:22829320

  11. Dual Function of NAC072 in ABF3-Mediated ABA-Responsive Gene Regulation in Arabidopsis

    PubMed Central

    Li, Xiaoyun; Li, Xiaoling; Li, Meijuan; Yan, Youcheng; Liu, Xu; Li, Ling

    2016-01-01

    The NAM, ATAF1/2, and CUC2 (NAC) domain proteins play various roles in plant growth and stress responses. Arabidopsis NAC transcription factor NAC072 has been reported as a transcriptional activator in Abscisic acid (ABA)-responsive gene expression. However, the exact function of NAC072 in ABA signaling is still elusive. In this study, we present evidence for the interrelation between NAC072 and ABA-responsive element binding factor 3 (ABF3) that act as a positive regulator of ABA-responsive gene expression in Arabidopsis. The transcript of NAC072 is up-regulated by ABF3 in ABA response, and NAC072 protein interacts with ABF3. Enhanced ABA sensitivity occurs in nac072 mutant plants that overexpressed ABF3. However, overexpression of NAC072 weakened the ABA sensitivity in the abf3 mutant plants, but instead of recovering the ABA sensitivity of abf3. NAC072 and ABF3 cooperate to regulate RD29A expression, but are antagonistic when regulating RD29B expression. Therefore, NAC072 displays a dual function in ABF3-mediated ABA-responsive gene regulation. PMID:27486475

  12. Transcriptome analysis of soybean leaf abscission identifies transcriptional regulators of organ polarity and cell fate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, organ detachment, is a developmental process that is modulated by environmental factors. To understand the molecular events underlying the progression of abscission in soybean, we induced abscission in 21 day-old soybean by treating leaf explants with ethylene. RNA-seq was completed for ...

  13. Identification of defense-related genes newly-associated with tomato flower abscission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current abscission model suggests the formation of a post-abscission trans-differentiation of a protective layer as the last step of the process. The present report expands the repertoire of genes activated in the tomato flower abscission zone (AZ), which are likely to be involved in defense res...

  14. Organ abscission: exit strategies require signals and moving traffic.

    PubMed

    Liljegren, Sarah J

    2012-12-01

    Flowers are frequently programmed to release their outer organs after pollination. Managing the timing and extent of cell separation during abscission is crucial, as premature shedding could interfere with reproduction and the structural integrity of neighboring tissues would be affected by uninhibited loss of cellular adhesion. In Arabidopsis flowers, the framework of the cell signaling, membrane traffic and transcriptional networks responsible for organ abscission is now emerging. A proposed ligand-receptor system consisting of a secreted peptide and a pair of redundant receptor-like kinases switches on a mitogen-activated protein kinase cascade that leads to cell separation. A homeodomain transcription factor acting downstream of the ligand-receptor module may inhibit cell expansion and separation by restricting the expression of other closely related transcription factors. Three additional receptor-like kinases may inhibit abscission by reducing the pool of receptors at the cell surface available to be ligand-activated. A G-protein regulator is required to direct the movement of key molecules required for abscission. Expression of a polygalaturonase active during organ abscission is modulated by a zinc finger transcription factor. PMID:23047135

  15. CGGBP1 is a nuclear and midbody protein regulating abscission

    SciTech Connect

    Singh, Umashankar Westermark, Bengt

    2011-01-15

    Abscission marks the completion of cell division and its failure is associated with delayed cytokinesis and even tetraploidization. Aberrant abscission and consequential ploidy changes can underlie various diseases including cancer. Midbody, a transient structure formed in the intercellular bridge during telophase, contains several proteins including Aurora kinase B (AURKB), which participate in abscission. We report here an unexpected expression pattern and function of the transcription repressor protein CGG triplet repeat-binding protein 1 (CGGBP1), in normal human fibroblasts. We show that CGGBP1, a chromatin-associated protein, trans-localizes to spindle midzone and midbodies in a manner similar to that of AURKB. CGGBP1 depletion resulted in a cell cycle block at G2, characterized by failure of cells to undergo mitosis and also reduced entry into S phase. Consistent with its presence in the midbodies, live microscopy showed that CGGBP1 deficiency caused mitotic failure at abscission resulting in tetraploidy, which could be rescued by CGGBP1 overexpression. These results show that CGGBP1 is a bona fide midbody protein required for normal abscission and mitosis in general.

  16. Role of metabolism in ABA homeostasis during potato tuber dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endogenous hormones play a essential role in the regulation of potato tuber dormancy. Abscisic acid has been shown to be critically involved in tuber dormancy induction and maintenance. Genes encoding enzymes catalyzing the terminal steps of ABA synthesis and metabolism have been cloned from tuber...

  17. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  18. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  19. Ethephon induced abscission in mango: physiological fruitlet responses.

    PubMed

    Hagemann, Michael H; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  20. Ethephon induced abscission in mango: physiological fruitlet responses

    PubMed Central

    Hagemann, Michael H.; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N.

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  1. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit

    PubMed Central

    Zhang, Mei; Yuan, Bing; Leng, Ping

    2009-01-01

    In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence of tomato, two cDNAs (LeNCED1 and LeNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, two cDNAs (LeACS2 and LeACS4) which encode 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, and one cDNA (LeACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from tomato fruit using a reverse transcription-PCR (RT-PCR) approach. The relationship between ABA and ethylene during ripening was also investigated. Among six sampling times in tomato fruits, the LeNCED1 gene was highly expressed only at the breaker stage when the ABA content becomes high. After this, the LeACS2, LeACS4, and LeACO1 genes were expressed with some delay. The change in pattern of ACO activity was in accordance with ethylene production reaching its peak at the pink stage. The maximum ABA content preceded ethylene production in both the seeds and the flesh. The peak value of ABA, ACC, and ACC oxidase activity, and ethylene production all started to increase earlier in seeds than in flesh tissues, although they occurred at different ripening stages. Exogenous ABA treatment increased the ABA content in both flesh and seed, inducing the expression of both ACS and ACO genes, and promoting ethylene synthesis and fruit ripening, while treatment with fluridone or nordihydroguaiaretic acid (NDGA) inhibited them, delaying fruit ripening and softening. Based on the results obtained in this study, it was concluded that LeNCED1 initiates ABA biosynthesis at the onset of fruit ripening, and might act as an original inducer, and ABA accumulation might play a key role in the regulation of ripeness and senescence of tomato fruit. PMID:19246595

  2. Incisive Imaging and Computation for Cellular Mysteries: Lessons from Abscission

    PubMed Central

    Elia, Natalie; Ott, Carolyn; Lippincott-Schwartz, Jennifer

    2014-01-01

    The final cleavage event that terminates cell division, abscission of the small, dense intercellular bridge, has been particularly challenging to resolve. Here, we describe imaging innovations that helped answer long-standing questions about the mechanism of abscission. We further explain how computational modeling of high-resolution data was employed to test hypotheses and generate additional insights. We present the model that emerges from application of these complimentary approaches. Similar experimental strategies will undoubtedly reveal exciting details about other underresolved cellular structures. PMID:24315094

  3. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    PubMed

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components. PMID:22888124

  4. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins.

    PubMed

    Caballe, Anna; Wenzel, Dawn M; Agromayor, Monica; Alam, Steven L; Skalicky, Jack J; Kloc, Magdalena; Carlton, Jeremy G; Labrador, Leticia; Sundquist, Wesley I; Martin-Serrano, Juan

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. PMID:26011858

  5. The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction

    PubMed Central

    Li, Juan; Shi, Chaowei; Sun, Demeng; He, Yao; Lai, Chaohua; Lv, Pei; Xiong, Ying; Zhang, Longhua; Wu, Fangming; Tian, Changlin

    2015-01-01

    PYL10 is a monomeric abscisic acid (ABA) receptor that inhibits protein phosphatase 2C (PP2C) activity in Arabidopsis thaliana. Previous studies reported that the PP2C phosphatase inhibition by PYL10 was ABA-independent. Here, systematic PYL10 biochemical studies demonstrated that PYL10 activity was ABA-dependent, and the previously reported studies was interfered by the presence of BSA in the commercial kit. To investigate dynamic mechanism of how ABA binding to PYL10 induces PP2C phosphatase inhibiting activity, solution NMR relaxation analysis of apo-PYL10 and PYL10/ABA were conducted following backbone resonance assignments. Reduced spectrum density mapping of the backbone relaxation data revealed that PYL10 was more flexible in ABA bound form than apo-PYL10, indicating an increased conformational entropy upon ligand binding. Moreover, to illustrate conformation exchanges of PYL10 upon ABA binding, NMR line shape analysis was performed with increasing concentrations of ABA, and the results indicated that PYL10 backbone conformational changes occur at different time scales. PMID:26044871

  6. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  7. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis

    PubMed Central

    Tian, Hainan; Guo, Hongyan; Dai, Xuemei; Cheng, Yuxin; Zheng, Kaijie; Wang, Xiaoping; Wang, Shucai

    2015-01-01

    Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis. PMID:26625868

  8. Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Dong, Cuicui; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-11-01

    Small auxin-up RNA (SAUR) gene family is large, and the members of which can be rapidly induced by auxin and encode highly unstable mRNAs. SAUR genes are involved in various developmental and physiological processes, such as leaf senescence, fruitlet abscission, and hypocotyl development. However, their modes of action in citrus remain unknown. Hereby, a systematic analysis of SAUR gene family in citrus was conducted through a genome-wide search. In this study, a total of 70 SAUR genes, referred to as CitSAURs, have been identified in citrus. The evolutionary relationship and the intro-exon organization were analyzed, revealing strong gene conservation and the expansion of particular functional genes during plant evolution. Expression analysis showed that the major of CitSAUR genes were expressed in at least one tissue and showed distinctive expression levels, indicating the SAUR gene family play important roles in the development and growth of citrus organs. However, there were more than 20 CitSAUR genes such as CitSARU36, CitSAUR37, and CitSAUR54 exhibiting very low expression level in all tissue tested. Twenty-three out of 70 CitSAUR genes were responded to indole-3-acetic acid (IAA) treatment, of which just CitSAUR19 was down-regulated. Additionally, 14 CitSAUR genes exhibited distinct changes during fruitlet abscission, however just 5 of them including CitSAUR06, CitSAUR08, CitSAUR44, CitSAUR61, and CitSAUR64 were associated with fruitlet abscission. The current study provides basic information for the citrus SAUR gene family and will pave the way for deciphering the precise role of SAURs in citrus development and growth as well as fruitlet abscission. PMID:26115718

  9. Breakdown of middle lamella pectin by (●) OH during rapid abscission in Azolla.

    PubMed

    Yamada, Yoshiya; Koibuchi, Mizuki; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2015-08-01

    Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by (●) OH is involved. Experimentally generated (●) OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that (●) OH rapidly and selectively dissolved a well-developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with (●) OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of (●) OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that (●) OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well-developed middle lamella, a unique structure, which is sensitive to the attack of (●) OH, might be needed. PMID:25581142

  10. Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings[C][W

    PubMed Central

    Duan, Lina; Dietrich, Daniela; Ng, Chong Han; Chan, Penny Mei Yeen; Bhalerao, Rishikesh; Bennett, Malcolm J.; Dinneny, José R.

    2013-01-01

    The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments. PMID:23341337

  11. ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa.

    PubMed

    Wang, Wenyi; Liu, Bohan; Xu, Mengyun; Jamil, Muhammad; Wang, Guoping

    2015-08-14

    Water deficit causes multiple negative impacts on plants, such as reactive oxygen species (ROS) accumulation, abscisic acid (ABA) induction, stomatal closure, and decreased photosynthesis. Here, we characterized OsC3H47, which belongs to CCCH zinc-finger families, as a drought-stress response gene. It can be strongly induced by NaCl, PEG, ABA, and drought conditions. Overexpression of OsC3H47 significantly enhanced tolerance to drought and salt stresses in rice seedlings, which indicates that OsC3H47 plays important roles in post-stress recovery. However, overexpression of OsC3H47 reduced the ABA sensitivity of rice seedlings. This suggests that OsC3H47 is a newly discovered gene that can control rice drought-stress response, and it may play an important role in ABA feedback and post-transcription processes. PMID:26047696

  12. GEM, a member of the GRAM domain family of proteins, is part of the ABA signaling pathway

    PubMed Central

    Mauri, Nuria; Fernández-Marcos, María; Costas, Celina; Desvoyes, Bénédicte; Pichel, Antonio; Caro, Elena; Gutierrez, Crisanto

    2016-01-01

    Abscisic acid (ABA) is fundamental for plant development. Multiple factors have been identified that participate in the ABA signaling network, although a role of many proteins still await to be demonstrated. Here we have investigated the role of GEM (GL2 EXPRESSION MODULATOR), originally annotated as an ABA-responsive protein. GEM contains a GRAM domain, a feature shared with other eight Arabidopsis proteins for which we propose the name of GRE (GEM-RELATED) proteins. We found that (i) GEM expression responds to ABA, (ii) its promoter contains ABRE sites required for ABA response, and (iii) GEM expression depends on members of the ABA signaling pathway. This is consistent with the expression pattern of GEM during development in plant locations were ABA is known to play a direct role. We also found that GEM binds various phospholipids, e.g. mono and diphosphates and phosphatidic acid, suggesting a potential link of GEM with membrane-associated processes. Consistent with this, we found that the phosphoinositol-4-phosphate kinase PIP5K9 binds GEM in vivo. Finally, we demonstrated a role of GEM in seed dormancy. Together, our data led us to propose that GEM is an ABA-responsive protein that may function downstream of ABI5 as part of the ABA signaling pathway. PMID:26939893

  13. GEM, a member of the GRAM domain family of proteins, is part of the ABA signaling pathway.

    PubMed

    Mauri, Nuria; Fernández-Marcos, María; Costas, Celina; Desvoyes, Bénédicte; Pichel, Antonio; Caro, Elena; Gutierrez, Crisanto

    2016-01-01

    Abscisic acid (ABA) is fundamental for plant development. Multiple factors have been identified that participate in the ABA signaling network, although a role of many proteins still await to be demonstrated. Here we have investigated the role of GEM (GL2 EXPRESSION MODULATOR), originally annotated as an ABA-responsive protein. GEM contains a GRAM domain, a feature shared with other eight Arabidopsis proteins for which we propose the name of GRE (GEM-RELATED) proteins. We found that (i) GEM expression responds to ABA, (ii) its promoter contains ABRE sites required for ABA response, and (iii) GEM expression depends on members of the ABA signaling pathway. This is consistent with the expression pattern of GEM during development in plant locations were ABA is known to play a direct role. We also found that GEM binds various phospholipids, e.g. mono and diphosphates and phosphatidic acid, suggesting a potential link of GEM with membrane-associated processes. Consistent with this, we found that the phosphoinositol-4-phosphate kinase PIP5K9 binds GEM in vivo. Finally, we demonstrated a role of GEM in seed dormancy. Together, our data led us to propose that GEM is an ABA-responsive protein that may function downstream of ABI5 as part of the ABA signaling pathway. PMID:26939893

  14. De novo transcriptome sequencing and customized abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, which is the process of organ separation, is a highly regulated process occurring as a final stage of organ development. In the tomato (Solanum lycopersicum) system, flower and leaf abscission was induced by flower removal or leaf deblading, leading to auxin depletion which results in in...

  15. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway.

    PubMed

    Ma, Chao; Meir, Shimon; Xiao, Langtao; Tong, Jianhua; Liu, Qing; Reid, Michael S; Jiang, Cai-Zhong

    2015-03-01

    A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone. PMID:25560879

  16. Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh.

    PubMed

    Rock, Christopher D; Sun, Xin

    2005-09-01

    Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (beta-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-D: , but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-D: , but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed. PMID:15889272

  17. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2016-07-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  18. Programmed Cell Death Occurs Asymmetrically during Abscission in Tomato[C][W][OA

    PubMed Central

    Bar-Dror, Tal; Dermastia, Marina; Kladnik, Aleš; Žnidarič, Magda Tušek; Novak, Maruša Pompe; Meir, Shimon; Burd, Shaul; Philosoph-Hadas, Sonia; Ori, Naomi; Sonego, Lilian; Dickman, Martin B.; Lers, Amnon

    2011-01-01

    Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identified in the tomato leaf and flower AZs during the late stage of abscission. These included loss of cell viability, altered nuclear morphology, DNA fragmentation, elevated levels of reactive oxygen species and enzymatic activities, and expression of PCD-associated genes. Overexpression of antiapoptotic proteins resulted in retarded abscission, indicating PCD requirement. PCD, LX, and nuclease gene expression were visualized primarily in the AZ distal tissue, demonstrating an asymmetry between the two AZ sides. Asymmetric expression was observed for genes associated with cell wall hydrolysis, leading to AZ, or associated with ethylene biosynthesis, which induces abscission. These results suggest that different abscission-related processes occur asymmetrically between the AZ proximal and distal sides. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during normal progression of abscission and suggest an important role for LX in this PCD process. PMID:22128123

  19. Chemical inhibition of potato ABA 8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of azole-type P450 inhibitors and two metabolism-resistant ABA analogs on in vitro ABA 8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expr...

  20. Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs1[W][OA

    PubMed Central

    Bhaskara, Govinal Badiger; Nguyen, Thao Thi; Verslues, Paul E.

    2012-01-01

    Six Arabidopsis (Arabidopsis thaliana) clade A protein phosphatase 2Cs (PP2Cs) have established abscisic acid (ABA) signaling roles; however, phenotypic roles of the remaining three “HAI” PP2Cs, Highly ABA-Induced1 (HAI1), AKT1-Interacting PP2C1/HAI2, and HAI3, have remained unclear. HAI PP2C mutants had enhanced proline and osmoregulatory solute accumulation at low water potential, while mutants of other clade A PP2Cs had no or lesser effect on these drought resistance traits. hai1-2 also had increased expression of abiotic stress-associated genes, including dehydrins and late embryogenesis abundant proteins, but decreased expression of several defense-related genes. Conversely, the HAI PP2Cs had relatively less impact on several ABA sensitivity phenotypes. HAI PP2C single mutants were unaffected in ABA sensitivity, while double and triple mutants were moderately hypersensitive in postgermination ABA response but ABA insensitive in germination. The HAI PP2Cs interacted most strongly with PYL5 and PYL7 to -10 of the PYL/RCAR ABA receptor family, with PYL7 to -10 interactions being relatively little affected by ABA in yeast two-hybrid assays. HAI1 had especially limited PYL interaction. Reduced expression of the main HAI1-interacting PYLs at low water potential when HAI1 expression was strongly induced also suggests limited PYL regulation and a role of HAI1 activity in negatively regulating specific drought resistance phenotypes. Overall, the HAI PP2Cs had greatest effect on ABA-independent low water potential phenotypes and lesser effect on classical ABA sensitivity phenotypes. Both this and their distinct PYL interaction demonstrate a new level of functional differentiation among the clade A PP2Cs and a point of cross talk between ABA-dependent and ABA-independent drought-associated signaling. PMID:22829320

  1. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress

    PubMed Central

    Hu, Xiuli; Li, Nana; Wu, Liuji; Li, Chunqi; Li, Chaohai; Zhang, Li; Liu, Tianxue; Wang, Wei

    2015-01-01

    Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades. PMID:26503333

  2. Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis.

    PubMed

    Liang, Ching-Hsing; Yang, Chien-Chih

    2015-07-01

    Inducer of CBF expression 1 (ICE1) mediates the cold stress signal via an abscisic acid (ABA)-independent pathway. A possible role of ICE1 in ABA-dependent pathways was examined in this study. Seedling growth was severely reduced in a T-DNA insertion mutant of ICE1, ice1-2, when grown on 1/2 MS medium lacking sugars, but was restored to wild-type (WT) levels by supplementation with 56 mM glucose. In addition to this sugar-dependent phenotype, germination and establishment of ice1-2 were more sensitive to high glucose concentrations than in the WT. Hypersensitivity to ABA was also observed in ice1-2, suggesting its sensitivity to glucose might be mediated through the ABA signaling pathway. Glucose and ABA induced much higher expression of two genes related to ABA signal transduction, ABA-INSENSITIVE 3 (ABI3) and ABA-INSENSITIVE 4 (ABI4), in ice1-2 than in the WT during establishment. In summary, in addition to its known roles in regulating cold responses, stomatal development, and endosperm breakdown, ICE1 is a negative regulator of ABA-dependent responses. PMID:26048037

  3. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases

    PubMed Central

    Kong, Lingyao; Cheng, Jinkui; Zhu, Yujuan; Ding, Yanglin; Meng, Jingjing; Chen, Zhizhong; Xie, Qi; Guo, Yan; Li, Jigang; Yang, Shuhua; Gong, Zhizhong

    2015-01-01

    Clade A protein phosphatase 2Cs (PP2Cs) are abscisic acid (ABA) co-receptors that block ABA signalling by inhibiting the downstream protein kinases. ABA signalling is activated after PP2Cs are inhibited by ABA-bound PYR/PYL/RCAR ABA receptors (PYLs) in Arabidopsis. However, whether these PP2Cs are regulated by other factors remains unknown. Here, we report that ABI1 (ABA-INSENSITIVE 1) can interact with the U-box E3 ligases PUB12 and PUB13, but is ubiquitinated only when it interacts with ABA receptors in an in vitro assay. A mutant form of ABI1-1 that is unable to interact with PYLs is more stable than the wild-type protein. Both ABI1 degradation and all tested ABA responses are reduced in pub12 pub13 mutants compared with the wild type. Introducing the abi1-3 loss-of-function mutation into pub12 pub13 mutant recovers the ABA-insensitive phenotypes of the pub12 pub13 mutant. We thus uncover an important regulatory mechanism for regulating ABI1 levels by PUB12 and PUB13. PMID:26482222

  4. Abscission Is Regulated by the ESCRT-III Protein Shrub in Drosophila Germline Stem Cells

    PubMed Central

    Matias, Neuza Reis; Mathieu, Juliette; Huynh, Jean-René

    2015-01-01

    Abscission is the final event of cytokinesis that leads to the physical separation of the two daughter cells. Recent technical advances have allowed a better understanding of the cellular and molecular events leading to abscission in isolated yeast or mammalian cells. However, how abscission is regulated in different cell types or in a developing organism remains poorly understood. Here, we characterized the function of the ESCRT-III protein Shrub during cytokinesis in germ cells undergoing a series of complete and incomplete divisions. We found that Shrub is required for complete abscission, and that levels of Shrub are critical for proper timing of abscission. Loss or gain of Shrub delays abscission in germline stem cells (GSCs), and leads to the formation of stem-cysts, where daughter cells share the same cytoplasm as the mother stem cell and cannot differentiate. In addition, our results indicate a negative regulation of Shrub by the Aurora B kinase during GSC abscission. Finally, we found that Lethal giant discs (lgd), known to be required for Shrub function in the endosomal pathway, also regulates the duration of abscission in GSCs. PMID:25647097

  5. Natural Variation in Fruit Abscission-Related Traits in Apple (Malus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission or retention of ripening fruit is a major component of seed dispersal strategies and also has important implications for horticultural production. Abscission-related traits have generally not been targeted in breeding efforts, and their genetic bases remain mostly unknown. We evaluated ...

  6. Ultrastructural Localization of Polygalacturonase in Ethylene-Stimulated Abscission of Tomato Pedicel Explants

    PubMed Central

    Qi, Ming-Fang; Xu, Tao; Chen, Wei-Zhi; Li, Tian-lai

    2014-01-01

    Polygalacturonase (PG) is crucial in plant organ abscission process. This paper investigated the cellular and subcellular localization of PG in ethylene-stimulated abscission of tomato pedicel explants. Confocal laser scanning microscopy of abscission zone sections with the fluorescent probe Cy3 revealed that PG was initially accumulated in parenchyma cells in cortical and vascular tissues after 8 h of ethylene treatment and then extended throughout the abscission zone when the abscission zone separated at 24 h after ethylene treatment. At the subcellular level, transmission electron microscopy with immunogold staining showed that PG showed abundant accumulation in the cortical and vascular tissues at 8 h after ethylene treatment, and the distribution area extended to the central parenchyma cells at 16 h after ethylene treatment. In addition, PGs were observed in the distal and proximal parts of the tomato pedicel explants throughout the abscission process. The results provided a visualized distribution of PG in the pedicel abscission zone and proved that PG was closely related to abscission. PMID:24790564

  7. ALIX and ESCRT-III Coordinately Control Cytokinetic Abscission during Germline Stem Cell Division In Vivo

    PubMed Central

    Eikenes, Åsmund H.; Malerød, Lene; Christensen, Anette Lie; Steen, Chloé B.; Mathieu, Juliette; Nezis, Ioannis P.; Liestøl, Knut; Huynh, Jean-René; Stenmark, Harald; Haglund, Kaisa

    2015-01-01

    Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC) division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo. PMID:25635693

  8. Abscission of pistachio flowers and fruits as affected by different pollinators.

    PubMed

    Acar, Izzet; Eti, Sinan

    2007-09-01

    This study was conducted in Ceylanpinar State Farm to determine influence of pollens of 9 different pollinators on the flower and fruit abscission of the pistachio. Comparison of pollinator effect on the abscission of flowers and fruits of 3 pistachio cultivars showed that pollens of Pistacia vera L. may increase or reduce flower and fruit abscission. Flower and fruit abscission occurred primarily during the flowering and small-fruit period, that the June and pre-harvest abscissions were low. Data collected for 3 consecutive years revealed that 83.4 to 88.2% of the flowers and fruits of Kirmizi pistachio cultivar abscised mainly during an initial 50 days after Full Blooming (FB). Siirt cultivar abscised during an initial 35 days after FB with a rate of 82.1 to 90.9%. Abscission rate of Ohadi cultivar were 84.5 to 88.6% that occurred during an initial 50 days after FB period. Males noted as 12 and 13 resulted the highest abscission in Siirt cultivar. Results demonstrated that pollinators affect flower and fruit abscission in pistachio. PMID:19090200

  9. MOLECULAR ANALYSIS OF THE INTERACTION OF ETHYLENE AND AUXIN DURING FLOWER ABSCISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many ornamentals and other fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene, and may be accelerated by postharvest stre...

  10. Application of ABA Principles to General Communication Instruction.

    ERIC Educational Resources Information Center

    Ogletree, Billy T.; Oren, Thomas

    2001-01-01

    This article examines applied behavior analysis (ABA) based communication instruction for students with autism. It offers an historical context for ABA in speech-language pathology and reviews the literature on the use of ABA as a treatment method for communication impairment in autism, comparing contemporary ABA with the developmental…

  11. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission

    PubMed Central

    Mackay, Douglas R.; Ullman, Katharine S.

    2015-01-01

    Aurora B regulates cytokinesis timing and plays a central role in the abscission checkpoint. Cellular events monitored by this checkpoint are beginning to be elucidated, yet signaling pathways upstream of Aurora B in this context remain poorly understood. Here we reveal a new connection between postmitotic genome surveillance and cytokinetic abscission. Underreplicated DNA lesions are known to be transmitted through mitosis and protected in newly formed nuclei by recruitment of 53BP1 and other proteins until repair takes place. We find that this genome surveillance initiates before completion of cytokinesis. Elevating replication stress increases this postmitotic process and delays cytokinetic abscission by keeping the abscission checkpoint active. We further find that ATR activity in midbody-stage cells links postmitotic genome surveillance to abscission timing and that Chk1 integrates this and other signals upstream of Aurora B to regulate when the final step in the physical separation of daughter cells occurs. PMID:25904336

  12. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission.

    PubMed

    Mackay, Douglas R; Ullman, Katharine S

    2015-06-15

    Aurora B regulates cytokinesis timing and plays a central role in the abscission checkpoint. Cellular events monitored by this checkpoint are beginning to be elucidated, yet signaling pathways upstream of Aurora B in this context remain poorly understood. Here we reveal a new connection between postmitotic genome surveillance and cytokinetic abscission. Underreplicated DNA lesions are known to be transmitted through mitosis and protected in newly formed nuclei by recruitment of 53BP1 and other proteins until repair takes place. We find that this genome surveillance initiates before completion of cytokinesis. Elevating replication stress increases this postmitotic process and delays cytokinetic abscission by keeping the abscission checkpoint active. We further find that ATR activity in midbody-stage cells links postmitotic genome surveillance to abscission timing and that Chk1 integrates this and other signals upstream of Aurora B to regulate when the final step in the physical separation of daughter cells occurs. PMID:25904336

  13. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  14. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth.

    PubMed

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  15. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth

    PubMed Central

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  16. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96.

    PubMed

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  17. BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis.

    PubMed

    Shang, Yun; Dai, Changbo; Lee, Myeong Min; Kwak, June M; Nam, Kyoung Hee

    2016-03-01

    Stomatal movements are critical in regulating gas exchange for photosynthesis and water balance between plant tissues and the atmosphere. The plant hormone abscisic acid (ABA) plays key roles in regulating stomatal closure under various abiotic stresses. In this study, we revealed a novel role of BAK1 in guard cell ABA signaling. We found that the brassinosteroid (BR) signaling mutant bak1 lost more water than wild-type plants and showed ABA insensitivity in stomatal closure. ABA-induced OST1 expression and reactive oxygen species (ROS) production were also impaired in bak1. Unlike direct treatment with H2O2, overexpression of OST1 did not completely rescue the insensitivity of bak1 to ABA. We demonstrated that BAK1 forms a complex with OST1 near the plasma membrane and that the BAK1/OST1 complex is increased in response to ABA in planta. Brassinolide, the most active BR, exerted a negative effect on ABA-induced formation of the BAK1/OST1 complex and OST1 expression. Moreover, we found that BAK1 and ABI1 oppositely regulate OST1 phosphorylation in vitro, and that ABI1 interacts with BAK1 and inhibits the interaction of BAK1 and OST1. Taken together, our results suggest that BAK1 regulates ABA-induced stomatal closure in guard cells. PMID:26724418

  18. Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.

    PubMed

    Lee, Shin Ae; Jang, Sejeong; Yoon, Eun Kyung; Heo, Jung-Ok; Chang, Kwang Suk; Choi, Ji Won; Dhar, Souvik; Kim, Gyuree; Choe, Jeong-Eun; Heo, Jae Bok; Kwon, Chian; Ko, Jae-Heung; Hwang, Yong-Sic; Lim, Jun

    2016-06-01

    In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root. PMID:26970019

  19. Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato (Solanum tuberosum L.) tubers. An increase in ABA and ABA metabolite content was observed 48 h after wounding and remained elevated through 96 h. ...

  20. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica)

    PubMed Central

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2016-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach. PMID:26793222

  1. Loss of heterophylly in aquatic plants: not ABA-mediated stress but exogenous ABA treatment induces stomatal leaves in Potamogeton perfoliatus.

    PubMed

    Iida, Satoko; Ikeda, Miyuki; Amano, Momoe; Sakayama, Hidetoshi; Kadono, Yasuro; Kosuge, Keiko

    2016-09-01

    Heterophyllous aquatic plants produce aerial (i.e., floating and terrestrial) and submerged leaves-the latter lack stomata-while homophyllous plants contain only submerged leaves, and cannot survive on land. To identify whether differences in morphogenetic potential and/or physiological stress responses are responsible for variation in phenotypic plasticity between two plants types, responses to abscisic acid (ABA) and salinity stress were compared between the closely related, but ecologically diverse pondweeds, Potamogeton wrightii (heterophyllous) and P. perfoliatus (homophyllous). The ABA-treated (1 or 10 μM) P. wrightii plants exhibited heterophylly and produced leaves with stomata. The obligate submerged P. perfoliatus plants were able to produce stomata on their leaves, but there were no changes to leaf shape, and stomatal production occurred only at a high ABA concentration (10 μM). Under salinity stress conditions, only P. wrightii leaves formed stomata. Additionally, the expression of stress-responsive NCED genes, which encode a key enzyme in ABA biosynthesis, was consistently up-regulated in P. wrightii, but only temporarily in P. perfoliatus. The observed species-specific gene expression patterns may be responsible for the induction or suppression of stomatal production during exposure to salinity stress. These results suggest that the two Potamogeton species have an innate morphogenetic ability to form stomata, but the actual production of stomata depends on ABA-mediated stress responses specific to each species and habitat. PMID:27324202

  2. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima-How Do They Compare and How Do They Differ?

    PubMed

    Hvoslef-Eide, Anne K; Munster, Cristel M; Mathiesen, Cecilie A; Ayeh, Kwadwo O; Melby, Tone I; Rasolomanana, Paoly; Lee, YeonKyeong

    2015-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94-98 million years in evolution, hence any genes or processes in common

  3. Transcriptome Analysis of Tomato Flower Pedicel Tissues Reveals Abscission Zone-Specific Modulation of Key Meristem Activity Genes

    PubMed Central

    Sun, Xiuli; Zhang, Rongzhi; Wu, Liang; Liang, Yanchun; Mao, Long

    2013-01-01

    Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal and apical portions. Gene Ontology analyses revealed enriched transcription regulation and hydrolase activities in the abscission zone. We also demonstrate coordinated responses of hormone and cell wall related genes. Besides, a number of ESTs representing homologs of key Arabidopsis shoot apical meristem activity genes were found to be preferentially expressed in the abscission zone, including WUSCHEL (WUS), KNAT6, LATERAL ORGAN BOUNDARIES DOMAIN PROTEIN 1(LBD1), and BELL-like homeodomain protein 1 (BLH1), as well as tomato axillary meristem genes BLIND (Bl) and LATERAL SUPPRESSOR (Ls). More interestingly, the homologs of WUS and the potential functional partner OVATE FAMILIY PROTEIN (OFP) were subsequently down regulated during abscission while Bl and AGL12 were continuously and specifically induced in the abscission zone. The expression patterns of meristem activity genes corroborate the idea that cells of the abscission zone confer meristem-like nature and coincide with the course of abscission and post-abscission cell differentiation. Our data therefore propose a possible regulatory scheme in tomato involving meristem genes that may be required not only for the abscission zone development, but also for abscission. PMID:23390523

  4. Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes.

    PubMed

    Wang, Xiang; Liu, Danmei; Li, Aili; Sun, Xiuli; Zhang, Rongzhi; Wu, Liang; Liang, Yanchun; Mao, Long

    2013-01-01

    Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal and apical portions. Gene Ontology analyses revealed enriched transcription regulation and hydrolase activities in the abscission zone. We also demonstrate coordinated responses of hormone and cell wall related genes. Besides, a number of ESTs representing homologs of key Arabidopsis shoot apical meristem activity genes were found to be preferentially expressed in the abscission zone, including WUSCHEL (WUS), KNAT6, LATERAL ORGAN BOUNDARIES DOMAIN PROTEIN 1(LBD1), and BELL-like homeodomain protein 1 (BLH1), as well as tomato axillary meristem genes BLIND (Bl) and LATERAL SUPPRESSOR (Ls). More interestingly, the homologs of WUS and the potential functional partner OVATE FAMILIY PROTEIN (OFP) were subsequently down regulated during abscission while Bl and AGL12 were continuously and specifically induced in the abscission zone. The expression patterns of meristem activity genes corroborate the idea that cells of the abscission zone confer meristem-like nature and coincide with the course of abscission and post-abscission cell differentiation. Our data therefore propose a possible regulatory scheme in tomato involving meristem genes that may be required not only for the abscission zone development, but also for abscission. PMID:23390523

  5. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima—How Do They Compare and How Do They Differ?

    PubMed Central

    Hvoslef-Eide, Anne K.; Munster, Cristel M.; Mathiesen, Cecilie A.; Ayeh, Kwadwo O.; Melby, Tone I.; Rasolomanana, Paoly; Lee, YeonKyeong

    2016-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94–98 million years in evolution, hence any genes or processes in common

  6. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    PubMed

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-01

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant. PMID:27171851

  7. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis

    PubMed Central

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-01-01

    ABSTRACT Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K+in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant. PMID:27171851

  8. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening

    PubMed Central

    Mou, Wangshu; Li, Dongdong; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2015-01-01

    Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process. PMID:26053166

  9. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins

    PubMed Central

    Caballe, Anna; Wenzel, Dawn M; Agromayor, Monica; Alam, Steven L; Skalicky, Jack J; Kloc, Magdalena; Carlton, Jeremy G; Labrador, Leticia; Sundquist, Wesley I; Martin-Serrano, Juan

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. DOI: http://dx.doi.org/10.7554/eLife.06547.001 PMID:26011858

  10. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission

    PubMed Central

    Sawicki, Mélodie; Aït Barka, Essaïd; Clément, Christophe; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-01-01

    In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission. PMID:25711702

  11. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission.

    PubMed

    Sawicki, Mélodie; Aït Barka, Essaïd; Clément, Christophe; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-04-01

    In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission. PMID:25711702

  12. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission.

    PubMed

    Jungas, Thomas; Perchey, Renaud T; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud; Davy, Alice

    2016-08-29

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  13. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis.

    PubMed

    McKim, Sarah M; Stenvik, Grethe-Elisabeth; Butenko, Melinka A; Kristiansen, Wenche; Cho, Sung Ki; Hepworth, Shelley R; Aalen, Reidunn B; Haughn, George W

    2008-04-01

    The Arabidopsis BLADE-ON-PETIOLE 1 (BOP1) and BOP2 genes encode redundant transcription factors that promote morphological asymmetry during leaf and floral development. Loss-of-function bop1 bop2 mutants display a range of developmental defects, including a loss of floral organ abscission. Abscission occurs along specialised cell files, called abscission zones (AZs) that develop at the junction between the leaving organ and main plant body. We have characterized the bop1 bop2 abscission phenotype to determine how BOP1 and BOP2 contribute to the known abscission developmental framework. Histological analysis and petal breakstrength measurements of bop1 bop2 flowers show no differentiation of floral AZs. Furthermore, vestigial cauline leaf AZs are also undifferentiated in bop1 bop2 mutants, suggesting that BOP proteins are essential to establish AZ cells in different tissues. In support of this hypothesis, BOP1/BOP2 activity is required for both premature floral organ abscission and the ectopic abscission of cauline leaves promoted by the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene under the control of the constitutive CaMV 35S promoter. Expression of several abscission-related marker genes, including IDA, is relatively unperturbed in bop1 bop2 mutants, indicating that these AZ genes respond to positional cues that are independent of BOP1/BOP2 activity. We also show that BOP1 and BOP2 promote growth of nectary glands, which normally develop at the receptacle adjacent to developing AZs. Taken together, these data suggest that BOP1/BOP2 activity is required for multiple cell differentiation events in the proximal regions of inflorescence lateral organs. PMID:18339677

  14. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies.

    PubMed

    Lombardi, Lara; Arrom, Laia; Mariotti, Lorenzo; Battelli, Riccardo; Picciarelli, Piero; Kille, Peter; Stead, Tony; Munné-Bosch, Sergi; Rogers, Hilary J

    2015-02-01

    Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers. PMID:25422499

  15. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies

    PubMed Central

    Lombardi, Lara; Arrom, Laia; Mariotti, Lorenzo; Battelli, Riccardo; Picciarelli, Piero; Kille, Peter; Stead, Tony; Munné-Bosch, Sergi; Rogers, Hilary J.

    2015-01-01

    Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers. PMID:25422499

  16. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2.

    PubMed

    Cai, Suqin; Lashbrook, Coralie C

    2008-03-01

    Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ(551)) regulated at the highest statistical significance (P < or = 0.0001) over five floral stages linking prepollination to stamen shed. AZ(551) includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-beta-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed. PMID:18192438

  17. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Mugasimangalam, Raja; Kuravadi, Nagesh A.; Kochanek, Bettina; Salim, Shoshana; Tucker, Mark L.; Meir, Shimon

    2016-01-01

    Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession. PMID:26834766

  18. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission.

    PubMed

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Mugasimangalam, Raja; Kuravadi, Nagesh A; Kochanek, Bettina; Salim, Shoshana; Tucker, Mark L; Meir, Shimon

    2015-01-01

    Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession. PMID:26834766

  19. Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes1[W

    PubMed Central

    Kepka, Michal; Benson, Chantel L.; Gonugunta, Vijay K.; Nelson, Ken M.; Christmann, Alexander; Grill, Erwin; Abrams, Suzanne R.

    2011-01-01

    The phytohormone abscisic acid (ABA) regulates stress responses and controls numerous aspects of plant growth and development. Biosynthetic precursors and catabolites of ABA have been shown to trigger ABA responses in physiological assays, but it is not clear whether these are intrinsically active or whether they are converted into ABA in planta. In this study, we analyzed the effect of ABA precursors, conjugates, and catabolites on hormone signaling in Arabidopsis (Arabidopsis thaliana). The compounds were also tested in vitro for their ability to regulate the phosphatase moiety of ABA receptor complexes consisting of the protein phosphatase 2C ABI2 and the coreceptors RCAR1/PYL9, RCAR3/PYL8, and RCAR11/PYR1. Using mutants defective in ABA biosynthesis, we show that the physiological activity associated with ABA precursors derives predominantly from their bioconversion to ABA. The ABA glucose ester conjugate, which is the most widespread storage form of ABA, showed weak ABA-like activity in germination assays and in triggering ABA signaling in protoplasts. The ABA conjugate and precursors showed negligible activity as a regulatory ligand of the ABI2/RCAR receptor complexes. The majority of ABA catabolites were inactive in our assays. To analyze the chemically unstable 8′- and 9′-hydroxylated ABA catabolites, we used stable tetralone derivatives of these compounds, which did trigger selective ABA responses. ABA synthetic analogs exhibited differential activity as regulatory ligands of different ABA receptor complexes in vitro. The data show that ABA precursors, catabolites, and conjugates have limited intrinsic bioactivity and that both natural and synthetic ABA-related compounds can be used to probe the structural requirements of ABA ligand-receptor interactions. PMID:21976481

  20. Super-resurgence: ABA renewal increases resurgence.

    PubMed

    Kincaid, Stephanie L; Lattal, Kennon A; Spence, Jake

    2015-06-01

    Previously extinguished operant responding recurs under both resurgence and renewal procedures, but the effects of combining these procedures on recurrence has not been studied. Because renewal and resurgence are known to independently produce response recurrence, we examined whether greater resurgence would occur if the resurgence procedure was combined with an ABA renewal procedure, relative to a resurgence procedure without contextual changes. Three pigeons were exposed to a concurrent resurgence procedure in which key colors served as contextual stimuli. In the Training phase, reinforcement for pecking two keys was scheduled on concurrent variable-interval (VI) 120-s VI 120-s schedules, each correlated with different key colors. In the Alternative Reinforcement phase, reinforcement occurred when neither key was pecked for 20-s (a differential-reinforcement-of-other-behavior [DRO] 20-s schedule). During this phase, one of the key colors was changed (ABA key), while the other key color remained as in the Training phase (AAA key). In the third phase, reinforcement was not provided and the color of the ABA key was changed back to the color in effect during the Training phase while the same color remained in effect on the other key. Greater resurgence occurred on the ABA renewal key with each pigeon, demonstrating that a superimposed ABA renewal procedure increases resurgence. PMID:25712040

  1. Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): Drawing connections to grain dormancy, preharvest sprouting, and drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the isolation of Wheat ABA-responsive mutants (Warm) in Chinese spring background of allohexaploid Triticum aestivum. The plant hormone abscisic acid (ABA) is required for the induction of seed dormancy, the induction of stomatal closure and drought tolerance, and is associated...

  2. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    PubMed

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation. PMID:23800664

  3. Auxin is a long-range signal that acts independently of ethylene signaling on leaf abscission in Populus

    PubMed Central

    Jin, Xu; Zimmermann, Jorma; Polle, Andrea; Fischer, Urs

    2015-01-01

    Timing of leaf abscission is an important trait for biomass production and seasonal acclimation in deciduous trees. The signaling leading to organ separation, from the external cue (decreasing photoperiod) to ethylene-regulated hydrolysis of the middle lamellae in the abscission zone, is only poorly understood. Data from annual species indicate that the formation of an auxin gradient spanning the abscission zone regulates the timing of abscission. We established an experimental system in Populus to induce leaf shedding synchronously under controlled greenhouse conditions in order to test the function of auxin in leaf abscission. Here, we show that exogenous auxin delayed abscission of dark-induced leaves over short and long distances and that a new auxin response maximum preceded the formation of an abscission zone. Several auxin transporters were down-regulated during abscission and inhibition of polar auxin transport delayed leaf shedding. Ethylene signaling was not involved in the regulation of these auxin transporters and in the formation of an abscission zone, but was required for the expression of hydrolytic enzymes associated with cell separation. Since exogenous auxin delayed abscission in absence of ethylene signaling auxin likely acts independently of ethylene signaling on cell separation. PMID:26322071

  4. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.

    PubMed

    Chater, Caspar; Peng, Kai; Movahedi, Mahsa; Dunn, Jessica A; Walker, Heather J; Liang, Yun-Kuan; McLachlan, Deirdre H; Casson, Stuart; Isner, Jean Charles; Wilson, Ian; Neill, Steven J; Hedrich, Rainer; Gray, Julie E; Hetherington, Alistair M

    2015-10-19

    An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral. PMID:26455301

  5. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    PubMed

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. PMID:24520869

  6. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants1[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2016-01-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD. Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD. We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD. In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  7. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility

    PubMed Central

    Sivakumaran, Anushen; Akinyemi, Aderemi; Mandon, Julian; Cristescu, Simona M.; Hall, Michael A.; Harren, Frans J. M.; Mur, Luis A. J.

    2016-01-01

    Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defense against this pathogen – occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production. PMID:27252724

  8. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility.

    PubMed

    Sivakumaran, Anushen; Akinyemi, Aderemi; Mandon, Julian; Cristescu, Simona M; Hall, Michael A; Harren, Frans J M; Mur, Luis A J

    2016-01-01

    Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production - an established mediator of defense against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production. PMID:27252724

  9. Interactions between soybean ABA receptors and type 2C protein phosphatases

    PubMed Central

    Ha, Si; Yang, Fen; Ma, Jun; Gao, Xiao-Su; Wang, Zhi-Min; Zhu, Jian-Kang

    2013-01-01

    The plant hormone abscisic acid (ABA) plays important roles in regulating plant growth, development, and responses to environmental stresses. Proteins in the PYR/PYL/RCAR family (hereafter referred to as PYLs) are known as ABA receptors. Since most studies thus far have focused on Arabidopsis PYLs, little is known about PYL homologs in crop plants. We report here the characterization of 21 PYL homologs (GmPYLs) in soybean. Twenty three putative GmPYLs can be found from soybean genome sequence and categorized into three subgroups. GmPYLs interact with AtABI1 and two GmPP2Cs in diverse manners. A lot of the subgroup I GmPYLs interact with PP2Cs in an ABA-dependent manner, whereas most of the subgroup II and III GmPYLs bind to PP2Cs in an ABA-independent manner. The subgroup III GmPYL23, which cannot interact with any of the tested PP2Cs, differs from other GmPYLs. The CL2/gate domain is crucial for GmPYLs-PP2Cs interaction, and a mutation in the conserved proline (P109S) abolishes the interaction between GmPYL1 and AtABI1. Furthermore, the ABA dependence of GmPYLs-PP2Cs interactions are partially correlated with two amino acid residues preceding the CL2/gate domain of GmPYLs. We also show that GmPYL1 interacts with AtABI1 in an ABA-dependent manner in plant cells. Three GmPYLs differentially inhibit AtABI1 and GmPP2C1 in an ABA-dependent or -enhanced manner in vitro. In addition, ectopically expressing GmPYL1 partially restores ABA sensitivity of the Arabidopsis triple mutant pyr1/pyl1/pyl4. Taken together, our results suggest that soybean GmPYLs are ABA receptors that function by interacting and inhibiting PP2Cs. PMID:23934343

  10. Ethylene Production and Leaflet Abscission in Mèlia azédarach L. 1

    PubMed Central

    Morgan, Page W.; Durham, James I.

    1980-01-01

    Ethylene production or content was compared to leaflet abscission in detached, compound leaves of Mèlia azédarach L. In late autumn, when abscission was progressing from basal leaves upward, the oldest leaves both produced ethylene at the highest rates and abscised their leaflets first. When C2H4 levels were measured in intercellular air removed immediately after leaves were harvested, C2H4 levels were also highest in basal leaves and declined progressively in more apical leaves. Levels as high as 1.8 microliters C2H4 liter−1 air were observed. Earlier in the season groups of leaves demonstrated a pattern of sequential initiation of abscission from base to apex, but the peak rates of C2H4 production followed an opposite trend, being highest in the youngest leaves. Peak rates of C2H4 production occurred after the initiation of leaflet abscission and presumably are related to either the auxin content or a climacteric-like, autocatalytic phase of C2H4 production not directly involved in the initiation of abscission. In these experiments, the early abscission of the older leaflets reflects their greater sensitivity to C2H4, presumably due to lower auxin content. C2H4 production rates in all experiments, with rare exceptions, exceeded 3 microliters per kilogram fresh weight per hour at least 24 hours before leaflet abscission reached 10%. This achieving of a threshold internal C2H4 level is viewed as an initiating event in leaflet abscission. Hypobaric conditions, to facilitate the escape of endogenous C2H4, delayed abscission compared to controls, and termination of hypobaric exposure allowed a normal progression of abscission as well as normal C2H4 synthesis rates. All of the data indicate that C2H4 initiates leaflet abscission in intact but detached leaves of Mèlia azédarach L. The seasonal patterns observed suggest that C2H4, in concert with those hormones which govern sensitivity to C2H4, regulate autumn leaf fall in this species. PMID:16661401

  11. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.

    PubMed

    Yang, Runqiang; Hui, Qianru; Gu, Zhenxin

    2016-01-01

    Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca(2+), respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca(2+) participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress. PMID:26644273

  12. 8[prime]-Methylene Abscisic Acid (An Effective and Persistent Analog of Abscisic Acid).

    PubMed Central

    Abrams, S. R.; Rose, P. A.; Cutler, A. J.; Balsevich, J. J.; Lei, B.; Walker-Simmons, M. K.

    1997-01-01

    We report here the synthesis and biological activity of a new persistent abscisic acid (ABA) analog, 8[prime]-methylene ABA. This ABA analog has one additional carbon atom attached through a double bond to the 8[prime]-carbon of the ABA molecule. (+)-8[prime]-Methylene ABA is more active than the natural hormone (+)-ABA in inhibiting germination of cress seed and excised wheat embryos, in reducing growth of suspension-cultured corn cells, and in reducing transpiration in wheat seedlings. The (+)-8[prime]-methylene analog is slightly weaker than (+)-ABA in increasing expression of ABA-inducible genes in transgenic tobacco, but is equally active in stimulating a transient elevation of the pH of the medium of corn cell cultures. In corn cells, both (+)-ABA and (+)-8[prime]-methylene ABA are oxidized at the 8[prime] position. ABA is oxidized to phaseic acid and (+)-8[prime]-methylene ABA is converted more slowly to two isomeric epoxides. The alteration in the ABA structure causes the analog to be metabolized more slowly than ABA, resulting in longer-lasting and more effective biological activity relative to ABA. PMID:12223691

  13. A KNOTTED1-LIKE HOMEOBOX Protein Regulates Abscission in Tomato by Modulating the Auxin Pathway1[OPEN

    PubMed Central

    Ma, Chao; Meir, Shimon; Xiao, Langtao; Tong, Jianhua; Liu, Qing; Reid, Michael S.; Jiang, Cai-Zhong

    2015-01-01

    A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone. PMID:25560879

  14. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity

    PubMed Central

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  15. Arabidopsis COP1-interacting protein 1 is a positive regulator of ABA response.

    PubMed

    Ren, Chenxia; Zhu, Xili; Zhang, Pingping; Gong, Qingqiu

    2016-09-01

    COP1-interacting protein 1 (CIP1, At5g41790) was the first reported interacting protein for CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) of Arabidopsis; however its physiological function has remained unknown for two decades. Here we show that CIP1 is a positive regulator of abscisic acid (ABA) response. CIP1 is mainly expressed in the photosynthetic cells and the vascular tissue, and its promoter activity can be induced by osmotic stress and ABA. The CIP1 protein is localized to the plasma membrane. A T-DNA insertion mutant cip1-1 was then characterized. The mutant is sensitive to osmotic stress and has ABA insensitive phenotypes. RNA sequencing showed that cip1-1 has lower levels of gene expression in abiotic stress response compared with the wild-type. Meanwhile, transcript levels of ABA biosynthesis genes are higher in cip1-1 than in the wild-type. These results suggested that CIP1 is positively involved in ABA response. PMID:27372427

  16. Engineering the ABA Plant Stress Pathway for Regulation of Induced Proximity

    PubMed Central

    Liang, Fu-Sen; Ho, Wen Qi; Crabtree, Gerald R.

    2011-01-01

    Chemically induced proximity (CIP) systems use small molecules and engineered proteins to control and study biological processes. However, small molecule–based systems for controlling protein abundance or activities have been limited by toxicity, instability, cost, and slow clearance of the small molecules in vivo. To address these problems, we modified proteins of the plant abscisic acid (ABA) stress response pathway to control the proximity of cellular proteins and showed that the system could be used to regulate transcription, signal transduction, and subcellular localization of proteins in response to exogenously applied ABA. We also showed that the ABA CIP system can be combined with other CIP systems to simultaneously control multiple processes. We found that, when given to mice, ABA was orally available and had a 4-hour half-life. These properties, along with its lack of toxicity and low cost, suggest that ABA may be well suited for therapeutic applications and as an experimental tool to control diverse cellular activities in vivo. PMID:21406691

  17. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    PubMed

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. PMID:24796562

  18. Integration of C/N-nutrient and multiple environmental signals into the ABA signaling cascade

    PubMed Central

    Lu, Yu; Yamaguchi, Junji; Sato, Takeo

    2015-01-01

    Due to their immobility, plants have developed sophisticated mechanisms to robustly monitor and appropriately respond to dynamic changes in nutrient availability. Carbon (C) and nitrogen (N) are especially important in regulating plant metabolism and development, thereby affecting crop productivity. In addition to their independent utilization, the ratio of C to N metabolites in the cell, referred to as the “C/N balance”, is important for the regulation of plant growth, although molecular mechanisms mediating C/N signaling remain unclear. Recently ABI1, a protein phosphatase type 2C (PP2C), was shown to be a regulator of C/N response in Arabidopsis plants. ABI1 functions as a negative regulator of abscisic acid (ABA) signal transduction. ABA is versatile phytohormone that regulates multiple aspects of plant growth and adaptation to environmental stress. This review highlights the regulation of the C/N response mediated by a non-canonical ABA signaling pathway that is independent of ABA biosynthesis, as well as recent findings on the direct crosstalk between multiple cellular signals and the ABA signaling cascade. PMID:26786013

  19. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity.

    PubMed

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  20. Signaling Pathways Mediating the Induction of Apple Fruitlet Abscission1[C][W][OA

    PubMed Central

    Botton, Alessandro; Eccher, Giulia; Forcato, Claudio; Ferrarini, Alberto; Begheldo, Maura; Zermiani, Monica; Moscatello, Stefano; Battistelli, Alberto; Velasco, Riccardo; Ruperti, Benedetto; Ramina, Angelo

    2011-01-01

    Apple (Malus × domestica) represents an interesting model tree crop for studying fruit abscission. The physiological fruitlet drop occurring in this species can be easily magnified by using thinning chemicals, such as benzyladenine (BA), to obtain fruits with improved quality and marketability. Despite the economic importance of this process, the molecular determinants of apple fruitlet abscission are still unknown. In this research, BA was used to obtain fruitlet populations with different abscission potentials to be analyzed by means of a newly released 30K oligonucleotide microarray. RNAs were extracted from cortex and seed of apple fruitlets sampled over a 4-d time course, during which BA triggers fruit drop, and used for microarray hybridization. Transcriptomic profiles of persisting and abscising fruitlets were tested for statistical association with abscission potential, allowing us to identify molecular signatures strictly related to fruit destiny. A hypothetical model for apple fruitlet abscission was obtained by putting together available transcriptomic and metabolomic data. According to this model, BA treatment would establish a nutritional stress within the tree that is primarily perceived by the fruitlet cortex whose growth is blocked by resembling the ovary growth inhibition found in other species. In weaker fruits, this stress is soon visible also at the seed level, likely transduced via reactive oxygen species/sugar and hormones signaling cross talk, and followed by a block of embryogenesis and the consequent activation of the abscission zone. PMID:21037112

  1. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions.

    PubMed

    Topp, C; Henke, R; Keresztes, A; Fischer, W; Eberius, M; Appenroth, K-J

    2011-05-01

    Lemna minor L. (duckweed) forms colonies through vegetative propagation because mother fronds remain connected for some time with their daughter fronds by stipes. The colony size is controlled by abscission of stipes at a specific preformed abscission zone. Application of silver ions (Ag(+) ) enhances the rate of frond abscission, thus resulting in smaller colonies. The mechanism behind this process has not yet been identified. Silver caused an abscission response that saturated after 7 h of treatment. The half-maximal effective concentration was 0.72 μm Ag(+) for the standard clone, L. minor St. Other clones of the same species show sensitivities that differ by one order of magnitude. Transmission electron microscopy revealed: (i) large numbers of vesicles close to the plasmalemma in cells adjacent to the abscission zone, which proves a vesicular type secretory activity; and (ii) a moderately electron-dense secretion accumulated in the enlarging intercellular spaces, and seemed to flow from the adjacent cells towards the abscission zone. We assume that increasing pressure causes this material to push apart the cells, thereby causing the break in the abscission zone of the stipe. This is a novel mechanism of abscission that has not previously been described. The same mechanism occurs in stipes of both control and Ag(+) -treated samples. Silver ions only accelerate the process leading to abscission of stipes, without affecting the mechanism involved. PMID:21489103

  2. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate

    PubMed Central

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C.; Chang, Caren; Tucker, Mark L.

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  3. UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis.

    PubMed

    Liu, Zhen; Yan, Jin-Ping; Li, De-Kuan; Luo, Qin; Yan, Qiujie; Liu, Zhi-Bin; Ye, Li-Ming; Wang, Jian-Mei; Li, Xu-Feng; Yang, Yi

    2015-04-01

    Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid -: glucose ester (GE) in Arabidopsis (Arabidopsis thaliana). Biochemical analyses show that UGT71C5 glucosylates ABA in vitro and in vivo. Mutation of UGT71C5 and down-expression of UGT71C5 in Arabidopsis cause delay in seed germination and enhanced drought tolerance. In contrast, overexpression of UGT71C5 accelerates seed germination and reduces drought tolerance. Determination of the content of ABA and ABA-GE in Arabidopsis revealed that mutation in UGT71C5 and down-expression of UGT71C5 resulted in increased level of ABA and reduced level of ABA-GE, whereas overexpression of UGT71C5 resulted in reduced level of ABA and increased level of ABA-GE. Furthermore, altered levels of ABA in plants lead to changes in transcript abundance of ABA-responsive genes, correlating with the concentration of ABA regulated by UGT71C5 in Arabidopsis. Our work shows that UGT71C5 plays a major role in ABA glucosylation for ABA homeostasis. PMID:25713337

  4. A Dual-Function Transcription Factor, AtYY1, Is a Novel Negative Regulator of the Arabidopsis ABA Response Network.

    PubMed

    Li, Tian; Wu, Xiu-Yun; Li, Hui; Song, Jian-Hui; Liu, Jin-Yuan

    2016-05-01

    Abscisic acid (ABA) plays crucial roles in plant growth and development, as well as in response to various environmental stresses. To date, many regulatory genes involved in the ABA response network have been identified; however, their roles have remained to be fully elucidated. In this study, we identified AtYY1, an Arabidopsis homolog of the mammalian C2H2 zinc-finger transcription factor Yin Yang 1 (YY1), as a novel negative regulator of the ABA response. AtYY1 is a dual-function transcription factor with both repression and activation domains. The expression of AtYY1 was induced by ABA and stress conditions including high salt and dehydration. The yy1 mutant was more sensitive to ABA and NaCl than the wild-type, while overexpressing AtYY1 plants were less sensitive. AtYY1 loss also enhanced ABA-induced stomatal closing and drought resistance. Moreover, AtYY1 can bind the ABA REPRESSOR1 (ABR1) promoter and directly upregulate ABR1 expression, as well as negatively regulate ABA- and salt-responsive gene expression. Additional analysis indicated that ABA INSENSITIVE4 (ABI4) might positively regulate AtYY1 expression and that ABR1 can antagonize this regulation. Our findings provide direct evidence that AtYY1 is a novel negative regulator of the ABA response network and that the ABI4-AtYY1-ABR1 regulatory pathway may fine-tune ABA-responsive gene expression in Arabidopsis. PMID:26961720

  5. Post-pruning shoot growth increases fruit abscission and reduces stem carbohydrates and yield in macadamia

    PubMed Central

    McFadyen, Lisa M.; Robertson, David; Sedgley, Margaret; Kristiansen, Paul; Olesen, Trevor

    2011-01-01

    Background and Aims There is good evidence for deciduous trees that competition for carbohydrates from shoot growth accentuates early fruit abscission and reduces yield but the effect for evergreen trees is not well defined. Here, whole-tree tip-pruning at anthesis is used to examine the effect of post-pruning shoot development on fruit abscission in the evergreen subtropical tree macadamia (Macadamia integrifolia, M. integrifolia × tetraphylla). Partial-tree tip-pruning is also used to test the localization of the effect. Methods In the first experiment (2005/2006), all branches on trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R treatment) and shoots were removed from others (NR treatment). Fruit set and stem total non-structural carbohydrates (TNSC) over time, and yield were measured. In the second experiment (2006/2007), upper branches of trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R) and shoots were removed from others (NR). Fruit set and yield were measured separately for upper (pruned) and lower (unpruned) branches. Key Results In the first experiment, R trees set far fewer fruit and had lower yield than NR trees. TNSC fell and rose in all treatments but the decline in R trees occurred earlier than in NR trees and coincided with early shoot growth and the increase in fruit abscission relative to the other treatments. In the second experiment, fruit abscission on upper branches of R trees increased relative to the other treatments but there was little difference in fruit abscission between treatments on lower branches. Conclusions This study is the first to demonstrate an increase in fruit abscission in an evergreen tree in response to pruning. The effect appeared to be related to competition for carbohydrates between post-pruning shoot growth and fruit development and was local, with shoot growth on pruned branches having no effect on fruit abscission on unpruned branches. PMID:21325025

  6. A new look at stress: abscisic acid patterns and dynamics at high-resolution.

    PubMed

    Jones, Alexander M

    2016-04-01

    Abscisic acid (ABA) is a key phytohormone promoting abiotic stress tolerance as well as developmental processes such as seed dormancy. A spatiotemporal map of ABA concentrations would greatly advance our understanding of the cell type and timing of ABA action. Organ and tissue-level ABA measurements, as well as indirect in vivo measurements such as cell-specific transcriptional analysis of ABA metabolic enzymes and ABA-responsive promoters, have all contributed to current views of the localization and timing of ABA accumulations. Recently developed Förster resonance energy transfer (FRET) biosensors for ABA that sense ABA levels directly promise to add unprecedented resolution to in vivo ABA spatiotemporal mapping and expand our knowledge of the mechanisms controlling ABA levels in space and time. PMID:26201893

  7. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation.

    PubMed

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-07-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  8. A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

    PubMed Central

    Baek, Dongwon; Chun, Hyun Jin; Kang, Songhwa; Shin, Gilok; Park, Su Jung; Hong, Hyewon; Kim, Chanmin; Kim, Doh Hoon; Lee, Sang Yeol; Kim, Min Chul; Yun, Dae-Jin

    2016-01-01

    MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b. PMID:26674968

  9. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    PubMed Central

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-01-01

    Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to

  10. The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in Arabidopsis

    PubMed Central

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  11. Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1

    PubMed Central

    Tadeo, Francisco R.

    2012-01-01

    Leaf abscission is a common response of plants to drought stress. Some species, such as citrus, have evolved a specific behaviour in this respect, keeping their leaves attached to the plant body during water stress until this is released by irrigation or rain. This study successfully reproduced this phenomenon under controlled conditions (24h of water stress followed by 24h of rehydration) and used it to construct a suppression subtractive hybridization cDNA library enriched in genes involved in the early stages of rehydration-promoted leaf abscission after water stress. Sequencing of the library yielded 314 unigenes, which were spotted onto nylon membranes. Membrane hybridization with petiole (Pet)- and laminar abscission zone (LAZ)-enriched RNA samples corresponding to early steps in leaf abscission revealed an almost exclusive preferential gene expression programme in the LAZ. The data identified major processes such as protein metabolism, cell-wall modification, signalling, control of transcription and vesicle production, and transport as the main biological processes activated in LAZs during the early steps of rehydration-promoted leaf abscission after water stress. Based on these findings, a model for the early steps of citrus leaf abscission is proposed. In addition, it is suggested that CitbHLH1, the putative citrus orthologue of Arabidopsis BIGPETAL, may play major roles in the control of abscission-related events in citrus abscission zones. PMID:23028022

  12. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  13. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    PubMed

    Singh, Amarjeet; Jha, Saroj K; Bagri, Jayram; Pandey, Girdhar K

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  14. NEVERSHED and INFLORESCENCE DEFICIENT IN ABSCISSION are differentially required for cell expansion and cell separation during floral organ abscission in Arabidopsis thaliana.

    PubMed

    Liu, Bin; Butenko, Melinka A; Shi, Chun-Lin; Bolivar, Jenny L; Winge, Per; Stenvik, Grethe-Elisabeth; Vie, Ane Kjersti; Leslie, Michelle E; Brembu, Tore; Kristiansen, Wenche; Bones, Atle M; Patterson, Sara E; Liljegren, Sarah J; Aalen, Reidunn B

    2013-12-01

    Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented. PMID:23963677

  15. RopGEF2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis.

    PubMed

    Zhao, Shujuan; Wu, Yuxuan; He, Yuqing; Wang, Yarui; Xiao, Jun; Li, Lin; Wang, Yanping; Chen, Xi; Xiong, Wei; Wu, Yan

    2015-12-01

    The involvement of Rho of Plants (ROP) GTPases in abscisic acid (ABA) signalling in Arabidopsis has been demonstrated in many studies. However, the roles of RopGEFs (Rop guanine nucleotide exchange factors), which modulate ROP activities in ABA signalling, are poorly understood. Here, we demonstrate that RopGEF2 may play a negative role in ABA-suppressed seed germination and post-germination growth. We show that disruption of RopGEF2 enhances sensitivity to exogenous ABA in seed germination assays and that RopGEF2pro-GUS is mainly expressed in developing embryos and germinating seeds. Interestingly, YFP-RopGEF2 is located in both the cytoplasmic region and in mitochondria. Notably, the PRONE2 (plant-specific ROP nucleotide exchanger 2) domain of RopGEF2 is detected in mitochondria, whereas the N-terminus of RopGEF2 is shown to be in the cytosol. After ABA treatment, degradation of RopGEF2 is triggered in the cytosol through the ubiquitin-26S proteasome system. The binding of RopGEF2 to ROP2, ROP6 or ROP10, which has been demonstrated to be involved in ABA signalling, not only alters the localization of RopGEF2 but also enables RopGEF2 to escape degradation in the cell. Thus, in this study, we deduce a sophisticated mechanism of ABA-mediated RopGEF2-ROP signalling, which potentially implicates the inactivation of ROPs in responsiveness to ABA. PMID:26461226

  16. WD Repeat-containing Protein 5 (WDR5) Localizes to the Midbody and Regulates Abscission*

    PubMed Central

    Bailey, Jeffrey K.; Fields, Alexander T.; Cheng, Kaijian; Lee, Albert; Wagenaar, Eric; Lagrois, Remy; Schmidt, Bailey; Xia, Bin; Ma, Dzwokai

    2015-01-01

    Cytokinesis partitions the cytoplasm of a parent cell into two daughter cells and is essential for the completion of cell division. The final step of cytokinesis in animal cells is abscission, which is a process leading to the physical separation of two daughter cells. Abscission requires membrane traffic and microtubule disassembly at a specific midbody region called the secondary ingression. Here, we report that WD repeat-containing protein 5 (WDR5), a core subunit of COMPASS/MLL family histone H3 lysine 4 methyltransferase (H3K4MT) complexes, resides at the midbody and associates with a subset of midbody regulatory proteins, including PRC1 and CYK4/MKLP1. Knockdown of WDR5 impairs abscission and increases the incidence of multinucleated cells. Further investigation revealed that the abscission delay is primarily due to slower formation of secondary ingressions in WDR5 knockdown cells. Consistent with these defects, midbody microtubules in WDR5 knockdown cells also display enhanced resistance to depolymerization by nocodazole. Recruitment of WDR5 to the midbody dark zone appears to require integrity of the WDR5 central arginine-binding cavity, as mutations that disrupt histone H3 and MLL1 binding to this pocket also abolish the midbody localization of WDR5. Taken together, these data suggest that WDR5 is specifically targeted to the midbody in the absence of chromatin and that it promotes abscission, perhaps by facilitating midbody microtubule disassembly. PMID:25666610

  17. The effects of GA and ABA treatments on metabolite profile of germinating barley.

    PubMed

    Huang, Yuqing; Cai, Shengguan; Ye, Lingzhen; Hu, Hongliang; Li, Chengdao; Zhang, Guoping

    2016-02-01

    Sugar degradation during grain germination is important for malt quality. In malting industry, gibberellin (GA) is frequently used for improvement of malting quality. In this study, the changes of metabolite profiles and starch-degrading enzymes during grain germination, and as affected by GA and abscisic acid (ABA) were investigated using two wild barley accessions XZ72 and XZ95. Totally fifty-two metabolites with known structures were detected and the change of metabolite during germination was time- and genotype dependent. Sugars and amino acids were the most dramatically changed compounds. Addition of GA enhanced the activities of starch-degrading enzymes, and increased most metabolites, especially sugars and amino acids, whereas ABA had the opposite effect. The effect varied with the barley accessions. The current study is the first attempt in investigating the effect of hormones on metabolite profiles in germinating barley grain, being helpful for identifying the factors affecting barley germination or malt quality. PMID:26304431

  18. UDP-Glucosyltransferase71C5, a Major Glucosyltransferase, Mediates Abscisic Acid Homeostasis in Arabidopsis1[OPEN

    PubMed Central

    Liu, Zhen; Yan, Jin-Ping; Li, De-Kuan; Yan, Qiujie; Liu, Zhi-Bin; Ye, Li-Ming; Wang, Jian-Mei; Li, Xu-Feng

    2015-01-01

    Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid-glucose ester (GE) in Arabidopsis (Arabidopsis thaliana). Biochemical analyses show that UGT71C5 glucosylates ABA in vitro and in vivo. Mutation of UGT71C5 and down-expression of UGT71C5 in Arabidopsis cause delay in seed germination and enhanced drought tolerance. In contrast, overexpression of UGT71C5 accelerates seed germination and reduces drought tolerance. Determination of the content of ABA and ABA-GE in Arabidopsis revealed that mutation in UGT71C5 and down-expression of UGT71C5 resulted in increased level of ABA and reduced level of ABA-GE, whereas overexpression of UGT71C5 resulted in reduced level of ABA and increased level of ABA-GE. Furthermore, altered levels of ABA in plants lead to changes in transcript abundance of ABA-responsive genes, correlating with the concentration of ABA regulated by UGT71C5 in Arabidopsis. Our work shows that UGT71C5 plays a major role in ABA glucosylation for ABA homeostasis. PMID:25713337

  19. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice.

    PubMed

    Cai, Shanlan; Jiang, Guobin; Ye, Nenghui; Chu, Zhizhan; Xu, Xuezhong; Zhang, Jianhua; Zhu, Guohui

    2015-01-01

    Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice. PMID:25647508

  20. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission.

    PubMed

    Santiago, Julia; Brandt, Benjamin; Wildhagen, Mari; Hohmann, Ulrich; Hothorn, Ludwig A; Butenko, Melinka A; Hothorn, Michael

    2016-01-01

    Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. PMID:27058169

  1. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity

    PubMed Central

    Arve, Louise E; Carvalho, Dália RA; Olsen, Jorunn E; Torre, Sissel

    2014-01-01

    Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure. PMID:25763494

  2. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice.

    PubMed

    Liu, Yongchang; Sun, Jie; Wu, Yaorong

    2016-09-01

    NAC (NAM, ATAF1/2, CUC2) transcription factors are plant-specific and have diverse functions in many plant developmental processes and responses to stress. In our previous study, we found that the expression of ATAF1, an Arabidopsis NAC gene, was obviously induced by high-salinity and abscisic acid (ABA). The overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA and salt. To investigate whether ATAF1 affects the sensitivity of monocotyledon plant to salt and ABA, ATAF1 transgenic rice were generated. Transgenic rice exhibited significantly improved salt tolerance and insensitivity to ABA. The results of real-time PCR showed that ATAF1 overexpression in rice elevated the transcription of OsLEA3, OsSalT1 and OsPM1, which are stress-associated genes. Our results indicate that ATAF1 plays an important role in response to salt stress and may be utilized to improve the salt tolerance of rice. PMID:27216423

  3. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  4. MYB96 shapes the circadian gating of ABA signaling in Arabidopsis

    PubMed Central

    Lee, Hong Gil; Mas, Paloma; Seo, Pil Joon

    2016-01-01

    Circadian clocks regulate the rhythms of biological activities with a period of approximately 24-hours and synchronize plant metabolism and physiology with the environmental cycles. The clock also gates responses to environmental stresses to maximize fitness advantages. Here we report that the MYB96 transcription factor is connected with the clock oscillator to shape the circadian gating of abscisic acid (ABA) responses. MYB96 directly binds to the TIMING OF CAB EXPRESSION 1 (TOC1) promoter to positively regulate its expression. The use of myb96 mutant plants shows that this regulation is essential for the gated induction of TOC1 by ABA. In turn, MYB96 induction by ABA is also altered in toc1-3 mutant plants. The increased tolerance to drought of MYB96 over-expressing plants is decreased in the toc1-3 mutant background, suggesting that MYB96 and TOC1 intersect the circadian clock and ABA signaling. The MYB96-TOC1 function might be also regulated by the clock component CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), which binds to the MYB96 promoter and alters its circadian expression. Thus, a complex circuitry of CCA1-MYB96-TOC1 regulatory interactions provides the mechanistic basis underlying the connection between circadian and stress signaling to optimize plant fitness to ambient stresses. PMID:26725725

  5. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

    PubMed

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando

    2016-01-19

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  6. Adventitious roots, leaf abscission and nutrient status of flooded Gmelina and Tectona seedlings.

    PubMed

    Osundina, M A; Osonubi, O

    1989-12-01

    When flooded, seedlings of Gmelina arborea Roxb. produced more adventitious roots, had lower foliar Mn concentrations and lost fewer leaves than seedlings of Tectona grandis L.f. Severing the adventitious roots produced by flooded Gmelina seedlings increased leaf Mn concentration and leaf abscission and reduced whole-plant dry matter production. Flooded Gmelina cuttings, which do not produce adventitious roots, abscised few leaves until foliar concentrations of Mn and Fe had risen substantially above those of unflooded cuttings, at which time most leaves were shed. The results indicate that the development of adventitious roots in flooded seedlings of Gmelina suppressed uptake of Mn thereby minimizing leaf abscission. PMID:14972970

  7. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    PubMed Central

    Stø, Ida M.; Orr, Russell J. S.; Fooyontphanich, Kim; Jin, Xu; Knutsen, Jonfinn M. B.; Fischer, Urs; Tranbarger, Timothy J.; Nordal, Inger; Aalen, Reidunn B.

    2015-01-01

    The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot—eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species. PMID:26579174

  8. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation. PMID:26277753

  9. Movement of abscisic acid into the apoplast in response to water stress in Xanthium strumarium L

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D.

    1985-07-01

    The effect of water stress on the redistribution of abscisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the apoplastic ABA, increased before bulk leaf stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. 32 references, 5 figures.

  10. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins

    PubMed Central

    Ding, Lei; Li, Yingrui; Wang, Ying; Gao, Limin; Wang, Min; Chaumont, François; Shen, Qirong; Guo, Shiwei

    2016-01-01

    In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium. PMID:27559341

  11. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins.

    PubMed

    Ding, Lei; Li, Yingrui; Wang, Ying; Gao, Limin; Wang, Min; Chaumont, François; Shen, Qirong; Guo, Shiwei

    2016-01-01

    In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium. PMID:27559341

  12. Abscisic Acid Synthesis and Response

    PubMed Central

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  13. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission

    PubMed Central

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  14. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission.

    PubMed

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  15. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli. PMID:24773210

  16. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    PubMed

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. PMID:24589134

  17. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis. PMID:27593466

  18. The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress

    PubMed Central

    Baek, Dongwon; Cha, Joon-Yung; Kang, Songhwa; Park, Bokyung; Lee, Hyo-Jung; Hong, Hyewon; Chun, Hyun Jin; Kim, Doh Hoon; Kim, Min Chul; Lee, Sang Yeol; Yun, Dae-Jin

    2015-01-01

    The phytohormone abscisic acid (ABA) induces accumulation of reactive oxygen species (ROS), which can disrupt seed dormancy and plant development. Here, we report the isolation and characterization of an Arabidopsis thaliana mutant called ars1 (aba and ros sensitive 1) that showed hypersensitivity to ABA during seed germination and to methyl viologen (MV) at the seedling stage. ARS1 encodes a nuclear protein with one zinc finger domain, two nuclear localization signal (NLS) domains, and one nuclear export signal (NES). The ars1 mutants showed reduced expression of a gene for superoxide dismutase (CSD3) and enhanced accumulation of ROS after ABA treatment. Transient expression of ARS1 in Arabidopsis protoplasts strongly suppressed ABA-mediated ROS production. Interestingly, nuclear-localized ARS1 translocated to the cytoplasm in response to treatment with ABA, H2O2, or MV. Taken together, these results suggest that ARS1 modulates seed germination and ROS homeostasis in response to ABA and oxidative stress in plants. PMID:26583028

  19. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    PubMed

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions. PMID:23630325

  20. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  1. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi.

    PubMed

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  2. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  3. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition

    PubMed Central

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-01-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  4. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene.

    PubMed

    Cheng, Chunzhen; Zhang, Lingyun; Yang, Xuelian; Zhong, Guangyan

    2015-10-01

    On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechani sm of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts. In total, 1313 and 1044 differentially regulated genes were identified in AZ-C treated with ethylene for 4 and 24 h, respectively. The results showed that mature citrus fruit abscission commenced with the activation of ethylene signal transduction pathway that led to the activation of ethylene responsive transcription factors and the subsequent transcriptional regulation of a large set of ethylene responsive genes. Significantly down-regulated genes included those of starch/sugar biosynthesis, transportation of water and growth promoting hormone synthesis and signaling, whereas significantly up-regulated genes were those involved in defense, cell wall degradation, and secondary metabolism. Our data unraveled the underlying mechanisms of some known important biochemical events occurring at AZ-C and should provide informative suggestions for future manipulation of the events to achieve a controllable abscission for mature citrus fruit. PMID:25948248

  5. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission.

    PubMed

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-09-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  6. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis

    PubMed Central

    Meng, Xiangzong; Zhou, Jinggeng; Tang, Jiao; Li, Bo; de Oliveira, Marcos V. V.; Chai, Jijie; He, Ping; Shan, Libo

    2016-01-01

    SUMMARY Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation. PMID:26854226

  7. A knotted1-like homeobox protein regulates abscission in tomato by modulating the auxin pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    KD1, a gene encoding a KNOTTED1-LIKE HOMEOBOX transcription factor is known to be involved, in tomato, in ontogeny of the compound leaf. KD1 is also highly expressed in both leaf and flower abscission zones. Reducing abundance of transcripts of this gene in tomato, using both virus induced gene sile...

  8. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission1[OPEN

    PubMed Central

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-01-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  9. Flower bud abscission triggered by the author in the Asiatic hybrid lilies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is not well documented which organ may trigger the onset of tepal or petal senescence and/or flower bud abscission. Asiatic hybrid L. × elegans Thunb., ‘Red Carpet’ lily flowers were selected as a model to study this relationship because the various floral organs can be easily dissected and col...

  10. ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars 1

    PubMed Central

    Walker-Simmons, Mary

    1987-01-01

    A sprouting-resistant and a sprouting-susceptible wheat cultivar were utilized to examine the role of ABA levels and sensitivity responses in wheat embryonic germination. Endogenous embryonic ABA levels were measured in both cultivars throughout grain maturation utilizing a new and sensitive ABA immunoassay. Embryonic ABA levels of each cultivar were similar with the sprouting-susceptible cultivar having about a 25% lower ABA level than that of the sprouting-resistant cultivar. Larger differences between the cultivars were noted in sensitivity to ABA, as measured by capability of ABA to block embryonic germination. ABA inhibited embryonic germination much more effectively in the sprouting-resistant cultivar. PMID:16665406

  11. Survival and arm abscission are linked to regional heterothermy in an intertidal sea star.

    PubMed

    Pincebourde, Sylvain; Sanford, Eric; Helmuth, Brian

    2013-06-15

    Body temperature is a more pertinent variable to physiological stress than ambient air temperature. Modeling and empirical studies on the impacts of climate change on ectotherms usually assume that body temperature within organisms is uniform. However, many ectotherms show significant within-body temperature heterogeneity. The relationship between regional heterothermy and the response of ectotherms to sublethal and lethal conditions remains underexplored. We quantified within-body thermal heterogeneity in an intertidal sea star (Pisaster ochraceus) during aerial exposure at low tide to examine the lethal and sublethal effects of temperatures of different body regions. In manipulative experiments, we measured the temperature of the arms and central disc, as well as survival and arm abscission under extreme aerial conditions. Survival was related strongly to central disc temperature. Arms were generally warmer than the central disc in individuals that survived aerial heating, but we found the reverse in those that died. When the central disc reached sublethal temperatures of 31-35°C, arms reached temperatures of 33-39°C, inducing arm abscission. The absolute temperature of individual arms was a poor predictor of arm abscission, but the arms lost were consistently the hottest at the within-individual scale. Therefore, the vital region of this sea star may remain below the lethal threshold under extreme conditions, possibly through water movement from the arms to the central disc and/or evaporative cooling, but at the cost of increased risk of arm abscission. Initiation of arm abscission seems to reflect a whole-organism response while death occurs as a result of stress acting directly on central disc tissues. PMID:23720798

  12. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat ‘Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouti...

  13. AtRAV and AtbZIP transcription factors positively regulate ABA responses: Overexpression in cotton enhances drought stress adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency, and gene expression during seed development and in response to environmental stresses. Ar...

  14. Registration of Zak ERA8 soft white spring wheat germplasm with enhanced response to ABA and increased seed dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZakERA8 is a unique mutant line selected from mutagenized soft white spring 'Zak' that has increased seed dormancy as a result of enhanced responsiveness to the plant hormone abscisic acid (ABA) during germination. This germplasm was developed by USDA-ARS, Pullman, WA in collaboration with Washingt...

  15. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling

    PubMed Central

    Jammes, Fabien; Song, Charlotte; Shin, Dongjin; Munemasa, Shintaro; Takeda, Kouji; Gu, Dan; Cho, Daeshik; Lee, Sangmee; Giordo, Roberta; Sritubtim, Somrudee; Leonhardt, Nathalie; Ellis, Brian E.; Murata, Yoshiyuki; Kwak, June M.

    2009-01-01

    Reactive oxygen species (ROS) mediate abscisic acid (ABA) signaling in guard cells. To dissect guard cell ABA-ROS signaling genetically, a cell type-specific functional genomics approach was used to identify 2 MAPK genes, MPK9 and MPK12, which are preferentially and highly expressed in guard cells. To provide genetic evidence for their function, Arabidopsis single and double TILLING mutants that carry deleterious point mutations in these genes were isolated. RNAi-based gene-silencing plant lines, in which both genes are silenced simultaneously, were generated also. Mutants carrying a mutation in only 1 of these genes did not show any altered phenotype, indicating functional redundancy in these genes. ABA-induced stomatal closure was strongly impaired in 2 independent RNAi lines in which both MPK9 and MPK12 transcripts were significantly silenced. Consistent with this result, mpk9-1/12-1 double mutants showed an enhanced transpirational water loss and ABA- and H2O2-insensitive stomatal response. Furthermore, ABA and calcium failed to activate anion channels in guard cells of mpk9-1/12-1, indicating that these 2 MPKs act upstream of anion channels in guard cell ABA signaling. An MPK12-YFP fusion construct rescued the ABA-insensitive stomatal response phenotype of mpk9-1/12-1, demonstrating that the phenotype was caused by the mutations. The MPK12 protein is localized in the cytosol and the nucleus, and ABA and H2O2 treatments enhance the protein kinase activity of MPK12. Together, these results provide genetic evidence that MPK9 and MPK12 function downstream of ROS to regulate guard cell ABA signaling positively. PMID:19910530

  16. Control of Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress Tolerance in Cereals1[W][OA

    PubMed Central

    Ji, Xuemei; Dong, Baodi; Shiran, Behrouz; Talbot, Mark J.; Edlington, Jane E.; Hughes, Trijntje; White, Rosemary G.; Gubler, Frank; Dolferus, Rudy

    2011-01-01

    Drought stress at the reproductive stage causes pollen sterility and grain loss in wheat (Triticum aestivum). Drought stress induces abscisic acid (ABA) biosynthesis genes in anthers and ABA accumulation in spikes of drought-sensitive wheat varieties. In contrast, drought-tolerant wheat accumulates lower ABA levels, which correlates with lower ABA biosynthesis and higher ABA catabolic gene expression (ABA 8′-hydroxylase). Wheat TaABA8′OH1 deletion lines accumulate higher spike ABA levels and are more drought sensitive. ABA treatment of the spike mimics the effect of drought, causing high levels of sterility. ABA treatment represses the anther cell wall invertase gene TaIVR1, and drought-tolerant lines appeared to be more sensitive to the effect of ABA. Drought-induced sterility shows similarity to cold-induced sterility in rice (Oryza sativa). In cold-stressed rice, the rate of ABA accumulation was similar in cold-sensitive and cold-tolerant lines during the first 8 h of cold treatment, but in the tolerant line, ABA catabolism reduced ABA levels between 8 and 16 h of cold treatment. The ABA biosynthesis gene encoding 9-cis-epoxycarotenoid dioxygenase in anthers is mainly expressed in parenchyma cells surrounding the vascular bundle of the anther. Transgenic rice lines expressing the wheat TaABA8′OH1 gene under the control of the OsG6B tapetum-specific promoter resulted in reduced anther ABA levels under cold conditions. The transgenic lines showed that anther sink strength (OsINV4) was maintained under cold conditions and that this correlated with improved cold stress tolerance. Our data indicate that ABA and ABA 8′-hydroxylase play an important role in controlling anther ABA homeostasis and reproductive stage abiotic stress tolerance in cereals. PMID:21502188

  17. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia

    PubMed Central

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy. PMID:26504568

  18. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia.

    PubMed

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy. PMID:26504568

  19. Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway.

    PubMed

    Tajdel, Małgorzata; Mituła, Filip; Ludwików, Agnieszka

    2016-04-01

    The plant hormone abscisic acid (ABA), a key regulator in many crucial developmental and physiological processes, recruits diverse components into precisely regulated signaling network. We recently discovered that MAPKKK18, an ABA-activated kinase, is regulated by the protein phosphatase type 2C (PP2C) ABI1 and the kinase SnRK2.6, both components of the ABA core signaling pathway. ABI1 acts to inhibit MAPKKK18 kinase activity, but also affects MAPKKK18 protein turnover via the ubiquitin-proteasome pathway. SnRK2.6 kinase also seems to be important for the regulation of MAPKKK18 function. In this review we summarize the mechanisms that are exclusively involved in MAPKKK18 kinase regulation and that ensure specificity in its activation. PMID:26852793

  20. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells.

    PubMed

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca(2+) accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca(2+)-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca(2+) levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  1. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    PubMed Central

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  2. Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm.

    PubMed

    Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J

    2016-01-01

    The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained

  3. Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm

    PubMed Central

    Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J.

    2016-01-01

    The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained

  4. Cloning and Expression Analysis of cDNAs Encoding ABA 8'-Hydroxylase in Peanut Plants in Response to Osmotic Stress

    PubMed Central

    Wan, Xiao-Rong; Li, Li-Mei; Hu, Bo; Li, Ling

    2014-01-01

    Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic-stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by ABA 8'-hydroxylase, the cytochrome P450 CYP707A family. In this study, the full-length cDNAs of AhCYP707A1 and AhCYP707A2 were cloned and characterized from peanut. Expression analyses showed that AhCYP707A1 and AhCYP707A2 were expressed ubiquitously in peanut roots, stems, and leaves with different transcript accumulation levels, including the higher expression of AhCYP707A1 in roots. The expression of AhCYP707A2 was significantly up-regulated by 20% PEG6000 or 250 mmol/L NaCl in peanut roots, stems, and leaves, whereas the up-regulation of AhCYP707A1 transcript level by PEG6000 or NaCl was observed only in roots instead of leaves and stems. Due to the osmotic and ionic stresses of high concentration of NaCl to plants simultaneously, low concentration of LiCl (30 mmol/L, at which concentration osmotic status of cells is not seriously affected, the toxicity of Li+ being higher than that of Na+) was used to examine whether the effect of NaCl might be related to osmotic or ionic stress. The results revealed visually the susceptibility to osmotic stress and the resistance to salt ions in peanut seedlings. The significant up-regulation of AhCYP707A1, AhCYP707A2 and AhNCED1 transcripts and endogenous ABA levels by PEG6000 or NaCl instead of LiCl, showed that the osmotic stress instead of ionic stress affected the expression of those genes and the biosynthesis of ABA in peanut. The functional expression of AhCYP707A1 cDNA in yeast showed that the microsomal fractions prepared from yeast cell expressing recombinant AhCYP707A1 protein exhibited the catalytic activity of ABA 8'-hydroxylase. These results demonstrate that the expressions of AhCYP707A1 and AhCYP707A2 play an important role in ABA catabolism in peanut, particularly in response

  5. Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells?

    PubMed Central

    Aliniaeifard, Sasan; van Meeteren, Uulke

    2013-01-01

    The response of stomata to many environmental factors is well documented. Multiple signalling pathways for abscisic acid (ABA)-induced stomatal closure have been proposed over the last decades. However, it seems that exposure of a leaf for a long time (several days) to some environmental conditions generates a sort of memory in the guard cells that results in the loss of suitable responses of the stomata to closing stimuli, such as desiccation and ABA. In this review paper we discuss changes in the normal pattern of signal transduction that could account for disruption of guard cell signalling after long-term exposure to some environmental conditions, with special emphasis on long-term low vapour pressure deficit (VPD). PMID:23956410

  6. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops.

    PubMed

    Couzigou, Jean-Malo; Magne, Kevin; Mondy, Samuel; Cosson, Viviane; Clements, Jonathan; Ratet, Pascal

    2016-01-01

    Plants are able to lose organs selectively through a process called abscission. This process relies on the differentiation of specialized territories at the junction between organs and the plant body that are called abscission zones (AZ). Several genes control the formation or functioning of these AZ. We have characterized BLADE-ON-PETIOLE (BOP) orthologues from several legume plants and studied their roles in the abscission process using a mutant approach. Here, we show that the Medicago truncatula NODULE ROOT (NOOT), the Pisum sativum COCHLEATA (COCH) and their orthologue in Lotus japonicus are strictly necessary for the abscission of not only petals, but also leaflets, leaves and fruits. We also showed that the expression pattern of the M. truncatula pNOOT::GUS fusion is associated with functional and vestigial AZs when expressed in Arabidopsis. In addition, we show that the stip mutant from Lupinus angustifolius, defective in stipule formation and leaf abscission, is mutated in a BOP orthologue. In conclusion, this study shows that this clade of proteins plays an important conserved role in promoting abscission of all aerial organs studied so far. PMID:26390061

  7. Proteomic analysis of B-aminobutyric acid priming and aba-induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a variety of annual crops and model plants, the xenobiotic compound, DL-beta-aminobutyric acid (BABA), has been shown to enhance disease resistance and increase salt, drought, and thermotolerance. BABA does not activate stress genes directly but rather sensitizes plants to respond more quickly a...

  8. Lipoxygenase-derived 9-hydro(pero)xides of linoleoylethanolamide interact with ABA signaling to arrest root development during Arabidopsis seedling establishment.

    PubMed

    Keereetaweep, Jantana; Blancaflor, Elison B; Hornung, Ellen; Feussner, Ivo; Chapman, Kent D

    2015-04-01

    Ethanolamide-conjugated fatty acid derivatives, also known as N-acylethanolamines (NAEs), occur at low levels (μg per g) in desiccated seeds, and endogenous amounts decline rapidly with seedling growth. Linoleoylethanolamide (NAE18:2) is the most abundant of these NAEs in seeds of almost all plants, including Arabidopsis thaliana. In Arabidopsis, NAE18:2 may be oxidized by lipoxygenase (LOX) or hydrolyzed by fatty acid amide hydrolase (FAAH) during normal seedling establishment, and this contributes to the normal progression of NAE depletion that is coincident with the depletion of abscisic acid (ABA). Here we provide biochemical, genetic and pharmacological evidence that a specific 9-LOX metabolite of NAE18:2 [9-hydro(pero)xy linoleoylethanolamide (9-NAE-H(P)OD)] has a potent negative influence on seedling root elongation, and acts synergistically with ABA to modulate the transition from embryo to seedling growth. Genetic analyses using mutants in ABA synthesis (aba1 and aba2), perception (pyr1, pyl1, pyl2, pyl4, pyl5 and pyl8) or transcriptional activation (abi3-1) indicated that arrest of root growth by 9-NAE-H(P)OD requires an intact ABA signaling pathway, and probably operates to increase ABA synthesis as part of a positive feedback loop to modulate seedling establishment in response to adverse environmental conditions. These results identify a specific, bioactive ethanolamide oxylipin metabolite of NAE18:2, different from those of ethanolamide-conjugated linolenic acid (NAE18:3), as well as a molecular explanation for its inhibitory action, emphasizing the oxidative metabolism of NAEs as an important feature of seedling development. PMID:25752187

  9. Abscisic Acid Transport in Human Erythrocytes*

    PubMed Central

    Vigliarolo, Tiziana; Guida, Lucrezia; Millo, Enrico; Fresia, Chiara; Turco, Emilia; De Flora, Antonio; Zocchi, Elena

    2015-01-01

    Abscisic acid (ABA) is a plant hormone involved in the response to environmental stress. Recently, ABA has been shown to be present and active also in mammals, where it stimulates the functional activity of innate immune cells, of mesenchymal and hemopoietic stem cells, and insulin-releasing pancreatic β-cells. LANCL2, the ABA receptor in mammalian cells, is a peripheral membrane protein that localizes at the intracellular side of the plasma membrane. Here we investigated the mechanism enabling ABA transport across the plasmamembrane of human red blood cells (RBC). Both influx and efflux of [3H]ABA occur across intact RBC, as detected by radiometric and chromatographic methods. ABA binds specifically to Band 3 (the RBC anion transporter), as determined by labeling of RBC membranes with biotinylated ABA. Proteoliposomes reconstituted with human purified Band 3 transport [3H]ABA and [35S]sulfate, and ABA transport is sensitive to the specific Band 3 inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid. Once inside RBC, ABA stimulates ATP release through the LANCL2-mediated activation of adenylate cyclase. As ATP released from RBC is known to exert a vasodilator response, these results suggest a role for plasma ABA in the regulation of vascular tone. PMID:25847240

  10. A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves[W][OPEN

    PubMed Central

    Yang, Jiading; Worley, Eric

    2014-01-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602

  11. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. PMID:26514625

  12. Compartmentation and equilibration of abscisic acid in isolated Xanthium cells

    SciTech Connect

    Bray, E.A.; Zeevaart, J.A.D.

    1986-01-01

    The compartmentation of endogenous abscisic acid (ABA), applied (+/-)-(/sup 3/H)ABA, and (+/-)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (+/-)-(/sup 3/H)ABA and the (+/-)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material. Therefore, in further investigations only the compartmentation of endogenous ABA was studied. Endogenous ABA was released from Xanthium cells according to the pH gradients among the various cellular compartments. Thus, darkness, high external pH, KNO/sub 2/, and drought-stress all increased the efflux of ABA from the cells. Efflux of ABA from the cells in the presence of 0.6 M mannitol occurred within 30 seconds, but only 8% of the endogenous material was released during the 20 minute treatment.

  13. Imidazolium-Containing ABA Triblock Copolymers as Electroactive Devices.

    PubMed

    Margaretta, Evan; Fahs, Gregory B; Inglefield, David L; Jangu, Chainika; Wang, Dong; Heflin, James R; Moore, Robert B; Long, Timothy E

    2016-01-20

    Two-step reversible addition-fragmentation chain transfer (RAFT) polymerization and two subsequent postpolymerization modification steps afforded well-defined ABA triblock copolymers featuring mechanically reinforcing polystyrene outer blocks and 1-methylimidazole-neutralized poly(acrylic acid)-based central blocks. Size exclusion chromatography and (1)H NMR spectroscopy confirmed predictable molecular weights and narrow distributions. The ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm][OTf]) was incorporated at 30 wt % into polymeric films. Thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis determined the thermomechanical properties of the polymers and polymer-IL composites. Atomic force microscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) determined surface and bulk morphologies, and poly(Sty-b-AA(MeIm)-b-Sty) exhibited a change from packed cylindrical to lamellar morphology in SAXS upon IL incorporation. Electrochemical impedance spectroscopy determined the in-plane ionic conductivities of the polymer-IL membranes (σ ∼ 10(-4) S/cm). A device fabricated from poly(Sty-b-AA(MeIm)-b-Sty) with 30 wt % incorporated IL demonstrated mechanical actuation under a low applied voltage of 4 V. PMID:26699795

  14. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    PubMed

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. PMID:26610288

  15. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species.

    PubMed

    Zhang, Xia; Wang, Lei; Meng, Hui; Wen, Hongtao; Fan, Yunliu; Zhao, Jun

    2011-03-01

    The phytohormone abscisic acid (ABA) and reactive oxygen species (ROS) play critical roles in mediating abiotic stress responses in plants. It is well known that ABA is involved in the modulation of ROS levels by regulating ROS-producing and ROS-scavenging genes, but the molecular mechanisms underlying this regulation are poorly understood. Here we show that the expression of maize ABP9 gene, which encodes a bZIP transcription factor capable of binding to the ABRE2 motif in the maize Cat1 promoter, is induced by ABA, H(2)O(2), drought and salt. Constitutive expression of ABP9 in transgenic Arabidopsis leads to remarkably enhanced tolerance to multiple stresses including drought, high salt, freezing temperature and oxidative stresses. ABP9 expressing Arabidopsis plants also exhibit increased sensitivity to exogenously applied ABA during seed germination, root growth and stomatal closure and improved water-conserving capacity. Moreover, constitutive expression of ABP9 causes reduced cellular levels of ROS, alleviated oxidative damage and reduced cell death, accompanied by elevated expression of many stress/ABA responsive genes including those for scavenging and regulating ROS. Taken together, these results suggest that ABP9 may play a pivotal role in plant tolerance to abiotic stresses by fine tuning ABA signaling and control of ROS accumulation. PMID:21327835

  16. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites.

    PubMed Central

    Balsevich, J. J.; Cutler, A. J.; Lamb, N.; Friesen, L. J.; Kurz, E. U.; Perras, M. R.; Abrams, S. R.

    1994-01-01

    The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies. PMID:12232311

  17. Stamen Abscission Zone Transcriptome Profiling Reveals New Candidates for Abscission Control: Enhanced Retention of Floral Organs in Transgenic Plants Overexpressing Arabidopsis ZINC FINGER PROTEIN21[C][W][OA

    PubMed Central

    Cai, Suqin; Lashbrook, Coralie C.

    2008-01-01

    Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ551) regulated at the highest statistical significance (P ≤ 0.0001) over five floral stages linking prepollination to stamen shed. AZ551 includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-β-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed. PMID:18192438

  18. Filamin A mediated Big2 dependent endocytosis: From apical abscission to periventricular heterotopia.

    PubMed

    Sheen, Volney L

    2014-01-01

    Periventricular heterotopia (PH) is one of the most common malformations of cortical development (MCD). Nodules along the lateral ventricles of the brain, disruption of the ventricular lining, and a reduced brain size are hallmarks of this disorder. PH results in a disruption of the neuroependyma, inhibition of neural proliferation and differentiation, and altered neuronal migration. Human mutations in the genes encoding the actin-binding Filamin A (FLNA) and the vesicle trafficking Brefeldin A-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in PH formation. Recent studies have shown that the transition from proliferating neural progenitors to post-mitotic neurons relies on apical abscission along the neuroepithelium. This mechanism involves an actin dependent contraction of the apical portion of a neural progenitor along the ventricular lining to complete abscission. Actin also maintains stability of various cell adhesion molecules along the neuroependyma. Loss of cadherin directs disassembly of the primary cilium, which transduces sonic-hedgehog (Shh) signaling. Shh signaling is required for continued proliferation. In this context, apical abscission regulates neuronal progenitor exit and migration from the ventricular zone by detachment from the neuroependyma, relies on adhesion molecules that maintain the integrity of the neuroepithelial lining, and directs neural proliferation. Each of these processes is disrupted in PH, suggesting that genes causal for this MCD, may fundamentally mediate apical abscission in cortical development. Here we discuss several recent reports that demonstrate a coordinated role for actin and vesicle trafficking in modulating neural development along the neurepithelium, and potentially the neural stem cell to neuronal transition. PMID:25097827

  19. Abscisic acid influx into human nucleated cells occurs through the anion exchanger AE2.

    PubMed

    Vigliarolo, Tiziana; Zocchi, Elena; Fresia, Chiara; Booz, Valeria; Guida, Lucrezia

    2016-06-01

    Abscisic acid (ABA) is a hormone conserved from cyanobacteria to higher plants, where it regulates responses to environmental stimuli. ABA also plays a role in mammalian physiology, pointedly in inflammatory responses and in glycemic control. As the animal ABA receptor is on the intracellular side of the plasma membrane, a transporter is required for the hormone's action. Here we demonstrate that ABA transport in human nucleated cells occurs via the anion exchanger AE2. Together with the recent demonstration that ABA influx into human erythrocytes occurs via Band 3, this result identifies the AE family members as the mammalian ABA transporters. PMID:27015766

  20. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.).

    PubMed

    Shen, Xinjie; Zhao, Kai; Liu, Linlin; Zhang, Kaichun; Yuan, Huazhao; Liao, Xiong; Wang, Qi; Guo, Xinwei; Li, Fang; Li, Tianhong

    2014-05-01

    The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin. PMID:24443499

  1. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum

    PubMed Central

    Dodd, Ian C.

    2012-01-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40–60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil. PMID:23136167

  2. Transcriptomic Signatures in Seeds of Apple (Malus domestica L. Borkh) during Fruitlet Abscission

    PubMed Central

    Ferrero, Sergio; Carretero-Paulet, Lorenzo; Mendes, Marta Adelina; Botton, Alessandro; Eccher, Giulia; Masiero, Simona; Colombo, Lucia

    2015-01-01

    Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process. PMID:25781174

  3. The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton

    PubMed Central

    Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  4. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton.

    PubMed

    Du, Mingwei; Li, Yi; Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  5. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission

    PubMed Central

    Santiago, Julia; Brandt, Benjamin; Wildhagen, Mari; Hohmann, Ulrich; Hothorn, Ludwig A; Butenko, Melinka A; Hothorn, Michael

    2016-01-01

    Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. DOI: http://dx.doi.org/10.7554/eLife.15075.001 PMID:27058169

  6. ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis[W

    PubMed Central

    Adie, Bruce A.T.; Pérez-Pérez, Julián; Pérez-Pérez, Manuel M.; Godoy, Marta; Sánchez-Serrano, José-J.; Schmelz, Eric A.; Solano, Roberto

    2007-01-01

    Analyses of Arabidopsis thaliana defense response to the damping-off oomycete pathogen Pythium irregulare show that resistance to P. irregulare requires a multicomponent defense strategy. Penetration represents a first layer, as indicated by the susceptibility of pen2 mutants, followed by recognition, likely mediated by ERECTA receptor-like kinases. Subsequent signaling of inducible defenses is predominantly mediated by jasmonic acid (JA), with insensitive coi1 mutants showing extreme susceptibility. In contrast with the generally accepted roles of ethylene and salicylic acid cooperating with or antagonizing, respectively, JA in the activation of defenses against necrotrophs, both are required to prevent disease progression, although much less so than JA. Meta-analysis of transcriptome profiles confirmed the predominant role of JA in activation of P. irregulare–induced defenses and uncovered abscisic acid (ABA) as an important regulator of defense gene expression. Analysis of cis-regulatory sequences also revealed an unexpected overrepresentation of ABA response elements in promoters of P. irregulare–responsive genes. Subsequent infections of ABA-related and callose-deficient mutants confirmed the importance of ABA in defense, acting partly through an undescribed mechanism. The results support a model for ABA affecting JA biosynthesis in the activation of defenses against this oomycete. PMID:17513501

  7. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. PMID:26594836

  8. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100

    PubMed Central

    Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E

    2015-01-01

    The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity. DOI: http://dx.doi.org/10.7554/eLife.07295.001 PMID:26076231

  9. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    PubMed

    Li, Dongdong; Li, Li; Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future. PMID:26053069

  10. Expression analysis in soybean of IDA-like, HAESA-like and other key regulatory proteins during leaf abscission and cyst nematode infected roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory and inhibitory role of ethylene and auxin, respectively, in leaf abscission is well documented. More recently, IDA peptides and their putative interacting receptor like kinase partner, HAESA, were shown to be essential components in Arabidopsis floral organ abscission. It was propo...

  11. Transcriptome profiling of petal abscission zone and functional analysis of AUX/IAA family genes reveal that RhIAA16 is involved in petal shedding in rose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rose is one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone d...

  12. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs).

    PubMed

    Hill, R. D.; Liu, J. H.; Durnin, D.; Lamb, N.; Shaw, A.; Abrams, S. R.

    1995-06-01

    Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. PMID:12228494

  13. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs).

    PubMed Central

    Hill, R. D.; Liu, J. H.; Durnin, D.; Lamb, N.; Shaw, A.; Abrams, S. R.

    1995-01-01

    Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. PMID:12228494

  14. Spatio-temporal changes in endogenous abscisic acid contents during etiolated growth and photomorphogenesis in tomato seedlings

    PubMed Central

    Humplík, Jan F; Turečková, Veronika; Fellner, Martin; Bergougnoux, Véronique

    2015-01-01

    The role of abscisic acid (ABA) during early development was investigated in tomato seedlings. The endogenous content of ABA in particular organs was analyzed in seedlings grown in the dark and under blue light. Our results showed that in dark-grown seedlings, the ABA accumulation was maximal in the cotyledons and elongation zone of hypocotyl, whereas under blue-light, the ABA content was distinctly reduced. Our data are consistent with the conclusion that ABA promotes the growth of etiolated seedlings and the results suggest that ABA plays an inhibitory role in de-etiolation and photomorphogenesis in tomato. PMID:26322576

  15. Abscisic acid signaling through cyclic ADP-ribose in plants

    SciTech Connect

    Wu, Yan; Kuzma, J.; Marechal, E.

    1997-12-19

    Abscisic acid (ABA) is the primary hormone that mediates plant responses to stresses such as cold, drought, and salinity. Single-cell microinjection experiments in tomato were used to identify possible intermediates involved in ABA signal transduction. Cyclic ADP-ribose (cADPR) was identified as a signaling molecule in the ABA response and was shown to exert its effects by way of calcium. Bioassay experiments showed that the amounts of cADPR in Arabidopsis thaliana plants increased in response to ABA treatment and before ABA-induced gene expression.

  16. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  17. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    PubMed Central

    Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  18. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress.

    PubMed

    Wang, Huahua; Yang, Lidan; Li, Yan; Hou, Junjie; Huang, Junjun; Liang, Weihong

    2016-10-01

    The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress. Drought caused a marked increase of the total and cytosolic G6PDH activities and triggered a rapid ABA and H2O2 accumulation in soybean roots. Exogenous ABA or H2O2 treatment elevated the total and cytosolic G6PDH activities, whereas suppressing ABA or H2O2 production inhibited the drought-induced increase in total and cytosolic G6PDH activities, suggesting that ABA and H2O2 are required for drought-induced increase of total G6PDH activity, namely cytosolic G6PDH activity. Furthermore, ABA induced H2O2 production by stimulating NADPH oxidase activity under drought stress. Moreover, drought significantly increased the contents of AsA and GSH and the activities of key enzymes in AsA-GSH cycle, while application of G6PDH inhibitor to seedlings significantly reduced the above effect induced by drought. Taken together, these results indicate that H2O2 acting as a downstream signaling molecule of ABA mediates drought-induced increase in cytosolic G6PDH activity, and that enhanced cytosolic G6PDH activity maintains cellular redox homeostasis by regulating AsA-GSH cycle in soybean roots. PMID:27285781

  19. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2016-07-01

    Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. PMID:26825039

  20. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin–Proteasome Pathway

    PubMed Central

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-01-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18. PMID:26443375

  1. The Top 10 Reasons Children With Autism Deserve ABA

    PubMed Central

    Walsh, Mary Beth

    2011-01-01

    We who advocate for applied behavior analysis (ABA) for children with autism spectrum disorders often construct our arguments based on the scientific evidence. However, the audience that most needs to hear this argument, that is, the parents of children, especially very young children, diagnosed with autism, may not be convinced by the science alone. This essay attempts to make the case for the multiple benefits of ABA intervention through the use of humor and anecdotes couched in a “Top Ten List,” and illustrating most points with stories of an engaging child with autism (my son, Ben). PMID:22532906

  2. ABC transporter AtABCG25 is involved in abscisic acid transport and responses

    PubMed Central

    Kuromori, Takashi; Miyaji, Takaaki; Yabuuchi, Hikaru; Shimizu, Hidetada; Sugimoto, Eriko; Kamiya, Asako; Moriyama, Yoshinori; Shinozaki, Kazuo

    2010-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in abiotic stress responses, seed maturation, germination, and senescence. ABA is predominantly produced in vascular tissues and exerts hormonal responses in various cells, including guard cells. Although ABA responses require extrusion of ABA from ABA-producing cells in an intercellular ABA signaling pathway, the transport mechanisms of ABA through the plasma membrane remain unknown. Here we isolated an ATP-binding cassette (ABC) transporter gene, AtABCG25, from Arabidopsis by genetically screening for ABA sensitivity. AtABCG25 was expressed mainly in vascular tissues. The fluorescent protein-fused AtABCG25 was localized at the plasma membrane in plant cells. In membrane vesicles derived from AtABCG25-expressing insect cells, AtABCG25 exhibited ATP-dependent ABA transport. The AtABCG25-overexpressing plants showed higher leaf temperatures, implying an influence on stomatal regulation. These results strongly suggest that AtABCG25 is an exporter of ABA and is involved in the intercellular ABA signaling pathway. The presence of the ABA transport mechanism sheds light on the active control of multicellular ABA responses to environmental stresses among plant cells. PMID:20133881

  3. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening

    PubMed Central

    Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient’s biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA’s role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future. PMID:26053069

  4. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

    PubMed Central

    Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.

    2012-01-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage. PMID:22315241

  5. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response. PMID:26869261

  6. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress.

    PubMed

    Suh, Ji Yeon; Kim, Soo Jin; Oh, Tae Rin; Cho, Seok Keun; Yang, Seong Wook; Kim, Woo Taek

    2016-01-01

    Plants have developed a variety of complicated responses to cope with drought, one of the most challenging environmental stresses. As a quick response, plants rapidly inhibit stomatal opening under the control of abscisic acid (ABA) signaling pathway, in order to preserve water. Here, we report that Arabidopsis Tóxicos en Levadura (ATL), a RING-type E3 ubiquitin ligase, mediates the ABA-dependent stomatal closure. In contrast to wild-type plants, the stomatal closure was fully impaired in atatl78 mutant plants even in the presence of exogenous ABA and reactive oxygen species (ROS). Besides, under high concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of AtATL78 in the modulation of ROS activity. Based on these results, we suggest that AtATL78 possibly plays a role in promoting ROS-mediated ABA signaling pathway during drought stress. PMID:26612255

  7. GhMPK17, a Cotton Mitogen-Activated Protein Kinase, Is Involved in Plant Response to High Salinity and Osmotic Stresses and ABA Signaling

    PubMed Central

    Li, Yang; Sun, Xiang; Wang, Na-Na; Gong, Si-Ying; Zheng, Yong; Li, Xue-Bao

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. Cotton (Gossypium hirsutum) is the most important textile crop in the world, and often encounters abiotic stress during its growth seasons. In this study, a gene encoding a mitogen-activated protein kinase (MAPK) was isolated from cotton, and designated as GhMPK17. The open reading frame (ORF) of GhMPK17 gene is 1494 bp in length and encodes a protein with 497 amino acids. Quantitative RT-PCR analysis indicated that GhMPK17 expression was up-regulated in cotton under NaCl, mannitol and ABA treatments. The transgenic Arabidopsis plants expressing GhMPK17 gene showed higher seed germination, root elongation and cotyledon greening/expansion rates than those of the wild type on MS medium containing NaCl, mannitol and exogenous ABA, suggesting that overexpression of GhMPK17 in Arabidopsis increased plant ABA-insensitivity, and enhanced plant tolerance to salt and osmotic stresses. Furthermore, overexpression of GhMPK17 in Arabidopsis reduced H2O2 level and altered expression of ABA- and abiotic stress-related genes in the transgenic plants. Collectively, these data suggested that GhMPK17 gene may be involved in plant response to high salinity and osmotic stresses and ABA signaling. PMID:24743296

  8. Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency and gene expression during seed development and in response to environmental stresses. Arabi...

  9. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge about the hormonal control of seed dormancy and dormancy loss is essential in wheat, because low seed dormancy at maturity is associated with the problem of preharvest sprouting (PHS) when rain occurs before harvest. Low GA (gibberellin) hormone sensitivity and high ABA (abscisic acid) sen...

  10. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    PubMed

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  11. Abscisic acid transporters cooperate to control seed germination

    PubMed Central

    Kang, Joohyun; Yim, Sojeong; Choi, Hyunju; Kim, Areum; Lee, Keun Pyo; Lopez-Molina, Luis; Martinoia, Enrico; Lee, Youngsook

    2015-01-01

    Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues. PMID:26334616

  12. Coping as a Predictor of Burnout and General Health in Therapists Working in ABA Schools

    ERIC Educational Resources Information Center

    Griffith, G. M.; Barbakou, A.; Hastings, R. P.

    2014-01-01

    Background: Little is known about the work-related well-being of applied behaviour analysis (ABA) therapists who work in school-based contexts and deliver ABA interventions to children with autism. Methods: A questionnaire on work-related stress (burnout), general distress, perceived supervisor support and coping was completed by 45 ABA therapists…

  13. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    ERIC Educational Resources Information Center

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  14. ABA and Diverse Cultural and Linguistic Environments: A Welsh Perspective

    ERIC Educational Resources Information Center

    Jones, E. W.; Hoerger, M.; Hughes, J. C.; Williams, B. M.; Jones, B.; Moseley, Y.; Hughes, D. R.; Prys, D.

    2011-01-01

    Gwynedd Local Education Authority (LEA) in North West Wales, UK, is funding a small-scale autism-specific specialist education service using ABA methodology. The program is available through the medium of Welsh, English or bilingually, depending on the individual needs of the child (Jones and Hoerger in Eur J Behav Anal 10:249-253, "2009").…

  15. Personality Traits Associated with Occupational "Burnout" in ABA Therapists

    ERIC Educational Resources Information Center

    Hurt, Amy A.; Grist, Cathy Lann; Malesky, Lann A., Jr.; McCord, David M.

    2013-01-01

    Background: Applied behaviour analysis (ABA) therapists typically work one-to-one with children with autism for extended periods of time, which often leads to high levels of job-related stress, lower levels of job satisfaction, increased frequency of occupational "burnout" and higher than average job turnover (Journal of Autism…

  16. Dissociations among ABA, ABC, and AAB Recovery Effects

    ERIC Educational Resources Information Center

    Ungor, Metin; Lachnit, Harald

    2008-01-01

    In a human predictive learning experiment, the strengths of ABA, ABC, and AAB recovery effects after discrimination reversal learning were compared. Initially, a discrimination between two stimuli (X+, Y-) was trained in Context A. During Phase 2, participants received discrimination reversal training (X-, Y+) either in Context A (Group AAB) or in…

  17. ABA, AAB and ABC Renewal in Taste Aversion Learning

    ERIC Educational Resources Information Center

    Bernal-Gamboa, Rodolfo; Juarez, Yectivani; Gonzalez-Martin, Gabriela; Carranza, Rodrigo; Sanchez-Carrasco, Livia; Nieto, Javier

    2012-01-01

    Context renewal is identified when the conditioned response (CR) elicited by an extinguished conditioned stimulus (CS) reappears as a result of changing the contextual cues during the test. Two experiments were designed for testing contextual renewal in a conditioned taste aversion preparation. Experiment 1 assessed ABA and AAB context renewal,…

  18. Type B Heterotrimeric G Protein γ-Subunit Regulates Auxin and ABA Signaling in Tomato.

    PubMed

    Subramaniam, Gayathery; Trusov, Yuri; Lopez-Encina, Carlos; Hayashi, Satomi; Batley, Jacqueline; Botella, José Ramón

    2016-02-01

    Heterotrimeric G proteins composed of α, β, and γ subunits are central signal transducers mediating the cellular response to multiple stimuli in most eukaryotes. Gγ subunits provide proper cellular localization and functional specificity to the heterotrimer complex. Plant Gγ subunits, divided into three structurally distinct types, are more diverse than their animal counterparts. Type B Gγ subunits, lacking a carboxyl-terminal isoprenylation motif, are found only in flowering plants. We present the functional characterization of type B Gγ subunit (SlGGB1) in tomato (Solanum lycopersicum). We show that SlGGB1 is the most abundant Gγ subunit in tomato and strongly interacts with the Gβ subunit. Importantly, the green fluorescent protein-SlGGB1 fusion protein as well as the carboxyl-terminal yellow fluorescent protein-SlGGB1/amino-terminal yellow fluorescent protein-Gβ heterodimer were localized in the plasma membrane, nucleus, and cytoplasm. RNA interference-mediated silencing of SlGGB1 resulted in smaller seeds, higher number of lateral roots, and pointy fruits. The silenced lines were hypersensitive to exogenous auxin, while levels of endogenous auxins were lower or similar to those of the wild type. SlGGB1-silenced plants also showed strong hyposensitivity to abscisic acid (ABA) during seed germination but not in other related assays. Transcriptome analysis of the transgenic seeds revealed abnormal expression of genes involved in ABA sensing, signaling, and response. We conclude that the type B Gγ subunit SlGGB1 mediates auxin and ABA signaling in tomato. PMID:26668332

  19. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis

    PubMed Central

    Wang, Gao-Qi; Wei, Peng-Cheng; Tan, Feng; Yu, Man; Zhang, Xiao-Yan; Chen, Qi-Jun; Wang, Xue-Chen

    2016-01-01

    Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway. PMID:27379143

  20. Distribution of XTH, expansin, and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum)

    PubMed Central

    Tsuchiya, Mutsumi; Satoh, Shinobu; Iwai, Hiroaki

    2015-01-01

    After fruit development is triggered by pollination, the abscission zone (AZ) in the fruit pedicel strengthens its adhesion to keep the fruit attached. We previously reported that xyloglucan and arabinan accumulation in the AZ accompanies the shedding of unpollinated flowers. After the fruit has developed and is fully ripened, shedding occurs easily in the AZ due to lignin accumulation. Regulation of cell wall metabolism may play an important role in these processes, but it is not well understood. In the present report, we used immunohistochemistry to visualize changes in the distributions of xyloglucan and arabinan metabolism-related enzymes in the AZs of pollinated and unpollinated flowers, and in ripened fruits. During floral abscission, we observed a gradual increase in polyclonal antibody labeling of expansin in the AZ. The intensities of LM6 and LM15 labeling of arabinan and xyloglucan, respectively, also increased. However, during floral abscission, we observed a large 1 day post anthesis (DPA) peak in the polyclonal antibody labeling of XTH in the AZ, which then decreased. These results suggest that expansin and XTH play important, but different roles in the floral abscission process. During fruit abscission, unlike during floral abscission, no AZ-specific expansin and XTH were observed. Although lignification was seen in the AZ of over-ripe fruit pedicels, secondary cell wall-specific cellulose synthase signals were not observed. This suggests that cellulose metabolism-related enzymes do not play important roles in the AZ prior to fruit abscission. PMID:26029225

  1. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis.

    PubMed

    Wang, Gao-Qi; Wei, Peng-Cheng; Tan, Feng; Yu, Man; Zhang, Xiao-Yan; Chen, Qi-Jun; Wang, Xue-Chen

    2016-01-01

    Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway. PMID:27379143

  2. Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla.

    PubMed

    Cohen, Michael F; Gurung, Sushma; Fukuto, Jon M; Yamasaki, Hideo

    2014-03-01

    Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca(2+) dependency of rapid abscission may reflect the stabilization Ca(2+) confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides. PMID:24467903

  3. Controlled free radical attack in the apoplast: A hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Fukuto, Jon M.; Yamasaki, Hideo

    2014-01-01

    Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca2+ dependency of rapid abscission may reflect the stabilization Ca2+ confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides. PMID:24467903

  4. Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness.

    PubMed

    Xie, Yanjie; Mao, Yu; Duan, Xingliang; Zhou, Heng; Lai, Diwen; Zhang, Yihua; Shen, Wenbiao

    2016-03-01

    Heme oxygenase (HO; EC 1.14.99.3) has recently been proposed as a novel component in mediating wide ranges of the plant adaptive signaling processes. However, the physiological significance and molecular basis underlying Arabidopsis (Arabidopsis thaliana) HO1 (HY1) functioning in drought tolerance remained unclear. Here, we report that mutation of HY1 promoted, but overexpression of this gene impaired, Arabidopsis drought tolerance. This was attributed to the abscisic acid (ABA)-hypersensitive or -hyposensitive phenotypes, with the regulation of stomatal closure in particular. However, comparative transcriptomic profile analysis showed that the induction of numerous ABA/stress-dependent genes in dehydrated wild-type plants was differentially impaired in the hy1 mutant. In agreement, ABA-induced ABSCISIC ACID-INSENSITIVE4 (ABI4) transcript accumulation was strengthened in the hy1 mutant. Genetic analysis further identified that the hy1-associated ABA hypersensitivity and drought tolerance were arrested in the abi4 background. Moreover, the promotion of ABA-triggered up-regulation of RbohD abundance and reactive oxygen species (ROS) levels in the hy1 mutant was almost fully blocked by the mutation of ABI4, suggesting that the HY1-ABI4 signaling in the wild type involved in stomatal closure was dependent on the RbohD-derived ROS production. However, hy1-promoted stomatal closure was not affected by a nitric oxide scavenger. Correspondingly, ABA-insensitive behaviors in rbohD stomata were not affected by either the mutation of HY1 or its ectopic expression in the rbohD background, both of which responded significantly to exogenous ROS. These data indicate that HY1 functioned negatively and acted upstream of ABI4 in drought signaling, which was casually dependent on the RbohD-derived ROS in the regulation of stomatal closure. PMID:26704641

  5. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan)

    PubMed Central

    Yang, Ziqin; Zhong, Xiumei; Fan, Yan; Wang, Huicong; Li, Jianguo; Huang, Xuming

    2015-01-01

    Cutting off carbohydrate supply to longan (Dimocarpus longan Lour.) fruit by girdling and defoliation or by detachment induced 100% abscission within a few days. We used these treatments to study the involvement of reactive oxygen species (ROS) in fruit abscission. Girdling plus defoliation decreased sugar concentrations in the fruit and pedicel and depleted starch grains in the chloroplasts in the cells of abscission zone. Prior to the occurrence of intensive fruit abscission, there was a burst in ROS in the pedicel, which peaked at 1 day after treatment (DAT), when H2O2 in the abscission zone was found to be chiefly located along the plasma membrane (PM). H2O2 was found exclusively in the cell walls 2 DAT, almost disappeared 3 DAT, and reappeared in the mitochondria and cell walls 4 DAT. Signs of cell death such as cytoplasm breakdown were apparent from 3 DAT. The burst of ROS coincided with a sharp increase in the activity of PM-bound NADPH oxidase in the pedicel. At the same time, activities of antioxidant enzymes including superoxide dismutase (SOD), catalase, and peroxidase (POD) were all increased by the treatment and maintained higher than those in the control. Accompanying the reduction in H2O2 abundance, there was a sharp decrease in PM-bound NADPH oxidase activity after 1 DAT in the treated fruit. H2O2 scavenger dimethylthiourea (DMTU, 1 g L–1) significantly inhibited fruit abscission in detached fruit clusters and suppressed the increase in cellulase activity in the abscission zone. These results suggest that fruit abscission induced by carbohydrate stress is mediated by ROS. Roles of ROS in regulating fruit abscission were discussed in relation to its subcellular distribution. PMID:26074931

  6. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan).

    PubMed

    Yang, Ziqin; Zhong, Xiumei; Fan, Yan; Wang, Huicong; Li, Jianguo; Huang, Xuming

    2015-01-01

    Cutting off carbohydrate supply to longan (Dimocarpus longan Lour.) fruit by girdling and defoliation or by detachment induced 100% abscission within a few days. We used these treatments to study the involvement of reactive oxygen species (ROS) in fruit abscission. Girdling plus defoliation decreased sugar concentrations in the fruit and pedicel and depleted starch grains in the chloroplasts in the cells of abscission zone. Prior to the occurrence of intensive fruit abscission, there was a burst in ROS in the pedicel, which peaked at 1 day after treatment (DAT), when H2O2 in the abscission zone was found to be chiefly located along the plasma membrane (PM). H2O2 was found exclusively in the cell walls 2 DAT, almost disappeared 3 DAT, and reappeared in the mitochondria and cell walls 4 DAT. Signs of cell death such as cytoplasm breakdown were apparent from 3 DAT. The burst of ROS coincided with a sharp increase in the activity of PM-bound NADPH oxidase in the pedicel. At the same time, activities of antioxidant enzymes including superoxide dismutase (SOD), catalase, and peroxidase (POD) were all increased by the treatment and maintained higher than those in the control. Accompanying the reduction in H2O2 abundance, there was a sharp decrease in PM-bound NADPH oxidase activity after 1 DAT in the treated fruit. H2O2 scavenger dimethylthiourea (DMTU, 1 g L(-1)) significantly inhibited fruit abscission in detached fruit clusters and suppressed the increase in cellulase activity in the abscission zone. These results suggest that fruit abscission induced by carbohydrate stress is mediated by ROS. Roles of ROS in regulating fruit abscission were discussed in relation to its subcellular distribution. PMID:26074931

  7. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    PubMed

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the

  8. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  9. Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint

    PubMed Central

    Petsalaki, Eleni; Zachos, George

    2016-01-01

    When chromatin is trapped at the intercellular bridge, cells delay completion of cytokinesis (abscission) to prevent chromosome breakage. Here we show that inhibition of Cdc-like kinases (Clks) 1, 2 or 4 accelerates midbody resolution in normally segregating cells and correlates with premature abscission, chromatin breakage and generation of DNA damage in cytokinesis with trapped chromatin. Clk1, Clk2 and Clk4 localize to the midbody in an interdependent manner, associate with Aurora B kinase and are required for Aurora B–serine 331 (S331) phosphorylation and complete Aurora B activation in late cytokinesis. Phosphorylated Aurora B–S331 localizes to the midbody centre and is required for phosphorylation and optimal localization of the abscission protein Chmp4c. In addition, expression of phosphomimetic mutants Aurora B–S331E or Chmp4c-S210D delays midbody disassembly and prevents chromatin breakage in Clk-deficient cells. We propose that Clks 1, 2 and 4 impose the abscission checkpoint by phosphorylating Aurora B–S331 at the midbody. PMID:27126587

  10. Flavor of oranges as impacted by abscission zone formation for trees affected by huanglongbing disease and Lasiodiploida infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trees affected by Huanglongbing (HLB) exhibit excessive fruit drop, which is exacerbated by secondary infection of the abscission zone by the fungus Lasiodiplodia. ‘Hamlin’ orange trees, both healthy and affected by HLB, Candidatus Liberibacter asiaticus (CLas, determined by Polymerase chain reactio...

  11. The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses.

    PubMed

    Henderson, J; Davies, H A; Heyes, S J; Osborne, D J

    2001-01-01

    We have investigated distinguishing features in cells of the abscission zone of a monocotyledon fruit, the oil palm Elaeis guineensis. The cell walls of the abscission zone and the subtending mesocarp and pedicel have been analysed by light and transmission electron microscopy, by chemical methods and by solid state 13C CP/MAS NMR spectroscopy. Results show that these abscission zone cells have specific characteristics which include high levels of unmethylated pectin in the walls and an inducible (x35) polygalacturonase enzyme expression. Together these findings help to explain the localised precision of cell separation events. PMID:11219806

  12. The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO2 Signals via an ABA-Independent Pathway in Arabidopsis.

    PubMed

    Yamamoto, Yoshiko; Negi, Juntaro; Wang, Cun; Isogai, Yasuhiro; Schroeder, Julian I; Iba, Koh

    2016-02-01

    The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. PMID:26764376

  13. Two abscission zones proximal to Lansium domesticum fruit: one more sensitive to exogenous ethylene than the other

    PubMed Central

    Taesakul, Prapinporn; Siriphanich, Jingtair; van Doorn, Wouter G.

    2015-01-01

    Longkong (Lansium domesticum) fruit grows in bunches and is also sold as bunches. Individual fruit can separate from the bunch both before and after commercial harvest. The fruit has two separation sites. The first is located between bracts on the stem and the fused sepals (separation zone 1: SZ1) and the second between the fused sepals and the fruit (separation zone 2: SZ2). True abscission occurred at both zones. We investigated whether the two zones were active at different stages of development and if they were differentially sensitive to ethylene. Abscission occurred in the SZ1 in very young fruit (fruit still at the ovary stage), during early fruit development (5 weeks after full bloom; WAFB), and in ripe and overripe fruit (15–17 WAFB). Abscission did not spontaneously occur in the SZ2, but by the time the fruit was fully ripe, 15 WAFB, and later, a slight mechanical force was sufficient to break this zone. In fruit bunches severed from the tree at 5, 8, and 13 WAFB, break strength (BS) in SZ1 decreased much more after exogenous ethylene treatment than that in SZ2. Ethylene induced abscission in the SZ1, but not in SZ2. At 5, 8, and 13 WAFB, treatment with 1-methylcyclopropane (1-MCP; an inhibitor of ethylene perception) had a small effect on BS in the SZ1 and no effect in the SZ2. It is concluded that abscission in the SZ1 was much more sensitive to ethylene than that in the SZ2. In intact plants SZ1 reacts to endogenous ethylene, e.g., as a result of stress, while SZ2 apparently allows animals to remove the ripe fruit from the tree with minimal force. PMID:25954290

  14. FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells.

    PubMed

    Sugiyama, Yusuke; Uraji, Misugi; Watanabe-Sugimoto, Megumi; Okuma, Eiji; Munemasa, Shintaro; Shimoishi, Yasuaki; Nakamura, Yoshimasa; Mori, Izumi C; Iwai, Sumio; Murata, Yoshiyuki

    2012-02-01

    An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba. PMID:22131163

  15. Intertissue Signal Transfer of Abscisic Acid from Vascular Cells to Guard Cells1[W

    PubMed Central

    Kuromori, Takashi; Sugimoto, Eriko; Shinozaki, Kazuo

    2014-01-01

    Abscisic acid (ABA) is a phytohormone that responds to environmental stresses, such as water deficiency. Recent studies have shown that ABA biosynthetic enzymes are expressed in the vascular area under both nonstressed and water-stressed growth conditions. However, specific cells in the vasculature involved in ABA biosynthesis have not been identified. Here, we detected the expression of two genes encoding ABA biosynthetic enzymes, ABSCISIC ACID DEFICIENT2 and ABSCISIC ALDEHYDE OXIDASE3, in phloem companion cells in vascular tissues. Furthermore, we identified an ATP-binding cassette transporter, Arabidopsis thaliana ABCG25 (AtABCG25), expressed in the same cells. Additionally, AtABCG25-expressing Spodoptera frugiperda9 culture cells showed an ABA efflux function. Finally, we observed that enhancement of ABA biosynthesis in phloem companion cells induced guard cell responses, even under normal growth conditions. These results show that ABA is synthesized in specific cells and can be transported to target cells in different tissues. PMID:24521878

  16. Diversity and Evolution of AbaR Genomic Resistance Islands in Acinetobacter baumannii Strains of European Clone I▿†

    PubMed Central

    Krizova, Lenka; Dijkshoorn, Lenie; Nemec, Alexandr

    2011-01-01

    To assess the diversity of AbaR genomic resistance islands in Acinetobacter baumannii European clone I (MLST clonal complex 1), we investigated 26 multidrug-resistant strains of this major clone isolated from hospitals in 21 cities of 10 European countries between 1984 and 2005. Each strain harbored an AbaR structure integrated at the same position in the chromosomal ATPase gene. AbaR3, including four subtypes based on variations in class 1 integron cassettes, and AbaR10 were found in 15 and 2 strains, respectively, whereas a new, unique AbaR variant was discovered in each of the other 9 strains. These new variants, designated AbaR11 to AbaR19 (19.8 kb to 57.5 kb), seem to be truncated derivatives of AbaR3, likely resulting from the deletions of its internal parts mediated by either IS26 elements (AbaR12 to AbaR19) or homologous recombination (AbaR11). AbaR3 was detected in all 10 strains isolated in 1984 to 1991, while AbaR11 to AbaR19 were carried only by strains isolated since 1997. Our results and those from previous publications suggest that AbaR3 is the original form of AbaR in European clone I, which may have provided strains of the lineage with a selective advantage facilitating their spread in European hospitals in the 1980s or before. PMID:21537009

  17. Ectopic Expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis Promotes Seed Dormancy and Stress Tolerance1[C][OA

    PubMed Central

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-01-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2∷β-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  18. 2-monoacylglycerol acyl migration: Affect of fatty acid desaturation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    2-Monoacylglycerols (2-MAG) are key synthetic intermediates used for the synthesis of ABA-type triacylglycerols where B is a highly unsaturated fatty acid at the glycerol sn-2 position and A are medium-chain saturated fatty acids at the glycerol sn-1,3 position. ABA-type structured lipids are an in...

  19. Seed Dormancy and Responses of Caryopses, Embryos, and Calli to Abscisic Acid in Wheat 1

    PubMed Central

    Morris, C. F.; Moffatt, J. M.; Sears, R. G.; Paulsen, G. M.

    1989-01-01

    Preharvest sprouting of wheat (Triticum aestivum L.) is associated with inadequate seed dormancy. Although abscisic acid (ABA) has often been suggested to play a central role in developing seed, its involvement in dormancy of mature seed lacks firm experimental evidence and endogenous ABA levels are not well correlated with germinability. We examined genotypic and temporal variation in wheat seed and embryo germination responses to ABA and determined whether differential sensitivity of embryos to ABA extended to growth of embryo-derived calli. Germination of Parker 76 caryopses, which have little dormancy at maturity, was only slightly inhibited by ABA, whereas germination of Clark's Cream, a highly dormant genotype, was greatly inhibited. Responsiveness of caryopses to ABA and dormancy of seeds decreased concurrently during afterripening. Germination of embryos excised from dormant and nondormant seeds was more responsive to ABA but otherwise was similar to that of caryopses, indicating that differential response to ABA occurs in the embryo. Growth of calli derived from immature embryos of two sprouting-susceptible wheat genotypes exceeded growth of calli from Clark's Cream, but no distinct differences in response to ABA among the genotypes were apparent. We concluded that the action of ABA is similar in developing and mature seeds, that genotypic and temporal variation in embryo responsiveness to endogenous ABA may be involved in dormancy, and that ABA probably acts in concert with other endogenous constituents. PMID:16666821

  20. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid

    PubMed Central

    Kang, Joohyun; Hwang, Jae-Ung; Kim, Yu-Young; Assmann, Sarah M.; Martinoia, Enrico; Lee, Youngsook

    2010-01-01

    Abscisic acid (ABA) is a ubiquitous phytohormone involved in many developmental processes and stress responses of plants. ABA moves within the plant, and intracellular receptors for ABA have been recently identified; however, no ABA transporter has been described to date. Here, we report the identification of the ATP-binding cassette (ABC) transporter Arabidopsis thaliana Pleiotropic drug resistance transporter PDR12 (AtPDR12)/ABCG40 as a plasma membrane ABA uptake transporter. Uptake of ABA into yeast and BY2 cells expressing AtABCG40 was increased, whereas ABA uptake into protoplasts of atabcg40 plants was decreased compared with control cells. In response to exogenous ABA, the up-regulation of ABA responsive genes was strongly delayed in atabcg40 plants, indicating that ABCG40 is necessary for timely responses to ABA. Stomata of loss-of-function atabcg40 mutants closed more slowly in response to ABA, resulting in reduced drought tolerance. Our results integrate ABA-dependent signaling and transport processes and open another avenue for the engineering of drought-tolerant plants. PMID:20133880

  1. Total soil water content accounts for augmented ABA leaf concentration and stomatal regulation of split-rooted apple trees during heterogeneous soil drying.

    PubMed

    Einhorn, Todd C; Caspari, Horst W; Green, Steve

    2012-09-01

    A split-rooted containerized system was developed by approach grafting two, 1-year-old apple (Malus×domestica Borkh. cv 'Gala') trees to investigate the effect of soil moisture heterogeneity and total soil moisture content (θ(v)) on tree water relations, gas exchange, and leaf abscisic acid (ABA) concentration [ABA(leaf)]. Four irrigation treatments comprising a 2×2 factorial experiment of irrigation volume and placement were imposed over a 30-day period: control (C) [>100% of crop evapotranspiration (ET(c))] applied to both containers; PRD100 (>100% ET(c)) applied to one container only; and two treatments receiving 50% ET(c) applied to either one (PRD50) or both containers (DI50). Irrigation between PRD (partial rootzone drying) root compartments was alternated when θ(v) reached ~35% of field capacity. Maximum daily sap flow of the irrigated roots of PRD100 exceeded that of C roots throughout the experimental period. Pre-dawn water potential (Ψ(pd)) was similar between C and PRD100; however, daily water use and mid-day gas exchange of PRD100 was 30% lower. Slightly higher [ABA(leaf)] was observed in PRD100, but the effect was not significant and could not explain the observed reductions in leaf gas exchange. Both 50% ET(c) treatments had similar, but lower θ(v), Ψ(pd), and gas exchange, and higher [ABA(leaf)] than C and PRD100. Regardless of treatment, the container having the lower θ(v) of a split-rooted system correlated poorly with [ABA(leaf)], but when θ(v) of both containers or θ(v) of the container possessing the higher soil moisture was used, the relationship markedly improved. These results imply that apple canopy gas exchange and [ABA(leaf)] are responsive to the total soil water environment. PMID:22791825

  2. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling.

    PubMed

    Luo, Ping; Shen, Yuxiao; Jin, Shuangxia; Huang, Shasha; Cheng, Xu; Wang, Zhen; Li, Penghui; Zhao, Jian; Bao, Manzhu; Ning, Guogui

    2016-04-01

    Anthocyanidin reductase (ANR) is a key enzyme involved in the biosynthesis of proanthocyanidins (PAs) and plays a role in the plant stress response. However, the mechanism by which ANR confers stress tolerance in plants is not understood. Here, we report the isolation of RrANR, the homologous gene from rose, and NtABF, an ABA-response related transcription factor gene from tobacco. These genes were characterized regarding their functions in stress responses through the use of transgenic, transcriptomic and physiological analyses. Over-expression of RrANR in tobacco resulted in an increased accumulation of both PAs and abscisic acid (ABA), and also enhanced stress tolerance. Transcriptomic analysis of these transgenic tobacco lines indicated that RrANR overexpression induced global transcriptomic changes, including these involved in oxidation/reduction, hormone response and secondary metabolism. Genes related to ABA biosynthesis and reactive oxygen species (ROS)-scavenging were up-regulated in RrANR transgenic lines, and these effects were phenocopied by the direct treatment of tobacco plants with PAs and ABA. Transcriptomic data from each of these treatments identified the upregulation of a putative NtABF. Furthermore, the up-regulation of NtABF in RrANR transformants or in PAs- and ABA-treated tobacco plants was associated with enhanced stress tolerance. Overexpression of NtABF in transgenic tobacco mimicked the effects of RrANR-transgenic plants with regard to the up-regulation of ROS-scavenging genes and an increase in oxidative tolerance. Taken together, our findings indicate that overexpression of RrANR results in an increase in plant tolerance to oxidative stress via increased scavenging of ROS and modulation of the ABA signaling pathway. PMID:26940490

  3. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway.

    PubMed

    Gong, Xue; Liu, Mingli; Zhang, Lijun; Ruan, Yanye; Ding, Rui; Ji, Yuqi; Zhang, Ning; Zhang, Shaobin; Farmer, John; Wang, Che

    2015-01-01

    Sucrose transporters (SUCs or SUTs) play a central role, as they orchestrate sucrose allocation both intracellularly and at the whole plant level. Previously, we found AtSUC4 mutants changing sucrose distribution under drought and salt stresses. Here, we systematically examined the role of Arabidopsis AtSUC2 and AtSUC4 in response to abiotic stress. The results showed significant induction of AtSUC2 and AtSUC4 in salt, osmotic, low temperature and exogenous abscisic acid (ABA) treatments by public microarray data and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses. The loss-of-function mutation of AtSUC2 and AtSUC4 led to hypersensitive responses to abiotic stress and ABA treatment in seed germination and seedling growth. These mutants also showed higher sucrose content in shoots and lower sucrose content in roots, as compared with that in wild-type plants, and inhibited the ABA-induced expression of many stress- and ABA-responsive genes, especially ABFs and ABF-downstream and upstream genes. The loss-of-function mutant of AtSUC3, a unique putative sucrose sensor, reduced the expression of AtSUC2 and AtSUC4 in response to abiotic stresses and ABA. These findings confirmed that AtSUC2 and AtSUC4 are important regulators in plant abiotic stress tolerance that use an ABA signaling pathway, which may be crossed with sucrose signaling. PMID:24814155

  4. Abscisic Acid Uridine Diphosphate Glucosyltransferases Play a Crucial Role in Abscisic Acid Homeostasis in Arabidopsis1[C][W

    PubMed Central

    Dong, Ting; Xu, Zheng-Yi; Park, Youngmin; Kim, Dae Heon; Lee, Yongjik; Hwang, Inhwan

    2014-01-01

    The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B8, play crucial roles in ABA homeostasis and in adaptation to dehydration, osmotic stress, and high-salinity stresses in Arabidopsis (Arabidopsis thaliana). UGT RNA interference plants that had low levels of these three UGT transcripts displayed hypersensitivity to exogenous ABA and high-salt conditions during germination and exhibited a defect in plant growth. However, the ectopic expression of UGT71B6 in the atbg1 (for β-glucosidase) mutant background aggravated the ABA-deficient phenotype of atbg1 mutant plants. In addition, modulation of the expression of the three UGTs affects the expression of CYP707A1 to CYP707A4, which encode ABA 8′-hydroxylases; four CYP707As were expressed at higher levels in the UGT RNA interference plants but at lower levels in the UGT71B6:GFP-overexpressing plants. Based on these data, this study proposes that UGT71B6 and its two homologs play a critical role in ABA homeostasis by converting active ABA to an inactive form (abscisic acid-glucose ester) depending on intrinsic cellular and environmental conditions in plants. PMID:24676855

  5. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    SciTech Connect

    Bruzzone, Santina; Battaglia, Florinda; Mannino, Elena; Parodi, Alessia; Fruscione, Floriana; Basile, Giovanna; Salis, Annalisa; Sturla, Laura; Negrini, Simone; Kalli, Francesca; Stringara, Silvia; Filaci, Gilberto; and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  6. ABA-Cloud: support for collaborative breath research.

    PubMed

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research. PMID:23619467

  7. Rheology and Relaxation Timescales of ABA Triblock Polymer Gels

    NASA Astrophysics Data System (ADS)

    Peters, Andrew; Lodge, Timothy

    When dissolved in a midblock selective solvent, ABA polymers form gels composed of aggregated end block micelles bridged by the midblocks. While much effort has been devoted to the study of the structure of these systems, the dynamics of these systems has received less attention. We examine the underlying mechanism of shear relaxation of ABA triblock polymer gels, especially as a function of chain length, composition, and concentration. Recent work using time-resolved small-angle neutron scattering of polystyrene (PS)-block-poly(ethylene-alt-propylene) (PEP) in squalane has elucidated many aspects of the dynamics of diblock chain exchange. By using rheology to study bulk relaxation phenomena of the triblock equivalent, PS-PEP-PS, we apply the knowledge gained from the chain exchange studies to bridge the gap between the molecular and macroscopic relaxation phenomena in PS-PEP-PS triblock gels.

  8. ABA-Cloud: support for collaborative breath research

    PubMed Central

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2016-01-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research. PMID:23619467

  9. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2014-09-01

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied. PMID:25462085

  10. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes.

    PubMed

    Zong, Wei; Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang; Xiong, Lizhong

    2016-08-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  11. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer.

    PubMed

    Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L

    2015-01-01

    Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15-25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer

  12. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer

    PubMed Central

    Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L.

    2015-01-01

    Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15–25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer

  13. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Huang, Xuming; Li, Jiang; Wang, Huicong; Li, Jianguo

    2015-01-01

    Massive young fruit abscission usually causes low and unstable yield in litchi (Litchi chinensis Sonn.), an important fruit crop cultivated in tropical and subtropical areas. However, the molecular mechanism of fruit drop has not been fully characterized. This study aimed at identification of molecular components involved in fruitlet abscission in litchi, for which reference genome is not available at present. An improved de novo transcriptome assembly was firstly achieved by using an optimized assembly software, Trinity. Using improved transcriptome assembly as reference, digital transcript abundance (DTA) profiling was performed to screen and identify candidate genes involved in fruit abscission induced by girdling plus defoliation (GPD), a treatment significantly decreased the soluble sugar contents causing carbohydrate stress to fruit. Our results showed that the increasing fruit abscission rate after GPD treatment was associated with higher ethylene production and lower glucose levels in fruit. A total of 2,771 differentially expressed genes were identified as GPD-responsive genes, 857 of which were defined by GO and KEGG enrichment analyses as the candidate genes involved in fruit abscission process. These genes were involved in diverse metabolic processes and pathways, including carbohydrate metabolism, plant hormone synthesis, and signaling, transcription factor activity and cell wall modification that were rapidly induced in the early stages (within 2 days after treatment). qRT-PCR was used to explore the expression pattern of 15 selected candidate genes in the abscission zone, pericarp, and seed, which confirmed the accuracy of our DTA data. More detailed information for different functional categories was also analyzed. This study profiled the gene expression related to fruit abscission induced by carbohydrate stress at whole transcriptome level and thus provided a better understanding of the regulatory mechanism of young fruit abscission in litchi. PMID

  14. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata.

    PubMed

    Cohen, Michael F; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368

  15. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368

  16. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    DOE PAGESBeta

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated inmore » medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less

  17. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    SciTech Connect

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  18. Liming can decrease legume crop yield and leaf gas exchange by enhancing root to shoot ABA signalling.

    PubMed

    Rothwell, Shane A; Elphinstone, E David; Dodd, Ian C

    2015-04-01

    To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6-6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3-6.7, reduced stomatal conductance (g(s)) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16-24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g(s): both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g(s) of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations. PMID:25740925

  19. Liming can decrease legume crop yield and leaf gas exchange by enhancing root to shoot ABA signalling

    PubMed Central

    Rothwell, Shane A.; Elphinstone, E. David; Dodd, Ian C.

    2015-01-01

    To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6–6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3–6.7, reduced stomatal conductance (g s) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16–24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g s: both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g s of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations. PMID:25740925

  20. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    SciTech Connect

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  1. Synthesis, Crystal Structure and Biological Activity of 2-Hydroxyethylammonium Salt of p-Aminobenzoic Acid

    PubMed Central

    Crisan, Manuela E.; Bourosh, Paulina; Maffei, Massimo E.; Forni, Alessandra; Pieraccini, Stefano; Sironi, Maurizio; Chumakov, Yurii M.

    2014-01-01

    p-Aminobenzoic acid (pABA) plays important roles in a wide variety of metabolic processes. Herein we report the synthesis, theoretical calculations, crystallographic investigation, and in vitro determination of the biological activity and phytotoxicity of the pABA salt, 2-hydroxyethylammonium p-aminobenzoate (HEA-pABA). The ability of neutral and anionic forms of pABA to interact with TIR1 pocket was investigated by calculation of molecular electrostatic potential maps on the accessible surface area, docking experiments, Molecular Dynamics and Quantum Mechanics/Molecular Mechanics calculations. The docking study of the folate precursor pABA, its anionic form and natural auxin (indole-3-acetic acid, IAA) with the auxin receptor TIR1 revealed a similar binding mode in the active site. The phytotoxic evaluation of HEA-pABA, pABA and 2-hydroxyethylamine (HEA) was performed on the model plant Arabidopsis thaliana ecotype Col 0 at five different concentrations. HEA-pABA and pABA acted as potential auxin-like regulators of root development in Arabidopsis thaliana (0.1 and 0.2 mM) and displayed an agravitropic root response at high concentration (2 mM). This study suggests that HEA-pABA and pABA might be considered as potential new regulators of plant growth. PMID:25054237

  2. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid.

    PubMed

    Crisan, Manuela E; Bourosh, Paulina; Maffei, Massimo E; Forni, Alessandra; Pieraccini, Stefano; Sironi, Maurizio; Chumakov, Yurii M

    2014-01-01

    p-Aminobenzoic acid (pABA) plays important roles in a wide variety of metabolic processes. Herein we report the synthesis, theoretical calculations, crystallographic investigation, and in vitro determination of the biological activity and phytotoxicity of the pABA salt, 2-hydroxyethylammonium p-aminobenzoate (HEA-pABA). The ability of neutral and anionic forms of pABA to interact with TIR1 pocket was investigated by calculation of molecular electrostatic potential maps on the accessible surface area, docking experiments, Molecular Dynamics and Quantum Mechanics/Molecular Mechanics calculations. The docking study of the folate precursor pABA, its anionic form and natural auxin (indole-3-acetic acid, IAA) with the auxin receptor TIR1 revealed a similar binding mode in the active site. The phytotoxic evaluation of HEA-pABA, pABA and 2-hydroxyethylamine (HEA) was performed on the model plant Arabidopsis thaliana ecotype Col 0 at five different concentrations. HEA-pABA and pABA acted as potential auxin-like regulators of root development in Arabidopsis thaliana (0.1 and 0.2 mM) and displayed an agravitropic root response at high concentration (2 mM). This study suggests that HEA-pABA and pABA might be considered as potential new regulators of plant growth. PMID:25054237

  3. SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening

    PubMed Central

    Ji, Kai; Kai, Wenbin; Zhao, Bo; Sun, Yufei; Yuan, Bing; Dai, Shengjie; Li, Qian; Chen, Pei; Wang, Ya; Pei, Yuelin; Wang, Hongqing; Guo, Yangdong; Leng, Ping

    2014-01-01

    Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8′-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitative real-time PCR showed that VIGS-treated tomato fruits had significant reductions in target gene transcripts. In SlNCED1-RNAi-treated fruits, ripening slowed down, and the entire fruit turned to orange instead of red as in the control. In comparison, the downregulation of SlCYP707A2 expression in SlCYP707A2-silenced fruit could promote ripening; for example, colouring was quicker than in the control. Silencing SlNCED2/3 or SlCYP707A1/3 made no significant difference to fruit ripening comparing RNAi-treated fruits with control fruits. ABA accumulation and SlNCED1transcript levels in the SlNCED1-RNAi-treated fruit were downregulated to 21% and 19% of those in control fruit, respectively, but upregulated in SlCYP707A2-RNAi-treated fruit. Silencing SlNCED1 or SlCYP707A2 by VIGS significantly altered the transcripts of a set of both ABA-responsive and ripening-related genes, including ABA-signalling genes (PYL1, PP2C1, and SnRK2.2), lycopene-synthesis genes (SlBcyc, SlPSY1 and SlPDS), and cell wall-degrading genes (SlPG1, SlEXP, and SlXET) during ripening. These data indicate that SlNCED1 and SlCYP707A2 are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively. PMID:25039074

  4. ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis.

    PubMed

    Kim, Hani; Kim, Soon-Hee; Seo, Dong Hye; Chung, Sunglan; Kim, Sang-Woo; Lee, Jeong-Soo; Kim, Woo Taek; Lee, Jae-Hoon

    2016-02-01

    To elucidate the contribution of CRL3-ABA-mediated responses, we attempted to find CRL3 substrate receptors involved in ABA signaling. One gene named ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 (AHT1) was upregulated more than 2.5 times by ABA, and its coding region possessed a BTB/POZ domain, which is the common feature of CRL3 substrate receptors. Loss of AHT1 led to retardation of the germination process, not inhibition of root growth. AHT1 transcripts also increased in response to mannitol, NaCl and drought treatments at the seedling stage and in dry seeds. High expression of AHT1 in dry seeds was inhibited by the defect of ABA signaling components such as ABI1, ABI3 and SRKs indicating that the expression of AHT1 is dependent on ABA signaling. Among bZIP transcription factors participating in ABA signaling, the losses of ABI5/DPBF1, AREB1/ABF2, EEL/DPBF4 and DPBF2/bZIP67 resulted in reduced AHT1 expression, showing that these transcription factors play a positive role in ABA-induced AHT1 expression. While loss of AHT1 did not affect the expression pattern of NCED3, ABI2, SRKs and AREB/ABF genes, it led to hyperinduction of ABI5/DPBF genes such as ABI5/DPBF1, EEL/DPBF4 and AREB3/DPBF3, which are mainly involved in seed development and germination, as well as ABA-inducible genes transactivated by ABI5. Overall, these findings indicate that AHT1 negatively regulates ABA-mediated inhibition of germination, possibly by repressing the expression of a subset of ABI5/DPBF subfamily genes, and that AHT1 may be regulated by a negative feedback process through its linkage with a part of ABI5/DPBF proteins. PMID:26667153

  5. Abscisic Acid Stimulates a Calcium-Dependent Protein Kinase in Grape Berry1[W

    PubMed Central

    Yu, Xiang-Chun; Li, Mei-Jun; Gao, Gui-Feng; Feng, Hai-Zhong; Geng, Xue-Qing; Peng, Chang-Cao; Zhu, Sai-Yong; Wang, Xiao-Jing; Shen, Yuan-Yue; Zhang, Da-Peng

    2006-01-01

    It has been demonstrated that calcium plays a central role in mediating abscisic acid (ABA) signaling, but many of the Ca2+-binding sensory proteins as the components of the ABA-signaling pathway remain to be elucidated. Here we identified, characterized, and purified a 58-kD ABA-stimulated calcium-dependent protein kinase from the mesocarp of grape berries (Vitis vinifera × Vitis labrusca), designated ACPK1 (for ABA-stimulated calcium-dependent protein kinase1). ABA stimulates ACPK1 in a dose-dependent manner, and the ACPK1 expression and enzyme activities alter accordantly with the endogenous ABA concentrations during fruit development. The ABA-induced ACPK1 stimulation appears to be transient with a rapid effect in 15 min but also with a slow and steady state of induction after 60 min. ABA acts on ACPK1 indirectly and dependently on in vivo state of the tissues. Two inactive ABA isomers, (−)-2-cis, 4-trans-ABA and 2-trans, 4-trans-(±)-ABA, are ineffective for inducing ACPK1 stimulation, revealing that the ABA-induced effect is stereo specific to physiological active (+)-2-cis, 4-trans-ABA. The other phytohormones such as auxin indoleacetic acid, gibberellic acid, synthetic cytokinin N-benzyl-6-aminopurine, and brassinolide are also ineffective in this ACPK1 stimulation. Based on sequencing of the two-dimensional electrophoresis-purified ACPK1, we cloned the ACPK1 gene. The ACPK1 is expressed specifically in grape berry covering a fleshy portion and seeds, and in a developmental stage-dependent manner. We further showed that ACPK1 is localized in both plasma membranes and chloroplasts/plastids and positively regulates plasma membrane H+-ATPase in vitro, suggesting that ACPK1 may be involved in the ABA-signaling pathway. PMID:16407437

  6. Evolution of Abscisic Acid Synthesis and Signaling Mechanisms

    PubMed Central

    Hauser, Felix; Waadt, Rainer; Schroeder, Julian I.

    2011-01-01

    The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized. PMID:21549957

  7. Abscisic acid represses the transcription of chloroplast genes*

    PubMed Central

    Yamburenko, Maria V.; Zubo, Yan O.; Börner, Thomas

    2013-01-01

    Numerous studies have shown effects of abscisic acid (ABA) on nuclear genes encoding chloroplast-localized proteins. ABA effects on the transcription of chloroplast genes, however, have not been investigated yet thoroughly. This work, therefore, studied the effects of ABA (75 μM) on transcription and steady-state levels of transcripts in chloroplasts of basal and apical segments of primary leaves of barley (Hordeum vulgare L.). Basal segments consist of young cells with developing chloroplasts, while apical segments contain the oldest cells with mature chloroplasts. Exogenous ABA reduced the chlorophyll content and caused changes of the endogenous concentrations not only of ABA but also of cytokinins to different extents in the basal and apical segments. It repressed transcription by the chloroplast phage-type and bacteria-type RNA polymerases and lowered transcript levels of most investigated chloroplast genes drastically. ABA did not repress the transcription of psbD and a few other genes and even increased psbD mRNA levels under certain conditions. The ABA effects on chloroplast transcription were more pronounced in basal vs. apical leaf segments and enhanced by light. Simultaneous application of cytokinin (22 μM 6-benzyladenine) minimized the ABA effects on chloroplast gene expression. These data demonstrate that ABA affects the expression of chloroplast genes differentially and points to a role of ABA in the regulation and coordination of the activities of nuclear and chloroplast genes coding for proteins with functions in photosynthesis. PMID:24078671

  8. Structural basis and functions of abscisic acid receptors PYLs

    PubMed Central

    Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.

    2015-01-01

    Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428

  9. A Putative PP2C-Encoding Gene Negatively Regulates ABA Signaling in Populus euphratica

    PubMed Central

    Chen, Jinhuan; Zhang, Dongzhi; Zhang, Chong; Xia, Xinli; Yin, Weilun; Tian, Qianqian

    2015-01-01

    A PP2C homolog gene was cloned from the drought-treated cDNA library of Populus euphratica. Multiple sequence alignment analysis suggested that the gene is a potential ortholog of HAB1. The expression of this HAB1 ortholog (PeHAB1) was markedly induced by drought and moderately induced by ABA. To characterize its function in ABA signaling, we generated transgenic Arabidopsis thaliana plants overexpressing this gene. Transgenic lines exhibited reduced responses to exogenous ABA and reduced tolerance to drought compared to wide-type lines. Yeast two-hybrid analyses indicated that PeHAB1 could interact with the ABA receptor PYL4 in an ABA-independent manner. Taken together; these results indicated that PeHAB1 is a new negative regulator of ABA responses in poplar. PMID:26431530

  10. A Putative PP2C-Encoding Gene Negatively Regulates ABA Signaling in Populus euphratica.

    PubMed

    Chen, Jinhuan; Zhang, Dongzhi; Zhang, Chong; Xia, Xinli; Yin, Weilun; Tian, Qianqian

    2015-01-01

    A PP2C homolog gene was cloned from the drought-treated cDNA library of Populus euphratica. Multiple sequence alignment analysis suggested that the gene is a potential ortholog of HAB1. The expression of this HAB1 ortholog (PeHAB1) was markedly induced by drought and moderately induced by ABA. To characterize its function in ABA signaling, we generated transgenic Arabidopsis thaliana plants overexpressing this gene. Transgenic lines exhibited reduced responses to exogenous ABA and reduced tolerance to drought compared to wide-type lines. Yeast two-hybrid analyses indicated that PeHAB1 could interact with the ABA receptor PYL4 in an ABA-independent manner. Taken together; these results indicated that PeHAB1 is a new negative regulator of ABA responses in poplar. PMID:26431530

  11. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. PMID:25270993

  12. Induction of Lipid and Oleosin Biosynthesis by (+)-Abscisic Acid and Its Metabolites in Microspore-Derived Embryos of Brassica napus L.cv Reston (Biological Responses in the Presence of 8[prime]-Hydroxyabscisic Acid).

    PubMed Central

    Zou, J.; Abrams, G. D.; Barton, D. L.; Taylor, D. C.; Pomeroy, M. K.; Abrams, S. R.

    1995-01-01

    Microspore-derived (MD) embryos of Brassica napus L. cv Reston were used to test the effects of (+)-abscisic acid ([(+)-ABA]) and its metabolites, 8[prime]-hydroxyabscisic acid (8[prime]-OH ABA) and (-)-phaseic acid (PA), on the accumulation of very long-chain monounsaturated fatty acids (VLCMFAs) and induction of genes encoding a 19-kD oleosin protein and a [delta]15 desaturase during embryogenesis. Developing early to mid-cotyledonary MD embryos at 16 to 19 d in culture were treated with 10 [mu]M hormone/metabolite for 4 d. At various times during incubation, embryos and medium were analyzed to determine levels of hormone/metabolite, VLCMFAs, and oleosin or [delta]15 desaturase transcripts. The VLCMFAs, 20:1 and 22:1, primarily in triacylglycerols, increased by 200% after 72 h in the presence of (+)-ABA and 8[prime]-OH ABA relative to the control. In contrast, treatment with PA for 72 h had little effect (20% increase) on the level of VLCMFAs. The first 24 to 72 h of (+)-ABA treatment were critical in the induction of VLCMFA biosynthesis, with 8[prime]-OH ABA lagging slightly behind (+)-ABA in promoting this response. The accumulation of VLCMFAs was positively correlated with an increase in elongase activity. (+)-ABA and its 8[prime]-OH ABA metabolite induced the accumulation of a 19-kD oleosin transcript within 2 to 4 h in culture. In addition, both (+)-ABA and 8[prime]-OH ABA induced the same level of [delta]15 desaturase transcript by 8 h. PA had no effect on the induction of either oleosin or [delta]15 desaturase transcripts. To our knowledge, this is the first report of the biological activity of 8[prime]-OH ABA and of stimulatory effects of (+)-ABA and 8[prime]-OH ABA on lipid and oleosin biosynthesis. PMID:12228493

  13. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs.

    PubMed

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-12-01

    The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots. PMID:26542111

  14. Sequential cell wall transformations in response to the induction of a pedicel abscission event in Euphorbia pulcherrima (poinsettia).

    PubMed

    Lee, Yeonkyeong; Derbyshire, Paul; Knox, J Paul; Hvoslef-Eide, Anne Kathrine

    2008-06-01

    Alterations in the detection of cell wall polysaccharides during an induced abscission event in the pedicel of Euphorbia pulcherrima (poinsettia) have been determined using monoclonal antibodies and Fourier transform infrared (FT-IR) microspectroscopy. Concurrent with the appearance of a morphologically distinct abscission zone (AZ) on day 5 after induction, a reduction in the detection of the LM5 (1-->4)-beta-D-galactan and LM6 (1-->5)-alpha-L-arabinan epitopes in AZ cell walls was observed. Prior to AZ activation, a loss of the (1-->4)-beta-D-galactan and (1-->5)-alpha-L-arabinan epitopes was detected in cell walls distal to the AZ, i.e. in the to-be-shed organ. The earliest detected change, on day 2 after induction, was a specific loss of the LM5 (1-->4)-beta-D-galactan epitope from epidermal cells distal to the region where the AZ would form. Such alteration in the cell walls was an early, pre-AZ activation event. An AZ-associated de-esterification of homogalacturonan (HG) was detected in the AZ and distal area on day 7 after induction. The FT-IR analysis indicated that lignin and xylan were abundant in the AZ and that lower levels of cellulose, arabinose and pectin were present. Xylan and xyloglucan epitopes were detected in the cell walls of both the AZ and also the primary cell walls of the distal region at a late stage of the abscission process, on day 7 after induction. These observations indicate that the induction of an abscission event results in a temporal sequence of cell wall modifications involving the spatially regulated loss, appearance and/or remodelling of distinct sets of cell wall polymers. PMID:18298669

  15. Abscisic acid biosynthesis in isolated embryos of Zea mays L

    SciTech Connect

    Gage, D.A.; Fong, F.; Zeevaart, J.A.D. Texas A M Univ., College Station )

    1989-04-01

    Previous labeling experiments with {sup 18}O{sub 2} have supported the hypothesis that stress-induced abscisic acid (ABA) is synthesized through an indirect pathway involving an oxygenated carotenoid (xanthophyll) as a precursor. To investigate ABA formation under nonstress conditions, an {sup 18}O{sub 2} labeling experiment was conducted with isolated embryos from in vitro grown maize (Zea mays L.) kernels. Of the ABA produced during the incubation in {sup 18}O{sub 2}, three-fourths contained a single {sup 18}O atom located in the carboxyl group. Approximately one-fourth of the ABA synthesized during the experiment contained two {sup 18}O atoms. These results suggest that ABA synthesized in maize embryos under nonstress conditions also proceeds via the indirect pathway, requiring a xanthophyll precursor. It was also found that the newly synthesized ABA was preferentially released into the surrounding medium.

  16. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina.

    PubMed

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-12-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505

  17. Mechanisms of abscisic acid-mediated control of stomatal aperture.

    PubMed

    Munemasa, Shintaro; Hauser, Felix; Park, Jiyoung; Waadt, Rainer; Brandt, Benjamin; Schroeder, Julian I

    2015-12-01

    Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses. PMID:26599955

  18. Uprooting an abscisic acid paradigm: Shoots are the primary source.

    PubMed

    McAdam, Scott A M; Manzi, Matías; Ross, John J; Brodribb, Timothy J; Gómez-Cadenas, Aurelio

    2016-06-01

    In the past, a conventional wisdom has been that abscisic acid (ABA) is a xylem-transported hormone that is synthesized in the roots, while acting in the shoot to close stomata in response to a decrease in plant water status. Now, however, evidence from two studies, which we have conducted independently, challenges this root-sourced ABA paradigm. We show that foliage-derived ABA has a major influence over root development and that leaves are the predominant location for ABA biosynthesis during drought stress. PMID:27031537

  19. Abscisic Acid Determines Basal Susceptibility of Tomato to Botrytis cinerea and Suppresses Salicylic Acid-Dependent Signaling Mechanisms1

    PubMed Central

    Audenaert, Kris; De Meyer, Geert B.; Höfte, Monica M.

    2002-01-01

    Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea. PMID:11842153

  20. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor

    PubMed Central

    Kanno, Yuri; Hanada, Atsushi; Chiba, Yasutaka; Ichikawa, Takanari; Nakazawa, Miki; Matsui, Minami; Koshiba, Tomokazu; Kamiya, Yuji; Seo, Mitsunori

    2012-01-01

    Movement of the plant hormone abscisic acid (ABA) within plants has been documented; however, the molecular mechanisms that regulate ABA transport are not fully understood. By using a modified yeast two-hybrid system, we screened Arabidopsis cDNAs capable of inducing interactions between the ABA receptor PYR/PYL/RCAR and PP2C protein phosphatase under low ABA concentrations. By using this approach, we identified four members of the NRT1/PTR family as candidates for ABA importers. Transport assays in yeast and insect cells demonstrated that at least one of the candidates ABA-IMPORTING TRANSPORTER (AIT) 1, which had been characterized as the low-affinity nitrate transporter NRT1.2, mediates cellular ABA uptake. Compared with WT, the ait1/nrt1.2 mutants were less sensitive to exogenously applied ABA during seed germination and/or postgermination growth, whereas overexpression of AIT1/NRT1.2 resulted in ABA hypersensitivity in the same conditions. Interestingly, the inflorescence stems of ait1/nrt1.2 had a lower surface temperature than those of the WT because of excess water loss from open stomata. We detected promoter activities of AIT1/NRT1.2 around vascular tissues in inflorescence stems, leaves, and roots. These data suggest that the function of AIT1/NRT1.2 as an ABA importer at the site of ABA biosynthesis is important for the regulation of stomatal aperture in inflorescence stems. PMID:22645333

  1. Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata.

    PubMed

    Yin, Ye; Adachi, Yuji; Ye, Wenxiu; Hayashi, Maki; Nakamura, Yoshimasa; Kinoshita, Toshinori; Mori, Izumi C; Murata, Yoshiyuki

    2013-10-01

    Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant's stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K(+) current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H(+)-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K(+) current inactivation, and H(+)-ATPase phosphorylation were not sensitive to ABA. PMID:23946352

  2. Differential Behavior within a Grapevine Cluster: Decreased Ethylene-Related Gene Expression Dependent on Auxin Transport Is Correlated with Low Abscission of First Developed Berries

    PubMed Central

    Godoy, Francisca; Delrot, Serge; Arce-Johnson, Patricio

    2014-01-01

    In grapevine, fruit abscission is known to occur within the first two to three weeks after flowering, but the reason why some berries in a cluster persist and others abscise is not yet understood. Ethylene sensitivity modulates abscission in several fruit species, based on a mechanism where continuous polar auxin transport across the pedicel results in a decrease in ethylene perception, which prevents abscission. In grapevine, flowering takes about four to seven days in a single cluster, thus while some flowers are developing into berries, others are just starting to open. So, in this work it was assessed whether uneven flowering accounted for differences in berry abscission dependent on polar auxin transport and ethylene-related gene expression. For this, flowers that opened in a cluster were tagged daily, which allowed to separately analyze berries, regarding their ability to persist. It was found that berries derived from flowers that opened the day that flowering started – named as “first berries” – had lower abscission rate than berries derived from flowers that opened during the following days – named as “late berries”. Use of radiolabeled auxin showed that “first berries” had higher polar auxin transport, correlated with lower ethylene content and lower ethylene-related transcript abundance than “late berries”. When “first berries” were treated with a polar auxin transport inhibitor they showed higher ethylene-related transcript abundance and were more prone to abscise than control berries. This study provides new insights on fruit abscission control. Our results indicate that polar auxin transport sustains the ability of “first berries” to persist in the cluster during grapevine abscission and also suggest that this could be associated with changes in ethylene-related gene expression. PMID:25365421

  3. Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm)

    PubMed Central

    Pieruzzi, Fernanda P.; Dias, Leonardo L. C.; Balbuena, Tiago S.; Santa-Catarina, Claudete; dos Santos, André L. W.; Floh, Eny I. S.

    2011-01-01

    Background and Aims Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. Methods Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. Key Results During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. Conclusions The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators. PMID:21685432

  4. Crucial Roles of Abscisic Acid Biogenesis in Virulence of Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Spence, Carla A.; Lakshmanan, Venkatachalam; Donofrio, Nicole; Bais, Harsh P.

    2015-01-01

    Rice suffers dramatic yield losses due to blast pathogen Magnaporthe oryzae. Pseudomonas chlororaphis EA105, a bacterium that was isolated from the rice rhizosphere, inhibits M. oryzae. It was shown previously that pre-treatment of rice with EA105 reduced the size of blast lesions through jasmonic acid (JA)- and ethylene (ETH)-mediated ISR. Abscisic acid (ABA) acts antagonistically toward salicylic acid (SA), JA, and ETH signaling, to impede plant defense responses. EA105 may be reducing the virulence of M. oryzae by preventing the pathogen from up-regulating the key ABA biosynthetic gene NCED3 in rice roots, as well as a β-glucosidase likely involved in activating conjugated inactive forms of ABA. However, changes in total ABA concentrations were not apparent, provoking the question of whether ABA concentration is an indicator of ABA signaling and response. In the rice-M. oryzae interaction, ABA plays a dual role in disease severity by increasing plant susceptibility and accelerating pathogenesis in the fungus itself. ABA is biosynthesized by M. oryzae. Further, exogenous ABA increased spore germination and appressoria formation, distinct from other plant growth regulators. EA105, which inhibits appressoria formation, counteracted the virulence-promoting effects of ABA on M. oryzae. The role of endogenous fungal ABA in blast disease was confirmed through the inability of a knockout mutant impaired in ABA biosynthesis to form lesions on rice. Therefore, it appears that EA105 is invoking multiple strategies in its protection of rice from blast including direct mechanisms as well as those mediated through plant signaling. ABA is a molecule that is likely implicated in both tactics. PMID:26648962

  5. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling

    PubMed Central

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  6. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling.

    PubMed

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  7. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana.

    PubMed

    Li, Wenbin; Wang, Tao; Zhang, Yuhang; Li, Yongguang

    2016-01-01

    MiRNAs play crucial roles in many aspects of plant development and the response to the environment. The miR172 family has been shown to participate in the control of flowering time and the response to abiotic stress. This family regulates the expression of APETALA2 (AP2)-like transcription factors in Arabidopsis. In the present study, soybean (Glycine max L. Merr.) miR172c, a member of the miR172 family, and its target gene were investigated for abiotic stress responses in transgenic Arabidopsis. gma-miR172c was induced by abscisic acid (ABA) treatments and abiotic stresses, including salt and water deficit. 5'-RACE (5'-rapid amplification of cDNA ends) assays indicated that miR172c directed Glyma01g39520 mRNA cleavage in soybeans. Overexpression of gma-miR172c in Arabidopsis resulted in reduced leaf water loss and increased survival rate under stress conditions. Meanwhile, the root length, germination rate, and cotyledon greening of transgenic plants were improved during both high salt and water deficit conditions. In addition, transgenic plants exhibited hypersensitivity to ABA during both the seed germination and post-germination seedling growth stages. Stress-related physiological indicators and the expression of stress/ABA-responsive genes were affected by abiotic treatments. The overexpression of gma-miR172c in Arabidopsis promoted earlier flowering compared with the wild type through modulation of the expression of flowering genes, such as FT and LFY during long days, especially under drought conditions. Glyma01g39520 weakened ABA sensitivity and reduced the tolerance to drought stress in the snz mutant of Arabidopsis by reducing the expression of ABI3 and ABI5. Overall, the present results demonstrate that gma-miR172c confers water deficit and salt tolerance but increased ABA sensitivity by regulating Glyma01g39520, which also accelerates flowering under abiotic stresses. PMID:26466661

  8. The ABI4-Induced Arabidopsis ANAC060 Transcription Factor Attenuates ABA Signaling and Renders Seedlings Sugar Insensitive when Present in the Nucleus

    PubMed Central

    Shi, Xiaoliang; Yu, Bo; Zhou, Yan; Chen, Suli; Wang, Yufeng; Peng, Yu; Meyer, Rhonda C.; Smeekens, Sjef C.; Teng, Sheng

    2014-01-01

    Seedling establishment is inhibited on media containing high levels (∼6%) of glucose or fructose. Genetic loci that overcome the inhibition of seedling growth on high sugar have been identified using natural variation analysis and mutant selection, providing insight into sugar signaling pathways. In this study, a quantitative trait locus (QTL) analysis was performed for seedling sensitivity to high sugar in a Col/C24 F2 population of Arabidopsis thaliana. A glucose and fructose-sensing QTL, GSQ11, was mapped through selective genotyping and confirmed in near-isogenic lines in both Col and C24 backgrounds. Allelism tests and transgenic complementation showed that GSQ11 lies within the ANAC060 gene. The Col ANAC060 allele confers sugar insensitivity and was dominant over the sugar-sensitive C24 allele. Genomic and mRNA analyses showed that a single-nucleotide polymorphism (SNP) in Col ANAC060 affects the splicing patterns of ANAC060 such that 20 additional nucleotides are present in the mRNA. The insertion created a stop codon, resulting in a truncated ANAC60 protein lacking the transmembrane domain (TMD) that is present in the C24 ANAC060 protein. The absence of the TMD results in the nuclear localization of ANAC060. The short version of the ANAC060 protein is found in ∼12% of natural Arabidopsis accessions. Glucose induces GSQ11/ANAC060 expression in a process that requires abscisic acid (ABA) signaling. Chromatin immunoprecipitation-qPCR and transient expression analysis showed that ABI4 directly binds to the GSQ11/ANAC060 promoter to activate transcription. Interestingly, Col ANAC060 reduced ABA sensitivity and Glc-induced ABA accumulation, and ABI4 expression was also reduced in Col ANAC060 lines. Thus, the sugar-ABA signaling cascade induces ANAC060 expression, but the truncated Col ANAC060 protein attenuates ABA induction and ABA signaling. This negative feedback from nuclear ANAC060 on ABA signaling results in sugar insensitivity. PMID:24625790

  9. Abscisic acid and aldehyde oxidase activity in maize ear leaf and grain relative to post-flowering photosynthetic capacity and grain-filling rate under different water/nitrogen treatments.

    PubMed

    Qin, Shujun; Zhang, Zongzheng; Ning, Tangyuan; Ren, Shizhong; Su, Licheng; Li, Zengjia

    2013-09-01

    This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC 1.2.3.1) activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3). PMID:23770596

  10. Abscisic Acid Promotes Susceptibility to the Rice Leaf Blight Pathogen Xanthomonas oryzae pv oryzae by Suppressing Salicylic Acid-Mediated Defenses

    PubMed Central

    Xu, Jing; Audenaert, Kris

    2013-01-01

    The plant hormone abscisic acid (ABA) is involved in a wide variety of plant processes, including the initiation of stress-adaptive responses to various environmental cues. Recently, ABA also emerged as a central factor in the regulation and integration of plant immune responses, although little is known about the underlying mechanisms. Aiming to advance our understanding of ABA-modulated disease resistance, we have analyzed the impact, dynamics and interrelationship of ABA and the classic defense hormone salicylic acid (SA) during progression of rice infection by the leaf blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Consistent with ABA negatively regulating resistance to Xoo, we found that exogenously administered ABA renders rice hypersusceptible to infection, whereas chemical and genetic disruption of ABA biosynthesis and signaling, respectively, led to enhanced Xoo resistance. In addition, we found successful Xoo infection to be associated with extensive reprogramming of ABA biosynthesis and response genes, suggesting that ABA functions as a virulence factor for Xoo. Interestingly, several lines of evidence indicate that this immune-suppressive effect of ABA is due at least in part to suppression of SA-mediated defenses that normally serve to limit pathogen growth. Resistance induced by the ABA biosynthesis inhibitor fluridone, however, appears to operate in a SA-independent manner and is likely due to induction of non-specific physiological stress. Collectively, our findings favor a scenario whereby virulent Xoo hijacks the rice ABA machinery to cause disease and highlight the importance of ABA and its crosstalk with SA in shaping the outcome of rice-Xoo interactions. PMID:23826294

  11. An Abscisic Acid-Activated and Calcium-Independent Protein Kinase from Guard Cells of Fava Bean.

    PubMed

    Li, J.; Assmann, S. M.

    1996-12-01

    Abscisic acid (ABA) regulation of stomatal aperture is known to involve both Ca2+-dependent and Ca2+-independent signal transduction pathways. Electrophysiological studies suggest that protein phosphorylation is involved in ABA action in guard cells. Using biochemical approaches, we identified an ABA-activated and Ca2+- independent protein kinase (AAPK) from guard cell protoplasts of fava bean. Autophosphorylation of AAPK was rapidly (~1 min) activated by ABA in a Ca2+- independent manner. ABA-activated autophosphorylation of AAPK occurred on serine but not on tyrosine residues and appeared to be guard cell specific. AAPK phosphorylated histone type III-S on serine and threonine residues, and its activity toward histone type III-S was markedly stimulated in ABA-treated guard cell protoplasts. Our results suggest that AAPK may play an important role in the Ca2+-independent ABA signaling pathways of guard cells. PMID:12239380

  12. An Abscisic Acid-Activated and Calcium-Independent Protein Kinase from Guard Cells of Fava Bean.

    PubMed Central

    Li, J.; Assmann, S. M.

    1996-01-01

    Abscisic acid (ABA) regulation of stomatal aperture is known to involve both Ca2+-dependent and Ca2+-independent signal transduction pathways. Electrophysiological studies suggest that protein phosphorylation is involved in ABA action in guard cells. Using biochemical approaches, we identified an ABA-activated and Ca2+- independent protein kinase (AAPK) from guard cell protoplasts of fava bean. Autophosphorylation of AAPK was rapidly (~1 min) activated by ABA in a Ca2+- independent manner. ABA-activated autophosphorylation of AAPK occurred on serine but not on tyrosine residues and appeared to be guard cell specific. AAPK phosphorylated histone type III-S on serine and threonine residues, and its activity toward histone type III-S was markedly stimulated in ABA-treated guard cell protoplasts. Our results suggest that AAPK may play an important role in the Ca2+-independent ABA signaling pathways of guard cells. PMID:12239380

  13. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid

    PubMed Central

    Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin

    2012-01-01

    WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926

  14. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease

    PubMed Central

    de Torres-Zabala, Marta; Truman, William; Bennett, Mark H; Lafforgue, Guillaume; Mansfield, John W; Rodriguez Egea, Pedro; Bögre, Laszlo; Grant, Murray

    2007-01-01

    We have found that a major target for effectors secreted by Pseudomonas syringae is the abscisic acid (ABA) signalling pathway. Microarray data identified a prominent group of effector-induced genes that were associated with ABA biosynthesis and also responses to this plant hormone. Genes upregulated by effector delivery share a 42% overlap with ABA-responsive genes and are also components of networks induced by osmotic stress and drought. Strongly induced were NCED3, encoding a key enzyme of ABA biosynthesis, and the abscisic acid insensitive 1 (ABI1) clade of genes encoding protein phosphatases type 2C (PP2Cs) involved in the regulation of ABA signalling. Modification of PP2C expression resulting in ABA insensitivity or hypersensitivity led to restriction or enhanced multiplication of bacteria, respectively. Levels of ABA increased rapidly during bacterial colonisation. Exogenous ABA application enhanced susceptibility, whereas colonisation was reduced in an ABA biosynthetic mutant. Expression of the bacterial effector AvrPtoB in planta modified host ABA signalling. Our data suggest that a major virulence strategy is effector-mediated manipulation of plant hormone homeostasis, which leads to the suppression of defence responses. PMID:17304219

  15. ABA, ROS and NO are key players during switchgrass seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy and germination are complex physiological processes usually under hormonal control. Germination of seeds from many plants including switchgrass, are inhibited by ABA and promoted by NO and by ROS. However, ABA apparently requires both ROS and NO as intermediates in its action, with R...

  16. Aba Women's Rebellion [And] Hoda Sha'arawi: Nationalist and Feminist.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    Two modules comprise this document--one on the Aba women's rebellion in Nigeria and one on the Egyptian feminist movement. The paper on the Aba women's rebellion in Nigeria presents a background discussion of the women's movement and colonialism in Nigeria. The larger part of the paper is a lesson plan which investigates the women's rebellion…

  17. None of the As in ABA Stand for Autism: Dispelling the Myths

    ERIC Educational Resources Information Center

    Dillenburger, Karola; Keenan, Mickey

    2009-01-01

    Interventions that are based on scientific principles of applied behaviour analysis (ABA) are recognised as effective treatments for children with autism spectrum disorder (ASD) by many governments and professionals (Office of the Surgeon General, 2000; Ontario IBI Initiative, 2002). However, many still view ABA as one of many treatments for…

  18. From the Classroom to the Family Room: Using ABA for Best Behavior

    ERIC Educational Resources Information Center

    Smith, Dawn

    2010-01-01

    When it comes to supporting individuals with disabilities including Autism Spectrum Disorder (ASD), Applied Behavior Analysis (ABA) can be an invaluable tool in understanding and changing behavior. More than a technique or method, ABA is a disciplined approach rooted in science to teach specific skills and then reinforce them so individuals can…

  19. PP2C-like Promoter and Its Deletion Variants Are Induced by ABA but Not by MeJA and SA in Arabidopsis thaliana.

    PubMed

    Bhalothia, Purva; Sangwan, Chetna; Alok, Anshu; Mehrotra, Sandhya; Mehrotra, Rajesh

    2016-01-01

    Gene expression is mediated through interaction between cis regulatory elements and its cognate transcription factors. Cis regulatory elements are defined as non-coding DNA sequences that provide the binding sites for transcription factors and are clustered in the upstream region of genes. ACGT cis regulatory element is one of the important cis regulatory elements found to be involved in diverse biological processes like auxin response, salicylic acid (SA) response, UV light response, ABA response and jasmonic acid (JA) response. We identified through in silico analysis that the upstream region of protein phosphatase 2C (PP2C) gene has a distinct genetic architecture of ACGT elements. In the present study, the activation of the full length promoter and its deletion constructs like 900 base pair, 500 base pair, 400 base pair and NRM (Nathji Rajesh Mehrotra) were examined by stable transformation in Arabidopsis thaliana using β-glucuronidase as the reporter gene. Evaluation of deletion constructs of PP2C-like promoter was carried out in the presence of phytohormones like abscisic acid (ABA), SA and JA. Our result indicated that the full length and 900 base pair promoter-reporter constructs of PP2C-like promoter was induced in response to ABA but not to methyl jasmonate and SA. PMID:27200023

  20. PP2C-like Promoter and Its Deletion Variants Are Induced by ABA but Not by MeJA and SA in Arabidopsis thaliana

    PubMed Central

    Bhalothia, Purva; Sangwan, Chetna; Alok, Anshu; Mehrotra, Sandhya; Mehrotra, Rajesh

    2016-01-01

    Gene expression is mediated through interaction between cis regulatory elements and its cognate transcription factors. Cis regulatory elements are defined as non-coding DNA sequences that provide the binding sites for transcription factors and are clustered in the upstream region of genes. ACGT cis regulatory element is one of the important cis regulatory elements found to be involved in diverse biological processes like auxin response, salicylic acid (SA) response, UV light response, ABA response and jasmonic acid (JA) response. We identified through in silico analysis that the upstream region of protein phosphatase 2C (PP2C) gene has a distinct genetic architecture of ACGT elements. In the present study, the activation of the full length promoter and its deletion constructs like 900 base pair, 500 base pair, 400 base pair and NRM (Nathji Rajesh Mehrotra) were examined by stable transformation in Arabidopsis thaliana using β-glucuronidase as the reporter gene. Evaluation of deletion constructs of PP2C-like promoter was carried out in the presence of phytohormones like abscisic acid (ABA), SA and JA. Our result indicated that the full length and 900 base pair promoter-reporter constructs of PP2C-like promoter was induced in response to ABA but not to methyl jasmonate and SA. PMID:27200023

  1. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression

    PubMed Central

    Cortez, Beatriz Araujo; Teixeira, Paula Rezende; Redick, Sambra; Doxsey, Stephen; Machado-Santelli, Glaucia Maria

    2016-01-01

    Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development. PMID:26788989

  2. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission.

    PubMed

    Uehara, Ryota; Kamasaki, Tomoko; Hiruma, Shota; Poser, Ina; Yoda, Kinya; Yajima, Junichiro; Gerlich, Daniel W; Goshima, Gohta

    2016-03-01

    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. PMID:26764096

  3. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  4. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission

    PubMed Central

    Uehara, Ryota; Kamasaki, Tomoko; Hiruma, Shota; Poser, Ina; Yoda, Kinya; Yajima, Junichiro; Gerlich, Daniel W.; Goshima, Gohta

    2016-01-01

    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. PMID:26764096

  5. Beclin-1 knockdown shows abscission failure but not autophagy defect during oocyte meiotic maturation.

    PubMed

    You, Seung Yeop; Park, Yong Seok; Jeon, Hyuk-Joon; Cho, Dong-Hyung; Jeon, Hong Bae; Kim, Sung Hyun; Chang, Jong Wook; Kim, Jae-Sung; Oh, Jeong Su

    2016-06-17

    Cytokinesis is the final step in cell division that results in the separation of a parent cell into daughter cells. Unlike somatic cells that undergo symmetric division, meiotic division is highly asymmetric, allowing the preservation of maternal resources for embryo development. Beclin-1/BECN1, the mammalian homolog of yeast Atg6, is a key molecule of autophagy. As part of a class III phosphatidylinositol 3-kinase (PI3K-III) complex, BECN1 initiates autophagosome formation by coordinating membrane trafficking. However, emerging evidence suggests that BECN1 regulates chromosome segregation and cytokinesis during mitosis. Thus, we investigated the function of BECN1 during oocyte meiotic maturation. BECN1 was widely distributed during meiotic maturation forming small vesicles. Interestingly, BECN1 is also detected at the midbody ring during cytokinesis. Depletion of BECN1 impaired the cytokinetic abscission, perturbing the recruitment of ZFYVE26 at the midbody. Similar phenotypes were observed when PI3K-III activity was inhibited. However, inhibition of autophagy by depleting Atg14L did not disturb meiotic maturation. Therefore, our results not only demonstrate that BECN1 as a PI3K-III component is essential for cytokinesis, but also suggest that BECN1 is not associated with autophagy pathway in mouse oocytes. PMID:27149384

  6. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression.

    PubMed

    Cortez, Beatriz Araujo; Rezende-Teixeira, Paula; Redick, Sambra; Doxsey, Stephen; Machado-Santelli, Glaucia Maria

    2016-02-23

    Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development. PMID:26788989

  7. Physiological impacts of ABA-JA interactions under water-limitation.

    PubMed

    de Ollas, Carlos; Dodd, Ian C

    2016-08-01

    Plant responses to drought stress depend on highly regulated signal transduction pathways with multiple interactions. This complex crosstalk can lead to a physiological outcome of drought avoidance or tolerance/resistance. ABA is the principal mediator of these responses due to the regulation of stomatal closure that determines plant growth and survival, but also other strategies of drought resistance such as osmotic adjustment. However, other hormones such as JA seem responsible for regulating a subset of plant responses to drought by regulating ABA biosynthesis and accumulation and ABA-dependent signalling, but also by ABA independent pathways. Here, we review recent reports of ABA-JA hormonal and molecular interactions within a physiological framework of drought tolerance. Understanding the physiological significance of this complex regulation offers opportunities to find strategies of drought tolerance that avoid unwanted side effects that limit growth and yield, and may allow biotechnological crop improvement. PMID:27299601

  8. Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina1[W

    PubMed Central

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-01-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505

  9. AbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Seo, Young-Su; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee; Lee, Yin-Won

    2013-01-01

    Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi. PMID:24039821

  10. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis

    PubMed Central

    Liu, Zhi-Qiang; Yan, Lu; Wang, Xiao-Fang; Zhang, Da-Peng

    2012-01-01

    Three evolutionarily closely related WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in Arabidopsis were previously identified as negative abscisic acid (ABA) signalling regulators, of which WRKY40 regulates ABI4 and ABI5 expression, but it remains unclear whether and how the three transcription factors cooperate to regulate expression of ABI4 and ABI5. In the present experiments, it was shown that WRKY18 and WRKY60, like WRKY40, interact with the W-box in the promoters of ABI4 and ABI5 genes, though the three WRKYs have their own preferential binding domains in the two promoters. WRKY18 and WRKY60, together with WRKY40, inhibit expression of the ABI5 and/or ABI4 genes, which is consistent with their negative roles in ABA signalling. Further, genetic evidence is provided that mutations of ABI4 and ABI5 genes suppress ABA-hypersensitive phenotypes of the null mutant alleles of WRKY18 and WRKY60 genes, demonstrating that ABI4 and ABI5 function downstream of these two WRKY transcription factors in ABA signalling. A working model of cooperation of the three WRKYs in repressing ABI4 and ABI5 expression is proposed, in which the three WRKYs antagonize or aid each other in a highly complex manner. These findings help to understand the complex mechanisms of WRKY-mediated ABA signal transduction. PMID:23095997

  11. Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores[OPEN

    PubMed Central

    2016-01-01

    Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme β-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth. PMID:26887919

  12. Genetic control of abscisic acid biosynthesis in maize.

    PubMed

    Tan, B C; Schwartz, S H; Zeevaart, J A; McCarty, D R

    1997-10-28

    Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identified by transposon mutagenesis. Mutant embryos had normal sensitivity to ABA, and detached leaves of mutant seedlings showed markedly higher rates of water loss than those of wild type. The ABA content of developing mutant embryos was 70% lower than that of wild type, indicating a defect in ABA biosynthesis. vp14 embryos were not deficient in epoxy-carotenoids, and extracts of vp14 embryos efficiently converted the carotenoid cleavage product, xanthoxin, to ABA, suggesting a lesion in the cleavage reaction. vp14 was cloned by transposon tagging. The VP14 protein sequence is similar to bacterial lignostilbene dioxygenases (LSD). LSD catalyzes a double-bond cleavage reaction that is closely analogous to the carotenoid cleavage reaction of ABA biosynthesis. Southern blots indicated a family of four to six related genes in maize. The Vp14 mRNA is expressed in embryos and roots and is strongly induced in leaves by water stress. A family of Vp14-related genes evidently controls the first committed step of ABA biosynthesis. These genes are likely to play a key role in the developmental and environmental control of ABA synthesis in plants. PMID:9342392

  13. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. PMID:26963431

  14. Type B Heterotrimeric G Protein γ-Subunit Regulates Auxin and ABA Signaling in Tomato[OPEN

    PubMed Central

    Subramaniam, Gayathery; Trusov, Yuri; Hayashi, Satomi; Batley, Jacqueline

    2016-01-01

    Heterotrimeric G proteins composed of α, β, and γ subunits are central signal transducers mediating the cellular response to multiple stimuli in most eukaryotes. Gγ subunits provide proper cellular localization and functional specificity to the heterotrimer complex. Plant Gγ subunits, divided into three structurally distinct types, are more diverse than their animal counterparts. Type B Gγ subunits, lacking a carboxyl-terminal isoprenylation motif, are found only in flowering plants. We present the functional characterization of type B Gγ subunit (SlGGB1) in tomato (Solanum lycopersicum). We show that SlGGB1 is the most abundant Gγ subunit in tomato and strongly interacts with the Gβ subunit. Importantly, the green fluorescent protein-SlGGB1 fusion protein as well as the carboxyl-terminal yellow fluorescent protein-SlGGB1/amino-terminal yellow fluorescent protein-Gβ heterodimer were localized in the plasma membrane, nucleus, and cytoplasm. RNA interference-mediated silencing of SlGGB1 resulted in smaller seeds, higher number of lateral roots, and pointy fruits. The silenced lines were hypersensitive to exogenous auxin, while levels of endogenous auxins were lower or similar to those of the wild type. SlGGB1-silenced plants also showed strong hyposensitivity to abscisic acid (ABA) during seed germination but not in other related assays. Transcriptome analysis of the transgenic seeds revealed abnormal expression of genes involved in ABA sensing, signaling, and response. We conclude that the type B Gγ subunit SlGGB1 mediates auxin and ABA signaling in tomato. PMID:26668332

  15. Self-assembly of ABA triblock copolymers under soft confinement

    NASA Astrophysics Data System (ADS)

    Sheng, Yuping; An, Jian; Zhu, Yutian

    2015-05-01

    Using Monte Carlo method, the self-assembly of ABA triblock copolymers under soft confinement is investigated in this study. The soft confinement is achieved by a poor solvent environment for the polymer, which makes the polymer aggregate into a droplet. Various effects, including the block length ratio, the solvent quality for the blocks B, and the incompatibility between blocks A and B, on the micellar structures induced by soft confinement are examined. By increasing the solvent quality of B blocks, the micellar structure transforms from stacked lamella to bud-like structure, and then to onion-like structure for A5B8A5 triblock copolymers, while the inner micellar structure changes from spherical phase to various cylindrical phase, such as inner single helix, double helixes, stacked rings and cage-like structures, for A7B4A7 triblock copolymers. Moreover, the formation pathways of some typical aggregates are examined to illustrate their growth mechanisms.

  16. Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress1[C][W][OPEN

    PubMed Central

    Seiler, Christiane; Harshavardhan, Vokkaliga T.; Reddy, Palakolanu S.; Hensel, Götz; Kumlehn, Jochen; Eschen-Lippold, Lennart; Rajesh, Kalladan; Korzun, Viktor; Wobus, Ulrich; Lee, Justin; Selvaraj, Gopalan; Sreenivasulu, Nese

    2014-01-01

    Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase (AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8′-hydroxylase under the control of a drought-inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In transgenic barley, drought-inducible AtNCED expression afforded temporal control in ABA levels such that the ABA levels rose sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment due to down-regulation of endogenous HvNCED genes. Suppressing of ABA catabolism with the RNA interference approach of ABA 8′-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN RESISTANCE1-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-fermenting1-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members that could potentially impact ABA metabolism and stress adaptation in barley. PMID:24610749

  17. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways.

    PubMed

    Yang, Wei; Liu, Xiao-Dan; Chi, Xiao-Juan; Wu, Chang-Ai; Li, Yan-Ze; Song, Li-Li; Liu, Xiu-Ming; Wang, Yan-Fang; Wang, Fa-Wei; Zhang, Chuang; Liu, Yang; Zong, Jun-Mei; Li, Hai-Yan

    2011-02-01

    In higher plants, DREB1/CBF-type transcription factors play an important role in tolerance to low temperatures, drought, and high-salt stress. These transcription factors bind to CRT/DRE elements in promoter regions of target genes, regulating their expression. In this study, we cloned and characterized a novel gene encoding a DREB1 transcription factor from dwarf apple, Malus baccata (GenBank accession number: EF582842). Expression of MbDREB1 was induced by cold, drought, and salt stress, and also in response to exogenous ABA. Subcellular localization analyses revealed that MbDREB1 localizes in the nucleus. A yeast activity assay demonstrated that the MbDREB1 gene encodes a transcription activator, which specifically binds to DRE/CRT elements. Compared with wild-type plants, transgenic Arabidopsis overexpressing MbDREB1 showed increased tolerance to low temperature, drought, and salt stresses. Analysis of the MbDREB1 promoter revealed an ABA-responsive element (ABRE), an inducer of CBF expression 1 (ICE1)-like binding site, two MYB recognition sites, and three stress-inducible GT-1 boxes. GUS activities driven by the MbDREB1 promoter in transgenic Arabidopsis increased in response to ABA, cold temperature, drought, and salt treatments. Interestingly, the expression of both ABA-independent and ABA-dependent stress-induced genes (COR15a and rd29B, respectively) was activated under normal growth conditions in Arabidopsis overexpressing MbDREB1. These results suggest that MbDREB1 functions as a transcription factor and increases plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. PMID:20967459

  18. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    PubMed

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control. PMID:23451824

  19. Chlorophyll a Fluorescence as a Tool in Evaluating the Effects of ABA Content and Ethylene Inhibitors on Quality of Flowering Potted Bougainvillea

    PubMed Central

    Ferrante, Antonio; Trivellini, Alice; Borghesi, Eva; Vernieri, Paolo

    2012-01-01

    Flowering potted plants during the postproduction stage are usually stored in inadequate environmental conditions. We evaluated the effect of the most common storage conditions and treatments on two Bougainvillea cultivars after harvest and during recovery. Flowering potted Bougainvillea plants were treated with 100 mL 2 mM amino-oxyacetic acid (AOA) or 500 ppb 1-methylcyclopropene (1-MCP) prior storage in dark at 14°C for simulating transport or storage conditions and, subsequently, transferred to growth chambers at 20°C in the light for one week for evaluating the recovery ability. The plant stress during the experiments was assessed by ethylene, ABA, and chlorophyll a fluorescence measurements. Ethylene production was affected by temperature rather than treatments. ABA concentration declined in leaves and flowers during storage and was not affected by treatments. Fluorescence parameters appear to be very useful for screening Bougainvillea cultivars resistant to prolonged storage periods. PMID:22272178

  20. Overexpression of AtPTPA in Arabidopsis increases protein phosphatase 2A activity by promoting holoenzyme formation and ABA negatively affects holoenzyme formation

    PubMed Central

    Chen, Jian; Zhu, Xunlu; Shen, Guoxin; Zhang, Hong

    2015-01-01

    AtPTPA is a critical regulator for the holoenzyme assembling of protein phosphatase 2A (PP2A) in Arabidopsis. Characterization of AtPTPA improves our understanding of the function and regulation of PP2A in eukaryotes. Further analysis of AtPTPA-overexpressing plants indicates that AtPTPA increases PP2A activity by promoting PP2A's AC dimer formation, thereby holoenzyme assembling. Plant hormone abscisic acid (ABA) reduces PP2A enzyme activity by negatively affects PP2A's AC dimer formation. Therefore, AtPTPA is a positive factor that promotes PP2A holoenzyme assembly, and ABA is a negative factor that prevents PP2A holoenzyme assembly. PMID:26633567

  1. Chemical Promotion of Endogenous Amounts of ABA in Arabidopsis thaliana by a Natural Product, Theobroxide.

    PubMed

    Yamashita, Yudai; Ota, Maremichi; Inoue, Yutaka; Hasebe, Youko; Okamoto, Masanori; Inukai, Tsuyoshi; Masuta, Chikra; Sakihama, Yasuko; Hashidoko, Yasuyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Inage, Yasuyuki; Takahashi, Kosaku; Yoshihara, Teruhiko; Matsuura, Hideyuki

    2016-05-01

    Plant hormones are a group of structurally diverse small compounds that orchestrate the cellular processes governing proper plant growth and environmental adaptation. To understand the details of hormonal activity, we must study not only their inherent activities but also the cross-talk among plant hormones. In addition to their use in agriculture, plant chemical activators, such as probenazole and uniconazole, have made great contributions to understand hormonal cross-talk. However, the use of plant chemical activators is limited due to the lack of activators for certain hormones. For example, to the best of our knowledge, there are only a few chemical activators previously known to stimulate the accumulation of ABA in plants, such as absinazoles and proanthocyanidins. In many cases, antagonistic effects have been examined in experiments using exogenously applied ABA, although these studies did not account for biologically relevant concentrations. In this report, it was found that a natural product, theobroxide, had potential as a plant chemical activator for stimulating the accumulation of ABA. Using theobroxide, the antagonistic effect of ABA against GAs was proved without exogenously applying ABA or using mutant plants. Our results suggest that ABA levels could be chemically controlled to elicit ABA-dependent biological phenomena. PMID:26917631

  2. ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by Controlling PLETHORA Expression in Arabidopsis

    PubMed Central

    Yang, Li; Zhang, Jing; He, Junna; Qin, Yingying; Hua, Deping; Duan, Ying; Chen, Zhizhong; Gong, Zhizhong

    2014-01-01

    Although research has determined that reactive oxygen species (ROS) function as signaling molecules in plant development, the molecular mechanism by which ROS regulate plant growth is not well known. An aba overly sensitive mutant, abo8-1, which is defective in a pentatricopeptide repeat (PPR) protein responsible for the splicing of NAD4 intron 3 in mitochondrial complex I, accumulates more ROS in root tips than the wild type, and the ROS accumulation is further enhanced by ABA treatment. The ABO8 mutation reduces root meristem activity, which can be enhanced by ABA treatment and reversibly recovered by addition of certain concentrations of the reducing agent GSH. As indicated by low ProDR5:GUS expression, auxin accumulation/signaling was reduced in abo8-1. We also found that ABA inhibits the expression of PLETHORA1 (PLT1) and PLT2, and that root growth is more sensitive to ABA in the plt1 and plt2 mutants than in the wild type. The expression of PLT1 and PLT2 is significantly reduced in the abo8-1 mutant. Overexpression of PLT2 in an inducible system can largely rescue root apical meristem (RAM)-defective phenotype of abo8-1 with and without ABA treatment. These results suggest that ABA-promoted ROS in the mitochondria of root tips are important retrograde signals that regulate root meristem activity by controlling auxin accumulation/signaling and PLT expression in Arabidopsis. PMID:25522358

  3. A Nuclear Factor Regulates Abscisic Acid Responses in Arabidopsis1[W][OA

    PubMed Central

    Kim, Min Jung; Shin, Ryoung; Schachtman, Daniel P.

    2009-01-01

    Abscisic acid (ABA) is a plant hormone that regulates plant growth as well as stress responses. In this study, we identified and characterized a new Arabidopsis (Arabidopsis thaliana) protein, Nuclear Protein X1 (NPX1), which was up-regulated by stress and treatment with exogenous ABA. Stomatal closure, seed germination, and primary root growth are well-known ABA responses that were less sensitive to ABA in NPX1-overexpressing plants. NPX1-overexpressing plants were more drought sensitive, and the changes in response to drought were due to the altered guard cell sensitivity to ABA in transgenic plants and not to a lack of ABA production. The nuclear localization of NPX1 correlated with changes in the expression of genes involved in ABA biosynthesis and ABA signal transduction. To understand the function of NPX1, we searched for interacting proteins and found that an ABA-inducible NAC transcription factor, TIP, interacted with NPX1. Based on the whole plant phenotypes, we hypothesized that NPX1 acts as a transcriptional repressor, and this was demonstrated in yeast, where we showed that TIP was repressed by NPX1. Our results indicate that the previously unknown protein NPX1 acts as a negative regulator in plant response to changes in environmental conditions through the control of ABA-regulated gene expression. The characterization of this factor enhances our understanding of guard cell function and the mechanisms that plants use to modulate water loss from leaves under drought conditions. PMID:19759343

  4. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions.

    PubMed

    Takeuchi, Jun; Okamoto, Masanori; Akiyama, Tomonori; Muto, Takuya; Yajima, Shunsuke; Sue, Masayuki; Seo, Mitsunori; Kanno, Yuri; Kamo, Tsunashi; Endo, Akira; Nambara, Eiji; Hirai, Nobuhiro; Ohnishi, Toshiyuki; Cutler, Sean R; Todoroki, Yasushi

    2014-06-01

    The plant stress hormone abscisic acid (ABA) is critical for several abiotic stress responses. ABA signaling is normally repressed by group-A protein phosphatases 2C (PP2Cs), but stress-induced ABA binds Arabidopsis PYR/PYL/RCAR (PYL) receptors, which then bind and inhibit PP2Cs. X-ray structures of several receptor-ABA complexes revealed a tunnel above ABA's 3' ring CH that opens at the PP2C binding interface. Here, ABA analogs with sufficiently long 3' alkyl chains were predicted to traverse this tunnel and block PYL-PP2C interactions. To test this, a series of 3'-alkylsulfanyl ABAs were synthesized with different alkyl chain lengths. Physiological, biochemical and structural analyses revealed that a six-carbon alkyl substitution produced a potent ABA antagonist that was sufficiently active to block multiple stress-induced ABA responses in vivo. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class. PMID:24792952

  5. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid.

    PubMed

    Lee, Kwang Hee; Piao, Hai Lan; Kim, Ho-Youn; Choi, Sang Mi; Jiang, Fan; Hartung, Wolfram; Hwang, Ildoo; Kwak, June M; Lee, In-Jung; Hwang, Inhwan

    2006-09-22

    Abscisic acid (ABA) is a phytohormone critical for plant growth, development, and adaptation to various stress conditions. Plants have to adjust ABA levels constantly to respond to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning ABA levels remain elusive. Here we report that AtBG1, a beta-glucosidase, hydrolyzes glucose-conjugated, biologically inactive ABA to produce active ABA. Loss of AtBG1 causes defective stomatal movement, early germination, abiotic stress-sensitive phenotypes, and lower ABA levels, whereas plants with ectopic AtBG1 accumulate higher ABA levels and display enhanced tolerance to abiotic stress. Dehydration rapidly induces polymerization of AtBG1, resulting in a 4-fold increase in enzymatic activity. Furthermore, diurnal increases in ABA levels are attributable to polymerization-mediated AtBG1 activation. We propose that the activation of inactive ABA pools by polymerized AtBG1 is a mechanism by which plants rapidly adjust ABA levels and respond to changing environmental cues. PMID:16990135

  6. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid

    PubMed Central

    Liang, Shan; Lu, Kai; Wu, Zhen; Jiang, Shang-Chuan; Yu, Yong-Tao; Bi, Chao; Xin, Qi; Wang, Xiao-Fang; Zhang, Da-Peng

    2015-01-01

    Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K+ inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA. PMID:26175350

  7. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid.

    PubMed

    Liang, Shan; Lu, Kai; Wu, Zhen; Jiang, Shang-Chuan; Yu, Yong-Tao; Bi, Chao; Xin, Qi; Wang, Xiao-Fang; Zhang, Da-Peng

    2015-10-01

    Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K(+) inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA. PMID:26175350

  8. POLYAMINE OXIDASE2 of Arabidopsis contributes to ABA mediated plant developmental processes.

    PubMed

    Wimalasekera, Rinukshi; Schaarschmidt, Frank; Angelini, Riccardo; Cona, Alessandra; Tavladoraki, Parasklevi; Scherer, Günther F E

    2015-11-01

    Polyamines (PA) are catabolised by two groups of amine oxidases, the copper-binding amine oxidases (CuAOs) and the FAD-binding polyamine oxidases (PAOs). Previously, we have shown that CuAO1 is involved in ABA associated growth responses and ABA- and PA-mediated rapid nitric oxide (NO) production. Here we report the differential regulation of expression of POLYAMINE OXIDASE2 of Arabidopsis (AtPAO2) in interaction with ABA, nitrate and ammonium. Without ABA treatment germination, cotyledon growth and fresh weight of pao2 knockdown mutants as well as PAO2OX over-expressor plants were comparable to those of the wild type (WT) plants irrespective of the N source. In the presence of ABA, in pao2 mutants cotyledon growth and fresh weights were more sensitive to inhibition by ABA while PAO2OX over-expressor plants showed a rather similar response to WT. When NO3(-) was the only N source primary root lengths and lateral root numbers were lower in pao2 mutants both without and with exogenous ABA. PAO2OX showed enhanced primary and lateral root growth in media with NO3(-) or NH4(+). Vigorous root growth of PAO2OX and the hypersensitivity of pao2 mutants to ABA suggest a positive function of AtPAO2 in root growth. ABA-induced NO production in pao2 mutants was lower indicating a potential contributory function of AtPAO2 in NO-mediated effects on root growth. PMID:26310141

  9. Networks of ABA and ABC stacked graphene on mica observed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Hattendorf, S.; Georgi, A.; Liebmann, M.; Morgenstern, M.

    2013-04-01

    Graphene flakes are prepared on freshly cleaved mica by exfoliation and studied by scanning tunneling microscopy in ultra high vacuum. On few-layer graphene, a triangular network of partial dislocations separating ABC stacked and ABA stacked graphene was found similar to the networks occasionally visible on freshly cleaved HOPG. We found differences in the electronic structure of ABC and ABA stacked areas by scanning tunneling spectroscopy, i.e., a pronounced peak at 0.25 eV above the Fermi level exclusively in the ABA areas, which is shown to be responsible for the different apparent heights observed in STM images.

  10. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    SciTech Connect

    Abian, J.; Gelpi, E.; Pages, M. )

    1991-04-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-({sup 14}C)LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. {alpha}- and {gamma}-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed.

  11. Abscisic acid metabolism in relation to water stress and leaf age in Xanthium strumarium

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D.

    1984-12-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained. Abscisic aid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days. Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Studies with radioactive (+/-)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. 25 references, 10 figures, 2 tables.

  12. Biological and Chemical Properties of the Epidioxide Isomer of Abscisic Acid and its Rearrangement Products

    PubMed Central

    Sondheimer, Ernest; Michniewicz, Barbara M.; Powell, Loyd E.

    1969-01-01

    The growth inhibitory activity of the epidioxide (II), a precursor in the synthesis of abscisic acid (ABA), has been confirmed with additional assay systems. Under physiological conditions the epidioxide is rearranged to give ABA and an isomer of ABA which has probably the structure V. This major product has very low, if any, biological activity. The biological activity of the epidioxide is explained by its partial conversion (about 20%) to ABA. The reaction rate was enhanced by heavy metal ions and decreased by EDTA. At pH 12.5, the decomposition of the epidioxide is slower than it is near neutrality and ABA is the predominant product. In the biological systems studied the activity of the epidioxide can be accounted for by nonenzymatic conversion to ABA. PMID:16657047

  13. Abscisic Acid Elicits the Water-Stress Response in Root Hairs of Arabidopsis thaliana1

    PubMed Central

    Schnall, Jennifer A.; Quatrano, Ralph S.

    1992-01-01

    Water stress has been shown to cause root hairs to become short and bulbous. Because abscisic acid (ABA) mediates a variety of water-stress responses, we investigated the response of Arabidopsis thaliana root hairs to ABA. When wild-type root hairs were treated with ABA, they exhibited the water-stress response. The Arabidopsis mutants abi1 and abi2, which are insensitive to ABA at the seedling stage, did not display the root hair response. These data suggest that ABA may mediate the response of root hairs to water stress. The drought response of root hairs resulting in an inhibition of tip growth will provide an easy screen to select mutations that are insensitive to ABA and/or involved in tip growth. Images Figure 1 PMID:16652949

  14. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.

    PubMed

    Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon

    2009-01-23

    The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots. PMID:19056344

  15. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production.

    PubMed

    Mustilli, Anna-Chiara; Merlot, Sylvain; Vavasseur, Alain; Fenzi, Francesca; Giraudat, Jérôme

    2002-12-01

    During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed. PMID:12468729

  16. Phytochrome- and Gibberellin-Mediated Regulation of Abscisic Acid Metabolism during Germination of Photoblastic Lettuce Seeds1[OA

    PubMed Central

    Sawada, Yoshiaki; Aoki, Miki; Nakaminami, Kentaro; Mitsuhashi, Wataru; Tatematsu, Kiyoshi; Kushiro, Tetsuo; Koshiba, Tomokazu; Kamiya, Yuji; Inoue, Yasunori; Nambara, Eiji; Toyomasu, Tomonobu

    2008-01-01

    Germination of lettuce (Lactuca sativa) ‘Grand Rapids’ seeds is regulated by phytochrome. The action of phytochrome includes alterations in the levels of gibberellin (GA) and abscisic acid (ABA). To determine the molecular mechanism of phytochrome regulation of ABA metabolism, we isolated four lettuce cDNAs encoding 9-cis-epoxycarotenoid dioxygenase (biosynthesis; LsNCED1–LsNCED4) and four cDNAs for ABA 8′-hydroxylase (catabolism; LsABA8ox1–LsABA8ox4). Measurements of ABA and its catabolites showed that a decrease in ABA level coincided with a slight increase in the level of the ABA catabolite phaseic acid after red light treatment. Quantitative reverse transcription-polymerase chain reaction analysis indicated that ABA levels are controlled by phytochrome through down-regulation of LsNCED2 and LsNCED4 expression and up-regulation of LsABA8ox4 expression in lettuce seeds. Furthermore, the expression levels of LsNCED4 decreased after GA1 treatment, whereas the levels of expression of the other two genes were unaffected. The LsNCED4 expression was also down-regulated by red light in lettuce seeds in which GA biosynthesis was suppressed by AMO-1618, a specific GA biosynthesis inhibitor. These results indicate that phytochrome regulation of ABA metabolism is mediated by both GA-dependent and -independent mechanisms. Spatial analysis showed that after red light treatment, the ABA decrease on the hypocotyl side was greater than that on the cotyledon side of lettuce seeds. Moreover, phytochrome-regulated expression of ABA and GA biosynthesis genes was observed on the hypocotyl side, rather than the cotyledon side, suggesting that this regulation occurs near the photoperceptive site. PMID:18184730

  17. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes

    PubMed Central

    Farage-Barhom, Sarit; Burd, Shaul; Sonego, Lilian; Perl-Treves, Rafael; Lers, Amnon

    2008-01-01

    Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3 kb portion of the 5′ promoter sequence of BFN1 was cloned and its ability to activate the GUS reporter gene was examined. Transgenic Arabidopsis and tomato plants harbouring this chimeric construct were analysed for GUS expression. In both, the BFN1 promoter was able specifically to direct GUS expression in senescent leaves, differentiating xylem and the abscission zone of flowers. Thus, at least part of the regulation of BFN1 is mediated at the transcriptional level, and the regulatory elements are recognized in the two different plants. In tomato, specific expression was observed in the leaf and the fruit abscission zones. The BFN1 promoter was also active in other tissues, including developing anthers and seeds, and in floral organs after fertilization. PCD has been implicated in all of these processes, suggesting that in addition to senescence, BFN1 is involved in PCD associated with different development processes in Arabidopsis. PMID:18603613

  18. Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis

    PubMed Central

    Onishi, Masayuki; Ko, Nolan; Nishihama, Ryuichi

    2013-01-01

    In yeast and animal cytokinesis, the small guanosine triphosphatase (GTPase) Rho1/RhoA has an established role in formation of the contractile actomyosin ring, but its role, if any, during cleavage-furrow ingression and abscission is poorly understood. Through genetic screens in yeast, we found that either activation of Rho1 or inactivation of another small GTPase, Cdc42, promoted secondary septum (SS) formation, which appeared to be responsible for abscission. Consistent with this hypothesis, a dominant-negative Rho1 inhibited SS formation but not cleavage-furrow ingression or the concomitant actomyosin ring constriction. Moreover, Rho1 is temporarily inactivated during cleavage-furrow ingression; this inactivation requires the protein Cyk3, which binds Rho1-guanosine diphosphate via its catalytically inactive transglutaminase-like domain. Thus, unlike the active transglutaminases that activate RhoA, the multidomain protein Cyk3 appears to inhibit activation of Rho1 (and thus SS formation), while simultaneously promoting cleavage-furrow ingression through primary septum formation. This work suggests a general role for the catalytically inactive transglutaminases of fungi and animals, some of which have previously been implicated in cytokinesis. PMID:23878277

  19. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava

    PubMed Central

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  20. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava.

    PubMed

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  1. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    PubMed

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. PMID:25943308

  2. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  3. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    SciTech Connect

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-11-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in /sup 18/O/sub 2/. It was found that in stressed leaves three atoms of /sup 18/O from /sup 18/O/sub 2/ are incorporated into the ABA molecule, and that the amount of /sup 18/O incorporated increases with time. One /sup 18/O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in /sup 18/O/sub 2/ shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more /sup 18/O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, /sup 18/O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied /sup 14/C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional /sup 18/O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  4. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abs...

  5. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    PubMed

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  6. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions

    PubMed Central

    Muñoz-Espinoza, Valeria A.; López-Climent, María F.; Casaretto, José A.; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  7. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes1[OPEN

    PubMed Central

    Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang

    2016-01-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  8. Dissection of Arabidopsis NCED9 promoter regulatory regions reveals a role for ABA synthesized in embryos in the regulation of GA-dependent seed germination.

    PubMed

    Seo, Mitsunori; Kanno, Yuri; Frey, Anne; North, Helen M; Marion-Poll, Annie

    2016-05-01

    Nine-cis-epoxycarotenoid dioxygenase (NCED) catalyzes the key step of abscisic acid (ABA) biosynthesis. There are five genes encoding NCED in Arabidopsis, which differentially regulate ABA biosynthesis in a spatiotemporal manner in response to endogenous and environmental stimuli. Previous studies have shown that NCED9 is expressed in testa and embryos during seed development. In the present study, we have identified promoter regions required for the expression of NCED9 in testa and embryos, respectively. Electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assays showed that several homeodomain-leucine zipper (HD-Zip) proteins, namely ATHBs, bound to the sequence required for expression of NCED9 in testa, suggesting that they redundantly regulate NCED9 expression. By expressing the NCED9 gene under the control of a deleted NCED9 promoter in an nced9 mutant expression was limited to embryos. Transformants were complemented for the paclobutrazol resistant germination phenotype of the mutant, suggesting that the ABA synthesis mediated by NCED9 in embryos plays an important role in the regulation of gibberellin (GA)-dependent seed germination. PMID:26993239

  9. Change Detection of Lake Aba Samuel in Ethiopia

    NASA Astrophysics Data System (ADS)

    Kaczynski, R.; Rylko, A.

    2016-06-01

    Old topographic map published in 1975 elaborated from aerial photographs taken in 1972, Landsat TM data acquired in May 1986 and Landsat ETM+ from June 2002 have been used to assess the changes of the lake Aba Samuel in Ethiopia. First map of the lake has been done in the framework of UNDP project running in 1988-90 in the Ethiopian Mapping Authority. The second classification map has been done as M.Sc. thesis in the MUT in 2015. Supervised classification methods with the use of ground truth data have been used for elaboration of the Landsat TM data. From the year 1972 up to 1986 the area of the lake has decreased by 23%. From 1986 up to 2002 the area of the lake has decreased by 20%. Therefore, after 30 years the lake was smaller by 43%. This have had very bad influence on the lives of the local population. From other recent data in the period from 2002-2015 the lake has practically disappeared and now it is only a small part of the river Akaki. ENVI 5.2 and ERDAS IMAGINE 9.2 have been used for Radiometric Calibration, Quick Atmospheric Correction (QUAC) and supervised classification of Landsat ETM+ data. The Optimum Index Factor shows the best combination of Landsat TM and ETM+ bands for color composite as 1,4,5 in the color filters: B, G, R for the signature development. Methodology and final maps are enclosed in the paper.

  10. Sequentially Different AB Diblock and ABA Triblock Copolymers as P3HT:PCBM Interfacial Compatibilizers for Bulk-Heterojunction Photovoltaics.

    PubMed

    Fujita, Hiroyuki; Michinobu, Tsuyoshi; Fukuta, Seijiro; Koganezawa, Tomoyuki; Higashihara, Tomoya

    2016-03-01

    The P3HT:PCBM (P3HT = poly(3-hexylthiophene, PCBM = phenyl-C61-butyric acid methyl ester) bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells using the AB diblock and ABA triblock copolymers (A = polystyrene derivative with donor-acceptor units (PTCNE) and B = P3HT) as compatibilizers were fabricated. Under the optimized blend ratio of the block copolymer, the power conversion efficiency (PCE) was enhanced. This PCE enhancement was clearly related to the increased short-circuit current (J(sc)) and fill factor (FF). The incident photon to current efficiency (IPCE) measurement suggested that the P3HT crystallinity was improved upon addition of the block copolymers. The increased P3HT crystallinity was consistent with the increased photovoltaic parameters, such as J(sc), FF, and consequently the PCE. The surface energies of these block copolymers suggested their thermodynamically stable location at the interface of P3HT:PCBM, showing the efficient compatibilizing performance, resulting in enlarging and fixing the interfacial area and suppressing the recombination of the generated carriers. Grazing incidence X-ray scattering (GIXS) results confirmed the superior compatibilizing performance of the ABA triblock copolymer when compared to the AB diblock copolymer by the fact that, after blending the ABA triblock copolymer in the P3HT:PCBM system, the enhanced crystallinity of matrix P3HT was observed in the excluded areas of the less-aggregated PCBM domains, changing the P3HT crystalline domain orientation from "edge-on" to "isotropic". This is, to the best of our knowledge, the first sequential effect (AB vs ABA) of the block copolymers on the compatibilizing performances based on BHJ OPV device systems. PMID:26864393

  11. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines.

    PubMed

    Parada, Francisca; Noriega, Ximena; Dantas, Débora; Bressan-Smith, Ricardo; Pérez, Francisco J

    2016-08-20

    Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response to temperature and glucose, two stimuli that normally increase respiration in plant tissues. While respiration in non-dormant buds rose sharply in response to both stimuli, respiration in dormant buds was only slightly affected. This suggests that a metabolic inhibitor is present. Here, we propose that the plant hormone abscisic acid (ABA) could be this inhibitor. ABA inhibits respiration in non-dormant buds and represses the expression of respiratory genes, such as ALTERNATIVE NADH DEHYDROGENASE (VaND1, VvaND2), CYTOCHROME OXIDASE (VvCOX6) and CYTOCHROME C (VvCYTC), and induces the expression of VvSnRK1, a gene encoding a member of a highly conserved family of protein kinases that act as energy sensors and regulate gene expression in response to energy depletion. In addition to inducing ED the SD-photoperiod up-regulated the expression of VvNCED, a gene that encodes a key enzyme in ABA synthesis. Taken together, these results suggest that ABA through the mediation of VvSnRK1, could play a key role in the regulation of the metabolic changes accompanying the entry into ED of grapevine buds. PMID:27448722

  12. A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis.

    PubMed

    Zhou, Xiaojin; Yan, Shengwei; Sun, Cheng; Li, Suzhen; Li, Jie; Xu, Miaoyun; Liu, Xiaoqing; Zhang, Shaojun; Zhao, Qianqian; Li, Ye; Fan, Yunliu; Chen, Rumei; Wang, Lei

    2015-01-01

    Jasmonate (JA) is an important signaling molecule involved in the regulation of many physiological and stress-related processes in plants. Jasmonate ZIM-domain (JAZ) proteins have been implicated in regulating JA signaling pathways and the cross talk between various phytohormones. Maize is not only an important cereal crop, but also a model plant for monocotyledon studies. Although many JAZ proteins have been characterized in Arabidopsis and rice, few reports have examined the function of JAZ proteins in maize. In this report, we examined the phylogenetic relationship and expression pattern of JAZ family genes in maize. In addition, a tassel and endosperm-specific JAZ gene, ZmJAZ14, was identified using microarray data analysis and real-time RT-PCR, and its expression was induced by polyethylene glycol (PEG), jasmonate (JA), abscisic acid (ABA), and gibberellins (GAs). ZmJAZ14 was shown to be localized in the nucleus and possessed no transcriptional activating activity, suggesting that it functions as a transcriptional regulator. We found that overexpression of ZmJAZ14 in Arabidopsis enhanced plant tolerance to JA and ABA treatment, as well as PEG stress, while it promoted growth under GA stimulus. Moreover, ZmJAZ14 interacted with a subset of transcription factors in Arabidopsis, and the accumulation of several marker genes involved in JA, ABA, and GA signaling pathways were altered in the overexpression lines. These results suggest that ZmJAZ14 may serve as a hub for the cross talk among the JA, ABA, and GA signaling pathways. Our results can be used to further characterize the function of JAZ family proteins in maize, and the gene cloned in this study may serve as a candidate for drought tolerance and growth promotion regulation in maize. PMID:25807368

  13. Molecular characterization of an ABA insensitive 5 orthologue in Brassica oleracea.

    PubMed

    Zhou, Xiaona; Yuan, Feifei; Wang, Mengyao; Guo, Aiguang; Zhang, Yanfeng; Xie, Chang Gen

    2013-01-18

    ABI5 (ABA insensitive 5), a bZIP (Basic leucine zipper) transcription factor, has been shown to be a major mediator of plant ABA responses during seed germination. Although the molecular basis of ABI5-modulated processes has been well demonstrated in Arabidopsis thaliana, its identity and function in cabbage (Brassica oleracea var. capitata L.) remain elusive. Here, we describe our identification of BolABI5 (an ABI5 orthologue in B.oleracea) as a functional bZIP transcription factor in the modulation of plant ABA responses. Expression of BolABI5 was dramatically induced by drought stress and exogenous ABA. Heterogeneous expression of BolABI5 rescued the insensitive phenotype of Arabidopsis abi5-1 to ABA during seed germination. Subcellular localization and trans-activation assays revealed that BolABI5 was localized in the nucleus and possessed DNA binding and trans-activation activities. Deletion of the bZIP domain generated BolABI5ΔbZIP, which no longer localized exclusively in the nucleus and had almost no detectable DNA-binding or trans-activation activities. Overall, these results suggest that BolABI5 may function as ABI5 in the positive regulation of plant ABA responses. PMID:23246838

  14. Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Yang, Yinong; Vera Cruz, Casiana; Höfte, Monica

    2010-01-01

    The plant hormone abscisic acid (ABA) is involved in an array of plant processes, including the regulation of gene expression during adaptive responses to various environmental cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence indicates that ABA is also prominently involved in the regulation and integration of pathogen defense responses. Here, we demonstrate that exogenously administered ABA enhances basal resistance of rice (Oryza sativa) against the brown spot-causing ascomycete Cochliobolus miyabeanus. Microscopic analysis of early infection events in control and ABA-treated plants revealed that this ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the mesophyll. We also show that ABA-IR does not rely on boosted expression of salicylic acid-, jasmonic acid -, or callose-dependent resistance mechanisms but, instead, requires a functional Gα-protein. In addition, several lines of evidence are presented suggesting that ABA steers its positive effect on brown spot resistance through antagonistic cross talk with the ethylene (ET) response pathway. Exogenous ethephon application enhances susceptibility, whereas genetic disruption of ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of resistance similar to that observed on ABA-treated wild-type plants. Moreover, ABA treatment alleviates C. miyabeanus-induced activation of the ET reporter gene EBP89, while derepression of pathogen-triggered EBP89 transcription via RNA interference-mediated knockdown of OsMPK5, an ABA-primed mitogen-activated protein kinase gene, compromises ABA-IR. Collectively, these data favor a model whereby exogenous ABA enhances resistance against C. miyabeanus at least in part by suppressing pathogen-induced ET action in an OsMPK5-dependent manner. PMID:20130100

  15. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species.

    PubMed

    McAdam, Scott A M; Sussmilch, Frances C; Brodribb, Timothy J; Ross, John J

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  16. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    PubMed

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  17. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species

    PubMed Central

    McAdam, Scott A. M.; Sussmilch, Frances C.; Brodribb, Timothy J.; Ross, John J.

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  18. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  19. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) a